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Preface

The computation of invariants of algebraic number fields such as integral
bases, discriminants, prime decompositions, ideal class groups, and unit
groups is important both for its own sake and for its numerous applications,
for example, to the solution of Diophantine equations. The practical com-
pletion of this task (sometimes known as the Dedekind program) has been
one of the major achievements of computational number theory in the past
ten years, thanks to the efforts of many people. Even though some practical
problems still exist, one can consider the subject as solved in a satisfactory
manner, and it is now routine to ask a specialized Computer Algebra Sys-
tem such as Kant/Kash, LiDIA, Magma, or Pari/GP, to perform number field
computations that would have been unfeasible only ten years ago.The (very
numerous) algorithms used are essentially all described in A Course in Com-
putational Algebraic Number Theory, GTM 138, first published in 1993 (third
corrected printing 1996), which is referred to here as [Coh0]. That text also
treats other subjects such as elliptic curves, factoring, and primality testing.

It is important and natural to generalize these algorithms. Several gener-
alizations can be considered, but the most important are certainly the gen-
eralizations to global function fields (finite extensions of the field of rational
functions in one variable over a finite field) and to relative extensions of num-
ber fields. As in [Coh0], in the present book we will consider number fields
only and not deal at all with function fields.

We will thus address some specific topics related to number fields; contrary
to [Coh0], there is no attempt to be exhaustive in the choice of subjects. The
topics have been chosen primarily because of my personal tastes, and of course
because of their importance. Almost all of the subjects discussed in this book
are quite new from the algorithmic aspect (usually post-1990), and nearly all
of the algorithms have been implemented and tested in the number theory
package Pari/GP (see [Coh0] and [BBBCO]). The fact that the subjects are
new does not mean that they are more difficult. In fact, as the reader will see
when reading this book in depth, the algorithmic treatment of certain parts
of number theory which have the reputation of being “difficult” is in fact
much easier than the theoretical treatment. A case in point is computational
class field theory (see Chapters 4 to 6). I do not mean that the proofs become
any simpler, but only that one gets a much better grasp on the subject by
studying its algorithmic aspects.

As already mentioned, a common point to most of the subjects discussed
in this book is that we deal with relative extensions, but we also study other
subjects. We will see that most of the algorithms given in [Coh0] for the
absolute case can be generalized to the relative case.

The book is organized as follows. Chapters 1 and 2 contain the theory and
algorithms concerning Dedekind domains and relative extensions of number
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fields, and in particular the generalization to the relative case of the round 2
and related algorithms.

Chapters 3, 4, 5, and 6 contain the theory and complete algorithms con-
cerning class field theory over number fields. The highlights are the algo-
rithms for computing the structure of (ZK/m)∗, of ray class groups, and
relative equations for Abelian extensions of number fields using Kummer the-
ory, Stark’s conjectures, and complex multiplication. The reader is warned
that Chapter 5 is rather technical but contains a wealth of information useful
both for further research and for any serious implementation. The analytic
techniques using Stark’s conjecture or complex multiplication described in
Chapter 6 are fascinating since they construct purely algebraic objects using
analytic means.

Chapters 1 through 6 together with Chapter 10 form a homogeneous
subject matter that can be used for a one-semester or full-year advanced
graduate course in computational number theory, omitting the most technical
parts of Chapter 5.

The subsequent chapters deal with more miscellaneous subjects. In Chap-
ter 7, we consider other variants of the notions of class and unit groups, such
as relative class and unit groups or S-class and unit groups. We sketch an
algorithm that allows the direct computation of relative class and unit groups
and give applications of S-class and unit groups to the algorithmic solution
of norm equations, due to D. Simon.

In Chapter 8, we explain in detail the correspondence between cubic fields
and binary cubic forms, discovered by H. Davenport and H. Heilbronn, and
examine the important algorithmic consequences discovered by K. Belabas.

In Chapter 9, we give a detailed description of known methods for con-
structing tables of number fields or number fields of small discriminant, either
by using absolute techniques based on the geometry of numbers or by using
relative techniques based either on the geometry of numbers or on class field
theory.

In Appendix A, we give and prove a number of important miscellaneous
results that can be found scattered in the literature but are used in the rest
of the book.

In Appendix B, we give an updated but much shortened version of [Coh0,
Appendix A] concerning packages for number theory and other useful elec-
tronic information.

In Appendix C, we give a number of useful tables that can be produced
using the results of this book.

The book ends with an index of notation, an index of algorithms, and a
general index.

The prerequisites for reading this book are essentially the basic defini-
tions and results of algebraic number theory, as can be found in many text-
books, including [Coh0]. Apart from that, this book is almost entirely self-
contained. Although numerous references are made to the algorithms con-
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tained in [Coh0], these should be considered as “black boxes” and used as
such. It would, however, be preferable at some point for the reader to study
some of the algorithms of [Coh0]; in particular, those generalized here.

WARNINGS

(1) As usual, neither the author nor Springer-Verlag can assume any respon-
sibility for consequences arising from the use of the algorithms given in
this book.

(2) The author would like to hear about errors, typographical or otherwise.
Please send e-mail to

cohen@math.u-bordeaux.fr

Lists of known errors, both for [Coh0] and for the present book, can be
obtained by anonymous ftp from the URL

ftp://megrez.math.u-bordeaux.fr/pub/cohenbook

or obtained through the author’s home page on the Web at the URL
http://www.math.u-bordeaux.fr/~cohen

(3) There is, however, another important warning that is almost irrelevant in
[Coh0]. Almost all of the algorithms or the algorithmic aspects presented
in this book are new, and most have never been published before or
are being published while this book is going to press. Therefore, it is
quite possible that major mistakes are present, although this possibility
is largely diminished by the fact that almost all of the algorithms have
been tested, although not always thoroughly. More likely it is possible
that some algorithms can be radically improved. The contents of this
book only reflect the knowledge of the author at the time of writing.
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1. Fundamental Results and Algorithms in
Dedekind Domains

1.1 Introduction

The easiest way to start studying number fields is to consider them per se, as
absolute extensions of Q; this is, for example, what we have done in [Coh0].
In practice, however, number fields are frequently not given in this way. One
of the most common other ways is to give a number field as a relative exten-
sion, in other words as an algebra L/K over some base field K that is not
necessarily equal to Q. In this case, the basic algebraic objects such as the
ring of integers ZL and the ideals of ZL are not only Z-modules, but also ZK-
modules. The ZK-module structure is much richer and must be preserved.
No matter what means are chosen to compute ZL, we have the problem of
representing the result. Indeed, here we have a basic stumbling block: consid-
ered as Z-modules, ZL or ideals of ZL are free and hence may be represented
by Z-bases, for instance using the Hermite normal form (HNF); see, for ex-
ample, [Coh0, Chapter 2]. This theory can easily be generalized by replacing
Z with any other explicitly computable Euclidean domain and, under certain
additional conditions, to a principal ideal domain (PID). In general, ZK is
not a PID, however, and hence there is no reason for ZL to be a free module
over ZK . A simple example is given by K = Q

(√
−10

)
and L = K

(√
−1
)

(see Exercise 22 of Chapter 2).
A remarkable fact, discovered independently by several authors (see [Bos-

Poh] and [Coh1]) is that this stumbling block can easily be overcome, and
there is no difficulty in generalizing most of the linear algebra algorithms
for Z-modules seen in [Coh0, Chapter 2] to the case of ZK -modules. This is
the subject matter of the present chapter, which is essentially an expanded
version of [Coh1].

