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Abstract

We prove the compatibility of local and global Langlands correspondences for GL,, up to semisim-
plification for the Galois representations constructed by Harris-Lan-Taylor-Thorne [10] and Scholze [18].
More precisely, let r,(7) denote an n-dimensional p-adic representation of the Galois group of a CM field
F attached to a regular algebraic cuspidal automorphic representation m of GL,, (Ar). We show that the
restriction of r,(7) to the decomposition group of a place v t p of F' corresponds up to semisimplification
to rec(my), the image of m, under the local Langlands correspondence. Furthermore, we can show that

the monodromy of the associated Weil-Deligne representation of 7, () is ‘more nilpotent’ than the

|Gava
monodromy of rec(my).

1 Introduction

Let F' be an imaginary CM (or totally real) field and let 7 be a regular algebraic (i.e., mo has the same
infinitesimal character as an irreducible algebraic representation p, of RS(S GL,,) cuspidal automorphic rep-
resentation of GL,(Ar). In Harris-Lan-Taylor-Thorne [10] and in Scholze [18], the authors construct a
continuous semisimple representation (depending on a choice of a rational prime p and an isomorphism
1:Q, — C)

rpa(m) s Gal(F/F) — GLn(@p),

which satisfies the following: For every finite place v { p of F such that m and F are both unramified at v,
rp,.(m) is unramified at v and

WD(rp, (7|, )™ =1 " recp, (7, ® | det |(1=n)/2yss, (1.1)

Here recp, as normalized in [11] denotes the local Langlands correspondence for F,, and WD(r,) denotes
the Weil-Deligne representation associated to the the p-adic Galois representation 7, of the decomposition
group G, := Gal(F,/F,). In this paper, we extend local-global compatibility up to semisimplification (1.1)
to all primes v { p of F. In particular, we prove the following theorem:

Theorem 1. Keeping the notation of the previous paragraph, let vt p be a prime of F. Then
WD(rp,.(m)| g, )** = 1" reck, (m, @ [ det |{' /%)%,

Frob

In fact, our methods allow us to ‘bound’ the monodromy of WD(ry,,(7)|,, )" ~** by the monodromy

of recg, (m,| det \1(,1_”)/ 2). In the past, such versions of local-global compatibility have been used for proving
the non-vanishing of certain Selmer groups (see for example, Bellaiche-Chenevier [3]). Using the notation
introduced in Definition 8.2, we can generalize the above theorem to:



Theorem 2. Keeping the notation of the first paragraph, let v 1 p be a prime of F. Then
WD(TW(W”GFU)FTOI)_SS <1 recp, (my @ | det |£)1—n)/2)’
where Frob-ss’ denotes Frobenius semisimplification.

The above theorems are already known when such 7 are conjugate self-dual, by work of Caraiani [6],
Shin [19], and Chenevier-Harris [9]. In particular, in [6, 19], the authors prove the stronger statement that
the monodromy of WD(rp’l(w)|GFU )Frob—=ss is equal to that of recp, (m, @ |det \,(jl_n)/Q) under the added
hypothesis that 7 is conjugate self-dual. When removing the “conjugate self-dual” hypothesis for a given m,
one can no longer expect to find the corresponding Galois representations in the etale cohomology of Shimura
varieties, and so the authors of [10] construct r,,(7) instead using an p-adic interpolation argument. To
prove Theorem 1, we must reconstruct the Galois representations 7, ,(7) as in [10] while studying the Hecke
action at all primes v { p. We summarize the argument below.

Let 7 be a regular algebraic cuspidal automorphic representation on GL,, (Ar). Let G denote the quasisplit
unitary similitude group of signature (n,n) associated to F?" and alternating form (fin 16‘ ), where the
similitude factor GL; is defined over Q (not F'). It has a maximal parabolic P = {GL; x (§ )} C G with
Levi L = {GL; x ($9)} C P. However, note that L = GL; X RS(S GL,,. For all sufficiently large positive
integers M, let

I(M) = I 23 (1% o (@ || det [|M)P),

(where Ind denotes unnormalized induction). The authors of [10] prove that II(M) is a subrepresentation
of the space of overconvergent p-adic automorphic forms on G of some possibly non-classical weight and
finite slope. Classical cusp forms on this space base change via the trace formula to GLs, to isobaric sums
of conjugate self-dual cuspidal automorphic representations and they have Galois representations satisfying
full local-global compatibility. Now, at all primes v { p of F' which split over F* (equivalently, at all primes
away from p where G splits), take the Bernstein centers associated to a finite union of Bernstein components
containing IT(M), as the Hecke algebras acting on spaces of p-adic and classical cusp forms on G of arbitrary
integral (not necessarily classical) weight. For each o € Wpg,, the image of the Bernstein centers contains
Hecke operators whose eigenvalue on a p-adic cusp form II' of G is equal to

trrecy, (I, @ | det |1 =2/2)(5).
If TI' is classical, then local-global compatibility is already known, and so the eigenvalue is also equal to

!/ S8
tr WD(r, (I1) [, )**(0),
where 7, (IT') : Gp — GL2,(Q,) denotes the Galois representation associated to II'. By showing that there
are linear combinations of classical cusp forms of G' whose Hecke eigenvalues are congruent mod p* to those
of II(M) for each positive k, we are able to construct a continuous pseudorepresentation T' : Gp — Q,
satisfying the following: for every place v { p of F which is split over F'™ and each o, € Wg,,

T(0,) = trrecp, (II(M), ® | det |1 =2"/2)(5,).

This implies that there is a continuous semisimple Galois representation ry,(II(M)) : Gp — GL2,(Q,)
whose trace is equal to T, and so for all primes v of F which are split over F'T and lie above any rational
prime other than p,

WD (7, (TI(M))| . )** =07 recp, (IH(M), @ |det [ 2/2)%.

thus if €, denotes the p-adic cyclotomic character, then WD(r, ,(II(M)) ® G;M’GF )*% is isomorphic to

1 rec, (7‘(’1}‘ det ‘Sjlfn)/Z)ss @ (171 recp,, (ﬂ'cvl det |S}—n)/2)ss)v,c ® 6;)727172]\/[.



Because we construct r,,(II(M)) for each sufficiently large positive integer M, it is now group theory to
isolate an n-dimensional subquotient r, ,(7) : Gp — GLn(@p) satisfying

WD(rp,(m)| g, )** = 1" recr, (1, @ [ det |{'77/2)%,

when v { p is a prime of F' which is split over F'*. Using the patching lemma of Sorensen [21], we can remove
the assumption that v must split over F* and therefore conclude Theorem 1°%. We then use idempotents
constructed by Schneider-Zink [17] and properties of A*r, ,(II(M)) and A¥ recp, (BC(II(M)),) to “bound”

the monodromy of WD(r,, ,(7))F°P =% by the monodromy of recp, (7, ® | det ‘gl—”)/Q).
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Notation and Conventions.

Let FT be a totally real field and let Fy denote an imaginary quadratic field. We set F' = Fo ', and ¢ will
denote the nontrivial element of Gal(F/F™T). Let p denote a rational prime that splits in Fy. Let n denote
a positive integer and if I’ = Q, assume n > 2. In the sequel, ¢ will always denote a rational prime such
that £ # p. Fixz:@plﬂC.

For any field K, we will once and for all choose an algebraic closure K of K, and Gk will denote the
absolute Galois group of K over K. If Ky C K is a subfield and S is a finite set of primes of Ky, then we will
denote by Gf( the maximal continuous quotient of G in which all primes of K not lying above an element
of S are unramified.

If K is an arbitrary number field and v is a finite place of K, let w, denote the uniformizer of K, and
k(v) is the residue field of v. Denote the absolute value on K associated to v by |- |,, which is normalized so
that |w,|, = (#k(v))~t. If v is a real place of K, then |z, := £, and if v is complex, then |z|, = ‘zz. Let

-l =TI o A% — RZ,.
v

If r: G, — GL,(Q,) denotes a continuous representation of G, where v { p is finite, then we will
write WD(r) for the corresponding Weil-Deligne representation of the Weil group Wi of K, (see section
1 of Taylor-Yoshida [24]). A Weil-Deligne representation is denoted as (r,V,N) = (r,N) = (V,N), where
V is a finite-dimensional vector space over @p, r: Wg, — GL(V) is a representation with open kernel and
N(r)= N :V — V is a nilpotent endomorphism satisfying

r(o)Nr(o)™! = | Art}: (0)

N

(here, Artp, : F — W denotes the local Artin map, normalized as in [24]). We say (r,V, N) is Frobenius
semisimple if r is semisimple. We denote the Frobenius semisimplification of (r,V, N) by (r,V, N)¥Frob—ss
and the semisimplification of (r, V, N) is (r,V, N)** = (r*%,V,0) (see Section 1 of [24]).

If 7 is an irreducible smooth representation of GL,,(K,) over C, we will write recg, (7) for the Weil-
Deligne representation of Wy, corresponding to 7 by the local Langlands correspondence (see Harris-Taylor
[11] or Henniart [12]). If m and 7o are irreducible smooth representations of GLy, (K,) (resp. GLy, (K,)),
then there is an irreducible smooth representation w1 B g of GLy,, 40, (K,) over C satisfying

recg, (m1 B ma) = recg, (m1) @ recp, (72).

Let G be a reductive group over K,, and let P be a parabolic subgroup of G with unipotent radical NV
and Levi L. For a smooth representation 7 of L(K,) on a vector space V; over a field Q of characteristic
0, we define Indgg;’; 7 to be the representation of G(K,) by right translation on the set of locally constant
functions ¢ : G(K,) — V; such that ¢(hg) = w(h)p(g) for all h € P(F,) and g € G(K,). When Q = C,
define normalized induction as

n-Indplg) 7 = IndGUe) 7 @ | det(ad ()] )13/

2 Recollections

We recall the setup of Harris-Lan-Taylor-Thorne [10], including the unitary similitude group, and the Shimura
variety (and various compactifications) associated to the unitary group, as well as their integral models. This
will allow us to define automorphic vector bundles defined on these integral models, whose global sections
will be the space of classical and p-adic automorphic forms.



2.1 Unitary Group

We define an integral unitary similitude group, which is associated to the following data. If ¥,, denotes the
n X n matrix with 1’s on the anti-diagonal and 0’s elsewhere then let .J,, denote the following element of

GLoy (Z):
0 o,
().

Let D' denote the inverse different of Op, and define the 2n-dimensional lattice A = (Dp')" @ OF. Let G
be the group scheme over Z defined by

G(R) ={(g,p) € Auto,e,r(A®z R) x R* : 'gJ,,°g = pJn}

for any ring R. Over Z[1/Disc(F/Q)], it is a quasi-split connected reductive group which splits over

Oz[1/ Disc(F/Q)] where F' denotes the normal closure of F//Q. Let v : G — GL; be the multiplier character
sending (g, p) — p.
If R = is an algebraically closed field of characteristic 0, then

G x SpecQ 2 {(11,gr) € Gy x GLy™ Y g0 = pJn'g7 T, V7 € Hom(F,Q)}.

