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Parametrization of ideal classes
in rings associated to binary forms

By Melanie Matchett Wood at Madison

Abstract. We parametrize the ideal classes of rings associated to integral binary forms
by classes of tensors in Z2 ˝ Zn ˝ Zn. This generalizes Bhargava’s work on Higher Com-
position Laws, which gives such parametrizations in the cases n D 2; 3. We also obtain
parametrizations of 2-torsion ideal classes by symmetric tensors. Further, we give versions
of these theorems when Z is replaced by an arbitrary base scheme S , and geometric construc-
tions of the modules from the tensors in the parametrization.

1. Introduction

The goal of this paper is to give a parametrization of ideal classes in the rings associated
to binary n-ic forms. Every integral binary form of degree n has a ring of rank n (a ring
isomorphic to Zn as a Z-module) associated to it (see, for example, [16, 17, 20]). When the
form is irreducible, the associated ring is an order in a degree n number field. For n D 2, the
ring associated to a binary quadratic form is just the quadratic ring of the same discriminant.
For n D 3, binary cubic forms parametrize cubic rings exactly (see [8, 11]). For n > 3 not
all rank n rings (or orders in degree n number fields) are associated to a binary n-ic form.
The special orders which are associated to binary n-ic forms have been studied as a natural
generalization of monogenic orders in [17], and in [7] it is found that prime splitting in these
orders can be understood simply in terms of the factorization of the form modulo the prime. In
[20] it is shown that binary n-ic forms parametrize rank n rings that have an ideal class with
certain special structure. When n D 4, there is another particularly simple description given in
[19]; that is, binary quartic forms parametrize quartic rings with monogenic cubic resolvents.
The cubic resolvent of a quartic ring is an integral model of the classical cubic resolvent field,
and was introduced in [3] to parametrize quartic rings. Thus the orders associated to binary
forms are interesting examples of orders in number fields with various nice properties. In this
paper, we parametrize the ideal classes of these orders by classes of tensors or trilinear forms.

It is a classical result that ideal classes of quadratic rings are parametrized by binary
quadratic forms, originally by Dedekind and Dirichlet [6] (see also [1] for another parametriza-
tion of ideal classes of quadratic rings). This parametrization has had important applications
in number theory, from genus theory to the computation of class groups of quadratic fields.
Bhargava [2] has found a parametrization of ideal classes of cubic rings. This is his space of 2
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170 Wood, Parametrization of ideal classes

by 3 by 3 boxes of integers, or classes of elements of Z2˝Z3˝Z3. Bhargava’s parametriza-
tion of ideal classes of cubic rings is much more recent, but already it can be applied to find
the average size of the 2-torsion part of the class group of cubic orders, both for maximal and
non-maximal orders (see forthcoming work of Bhargava).

In this paper, we prove that classes of elements of Z2˝Zn˝Zn parametrize ideal classes
of the rings associated to binary n-ic forms for all n. This gives an explicit parametrization of
class groups of a natural infinite family of orders in rank n number fields. When n D 2; 3,
these are the results of Bhargava in [1, 2], though the more general results in this paper require
entirely new methods for their proofs. The proofs of the Dedekind–Dirichlet correspondence
and Bhargava’s parametrizations fundamentally rely on the fact that they are in small finite
cases. For example, in [2] the proof of the main result relies on verifying (by hand or com-
puter) that a system of 18 linear and 9 quadratic equations has a unique solution. When 3 is
replaced by n in that problem, such a computation is infeasible. The new methods in this paper
rely on understanding the theory of certain special ideal classes associated to binary forms, as
developed in [20].

One can also study symmetric elements of Z2 ˝ Zn ˝ Zn, that is elements of
Z2 ˝ Sym2Zn. We prove that these symmetric tensors parametrize 2-parts of class groups,
just as in the cases n D 2; 3 in [1, 2]. In the case n D 4, the space Z2 ˝ Sym2Z4 is exactly
the space used in the forthcoming work of Bhargava and Shankar to determine the average
size of the 4-Selmer group of elliptic curves. Morales [14, 15] has also studied elements of
Z2 ˝ Sym2Zn and associated modules to them that are related to the 2-part of certain class
groups, though he associates modules for a slightly different ring than that in our work.

We also prove analogous parametrizations when the integers are replaced by an arbitrary
base scheme S (or base ring when S D SpecR), and so we also generalize the results from
[1, 2] from the integers to an arbitrary base. In Morales’s work [15], he has replaced Z by
an arbitrary maximal order in a number field in his constructions of modules from symmetric
tensors.

In this paper, we give both algebraic and geometric constructions for the modules associ-
ated to an element of Z2 ˝Zn ˝Zn. The algebraic construction is given by explicit formulas
for the action of the ring elements on a Z-basis for an ideal. The geometric construction gives
the modules as sections of line bundles of schemes naturally given by the tensor, and is quite
simple for nice tensors.

As this paper generalizes the results of [2] from Z to an arbitrary base, it could be applied
to counting problems in number theory over arbitrary orders in number fields or function fields,
specifically to finding the average of the 2-part of the class group of orders that are cubic over a
fixed order. For n > 3, the associated counting problems for classes of Z2˝Zn˝Zn are much
harder, and involve reduction theory problems at the boundary of current research. Given how
little is known about the average size of 2-parts of class groups in any natural infinite family of
degree n number fields, the application of this paper and new work for the reduction theory of
Z2 ˝ Zn ˝ Zn has potentially very interesting results.

This work can also be interpreted geometrically, because a rank n algebra over a scheme
S is equivalent to a finite, flat degree n cover of S . In those terms, this work explicitly con-
structs the moduli space of line bundles (and degenerations) on certain finite covers. In the
case n D 3, this includes all cubic covers. This paper could be applied over S D P1 to study
explicitly the universal Jacobian of the Hurwitz stack of trigonal curves, analogously to the
work of the author and Erman [10] on the universal Jacobian of hyperelliptic curves. The ex-
plicit description of the moduli space provided by this paper gives a proof of unirationality of
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Wood, Parametrization of ideal classes 171

this universal Jacobian as well as a framework for computing its Picard group and possibly its
Chow ring.

1.1. Outline of results. We can represent an element of the space Z2 ˝ Zn ˝ Zn as a
pair A D .A1; A2/ of n by n matrices. Let Det.A/ be the binary n-ic form Det.A1x C A2y/.
For a non-zero integral binary form f , let Rf be the ring of global functions of the subscheme
of P1Z cut out by f . (The same ring, via other constructions, is associated to f in [7,16,17,20]
and reviewed in Section 2 of the current paper.) A binary form f is non-degenerate if it has
non-zero discriminant. Let G be the subgroup of elements .g1; g2/ of GLn.Z/�GLn.Z/ such
that Det.g1/Det.g2/ D 1. Over the integers, we have the following version of our main the-
orem which makes some assumptions on f for simplicity of statement. (This version follows
from Theorem 3.1 using Propositions 5.1, 5.4, and 5.8.)

Theorem 1.1. For a primitive non-degenerate binary n-ic form f with coefficients in
Z, there is a bijection between G-classes of A 2 Z2 ˝ Zn ˝ Zn such that Det.A/ D f and
(not necessarily invertible) ideal classes of Rf .

If f is monic in x and Det.A/ D f , then Det.A1/ D 1. We can then act by an element
of G so as to assume that A1 is the identity matrix. Further G action fixing A1 (the identity
matrix) is just conjugation of A2. If f D F.x1; x2/ is monic, then Rf D ZŒ� �=F.�; 1/, and
Theorem 1.1 generalizes the classical result that ideal classes of monogenic orders correspond
to conjugacy classes in Zn˝Zn whose characteristic polynomial is F.t;�1/. So, we can view
Theorem 1.1 as placing rings associated to binary forms in analogy with monogenic rings, as
in [7, 17].

In the case n D 3, Theorem 1.1 is slightly stronger than the corresponding version in [2],
which gives a correspondence between A associated to invertible ideals and invertible ideal
classes of Rf .

As in [1,2], we must define a notion of balanced to state a more general theorem. We will
show in Section 5 that there are several equivalent ways to formulate the notion of balanced,
but we first give the one closest to Bhargava’s notion in [1, 2]. For a non-zero form f , there
is a naturally associated ideal If of Rf , given as an Rf -module by the global sections of
O.n� 3/ on P1Z pulled back to the subscheme of P1Z cut out by f . Moreover, there is a natural
map ı W If ! H 1.P1Z;O.�3// D Z2. The ideal class If was constructed in [20] and the
constructions of If and ı are reviewed in Section 2 of the current paper. A fractional ideal for
Rf is a finitely generated Rf -submodule of Rf ˝Z Q.

A balanced pair of ideals (for f ) is a pair .M;N / of fractional Rf -ideals such that
MN � If and jM jjN j D jIf j, where jP j denotes the norm of P . Two such pairs .M;N /
and .M 0; N 0/ are in the same class if M 0 D �M and N 0 D ��1N for some invertible element
� 2 Rf ˝Z Q. Note that an invertible ideal has a unique balancing partner, and thus classes of
balanced pairs of invertible ideals are the same as invertible ideal classes.

Theorem 1.2. For a non-degenerate binary n-ic form f with coefficients in Z, the map
that sends a balanced pair .M;N / to the tensor in Z2 ˝ HomZ.M;Z/˝ HomZ.N;Z/ asso-
ciated to the map

M ˝Z N !MN ! If
ı
�! Z2
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172 Wood, Parametrization of ideal classes

gives a bijection

¹ classes of balanced pairs .M;N / for f º  !

8<:
G-classes of
A 2 Z2 ˝ Zn ˝ Zn with
Det.A/ D f

9=; :
Theorem 1.2 follows from Theorems 3.1 and 5.5. In [2], Bhargava asks for an appropriate

formula of balanced for degenerate forms so as to obtain a theorem such as the above. We will
give such a notion, which can be seen for example in Theorem 1.4.

We also relate symmetric elements of A 2 Z2˝Zn˝Zn to the 2-part of class groups of
rings associated to binary forms. For nice forms f we get the following, which follows from
Theorems 4.1 and 5.9.

Theorem 1.3. For a primitive non-degenerate binary n-ic form f with coefficients in
Z, the map that sends M to the tensor in Z2 ˝ Sym2 HomZ.M;Z/ associated to the map

M ˝Z M
k�1

��! k�1M 2
! If

ı
�! Z2

gives a bijection8<:
classes of .M; k/ where M is a fractional
Rf -ideal, k is an invertible element of
Rf ˝Z Q, and M D .If k WM/

9=; !
8<:

GLn.Z/ classes of
A 2 Z2 ˝ Sym2Zn with
Det.A/ D ˙f

9=; ;
where Sym2Zn are symmetric n by n matrices, the action of g 2 GLn.Z/ is by multiplication
on the left by g and right by gt , and .M; k/ and .M1; k1/ are in the same class if M1 D �M

and k1 D �2k for some invertible element � 2 Rf ˝Z Q, and .If k WM/ is the fractional ideal
of elements x such that xM � If k.

We also give a version of the above in Theorem 4.1 for all non-zero forms f , which
again uses a more delicate notion of balanced. If we restrict Theorem 1.3 to invertible modules
M , then the condition M D .If k WM/ is replaced by M 2 D If k, and the restricted set is
an extension of a torsor of the 2-part of the class group of Rf by R�

f
=R2
f

. (We say a torsor
instead of a principal homogeneous space because If might not be a square in the class group
and there would be no such M in that case.)

This paper also gives analogous results over an arbitrary base scheme S . We consider
V;U;W , locally free OS -modules of ranks 2, n, and n, respectively. We then study global
sections p 2 V ˝ U ˝ W . We can construct Det.p/ 2 Symn V ˝ ^nU ˝ ^nW , which is
a binary n-ic form. Fix any f in Symn V ˝ L, where L is a locally free rank 1 OS -module.
There is a natural associated rank n OS -algebra Rf and an Rf module If with a natural map
ı W If ! V of OS -modules (see [20], or Section 6 of the current paper). For an OS -module
P , we write P � for HomOS .P;OS /, even when P is a module for another OS -algebra.