Thus, the basic objects of study in this chapter are (finitely generated)
modules over Dedekind domains, and so we will start by giving a detailed
description of the main results about such modules. For further reading, I
recommend [Frö-Tay] or [Bou1].

Note that, as usual, many theoretical results can be proved differently by
using algorithmic methods. After finishing this chapter, and in particular after
the study of the Hermite and Smith normal form algorithms over Dedekind
domains, the reader is advised to try and prove the results of the next section
using these algorithms.
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1.2 Finitely Generated Modules Over Dedekind
Domains

I would like to thank J. Martinet for his help in writing this section. For the
sake of completeness, we first recall the following definitions.

Definition 1.2.1. Let R be a domain, in other words a nonzero, commuta-
tive ring with unit, and no zero divisors.

(1) We say that R is Noetherian if every ascending chain of ideals of R is
finite or, equivalently, if every ideal of R is finitely generated.

(2) We say that R is integrally closed if any x belonging to the ring of frac-
tions of R which is a root of a monic polynomial in R[X ] belongs in fact
to R.

(3) We say that R is a Dedekind domain if it is Noetherian, integrally closed,
and if every nonzero prime ideal of R is a maximal ideal.

Definition 1.2.2. Let R be an integral domain and K its field of fractions.
A fractional ideal is a finitely generated, nonzero sub-R-module of K or,
equivalently, an R-module of the form I/d for some nonzero ideal I of R and
nonzero d ∈ R. If we can take d = 1, the fractional ideal is an ordinary ideal,
and we say that it is an integral ideal.

Unless explicitly mentioned otherwise, we will always assume that ideals
and fractional ideals are nonzero.

We recall the following basic facts about Dedekind domains, which explain
their importance.

Proposition 1.2.3. Let R be a Dedekind domain and K its field of fractions.

(1) Every fractional ideal of R is invertible and is equal in a unique way to
a product of powers of prime ideals.

(2) Every fractional ideal is generated by at most two elements, and the first
one can be an arbitrarily chosen nonzero element of the ideal.

(3) (Weak Approximation Theorem) Let S be a finite set of prime ideals of
R, let (ep)p∈S be a set of integers, and let (xp)p∈S be a set of elements
of K both indexed by S. There exists an element x ∈ K such that for
all p ∈ S, vp(x − xp) = ep, while for all p /∈ S, vp(x) ≥ 0, where vp(x)
denotes the p-adic valuation.

(4) If K is a number field, the ring of integers ZK of K is a Dedekind domain.

In the context of number fields, we recall the following definitions and
results.

Definition 1.2.4. Let | | be a map from K to the set of nonnegative real
numbers.
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(1) We say that | | is a field norm on K if |x| = 0 ⇐⇒ x = 0, |x+ y| ≤
|x|+ |y|, and |xy| = |x| |y| for all x and y in K.

(2) We say that the norm is non-Archimedean if we have the stronger condi-
tion |x+ y| ≤ max(|x| , |y|) for all x and y in K; otherwise, we say that
the norm is Archimedean.

(3) We say that the norm is trivial if |x| = 1 for all x 6= 0.
(4) We say that two norms are equivalent if they define the same topology

on K.

Theorem 1.2.5 (Ostrowsky). Let K be a number field and let σi be the
n = r1 + 2r2 embeddings of K into C ordered in the usual way.

(1) Let p be a prime ideal of K. Set

|x|p = N (p)−vp(x)

if x 6= 0, and |0|p = 0 otherwise. Then |x|p is a non-Archimedean field
norm.

(2) Any nontrivial, non-Archimedean field norm is equivalent to |x|p for a
unique prime ideal p.

(3) If σ is an embedding of K into C and if we set

|x|σ = |σ(x)| ,

where | | is the usual absolute value on C, then |x|σ is an Archimedean
field norm.

(4) Any Archimedean field norm is equivalent to |x|σi
for a unique σi with

1 ≤ i ≤ r1 + r2. (Note that |x|σi+r2
is equivalent to |x|σi

for r1 < i ≤
r1 + r2.)

Definition 1.2.6. A place of a number field K is an equivalence class of
nontrivial field norms. Thus, thanks to the above theorem, the places of K
can be identified with the prime ideals of K together with the embeddings σi
for 1 ≤ i ≤ r1 + r2.

Finally, we note the important product formula (see Exercise 1).

Proposition 1.2.7. Let ni = 1 for 1 ≤ i ≤ r1, ni = 2 if r1 < i ≤ r1 + r2.
Then, for all x ∈ K we have

∏

1≤i≤r1+r2
|x|ni

σi

∏

p

|x|p = 1 .

With these definitions, in the context of number fields we have a strength-
ening of Proposition 1.2.3 (3) to the case of places as follows.
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Proposition 1.2.8 (Strong Approximation Theorem). Let S be a fi-
nite set of places | |i of K, let (xi)i∈S be a set of elements of K, and let
(εi)i∈S be a set of positive real numbers both indexed by S. There exists x ∈ K
such that |x− xi|i < εi for all | |i ∈ S, while |x|i ≤ 1 for all places | |i /∈ S
except perhaps at one place not belonging to S, which can be arbitrarily cho-
sen.

Note that, due to the product formula, it is necessary to exclude one place,
otherwise the proposition is trivially false (see Exercise 2). Clearly the weak
approximation theorem is a consequence of the strong one (we choose for the
excluded place any Archimedean one, since there always exists at least one).
The following corollary is also important.

Corollary 1.2.9. Let S0 be a finite set of prime ideals of K, let (ep)p∈S0 be
a set of integers indexed by S0, and let (sσ)σ∈S∞ be a set of signs ±1 indexed
by the set S∞ of all r1 real embeddings of K. There exists an element x ∈ K
such that for all p ∈ S0, vp(x) = ep, for all σ ∈ S∞, sign(σ(x)) = sσ, while
for all p /∈ S0, vp(x) ≥ 0, where vp(x) denotes the p-adic valuation.