Fix the lattice Ag,) = (Dz')™ consisting of elements of A whose last n coordinates are equal to 0, and
define A’(n) = O% consisting of elements of A whose first n coordinates are equal to 0. Let P(J;L ) denote the
subgroup of G' preserving A(,). Write L, i, for the subgroup of P(‘Z) consisting of elements with v = 1
which preserve A’(n), and write L(y) herm for the subgroup of PZ) which act trivially on A/A(,) and preserve

A’(n). Then Lpy1in & RS(ZQF GL,, and L) herm = G, and we can define L,) := L(n)1in X L(n) herm-

Finally, let G(A®)7 4% := G(AP>) x P{, (Z,), and G(A®)7d = G(AP™) x ¢, P, (Z,), where g, €
1

L(n) herm(Qp) = Q) denotes the unique element with multiplier p~*.

2.2 Level Structure

If Ny > N; > 0 are integers, then let U, (N1, N2) be the subgroup of elements of G(Z,) which mod p™? lie in
P(J;)(Z/pN?Z) and map to 1 in L(n)’lin(Z/leZ). If UP is an open compact subgroup of G(AP**°) we write
Up(Nl,NQ) for UP x Up(Nl,Ng).

If N > 0 is an integer we write U, (V) for the kernel of the map P('Z)(Zp) — Ln) 1in(Z/pNZ). In addition,
Up(N) will also denote the image of this kernel inside L) 1in(Zp)-

2.3 Shimura Variety

Fix a neat open compact subgroup U (as defined in section 0.6 of Pink [16]), and let .S be a locally noetherian
scheme over Q. Recall from §3.1 in [10] that a polarized G-abelian scheme with U-level structure is an abelian
scheme A over S of relative dimension n - [F': Q] along with the following data:

e An embedding 2 : F < End®(A) such that Lie A is locally free of rank n over F ®g Og.
e A polarization A : A — AV

e U-level structure [n].

For more precise definitions, see §3.1.1 of [10]. Denote by Xy the smooth quasi-projective scheme over
Q which represents the functor that sends a locally noetherian scheme S/Q to the set of quasi-isogeny
classes of polarized G-abelian schemes with U-level structure. Let [(ARY, univ \univ [puniv))] denote the



universal equivalence class of polarized G-abelian varieties with U-level structure. Allowing U to vary, the
inverse system {Xy} has a right G(A>) action, with finite etale transition maps g : Xy — Xy whenever
U g tUg.

For each U, denote by Q}qumv /Xy the sheaf of relative differentials on A"™V. Let Qy denote the Hodge
bundle, i.e. the pullback by the identity section of Qimm /Xo- It is locally free of rank n - [F : Q] and does
not depend on A",

For each neat open compact subgroup U C G(A), there is a normal projective scheme X {}ﬁn over SpecQ
together with a G(A®)-equivariant dense open embedding

Ju Xy — Xgin7
which is known as the minimal compactification of Xy;. Let the boundary be denoted by dXmin = Xmin
juXu. The inverse system { X"} also has a right G(A)-action. Furthermore, there is a normal projective
flat Z(,,) scheme APin whose generic fiber is X2, We will denote the ample line bundle on A7 constructed
in Propositions 2.2.1.2 and 2.2.3.1 in Lan [14] by wy. Its pullback to Xy is identified with AMFQ Q- and
the system {wy} over {X2} has an action of G(AP>® x Z,). If we let X5 = Ao ®z,,, Fp, there is a
canonical G(AP*°)-invariant section Hassey € HO(Yzln,wg(pfl)) constructed in Corollaries 6.3.1.7-8 in [14]
satisfying
g" Hassey-1y7, = Hassey Vg € G(AP™ x Zy).

—min n—ord .  —==min
Denote by X, the zero locus in X,  of Hassey.

—minn—ord

Lemma 2.1. The non-zero locus Yglm\XU is relatively affine over YZ““. Furthermore, it is affine
over IF,.

Proof. The nonzero locus over Y?}in is associated to the sheaf of algebras
(@j’iow%(p_l)ai) /(Hassef; —1) Va € Zso,

Over F), it is associated to the algebra

——min

(EBinHO(XU ,w®(”_1)‘”)) /(Hassel; —1) Va € Zo.

We conclude the lemma. O

2.4 Ordinary Locus

Now let S denote a locally Noetherian scheme over Z,) and fix a neat open compact subgroup U? along with
two positive integers No > Nj. Then the ordinary locus is a smooth quasi-projective scheme X[‘}’;‘% N1,Ny) OVer
Z(py representing the functor which sends S to the the set of prime-to-p quasi-isogeny classes of ordinary,
prime-to-p quasi-polarized G-abelian schemes with UP(Ny, Na)-level structure as defined in §3.1 of [10]. It
is a partial integral model of Xy»(n, n,). Let [Auniv guniv juniv g, univi) X(‘ﬁd(Nl’NQ) denote the universal
equivalence class of ordinary prime-to-p quasi-polarized G-abelian schemes with UP (N7, N3)-level structure
up to quasi-isogeny. Finally, let Y?er( NiN2) = X{}ﬁ)‘% N1,N2) D2, F,, which forms an inverse system each with
a right G(A*)°"d_action. Furthermore, the map

—ord —ord
Sp - XUP(Nl,Nerl) - XUP(Nl,Ng)

is the absolute Frobenius map composed with the forgetful map Xgﬁ,d( N1 Nat1) X(‘J’ﬁ,d( Na,Na) for any Ny >
Ni > 0. If Ny > 0, then g, defines a finite flat map

. ord ord
Sp XU (Ny Not1) > XUP (N, N,)



with fibers of degree p™ [F"Q (see §3.1 of [10]).

For each UP (N7, N3) such that UP is neat, there is a partial minimal compactification of the ordinary locus

X{}rp‘} Ny, denoted by X[(}Z‘}’NHT?NQ). By Theorem 6.2.1.1 in [14], this compactification of the ordinary locus

is a normal quasi-projective scheme over Z, together with a dense open G(A>)erd

-equivariant embedding

. . yord ord, min
JUP(Ny,N2) - XUP(Nl,NQ) — XUP(N17N2)'

Its generic fiber is X {}‘;‘(1]\,1 Na) but unlike X{J";‘(‘Nl Na)? it is not proper. Furthermore by Proposition 6.2.2.1 in
[14], the induced action of g € G(A>)°™ on {Xf};‘}ﬁif}%)} is quasi-finite. Write 6X52‘i(’lvrr‘lif‘]v2) = Xgi‘i(ﬁi?N2) -
Jue(ny, NQ)X{}r,,‘% Ny,N)» for the boundary, and let f{gr;i (’Jrf,linM) be the formal completion along the special fiber
of lej’;d(}vmliHNz). Note that by Corollary 6.2.2.8 and Example 3.4.5.5 in [14], the natural map

xord,min ~ xord,min

Up(Nl,Né) Up(Nl,NQ)
is an isomorphism, and so we will drop Ns from notation. Define

~-ord,min ord, min
XUP(vaNZ) - XUP(Nl,Ng) ®2p) Fp-

For each UP(Ny, No) note that there are G(A>)°*%:X_equivariant open embeddings

Xordﬁmin

min
U (N, Na) T XU (N, N)-

This induces a map on the special fibers

—ord,min —min —min,n—ord

Xun(vy,N2) = Xur vy, v) \XUr (V1 Vo) (2.1)

which is both an open and closed embedding by Proposition 6.3.2.2 of [14]. Note that only when the level is
prime-to-p is the nonzero locus of Hassey»(n,, n,) isomorphic to the special fiber of the minimally compactified
ordinary locus. When Ny > 0, the map in (2.1) is not an isomorphism.

2.5 Toroidal compactifications

We now introduce toroidal compactifications of Xy and Xy»(n, n,) Which are parametrized by neat open
compact subgroups of G(A*) and certain cone decompositions defined in [14] and [10]. Let J** be the
indexing set of pairs (U, A) defined in Proposition 7.1.1.21 in [14] or on Pgs. 169-170 in [10], where U is a
neat open compact subgroup and A is a U-admissible cone decomposition as defined in §5.2 of [10]. We will
not recall the definition here as it is not necessary for any argument.

If (U,A) € J*" then by Theorem 1.3.3.15 of [14], there is a smooth projective scheme Xy, A and a divisor
with simple normal crossings 0 Xy a C Xy a equipped with an isomorphism

jua: Xu — Xua~0Xya
and a projection Tor / min : Xvu,a — X ﬁin such that the following diagram commutes:

XU — XU,A

1 +

Xy o Xpin

The collection { Xy, A } 7tor becomes a system of schemes with a right G/(A*)-action via the maps 7y, a)/(v,a7) :
Xu.an — Xuyr.a» whenever (U, A) > (U',A’) (see Pg. 166 of [10] for the definition of > in this context).



If (UP(Ny,N2),A) € J%r, then by Theorem 7.1.4.1 of [14], there is a smooth quasi-projective scheme

X[‘}Zd( NiN2)A and a divisor with simple normal crossings (‘3X82d( N ANE X[‘}ﬁfi( NiN)A equipped with an

isomorphism
-ord . Xord ~ Xord a)(ord .
JUP(N1,N2),A * AUP(Ny,N2) — 7 CUP(N1,N2),A > OUR (N, Ny, A

ord . yord ord,min
Ttor / min * XUP(Nl,Ng),A - XUP(Nl,NQ)

such that the following diagram commutes:

d d
Xor (N N2y XUP(Ny Vo)A
1 1
Xord Xord,min
UP)N1,Na) 7 UP(N1,N2)*
The collection {Xg;d( N1,Na) A }7ter becomes a system of schemes with a right G(A>)°"-action via the maps

T (U (N N2). )07 (NN A8 308 G vy vy, a0 WhEmever (UP (N1, No), A) 2 (UP (NF, Na), &)
(see Pg. 167 of [10] for the definition of > in this context).

3 Automorphic Bundles

We first define the coherent sheaves on X™" whose global sections are what we consider to be the finite
part of classical cuspidal automorphic forms on G. They are sheaves originally defined over the toroidal
compactifications Xy A (where they are locally free) and are then pushed forward to X min yig Ttor,min- We
start by recalling some differential sheaves that have already been defined.

3.1 Automorphic Bundles on compactifications of the Shimura Variety

Recall from the previous section that we have a locally free sheaf 2y on Xy, which is the pullback by the
identity section of the sheaf of relative differentials from A"", the universal abelian variety over X;. On
X2in the normal integral model of the minimal compactification of X;, there is an ample line bundle wys
whose pullback to Xy is identified with A QQy;.

Any universal abelian variety A" /Xy, extends to a semi-abelian variety Aa /Xy a (see remarks 1.1.2.1
and 1.3.1.4 of [14]). Define Q7 A as the pullback by the identity section of the sheaf of relative differentials
on Aa. Note that when restricting to the Shimura variety Xy, the sheaf Qg a| x,, 1s canonically isomorphic
to Qu. Let Ox, . (||v]|) denote the structure sheaf with G(A°®)-action twisted by ||v/||.

Let &7A denote the principal L(,)-bundle on Xy A defined as follows: For a Zariski open W, Sl‘jag(W) is
the set of pairs of isomorphisms

&o: OXU‘A(HZ/H)}W = Ow and & Qua — Homg(V/Viyny, Ow),
where V =A® Q = F?" and Viny = Ay ® Q= F™. There is an action of h € L, on 55?2 by
h(éo,&1) = (v(h) '€, &1 0h7 ).