A balanced pair of modules for a non-zero-divisor f is a pair of Rf -modules M and
N , each a locally free rank n OS -module such that ^n

OS
M ˝ ^n

OS
N Š L�, and a map of

Rf -modules M ˝Rf N ! If , such that when the composition

M ˝OS N !M ˝Rf N ! If ! V

is written as A 2 M � ˝ N � ˝ V we have Det.A/ D f u, where u is a unit in OS . (We can
then choose a unique isomorphism ^n

OS
M ˝ ^n

OS
N Š L� such that Det.A/ D f .) We have

the following, proven in Theorem 6.2.
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Wood, Parametrization of ideal classes 173

Theorem 1.4. For every non-zero-divisor binary n-ic form f 2 Symn V ˝ L, the map
that sends .M;N / to the tensor in A 2M � ˝N � ˝ V associated to the map

M ˝OS N !M ˝Rf N ! If
ı
�! V

gives a bijection8<:
isomorphism classes of
balanced pairs .M;N / of
modules for f

9=; !
8̂<̂
:

isomorphism classes of A 2 V ˝ U ˝W ,
where U and W are locally free rank n
OS -modules with an isomorphism
^nU ˝^nW Š L such that Det.A/ D f

9>=>; :
The condition that f is not a zero-divisor is awkward because it is not invariant under

base change in S . Unfortunately, the methods of this paper require this condition.
From a p 2 V ˝ U ˝ W we give two constructions of the corresponding ideal classes

or modules. The first construction (in Section 6) is algebraic and explicit and the second (in
Section 8) is geometric and more intuitive. We give a heuristic description of the geometric
construction here. If we have locally free OS -modules F and G, and s 2 F ˝G, then we can
construct the k-minor ^ks 2 ^kF ˝^kG. IfH is also a locally free OS -module, and we have
s 2 F ˝G˝H , then we have a k-minor ^kH s withH -coefficients in ^kF ˝^kG˝SymkH
(see [21, Section 8.2] for the details of this construction). For p 2 V ˝ U ˝W , the n-minor
with coefficients in V defines a subscheme Tp.V / in P .V /, the 2-minor with coefficients in
U defines a subscheme Tp.U / in P .U /, and the 2-minor with coefficients in W defines a
subscheme Tp.W / in P .W /. Abusing notation, we let � denote the map from all of these
schemes to S . The heuristic definition of Rf is to take ��OTp.V / (or ��OTp.U / or ��OTp.W /
– all the OS -algebras turn out to be the same in the nicest cases), and M D ��OTp.U /.1/

and N D ��OTp.W /.1/ (where O.1/ is as pulled back from the corresponding projective
bundle). This construction does not work for all p (e.g., the three algebras given for Rf are not
necessarily the same) and it is not functorial in S . As in the case of binary n-ic forms in [20],
we use hypercohomology to extend our heuristic geometric construction to a construction that
works in all cases and is functorial.

1.2. Outline of the paper. In Sections 2–5, we work over the integers, though in fact
the constructions given there are the constructions that work for a general base S . This part of
the paper is written to be accessible to those mainly interested in class groups of number fields.

In Section 2 we review the rings and ideals associated to binary n-ic forms, and give
some computations with these rings and ideals that are needed for the work in this paper.
In Section 3, we prove our main theorem (Theorem 3.1) over the integers. We first give the
algebraic constructions of a pair of modules from an element of Z2˝Zn˝Zn in Section 3.1. In
Section 3.2 we prove Theorem 3.1 when the leading coefficient of f is not zero. In Section 3.3,
we study the GL2.Z/ invariance of our construction of modules, and use this to finish the proof
of Theorem 3.1. In Section 4 we give the general analogs of Theorem 3.1 for symmetric
tensors.

In Section 5, we further study the notion of balanced pairs of modules, and show it is
equivalent to a characteristic polynomial condition and an index condition (Proposition 5.1).
In Section 5.1, we show that for non-degenerate binary n-ic forms all balanceable modules are
fractional ideals (Proposition 5.4), and prove that in this case the definition of balanced modules
is equivalent to the definition of balanced ideals given above (Theorem 5.5). In Section 5.2,
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174 Wood, Parametrization of ideal classes

we specialize to the case of primitive non-degenerate forms, where we see that every fractional
ideal has a unique balancing partner. This is the final step in the proof of Theorem 1.1.

In Section 6, we prove versions of these main theorems over an arbitrary base. In par-
ticular, we prove Theorem 1.4 (as Theorem 6.2) and a symmetric version. In Section 7, we
give a geometric construction of the modules from the universal tensor and prove it is the same
as the algebraic construction in Section 3.1. The main obstacle is that we give multiple ring
constructions and we must show that they agree. The rings are given by global sections of
different schemes, but the schemes themselves are not isomorphic. Finally, in Section 8, we
give a geometric construction over arbitrary base of the modules from a triple tensor and prove
that it commutes with base change (Corollary 8.3).

2. Binary forms, rings, and ideals

Given a binary n-ic form f0x
n
1Cf1x

n�1
1 x2C� � �Cfnx

n
2 with fi 2 Z, there is a naturally

associated rank n ring Rf (see [16,17,20]) and a sequence of Rf -modules (see [18,20]). Here
we review the facts from [20] about Rf and these modules that are necessary in this paper, as
well as make some computations that will be critical in this work. We will eventually need
these results over more general rings than Z, so we will now work over an arbitrary ring B in
place of Z.

Let f D f0x
n
1 C f1x

n�1
1 x2 C � � � C fnx

n
2 a binary n-ic form with coefficients fi 2 B

such that f is not a zero-divisor in BŒx; y�. We first give geometric constructions of a ring
and ideals from f , as given in [20]. We define Rf as the B-algebra of global sections of the
regular functions of Tf , the subscheme of P1B defined by f . We have line bundles OTf .k/ on
Tf pulled back from O.k/ on P1B . We define If to be �.OTf .n�3// (i.e. the global sections of
OTf .n� 3/), and Jf to be �.OTf .n� 2//. This gives If and Jf the structure of Rf -modules.
Note that our If is the In�3

f
or If n�3 of [20], and our Jf is the In�2

f
or If n�2 of [20].

Equivalent, but more concrete, constructions ofRf , If , and Jf are also given in [20], and
we give those now, as they will be easier to work with. For these constructions, we assume f0
is not a zero-divisor inB . Write f D F.x; y/. LetB 0 D Bf0 (the ringB with f0 inverted). We
can also define the B-algebra Rf as the subring of B 0Œ� �=F.�; 1/ generated by �0; : : : ; �n�1
with

�0 D 1; �k D f0�
k
C � � � C fk�1� for k > 0:

The �k give a B-module basis ofRf , and it is shown in [20, Theorem 2.4] that this definition of
Rf agrees with the geometric one given above, and in particular that the B-module generated
by the �i is closed under multiplication. Note that if f0 is a unit inB , thenRf D BŒ��=F.�; 1/.
We can define If and Jf as sub-B-modules of B 0Œ� �=F.�; 1/, such that

If is the B-module generated by 1; �; �2; : : : ; �n�3; �n�2; �n�1;

or equivalently generated by 1; �; �2; : : : ; �n�3; f0�n�2; f0�n�1 C f1�n�2;

Jf is the B-module generated by 1; �; �2; : : : ; �n�3; �n�2; �n�1:

When n D 2, we use only the second description of If given above. In [20, Theorem 2.4], it
is shown that these definitions of If and Jf agree with the geometric ones given above, and in
particular that If and Jf are closed under multiplication by elements of Rf . We have a map of
Rf -modules If ! Jf given by inclusion. This map is not canonical (i.e. not GL2 equivariant

Brought to you by | University of Toronto-Ocul
Authenticated

Download Date | 8/30/19 1:19 PM



Wood, Parametrization of ideal classes 175

for the natural action of GL2 on binary forms) and does not arise geometrically, yet it will be
important in our proofs.

The elements f0; �1; : : : ; �n�1 are a B 0-module basis of B 0Œ� �=F.�; 1/. Let L�i be the
B 0-module basis of HomB 0.B 0Œ� �=F.�; 1/; B 0/ dual to the �i . So L�i .�j / D ıij for j > 0. Also,
let L�i be the B 0-module basis of HomB 0.B 0Œ� �=F.�; 1/; B 0/ dual to 1; �; �2; : : : ; �n�1. We can
apply these L�i and L�i to elements in If and Jf since they lie in B 0Œ� �=F.�; 1/, but they are not
necessarily dual to a B-module basis of If or Jf . The following are the key computations we
will need.

Proposition 2.1. For r 2 B 0Œ� �=F.�; 1/ and 1 � k � n � 1,

L�n�1.�kr/ D L�n�1�k.r/ � fk L�n�1.r/:

Proof. We will write out �kr in terms of powers of � and then read off the coefficient of
�n�1. First, we write r D

Pn�1
jD0 rj �

j and so

�kr D .f0�
k
C � � � C fk�1�/.rn�1�

n�1
C � � � C r0/:

To find the �n�1 coefficient, we only have to look at terms of r with j � n � 1 � k. From the
rn�1�k�

n�1�k term we get a �n�1 coefficient of rn�1�kf0. From the remaining terms, we
get the sum

n�1X
jDn�k

rj �
j .f0�

k
C � � � C fk�1�/ D

n�1X
jDn�k

rj �
j�.n�k/.f0�

n
C � � � C fk�1�

n�kC1/

D

n�1X
jDn�k

�rj �
j�.n�k/.fk�

n�k
C � � � C fn/

and the only term of the final sum with a non-zero �n�1 coefficient is the j D n�1 term which
has a �n�1 coefficient of �rn�1fk . So L�n�1.r/ D f0 L�n�1�k.r/�fk L�n�1.r/, and dividing by
f0 proves the proposition.

Corollary 2.2. For r 2 B 0Œ� �=f .�; 1/,

L�n�1.� r/ D L�n�2.r/:

Proof. We have

L�n�1 WD
L�n�1

f0
and L�n�2 WD

L�n�2 �
f1 L�n�1
f0

f0
;

and thus this follows from the above proposition when k D 1.

Lemma 2.3. If we have a homomorphism � of B-modules from some B-module P to
Jf , then the image of � is in If if and only if the image of L�n�2� is in B .

Proof. The elements of If are just the elements j 2 Jf for which L�n�2.j / 2 B .
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176 Wood, Parametrization of ideal classes

Thus L�n�1 and �L�n�2 give two B-module maps from If to B , or a B-module map we
denote ı W If ! V D B2, where .�1/iC1�n�i gives the map to the i th coordinate of V . We
have chosen the maps in such a way that the map ı W If ! V is the canonical map given in
[20, Equation (3.8)] (where the k in [20, Equation (3.8)] is n � 3 for our purposes). This map
is useful because it doesn’t lose information about Rf -module maps. More formally, we have
the following.

Proposition 2.4. For any binary n-ic form f and any Rf -module P , composition with
the map ı W If ! V gives an injection of Rf modules

HomRf .P; If /! HomB.P; V /:

Proof. We suppose, for the sake of contradiction, that we have a non-zero map
� 2 HomRf .P; If / such that the image of � is in the kernel of If ! V . Let r be a non-
zero element of im.�/. Then, by Proposition 2.1 we have

L�n�1�k.r/ D L�n�1.�kr/ D 0

for 2 � k � n � 1. Thus, we see that r D 0.

In [20, Corollary 3.7], it is shown that as Rf modules, Jf Š HomB.Rf ; B/, and thus we
have the following proposition.