Proof. Set S = S0 ∪ S∞ considered as a set of places of K thanks to
Ostrowsky’s theorem. For p ∈ S0, we choose

yp ∈ pep r pep+1 and εp = N (p)−ep ,

while for σ ∈ S∞, we choose

yσ = sσ and εσ =
1

2
.

The strong approximation theorem implies that there exists y ∈ K such that
|y − yp|p < εp for p ∈ S0 and |y − yσ|σ < εσ for σ ∈ S∞, and |y|p ≤ 1 for all

p /∈ S except at most one such p.
The condition |y − yp|p < εp is equivalent to y−yp ∈ pep+1; hence vp(y) =

ep by our choice of yp.
Since sσ = ±1, the condition |y − yσ|σ < 1/2 implies in particular that

the sign of y is equal to sσ.
Finally, if p /∈ S, the condition |y|p ≤ 1 is evidently equivalent to vp(y) ≥

0.
Thus y is almost the element that we need, except that we may have

vp0(y) < 0 for some p0 /∈ S. Assume that this is the case (otherwise we
simply take x = y), and set v = −vp0(y) > 0. By the weak approximation
theorem, we can find an element π such that vp0(π) = v, vp(π) = 0 for all
p ∈ S0, and vp(π) ≥ 0 for p /∈ S0 ∪ {p0} (we can use the weak approximation
theorem since we do not need to impose any Archimedean conditions on π).
Since a square is positive, it is immediately checked that x = π2y satisfies
the desired properties. ⊓⊔
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Corollary 1.2.10. Let m be any nonzero ideal. There exists α ∈ m such that
for every prime ideal p such that vp(m) 6= 0 we have vp(α) = vp(m). Such an
element α will be called a uniformizer of the ideal m.

Proof. This is an immediate consequence of Corollary 1.2.9. ⊓⊔

The two most important examples are the following: if m = p is a prime
ideal, then α is a uniformizer of p if and only if α ∈ p r p2; if m = p−1 is
the inverse of a prime ideal, then α is a uniformizer of p−1 if and only if
α ∈ p−1 r ZK .

Corollary 1.2.11. Let m be any (nonzero) integral ideal, and let a be an
ideal of R. There exists α ∈ K∗ such that αa is an integral ideal coprime to
m; in other words, in any ideal class there exists an integral ideal coprime to
any fixed integral ideal.

Proof. Indeed, apply the weak approximation theorem to the set of prime
ideals p that divide m or such that vp(a) < 0, taking ep = −vp(a). Then, if
α is such that vp(α) = ep for all such p and nonnegative for all other p, it is
clear that αa is an integral ideal coprime to m. ⊓⊔

In this chapter, R will always denote a Dedekind domain and K its field of
fractions. In the following sections, we will also assume that we can compute
explicitly in R (this is, for example, the case if K is a number field), but for
the theoretical part, we do not need this.

The main goal of this section is to prove the following results, which
summarize the main properties of finitely generated modules over Dedekind
domains (see below for definitions).

Theorem 1.2.12. Let M be a finitely generated module over a Dedekind
domain R.

(1) The R-module M is torsion-free if and only if M is a projective module.
(2) There exists a torsion-free submodule N of M such that

M = Mtors ⊕N and N ≃M/Mtors .

(3) If M is a torsion-free R-module and V = KM , there exist (frac-
tional) ideals ai and elements ωi ∈ V such that

M = a1ω1 ⊕ a2ω2 ⊕ · · · ⊕ anωn .

The ideal class of the product a = a1a2 · · · an in the class group of R
depends only on the module M and is called the Steinitz class of M .

(4) The module M is a free R-module if and only if its Steinitz class is equal
to the trivial class, in other words if and only if a is a principal ideal.
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(5) If M is a torsion module, there exist unique nonzero integral ideals di of
R and (nonunique) elements ωi ∈M such that

M = (R/d1)ω1 ⊕ · · · ⊕ (R/dn)ωn

and di−1 ⊂ di for 2 ≤ i ≤ n.

Corollary 1.2.13. Let M be a finitely generated module over R of rank r.
There exist fractional ideals a1, . . . , an, unique integral ideals d1, . . . , dn (pos-
sibly equal to zero), and elements ω1, . . . , ωn in M such that

(1) M = (a1/d1a1)ω1 ⊕ · · · ⊕ (an/dnan)ωn,
(2) di−1 ⊂ di for 2 ≤ i ≤ n,
(3) di = {0} if and only if 1 ≤ i ≤ r.

We will prove these results completely in this section, and in passing we
will also prove a number of important auxiliary results.

1.2.1 Finitely Generated Torsion-Free and Projective Modules

Definition and Proposition 1.2.14. Let M be an R-module.

(1) We say that M is finitely generated if there exist α1, . . . , αn belonging
to M such that any element x of M can be written (not necessarily
uniquely) as x =

∑n
i=1 xiαi with xi ∈ R.

(2) We define KM = K ⊗RM ; in other words,

KM = (K ×M)/R ,

where R is the equivalence relation defined by

a1

a2
α R b1

b2
β ⇐⇒ ∃d ∈ R r {0} such that d(b2a1α− a2b1β) = 0 ,

and with a natural definition of addition and multiplication.
(3) If M is finitely generated, then KM is a finite-dimensional K-vector

space, whose dimension is called the rank of the R-module M .

Proof. All the assertions are clear, except perhaps for the fact that R is
a transitive relation.

Assume that (a1/a2)α R (b1/b2)β and (b1/b2)β R (c1/c2)γ. Then, by
definition, there exist nonzero elements d1 and d2 of R such that

d1(b2a1α− a2b1β) = d2(c2b1β − b2c1γ) = 0 ∈M .

Set z = c2a1α− a2c1γ. We have

d1d2b2z = d2c2(d1b2a1α)− d1a2(d2b2c1γ)

= d2c2(d1a2b1β)− d1a2(d2c2b1β) = 0 .
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Since d1 6= 0, d2 6= 0, b2 6= 0, and R is an integral domain, it follows that R
is an equivalence relation, as desired. ⊓⊔

Remark. It is easy to see that if we had defined (a1/a2)αR (b1/b2)β ⇐⇒
b2a1α−a2b1β = 0, this would in general not have been an equivalence relation
(see Exercise 3).

Definition 1.2.15. Let M be an R-module.

