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O. Introduction 

0.0. The class numbers of binary forms of degree greater than three has been 
scarcely studied. It seems that the finiteness of class numbers proved by Birch 
and Merr iman is the only general result. In the case of binary cubic forms, 
Davenpor t  obtained asymptotic formulae for certain sums of class numbers. 
Shintani studied deeply binary cubic forms using the theory of prehomogeneous 
vector spaces (see [9]). Recently Wright extended Shintani's work to arbitrary 
algebraic number  fields (see [11]). In this paper, we go back to Davenport ' s  work, 
since the space of binary forms of degree n > 3 is no longer a prehomogeneous 
vector space. We observe that the Hessian of a binary cubic form played an 
essential role in Davenpor t  [3]. Our main idea is to define a suitable analogue of 
'Hessian ' .  We shall use it to obtain a lower estimate for a certain sum of class 
numbers of totally real binary forms of degree n >  3. We shall also apply our 
method to the problem of counting orders of totally real algebraic number  
fields of degree n > 3. Further, we shall prove that there exist infinitely many 
real quadratic fields having an A,-extension which is unramified at all primes 
including the infinite primes (see Uchida [10], Y a m a m o t o  [12], Yamamura  [13]). 

Acknowledgements. The author wishes to express his gratitude to Professor Yasuo Morita for his 
valuable advice and continuous encouragement. 

0.1 Notation and statement of the results 

Throughout  this paper, we denote by 7/, ~ ,  •, and IE the ring of rational 
integers, the rational number  field, the real number  field and the complex number 
field, respectively. For  a Galois extension K over a finite algebraic number 
field F, we denote by Gal(K/F) the Galois group of K/F. We say that K/F 
is a weakly unramified G-extension if K/F is unramified at all finite primes and 
Gal(K/F)= G. We say that  K/F is a strictly unramified G-extension if K/F is 
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unramified at all primes including the infinite primes and Gal(K/F)=G. For  
a natural number n, we denote by S~, and A~ the symmetric group of degree 
n and the alternating group of degreen, respectively. We say that a binary form 
of degree n is totally real if it is decomposed into n distinct linear factors over 

~-~. Let F=GL2(~. For  7=(  a ~  and a binary form f ( x ,  y), we define ~ . f  
/ 

\ C al 
by (7.f)(x, y ) = f ( a x + c y ,  bx+dy) .  We say that 7"f is F-equivalent to f and 
write f -~ ~.f. We say that a binary form is integral if its coefficients are in 

F 

Z. We say that an integral binary form is irreducible if it is irreducible over 
Q. For  a given positive integer D, we denote by h~ + (D) the number of F-equiva- 
lence classes of integral, irreducible, totally real binary forms of degree n with 
discriminant D. 

Theorem 1. Let n > 4 and put x = (n + 1)/(2 n - 2 ) .  Then there exists a positive con- 
stant C~ such that 

~, h~+ (D) 

lim inf o<o<=x > C~. 
X~cx ~ X ~: 

Let K be an algebraic number field of degree n over ~ .  We say that a 
subring (9 of K is an order if it is a free ~E-module of rank n and it contains 
Z. We note that the quotient field of (9 is K. We denote by N, + (X) the number 
of orders 0 with discriminant D((9)<X whose quotient fields are totally real 
algebraic number fields of degree n over II~. Further, we denote by 57, + (X) the 
number of orders (9 with discriminant D ((9)< X satisfying the following condition 
(,): 

(*) (i) the quotient field K of (9 is a totally real algebraic number field of degree 
n o v e r  (l~, 

(ii) if we denote by L the normal closure of K over ~ ,  then G a l (L /Q )=S ,  

and L /Q( I /~ r )  is a strictly unramified An-extension. 

Theorem 2. Let the notation and assumptions be as in Theorem 1. Then we have 

N. § (X) > Cn. lim inf n _ 
X ~ c c  X ~ 

Theorem 3. Let the notation and assumptions be as in Theorem 1. Then there 
exists a positive constant C'n such that 

~ + X  
lim inf Nn ( ) > C'n. 

X--~ o0 X n 

Theorem 4. For any integer n > 4, there exist infinitely many real quadratic fields 
having a strictly unramified An-extension. 
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1. Quadratic forms of n - 1  variables associated with binary forms of degree n 

Let n be a natural number with n > 3 and let 

f(x,y)=aox"+alx"-ay+...+a,y" (ajeTZ) 

be an integral irreducible binary form of degree n. Let 0 be a root of the equation 
f ( x ,  1)---0 and put Kf=Q(0) .  So K f  is an algebraic number field of degree 
n over Q. Put 

j - -1 
4o=1, 4i= ~ ak Oi-k ( l < j < n - - 1 )  

k=O 

and let O s denote the lattice in K j- generated by ~j's over 7Z This lattice is 
the one used in Birch and Merriman [1]. Our first fundamental result is 

Proposition 1.1. Notation and assumptions being as above, the following four asser- 
tions hold: 

(i) (gf is an order of K f and the discriminant D((g s) coincides with the discrim- 
inant D ( f )  o f f  

(ii) I f  we put 4. = - a,, then 

~i~j=~ai+i_k~k--~ai+j_k~k (l<=i<--_j<=n--1). 

The first sum is taken for all k with j<k<=Min(i+j ,  n) and the second one is 
taken for all k with Max(i + j - -  n, 1)-< k --< i. 