Proposition 2.5. For any binary n-ic form f and any Rf -module P , composition with
the map L�n�1WJf ! B gives an isomorphism of Rf modules

HomRf .P; Jf /
L�n�1
���! HomB.P;B/:

3. Main theorems

We write an elementA 2 Z2˝Zn˝Zn as pairA1; A2 of n�nmatrices. The determinant
of A is the binary n-ic form Det.A1x1 C A2x2/. For non-zero binary form f with integer
coefficients, we defined in Section 2 a rank n ring Rf and two modules If and Jf for that ring.
Recall that we have a map ı W If ! V of abelian groups, where V D Z2. We will next define
a notion of a balanced pair of Rf -modules. The idea is that the product of the pair should map
to If , but that map should be constrained by the form f itself. Note the definition we now
give is different from the one given in the Introduction, but we will see in Theorem 5.5 that the
definitions agree for non-degenerate f .

Definition. A based balanced pair of modules for f is a pair of Rf -modules M and
N , a choice of basisM Š Zn andN Š Zn, and a map of Rf -modulesM ˝Rf N ! If , such
that when the compositionM ˝ZN !M ˝Rf N ! If ! V is written as a pair of matrices
A1 and A2 (viewing elements of M as row vectors and elements of N as column vectors), we
have Det.A1x1 C A2x2/ D f . If vi , mj , and nk are the bases of V , M , and N respectively
indicated above, then the j; k entry of Ai is the coefficient of vi in the image of mj ˝ nk , i.e.
.�1/iC1 L�n�i .mj ˝nk/. We will often refer to the based balanced pair asM;N , with the bases
and balancing map understood.
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Wood, Parametrization of ideal classes 177

Definition. A balanced pair of modules for a non-zero form f is a pair of Rf -modules
M and N , each a free rank n Z-module, and a map of Rf -modules M ˝Rf N ! If ,
such that when the composition M ˝Z N ! M ˝Rf N ! If ! V is written as a pair
of matrices A1 and A2, we have Det.A1x1 C A2x2/ D ˙f . Given a balanced pair of
modules for a non-zero form f , there is a unique choice of generator � of ^nM ˝ ^nN
such that Det.A1x1 C A2x2/ D f when constructing A with bases of M and N that give
� 2 ^nM ˝ ^nN . If we have based balanced pairs .M;N / and .M 0; N 0/ such that the mod-
ules and balancing maps are the same and only the bases differ, then the change of bases must
preserve � since both based balanced pairs give Det.A1x1 C A2x2/ D f .

In this section we prove the following theorem.

Theorem 3.1. For every non-zero binary n-ic form f with coefficients in Z, the map
that sends a balanced pair .M;N / to the tensor �.M;N/ 2 Z2 ˝ Zn ˝ Zn associated to the
map

M ˝Z N !M ˝Rf N ! If
ı
�! V

gives a bijection²
based balanced pairs .M;N /
of modules for f

³
 !

®
A 2 Z2˝Zn˝Zn with Det.A/ D f

¯
:

We define G to be the subgroup of GLn.Z/ � GLn.Z/ of elements .g1; g2/ such that
Det.g1/Det.g2/ D 1. Then, G acts equivariantly in the above bijection (acting of the bases of
M and N ), and we obtain a bijection²

isomorphism classes of balanced
pairs .M;N / of modules for f

³
 !

²
G-classes of A 2 Z2˝Zn˝Zn

with Det.A/ D f

³
:

In Section 3.1 we construct a based balanced pair of modules from anA 2 Z2˝Zn˝Zn.
Our construction is completely concrete, and we give formulas for the action of Rf on M and
N . In Section 3.2, we prove that this construction gives an inverse to the map � when f0 ¤ 0.
In Section 3.3, we use the GL2 equivariance of our construction to reduce to the case that
f0 ¤ 0, which will prove Theorem 3.1.

3.1. Construction of balanced pair of modules. We are given A 2 Z2 ˝ Zn ˝ Zn,
which we can write as a pair A1; A2 of n � n matrices. Let f be the determinant of A. In this
section, we will construct a based balanced pair .M;N / of modules for f . We begin by letting
M D Zn and N D Zn as abelian groups. It remains to specify the Rf action on M and N
and the map of Rf -modulesM ˝Rf N ! If . We can write the elements ofM as row vectors
with entries in Z and the elements of N as column vectors with entries in Z. Heuristically, the
action of Rf will by given by � acting on M on the right by �A2A�11 and on N on the left
by �A�11 A2. The trouble with this construction is that � is not an element of Rf (unless f0,
the xn coefficient of f , is ˙1) and that A1 is not necessarily invertible (it could be the zero
matrix!). We could solve both of these problems by inverting f0, but it is possible that f0 D 0.
So we will pass to a universal situation, where we can always invert f0.

We replace Z by the ring ƒ D ZŒ¹uijkº1�i�2;1�j�n;1�k�n� (the free polynomial alge-
bra on 2n2 variables over Z), and we replaceAwith the universal tensor C inƒ2˝ƒƒn˝ƒƒn,
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178 Wood, Parametrization of ideal classes

where Ci has j; k entry ui;j;k . We have a binary n-ic form c D Det.C1x1 C C2x2/ with
coefficients in ƒ. We now let MC D ƒn and NC D ƒn as ƒ-modules. We will give
an action of the ƒ-algebra Rc on MC and NC and then we will give a map of Rc-modules
MC ˝Rc NC ! Ic . This construction will be equivariant for the Gƒ actions, where Gƒ is
the subgroup of GLn.ƒ/ � GLn.ƒ/ of .g1; g2/ such that Det.g1/Det.g2/ D 1. To recover a
construction over Z, we can just specialize by letting the ui;j;k D ai;j;k in our formulas.

3.1.1. Rc action. We will write elements of MC as row vectors with entries in ƒ and
elements of NC as column vectors with entries in ƒ. We can write

c D c0x
n
1 C c1x

n�1
1 x2 C � � � C cnx

n
2 :

We will invert c0 and denote all of the corresponding objects with a prime. For example, we
have ƒ0 D ƒc0 , the ring ƒ with c0 inverted. We also have R0c D Rc ˝ƒ ƒ

0, which is just
the result of inverting c0 in Rc . If we write c D C.x1; x2/, we know from Section 2 that
R0c D ƒ

0Œ� �=C.�; 1/. We have M 0
C
DMC ˝ƒ ƒ

0 and N 0
C
D NC ˝ƒ ƒ

0.
We define an action ofR0c onM 0

C
andN 0

C
(which we still view as row vectors and column

vectors respectively, just now with entries inƒ0) by having � act like�C2C
�1
1 (on the right) on

the row vectors and�C�11 C2 (on the left) on the column vectors. Since Det.C1x1CC2x2/ D c,
the matrices �C2C

�1
1 and �C�11 C2 satisfy their (common) characteristic polynomial C.t; 1/.

Thus we have given a well-defined action ofƒ0Œ� �=u.�; 1/ onM 0
C

and N 0
C

. This restricts to an
action of Rc onM 0

C
and N 0

C
, which we will now show descends to an action of Rc onMC and

NC .

Lemma 3.2. For 1 � k � n � 1, the entries of the matrix

(1) c0.�C�11 C2/
k
C c1.�C�11 C2/

k�1
C � � � C ck�1.�C�11 C2/;

which a priori are in Q.ui;j;k/ (the fraction field of ƒ), are actually in ƒ.

Proof. Over the field Q.ui;j;k/, since �C�11 C2 satisfies its characteristic polynomial,
we have

c0.�C�11 C2/
n
C c1.�C�11 C2/

n�1
C � � � C ck�1.�C�11 C2/

n�kC1

C ck.�C�11 C2/
n�k
C ckC1.�C�11 C2/

n�k�1
C � � � C cn.�C�11 C2/

0
D 0:

Since C1 and C2 are invertible over the field Q.ui;j;k/, the last equation is equivalent to

(2) c0.�C�11 C2/
k
C c1.�C�11 C2/

k�1
C � � � C ck�1.�C�11 C2/

D �
�
ckC1.�C�12 C1/

0
C � � � C cn.�C�12 C1/

n�k
�
:

If we view the matrix entries of both sides of equation (2) as reduced ratios of elements of the
UFD ƒ, the denominator of the left-hand side can only involve u1jk and the denominator of
the right-hand side can only involve u2jk . Thus, the matrices

c0.�C�11 C2/
k
C c1.�C�11 C2/

k�1
C � � � C ck�1.�C�11 C2/

must have all their entries in ƒ.
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Wood, Parametrization of ideal classes 179

By definition, the ƒ-algebra Rc has a basis as a ƒ-module given by 1; �1; : : : ; �n�1,
where �k D c0�

k C � � � C ck�1� 2 ƒ
0Œ� �=c.�; 1/. Thus the action of �k on N 0

C
is given by

a matrix whose coefficients are in ƒ, and so it restricts to an action on NC . An analogous
argument can be made for MC . This construction is clearly equivariant for the Gƒ actions.

3.1.2. Balancing map. Now we will construct a map ofRc-modulesMC˝RcNC!Ic .
The matrix C1 gives us an ƒ-module pairing on MC and NC into ƒ by ˛ ? ˇ D ˛C1ˇ for
˛ 2 MC and ˇ 2 NC . In other words, the matrix C1 acts on NC on the left and gives
n ƒ-module homomorphisms from NC into ƒ, one for each row of C1, and we map the
i th basis element mi of M to the ƒ-module homomorphism of NC into ƒ given by the
i th row of C1. This gives us a ƒ-module map from MC into Homƒ.NC ; ƒ/ and we have
Homƒ.NC ; ƒ/ Š HomRc .N; Jc/, by Proposition 2.5. We use the symbol ı to denote the re-
sulting pairing ofMC andNC into Jc . Thus, L�n�1.˛ ıˇ/ D ˛?ˇ. This pairing in Jc is clearly
equivariant for the Gƒ actions.

Now we will show that ı gives a map of Rc-modules MC ˝Rc NC ! Ic . To see this,
we extend our pairing ı to M 0

C
˝ƒ0 N

0
C
! J 0c , which is an R0c module map for the R0c action

on NC . In fact, we can show that ı factors through M 0
C
˝R0c N

0
C

, i.e. .�˛/ ı ˇ D ˛ ı .�ˇ/ for
˛ 2 M 0

C
and ˇ 2 N 0

C
. If we fix an ˛ and let ˇ vary over the elements of N 0

C
, the expressions

.�˛/ ı ˇ D ˛ ı .�ˇ/ give two homomorphisms from N 0
C

into J 0c and we can check if they are
the same by taking L�n�1. Now,

L�n�1..�˛/ ı ˇ/ D .�˛/ ? ˇ D ˛.�C2C
�1
1 /C1ˇ

and
L�n�1.˛ ı .�ˇ// D ˛C1.�C�11 C2/ˇ;

so we see that ı gives a map of R0c modules M 0
C
˝R0c N

0
C
! J 0c and thus our original ı is a

map of Rc-modules MC ˝Rc NC ! Jc .
We have an inclusion of Rc modules Ic � Jc (given in Section 2), and we will use

Lemma 2.3 to see that for all ˛ 2MC and ˇ 2 NC , the element ˛ ıˇ is in Ic . Fix an ˛ 2MC .
Then by Lemma 2.3, ˛ ıNC � Ic if and only if L�n�2.˛ ıNC / � ƒ. By Corollary 2.2 we see
that L�n�2.˛ ıNC / D L�n�1.˛ ı .�NC // D ˛ ? .�NC /. However, we have seen that the pairing
˛ ? .�ˇ/ is given by the matrix �C2, and thus L�n�2.˛ ıNC / � ƒ. Thus we have given a map
of Rc-modules MC ˝Rc NC ! Ic . Note that we have defined ı so that if mj and nk are the
chosen bases of MC and NC respectively,

(3) L�n�1.mj ı nk/ D u1jk and � L�n�2.mj ı nk/ D u2jk;

which makes MC and NC a based balanced pair of modules for c.