(1) The torsion submodule of M is defined by

Mtors = {x ∈M / ∃a ∈ Rr {0}, ax = 0} .
An element of Mtors is called a torsion element.

(2) We say that M is torsion-free if 0 is the only torsion element; in other
words, if Mtors = {0}.

(3) We say that M is a torsion module if all the elements of M are torsion
elements or, equivalently, if M = Mtors.

Thus, the equivalence relationR defined above can also be given by saying
that (a1/a2)α R (b1/b2)β if and only if b2a1α − a2b1β is a torsion element.
In particular, if λ = a1/a2, an element (λ, α) of KM is equal to zero if and
only if a1α is a torsion element, hence either if λ = 0 or if α itself is a torsion
element.

For notational convenience, the equivalence class (λ, α) in KM of a pair
(λ, α) will be denoted λα. Note that when λ ∈ R, this is equal (modulo the
equivalence relation) to the pair (1, λα), and hence the two notations are
compatible.

Note also that when M is torsion-free, the map α 7→ (1, α) is injective,
and hence in this case M can be considered as a sub-R-module of KM , and
KM is simply the K-vector space spanned by M .

Definition and Proposition 1.2.16. A module P is projective if it satis-
fies one of the following three equivalent conditions.

(1) Let f be a surjective map from a module F onto a module G. Then for
any linear map g from P to G there exists a linear map h from P to F
such that g = f ◦ h (see diagram below).

(2) If f is a surjective linear map from a module F onto P , there exists
a section h of f , in other words a linear map from P to F such that
f ◦ h = idP (where idP denotes the identity map on P ).

(3) There exists a module P ′ such that P ⊕ P ′ is a free module.

N

h′

��

π
-- P

i
mm

h
~~

g

��

F
f

// G // 0



8 1. Fundamental Results and Algorithms in Dedekind Domains

Proof. Let us prove that these conditions are equivalent. (1) implies (2) is
obvious by taking G = P and g = idP . Assume (2), and let (gi)i∈I be a (not
necessarily finite) system of generators of P . Let F = R(I) be the set of maps
v from I to R such that v(i) = 0 for all but a finite number of i. Then F is
a free R-module with basis vi such that vi(i) = 1 and vi(j) = 0 for j 6= i.
Finally, let f be the map from F to P such that f(vi) = gi. By definition, f
is a surjective linear map. By (2), we deduce that there exists a section h of
f from P to F .

Set P1 = h(P ). Since f ◦ h = idP , the map h is injective; hence P1 is
isomorphic to P . In addition, I claim that F = P1 ⊕ Ker(f). Indeed, for
future reference, we isolate this as a lemma:

Lemma 1.2.17. If f is a surjective map from any module F onto a pro-
jective module P and if h is a section of f (so that f ◦ h = idP ), then
F = h(P )⊕Ker(f).

Proof. Indeed, if x ∈ F , then y = x − h(f(x)) is clearly in Ker(f) since
f ◦ h = idP ; hence x ∈ h(P ) + Ker(f), so F = h(P ) + Ker(f). Furthermore,
if x ∈ h(P ) ∩ Ker(f), then since x ∈ h(P ), x = h(z) for some z ∈ P ; hence
since x ∈ Ker(f), 0 = f(x) = f(h(z)) = z, hence x = h(0) = 0, so we have a
direct sum, proving the lemma. ⊓⊔

This lemma implies Proposition 1.2.16 (3).
Finally, assume that N = P ⊕ P ′ is a free module, and let F , G, f , g be

as in (1). Denote by π the projection from N to P defined by π(p+ p′) = p if
p ∈ P and p′ ∈ P ′, denote by i the injection from P to N so that π ◦ i = idP ,
let (ui)i be a basis of N , and set g′ = g ◦ π (see preceding diagram).

Since f is surjective, we can find elements vi ∈ F such that f(vi) = g′(ui).
We arbitrarily fix such elements and set h′

(∑
i xiui

)
=
∑

i xivi. Since N is
free, this is a well-defined linear map from N to F which clearly satisfies
g′ = f ◦ h′; hence g = g′ ◦ i = f ◦ h′ ◦ i, and so h = h′ ◦ i satisfies (1). ⊓⊔

Note that the classical proof above is valid in any (commutative) ring,
and not only in a Dedekind domain, and does not need the condition that
the modules be finitely generated. Note also that the proof of (3) is essentially
the proof that a free module is projective.

Corollary 1.2.18. A projective module is torsion-free.

Proof. Indeed, the third characterization of projective modules shows that
a projective module is isomorphic to a submodule of a free module and hence
is torsion-free since a free module is evidently torsion-free. ⊓⊔

The first important result of this section is the converse of this corollary
for finitely generated modules over Dedekind domains.
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Theorem 1.2.19. Let M be a finitely generated, torsion-free module of rank
n over a Dedekind domain R. Then M is a projective module. In addition,
there exists an ideal I of R such that

M ≃ Rn−1 ⊕ I .

Before proving this theorem we prove some lemmas.

Lemma 1.2.20. If I and J are any fractional ideals of R, we have an iso-
morphism of R-modules:

I ⊕ J ≃ R⊕ IJ .

Proof. Since I ≃ kI for any k ∈ R, we can always reduce to the case where
I and J are integral ideals. By Corollary 1.2.11, in the ideal class of J there
exists an integral ideal J1 coprime to I. Thus, there exists α ∈ K∗ such that
J1 = αJ , and it follows that J1 ≃ J and IJ1 ≃ IJ , so we may replace J by
J1; in other words, we may assume that I and J are coprime integral ideals.

Let f be the map from I ⊕ J to R defined by f(x, y) = x + y. Since R
is free, hence projective, and since I + J = R, f is surjective, so there exists
a map g from R to I ⊕ J such that f ◦ g = id. Lemma 1.2.17 says that
I ⊕ J = g(R) ⊕ Ker(f). Since f ◦ g = id, g is injective; hence g(R) ≃ R.
Finally,

Ker(f) = {(x,−x)/x ∈ I,−x ∈ J} = {(x,−x)/x ∈ I ∩ J} ≃ I ∩ J = IJ

since I and J are coprime, proving the lemma. ⊓⊔

Remark. We will see later how to transform this important isomorphism
into an algorithmic equality (Corollary 1.3.6 and Proposition 1.3.12).

Corollary 1.2.21. Every fractional ideal is a projective R-module.

Proof. Simply apply the preceding lemma to J = I−1 and use Proposition
1.2.16 (3). ⊓⊔

Lemma 1.2.22. Let M be a finitely generated, torsion-free module of rank
n, set V = KM , which is a K-vector space of dimension n, and let e be a
nonzero element of V . Finally, set

I = {λ ∈ K/λe ∈M} .