(iii) Tr(~o)=n, T r ( ~ j ) = - j a j  (l <=j<n-1), where Tr is the trace map of K f  
to (~. 

(iv) Tr(4ir  ~ ( 2 k - i - j ) a k a i + j - ,  (1 <=i<=j<=n- 1). The sum is taken 
k 

for all k with M a x ( i + j - n ,  0)_<k<i. 

Proof It was shown in [1] that D((gs)=D(f).  By the definition of 0 and ~Ss, 
we have 

41 ~j=ao O(aoOJ +al  0 j -  l + ... +at_ 1 O) 

=ao(aoOi+ l +al  OJ +. . .  +aj_ l  O2 +a~O-ai  O) 

= ao {j+ 1 --aj41 (1 <j<=n--2). 

Since f(O, 1)=0 and 4 , = - a . ,  this is also valid for j = n - 1 .  Similarly for 2=<_i 
____j < n -  2, we have 

4i 4j = (4i- 1 + ai_ ~)(~j + ~ - aj O) 

= 4i- 14j+ 1 + ai- 1 4j+ 1 -(aj/ao)(414i-1 + ai- 1 41) 

'---- 4i-- 1 ~ j + l  + a i - i  ~j+l --aj4i. 

Using this equation, the assertion (ii) follows by induction on i. Hence d)y is 
an order of Kf.  Let a: d)s--*GL,(Z) be the regular representation of the ring 
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n - I  

d~ s with respect to the basis (~i), i.e. ~r ~ a(~t)ik~ k for ~e(9 I. I f j > l ,  then 
it follows from (ii) that k = 0 

ty(~j)ii=(oaJ if 1_<i<], 
otherwise. 

Hence we have Tr(~j)=Tr tr(~j)= - ja j .  The assertion (iv) follows from (ii) and 
(iii). q.e.d. 

Now we define the quadratic form 7s(f) of n -  1 variables Xl . . . . .  x,_ 1 asso- 
ciated with the binary form f of degree n: 

n - I  

7J(f)(xl .... , x._ 1)= 
i , j = l  

[n Tr(r ~j)-- Tr(~i) Tr(~j)] xi xj. 

We remark that ~(f)  is a constant multiple of the restriction of the quadratic 
form Tr(x 2) (x~(gy) to the hyperplane defined by Tr(x)= 0. Indeed, if we put 

then we have 

n - 1  

j = 0  

n Tr(x2) = ~(f) (xi ,  ..., x,_ 0 + Tr(x) 2. 

Applying the linear transformation 

n - 1  

yo=Tr(x)=nxo+ ~" Tr(~j)xj, yi=xl ( l < i < n - 1 ) ,  
j = l  

we have 

/ i  f 1 1  (n  * ' " *  I l l  '(yj) (n Tr(~ ~j)) (Y~) = Y~ + 7J(f) (Yl ....  , Y,- 1). 

1 1 

By this equation, we see that det ~ ( f ) =  n n - 2  det(Tr(~i ~j)). Hence by the defini- 
tion of the discriminant D(•z) and (i) of Proposition 1.1, we have 

det ~u(f) = n"- 2 O (f). (1.1) 

n - 1  

If we write ~(f)(xl . . . . .  x,_ 1)= 
and (iv) of Proposition 1.1 that i j= 1 

hijxix j (hij=h~i), then it follows from (iii) 

h ~ j = i ( n - j ) a i a i + ~ ' n ( 2 k - i - j ) a k a i + j _  k (i<=j), (1.2) 
k 

where the sum is taken for all k with Max( /+ j -n ,  0)< k < i. 
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Remark. For n = 3, we have 

2-1  ~ ( f ) ( x l ,  Xa) = (a~ - 3 ao a2) x 2 + (al az - 9 a o a3) x ,  x 2 + (aZ~ - 3 a, a3) x 2 . 

This is a constant multiple of the Hessian of the binary cubic form f and played 
a significant role in the work of Davenport  [3]. 

Let V be the R-vector  space of binary forms of degree n and let W be 
that of quadratic forms of n -  1 variables: 

V =  { f ( x ,  y ) = a  o x " + a t  x " - l y +  ... + a . y " ;  (ai)eF, "+ t}, 

W={H(xl ,  ...,x,-0= 
. - 1  

2 h i j x i x J ;  ( h i j ) l < i ~ J < = n - l U R  , 
i , j= l  

where hj i=hi j  and N = n ( n - - 1 ) / 2 .  We denote by Vz the set of integral binary 
forms of degree n. Further, we denote by V~ rr (resp. V~ ed) be the set of integral 
irreducible (resp. reducible) binary forms of degree n. We extend gs to a mapping 
of V to W by the quadratic equations (1.2). We note that the Eq. (1.i) is valid 
for all f ~  V by Hilbert's irreducibility theorem (cf. Lang [6]). 

Now we are going to prove two basic properties of the mapping gq The 
first one states that the action of GL,_  1 (N.) on W is compatible with that 
of GLz0R) on V under 7'. The second one states that if n>4 ,  then the mapping 
q' is injective on an open subset of V. Before we state the results, we recall 
that the group action of GLm(R) on the space of forms of m variables is defined 
by the linear transformation of variables: For  a form g(x~ . . . .  , x,,) of m variables 
and y~GL,,(N~), we define ?.g by (?.g)(xl . . . . .  Xm)=g(x'~ . . . .  ,X'), where 
X t t ( , . . . . .  x m ) = ( x ,  . . . .  , x . ) y .  