3.1.3. Back to Z. Now given A 2 Z2 ˝ Zn ˝ Zn, to find the action of Rf on M ,
we take the matrix by which �k acted on MC above, and substitute ai;j;k for the ui;j;k , and
similarly for N . Of course, the conditions for this to be a ring action will be satisfied since
they are satisfied formally. Also, we have a map of Z-modules M ˝Z N ! If given by
specializing the formulas from the last section, and we can see that this factors through a map
of Rf -modules M ˝Rf N ! If because the conditions for the factorization and for the map
to respect the Rf -module structure are satisfied formally. Let  .A/ D .M;N /.
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180 Wood, Parametrization of ideal classes

3.2. Proof of Theorem 3.1 when f0 ¤ 0. Now we prove Theorem 3.1 by showing that
� and  are inverse constructions. Suppose we haveA 2 Z2˝Zn˝Zn. Let  .A/ D .M;N /,
and let A0 D �.M;N/. By equation (3), we have that A0 D A. Now, suppose we have .M;N /,
a based balanced pair of modules for f , and �.M;N/ D A and  .A/ D .M 0; N 0/. We first
check that the action of Rf is the same on M and M 0 (and N and N 0), and then we will check
that the balancing maps agree. We assume that f0 ¤ 0. In this case, we may invert f0 as in
Section 3.1, and obtain ZŒ� �=F.�; 1/-modules Mf0 and Nf0 .

Proposition 3.3. If we write elements of Mf0 as row vectors and elements of Nf0 as
column vectors, then � acts by �A2A�11 on the right onMf0 and � acts by �A�11 A2 on the left
on Nf0 .

Proof. We denote the map M ˝Z N ! If by ı and define ˛ ? ˇ to be L�n�1.˛ ı ˇ/.
We fix a non-zero ˛ 2 Mf0 and suppose for the sake of contradiction that ˛ ? Nf0 D 0. Then
˛ ı Nf0 D 0 by Proposition 2.5, and thus ˛A1 D ˛A2 D 0. Thus ˛ is in the left kernel of
A1x1 C A2x2 for formal xi and so we obtain f D Det.A1x1 C A2x2/ D 0, a contradiction.
Therefore, if ˛ ı Nf0 D 0, then ˛ D 0. We have .�˛/ ? ˇ D L�n�2.˛ ı ˇ/ by Corollary 2.2
and L�n�2.˛ ı ˇ/ D ˛.�A2/ˇ D .˛.�A2A�11 //A1ˇ. We conclude that �˛ D ˛.�A2A�11 /. A
similar argument can be made for Nf0 .

This proposition shows that the pairs of modules .M;N / and .M 0; N 0/ have the sameRf
action. We know that the map HomRf .M˝Rf N; I /! HomZ.M˝ZN; V / is injective (from
Proposition 2.4), and thus since �.M;N/ D A and �.M 0; N 0/ D �. .A// D A, we see that
.M;N / and .M 0; N 0/ have the same balancing map. Therefore, we have proven Theorem 3.1
when f0 ¤ 0. We will finish the proof at the beginning of the next section, by reducing to this
case.

3.3. GL.V / invariance. Let V D Z2. Then GL2.Z/ D GL.V / acts on tensors
V ˝ Zn ˝ Zn and also on binary n-ic forms in Symn V . The determinant map is equiv-
ariant for these actions. Let g 2 GL.V /, so that g.A/ D A0 and g.f / D f 0. Then we have
isomorphisms Rf Š R0

f
, and If Š I 0

f
(e.g., by the geometric construction of [20, Section

2.3]). In fact, g also gives a map V ! V such that the following diagram commutes:

If
g

����! I 0
f??y ??y

V ����!
g

V:

We can also understand the isomorphisms given above more concretely. Consider
g D

�
a b
c d

�
2 GL2.Z/. If A D .A1; A2/, then

g.A/ D A0 D .A01; A
0
2/ D .aA1 C bA2; cA2 C dA2/:

If f D F.x; y/, then
g.f / D f 0 D F.ax C cy; bx C dy/:

Write f 0 D F 0.x; y/. If � is a root of F.x; 1/, then � 0 D d��c
�b�Ca

is a root of F 0.x; 1/. This
induces the map R0

f
Š Rf . Note that � D a� 0Cc

b� 0Cd
. We can view If and I 0

f
as fractional ideals
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Wood, Parametrization of ideal classes 181

in the same Q-algebra. They are given as fractional ideals of different Q-algebras,Qf andQ0
f

respectively, in Section 2, but the map � 0 7! d��c
�b�Ca

gives an isomorphism of those Q-algebras.
Then the map If Š I 0f is given by

If ! Qf Š Q
0
f

�.b� 0Cd/n�3

���������! Qf 0 � I 0f :

Note that 1
b� 0Cd

D
a�b�
ad�bc

.

Theorem 3.4. The construction � given in the statement of Theorem 3.1 is GL2.Z/-
equivariant under the identifications Rf Š R0

f
and If Š I 0

f
and the map g W V ! V given

above (which give a GL2.Z/ action on balanced pairs) and with the natural action on tensors
in Z2 ˝ Zn ˝ Zn.

Proof. This can easily be checked on a basis of GL2.Z/, or alternatively, it follows from
the geometric versions of the constructions in Section 7. For example, if � acts like �A2A�11
then � 0 D d��c

�b�Ca
will act like

.�dA2A
�1
1 � c/.bA2A

�1
1 C a/

�1
D �.A02/.A

0
1/
�1:

Viewing L�n�1, L�n�2 and L�0n�1, L�0n�2 as maps of If and I 0
f

, respectively, we have that
If Š I

0
f

induces

L�0n�1 7! a L�n�1 � b L�n�2 and � L�0n�2 7!
L�n�1 � d L�n�2;

which exactly gives that our construction of .A1; A2/ from L�n�1, �L�n�2 is equivariant. We can
check this on a generating set of GL2.Z/, though it also follows from [20, Proposition 3.3]. If
we write an element v of V as a column vector, then g acts on V by the standard left action. In
the map from If ! V , an element ˛ 2 If maps to24 L�0n�1.˛/

�L�0n�2.˛/

35 :
Thus, to check that the Rf action and balancing map on pairs M;N and M 0; N 0 agree,

we can check after a GL2.Z/ action on f so that f0 ¤ 0 (as long as f ¤ 0). This proves
Theorem 3.1.

4. Symmetric tensors

In the map²
based balanced pairs .M;N /
of modules for f

³
 !

®
A 2 Z2˝Zn˝Zn with Det.A/ D f

¯
:

of Theorem 3.1, it is easy to see from the construction that pairs in which M and N are the
same based module exactly correspond to A such that A1 and A2 are symmetric matrices. For
an Z-module V , we use Sym2 V to denote the submodule of V ˝V invariant under the natural
involution.
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182 Wood, Parametrization of ideal classes

Definition. A self balanced module for a non-zero form f is an Rf -module M , that
is a free rank n Z-module, and a map of Rf -modules M ˝Rf M ! If , such that when the
composition M ˝Z M ! M ˝Rf M ! If ! V is written as a pair of matrices A1 and A2
(using a single choice of basis for M ), we have Det.A1x1 C A2x2/ D f .

We easily conclude the following.

Theorem 4.1. For every non-zero binary n-ic form f with coefficients in Z, the map �
given in Theorem 3.1 induces a bijection²

isomorphism classes of self
balanced modules M for f

³
 !

²
GLn.Z/ classes of A 2 Z2 ˝ Sym2Zn

with Det.A/ D f

³
;

where Sym2Zn are symmetric n by n matrices, and the action of g 2 GLn.Z/ is by multipli-
cation on the left by g and right by gt .

5. Equivalent formulations of the balancing condition

In order to prove Theorems 1.1 and 1.3 in the Introduction, we will show that for primitive
forms, modules that appear in balanced pairs have unique balance partners, and that for non-
degenerate forms, modules that appear in balanced pairs can be realized as fractional ideals.
First, we will see an equivalent formulation of the definition of balanced.

We define a characteristic Rf -module M to be an Rf -module M which is a free rank
n Z-module such that for any element � 2 Rf the action of � on M viewed as a Z-module
has the same characteristic polynomial as the action of � on Rf (by multiplication) viewed as
a Z-module. Fractional ideals of Rf are characteristic modules of Rf .

Given two based Z-modules M and N with bases ˛i and ˇi and an isomorphism
M ˝Z Q Š N ˝Z Q, the index ŒN WM� is the absolute value of the determinant of the
matrix Q with entries in Q such thath

˛1 ˛2 � � � ˛n

i
D

h
ˇ1 ˇ2 � � � ˇn

i
�Q:

Now we will see that our condition of balanced is equivalent to M characteristic and an index
condition on the map M ˝Rf N ! If .

Proposition 5.1. Consider a non-zero binary form f over Z, and two Rf modules M
and N , with an Rf -module map M ˝Rf N ! If , such that M and N are both free rank
n Z-modules. Then this data gives a balanced pair of modules for f if and only if the map
M ! HomRf .N; If / is injective, and ŒHomRf .N; Jf / WM� D ŒJf W If � (with any inclusion
of If in Jf as Rf -modules), and either M or N is characteristic.

The equality of indexes does not depend on the choice of inclusion of If in Jf , because
any two inclusions differ by multiplication by a non-zero-divisor in Rf ˝Z Q. This multiplies
both ŒHomRf .N; Jf / WM� and ŒJf W If � by the absolute value of the norm of that element.

Proof. We can act by GL2.Z/ so as to assume f0 ¤ 0. Then, we use the inclusion of
If in Jf given in Section 2 and see that ŒJf W If � D f0.
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Wood, Parametrization of ideal classes 183

Lemma 5.2. Suppose we have twoRf modulesM andN , with a mapM˝Rf N ! If ,
such that M and N are both free rank n Z-modules, either M or N is characteristic, the map
M ! HomRf .N; If / is injective, and ŒHomRf .N; Jf / WM� D f0. Let A, as usual, denote the
mapM ˝ZN ! V . We write elements ofM as row vectors with entries in Z. Then � acts on
M 0 D Mf0 by �A2A�11 on the right, and � acts on N 0 D Nf0 by �A�11 A2 on the left. Also,
Det.A1x1 C A2x2/ D ˙f .

Proof. We define m? n to be L�n�1.m ı n/. By Proposition 2.5, we see that ? is faithful
for both M and N if and only if ı is. We see that ı is faithful on M since the index of M
in HomRf .N; Jf / is not zero. If there were an n 2 N such that M ı n D 0 for all n, then
inverting f0 we would find that Mf0 ? n D 0 but Mf0 D HomZf0

.Nf0 ;Zf0/, and we obtain a
contradiction since Nf0 is a free Zf0-module and thus there is some homomorphism from Nf0
to Zf0 which is non-zero on n. So, we fix an ˛ 2M and let ˇ vary in N . Then

˛� ? ˇ D L�n�2.˛ ı ˇ/ D �˛A2ˇ D �˛A2A
�1
1 A1ˇ D .�˛A2A

�1
1 / ? ˇ:

We similarly obtain the action of � on N .
We have that jDet.A1/j is the index of M in HomZ.N;Z/ or HomRf .N; Jf /, which is

the index of If in Jf , i.e. jf0j. SinceM is characteristic, we know that � and thus�A2A�11 acts
with characteristic polynomial F.t; 1/=f0 on Mf0 . It follows that Det.A1x1 C A2x2/ D ˙f .
We can argue similarly if N is characteristic.

Now, suppose that M;N are balanced. Then we know that M;N are constructed from
an element A 2 Z2 ˝ Zn ˝ Zn such that Det.A/ D f . We can see from the construction
of the action of � on Mf0 that M is characteristic. We have a map M ! HomRf .N; If /,
and composition with If � Jf gives M ! HomRf .N; Jf / D HomZ.N;Z/. The map
M ! HomZ.N;Z/ is given by A1, and thus ŒHomRf .N; J / WM� D jf0j, which implies
M � HomRf .N; Jf /, and thus the map M ! HomRf .N; If / is injective as well.

Corollary 5.3. For a non-zero form f , ifN is a finitely generated invertible module for
Rf , then there exists a unique balancing partner M for N .