Then

(1) I is a fractional ideal of R,
(2) M/Ie is a torsion-free R-module of rank n− 1.
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Proof. (1). It is clear that I is a nonzero R-module. SinceM is torsion-free,
as an R-module, I is isomorphic to Ie (send x to xe), which is a submodule of
the finitely generated module M . Since R is a Noetherian ring, a submodule
of a finitely generated module is still finitely generated, hence I is finitely
generated. It follows that I is a fractional ideal (take as denominator for I
the product of denominators of generating elements of I).

(2). Let x ∈ M/Ie be a torsion element. Thus, there exists a ∈ R r {0}
such that ax ∈ Ie ⊂ Ke, so x ∈ Ke ∩M . It follows that x = λe ∈M , hence
λ ∈ I, so x ∈ Ie or, equivalently, x = 0, so M/Ie is torsion-free. We have
(M/Ie)K = (MK)/(Ke) and Ke is of dimension 1; hence M/Ie is of rank
n− 1. ⊓⊔

Proof of Theorem 1.2.19. We prove the theorem by induction on the rank
of M . If the rank of M is zero, then M is torsion, and since M is torsion-
free, M = {0}. Assume the theorem proved up to rank n − 1, and let M
be a torsion-free module of rank n. Let e be a nonzero element of M . By
Lemma 1.2.22 above, M/Ie is a torsion-free module of rank n− 1; hence by
our induction hypothesis, M/Ie is a projective module and isomorphic to
Rn−2 ⊕ J for some ideal J (or is zero if n = 1). Lemma 1.2.17 implies that
M = g(M/Ie)⊕ Ie for a section g of the canonical surjective map from M to
M/Ie, and since g is injective, M ≃M/Ie⊕ Ie. Since M/Ie is projective by
induction and Ie ≃ I is also projective by Corollary 1.2.21, we deduce that
M is projective. In addition, we have M ≃ Rn−2 ⊕ J ⊕ I ≃ Rn−1 ⊕ IJ by
Lemma 1.2.20, thus showing our induction hypothesis and finishing the proof
of Theorem 1.2.19. ⊓⊔

Before finishing this section, we must study in more detail the relationship
between the module M and the ideal I such that M ≃ Rn−1 ⊕ I.

Theorem 1.2.23. Let I be a fractional ideal of R. Then Rn−1 ⊕ I is a free
R-module if and only if I is a principal ideal.

Proof. If I is a principal ideal, then I ≃ R; hence Rn−1 ⊕ I ≃ Rn is
free. Conversely, assume that Rn−1 ⊕ I is free. Since I is of rank 1, we have
Rn−1⊕I ≃ Rn. Let f be an isomorphism from Rn to Rn−1⊕I. Let (ei)1≤i≤n
be the canonical basis of Rn. Any element x ∈ Kn can be written uniquely
as x =

∑
1≤i≤n xiei for some xi ∈ K. If we set g(x) =

∑
1≤i≤n xif(ei), it is

clear that g(x) ∈ (Rn−1 ⊕ I)K = Kn, that g is a well-defined isomorphism
from Kn into itself such that the restriction of g to Rn is equal to f . In other
words, g can be considered as an element of GLn(K). Let M = (ai,j) be the
matrix of g on the canonical basis, so that g(ej) = f(ej) =

∑
1≤i≤n ai,jei for

all j. I claim that I is the principal ideal generated by det(M) — in other
words, that I = det(M)R.
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Note first that by definition, for all j such that 1 ≤ j ≤ n we have
ai,j ∈ R for i < n and an,j ∈ I. If we expand det(M) along the bottom row,
it immediately follows that det(M) ∈ I, hence that det(M)R ⊂ I.

Conversely, since f is surjective, it follows that for all u ∈ I there exists
v =

∑
1≤j≤n vjej ∈ Rn such that f(v) = uen, which implies that u =∑

1≤j≤n an,jvj ; hence the an,j generate the ideal I. Moreover, for any i < n,
there exists yi =

∑
1≤j≤n yi,jej such that f(yi) = ei. Fix an index i0, and let

X = (xi,j) be the n× n matrix defined by xi,j = yi,j for j < n, xi,n = 0 for
i 6= i0, and xi0,n = 1. It is clear that we have the block matrix equality

MX =

(
In−1 C

0 an,i0

)
,

where In−1 is the (n − 1) × (n − 1) identity matrix and C an (n − 1) × 1
column matrix. Taking determinants, we deduce that an,i0 ∈ det(M)R. Since
this is true for all i0 and since the an,i0 generate the ideals I, it follows that
I ⊂ det(M)R; hence I = det(M)R, as was to be proved.

Note that this proof is valid over any integral domain, not only over a
Dedekind domain (I thank D. Bernardi for simplifying my initial proof). ⊓⊔

Corollary 1.2.24. If I and J are two (fractional) ideals of R and Rm−1 ⊕
I ≃ Rn−1⊕ J , then m = n and J and I are in the same ideal class (in other
words, there exists α ∈ K∗ such that J = αI).

Proof. Since I and J are of rank 1, it is clear that m = n. From the given
isomorphism, we deduce that

Rn−1 ⊕ I ⊕ I−1 ≃ Rn−1 ⊕ J ⊕ I−1 .

Using Lemma 1.2.20, we obtain

Rn+1 ≃ Rn ⊕ JI−1 .

Thus Theorem 1.2.23 implies that JI−1 is a principal ideal, whence the corol-
lary. ⊓⊔

This corollary shows that, if M ≃ Rn−1 ⊕ I as in Theorem 1.2.19, the
ideal class of I is well-defined and depends only on M . We will call it the
Steinitz class of M and denote it by St(M).

We can restate the above results by saying that the isomorphism class of a
finitely generated, torsion-free (or projective) module is completely classified
by its rank and its Steinitz class.

Corollary 1.2.25. Let M be a finitely generated, torsion-free module. There
exist elements ω1, . . . , ωn in M and fractional ideals a1, . . . , an of R such that

M = a1ω1 ⊕ · · · ⊕ anωn .

The Steinitz class of M is the ideal class of the product a1 · · · an.
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Proof. From Theorem 1.2.19, we know that M is isomorphic to Rn−1 ⊕ I
for some ideal I whose ideal class is the Steinitz class of M . Replacing if
necessary I by I/α for some nonzero element α of I, we may assume that 1 ∈
I. Let f be the isomorphism from Rn−1⊕ I to M , let ei = (0, . . . , 1, . . . , 0) ∈
Rn−1⊕I (with 1 at the ith component), and let ωi = f(ei) ∈M . Since f is an
isomorphism, we have M = a1ω1⊕ · · · ⊕ anωn, with ai = R for 1 ≤ i ≤ n− 1
and an = I.