We denote by Pr the matrix representation of GLz(N.) on the space of binary 
forms of degree r with respect to the standard basis. Hence if g(x,y) 
= ~. b j x ' - J y  j ( b f i R )  and (7.g)(x, y)= ~ c jx~-Jy  j (7~GL2(~)), then 

O<=j<=r O<j<r 

cl bl 

Proposition 1.2. For y ~ GL2 (N), put 

0 (Y) = det (7) p,_ 2 (7)(e GL ._ I  (tR)). 

Then O defines a homomorphism o f  GL2(N.) into GL._IOR) with the following 
properties: 

N e r O = f { +  1} i f  n is even, 
{ I} if n is odd, 

7J(7 .f)  = ~k(7 ) . ~ ( f )  for  all ?eGL2(N.), f s  V. 
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Proof It is obvious that ~O is a homomorphism and it is easy to see that Ker ~b 
is {_  1} or trivial according as n is even or odd. To prove the last formula, 
for f e  V, let ~r denote the commutative N-algebra with basis Go = 1, ~j (1 < j  
< n -  1) whose ring structure is defined by the equations in (ii) of Proposition 1.1. 
If feV~ fr, then ~s-_d~f(~)R is a commutative associative R-algebra. Hence 

z 

d f  is a commutative associative R-algebra for all f ~  V by Hilbert's irreducibility 

theorem. Since GL2 (R) is generated by ( ;  ~) , (~ 10),(~ ~)(a,c,d~N, ad#O), 

we may assume that ? is one of the above three matrices. Put g = ? . f  and let 
qj denote the ~j for rig. Let a0 . . . .  , a, and bo . . . .  , b, be the coefficients of f 
and g respectively. We shall show that there exists an algebra isomorphism 
a of ~r onto d y  defined in the form 

Case1. ?=(0  dO)" Then we have bi=a"-idiai (O<=i<=n). Let o-be the linear 

isomorphism of ~s onto sCf defined by 

a(qo)=4o , a(qi)=a"-idi~i (l_<i_<n- 1). 

By the definition of the ring structures of s~f and dg, we have 

a (qi) i (q j) = a 2" - i - j d i + j ~ 4j 

= ~ bi+ j-k a(rlk)-- ~,bi+ j-k a(rt,) 
=a(qi~]j ) ( l<i<j<n--1) .  

In the above equation, the first sum is taken for all k with j<k<Min( i+j ,  n) 
and the second one is taken for all k with Max( i+j -n ,  1)<k<i. 

Case2"?=( O1 10)" Then we have bi=a,_, (O<i<n). Let a be the linear isomor- 

phism of ~r onto ~r defined by 

i(r/O) --'-r- 40 , if(r/ /)= - - O n _ i ~ O - - ~ n _  i (1 < i < n - -  1). 

To prove i(th) i(tlj) = i(th tlj) (1 < i_<j < n-- 1), we may assume that a, 4= 0 since 
a polynomial function which is zero on an non-empty Zarisky open subset 
of V is identically zero. We use induction on i. For 1 < j  < n -  1, we have 

a(rh) i(rlj) = (bl Go + ~.- 1)(bj 4o d- ~n-j) 
=bl bj~o + bl 4n- j - ' l "b j~n -1 - [ "~n- - j~n -1  

= - -  bt bj 4o - -  b l  if(t/j) - -  bj  i(?/1 ) + ~ n - j  ~n- 1" 
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By the definition of the ring structure of d I, 

= f - a , , - j - l a , , ~ o - a , , ~ , , - j - l - a n - l ~ , , - j  if l < j < n - 2 ,  
1 ",(_aoa,~o_a,,_l~l i f j = n - - 1 .  

If we put t/, = -- b, t/o, then we have 

r a(t/j)+blbj~o (1 < j < n -  1). 

Hence we have a(t/0 a(t/j)=bo a(t/j+l)-bj a(t /0=a(t /1 t/j). Let 2 < i < n -  1 and 
assume that a(t/i_Oa(t/j)=a(t/i_lt/j ) ( i - l  < j < n - 1 ) .  Let i < j < n - 1 .  Since 
(a(t/1) a(t/i-1)) a(t/j)= a(t/i-1)(a(t/1) a(t/j)), we have 

{boa (t/,)- b,_l a(t/1)} a (t/j) = a(t/,_ 1) {bo a(t/j+ 1) - -  b j  if(t/l)}. 

Hence 

bo a(t/i) a(t/j) = bi-1 a(t/1) a(t/j) + bo a(t/i- 1) a(t/j+ 1) -  bj a(t/1 ) a(t/i_ 1) 

= bo a(t/i- 1) a(t/j§ 1) + bi- 1 {bo a(t/j+ 1) -  bj a(t/O } 

- bj {boa (t/i)- bi-1 a(t/,)} 

= bo {a ( t / i -1  rlj+ 1) + b i -  1 a(t/~+ 1) - bj a ( t / i ) } .  

By the definition of the ring structure of ~r the right hand side of the above 
equation coincides with bo a(t/i t/j). Since bo = a, 4: O, we have a(t/i) a(t/j)= a(t/i t/j). 