The inverse system {£A } has an action of G(A>).

Let R be any Q-algebra. Fix a representation p of L, on a finite, locally free R-module W,. Define the
locally free sheaf EffA , over Xya x Spec R as follows: For a Zariski open W, let EffA (W) be the set of
L) (Ow )-equivariant maps of Zariski sheaves of sets,

R |, = Wy ©r Ow.



With fixed p, the system of sheaves {7} ,} has a G(A>)-action. If Std denotes the representation over
Z of Ly on A/A(n)7 then let wy A = X \nira gqv- We will write Zyx,, , for the ideal sheaf in Ox,, ,
defining the boundary 0Xy a. Define the subcanonical extension

sub _ ¢can
gU,A,p - SU,A,p ®Zoxy.a-
Recall the projection oy / min : Xvu,a — X[‘}‘i“, and define Elsju}f = ﬂtor/mm*gf’]ug - The coherent sheaves

defined on X" are independent of the choice of A. If we fix p, there is an action of G(A>) on the system
E'PY indexed by neat open compact subgroups.
U,p

Now let pg be a representation of L,y on a finite locally free Z,)-module. By Definition 8.3.5.1 of [14],
there is a system of coherent sheaves associated to pp over { X"} with G(A>)°'d*_action whose pull-back
to {X®n} is G(A™)-equivariantly identified with {5[3}"3@@}. We will also refer to these sheaves by £51P

. U,po*
Note that over X",

sub ~ e¢sub
gU7po (9 Wy = gU,pg@(/\”[F:Q] Stdv)’

where wy denotes the ample line bundle defined on X{}li“.

3.2 Automorphic Bundles on the Ordinary Locus

We now define automorphic vector bundles on the system of integral models of the minimally compactified
ordinary locus {X{};‘iﬁlf}vz)} as well as its formal completion along the special fiber {.’{?}f (Eir)l} The global
sections of these coherent sheaves will consist of what we consider cuspidal p-adic automorphic forms. We

first recall some definitions of sheaves defined on Xgrpd( NiN2)A

Any universal abelian variety A" / Xgﬁ,c} N1ND) extends uniquely to a semi-abelian variety Aa / X{}’;d( NiN2)A
by Remarks 1.1.2.1 and 1.3.1.4 of [14]. Define Q‘[}?S(Nl Na).A 88 the pullback by the identity section of the
sheaf of relative differentials on Aa. The inverse system {Q?f,?( Ni.N»),a} has an action of G (A%)°rd: X There
is also a natural map

. xord ord
S5 S (N Na—1),8 — QUp(Ny,NL), A

Denote by O yora (llv]|) the structure sheaf O yora with G(A%)°*action twisted by ||v||

UP(N1,N2),A UP(Np1,N2),A

(recall that {X[C}‘;‘}N17N2)7A} has a right G(A>)°"d-action).

Let Egl;d(’Jc\,?M% A denote the principal L(,)-bundle on X{}ﬁ,d( Ny.No).A iDL the Zariski topology defined as

follows: For a Zariski open W, Egr,,d(’j(?lnNz) A(W)) is the set of pairs of isomorphisms

& Ox%d(Nl’N2)1A(||u\|) - — Ow  and & : QPN A — Homz(A/Aq), Ow).
Recall that A, is the sublattice of A = (Dz')" @& O% consisting of elements whose last n coordinates are
(n) F F

equal to 0.) There is an action of h € L,) on Sgid(ﬁnm) A by

h(&o,&) = (v(h) ' &, & o h™h).

gord,can

The inverse system { N»),a ) has an action of G (A>)°rd. Let R be a Z,)-algebra. Fix a representation

Up(Nl,
p of Ly (n) on a finite, locally free R-module W,. Denote the canonical extension to Xgﬁ,d( N1Na).Ap X Spec R
of the automorphic vector bundle on X{};d( Ny ) associated to p by 582‘1(’;“]\,2) A, Which is defined as follows:

For any Zariski open W, Egl;d(}c\znj\b) a,(W) is the set of L,)(Ow)-equivariant maps of Zariski sheaves of

sets

ord,can
Eur ()., 7 Wo ®r Ow.



5ord7can

When p is fixed, the system of sheaves { U (N1, N

of ¢, gives a map

)A p} has an action of G(A>)°"d. Furthermore, the inverse

*\—1 . gord,can ~ ord,can
: — & O yor .
(§p) SP+CUP(N1,N2),A,p UP(N1,N2—1),A,p ®OXSY5(N1,N2—1),A o XG5 (Ny N, A
. $\—1 2 . cord,can ord,can . oo\ord, X
Composing () ™" with 1®tr, EUP(NuNz—l),A,p®§P*OX8??(N1,N2),A = En (N Na—1),,p B1VES @ G(AX) -
equivariant map
. ord,can ord,can
G En(Ny N ), ap ™ EUP (N Na—1),A,p
e 20t .
satisfying trpog, = p" [F7:Ql If Std denotes the representation over Z of L,y on A/Ag,, then let
.__ cord,can ord . .
WU»(Ny,Na),A = EUP(NI,NQ),A,/\“[F@] stqv denote the pullback of wy to XUP(N17N2)7A. We will write Iaxf}rpdwl,zvy,A
for the ideal sheaf in O yora defining the boundary 8%{}?,? ~N. N.).A- Define the subcanonical extension
UP(N1,Np),A (N1,N2),
as
ord,sub __ pord,can
gUp(Nth),Aw o EUP(N17N2)7A7/J ®Iaxl(}§7d(N1,N2),A.

Again, the inverse of ¢ gives a map

*\—1 gord,can ~ ord,can
: — & Ly ror .
(<) Sp«CUP(Ny,N2),A,p UP(N1,Na—1),A,p ®OXF]¥»1(N1,N2_1>,A SPrtOXGE N Ny

. *\—1 . . ord,can ord,can .
Composing ()~ with 1 ® trg, : Eur(NiNa—1),0,p @ Cp*IaXE'rPd(Nl,NQ),A = Eun(Ny,Ny—1),a,p SiVes another

G(Am)ord’ X -equivariant map

. ord,sub ord,sub
tE S Eun Ny N AL EUR(NY N —1),0p

e 21t . .
satisfying trp ogy = p" [F7:Q] and compatible with the analogous map defined on {El‘}ri’cpa "1u.
ord,sub _ _ord ord,sub

UP(N1,Na2),p . Mtor /minx“UP(N1,N2),A,p’

X(‘}rpd(»leir}vz) are independent of the choice of A by Proposition 1.4.3.1 and Lemma 8.3.5.2 in [14]. Note that

Denote the pushforward by & These coherent sheaves defined on

gord,sub ~ 5ord,sub
UP(N1,Na),p @ WUP(N1,N2) = €Un (N, Ny),p@(AnIFQ StdV)
. d,mi . d,sub
and by Lemma 5.5 in [10], the pullback of SISJ‘;'?NhNQ),p to XS;(]I\?IIEV2)7P is 5[(}2(18\2,1\/2),,;-
Abusing notation, denote the pullback of Egr,)d(’z}?]vz)’p to 36?},? (25‘ by Egid(’;}f)”p. It is independent of Ny,

and thus, trp induces a G(A>)°"d*_equivariant map

. ord,sub ord,sub
7 2 p.Eun(ny),e 7 EUr(vi).p

d,mi . : .
over }C‘(}rp(ﬁi?, and also induces an endomorphism on global sections.

4 Classical and p-adic automorphic forms

Before we define cuspidal automorphic representations on G(A*), L,)(A) and GL,,(AFr), we first recall
some facts about highest weights of algebraic representations of L,) and G.

4.1 Weights

For each integer 0 < i < m, let A(;) denote the elements of A for which the last 2n — i coordinates are
zero, and let B, denote the Borel of G preserving the chain A,y D A,—1) D ... D A(g). Let T,, denote the
subgroup of diagonal matrices of G.

10



Let X*(T},/q) := Hom(T}, x Spec Q, G, x Spec2) and denote by ®,, C X*(T},/q) the set of roots of T}, on
Lie G. The subset of positive roots with respect to B,, will be denoted ®;" and A,, will denote the set of simple
positive roots. For any ring R C R, let X* (T, /Q)J}g will denote the subset of elements X*(T,,/Q2) ®z R which
pair non-negatively with the simple coroots & € X, (T,,/2) = Hom(G,, x Spec Q, T}, x Spec Q) corresponding
to the elements of o € A,,.

Let @,y C ®,, denote the set of roots of T}, on Lie L ,,) and set @a) = q)(n)ﬂq);t as well as A,y = A,NP (.

If R C R is a subring, then X*(Tn/g)&) r Will denote the subset of X*(T},/q)n) ®z R consisting of elements
which pair non-negatively with the simple coroot & € X.(T},/q) ) corresponding to each a € Ay).

Recall that L,) x Spec Q= GL; x GLEOHI(F’Q), which induces an identification
T, x SpecQ =2 GL; x (GL})Hom(F),
and hence X*(T,,/q) = Z @P(Z")Hom(F) Under this isomorphism, the image of X*(Tn/g)a) is the set
{(bo, (brs)) € Z @ (ZM)HmED - p > 5> > by, YT}
Furthermore, X*(T,, /)" is identified with

{(bo, (brs)) € Z @ (ZHmED) b 1 >b 5> ... >brp and byg +breg <0 V7).

Denote by Std the representation of L,y on A/A(,) over Z. Note that the representation APMEQ StdY s
irreducible with highest weight (0, (—1,...,—1);). If p is an irreducible algebraic representation of L, over
@p, then its highest weight lies in X™*(T), /3 )?;1) and uniquely up to isomorphism identifies p. Thus, for any

P

be X*(T, /@p)&), let pp denote the L,)-representation over @p with highest weight b.

Define the set of classical highest weights X*(TH/@P)+ as any b = (b, (bT7i)T€Hom(F@p)) € X*(Tn/@p)a)

cl
such that b, 1 + brc1 < —2n.

We next turn to local components of automorphic representations, i.e. smooth representations of G(Qy)
when ¢ # p. We relate them to smooth representations of GLs, (Qy) via local base change defined below.

4.2 Local Base Change

For a rational prime ¢ # p, denote the primes of F'™ above Q as uy,--- , Uy, vy - - - v5, Where each u; = w;w;
splits in F' and none of the v; split in F. Note that

G(Q) = [ [ GLan(Fu,) x H,
=1

where

H= {(,vagi) € Q? X HGL2n(Fvl) : tgiJani = puJp VZ} .

i=1

Here, H contains a product []}_,; GI(FJQ ), where G* denotes the group scheme over Op+ defined by
G'R)={g¢c Auto, g, R(A®o,, R): tg. g = Jn}.
Note that ker v = RS;F+ G!. If II is an irreducible smooth representation of G(Q), then
= (®i_1l,,) @ Hy.

Define BC(II),,, := II,, and BC(II)ey, := Hfl;iv. This does not depend on the choice of w;. We call II
unramified at v; if v; is unramified over F'™ and

HG1(0F+7“1’) 7& (O)

11



Let B! denote the Borel subgroup of G' consisting of upper triangular matrices and T the torus subgroup
consisting of diagonal matrices.