By Lemma 1.2.20 we have

a1ω1 ⊕ · · · ⊕ anωn ≃ Rn−1 ⊕ (a1 · · · an) ,

so the corollary follows. ⊓⊔

Corollary 1.2.26. Let M , N , and P be three finitely generated, torsion-free
modules. Assume that P ⊕M ≃ P ⊕N . Then M ≃ N .

Proof. Using Theorem 1.2.19, we have M ≃ Rm−1⊕ St(M), N ≃ Rn−1⊕
St(N), P ≃ Rp−1 ⊕ St(P ), so that

Rp+m−2 ⊕ St(P )⊕ St(M) ≃ Rp+n−2 ⊕ St(P )⊕ St(N)

or, in other words, by Lemma 1.2.20,

Rp+m−1 ⊕ St(P ) St(M) ≃ Rp+n−1 ⊕ St(P ) St(N) .

We deduce from Corollary 1.2.24 that m = n and that there exists α ∈ K
such that St(P ) St(M) = α St(P ) St(N); hence St(M) = α St(N) ≃ St(N)
since St(P ) is invertible, so M ≃ N . ⊓⊔

We end this section with the following two propositions.

Proposition 1.2.27. Let

0 −→M ′ −→M −→M ′′ −→ 0

be an exact sequence of finitely generated, torsion-free modules. Then

M ≃M ′ ⊕M ′′ and St(M) = St(M ′) St(M ′′) .

Proof. The isomorphism follows immediately from Lemma 1.2.17: if f is
the map from M to M ′′, there exists a map h from M ′′ to M such that
f ◦ h = idM ′′ and M = h(M ′′) ⊕ Ker(f) ≃ M ′′ ⊕M ′ since the sequence is
exact. The required equality of Steinitz classes now follows immediately from
Theorem 1.2.19 and Lemma 1.2.20. ⊓⊔

Proposition 1.2.28. If R is a Dedekind domain with only a finite number
of prime ideals, then R is a principal ideal domain.
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Proof. Let b be the product of the (nonzero) prime ideals of R, which are
finite in number. If c is an ideal of R, by Corollary 1.2.11 we can find an
x ∈ K∗ such that xc is an integral ideal coprime to b. But this means that
xc is not divisible by any prime ideal of R, hence xc = R, and so c = (1/x)R
is a principal ideal, hence R is a principal ideal domain. ⊓⊔

1.2.2 Torsion Modules

We first show that one can split the study of finitely generated modules over a
Dedekind domain into two essentially nonoverlapping parts: the torsion-free
modules we have just studied (Corollary 1.2.25 in particular) and the torsion
modules.

Proposition 1.2.29. Let M be a finitely generated R-module, and let Mtors

be the torsion submodule of M . Then there exists a torsion-free submodule N
of M such that

M = Mtors ⊕N .

Proof. If P = M/Mtors, then P is torsion-free. Indeed, if y ∈ Ptors, there
exists a ∈ Rr {0} such that ay ∈Mtors, and hence there exists b ∈ Rr {0}
such that bay = 0, so y ∈Mtors since R is an integral domain, and so y = 0.
From Theorem 1.2.19, we deduce that P is a projective R-module. It follows
that there exists a linear map h from P to M such that f ◦ h = idP , where
we denote by f the canonical surjection from M onto P = M/Mtors. From
Lemma 1.2.17 we deduce that M = h(P ) ⊕Mtors, and, since h is injective,
N = h(P ) is isomorphic to P , hence is projective (or torsion-free), thus
proving the proposition. ⊓⊔

Thus, to finish our study of the structure of finitely generated modules
over Dedekind domains, it remains only to study torsion modules. The main
result is the following theorem.

Theorem 1.2.30. Let M be a finitely generated torsion module over a
Dedekind domain R. There exist nonzero integral ideals d1, . . . , dr, different
from R, and elements ωj ∈M such that

(1) M = (R/d1)ω1 ⊕ · · · ⊕ (R/dr)ωr,
(2) di−1 ⊂ di for 2 ≤ i ≤ r.
The ideals di are unique and depend only on the isomorphism class of M .

We first prove two lemmas that are of independent interest.

Lemma 1.2.31. Let S be a finite set of prime ideals of R and let x ∈ K∗

such that vp(x) ≥ 0 for all p ∈ S. There exist n and d in R such that x = n/d
and d not divisible by any p in S.
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Proof. Let x = n/d with n and d in R, for the moment arbitrary. By the
approximation theorem, there exists b ∈ K such that

∀p ∈ S, vp(b) = −vp(d) and ∀p /∈ S, vp(b) ≥ 0 .

It follows that for p ∈ S, vp(db) = 0 and for p /∈ S, vp(db) ≥ 0, so db ∈ R and
is not divisible by any p in S. Since for all p ∈ S, vp(x) ≥ 0 or, equivalently,
vp(n) ≥ vp(d), it follows that vp(nb) ≥ vp(db) = 0 for p ∈ S and vp(nb) ≥ 0
for p /∈ S, hence nb ∈ R, so x = (nb)/(db) is a suitable representation of
x. ⊓⊔

Lemma 1.2.32. Let a be a nonzero integral ideal of R and set

B = {x ∈ K/ ∀p | a, vp(x) ≥ 0} .

Then

(1)

B =
{
x =

n

d
/ n, d ∈ R, (dR, a) = 1

}
;

in other words, B = S−1R, where S is the multiplicative set of elements
of R coprime to a. (We write (I, J) = 1 for two integral ideals I and J
to mean that they are coprime — in other words, that I + J = R.)

(2) B is a principal ideal domain.

Proof. (1). It is clear that if (dR, a) = 1, then vp(n/d) = vp(n) ≥ 0 for
all p | a, and hence n/d ∈ B. Conversely, let x ∈ B. Taking for S the set
of prime ideals dividing a, it follows from Lemma 1.2.31 that one can write
x = n/d with n and d in R and d coprime to a, proving (1).

(2). It is clear that B is a ring, and it is also a domain since B ⊂ K. By
general properties of rings of fractions S−1R, we know that the prime ideals
of B are exactly the ideals S−1p for the prime ideals p such that p ∩ S = ∅,
hence in our case the prime ideals dividing a, which are finite in number. Since
B = S−1R is also a Dedekind domain, it follows from Proposition 1.2.28 that
B is a principal ideal domain. ⊓⊔

Proof of Theorem 1.2.30. Let a be the annihilator of M in R, so that

a = {x ∈ R/ xM = {0}} .