Case3.7= . Then we have ~= k~_'_o ~ i_  k )C'-kak, where is the binomial 

coefficient. Let a be the linear isomorphism of d ,  onto sJf defined by 

~(t/o) = 30, 

i n - k - l ' ~  i - k - _ f v .  [n-- -- "~ci_ k 
O'(rli)-----kEl( i--k i-1 k 1 = )c ~k ] 4 , ~ o k i _ k _ l )  ak)r (1 < i < n - - 1 ) .  

We may assume that a o 4:0 by the same reason as in Case 2. Let 1 < j <  n -  1. 
Then we have 

a(t/O a(t / j ) -  a(t/1 t/j) 

= a(t/~) a(t/j)- bo a(t/j+ 1) + bj a(t/1) 

= a(t/1)(a(t/j ) + bj 4o)-  bo a(t/j + 1) 

{ J ( n - k - i \  j k ) 
=(r162  ,~ ,  j - k  ) c -  (r -a~ 
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I n--k ] _ [ n - k - l ~ = [ n - k - l ]  
Using the equat ions~l(~k+akr247 k j + l _ k ]  \ j - k  ] ~j+ l - k ] '  

we see that the right hand side of the above equation coincides with zero. 
By induction on i, we have a(tli ) a01j)= a(t/it/j ). 

Using the algebra isomorphism a, the desired formula follows immediately 
from the definition of the quadratic forms ~( f )  and tp(g), q.e.d. 

Corollary. (i) ~ (F) c GLn_ 1 (7I.). 

(ii) (9~.y=Cf for f~V~ rr, 7~F. 

Lemma 1.1. Let n > 4 and put 

A (f)  = ( n -  2) htl  [ ( n -  3) h22 + 2 n hi 3] - 2 ( n -  1)(n - 3) h22, 

~Sv0 = {f~ V; hl~ A (f)  = 0}, 

V + ={feV;ao>O}, 

where (hij)= ~(f).  Then the mapping ~ is injective on the open subset V + -~gao 
of V. 

Proof. Put A j = a i n - l a o  ~ and Hij=hi~n-2ao 2. In view of (1.2), we have 

( j + I ) A j + I = ( n - - j ) A t A j - H I j  (1 < j<n - -1 ) ,  (1.3) 

2 ( n - j ) A 2 A j - ( j + I ) ( n - 1 ) A I A i + t = H 2 j - H ~ , j +  ~ ( 2 < j < n - 1 ) .  (1.4) 

Here we put HI~=0.  By (1.3) and (1.4), we have 

( n - - j ) n ~ l A j - ( n - 1 ) n ~ j A ~ = n ~ , j + ~ - n 2 j  ( 2 < j < n - 1 ) .  (1.5) 

Hence we see by (1.3) and (1.5) that A t satisfies an algebraic equation of degree 
j. It follows from the equations of degrees two and three that 

A ( f )A,  = A'(f), (1.6) 

where A' (f)  = 3 ( n -  2) h 11 (h23 - h 14 )  - 2 (n -- 3) h 12 (h22 - h 13)" 
On V + - 6ao we have A (f) 4= 0 and so we can determine A 1 by 

A~ = A'(f)/A (f). (1.7) 

We observe that the right hand side of (1.7) is a rational function of h,j. By 
(1.7) we have 

( n - 2 ) H 2 ~ = ( n - - 1 ) ( n - 2 ) H ~ A 2 - 2 ( n - 1 ) H ~ 2 A l  + 2H22-2H~3 . (1.8) 

On V § -6ao we have hll  4:0 and hence 

a~=(n-2)n-2h2~ [(n-1)(n-2)h~tA2~-2(n-1)h~2Al  +2(h22-h~3)] -~. (1.9) 

In view of (1.7) and (1.9), a0>0  is uniquely determined by (h~j). Since Aj 
= A j n - l a o  ~ and Aj is a polynomial in A~ with coefficients in II~[HJ, aj is 
also uniquely determined by (hi j). q.e.d. 
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Proposition 1.3. Let the notation be as in Lemma 1.1. Put 5g= ~ g.SPo, where 
g runs over all elements of G L 2 ( ~  ). Then 5e is an invariant closed subset of 
V, and the mapping 7 t is injective on the open subset V + - 5  ~ of V. 

Proof Let f~,fEe V + -  5 p. By Proposition 1.2 and Lemma 1.1, it suffices to show 
that there exists an element g of G L 2 ( ~  ) such that g ' f l ,  g ' fE~V+-Sgo- Put 
HI={geGL2(~Q;  g.f/eSgo} (i=1,  2). Then Hi's are hypersurfaces in GL2(~).  
Since f / s  are in V +, we can take an open neighborhood U of the identity 
such that U.f~c V + (i= 1, 2). Since dim U > d i m  Hi, we have UCH~ • H  2. Hence 
there exists an element g ~ U such that g . f l ,  g "f2 ~ V + -5~o . q.e.d. 

2. Binary forms whose splitting fields are unramified A.-extensions 
over quadratic fields 

First, we refer to the following result in Nakagawa [7, Theorem 1] which is 
an extension of Yamamura [13, Proposition] and Osada [8, Theorem 5]. 

Proposition 2.1. Let n> 3 and let K be an algebraic number field of degree n 
over ~ .  Let L be the normal closure of K over if). I f  the discriminant D K of 
K is square free, then Gal(L/Q)=S,  and L / ~ ( l ~ r )  is a weakly unramified 
A,-extension. 