If II is unramified at v;, then there is a character x of T(F,\)/T*(Op+ ,,) such that | gy and
GY(F} '
n-Ind Bli F+§ x share an irreducible subquotient with a G1(0F+M)—ﬁxed vector. Define a map between the

torus of diagonal matrices of GLay (F,,) and G*(Op+ ., ):

N:Te,, (F,,) — TYES), (4.1)
ty, 0 O t1/tan, O 0

0 .0 — 0 . 0 . (4.2)
0 0 tgn 0 0 t2n/ct1

We define BC(II),, to be the unique subquotient of

GLZn (Fu1 )

n—IndBGLG (Fu,)

xoN

with a GLay, (Op,,; )-fixed vector, where Bar,, (Fy,;) denote the Borel subgroup of upper triangular matrices.

Lemma 4.1 (Lemma 1.1 in [10]). Suppose that ¢ & 7 is an irreducible smooth representation of

L(n)(Q¢) = Lny herm(Qe) X L(ny 1in(Qe) = QfF x GLy(Fy).

1. If v is unramified over F* and m, is unramified then n—Indng;‘E()Qq)(¢®7T) has a subquotient I1 which is
unramified at v. Moreover BC(II), is the unramified irreducible subquotient of n-Indgzi"(f}) )(71'5’\/ ®
2n v

Ty)-

2. Ifv is split over ™ and 11 is an irreducible subquotient of the normalized induction n—Indg(((%q(?Qq) (V)

then BC(II),, is an irreducible subquotient of n—Indgzi"(f}) )(ﬂ'f;v ® my).
2n v

Note that in both cases BC(II,) does not depend on v.

4.3 Cuspidal automorphic representations

Here, we define automorphic representations on G(A) whose finite parts will be realized in the space of
global sections of 55‘:}3 on X &ipn. We first recall a few definitions. Let U(n) C GL,(C) denote the subgroup
of matrices ¢ satisfying g¢g = 1,,. Define

Kn.oo = (U(n) x U(n))HomEFETR) g,
where Sy acts by permuting U(n) x U(n). We can embed K,, o in

GR)C R*x [ GLaw(F®p+,R)
T€Hom(F+,R)

via the map sending

(gT+hT)/2 (gT _hT)\I]n/QZ
(gthT T€Hom(F+, — 17 ( . ;
)r€Hom(F+ R) Vilgr = he) /20 Unlgr +he)¥n/2 ) o

-1, O

and sending the nontrivial element of S5 to (—1, ( 0" 1, . This forces K,, o to be a maximal

)TEHom(F+,R))
compact subgroup of G(R) such that /C,, o N P (R) is a maximal compact of L(,)(R). Let g = (Lie G(R))c,
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and denote by A, the image of G,, in G via the embedding t +— ¢ - 15,,. We define a cuspidal automorphic
representation of G(A) to be an irreducible admissible G(A™) X (g, K, 00 )-submodule of the space of cus-
pidal automorphic forms on the double coset space G(Q)\G(A)/A,,(R)°. Furthermore, a square-integrable
automorphic representation of G(A) is the twist by a character on Q*\A* /RZ of an irreducible admissible
G(A™) X (g, K 00)-module that occurs discretely in the space of square integrable automorphic forms on
G(AN\G(A)/An(R)".

Now let [ = (Lie L,)(R))c and let A(,) denote the maximal split torus in the center of L(,y. A cuspidal
automorphic representation of L,)(A) is an irreducible admissible L, (A%) x (I, Ky, 0o N L) (R))-submodule
of the space of cuspidal automorphic forms of L,)(A) on the double coset space L) (Q)\ L) (A) /A (R)°.

For a number field K and any positive integer m, let Kk o, denote a maximal compact subgroup of
GL,,(K) and let gl = (Lie GL,, (K ))c. Define a cuspidal automorphic representation of GL,,(Afk) as an
irreducible admissible GL,,, (A%) x (g[, Kk, o0 )-submodule of the space of cuspidal automorphic forms on the
double coset space GL,,(K)\ GL,,(Ax)/RZ,. Finally, by a square-integrable automorphic representation of
GL,,(Ak), we shall mean the twist by a continuous character on K*/Aj /RZ, of an irreducible admissible
GL,,,(A®) x (gl, Kk o0 )-module that occurs discretely in the space of square integrable automorphic forms
on GL,,(Ak).

We will now relate the finite parts of these automorphic representations to the global sections of the
automorphic bundles defined previously.

4.4 Global sections of automorphic bundles over the Shimura variety

Let p be a representation of L(,) on a finite Q-vector space. Define the admissible G'(A>)-module

HO(X™, &500) = lim HO (X, &)
U
Note that for any neat open compact U, HO(Xmi“,é';ub)U = HO(X{}“r‘ff}‘fE) (see Lemma 5.5 of [10] or
Proposition 8.3.6.9 of [14].

Proposition 4.2 (Corollary 5.12 in [10]). Suppose that b € X*(Tn/@ )&, and py, is the irreducible represen-
tation of L(,) with highest weight b. Then HO(Xmin,SZ:jb) is a semisimple G(A>) module, and if II is an
irreducible subquotient of HO(Xmi“,SSL‘b), then there is a continuous representation

R,(II) : Gp — GLQH(@Z))’
which is de Rham above p and has the following property: Suppose that v tp is a prime of F' above a rational
prime £ such that

e cither £ splits in Fy,

e or F and Il are unramified above {;

then

WD(R;,,(H) )Frob =58 = recp, (BC(IIy),| det ‘1(}172n)/2)’

ln,

where £ is the rational prime below v.

Proof. Each irreducible subquotient IT of H?(X™in, Ssgb) is the finite part of a cohomological cuspidal G(A)-
automorphic representation 7 by Lemma 5.11 in [16], and furthermore, H®(X mi“,é’;;‘b) is a semisimple
G(A*)-module. For such 7, by Shin [20] and Moeglin-Waldspurger [15], there is a decomposition into
positive integers

2n=mini + ...+ m.n,,
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and cuspidal conjugate self-dual automorphic representations 7; of GL,,,(Ar) such that for each i € [1,7],
7;|| det ||(mitm:=1)/2 i cohomological and satisfies the following at all primes v of F' which are split over F+

r n;—1 ~ n;—1)/2—j
my = By B! | det |12,

These 7; are automorphic representations which have Galois representations associated to them satisfying
full local-global compatibility, results due to many people including [9, 19, 6, 2] (for a summary, see [1]). O

We will refer to irreducible subquotients of H?(X™" Elﬁgb) as classical cuspidal G-automorphic forms of
weight pp.

4.5 p-adic (cuspidal) G-automorphic forms

Now let p be a representation of L,y on a finite locally free Z,)-module. Let HO(xordmin, Egrd’sub) denote
the smooth G(A>)°*%-module defined as

0/arord,min ¢gord,suby .__ 1: 0 /arord,min cord,sub
HO(% S EONY) = i HO(X D () Eun () p)-

Ur Ny
For each positive integer r, define
d,mi d,sub ._ : d,mi d,sub
HO(xerdmin grdsib @ 7/pr7) i= lim HO(XDy N s E0n(ne n).p © Z/D7L).
Up(Nl,NQ)

It is a smooth G(A*)°*%-module of p-adic cuspidal G-automorphic forms of weight p, with the property that
. P d,mi d,sub
HO(Xord’mm, ggrd,sub ® Z/prZ)U (N1,N2) _ HO(X((}Z(JIVIT;VQ)’ 5[1}1;(;}1171\[2)7/) ® Z/prZ).
Note that mod pM, there is a G(A%)°"-equivariant embedding

HO(xord,min’ g;rd,sub) ®Zp Z/pMZ < HO(XOrd,IIIin7 ggrd,sub ® Z/pMZ)

Fix a neat open compact subgroup UP C G(AP*°) and integers No > N; > 0, and recall that there

is a canonical section Hassery € HO(YI(IJHH,oJS(pfl)) which is G(AP*> x Z,)-invariant. Let Hassey denote
the noncanonical lift of Hassey over an open subset of X", For each positive integer M, the powers
M—-1

p —_—
Hasse;;  modpM are canonical despite the noncanonical choice of Hasserr, and hence they glue with each

other and give a canonical G(A®P x Z,)-invariant section Hassey, as of w®E=DP"" Gyer Apin x Spec Z/pMZ.

Fix p a representation of L, on a finite free Z,)-module then for each integer i, define the G (Aoe)ord,x_
equivariant map,

i S ipM—1 (p— rd,min T
HO(XTSHI:I(INl’Nz)’ g;ub ® wL;TD ® 1)> - HO(XBPd(}Vth)’ g/? dsub ® Z/pMZ)’

[ = (f|;g;;d(v;1i?N2))/HaSS@%Jp(Nl,NQ),M .

Using the map defined above, Harris-Lan-Taylor-Thorne [10] prove the following density theorem relating
p-adic and classical cuspidal automorphic forms.

Lemma 4.3 (Lemma 6.1 in [10]). Let p be an irreducible representation of L,y on a finite free Z,-module.
The induced map

o0
0 min sub 0 ord, min sub,ord M
@ " <XUP(N1’N2)7 SUP(N1,N2)7P®(/\”[F:Q] Stdv)-"prl(p_l)> - H (XUP(vaNz)vp’ gUp(NlaN2)7p ®Z/p"L)

Jj=r

is surjective for any integer r.
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5 The U,-operator and the Main Theorem of [10]

The map trr : gp*é’(s]‘;tz N S,S]uptz N1),p OVer %?]rpd (ES induces an endomorphism U, = trp in the endomor-

. rd,min r rd,min rd,s ) : . n?[Ft:
phism algebra of HO(XOUS(NI)’SEIS(’JS\%W)@,D = HO(%OUS(’Nl),SEPd(’A}lll;’p) ® Q, satisfying U, o, = p [FTQ]
xordmin  gord.sub defined in §6.4 of [10]

. —I- . 0 o
The subspace of overconvergent automorphic forms H' in H°(X}}, N1y € Nl),p)Qp
admits a slope decomposition for U, in the sense of §6.2 of [10]. This means that for each a € Q, there is a
Up-preserving decomposition

T T 0 rd, min rd,sub
He, ® Hlo = H' C HOXP00,0 E0n (o),

such that H La is finite-dimensional and satisfies:

1. There is a nonzero polynomial f(X) € Q,[X] with slopes < a (i.e., f(z) # 0 and every root of f(x)
has p-adic valuation at most equal to a) such that the endomorphism f(U,) restricts to 0 on H;l;

2. If the roots of f(X) € Q,[X] have slopes < a, then the endomorphism f(U,) restricts to an automor-
phism of H La.

Additionally, H ga is an admissible G(A>)°"4*-module. Fix an isomorphism Q, = C.

Theorem 5.1. Assume that n > 1 and that p is an irreducible algebraic representation of L(y) i on a finite-
dimensional @p-vector space. Suppose that m is a cuspidal automorphic representation of Lpyin(A) such
that T has the same infinitesimal character as p¥, and suppose also that ¢ is a continuous @p—chamcter

of Q*\A*/RZ, such that 1/)|Z; = 1. Then for all M € Z~q sufficiently large and for each irreducible
G(AP)

P (ar oo)(7T°°H det |[[M x >°), there exist a representation p(M) of L,y over Zg), a
[CON

subquotient m; of Ind

corresponding scalar a(M) € Q, and an admissible representation I of Hla - HO(%Ord"“in,SZ‘(‘]‘\'}I))@ such
= P
that 7 is a subquotient of II'.