Proof. IfN is a finitely generated invertible module, thenN can be realized as an invert-
ible fractional ideal of Rf (see [4, II.5.7, Proposition 12]). Then HomRf .N; Jf / D N�1Jf
and HomRf .N; If / D N�1If . In that case, ŒHomRf .N; Jf / W HomRf .N; If /� D ŒJf W If �

and for M to be balanced with N it is necessary and sufficient that M D HomRf .N; If /.

5.1. Non-degenerate forms. When f is a non-degenerate binary n-ic form over Z, we
have the following.

Proposition 5.4. If f is a non-degenerate binary n-ic form over Z (i.e. disc.f / ¤ 0),
then all characteristic modules can be realized as fractional ideals. This gives a bijection
between isomorphism classes of characteristic Rf -modules and fractional ideal classes of Rf .

Proof. We assume f0 ¤ 0 by an action of GL2.Z/. Then, we see that we can put the
action of � on a characteristic module M in rational normal form over Q, and since it acts
with the same separable characteristic polynomial as the action of � on Rf ˝Z Q, in rational
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184 Wood, Parametrization of ideal classes

normal form these actions must be the same. Thus, we can view M as a Z-submodule of
Rf ˝Z Q, or a fractional ideal. Clearly two fractional ideals in the same class give isomorphic
modules. Moreover, a module homomorphism between two fractional ideals I1 ! I2 sends
q 2 Q\ I1 to some element k 2 I2, and since the map is an Rf -module map, we see that it is
multiplication by k=q.

For a fractional ideal M , let jM j denote the norm of M , given by the index ŒRf WM�,
which can be defined even ifM is not a submodule ofRf , since they sit in a common Q-vector
space. Then, we can reformulate the balancing condition in terms of norms. This is the version
of balanced used in [1, 2].

Theorem 5.5. For non-degenerate f , the map that takes a pair .M;N / of Rf -ideals to
the same pair of Rf -modules with the map

M ˝Rf N !MN ! If

gives a bijection8<:
classes of .M;N / where M and
N are fractional Rf -ideals,
MN � If and jM jjN j D jIf j

9=; !
²

isomorphism classes of balanced
pairs .M;N / of modules for f

³
;

where .M;N / and .M1; N1/ are in the same class if M1 D �M and N1 D ��1N for some
invertible element � 2 Rf ˝Z Q.

Proof. All modules that appear in balancing pairs are characteristic by Proposition 5.1,
and thus can be realized as fractional ideals. For a balanced pairM;N of modules, we can take
any fractional ideal representative ofM . For now we choose any fractional ideal representative
of N , but we will modify this choice later so that the map M ˝ N ! If is just given by
M ˝ N ! MN � Rf ˝Z Q with image landing in Rf . The map M ˝ N ! If factors
through MN .

We now argue that � WMN ! If is injective. As usual, we assume f0 ¤ 0 by a GL2.Z/
action if necessary. We can detect the injectivity after tensoring with Q because Q is a flat Z-
module. Over Q we have that MN is at least rank n because it contains N and thus is rank n.
We can take �k as a basis of MN , and we see where they map to in If D Jf D Hom.R;Q/.
Then �.�k/ is the map in Hom.R;Q/ that sends �i to L�n�1.�i�k/. By Proposition 2.1, we have

L�n�1.�i�
k/ D

8̂<̂
:
1 if k C i D n � 1 and i > 0,
1=f0 if k D n � 1 and i D 0,
0 otherwise:

Thus, we see that �.MN/ D Hom.R;Q/, when working over Q, and therefore over Z we
have that MN ! If is injective.

A map MN ! If is just multiplication by some element of Rf ˝Z Q. The element is
not a zero-divisor since MN ! If is injective, and thus it is invertible in Rf ˝Z Q. We can
choose that element to be 1 by taking a different representative for N in its ideal class. If we
had chosen a different representative for M , this would change the class of .M;N /.
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Wood, Parametrization of ideal classes 185

Suppose we have a balanced pair .M;N / realized as ideal classes with MN � I . We
will show that the index condition for balanced is equivalent to the norm condition in the above
theorem.

Proposition 5.6. Let f be a non-zero form. If M and N are fractional ideals of Rf
with MN � If , then ŒHomRf .N; Jf / WM� D ŒJf W If � if and only if jM jjN j D jIf j.

Proof. We can act by GL2.Z/ so as to assume f0 ¤ 0. We claim that jM jjN j is the
product of jJf j with the determinant of the pairing �n�1.mn/. When M D Rf and N D Jf ,
we see from Proposition 2.1 that the determinant of the pairing is 1, and thus the claim is true.
If we change Q-bases from Rf ; Jf to M;N , we change the determinant of the pairing by
N.M/N.N/=N.Jf / and thus the determinant of the pairing �n�1.mn/ is jM jjN j=jJf j.

The index of M in HomRf .N; Jf / is just the index of M in HomZ.N;Z/, which is
giving by the pairing �n�1.mn/. Thus ŒHomRf .N; Jf / WM� D jM jjN j=jJf j. We see that
ŒHomRf .N; Jf / WM� D ŒJf W If � if and only if jM jjN j D jIf j.

Theorem 5.5 now follows from the above proposition.

For symmetric tensors, we can make a similar argument to prove the following.

Theorem 5.7. For non-degeneratef , the map that takes a pair .M; k/ to theRf -module
M and the map

M ˝Rf M
k�1

��! k�1M 2
! If

give a bijection8̂̂<̂
:̂

classes of .M; k/ where M is a
fractional Rf -ideal, k is an invertible
element of Rf ˝Z Q, and M 2k � If
and jM j2j.k/j D jIf j

9>>=>>; !
²

isomorphism classes of self
balanced modules M for˙f

³
;

where .M; k/ and .M1; k1/ are in the same class if M1 D �M and k1 D ��2k for some
invertible element � 2 Rf ˝Z Q.

5.2. Primitive forms. If f is primitive, then If and Jf are invertible Rf modules
[20, Proposition 2.1]. For general non-zero forms, we saw in Corollary 5.3 that invertible
ideals have unique balancing partners. For primitive f we have the following.

Proposition 5.8. If f is a primitive non-degenerate form, and N is a characteristic
Rf -module, then HomRf .N; If / is the unique balancing partner for N (i.e. an Rf -moduleM
and map M ˝Rf N ! If that gives a balanced pair).

Proof. In this case, we see that ŒHomRf .N; Jf / W HomRf .N; If /� D ŒJf W If �. This
is because HomRf .N; Jf / and HomRf .N; If / are naturally realized as fractional Rf ideals.
Then we see that

HomRf .N; Jf /J
�1
f If � HomRf .N; If /; HomRf .N; If /I

�1
f Jf � HomRf .N; Jf /:
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186 Wood, Parametrization of ideal classes

Thus HomRf .N; Jf / D HomRf .N; If /I
�1
f
Jf , and ŒHomRf .N; Jf / W HomRf .N; If /� is the

norm of Jf I�1f , which is ŒJf W If �. Then, for M to be balanced with N it is necessary and
sufficient that M D HomRf .N; If /.

Theorem 1.1 now follows from Propositions 5.8 and 5.4 and Theorem 3.1. We can also
apply Proposition 5.8 to symmetric tensors.

Theorem 5.9. For non-degenerate primitive f , the map that takes a pair .M; k/ to the
Rf -module M and the map

M ˝Rf M
k�1

��! k�1M 2
! If

give a bijection8̂̂<̂
:̂

classes of .M; k/ where M is a
fractional Rf -ideal, k is an invertible
element of Rf ˝Z Q, and
M D .If k WM/

9>>=>>; !
²

isomorphism classes of self
balanced modules M for˙f

³
;

where .M; k/ and .M1; k1/ are in the same class if M1 D �M and k1 D �2k for some
invertible element � 2 Rf ˝Z Q, and .If k WM/ is the fractional ideal of elements x such that
xM � If k.

6. Main theorem over an arbitrary base

The proof of Theorem 3.1 works over an arbitrary base with some modifications. Let S
be a scheme. For a sheaf U on S , we use f 2 U to denote that f is a global section of U .
We consider binary n-ic forms with coefficients in OS , i.e. f0xn1 C f1x

n�1
1 x2 C � � � C fnx

n
2

with fi 2 OS . We say such a form is a zero-divisor if it is a zero-divisor in the OS -algebra
OS Œx; y�, which means that for some open U of S , that f is a zero-divisor in OS Œx; y�.U/. We
can construct an OS -module Rf and an Rf -module If by using the construction of Section 2
for the universal form over ZŒf0; : : : ; fn� and then pulling back to S with the map given by our
desired form. From this construction, we inherit a map of OS -modules ı W If ! V D O2S .

Definition. A based balanced pair of modules for f is a pair of Rf -modules M and
N , a choice of basis M Š OnS and N Š OnS , and a map of Rf -modules M ˝Rf N ! If ,
such that when the composition M ˝OS N ! M ˝Rf N ! If ! V is written as a pair of
matrices A1 and A2, we have Det.A1x1CA2x2/ D f . A balanced free pair of modules for f
is a pair of Rf -modules M and N , each a free rank n OS -module, and a map of Rf -modules
M ˝Rf N ! If , such that when the composition M ˝OS N ! M ˝Rf N ! If ! V is
written as a pair of matrices A1 and A2, we have Det.A/ D f u, where u is a unit in OS . Given
a balanced pair of modules for a non-zero-divisor form f , there is a unique choice of generator
� of ^nM ˝ ^nN such that Det.A1x1 C A2x2/ D f when constructing A with bases of M
and N that give � 2 ^nM ˝^nN , we obtain Det.A/ D f .
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Wood, Parametrization of ideal classes 187

Theorem 6.1. For every non-zero-divisor binary n-ic form f with coefficients in OS ,
the map that sends a balanced pair .M;N / to the tensor �.M;N/ 2 O2S˝OnS˝OnS associated
to the map

M ˝OS N !M ˝Rf N ! If!V D O2S

gives a bijection²
based balanced pairs .M;N /
of modules for f

³
 !

²
A 2 O2S ˝OnS ˝OnS
with Det.A/ D f

³
:

We define G to be the subgroup of GLn.OS / � GLn.OS / of elements .g1; g2/ such that
Det.g1/Det.g2/ D 1. Then, G acts equivariantly in the above bijection (acting of the bases of
M and N ), and we obtain a bijection²

isomorphism classes of balanced
free pairs .M;N / of modules for f

³
 !

²
G-classes of A 2 O2S ˝OnS ˝OnS
with Det.A/ D f

³
:

Proof. To construct a based balanced pair of modules from A 2 O2S˝OnS˝OnS , we can
simply pullback the construction from the universal tensor (and we call this construction  ).
Again, the balancing map composed with If ! V gives the construction � of an element of
O2S ˝OnS ˝OnS from a based balanced pair. Now, suppose we have .M;N /, a based balanced
pair of modules for f , and �.M;N/ D A and  .A/ D .M 0; N 0/. We need to check that the
action of Rf is the same on M and M 0 (and N and N 0), and that the balancing maps agree.
It suffices to check this everywhere locally over S , and so we can assume that S is affine, and
S D SpecB . Then, if suffices to check in a larger ring, so we let E be the ring obtained from
inverting all the non-zero-divisors in BŒx; y�.

We have thatBŒx; y� � E. We see that x is not a zero-divisor inBŒx; y�, because xg D 0
implies that the leading coefficient of g is 0. We consider G.t1; t2/ D F.xt1; yt1C 1

x
t2/. This

is a binary n-ic form in variables ti with coefficients in E. Over E we see it is a GL2.E/
transformation of f . We have that G.1; 0/ D F.x; y/, and thus f is the leading coefficient
of the new form. However, f has an inverse in E and thus is not a zero-divisor. By the
GL2 invariance of our constructions, we can reduce to checking in the case where f0 is not a
zero-divisor. In this case we can prove Proposition 3.3 just as in the case of Z.