Let f be an integral irreducible binary form of degree n. In the previous 
section, we have constructed an order C I in K I with discriminant D(f).  If D(f )  
is square free, then C I coincides with the ring of integers in K s and the discrimi- 
nant of K I coincides with D(f).  Hence (91 satisfies the condition (.) in the 
introduction by the above proposition. In the following, we shall obtain a weaker 
sufficient condition for (91 to satisfy (*). 

Let p be a prime number and let n be a natural number with n >2.  Let 
Zp, Qp and Fp denote the ring of p-adic integers, the field of p-adic numbers 
and the finite field of p elements, respectively. Further, let ordp denote the addi- 
tive p-adic valuation of Qp which is normalized by ordp(p)= 1. For  p 4: 2, let 
U,(p) denote the set of all binary forms f ( x ,  y) of degree n with coefficients 
in Fp satisfying the following condition (U): 

(U) f ( x ,  y) has at most one multiple factor, which is of multiplicity two. 

Further for p = 2, let U,(2) be the set of all binary forms f ( x ,  y) of degree 
n with coefficients in F 2 such that D (f)4= 0. Applying Hensel's lemma, we have 

Lemma 2.1. Let f (x, y )eZ[x ,  y] be a binary form of degree n which is irreducible 
over if). Put K = K  I. I f  p is an odd prime number and f modpeU,(p),  then 
ordp DK < 1. 

By Lemma 2.1 and Proposition 2.1, we have 

Proposition 2.2. Let f ( x ,  y )eZ[x ,  y] be a binary form of degree n> 3 which is 
irreducible over ff~. I f  f mod pc U,(p) for all prime numbers p, then the normal 

closure of K I is a weakly unramified A,-extension of the quadratic field Q ( l / ~ f ) ) .  
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For  a finite set A, let ~ A  denote the cardinality of A. To count #~U,(p), 
put S.(p)= {f(x)~Fp[x];f(x) is monic of degree n and has no multiple factors}, 
T.(p) = {f(x)~Fp [x];f(x) is monic of degree n and has just one multiple factor, 
which is of multiplicity two}. 

Lemma 2.2. ~ S. (p) = p" -  p"- 1 for n > 2. 

Proof Put So = 1, s l = P and s. = 4~ S,(p) (n > 2). If f (x)~Fp Ix] is a monic polyno- 
mial with D ( f ) = 0 ,  then it is uniquely written in the form f(x)=g(x)h(x) 2, 
where g(x) and h(x) are monic, deg h(x)> 1 and D(g)=~ 0. Hence we obtain 

[n/2] 

p " - s . =  Y, s._2jp j. 
j = l  

Using this equation, the lemma follows immediately by induction on n. q.e.d. 

Lemma 2.3. 

~T, (p)=fp(p_ l )  ~ ( _  1)n- 3-J/7/ ijr n_>_3, 

o<__j=<.-3 /f n=2 .  

Proof For  ceFp,  put s ,(c)= #t:{g(x)~S,(p); g(c)=0}. Using the transformation 
x - + x - e ,  we see that s.(c) does not depend on c. Since f(x)(eT.(p)) is written 
in the form f(x) = (x - c) g (x), where g (x) e S,_ 1 (P) and g (c) = 0. Hence we obtain 
~T.(p)=ps,_~(O). On the other hand, it is obvious that s , _ l ( 0 ) = s , _ :  

n - 2  

- - s , -2(0) (s .=  ~S,(p)). Hence we obtain ~= T.(p)=p y '  ( -1)ks ,_2_k . NOW the 

lemma follows from Lemma 2.2. q.e.d, k= o 

By Lemmas 2.2 and 2.3, we have 

Proposition 2.3. (i) For p =~ 2, 
)~p.- 3 (p2 _ 1)2 

U"(P)= l.p2(pZ-- I) 
/f n__>4, 

/f n=3 .  

(ii) 4~ U. (2) = 3 .2"-  z. 

Corollary. 
_J'24 it -4 /f n>4 ,  

I-I [@U"(p)]P-"-I-~ 37r -z  /f n=3.  
p: prime 

We shall use the convergence of the above infinite product in the proof 
of Theorem 3. 

3. A lemma on lattice points 

Let ~ c F ,  N be a bounded open subset whose boundary ~ is (N-1) -L ipsch i t z  
parametrizable, i.e, there exist finitely many mappings of [0, 1] N- 1 to NN satisfy- 



Binary forms and orders of algebraic number fields 229 

ing Lipschitz's condition such that the images cover t?~. Put L o = Z N c I t  N. 
For a natural number m, a lattice point a e L  o and a positive real number t, 
put 2 (m,a , t )=  #[t@c~(mLo+a)],  where t @ = { t x e N N ; x e ~ }  and m L o + a  
= { m l + a e L o ;  leLo}. We use the order notation O of Landau. The following 
lemma is a modified version of Lang [-5, Chap. 6, Theorem 2] and is proved 
by the same argument. 

Lemma 3.1. 2 (m, a, t) = vol (9) (t/m) N + 0 ((t/m) N- 1) as t --* ~ ,  where the constant 
in 0 depends only on N and Lipschitz's constants of the mappings for 0~.  