Proof. Combine Corollary 1.9, Lemma 6.12, Corollary 6.17, Lemma 6.20, and Corollary 6.25 in [10]. O

Our next step is to consider properties of the Galois representations associated to the irreducible G/(A%)°rd:-x_
subquotients of H La, as constructed in Corollary 6.13 in [10]. In order to prove local-global compatibility
at all primes above ¢ such that ¢ =% p, we strengthen the construction of Galois representations associated
to irreducible admissible G(A%)°rd*_subquotients of H 0(}:°rd’min75;“b)@p, i.e., Galois representations as-
sociated to p-adic cuspidal G-automorphic forms of weight p (see Proposition 6.5 of [10]). These Galois
representations are constructed using the following two facts we have already recalled:

1. Proposition 4.2: Classical cuspidal G-automorphic forms of classical weight p have Galois representa-
tions associated to them; furthermore, they satisfy full local-global compatibility at all primes ¢ such
that ¢ # p.

2. Lemma 4.3: For any integer M, every p-adic cuspidal G-automorphic form of any weight p “is congruent
mod pM to” some classical cuspidal G automorphic form of classical weight p’ which is of the form
P = p@ (AMFU StdV)P=Dr" "5 for some integer j.

To prove local-global compatibility when ¢ # p, we will use these two results to reconstruct the Galois

representations associated to p-adic cuspidal automorphic forms on G of weight p, but we will consider the
XOTd,min gord,sub ®
UP(Ni,Nz2)> “p

Z/pM1Z) and HO (X (EBI, Egr4uP) as well as the classical automorphic spaces HO (X 0y, n,» Ep)-

action of a larger Hecke algebra than in [10] on the p-adic automorphic spaces H°(
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6 Hecke Algebras away from p

Let S denote the set of “bad” rational primes consisting of p and the primes ¢ which ramify in F' but do
not split in Fy. Let Spam denote the set of rational primes £ (# p) that ramify in F and split in Fy. Let Sy,
denote the set of rational primes ¢ (# p) that are unramified in F' and split in Fy; note that Sgp1 := Syr U Sram
contains all rational primes away from p that split in Fy. Let @ = Sy U Sram U S, and let QP = Q\{p}.
Finally, let S? = S\{p}.

For each conjugate pair of primes {v,“v} of F' above a rational prime ¢ € Sgp, choose exactly one of
{v,“v} to put into a set S, and the other in S¢). For £ € Sy, identify

GQ) = [] GLan(F).

veS

Sspl

vl

6.1 At unramified primes
We recall the definition of the unramified Hecke algebra. Fix a neat open compact subgroup UP = G (2‘9) X
Ugr C G(AP>°). Suppose that v is a place of F' above a rational prime ¢ ¢ S and let i € Z.

By work of Bernstein-Deligne [4] building on Satake, there is an element T € Q[G(Z)\G(Qe)/G(Zy)]

such that if II, is an unramified representation of G(Qy) and then its eigenvalue on HeG o) i equal to

trrecy, (BC(IIy), )| det |(1=27)/2(Frob! ).

(For more details on this construction, see Pg. 196-7 in [10].) If v is an unramified prime of F' which splits
over F'T, then we can write the Hecke operator Tv1 as the double coset

1
G(Zy) G(Zy),

where w, denotes a uniformizer of F,.

For each unramified prime v of F' and each integer ¢ € Z, there exists an integer dg) € Z such that
AT € ZIG(Zo)\G(Qr)) /G (Zy)).

Let HY := Z,]G(Z2)\G(AQ)/G(Z?)] denote the abstract unramified Hecke algebra. Let N7 and No
Zy P

be two integers N > Ny > 0, and let p be a representation of L,) over Z,). The Hecke algebra ”HZ

has an action on the classical and p-adic spaces HO(X[’}‘;?NLM),5,5]1;?N1’N2)’p), H° (%(I’Jr;l(]n\}il)l,é’gﬁl(zt;p), and

HO(X[C}T(’NH’EHNQ), Eggd(va‘jbm ) ® Z/pM7Z) induced from the action of G(A%). Denote by T (v, ), the image
of 7—[%2 in the endomorphism algebra

Endz, (HO(XTIJnPiFNl,Ng)v g[le;]?Nl,Nz),p))’

. ord,min gord,sub . . ord, min ord,sub .
Furthermore, if W C HO(}CU,,(Nl),EUp(Nl)ﬁp) (respectively, if W C HO(XUP(NLNQ),EUP(N11N2)VP®Z/pMZ)) is

a finitely-generated Z,-submodule invariant under the action of the algebra 7—[%‘;, then let ']I‘?Jrf (}1\;1 Nz),p(W)
(respectively, let T([)Jrf(’uer7N2)7p7M(W)) denote the image of Hy' in Endz, (W).

For each v, let T, éi) denote the image of dq(f)Téi) in any ’HZ -algebra T via the canonical map ’H%’; — T.
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6.2 At primes which are split in Fj

Suppose that v € S, U §§pl is a place of F' above a rational prime ¢, and let o, denote an element of
Wk, , the Weil group of F,,. Let B denote a fixed Bernstein component; it is a subcategory of the smooth
representations of GLo,(F,). Every component B is uniquely associated to an inertial equivalence class
(M,w), where M denotes a Levi subgroup of GLa, (F,) and w is a supercuspidal representation of M. (Recall
that two inertial classes (M, w) and (M’,w’) are equivalent if there exists g € G and an unramified character
x of M’ such that M = g7 Mg and o’ = x @ w(g - g~ !).) Then, B is defined to be the full subcategory of
smooth representations of GLo,, (F),) consisting of those representations all of whose irreducible subquotients
have inertial support equivalent to (M,w). This implies that there exists some (M’ w’) ~ (M,w) such

GL

that 7 occurs as a composition factor of the parabolic induction Ind PMQ"(F“)(w' ) where w’ is an irreducible

supercuspidal representation and Py, is a parabolic subgroup of GLa, (F,) with Levi M.
Let 35 = 3[n,.) denote the Bernstein center of B, which is the image under the idempotent es associated
to B of
K
the inverse limit over open compact subgroup K of the centers of the complex Hecke algebra for GLa,, (F,).

Proposition 6.1 (Proposition 3.11 in Chenevier [8]). For an inertial equivalence class [M,w], there is a
representative (M, w) which can be defined over Q. Let E C Q denote a sufficiently large finite-degree normal
field over which w, rec(w), By, 3(m,w) are all defined over E. Let E[Bjy )] denote the affine coordinate
ring of the variety associated to Bins). Then there exists a unique pseudocharacter of dimension 2n

T8 =7Mel Wi, — E[B] = 35
such that for all irreducible smooth representations m of B and o, € Wg,,

T8(0,) () = trrecg, (7)(0y).

For a Bernstein component B and o € Wr,, let T, 5., denote the twist of T%(c) such that T, g ,(7) =
trrecp, (7| det \1(,1_%)/2)(0) if 7 is a smooth irreducible representation in B. Multiplying T, 5, by eg if
necessary, we may suppose that T, 5, acts as 0 on all irreducible 7 ¢ B.

Theorem 6.2 (Bernstein [4]). For each prime v € S,). Let B, = B be a Bernstein component, and let e
denote the projector element such that for any smooth irreducible representation © of GLoy, (F,), eg(n) =7

if and only if m € B.

There is a compact open subgroup K of GLa,(F,) for which we may find a finite union of Bernstein
components B = B, containing B, with the following property: If w, is an irreducible smooth representation

of GLay,(F,), then ©K is nonzero if and only if 7, belongs to one of the Bernstein components in 5.

Proof. For the first statement, see Proposition 2.10 in [4]. For the second statement see Proposition 3.8 and
Corollary 3.9(i) of [4]. Also, see §2.3 and 2.5 of [5]. O

We will denote this compact open subgroup by Ko = K, ; note that all irreducible smooth representa-
tions inside B have a fixed vector under Kg. More generally, for every B’ C B, 35 embeds in the center
of H(GLan, Ke)c = C[Kg\ GLay (F,)/K] via multiplication by the characteristic function of K. Let
33, = 3» = im([ [z g 35 = H(GL2y, K )c). Note that 3o is the center of H(GLan, K )c.

For ¢ € Sgp1, assume Ky is an open compact subgroup of G(Qy) such that under the identification
G(Q) = Hésp@v\l’ GLa, (F,), we can decompose

K, = H Ko,
Sp2vle
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If v € S, divides the rational prime ¢ and B is a Bernstein component, then for any o € W, we can
find an element of 3, which we will denote by T}, o », such that its eigenvalue on the K-fixed vectors of an
irreducible representation 7 of G(Qg) in B is

trrecy, (m,| det |1 72/2)(0).

(On the other hand, if m, ¢ 9B, then 7%¢ is trivial and T, 5, acts as 0.) This element T}, s, is the image in
33 of [[gco To50 € [13cs 35+ It is independent of 7. Furthermore, for each ¢ € Aut(C), we have that
#B =B and additionally,

?rec, (m,| det |5,1_2")/2) & recp, (¥(m,| det |E,1_2”)/2)).

Thus, we have that T, 5. = T} .6, and so Ty » € QK \G(Qy)/K].
Define

0= [ Gw, NZKs\GLon(F,)/Ksp)).
Sep13v[e

Then 3! lies in the center of Z[K,\G(Q¢)/K,]. Note that for any element T' € 305 N Q[K,G(Qy)/K /], there
exists a nonzero integer d(T) € Z such that d(T)T € 32, where v | £. Thus, we can choose d(T}, »,,) € Z~{0}
such that

d(Tv,%,o’)Tv,‘B,U S Z[KZ\G(QZ)/KZL
$0 d(Ty,3,0) Ty 3.0 € 39
For each v € Sy,
6.2. We will make the further assumption that U” =[], Us is a neat open compact subgroup of G(A>°)
such that

fix a Bernstein component B, and let B, be the disjoint union as defined in Theorem

U= [] K, (6.1)

vES L
vl
Let Hsprz, := (®€€ Sent 52), be the abstract ramified Hecke algebra. For any two integers Ny > N7 > 0 and
any algebraic representation p of L(,) over Z,), recall that the classical space H O(Xgl,}?Nl Na)? S;‘J‘Lb( N1 N2) p)
has an action of G(AP>>°) which induces an action of Hgp1 7, , and similarly, the p-adic spaces H O(Z{grd’mi“7 €§rd>3“b)
and H°(X grdvmi“, E;jrd’“b ®7Z/p™Z) have an action of G(AP>>°), which similarly induces an action of Hspl,z, -
Let Tgp(NhNﬂ’p denote the image of ng =My ® Hsprz, in
0 i sub
Endz, (H (Xtrjnr}?Nl,Ng)’551;)(N1,N2),p»

. 0 rd,min rd,sub 0 rd, min rd,sub M .
Furthermore, if W C H(X75 (5.} E0a(nny,,) (Tesp, W C HO (XG0, N,y E0n (v No)p @ Z/PYZ)) s a
finitely generated Z,-submodule invariant under the action of the algebra H7 , then let o 2y N2y p (V)
Tord,p

resp. enote the image o in Endy .
55 % 2,500 (W) denote the image of H in Ends, (W

For each v € S, U 7§pl7 let Tv,%’a denote the image of d(Ty, 5 0)Ty 5,0 I any H%p—algebra T.