In fact, we can consider a completely general binary n-ic form over S given by a lo-
cally free rank 2 OS -module V , a locally free rank 1 OS -module L, and a global section
f 2 Symn V ˝ L. We say a form f is a zero-divisor if it is a zero-divisor on any open U

of S on which V and L are free (and in this case the notion of zero-divisor is defined above).
When f is not a zero-divisor, we have an associated OS -algebra Rf WD ��.OTf /, where Tf
is the subscheme of P .V / cut out by f , and � W Tf ! S . We have line bundles OTf .k/ on Tf
pulled back from O.k/ on P .V /, and we define

If WD ��.OTf .n � 3//˝ .^
2V /˝2 ˝ L;

which has an action of Rf through the first factor. From this construction, we have a natural
map ı W If ! V � ˝ ^2V Š V as in [20, Equations (3.8), (3.9)]. Locally on S where V and
L are free, the constructions of Rf and If pullback from the constructions of Rf and If for
the universal form over ZŒf0; : : : ; fn� as given in Section 2 and used at the start of this section.
See [20, Section 3] for more details of these constructions.
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188 Wood, Parametrization of ideal classes

We now consider A 2 V ˝U ˝W , where U andW are locally free rank n OS -modules
with an orientation isomorphism^nU˝^nW Š L. An isomorphism betweenA 2 V˝U˝W
and A0 2 V ˝U 0˝W 0 is given by isomorphisms U Š U 0 andW Š W 0 that take A to A0 and
respect the orientations. We have the determinant

Det.A/ 2 Symn V ˝^nU ˝^nV Š Symn V ˝ L

(see [21, Section 8.2] for the details of this kind of construction). Given a scheme S and a
locally free OS -module U , we let U � denote the OS -module HomOS .U;OS /, even if U is
also a module for another sheaf of algebras.

Definition. A balanced pair of modules for a non-zero-divisor f is a pair of Rf -
modules M and N , each a locally free rank n OS -module such that ^nM ˝ ^nN Š L�,
and additionally a map of Rf -modules M ˝Rf N ! If , such that when the composition
M ˝OS N !M ˝Rf N ! If ! V is written as A 2M � ˝N � ˝ V the image of Det.A/
in Symn V ˝ L (via an isomorphism ^nM � ˝ ^nN � Š L) is f u, where u is a unit in OS .
When f is a non-zero-divisor, given that ^nM ˝ ^nN Š L�, there is a unique choice of
isomorphism so that the image of Det.A/ is f .

Theorem 6.2. For every non-zero-divisor binary n-ic form f 2 Symn V ˝ L, the map
that sends .M;N / to the tensor in A 2M � ˝N � ˝ V associated to the map

M ˝OS N !M ˝Rf N ! If ! V

gives a bijection8<:
isomorphism classes of
balanced pairs .M;N / of
modules for f

9=; !
8̂<̂
:

isomorphism classes of A 2 V ˝ U ˝W ,
where U and W are locally free rank n
OS -modules with an isomorphism
^nU ˝^nW Š L such that Det.A/ D f

9>=>; :
Proof. FromA, we can constructRf modules fromU � andW � by giving theRf action

locally where U and W are free and we can choose bases, and then seeing that it is invariant
under change of basis by elements of GLn �GLn that preserve the orientation. Similarly, we
can construct the balancing map. Again, the construction of A from a balanced pair of modules
just combines the balancing map with If ! V . To see that these constructions are inverse, it
suffices to check locally on S , where we can assume V , U , and W are free.

As when working over Z, we can also get a version on the theorem for symmetric tensors.
Recall, that for an OS -module V , we use Sym2 V to denote the submodule of V ˝V invariant
under the natural involution.

Definition. A self balanced module for a non-zero-divisor f is an Rf -module M ,
that is a locally free rank n OS -module and such that .^nM/˝2 is isomorphic to L�, and
additionally a map of Rf -modules M ˝Rf M ! If , such that when the composition
M˝OSM !M˝Rf N ! If ! V is written asA 2M �˝M �˝V we have Det.A/ D f u,
where u is a unit in OS .
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Theorem 6.3. For every non-zero-divisor binary n-ic form f 2 Symn V ˝ L, the map
that sends M to the tensor in A 2M � ˝M � ˝ V associated to the map

M ˝OS M !M ˝Rf M ! If ! V

gives a bijection

²
isomorphism classes of self
balanced modules M for f

³
 !

8̂<̂
:

isomorphism classes of A 2 V ˝ Sym2 U ,
where U is a locally free rank n OS -module
with an orientation isomorphism
.^nU/˝2 Š L, and such that Det.A/ D f

9>=>; :

7. Geometric construction of modules from the universal tensor

Just as we have given both concrete and geometric constructions of Rf , If , and Jf ,
in this section we will give geometric constructions of the Rf -modules M and N that were
constructed explicitly above for the universal tensor.

Notation. Let B be a ring. When we have a matrixM 2 Bm˝Bn, we can multiplyM
by vectors in two ways. We can multiplyM by a lengthm vector on the left, and we can multi-
plyM by a length n column vector on the right. When we have an elementA 2 B`˝Bm˝Bn,
we can multiply it by vectors in three different ways, and we realize that the “on the left” and
“on the right” descriptions do not generalize appropriately for three dimensional tensors. We
will need a new language. An element A 2 B` ˝ Bm ˝ Bn is comprised of entries aijk , with
1 � i � `, 1 � j � m, and 1 � k � n. We say that aijk is the entry in the i th aisle, j th
row, and kth column. Note that aisle, row, and column denote two dimensional submatrices,
i.e. codimension one slices of A. For A 2 B2 ˝ Bn ˝ Bn, the n by n matrix we called Ai
above is the i th aisle of A.

If we have a sequence x1; : : : ; x`, we can form it into a vector and combine it with
A 2 B` ˝ Bm ˝ Bn to get the m by n matrix we call A.x; �; �/ with j; k entry

P
i aijkxi .

The dots indicate that we have not also multiplied by vectors in the other situations. For ex-
ample, for A 2 B2 ˝ Bn ˝ Bn, the matrix A.x; �; �/ is what we have previously referred to
as A1x1 C A2x2. Similarly, if we have a sequence y1; : : : ; ym, we can form a 2 � n array
A.�; y; �/ with i; k entry

P
j aijkyj . We could call this array a matrix, but it is more convenient

to continue to refer to its aisles and columns. If we have a sequence z1; : : : ; zn, we can form a
2 �m array A.�; �; z/ with i; j entry (in the i th aisle and j th row)

P
` aijkzk . In fact, we will

always use an x variable in the first place, y in the second place, and a z in the third place, and
thus we will use the short hand A.x/ for A.x; �; �/ and A.y/ for A.�; y; �/. We may refer to the
j; k entry of A.x/ by A.x/j;k and the i; k entry of A.y/ by A.y/i;k . We can also multiply A
by more than one vector at a time. For example, A.x; y; �/ (denoted by A.x; y/ for short) is a
length n vector with `th entry

P
i

P
j aijkxiyj .

Given a 2-dimensional array A with entries in some ring, we can form the ideal M.A/ of
the determinants of its maximal minors. For example, for A 2 B2 ˝ Bn ˝ Bn, we have that
M.A.x// D .Det.A1x1 C A2x2//. We have previously called the subscheme of P1B defined
by this ideal TDet.A1x1CA2x2/. Now, in order to emphasize certain symmetries, we say that
M.A.x// defines a subscheme TA.x/ � P1B . Analogously, we have a subscheme TA.y/ � Pn�1B

cut out by the determinants of 2 � 2 minors of A.y/.
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190 Wood, Parametrization of ideal classes

The scheme TA.y/ has line bundles OTA.y/.k/ pulled back from O.k/ on Pn�1B . Heuris-
tically, we would like to say that RDet.A/ is the B-algebra of global functions of TA.y/ and then
we would have an RDet.A/-module �.OTA.y/.1//. However, we have already defined RDet.A/
as the B-algebra of global functions of TA.x/ which is not always isomorphic to �.OTA.y//.
Furthermore, �.OTA.y// is not always a free rank n B-algebra, even when Det.A/ is a non-
zero-divisor. We can, however, use this geometric construction of modules for sufficiently gen-
eral 2�n�n tensors, including for the universal tensor of these dimensions. As in Section 3.1,
we work over the ringƒ D ZŒuijk� and with the universal tensor C inƒ2˝ƒƒn˝ƒƒn with
i; j; k entry ui;j;k . We have a binary n-ic form c D Det.C.x// with coefficients in ƒ.

Theorem 7.1. The ƒ-algebra �.OTC.y/
/ is isomorphic to Rc .

Proof. Recall that Rc D �.OTC.x/
/ by definition. We would like to show that we have

an isomorphism of ƒ-algebras �.OTC.y/
/ Š �.OTC.x/

/. We might expect that this would
follow because we had an isomorphism of ƒ-schemes TC.y/ Š TC.x/, but that is not the case.
However, restricted to a large open subscheme S 0 (defined below) of Specƒ, we do get such
an isomorphism. Let T 0

C.y/
D TC.y/ ˝S S

0, which is an open subscheme of TC.y/. Similarly,
let T 0

C.x/
D TC.x/ ˝S S

0, which is an open subscheme of TC.x/. In Lemma 7.6, we give an
explicit isomorphism of S 0-schemes T 0

C.y/
Š T 0

C.x/
.

We will now define a subscheme Z of S D Specƒ to correspond to tensors that are very
degenerate. Thus we can think of the tensor C ˝S S

0 over S 0 as the universal “not too degen-
erate” tensor. The .n � 1/-minors of C.x/ form a matrix W.¹xn�11 ; xn�21 x2; : : : ; x

n�1
2 º; �; �/.

The i; j; k entry of W 2 ƒn ˝ ƒn ˝ ƒn is .�1/jCk times the xn�i1 xi�12 coefficient of the
determinant of the submatrix of C.x/ obtained by deleting the j th row and kth column. We
can form Det.W.y//, a degree n polynomial in the yi , and form the ideal w of ƒ of its coeffi-
cients, with di the coefficient of yni . If we do the analogous construction, starting with C.y/,
we see that the next-to-maximal minors of C.y/ are the entries themselves. Then we can form
Det.C.x// D c, and form the ideal .c0; : : : ; cn/ of its coefficients. Let Z be the subscheme of
S defined by the ideal .c0; : : : ; cn/w. Let S 0 be the open subscheme S nZ of S .

We will prove the theorem with the following lemmas.

Lemma 7.2. The codimension of Z in S is at least 2.

Proof. Suppose for the sake of contradiction that Z is codimension 1. Then either the
subscheme of S defined by .c0; : : : ; cn/ or the subscheme defined by w must be codimension 1
and thus given by a principal ideal. However, we note that c0 and cn are expressions in disjoint
sets of the uijk . In fact, c0 only involves the u1jk and cn the u2jk . Thus c0 and cn have no
nontrivial divisor in the UFDƒ, and the subscheme cut out by .c0; : : : ; cn/ cannot be codimen-
sion 1. Similarly, dj does not involve any u��j . Thus a common divisor of d1; : : : ; dn must be
trivial, and so the subscheme cut out by .d1; : : : ; dn/ cannot be codimension 1. We conclude
the subscheme cut out by w, which is contained in the subscheme cut out by .d1; : : : ; dn/,
cannot be codimension 1.

Lemma 7.3. We have that the restriction map �.OS / ! �.OS 0/ is an isomorphism
and thus �.OS 0/ is naturally isomorphic to ƒ.
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Proof. This follows because Z is codimension at least 2 (e.g., by [13, Chapter 4, Theo-
rem 1.14]).

From this lemma we conclude that �.OT 0
C.x/

/ and �.OT 0
C.y/

/ are ƒ-algebras.

Lemma 7.4. The restriction map �.OTC.x/
/ ! �.OT 0

C.x/
/ is an isomorphism of ƒ-

algebras.