4. Reducible polynomials 

In this section, we shall give an estimate for the number of reducible polynomials. 
Let n > 3. For  positive real numbers tj > 0 (0 <j  < n), put 

Pol.a={f(x)= ~ ajx"-Je7Z[x]; tajl<tj(O<j<n),ao>O}, 
j=O 

Red.,, = {f(x)ePol . , t ;  f ( x )  is reducible} 

(t = (to . . . . .  t.)). Then we have 

Proposition 4.1. If t._ ~ >_ 1 and t. >= 1 then we have 

2"- ~ (1 + log  to)(1 + log  t.) 1 # (Red.a) > ~---. 

# (Pol.,t) = t._ 1 t. 

To prove this, we need the following lemma. 

Lemma 4.1. Let ~c be an algebraically closed field. Suppose n elements al . . . .  , a._ 2, 
a,:#0, b:#O of ~c are given. For 2~K, put fx(x)= x" + al x"-  i + ... + a , _ 2  x2 + 2 x  

+a..  Then there exist at most m - 1  
% 

of a monic polynomial of degree m with constant term b. 

Proof. Let ~1 . . . . .  c%~r be the roots of fz(x). Put ~2={1,2 . . . . .  n}. For  each 
subset I c t 2  with # I = m ,  put f lx=( -1)mI]~ i .  Further put Fx(x )=I - I (x - f l l  ), 

i E l  I 

where I runs over all subsets of t2 with # I = m .  Then we see that fx(x) is 
a multiple of a monic polynomial of degree m with constant term b if and 
only if Fx(b)=0. Hence it suffices to prove that F~(b) is a polynomial in 2 of 

n - 2  n - 2  
degree ( m _  1). We write F~(x)=xn+A1 xn-1 + . . . + A N ,  N = ( n ) . P u t c = ( m _ l ) ,  

ko =(n- -  1~.- Since b ~:0, it suffices to show that degx A k < c for all k and the 
\ m / 

equality holds if and only if k = k 0. If we define the weight of aj to be j and 
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that of 2 to be n - 1 ,  then A k is a polynomial in aj and 2 of weight km. If 
k < ko, then it is obvious that 

(n-- 1) degaAk<km<kom=(n-  1)c. 

Hence degaAk<C for k<k  o. Next suppose k>k  o. Take k distinct subsets 
I1 . . . . .  Ik of f2 with #Ij=m. For  each v~f2, let e, denote the number of Ij 
containing v. Then there exist at least k -  e~ distinct subsets of t2-- {v} consisting 

< ( n - - l )  i.e. e~>k-ko>O. Since of m elements. Hence we obtain k-e~= m ' 
n 

f l l ~ ' " f l l k  : ( - -  1) km F I  ev r ~ ,  we see that A k is a multiple of an, where r = k - k o .  
v = l  

Since A k is of weight km, we have 

( n -  1) degzAk < k m - n r = n k o  - k ( n - m ) < m k o  = ( n -  1)c, 

i.e. deg z A k < C for k > ko. Finally, suppose k = ko. Put S = ( -- 1) k ~ fit,...fll~, where 
the sum is taken for all k distinct subsets I1 .... .  IkCf2 with U Ij=f2, ~1j=m. 
Further, put T =  Ak--S. Then it is obvious that S is a polynomial in al . . . . .  an-2, 
an and 2 of weight kin. Moreover, S is a multiple of an. Hence we have degz S < c. 

Since k=ko =(n-"  1)," for each v~f2, there exists only one set of k distinct subsets 
\ m / 

11 . . . . .  lk with U l j  c f 2 -  {v}, # I~ = m. Further, for each #Eg2-  {v}, there exist 

exactly c j 's such that I~elj. Hence T=(--1)k  ~. (-- l)k '~I-I~.  NOW it is easy 
v = l  j * v  

to see that deg a T =  c. Hence dega Ako = c. q.e.d. 

Proof of Proposition 4.1. It is clear that 4~(Poln.t)=[to] 12I (2[td + 1). It is also 
i = 1  
n--1  

clear that the number of f(x)~Redn,t  with an=0 is [to] H (2[tl] + 1). Now we 
i = 1  

consider f (x)E Red~,t with an 4: 0. If g(x) = b o x~+  b 1 x~-  1 + . . .  + b~ (b~eZ, bo > 0) 
is a divisor of f(x), then bo and b~ are divisors of a o and a~, respectively. 
Hence by Lemma 4.1, if ao, a~, . . . ,  an-2, an are given integers, then there exist 

at most 2d(ao)d(an)(n--21)values of an_ ~ such that f has a divisor of degree 

m. Here d(k) denotes the number of positive divisors of an integer k. Hence 
the number of f (x)e Red~,t with a n 4:0 is at most 

n - 2  I n / 2 ] / n - - 2 \  

2 I-I (2 I t / I+  1) ~ d(ao) ~ d(an)m~= Ira-l)" 
i = 1  0 < a o < t o  O<]anl<tn 1 

Since ~ d(k)<[x](l+log[x]), the proposition follows, q.e.d. 
O < k < x  
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5. Proof of the theorems 

In this section, we prove the theorems. We note that our argument is based 
on that of Davenport  [3] and Davenport  and Heilbronn [4]. We use the same 
notation as in the previous sections without further comment. First we prove 
some lemmas. 

Lemma 5.1. The image of the mapping ~P is not contained in any hyperplane 
of W through the origin. 