7 Interpolating the Hecke action

The main goal of this section is to prove the following proposition.

Proposition 7.1. Let p be an algebraic representation of L) over Z. Suppose that 11 is an irreducible
quotient of an admissible G(A>)°r > -submodule II" of HO(Xcrdmin £ordsub) Q). Then there is a continuous
semisimple representation

R,(II): Gp — GLgn(@p)
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with the following property: If £ # p is a rational prime such that either £ splits in Fy, or both F and IT are
unramified above ¢, and v | £ is a prime of F, then

WD(Ry (g, )** = recr, (ILe)y| det |§1720)/2)%,

Proposition 6.5 in [10] proves the existence of R,(II) and its local-global compatibility at primes above
¢ ¢ Siam U S such that IT is unramified at £. We extend the local-global compatibility results to primes above
£ € Spam U Sur-

Fix p, II, and IT’ as in the proposition. For each v € Sepls
BC(Ily),. Let %, be a disjoint union of Bernstein components containing B, such that there is an open

let B, denote the Bernstein component containing

compact subgroup Ko, of GLa, (F,) and an irreducible representation of GLa, (F,) with a nontrivial Ko, -
fixed vector is contained in %B,. Choose a neat open compact subgroup U? =[], U of G(AP>°) such that
U, = K, for each £ € Sp as well as an integer N such that V" (N) £ (0). Recall that Hspl,z, = (®ZGSSP1 ),
where 39 is associated to the Bernstein components B, and disjoint unions B, and open compact subgroups
K, fixed above, for each v € S, and let H = Zp|G(ZO)\G(AR) /G(Z®)] @z, Hepz, as before.

We first show the existence and local-global compatibility of a Galois representations associated to irre-

ducible subquotients of the classical space HO(X[‘JH,E‘(]NMNW8;‘619‘3(/\,41?:@] Stdv)®<%1>t) for t sufficiently large. It

will be most relevant to write this result in terms of pseudorepresentations.

spl»

Lemma 7.2. Fort sufficiently large, there is a continuous pseudorepresentation
. S
Ty : Gy — T%p(Nl,Nz)W@(An[F:@] Stdv)&@—1ts
where if v | £ ¢ S :
d(Ty»,,0)Ti(0) = Tom, .0 for allo € Wg, ifv| L€ Sy
d T, (Frobl) = T for all i > 0 ifollé¢Q.
for all positive integers i and for all 0 € W, .
Proof. First, assume that p ® Q,, is irreducible. Let (bo, (b)) € X(T, 5 )?;L) denote the highest weight of
PR @p. If t € Z satisfies the inequality
—2n > (br1 —t(p — 1)) + (breq —t(p — 1)),
and p; := p @ (AMFUStd)2@P=Dt then by Lemma 5.11 of [10

s
TZ{]”(vaNz),Pt ®@P = @@P’
II

where the sum runs over irreducible admissible representations of G(A>) with TIV"(NV1:¥2) o£ (0) that occur in
HO(X™in x Spec @p, Ezllb). Further, from Proposition 4.2, we deduce that there is a continuous representation

To : G — GLa2n (T (v, Ny pe © @p) (7.1)

satisfying for v | £ ¢ S,

trr,, (Frob!) = 79 for all 4 >0 ifv]| e Ssp (72)
trrp, (o) =Ty s,0 foralloe Wy,  ifv|l¢Q. )
Let T} := trr,,. Note that if v | £ ¢ S, then T;(Frob,) = T e TPU,,(NI Ny),peo Uhus by Cebotarev density

. GS TP
theorem, T} : G — TUP(N17N2)7pt.

For general p, recall that algebraic representations of L(,)(Z,) over @p are semisimple, and so we can
construct from the Galois representations associated to the irreducible constituents of p ® @p a continuous
representation r : G3 — GL?”<Tva(N1,N2),p®(/\"[F:@1 sta)yem-nt @ Q)
satisfies the desired properties. O

for sufficiently large ¢ whose trace
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Combining the above lemma with the congruences properties established in Lemma 4.3, we have the
following corollaries.

Corollary 7.3. If W is a finitely generated ’ng -invariant submodule of either

ord,min ord,su ord,min ord,su
HO(XUP(N17N2)7Ep d,sub ®Z/pMZ) or HO(}:UP(N) 7€p d b)»

then there is a continuous pseudorepresentation

T GF = T3 W) {d(T”’%“*”T(”) e for e €W 6 E S and

dg,i)T(Frobf)) =T for alli >0 ifv|f¢Q.

Proof. Tt suffices to show that for finitely generated

ord,min rd,s
W C HOXS N vy £ @ Z/pM ),

such a pseudorepresentation exists since there is an G(A>)°"d-equivariant embedding

rd,min ord,su rd,min ord,su
Ho(x([)jp(]\/‘l)agp d b) ®Z/pMZ — HO(X[(;P(N17N2)agp d b ®Z/pMZ)

Since W is finitely generated, there exists k € Z such that

k
0 min sub 0 ord,min sub,ord M
W C T (€D HO (X5 0n, nay €8N N, ) = HXES N, vay €0 (Ny N2y p © 2PV D))

\ ipM—1(p—1)
Jj=r
Since the above map is G(A>)°"dX_equivariant, we see that for r sufficiently large, by Lemma 4.3, there is

4 If we take r to be sufficiently large,

a continuous pseudorepresentation 7, : G% — ']I‘Up( N1N2) o ar .
’ WrpM =2 (p—1)

then we can compose to get
.S ord,
T:Gp — TUP(%M(W)
such that ~
{d(Tv’gv’a)T(o) =Ty, o forallo € W, ifveS,,, and

AV T(Frob!) = T for all i > 0 ifv|l¢Q.

We use the pseudorepresentations constructed in Lemma 7.3 to finish the proof of Proposition 7.1.

Proof of Proposition 7.1. Since (II')V" (V) is finite dimensional, it is a closed subspace of
0 rd,min rd,sub raY
H(%° yEST) ®Q,

that is preserved by the action of ng; thus, we have by Corollary 7.3 that there is a continuous pseudorep-
resentation

T - GS N Tord,p H/ UP(N1,N3) ] ‘ -
r () ) AV T(Frob’) = TS for all i > 0 ifv|l¢Q.

d(Ty5,.0)T(0) = Tom, .0 forallo € W, ifveS,,, and
UP(Ny,No

Since there is a ’ng—equivariant map (IT)V"(V) — TIV"(N) | there is a map
d, UP(Ny, N =
o Ty a,o ()77 E2)) 5 Q,

U?(N1,N2)

sending a Hecke operator to its eigenvalue on (IT) Composing ¢ o T =: Ty gives a pseudorepre-

sentation

Ti : G3 — Q,, (7.3)
which by work of Taylor [23] is the trace of a continuous semisimple Galois representation satisfying the
semi-simplified local-global compatibility at the primes away from S™P! (and away from the primes above
p). The proposition then follows from the main theorem on pseudorepresentations (see again [23]). O
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8 Bounding the monodromy

Let ¢ # p be distinct prime that splits in Fy and v a prime of F' above ¢, ie., £ € Sgp1 and v € S,
The main result of this section is as follows.

c
spl U §sp1 .

Proposition 8.1. Suppose p is an algebraic representation of L) over Z, and that 11 is an irreducible
quotient of an admissible G(A>)°r " -submodule II' of HO(X°ordmin gordsuby o Q,. Then the continuous
semi-simple representation Ry, ,(II) satisfies for v | € € Sep1, i.e., for all primes of F' above £ (away from p)
which splits in Fy:

WD(Rp,l(H) )Frob—ss < recp, (BC(HE>1)| det |5}1—2n)/2),

W,

where < is defined below.

Let (o, N) be a Weil-Deligne representation of W, over Q,, where o : Wg, — GL(V) and N € End(V).
Let W denote the set of equivalence classes of irreducible representations of W, over Q, with open kernel,
where two representations s, s’ of Wg, are in the same equivalence if s & s’ ® x for some unramified character
x- We can decompose any Weil-Deligne representation into isotypic components indexed by these equivalence
classes of W, i.e.

o @ olw], and V = @ Vw],
wew wew
where o[w] : Wg, — GL(V|[w]) is a Weil representation with all irreducible subquotients lying in w € W. The
operator N preserves isotypic components of o, thus it preserves V[w]. If N|w] denotes N restricted to V{w],
then (o[w], N[w]) is a Weil-Deligne representation. Recall from Tate [22] that there is an indecomposable
Weil-Deligne representation Sp(m) of dimension m with nilpotent matrix of degree exactly m. Explicitly,
we have for all 7 € Wpg,:

m—1

7|2
|5
Sp(m)(r) = ;
|T|3—21n
7=
where
0 1
0 1
N(Sp(m)) = :

0 1
0

It is well known that every indecomposable Frobenius-semisimple Weil-Deligne representation is isomor-
phic to one of the form s ® Sp(m), where s is an irreducible representation of Wr, and N(s) = 0 (see [22,

4.1.5]). If (o,N) and (o/,N') are two Weil-Deligne representations of the same dimension, then for each

w € W, we can compare the dimensions of Sp(-) in the decomposition of o[w]°P =3¢ and o’ [w]"°P 5% into

indecomposable representations using the following ordering:

Definition 8.2. For each w € W, and for each Weil-Deligne representation (o, N), there exists a unique
decreasing sequence of non-negative integers my ., (o, N) > ma (0, N) > ... with an associated sequence of
81, 82,... € w such that

O_[w]FrOb =SS o~ @ S; [ Sp(mi7w(aa N))

S;iEw
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The sequence (m; (0, N)); is a partition of the integer dim(o[w])/ dim(s;) for any s; € w. If (o/,N') is
another Weil-Deligne representation, then we say

(0, N) < (o, N')
if and only if Vvw e W and i > 1,

mi (o, N) + - 4+ m; (o, N) <my (o', N')+ -+ m; (', N').

In particular, (o, N) < (¢o/,N’) if and only if N[w] is “more nilpotent” than N’[w] for each w € W.
Denote by I, the inertia subgroup of the Weil group Wg, at v, and let Z denote the set of isomorphism
classes of irreducible representations of I,, with open kernel. For every 6 € Z, define o[f] to be the isotypic
component of o 1,» whose irreducible subquotients are isomorphic to 6. Since N commutes with the image
of I,, these isotypic components are preserved by the monodromy operator, and thus we can define N[f] as
the restriction of N to V[6].

Definition 8.3. Let (o, N) be a Weil-Deligne representations of Wg, over @p. For each 0 € I, we can
define a unique decreasing sequence of non-negative integers ny g(o, N) > ngg(o, N) > ... which determines
the conjugacy class of the monodromy operator N[0]. It is a partition of the integer dim(r[d])/dim(0). If
(o/,N") is another Weil-Deligne representation, then we say

(0, N) <1 (¢/,N")
if and only if o|; = o'|; andV0 €L andi > 1,
n1.0(o,N)+...+ni9(0c,N) <njg(c’,N')+ ...+ n;9(c’,N').
We have the following lemma relating the two dominance relations < and <; defined above. For any

sequence of integers (m;)icz., and d € Zsg, let d - (m;); be the sequence of integers (mi,mq,...,m,
Mg, Ma, ..., Ma,...) where each m; occurs d times.