Clearly, a is an R-module contained in R, hence is an integral ideal, and it is
nonzero since M is a finitely generated torsion module (it is the intersection
of the annihilators of some generators of M , hence a finite intersection of
nonzero ideals). Call B the ring defined in Lemma 1.2.32 above. Then B is a
principal ideal domain. Furthermore, if x ∈ B, then x = n/d with (dR, a) = 1;
hence dR+ a = R. Multiplying by M , we obtain dM = M , hence M = M/d,
and so xM = nM/d ⊂M ; hence BM ⊂M , and so BM = M since 1 ∈ B. It
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follows that M can be considered as a B-module instead of as an R-module.
The main advantage is that B is a principal ideal domain. Since R ⊂ B,
M is still a torsion module. Hence the structure theorem for modules over
principal ideal domain applies and we deduce that

M ≃ B/b1 ⊕ · · · ⊕B/br

for some integral ideals bi of B, not equal to {0} or B, and such that bi−1 ⊂ bi
for 2 ≤ i ≤ r.

Since B = S−1R and bi = S−1di for some ideal di divisible only by prime
ideals dividing a, we have B/bi ≃ R/di, showing the existence of ideals di
such that M ≃ ⊕

R/di. Let f be the isomorphism from
⊕
R/di to M .

Then, if we let ωi = f(0, . . . , 1, . . . , 0) (with 1 at the ith component), we
have M =

⊕
(R/di)ωi as desired. The uniqueness statement follows from the

uniqueness of the bi. ⊓⊔

Thanks to Theorem 1.2.30, we can give the following definition.

Definition 1.2.33. (1) Let M be a finitely generated torsion module over a
Dedekind domain R, and let di be the ideals given by Theorem 1.2.30. We
will say that the di are the invariant factors or the elementary divisors of
M , and the ideal product a = d1 · · · dr will be called the order-ideal of the
torsion module M .

(2) Let P and Q be two finitely generated, torsion-free R-modules having the
same rank and such that P ⊂ Q. The order-ideal of the torsion module
Q/P will be called the index-ideal of P into Q and denoted [Q : P ].

(3) More generally, if P and Q are two finitely generated, torsion-free R-
modules having the same rank and such that P ∩ Q is also of the same
rank, then the (fractional) index-ideal of P into Q is defined by the for-
mula [Q : P ] = [Q : P ∩Q] · [P : P ∩Q]−1.

It is easy to see that the definition of the fractional index-ideal does not
depend on the common submodule of P and Q that is chosen, as long as it
is of maximal rank.

When R = Z, the unique positive generator of the order-ideal of a finite
Z-module M is clearly equal to the order of M . When R = ZK for some
number field K, the order-ideal of a ZK -module M is a nonzero ideal a of
ZK , and by the multiplicativity of the norm, we can recover the order itself by
the formula |M | = |ZK/a| = N (a). Thus, the order-ideal is a richer invariant
than the order.

We also have the following simple proposition.

Proposition 1.2.34. Assume that there exist nonzero ideals ai such that an
R-module M satisfies M ≃⊕1≤i≤k R/ai. Then the order-ideal of M is equal
to
∏

1≤i≤k ai.
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Proof. This immediately follows from the fact that the order-ideal is un-
changed by module isomorphism, and that the order-ideal of a product of
two modules is equal to the product of the order-ideals. ⊓⊔

We end this section with the elementary divisor theorem for torsion-free
modules, which is now easy to prove using the above techniques.

Theorem 1.2.35. Let M and N be two torsion-free (or projective) modules
of rank m and n, respectively, such that N ⊂M (so n ≤ m). There exist frac-
tional ideals b1, . . . , bm of R, a basis (e1, . . . , em) of V = KM , and integral
ideals d1, . . . , dn such that

M = b1e1 ⊕ · · · ⊕ bmem, N = d1b1e1 ⊕ · · · ⊕ dnbnen

and di−1 ⊂ di for 2 ≤ i ≤ n.
The ideals di (for 1 ≤ i ≤ n) and the ideal classes of the ideal products

b1 · · · bn and bn+1 · · · bm depend only on M and N .

Proof. Let us first prove uniqueness, so let di and bi be ideals as in the
theorem. Since bi/dibi ≃ R/di, we have

M/N ≃ R/d1 ⊕ · · ·R/dn ⊕Rm−n ,

hence (M/N)tors ≃ R/d1 ⊕ · · ·R/dn, so the uniqueness statement for the di
follows from the uniqueness statement of Theorem 1.2.30. Furthermore, M ≃
b1⊕· · ·⊕bm ≃ Rm−1⊕b1 · · · bm by Lemma 1.2.20, and similarly N ≃ Rn−1⊕
d1 · · · dnb1 · · · bn. By Corollary 1.2.24, the ideal class of d1 · · · dnb1 · · · bn is
well-defined, hence also that of b1 · · · bn since the di are unique. Finally, the
ideal class of b1 · · · bm is well-defined, hence also that of bn+1 · · · bm.

To prove the existence statement, we first reduce to the case where m = n
by writing M/N = (M/N)tors ⊕M ′ for some torsion-free module M ′, which
can be done using Proposition 1.2.29. If we set M ′′ = {x ∈ M/ x mod N ∈
(M/N)tors}, then M ′′/N = (M/N)tors. Hence, once suitable ideals di and bi
are found for the pair (M ′′, N), we add some extra ideals bi by using Theorem
1.2.19 applied to the torsion-free module M ′.

Hence, we now assume that m = n, so M/N is a finitely generated torsion
module. We prove the result by induction on n. Assume that n ≥ 1 and that
it is true for n − 1. By Theorem 1.2.30, we have M/N =

⊕
1≤i≤r diωi for

certain ideals di. Using the same method as in the proof of Theorem 1.2.19,
we see that if b1 = {x ∈ K/ xω1 ∈M}, then M = b1ω1⊕ g(M/b1ω1), where
g is a section of the canonical projection of M onto M/b1ω1. Similarly, if
c1 = {x ∈ K/ xω1 ∈ N}, then N = c1ω1 ⊕ g′(N/c1ω1). Since N ⊂ M , we
have c1 ⊂ b1, and in fact c1 = b1d1, and in addition g′ can be taken to be the
restriction of g to N/c1ω1. Thus, we apply our induction hypothesis to the
modules Nc1ω1 ⊂M/b1ω1 of rank n−1, and we obtain the desired result. ⊓⊔
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Remark. The reader will have noted that in many cases we have tried as
much as possible to give equalities between modules, and not simply isomor-
phisms, even if the isomorphisms are canonical. This is essential in algorithmic
practice.