Proof Suppose that the image of ~ is contained in the hyperplane ~ cij hij = O. 
i<=j 

Substituting hij by the right hand side of (1.2), we obtain an identity in a/s. 
We define the weight of a i to be j. Taking the homogeneous part of weight 
k, we obtain ~ cijhij=O. Assume that k=2m.  In view of (1.2), we see 

i < = j , i + j = k  

that a 2 is contained only in hss.  Hence Css=O. Among the remaining terms, 
as-  ~ am+ 1 is contained only in h s -  1,,.+ 1. Hence c s -  1.s+ 1 =0.  Repeating the 
same argument, we see that cij's are all zero. q.e.d. 

Lemma 5.2. There exists a binary form fo satisfying the following conditions (i)- 
(iv): 

(i) f o e V  +, (ii) fo is totally real, (iii) h~ and (iv) A(fo)<O, where (h~ 
= ~(fo). 

Proof Put gm(X, y)=  F[ (x2--ky 2) and put 
k = l  

y) = ~gs (x, y) if n = 2 m, 
fo (x, [ x gs(x, y) if n = 2 m + 1. 

By direct computations, we see that fo satisfies the conditions (i)-(iv). q.e.d. 

Lemma 5.3. Let f ~ V  + with D(f)#-O. I f  f ( x ,  1)=0 has just r 1 real roots and 
2 r z imaginary roots, then the quadratic form 7J(f) has signature (r 1 + r z - 1, rz). 

Proof Let ~r be the commutative F,-algebra in the proof  of Proposition 1.2. 
Then we have d I ~ [x]/(f(x,  1)). The lemma follows from the fact that R [x]/ 
( f (x ,  1 ) ) - ~ " G I I 2  "2. q.e.d. 

Proof of Theorem 1. Let J /  be the set of Minkowski reduced positive definite 
quadratic forms of n -  1 variables. We note that J / h a s  the following properties 
(see Cassels [2, Chap. 12]): 

(P 1) J / / i s  a convex cone in W bounded by a finite number of hyperplanes 
through the origin. 

(P 2) pO = U T. J / ,  where p0 is the set of all positive definite quadratic 
forms, r ~ G L n  - 1 (Z) 

(P3) If Te GL, _ I (Z ) ,  H ~ J r  ~ and T.HeJr  then T . H = H .  Here j//o is the 
interior of J [ .  
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(P4) If n = (h,j)eJr then 

0 < hi i < (4/3) ("- 2)/2 (det H) 1/("- 1) 

Take a binary form fo satisfying the conditions (i)-(iv) in Lemma 5.2. Then 
~(fo) is positive definite by Lemma 5.3. Hence there exists a matrix 
ToeGL,_I (Z)  such that To'~(fo)~J[. Since the conditions in Lemma 5.2 are 
open ones, we may assume that To" ~ ( f o ) ~ [  ~ by Lemma 5.1 and the property 
(P 1). Take a small positive number r such that all binary forms in the compact 
ball ~o  with center at fo and radius r satisfy the conditions in Lemma 5.2 
and To. ~(~o)  ~ jr Put 

~o = {tg~ V; g ~ o ,  t ~ , ,  t> 0}. 

By the definition of ~-o, we have 

To- ~(~o) c ./p/o, (5.1) 

~ o  ~ v + - ~ o .  (5.2) 

For  a binary form f = ao x" + . . .  + a, y", we put (hi j) = ~( f ) ,  (~i~) = To- ~(f ) .  Since 
~ o  is compact, aj/ao, hi t/h22 and ~ij/Fil~ are bounded in ~o .  Since ~ is defined 
by homogeneous polynomials in %'s of degree two, we have 

sup [a/aol= sup [aj/aol =o~j (1 <j<n), (5.3) 
fe-~O f~g~O 

sup Ihll/h221= sup Ihll/hz21=flo, (5.4) 
fe~-o fe,~o 

sup  I~ ,J~ , , I  = sup  I~i/~,,l=Lj (l<=i<j<n-1). (5.5) 
f e .~o  fe.~o 

By (1.2) and the property (P4), we have 

[ ~11 [ = (4/3) ("- 2)/2 (det ~( f ) )  1/(.- 1) 

=(4/3)("-2)12n("-E)l("-X)D(f) 11("-1) for f~-~o �9 (5.6) 

If we put fll = (4/3) ("- 2)/2 n(.-2)l(.-1)Max(~ii) ' then we have 

I~,jl<PxD(f) I/t"-t) ( l < i < j ~ n - - 1 )  for f ~ - o .  (5.7) 

Further  if we put  f12 = (n-- I)fl~ Max(I t~j I), where (ti~)= To 1, then we have 

[h,jl<fl2D(f) 1/("-1) ( l < i < j < n - 1 )  for f ~ o .  (5.8) 

In view of (1.2), we have 

{(n- E) hl l } 2 =(n-1)[h~ , {(n-  2) a~ } 2 -  2 h~2 {n(n-  2)aoa, } 

+(h22-h~a){nao} 2] +(n-3)(h22-hi3){nao} 2. (5.9) 
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For f e~o ,  the first term in the right hand side of (5.9) is greater than or equal 
zero, since (h~j) is positive definite and hi3 <0. Hence we have 

{(n-- 2) h lx }2 ~ (/I  - -  3)(h22 - -  h~ a){n ao} 2 

_-> (n - 3) h22 {nao} 2 for f ~ o .  (5.10) 

If we put f13 = ( n -  2)n -~ {flo fiE/( n -  3)} 1/2 Max {I ~jl, 1}, then it follows from (5.3), 
(5.4), (5.8) and (5.10) that 