Lemma 8.4 (Lemma 6.5.3 in [3]). Let (o, N) be a Weil-Deligne representation of W, .

1. Letw € W and 0 an irreducible constituent of s|; for any s € w. Then o[s'| No[0] =0 if s’ is not an
unramified twist of s. Furthermore, if d = dim(s)/dim(6), then

(n1,9(0,N),na9(o,N),...) =d- (m1,,(c,N),ma(c,N),...).

2. If (6!, N') is another Weil-Deligne representation of F, such that o5 = ¢'*% then (o, N) < (¢/,N') &
(o,N) <1 (o', N").

From Lemma 8.4 and Proposition 7.1, it suffices to prove that

WD(rp,z(H) )F‘robfss <1 recy, (BC(HZ)u| det |5}172n)/2)

W,

in order to conclude the proposition. We start by characterizing irreducible representations of I,, with open
kernel.

Definition 8.5. If (6,V) is a representation of I, and T is an irreducible representation of a subgroup H of
I, set (O[], V[r]) to be the T-isotypical component of the H-representation (0|, , V|y). Furthermore, if N
is a commuting nilpotent endomorphism of V, then set N[r] = NNV|r].
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Let P denote a Sylow pro-p-subgroup of I,. Recall that there is a map ¢, : I, — Z, since v { p and let
I? := kert,. Recall that there is also an identification of P with I,,/IZ. Let Z? denote the set of isomorphism
classes of representations of I? with open kernel; there is a canonical action on Z? by I,/IP acting by
conjugation. For i € I,,, let ¢; denote the conjugation map I, — I, where x — izi~!, and abusing notation,
we let ¢; also denote restrictions of ¢; to certain subgroups of I,,.

Let Z! denote the subset of elements of Z? with open stabilizer in I,,/IE. For n € I}, set I = Staby, (n) =
{i € I, : noc; = n}, which is open in I,,. Additionally, fix a choice of topological generator g,, of PN I" such
that I" = (If, g,). Note that g, has pro-p-order and can be chosen so that g, = gy for all g € P.

Lemma 8.6. Ifn € I, there exists an irreducible representation 1 of I" with open kernel such that ﬁ|15 .

Proof. Since n € I¥, we have that I? /ker(n) is finite order, and conjugation by g, induces an automorphism
of the quotient. This automorphism must have finite order as well, and since g, has pro-p-order in I,,
conjugating by g must have p-power order as an automorphism of I?/ker(n). This implies that there is
some nonnegative integer n such that g%n centralizes I/ ker(n). Let A,y be an invertible matrix such that
ono Ag_"l. Then Ag: centralizes 1 and therefore must be a scalar since 7 is irreducible; thus,

77 o an = Agn

we may suppose that Ag: = 1. We can then define the representation 7 : I — GLdimn(@p) sending
z'og’nC — r](io)ASn, where ig € IF.
Furthermore, since 7 is irreducible, 7 is also irreducible. O

For each n € Z¥, choose once and for all a lift 7 to I” such that nfo\_c; =1ocy foralge P. Ifnef
and x is a character of I with open kernel containing I?, set 6, , := Indﬁ (7® x).

Lemma 8.7. Ifn € I} and x is a character of I" with open kernel containing I¥ then:

1. 0,y is irreducible and 6, |, = @ foc ® X.
i€l /In

2. 0y =0y if and only if x = X' and ' 2 noc; for somei € I,.

3. Bvery irreducible representation of I, with open kernel arises in this way.

Proof. 1. For any character x : I"7 — @; with open kernel containing I?,  ® x is irreducible since 7 is.
Thus, we can prove that 6, , is irreducible using Mackey’s Criterion: Consider some element i € I,, ~ I".
We want to show that 6, , and 8, oc; are disjoint representations of I”, i.e. have no irreducible component
in common. It is enough to see that they are disjoint on I?. Since 6, , o id|15 =nand 0, o Ci‘[f} =nog
for i ¢ I", these are not isomorphic irreducible representations, thus they must be disjoint. The second part
follows from Frobenius reciprocity and the definition of 0, , as an induced representation from the stabilizer
of nin I, to I,.

2. Next, we prove that 6, , and 6, ,, are isomorphic if and only if for some ¢ € I,,, n = 1 o¢; and x = x'.
One direction follows from the first part of the lemma. To prove the converse, assume 6, , and 0,/ ,, are
isomorphic. Restricting to I?, we have:

/
@ noci = Oyl = O |y = @ meci

[{)€l,/In [i)er, /17’

thus 1 = 0/ o ¢; for some [i] € I,/IP. This further implies I7 = I where the isomorphism is given by
conjugation by ¢ since for any element g € I,

/
1 0 Cigi-1 =10 Cig =noc =1,
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In fact, since I, /I? is abelian, we have proven that I" = I,

It remains to show that x = x’. By Frobenius reciprocity,

Homyp, (0,7, 0n.x) = Hompa (17 @ X, @ o¢i ®X).
ldel, /In

Since 17 o ¢; ® x is irreducible, it remains to check that 7 ® x 2 7 as representations of I” for nontrivial .
Let x(gy) = Ay, and note that if 7(g,) = (7 ® x)(gy) = Ag,7(gy), thus either A\, = 1 or tr(7j(gy)) is zero;
however, since 7] is irreducible, for any h € I, we have 7j(g,h) = Ay, 71(g,h), and for some h, tr(7(g,h)) # 0.
Thus, tr(7j(g,)) # 0, and so we must have that A\, = 1. Thus, we conclude that 6, # 0, when x # x’
or 1 and 7’ are not in the same orbit of Z¥ under the action of I,,/I? (or equivalently, I,,/I").

3. Finally, we show that any irreducible (finite-dimensional) representation of I, arises as 6, , for some
n and x. Let 6 : I — GL(V') be an irreducible representation, and restrict to I7. Let @,c7»V[n] denote the
decomposition of ¢|;» into its isotypic components. For each 5, I" = Stab;(n) acts on V[n] and furthermore,
each i € I induces an identification of V5] and V[n o ¢;]. This implies that Ind}, V5] = V, and thus as a
representation of I, V[n] is irreducible. There is an isomorphism as @p—vector spaces,

Hom y (7l rp . VInll ) ® 71 — V). (8.1)

The space Homyz (7|5 , V[n]|;») has an action of i € I" by conjugation, and I7 acts trivially. With this action,
(8.1) is indeed an isomorphism of I"-representations. However, since V] is irreducible, Homyz (7| , V[n]|»)
must be irreducible over I"/I, which is abelian. Letting x = Homyr(7|;», V[n][;»), we conclude that
0=0,.,. O

We now consider a more useful version of Definition 8.3 to all representations of I,, with open kernel and
commuting nilpotent endomorphism.
Proposition 8.8. If (o,V,N) and (¢/,V',N') are two Weil-Deligne representations, then (o,V,N) <r
(o', V', N) if and only if o|; = o'|; and
dim(ker(N7) N V[0, ]) > dim(ker(N"?) N V'[6, ])

for all j € Zso, n € I¥, and x a character of I"/IP with open kernel.

Proof. Note that for any 6 € Z, the conjugacy class of N[f] (resp. N’[0]) is determined by the partition of
dim(c[6])/ dim(8) (resp. dim(o’[0])/ dim(6)) given by (n;9(0, N))i>1 (resp. (n;9(0’, N'))i>1). The condition

nio(o,N)+...+n;9(0,N) <nyg(c’,N')+ ...+ n;g(c',N') Vi>1
is equivalent to the condition
tk N[0 <tk(N'[0])7  Vj>0.

Since we require o 5, = ol 7, in both definitions, we have that their dimensions are equal, thus rk N [0 <
tk(N'[0])? is equivalent to
dim ker N[0)7 > dim ker N'[4].

By Lemma 8.7, we know that all § € Z are of the form 6, , where n € Z§ and x is a character of I with
open kernel containing I? and so we are done. O

Furthermore, given j € Z~q, n € I}, and x a character of I"/I? with open kernel, then using the fact

that dimker N = [I : I"] dimker N, | coming from the Lemma 8.7(1)), we can conclude

1®X] (

dim(ker N7 N V[0, +]) > dim(ker N7 nV'[8, ,]) < dim(ker N 0 V[ @ x]) > dim(ker N7 0 V'[ii @ x]).
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If n denotes a representation of I? with open kernel and f : I? — @p is a locally constant function, then
let n(f) := [;» f(i)n(i)di, where di denotes the Haar measure on I? (normalized so that vol(I?) = 1). Since
I? is compact, this integral is in fact a finite sum. Recall that for each 7, we fixed a choice of topological

generator g, of P N I" such that I7 = (I}, g,). The following lemma describes the existence of projection
operators for representations of I? and the relationship between the image of 7 and 7 (both irreducible).

Lemma 8.9. If (n,V) and (0, V') € ¥, then:

tr(n¥ (i)

1. There exists a locally constant function €, : I} — @p sending i — dim (where ¥ denotes the dual

representation) such that n(e,) =1 but 1/ (e,) =0 for all n’ % 7.

2. There exists a locally constant function a, : IF — Q, such that 7(g,) = nay) but n'(ay) =0 if n E 7'
Proof. The first part is clear. As for the second part, since 1 has open kernel, there is a finite quotient
I}/ ker(n) through which it factors. Furthermore, 7 is irreducible, and thus the matrix 7j(g,) € Hom(V) can

be written as a sum depj/ker(n) an,gn(g). Define a, by sending g — a, 4. By orthogonality, we have that
P
n'(ay) = 0 for ' # n. Recall that the Peter-Weyl theorem gives an isomorphism

Hom(I}/ ker(n),Q,) — T Endg (V),
(r,V)€lrr(Iy / ker(n))

and thus a, pulls back to a locally constant function of IZ. O

For each n € I, fix a choice of ¢, and a, as described in Lemma 8.9. If (o,V,N) (resp. (¢’,V’',N’))
uniquely determine (local) Galois representations p, (resp. p)) of G, acting on the same underlying vector
space V (resp. V'), then recall that the defining relation between p, and (o, V, N) is

pv(i) = o (i) exp(t, (i) N) for i € I,.