Proof. Let � W TC.x/ ! S . We will see in Theorem 8.4 that the OS -module ��.OTC.x/
/

is locally free on S . We will show that ��.OTC.x/
/ is isomorphic to the pushforward of

��.OT 0
C.x/

/ to S , and then taking global sections will prove the lemma. We cover S with
opens Ui that trivialize ��.OTC.x/

/. Since S is irreducible, Ui is the same dimension as S .
On each Ui , we then have that Ui \Z is at least codimension 2 in Ui . Thus, on Ui , the sheaf
��.OTC.x/

/ is isomorphic to O˚nS , for which the restriction map to S 0 is an isomorphism by
Lemma 7.3. This means that restricted to Ui , we have that ��.OTC.x/

/ is isomorphic to the
pushforward of ��.OT 0

C.x/
/ to S .

Lemma 7.5. The restriction map �.OTC.y/
/ ! �.OT 0

C.y/
/ is an isomorphism of ƒ-

algebras.

Proof. The sheaf ��.OTC.y/
/ is locally free on S by Theorem 8.4. We then use the same

argument as in Lemma 7.4.

Lemma 7.6. We have an isomorphism of S 0-schemes T 0
C.y/
Š T 0

C.x/
.

Proof. First we will give the main idea of the proof. The idea is that we can define a
correspondence between points of T 0

C.y/
and T 0

C.x/
by C.x; y/ D 0. For points in T 0

C.x/
, we

have Det.C.x// D 0, and thus there should be some values of yj such that C.x; y/ D 0. For
these yj , we have that C.y/ sends a non-trivial vector x to 0, and thus is rank 1. Conversely,
for points in T 0

C.y/
, we have that C.y/ is rank 1, and thus should send a non-trivial vector x to

zero, and C.x; y/ D 0 implies that C.x/ has determinant zero. The first difficultly in making
this idea rigorous is that the correspondence is only a bijection when C is sufficiently non-
degenerate, which is why we have had to restrict to the base S 0. Over S 0, we could prove that
the tensors are sufficiently non-degenerate to give a bijection of field valued points of T 0

C.y/

and T 0
C.x/

. Below, we must work a bit harder to prove an isomorphism of schemes.
First we give a map T 0

C.y/
! T 0

C.x/
. We will give maps from open sets of T 0

C.y/
to P1S 0 .

We will then show that the open sets cover T 0
C.y/

. We will then show that these maps agree
on overlaps, and finally we will show that the image lands in T 0

C.x/
. Given an 1 � i � n,

we map T 0
C.y/

to P1S 0 via x1 D �
P
j u2jkyj and x2 D

P
j u1jkyj , which we can do on the

open set Ek � T 0C.y/ defined as the complement of the ideal .
P
j u1jkyj ;

P
j u2jkyj /. Note

that
P
j uijkyj is the i; k entry of C.y/, or of the next-to-maximal minor of C.y/. Suppose

there was a point of T 0
C.y/

not in any Ek . If we write y for the vector of the yj , then at this
point we have C.y/ D 0, i.e. C1.y/ D 0 and C2.y/ D 0, and thus for formal xi , we have
C.x; y/ D 0, and thus Det.C.x// D 0 at this point, which contradicts our choice of S 0 to be in
the complement of .c0; : : : ; cn/.
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192 Wood, Parametrization of ideal classes

The fact that these maps agree on the intersection of Ek and E` is exactly given by the
fact that on T 0

C.y/
the 2 � 2 minor of C.y/ including rows k and ` is 0. To see that the image

of our map lands in T 0
C.x/

, we check on open Pi of T 0
C.y/

, where yi is non-zero. We have that
C.x/ on E` has j; k entry

�u1;j;k
X
a

a2a`ya C u2;j;k
X
a

a1a`ya;

and thus C.x; y/ has kth entryX
j

yj

�
�u1;j;k

X
a

u2a`ya C u2;j;k
X
a

u1a`ya

�
D

X
j

�u1;j;kyj
X
a

u2a`ya C
X
j

u2;j;kyj
X
a

u1a`ya

D �C.y/1;kC.y/2;` C C.y/2;kC.y/1;`;

which is zero by the definition of T 0
C.y/

. On Pi we form the column vector y=yi of regular
functions, with j th entry yj =yi , and we see that C.x; y=yi / D 0. Thus we can write the i th
row of C.x/ as a linear combination of the other rows, and conclude that Det.C.x// D 0.

Next, we will give a map T 0
C.x/

! T 0
C.y/

, which should be seen in analogy to the map
T 0

C.y/
! T 0

C.x/
. We will give maps from open sets of T 0

C.x/
to Pn�1S 0 , and show that the open

sets cover T 0
C.y/

. We will then show that these maps agree on overlaps, and finally we will show
that the image lands in T 0

C.x/
. Given an 1 � i � n, we map T 0

C.x/
to Pn�1S 0 by letting yj equal

the j; k minor of C.x/, that is, yj equals .�1/jCk times the determinant of the submatrix of
C.x/ obtained by deleting the j th row and kth column. We have defined the yj to be a column
of minors of C.x/. This is a well-defined map to Pn�1 on the open set Fk � T 0

C.x/
defined

as the complement of the ideal of .n � 1/-minors of C.x/ for the kth column. Suppose there
was a point of T 0

C.x/
not in any Fk , then at this point we have all minors of C.x/ are 0. This

means that W.¹xn�11 ; xn�21 x2; : : : ; x
n�1
2 º; �; �/ D 0. Thus for formal y, we have W.�; y; �/ has

a non-trivial kernel and thus Det.W.y// D 0, which contradicts our choice of S 0 to be in the
complement of w.

The fact that these maps agree on the intersection of Fk and F` is exactly given by the
fact that the 2 � 2 minors of the classical adjoint matrix are divisible by the determinant of
the original matrix. To see that the image of our map lands in T 0

C.y/
, we check on opens Pi

of T 0
C.x/

, where xi is non-zero. On Pi we form the column vector x=xi of regular functions,
with j th entry xj =xi . Computing C.x; y/` with the yi we have defined on Fk is the same as
computing the determinant of C.x/ with the kth column replaced by the `th column. Whether
or not k D `, since Det.C.x// D 0, we obtain C.x; y/` D 0. Thus, C.x=xi ; y/ D 0 and we
can write the i th aisle of C.y/ as multiple of the other aisle. We conclude that C.y/ has all 2
by 2 minors 0.

Now we need to check that the maps we have just given are inverses to one another.
We first check on the inverse image of Ek in F`. Here we start with xi , we define new yj ,
and then from the yj we define new x0i . We will compute �x01x2 C x

0
2x1. Since we have

x01 D �
P
j u2jkyj and x02 D

P
j u1jkyj , we have that

�x01x2 C x
0
2x1 D

X
j

.u1jkx1 C u2jkx2/yj :
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Wood, Parametrization of ideal classes 193

We note that u1jkx1 C u2jkx2 D C.x/j;k , and that yj is defined to be the j; ` minor of C.x/.
Thus �x01x2 C x

0
2x1 is the determinant of the matrix obtained from C.x/ by replacing the

`th column by the kth column, and is zero in any case on TC.x/. This shows that our maps
compose to the identity on the inverse image of Ek in F` for all k and `, and thus on TC.x/.

We now check on the inverse image of Fk in E`. Here we start with yj , we define new
xi , and then from the xi we define new y0j . At first, we will use formal yj (i.e. not assuming the
relation in TC.y/). Then we will compute y0jym�y

0
myj is in the ideal of relations M.C.y// that

cut out TC.y/. We can form an n�nmatrixM with a; b entry .�1/aC.x/a;bya if a D j;m and
C.x/a;b otherwise. Note that .�1/my0jym is the j; k minor of M and .�1/jy0jym is the m; k
minor of M . For any matrix N the difference of .�1/m times the j; k minor of N and .�1/j

times them; k minor ofN is in the ideal generated by maximal minors of NN , which is obtained
from N by deleting rows j and m and adding a row that is the j th row of N plus .�1/jCm

times the mth row of N . The maximal minors of NM are not changed if we add multiples of the
original (non-deleted) rows of M to the new row of NM . We add .�1/jya times the original
ath row of M to the new row of NM to obtain NM 0. The maximal minors of NM 0 certainly lie
in the ideal generated by the elements of its “new” row, and we claim these elements are in
M.C.y//. In the bth column, the element in the new row of NM 0 isX

i;c

uicbxiyc.�1/
j
D

X
i;c;a

.�1/iCjuicbu.3�i/a`yayc D
X
i

.�1/iCjC.y/i;bC.y/3�i;`;

which is the b; ` minor of C.y/ and thus in M.C.y//. This shows that our maps compose to
the identity on TC.x/.

Thus it follows that we have an isomorphism of ƒ-algebras

Rc D �.OTC.x/
/ Š �.OTC.y/

/;

which completes the proof of Theorem 7.1.

From Theorem 7.1, we have an Rc-module structure on �.OTC.y/
.1//. We now see that

it is related to the module MC we constructed in Section 3.1.1 from the universal tensor.

Theorem 7.7. We have an isomorphism of Rc-modules

�.OTC.y/
.1// Š Homƒ.MC ; ƒ/;

where MC is as in the construction  of two Rc modules MC and NC given in Section 3.1.1.

Proof. We will see in Theorem 8.4 that �.OTC.y/
.1// is a free ƒ-module with basis

y1; : : : ; yn. Thus, it just suffices to check that the �i act on the yj in a way corresponding to
their action on MC . We know that �i acts on the yj by a matrix of elements of ƒ, and thus
it suffices to determine this action over the generic point of Specƒ, i.e. the fraction field of
ƒ. We have that C.x; y/ D 0 and thus yC1x1 C yC2x2 D 0, where y is a row vector of the
yi . Thus, where x2 is invertible, x1

x2
acts like �C2C

�1
1 on the right on the row vector y, and

where x1 is invertible, x2
x1

acts like �C1C
�1
2 on the right on the row vector y. Thus x1

x2
acts like

�C2C
�1
1 on the left on elements of �.OTC.y/

.1// written as row vectors whose entries are the
coefficients of the yi in the element. We have that � acts in elements of MC by .�C2C

�1
1 /t
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194 Wood, Parametrization of ideal classes

on the left. Since in the correspondence between the algebraic and geometric construction on
Rc we have that � corresponds to x1

x2
, we see that the �i act on �.OTC.y/

.1// as they act on
Homƒ.MC ; ƒ/.

We can of course obtain a completely analogous geometric construction of the module
NC as Homƒ.�.OTC.z/

.1//;ƒ/.

8. Geometric construction over an arbitrary base scheme

Notation. Given a scheme S and a locally free OS -module U , we let U � denote the
OS -module HomOS .U;OS /, even if U is also a module for another sheaf of algebras. Let
P .U / D Proj Sym� U .

Now we replace Specƒ by an arbitrary scheme S , and we consider V;U;W , locally free
OS -modules of ranks 2, n, and n, respectively. Let p 2 V ˝ U ˝W denote a global section
of V ˝ U ˝ W . Let f D Det.p/ 2 Symn V ˝ ^nU ˝ ^nW . In Section 6 we constructed
a balanced pair M;N of modules for f from p. In this section, we will give a geometric
construction of those modules, or rather a geometric construction of M � and N � as we have
done in the case of the universal form in Section 7. This construction of the modules M � and
N � from p 2 V ˝ U ˝W will work for all p and be functorial in S , i.e. will commute with
base change in S .

The idea is to replace the subschemes of P .V /, P .U /, and P .W / cut out by the maxi-
mal minors of our tensor (called Tp.V /; Tp.U /; Tp.W /, respectively, in the Introduction) with
complexes of sheaves. We will then replace �� with the hypercohomology functors H 0R��.
This has already been done in the construction of Rf and the module If in [20, Section 3]. We
face some additional challenges in this paper for Tp.U / and Tp.W / because the complexes in-
volved are more complicated. One can also interpret this work as a construction of dg-schemes
given by resolutions of the maximal minors instead of just a construction of schemes.