[ajl<fl3D(f) 1/2~'-1) (O<j<n) for f E ~  o. (5.11) 

For X > 0 ,  put ~ o , x = ( f ~ - o ;  D(f)<X}. Then we have ,~o,x=X1/Z~"-l).~o,~, 
since D(f) is a homogeneous polynomial in ajs of degree 2(n-1) .  Applying 
Lemma 3.1, we have 

~(o~o,xn Vz)=vol(~o.1)XK+O(X ~-~) as X --+~. (5.12) 

Here we put x = (n + 1)/2(n-1), fi = 1/2 (n--1). By (5.11) and Proposition 4.1, we 
have 

#e(~o,xC~ v~ed)=o((logX)2X~-O) as X ~ .  (5.13) 

Hence we have 

@(o~o, x n  v,~rr)=vol(~o,1)X'~-t-O((logX)2 X '~-'5) as X ~ m .  (5.14) 

Now we claim that any two distinct binary forms in ~o are not F-equivalent 
each other. Suppose that f, ge~o  and f ~  g. Then g=?. f  for some ?eF.  By 

F 

Proposition 1.2 and its corollary, we have ~(g)= q/(?)- q'(f) and ~k(y)eGL,_ 1 (Z). 
Hence we have ~P(f)= ~(g) by (5.1) and the property (P3). By Proposition 1.3 
and (5.2), we have f = g. This proves our claim and the assertion of Theorem 1 
follows from (5.14). q.e.d. 

Proof of Theorem 2. By (5.14), it suffices to show that (gf~ (9~ for any two distinct 
integral binary forms f g e ~ o .  Suppose that g0y___-(gg. Then we have 7'(f) 
= T. 7~(g) for some T~GL,_I(TZ). Hence we have 7~(f)= 7~(g) by (5.1) and the 
property (P3). By Proposition 1.3 and (5.2), we h a v e f = g ,  q.e.d. 

Proof of Theorem 3. For a prime number p, put U(p)= {re  Vz; f mod pc U.(p)} 
and W(p) = { f s  Vz; f mod pC U,(p)}. Further, put U = ('] U(p). Then for fixed 
Y > 0, we have p: prime 

lim X -~ ~ [~-o,xC~( ~ U(p))] =vol(~o,1) 1-I #e[U.(p)]P -"-~ (5.15) 
X ~  p < y  p<Y  

by Lemma 3.1 and (5.12). Since U c  0 U(p), we have 
p < Y  

lim sup X -  ~ :~ (~o ,x  n U) _-< vol  (~o,  ,) l-I 4~ f U.(p)] p -  "- 1 
X ~  p < y  

(5.16) 
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As this is true for all Y > 0, we have 

limsup X-~ #(~o,xnU)<v~ I-[ #[U,(p)]P -~-~ 
X ~ oo p: prime 

= vo l  (J~o, 1)" 247t- 4, (5.17) 

by the corollary to Proposition 2.3. To obtain a lower bound for ~(~o .x  n U), 
we observe that n U(p)c u u (  U W(p)). Hence 

p < Y  p>-_Y 

~ [ , ~ o , x n ( n  U(p))]<~(o~o,xnO)+ ~ ~(o~o,xnW(p)). (5.18) 
p < Y  p > Y  

If p>X,  then ~ o , x n W ( p ) - 0 ,  since pID(S ) for f~W(p).  Assume that p<=X. 
Then it follows from Lemma 3.1 that 

x -  ~ ~ (~o ,x  n w(p) )  ___ D" § ~ - # v .  (p)] [ v o l  (~o ,  ~) p - " -  ~ + c x - ~ p - " ]  

= p,,- 3(2 p2 _ 1) [vol (o~o, 1)P-"- ~ + CX -~ p-"] 

< C'p -2 + C"p- 1-~= O(p- ' -~). (5.19) 

Here C, C' and C" are positive constants which do not depend on p. By (5.15), 
(5.18) and (5.19), we have 

vol(~o,0  1-I #[u,(p)]p -" -a<l imin fX-~  #(~o, xnU)+O(  ~ p-~-*). (5.20) 
p < y  X~oo  p > y  

Letting Y~  oo, we obtain 

lim inf X -  ~ ~ (~-o, x n U) ____ vol (~o, ~)" 24 n -  4. (5.21) 
X -'* oo 

Hence we have lim X -~ #~(~o,x n U)=vol(~-o,l)-24zc -4. By (5.13), 
X ~ o o  

lim X -~  # ( ~ o , x  n U n  v ~ r r ) = v o l ( ~ o , 1 ) - 2 4  rc -4 .  
X --* oo 

(5.22) 

Now the theorem follows from the argument in the proof of Theorem 2 
and Proposition 2.2. q.e.d. 

Proof of Theorem 4. Suppose k l . . . . .  kr are real quadratic fields having a strictly 
unramified A.-extension. It suffices to show that there exists a real quadratic 
field kr+l which is different from k~ ( l < i < r )  and has the same property. Let 

Di be the discriminant of ki and put U = s U; D(f) ,  D~ = 1 . By the same 

argument as in the proof of Theorem 3, we see that 0 n V~ rr is an infinite set. 

Take a binary from f e  g n V~ rr and put k,+ 1 = 1 1 ~ ( ~ ) .  Then k,+ 1 * k~ (1 < i 
__<r) and the normal closure of K s is a strictly unramified A,-extension of 
k,+x. q.e.d. 
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