If i € I, is an element such that t,(g) is nonzero, then we can write log(o (i) ™1 p, (7)) = t,(i)N. Additionally,
for all positive j, rk(t,(i)N)? = rk N7 and for any unipotent matrix U, rk(logU)? = rk(U — 1)/, and thus
tk (o(9) " pu(g) — id)j =rk N7,
This implies that
k(N g = tk((2(90) = (90 |y )

and we have that (o, N) <r (o/, N') if and only if o[, = ¢’|; and for all j € Z¢, n € Z, and x a character
of I"/I? with open kernel,

dim(ker (p(gy,) — U(gn))jlv[ﬁ@d) > dim(ker (o' (g,) — o’ (gy))’ Vilren])- (8.2)
Additionally, since ker (p(g,) — o(gy))’ ’V[ﬁ®x] = ker(p(gy) — p(ay)x(g,))?, we can then conclude:

Lemma 8.10. If (p,V), (p, V') are two continuous m-dimensional representations of I, (arising from con-
tinuous G'r, -representations), then (0,, N) <1 (0,, N') if and only if p|;» = p'|;» and

NP (gn) = P/ (an)C)Y = 0= N¥(p(gy) — play)¢) =0 (8.3)
for all j,k € Z~o, n € IY, and p-power root of unity .
Proof. This follows from (8.2) and the fact that for any A € End(V), dimker A = dim V' 4+ 1 —min{k € Z~ :

AEA =0} O
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Suppose p! is a local p-adic Gp,-Galois representation of dimension m, and p is a semisimple con-
tinuous m-dimensional global Galois representations of Gp O I,. Then AFp is also semisimple, and
WD(p|GF YFrob=ss <1 WD(p!,)¥°P =55 if and only if for all j, k € Z~o, n € I, ¢ a p-power root of unity,

N (gn) = P (a)C) =0 = tx(A"(p(gn) — p(an)¢)p(T) =0 V1 € Gp

because trace is a non-degenerate bilinear form on the image of semisimple representation. For any p,
we can extend it by linearity to p : Q,[Gr] — GL(V), and let b,¢ = g, — (- a; € Q,[Gp]. Then
WD(p)Frob=ss <, WD(p')F°P =55 if and only if for all k, j € Z~¢, n € I}, and p-power roots of unity ¢,

A (gy) — P (a))C) =0 = tr /\kp(bj (7)) =0 VreGp. (8.4)

Now, if T' denotes a 2n-dimensional continuous pseudocharacter of G, then by extending linearly and
using the recursive formula for a matrix A4, tr AFA = + z:ifnzl(—l)m*1 tr(A™) tr AF=™(A), we can define

—_

k
T GG 2Ty by g D ()T AT T

for £ < 2n. In the sequel, we will be interested in whether the following function
ByUT):Gr = Q, 7 A'T() 7)

is identically zero.

8.1 Proof of <

In this section we prove Proposition 8.1.

Proof. Fix £ € Sgp) and let v | £ be a prime of F'in S
the hypothesis of the proposition,

U S¢,1- We have already seen that for IT satisfying

Sspl

WD( Ry, (1), )** = recr, (BC(IL,), | det [§72)/2)*
By Lemma 8.4, it therefore remains to show that
WD(R,,,,(I)|y;,, )P~ < recy, (BC(I,), | det {1 27/2).

For ease of notation, let the p-adic local Galois representation associated to the Frobenius semisimple Weil-
Deligne representation recp, (BC(Il),| det |£1_2")/2) be denoted pifS,. We want to show that for all n € Z7,
p-power roots of unity ¢, and j, k € Zy,

P ) =0 = AR, (D ) =0.

Recall from (7.3) that for Ty := ¢ o T constructed in the proof of Proposition 7.1, there is a function B:;Z
for each j, k € Z~o, n € I}, and p-power root of unity ¢ such that

By L (Tn)(r) = tr A" (rp (D) (engy) — Ry (1) (ay)¢)? Ry, (TT)(7).

By (8.4), we want to show that
AR (555 (9n) = € i ()’ =0 = BRd(Tu) = 0.

Let B, denote the Bernstein component containing BC(II;),. By Proposition 6.2 in [17], associated to II,
there exists an idempotent e g, inside the Bernstein center 35, associated to B, such that:
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e e, (BC(IL),) #0
e en g, (Ip) # 0 = rec(Ilp) < rec(BC(Ily),) for all irreducible Iy of GLq, (F,),

If er; denotes the image of err g, € 3, , where B, is the disjoint union of Bernstein components containing
B, defined in Theorem 6.2, let ér := d(em)en € 32 and abusing notation, let ey also denote its own image
in ”HZI and End(H° (A, & ) for any b e X*(T, /@p)jl and any neat open compact U = [[ U, such that
U, =Kg,.

Lemma 8.11. Letb € X*(Tn/@p)Jr and let T{;, denote the image in H%p in

cl’
Endy, (H* (X7, €5%)),

where U = [[U; and Uy satisfies (6.1) for every £ € Sgp1. There is a continuous representation 1y : Gy —
GL2n<TQ®@p) described in (7.1) for every b, and let T, = trry,. Assume that n € I, ¢ a p-power root of
unity, and k,j € Z~o are such that

A (Pt (gn) — € i (an))” =0,
For each b, the map éHBf;:Z(Tb) : G — Ty, is identically zero.

Proof. Recall that T, = @11,Q, where the sum runs over irreducible admissible representations of G(AP+> x
Z,) with TI§ # (0) which occur in HO(A™i» EQSUb). We will prove that for each Iy, the composition

- j Py —=
¢, 0 énByL(Ty) : G — T, = Q,

is zero. Assume ér(BC(Ilg¢),) # 0 for some Iy € HO(X™™, £1P). Then rec(BC(Io)y) <1 rec(BC(Ily),),
and so by Lemma 8.10, for n € I}/

/\k (Pi‘[e,cv(engn) - C : pi'icv(a??))j =0= /\k (Pi"fg,v(gn) - C ! Pi"[ag,v(an))J =0.
By Corollary 7.1 and Lemma 8.10, we know this implies that
¥ (Rp,. (o) (gy) — € - Rp,.(Ilo)(ay))’ =0,

thus ¢, © éHB::Z(TQ) =0. O

Continuing the proof of the proposition, since Ty is constructed in terms of Tp, if én(BC(Hg)v)Bs”Z(TQ)
is identically zero for all b € X*(T,, 5 )7, then éHBS’g (Tm) is also identically zero. Since én(BC(Iy),) # 0,
» :

cl’

we can conclude that BSZ (Tr) =0 if n € I}, ¢ a p-power root of unity, and k, j € Z are such that
AP (Pi‘icv (gn) -¢- Pﬁa,cv(an))] =0.

This implies that WD( R, ,(II) )Frob=ss _ recp, (BC(II,),| det |§2™/2). Thus, we conclude

‘ Wr,

WD (7, (I, )7 7 < reck, (BC(II), | et [§12M/2).

Proposition 8.1 in conjunction with Theorem 5.1 then allows us to conclude the following;

27



Corollary 8.12. Assume that n > 1, that p is an irreducible algebraic representation of Ly 1in on a finite-
dimensional Q,-vector space. Suppose that 7 is a cuspidal automorphic representation of Ln 1in(A) such
that T has the same infinitesimal character as p¥. Then, for all sufficiently large integers M, there is a
continuous semi-simple representation

Ry (m, M) : Gp — GL2,(Q,)
with the following property: if £ # p is a rational prime in Sspy, then for all primes v | £:

WD(R,,,. (7, M) b =85 L vecy, (my| det |(17™/2) @ recp., (e, | det |£1,7")/2)V’C ® 511)_2"_21\4,

W,

Proof. Let II be an irreducible subquotient of the induced representation Indg;ﬁ;?m)(WOOH det ||M x 1) with

the property that at any v | £ € Sgp,
I, = 7| det |M B 7| det | 7M.
Then set

Ry(m,M) =R, (" '1I) ® e;M

9 Group Theory

Let T be a topological group and let § be a dense set of elements of I'. Let k& be an algebraically closed,
topological field of characteristic 0 and let d € Z~qg. Let p: I' — k* be a continuous homomorphism such
that u(f) has infinite order for all f € §. For f € § let £} and £F be two d-elements multi set of elements
of k*. Let M be an infinite subset of Z. For m € M suppose that

pm : T = GLag(k)

is a continuous semi-simple representation such that for every f € § the multi-set of roots of the characteristic
polynomial of p,,,(f) equals

el etuln™.
Proposition 9.1 (Proposition 7.12 in [10]). There are continuous semi simple representations
p": T — GLg(k)
for i =1,2 such that for all f € § the multi set of Toots of the characteristic polynomial of p*(f) equals 5}.

Theorem 9.2. Suppose that 7 is a cuspidal automorphic representation of GL,(Afr) such that ws has the
same infinitesimal character as an algebraic representation of RS(S GL,,. Then there is a continuous semi
sitmple representation

Tpa(m) : Gp — GLn(@p)

such that if v1p is a prime of F above a rational prime £ satisfying either
1. ¢ is split over Fy, or

2. w and F are unramified at all primes above ¢,

then
WD(er(W”WF JFrob—ss recy, (1| det |$}17n)/2).

In particular, if T and F are unramified at v, then ry, ,(7) is unramified.
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Proof. Assume that n > 1. Recall that S contains p and the rational primes that are not split in Fy but
ramified in F; and let G2 denote the Galois group over F of the maximal extension of F' unramified outside
S. Let I' = Gps and k = @p, and p = €2, and M consisting of all sufficiently large integers m, and

p )
choose an irreducible subquotient II of the induced representation IndIGDQAzM)w)(WOOH det ||™ x 1) satisfying
(n)

for v | £ € Sep1,
I, = m,|det |™ B 75 | det |~™.

Then, we set
pm = Rp(m,m) =R, (2_11_[) @€, meM

For each v and let k(v) denote the residue field of F,. Let § contain all elements o, € Wy, which projects
to a power of Frobenius under the map Wg, — Gal(k(v)/k(v)), where v ¢ S’. Denote by o, the image of
o, under the isomorphism Wg, = Wp.  induced by conjugation c. Define E;U to be the multiset of roots

of the characteristic polynomial 1~ recr, (7, | det \,(Jlfn)/ *)(0,) and £2  equal to the multiset of roots of the

det \£;1+3n)/2)(0;}1). We can then conclude

characteristic polynomial of 1" rec Fe, (Trey
(7 (), )°* 2 0 recy, (| det |§17/2) 0, (9.1)
By Proposition 9.1, we have that for a sufficiently large integer M in the sense of Theorem 5.1,
Ry(m, M) 21y, (1) ®rp,(‘m)Y @ 611)_2"_2M. (9.2)
Now, choose a finite order Hecke character ¢ on A} such that

e ) is unramified at v,
e ) highly ramified at v¢, and
e recp, ((m ® 1¥),| det |5,1_")/2) and recg, ((1 ® 1)c,| det |£}}‘”>/2)C>V have no common irreducible con-

stituents, even after restricting to I,.

From (9.2) applied to 7 ® ¢ in conjunction with Corollary 8.12, after untwisting we obtain
WD (1 (7 © 1) [y, )™ S GWD (1, (7 @ )Y |1y, )P = < rec, (m0), | det [~/ 2)rec , (mw)e,|det | L/%)
Additionally, by (9.1),

Tpa (T © )|y, )™ = rec, (@ ¥)|det |§7/2)%.

Since < is defined component-by-component, we can conclude
WD (1. (7 ® )], ) = < rec, (w0 1),).

Since the relation < is compatible with twisting, we conclude the theorem.
O

Corollary 9.3. Suppose that E is a totally real or CM field and that 7 is a cuspidal automorphic represen-
tation such that w has the same infinitesimal character as an algebraic representation of RSS GL,,. Then
there is a continuous semi simple representation

rp.: Gg — GLn(Qp)
such that, if £ # p is a prime and if v | £ is a prime of E, then
YFrob =58 < recp, (| det |(17/2).

WD(Tp,Z(ﬂ') |WE1,

Proof. This can be deduced from Theorem 9.2 in conjunction with Lemma 1 of [21] using the same argument
as in Theorem VII.1.9 of [11]. O
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