8.1. Arbitrary triple tensors. We now give a more general construction before
specifying to the situation of interest in this paper. Let S be an arbitrary scheme, and let
p 2 V ˝ U ˝ W , where V;U;W are locally free OS -modules of ranks rV , rU , and rW ,
respectively. Let r D rV and assume rW � r . We can view p as a map W � ! V ˝ U , and
take r-minors of this map, with coefficients in U , to get ^rUp W ^

rW � ! ^rV ˝ Symr U or
equivalently ^rUp W ^

rW � ˝^rV � ! Symr U .
Let � WP .U /! S . Let O.k/ be the usual sheaf of P .U /. Then since ��O.r/D Symr U ,

by the adjointness of �� and �� we get a map

^
r
Up W �

�.^rW � ˝^rV �/! O.r/

or equivalently, for any k, we get

^
r
Up W �

�.^rW � ˝^rV �/˝OS O.k/! O.r C k/:

It is an abuse of notation to call all these maps ^rUp, but it is better than the alternative. Locally
on S , where U , V , and W are free, the map ^rUp W �

�.^rW � ˝ ^rV �/ ! O.r/ has image
spanned by the

�
rW
r

�
r by r minors of the matrix of the map W � ! V ˝ U , an rV by rW
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Wood, Parametrization of ideal classes 195

matrix with entries in U . The idea of our construction is to replace the sheaf O= im.^rUp/ of
regular functions of the subscheme of P .U / cut out by those r by r minors with complex that
is generically a locally free resolution of the O= im.^rUp/.

From the Eagon–Northcott complex, which resolves R modulo the ` by ` minors of a
generic matrix (see [9]), we can construct a complex C.k/ with C�1.k/! C0.k/ given by

^
r
Up W �

�.^rW � ˝^rV �/˝OS O.k/! O.r C k/;

and with C i .k/ D 0 for i > 0 and i � �.rW � r/� 2. For �.rW � r/� 1 � i � �2, we have

C i .k/ D ��.^rV � ˝K�i .r;W
�; V //˝OS O.i C 1C k/;

whereK�i .r;W �; V / is the locally free OS -module built from V andW that is the i th term in
the Eagon–Northcott complex for a map ˛ W W � ! V , and di is canonically constructed from
p (and explained in the next paragraph). Note that K�i .r;W �; V / only depends on V and W
and does not depend on ˛.

We now show how to construct the di . From the construction of the Eagon–Northcott
complex, there is a map

HomOY .W
�; V /! HomOY .^

rV � ˝K�i .r;W
�; V /;^rV � ˝K�iC1.r;W

�; V //

that sends ˛ 7! di , where di is the map in the Eagon–Northcott complex for ˛. We can extend
that linear map to

HomOY .W
�; V /˝ U

! HomOY .^
rV � ˝K�i .r;W

�; V /;^rV � ˝K�iC1.r;W
�; V //˝OY U

to get the maps when there are coefficients. LetHi be the OY -module ^rV �˝K�i .r;W �; V /.
We obtain di W Hi ! HiC1˝U , or equivalently di W Hi ˝H�iC1 ! U . Using adjointness of
�� and ��, this is equivalent to di W ��.Hi ˝H�iC1/! OU .1/, which gives us

di W �
�.Hi /˝OU .i C 1C k/! ��.HiC1/˝OU .i C 2C k/:

The complex C.�r/ of sheaves on P .U / has a commutative, homotopy-associative dif-
ferential graded algebra structure from the commutative, homotopy-associative differential
graded algebra structure on the Eagon–Northcott complex (which every resolution of a cyclic
module has [5, Proposition 1.1]), and the complex C.�r C 1/ is a differential graded mod-
ule for C.�r/. Now we make an important calculation about the cohomology of C.�r/ and
C.�r C 1/.

Theorem 8.1. Let p 2 V ˝ U ˝ W , where V;U;W are locally free OS -modules of
ranks r , rU , and rW , respectively. Assume that rW � r � 2 and that we are in one of the
following cases:

(i) r D 2 and rU � rW ,

(ii) rU D 2 and r D rW .

If k D �r or k D �r C 1, then R��C.k/ has no cohomology in any degree except 0.
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196 Wood, Parametrization of ideal classes

Proof. Let j ¤ 0, and we will compute that each term of the complex C.k/ has trivial
Rj��. By the projection formula, we can ignore the term that is pulled back from S . We
have Rj�� of the i th term i � �1 of C.k/, in the i th place, is Rj�i�� of C i .k/ viewed as
a complex in the 0th place. We have that Rj�i��O.i C 1 C k/ D 0 unless either (1) j D i

and i C 1 C k � 0 or (2) j � i D rU � 1 and i C 1 C k � �rU . Since i C 1 � 0 and
k � �r C 1 � �1, we can never have i C 1C k � 0. We consider the two assumptions of the
theorem in cases.

(i) r D 2 and rU � rW . In this case, we have

i C 1C k � �.rW � r/C k � �.rW � r/ � r � �rU

and thus we can only have i C 1C k � �rU if i D �.rW � r/ � 1, and k D �r , and
rU D rW . However, that implies that i D �rU C 1 and thus j D 0.

(ii) rU D 2 and r D rW . In this case, we only are considering the case i D �1, and thus
j � i D rU � 1 implies j D 0.

We now need to consider Rj�� of the 0th term of C.k/ (for j ¤ 0). We have that
Rj��O.r C k/ D 0 unless (1) j D 0 and r C k � 0 or (2) j D rU � 1 and r C k � �rU .
However, we are assuming j ¤ 0 and r C k � 0, and thus this can never happen. Thus we
conclude that for k D �r and k D �r C 1, under our assumptions about rU ; r , and rW , the
complex C.k/ has no cohomology in any degree except 0.

Corollary 8.2. We have that R^rUp D H
0R��C.�r/ is a sheaf of algebras on S , and

I^rUp D H
0R��C.�r C 1/ is a sheaf of R-modules on S .

Proof. Since R��C.�r/ is equivalent to a single sheaf in degree 0, it has no non-trivial
homotopies. Thus H 0R��C.�r/ has an OS -algebra structure that is not just homotopy-
associative but in fact associative. Since C.�r C 1/ is a module for C.�r/, we have that
I^rUp D H

0R��C.�r C 1/ is an H 0R��C.�r/-module.

We can also view the construction of R^rUp as taking the pushforward of the regular
functions on the dg-scheme given by our resolution of O= im.^rUp/, instead of on the scheme
cut out by ^rUp.

When p is the universal tensor (of any size), then the Eagon–Northcott complex, and
thus C.k/, is exact at every spot except the 0th. Thus, when p is the universal tensor, C.k/ is
quasi-isomorphic to O.k/= im.^rUp/. The sheaf O.k/= im.^rUp/ is supported on the scheme
defined by the r by r minors in im.^rUp/, and is isomorphic on that scheme to the pullback
of O.k/ from P .U /. Thus, when C is the universal tensor in ƒ2 ˝ ƒn ˝ ƒn, we have that
R^rUC is the sheaf of rings given by the global sections �.OTC.y/

/ (as defined in Section 7),
and I^rUC is the R^rUC -module given by the global sections �.OTC.y/

.1//.
Theorem 8.1 also allows us to see that the constructions of R^rUp and I^rUp commute

with base change on S .

Corollary 8.3. Let p 2 V ˝ U ˝ W , where U; V;W are locally free OS -modules of
ranks rU , r , and rW , respectively. Assume that rW � r � 2 and that we are in one of the
following cases:

(i) r D 2 and rU � rW ,

(ii) rU D 2 and r D rW .
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Wood, Parametrization of ideal classes 197

Then the constructions of R^rUp and I^rUp commute with base change. More precisely, let
� W S 0 ! S be a map of schemes. Let p0 2 ��U ˝ ��V ˝ ��W be the pullback of p. Then
the natural map from cohomology

R^rUp ˝OS OS 0 ! R^r
��U

p0

is an isomorphism of OS 0-algebras. Also, the natural map from cohomology

I^rUp ˝OS OS 0 ! I^r
��U

p0

is, in fact, an isomorphism of R^r
��U

p0-modules, where the R^r
��U

p0-module structure on
I^rUp ˝OS OS 0 comes from the .R^rUp ˝OS OS 0/-module structure.

Proof. The key to this proof is to compute all the cohomology of the pushforward of the
complex C.k/ for k D �r and k D �r C 1. We already know from Theorem 8.1 that there
is only cohomology in degree 0. Theorem 8.4 will tell us that H 0R��C.k/ is locally free for
k D �r and k D �r C 1. Thus since all H iR��.C.k// are flat, by [12, Corollaire 6.9.9], we
have that cohomology and base change commute. Note that the base change morphisms respect
the algebra and module structures on R^rUp and I^rUp, and thus since they are isomorphisms,
they are algebra and module isomorphisms.

8.2. OS -module structure of R^r
U

p and I^r
U

p. Now we consider a base scheme
S , and V;U;W locally free OS -modules of ranks 2, n, and n, respectively. In this case, we
construct the OS -algebra and module pairs R^nV p and I^nV p, R

^2Up
and I

^2Up
, and R

^2W p

and I
^2W p

. We will now find the OS -module structure of all of these constructions. This has
already been done for the ^nV p construction in [20, Section 3.1], and so we consider here the
^2Up (as the ^2W p constructions will follow identically).

Theorem 8.4. We have an exact sequence of OS -modules

0! OS ! R
^2Up
! .Symn�2 V /� ˝^2V � ˝^nW � ˝^nU � ! 0;

and an OS -module isomorphism I
^2Up
Š U .

Proof. From Theorem 8.1, we know that, for k D �r and k D �r C 1, C.k/ has trivial
H jR�� for all j ¤ 0, and all components C.k/ii of the complex (the i th term of C.k/ sitting
as a complex in the i th place) have H 0R��.C.k/

i
i / D 0 except for possibly the two extremal

terms i D 0 and i D �nC 1. Thus, by the long exact sequence of cohomology, we have the
exact sequences

0! H 0R��.O/

! R
^2Up
! Hn�1R��

�
��.^2V � ˝K�nC1.2;W

�; V //˝OS O.�n/
�
! 0

and

0! H 0R��.O/

! R
^2Up
! Hn�1R��

�
��.^2V � ˝K�nC1.2;W

�; V //˝OS O.�nC 1/
�
! 0:
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198 Wood, Parametrization of ideal classes

We see that

Hn�1R��
�
��.^2V � ˝K�nC1.2;W

�; V //˝OS O.�n/
�

D ^
2V � ˝K�nC1.2;W

�; V /˝OS H
n�1R��.O.�n//

D ^
2V � ˝K�nC1.2;W

�; V /˝OS ^
nU �:

Since K�nC1.2;W �; V / D .Symn�2 V /� ˝ ^nW �, we obtain the exact sequence desired.
Also, note that Hn�1R��.O.�nC 1// D 0.

We can see that the three OS -algebras constructed from a tensor p 2 V ˝ U ˝ W are
isomorphic. In the case that V;U , and W are free, then p is a pull-back from the universal
tensor, in which case we know the algebras are isomorphic from Theorem 7.1. If one checks
that the algebra isomorphism given by Theorem 7.1 is canonical, that it doesn’t depend on the
choice of bases of V , U , and W , then that would show that the three OS -algebras constructed
from a tensor p 2 V ˝ U ˝W are all isomorphic because locally, V , U and W are free, and
if the isomorphisms between algebras do not depend on the choice of bases, they will agree on
overlaps. In fact, the constructions made in Lemma 7.6 to give the isomorphism of S 0-schemes
T 0

C.y/
Š T 0

C.x/
are all given by minors of matrices and in fact are canonical.

Finally, we can see that the construction of the R
^2Up

-module I�
^2Up

from this section

agrees with the construction of a module structure on U � given in the proof of Theorem 6.2.
By Theorem 8.4, I�

^2Up
is also an R

^2Up
-module structure on U �. Thus, we just need to check

that the R
^2Up

actions agree, which we can check locally. By Corollary 8.3, the construction
of I�
^2Up

commutes with base change, and the construction of a module structure on U � from

the proof of Theorem 6.2 commutes with base change by construction. Thus it suffices to
check that the module structures agree in the case of the universal tensor, which was done in
Theorem 7.7.
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