We now have at our disposal the main theoretical results we will need
about finitely generated modules over Dedekind domains. We will always
implicitly assume that all R-modules are finitely generated.

In the next section, we will study the algorithmic aspects. The reader
will notice that many of the algorithms that will be described give alternate
proofs of the theoretical results.

1.3 Basic Algorithms in Dedekind Domains

From now on, R will denote a Dedekind domain in which it is possible to
compute efficiently. The reader can think of R = ZK , since this is the only
application that we have in mind (see [Coh0, Sections 4.6.1 and 4.6.2] for
a brief overview). However, the ring R could also be a maximal order in a
global field of positive characteristic, for example.

1.3.1 Extended Euclidean Algorithms in Dedekind Domains

Proposition 1.3.1. Given two coprime integral ideals a and b in R, we can
find in polynomial time elements a ∈ a and b ∈ b such that a+ b = 1.

Proof. Since this is a very simple but basic proposition, we give the proof
as an algorithm.

Algorithm 1.3.2 (Extended Euclid in Dedekind Domains). Let R be a
Dedekind domain in which one can compute, and let (ωi)1≤i≤n be an inte-
gral basis chosen so that ω1 = 1 (it is easy to reduce to this case, and in practice
it is always so). Given two coprime ideals a and b given by their HNF matrices
A and B on this integral basis, this algorithm computes a ∈ a and b ∈ b such
that a+ b = 1.

1. [Apply Hermite] Let C be the n × 2n matrix obtained by concatenating A
and B (we will denote this by C ← (A|B)). Using one of the polynomial-
time algorithms for HNF reduction (see, for example, [Coh0, Section 2.4.2]),
compute an HNF matrix H and a 2n × 2n unimodular matrix U such that
CU = (0|H).

2. [Check if coprime] If H is not equal to the n × n identity matrix, output
an error message stating that a and b are not coprime, and terminate the
algorithm.

3. [Compute coordinates] Set Z ← Un+1, the (n+1)st column of the matrix U ,
and letX be the n-component column vector formed by the top n components
of Z.
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4. [Terminate] Let a be the element of K whose coordinate vector on the integral
basis is AX , and set b← 1−a. Output a and b, and terminate the algorithm.

Indeed, the HNF of the matrix C is the HNF of the ideal a+b. Since a and
b are coprime, it is the identity matrix. It follows that CZ = (1, 0, . . . , 0)t.
If we split Z into its upper half X and its lower half Y , it is clear that AX
and BY represent on the integral basis elements a ∈ a and b ∈ b such that
a+ b = 1, and hence the algorithm is valid. ⊓⊔

Implementation Remarks

(1) It was, of course, not really necessary in the proof that the ideals be given
by HNF matrices, but only by Z-bases. If we really do have HNF bases,
the first column of the matrix A of a will correspond to a generator za of
a ∩ Z, and similarly the first column of B will correspond to a generator
zb of b ∩ Z. Frequently, za and zb will be coprime. In that case, the
usual extended Euclidean algorithm will easily find u and v such that
uza + vzb = 1, and we can take a = uza and b = vzb.

(2) Since the algorithm underlying this proposition will be absolutely basic
to all our algorithms on Dedekind domains, we must ensure that it gives
results that are as reasonable as possible. Indeed, the elements a and b
are not unique and can be modified by adding and subtracting from a
and b, respectively, some element of the ideal product ab. Hence it would
be nice to have an element r ∈ ab such that a−r is “small” (and then we
replace a by a−r and b by b+r = 1−(a−r), which will also be “small”).
In Algorithm 1.4.13 we will see how this can be done reasonably well.

(3) This is the most important part of this chapter, where we specifically use
the fact that the Dedekind domain R is the ring of integers of a number
field, so as to be able to compute a and b in polynomial time.

We now come to a theorem that is trivial to prove but is the basic tool for
our algorithms. It is a generalization to Dedekind domains of the extended
Euclidean algorithm, as follows.

Theorem 1.3.3. Let a and b be two (fractional) ideals in R, let a and b be
two elements of K not both equal to zero, and set d = aa + bb. There exist
u ∈ ad−1 and v ∈ bd−1 such that au + bv = 1, and these elements can be
found in polynomial time.

Proof. If a (resp., b) is equal to zero, we can take (u, v) = (0, 1/b) (resp.,
(u, v) = (1/a, 0)), since in that case we have 1/b ∈ bd−1 = R/b (resp.,
1/a ∈ ad−1 = R/a). So assume a and b are nonzero.

Set I = aad−1 and J = bbd−1. By the definition of d−1, I and J are
integral ideals and we have I+J = R. By Proposition 1.3.1, we can thus find
in polynomial time e ∈ I and f ∈ J such that e+ f = 1, and clearly u = e/a
and v = f/b satisfy the conditions of the lemma. ⊓⊔
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Remark. Although this proposition is very simple, we will see that the
essential conditions u ∈ ad−1 and v ∈ bd−1 bring as much rigidity into the
problem as in the case of Euclidean domains, and this proposition will be
regularly used instead of the extended Euclidean algorithm. It is, in fact,
clear that it is an exact generalization of the extended Euclidean algorithm.
Note that this lemma is useful even when R is a principal ideal domain, since
R is not necessarily Euclidean.

We also need the following.

Proposition 1.3.4. Let a, b, c, d be fractional ideals of R, and let a, b, c,
d be elements of K. Set e = ad− bc, and assume that

ab = ecd, a ∈ ac−1, b ∈ bc−1, c ∈ ad−1, d ∈ bd−1 .

Finally, let x and y be two elements of an R-module M , and set

(
x′ y′

)
=
(
x y

)(a c
b d

)
.

Then
ax+ by = cx′ + dy′ .

Proof. We have x′ = ax+ by and y′ = cx+ dy; hence

cx′ + dy′ ⊂ (ac + cd)x+ (bc + dd)y ⊂ ax+ by .

Conversely, we have x = (dx′ − by′)/e and y = (−cx′ + ay′)/e; hence

ax+ by ⊂ 1

e
(abd−1x′ + abc−1y′) ,

and since ab ⊂ ecd,

ax+ by ⊂ cd(d−1x′ + c−1y′) = cx′ + dy′ ,

thus showing the double inclusion.
Note that, although we have used only the inclusion ab ⊂ ecd in the

proof, the hypotheses on a, b, c, and d imply that ecd ⊂ ab, so we must have
equality. ⊓⊔

Corollary 1.3.5. Let a and b be two ideals, a and b be two elements of K
not both zero, d = aa + bb, and u ∈ ad−1, v ∈ bd−1 such that au+ bv = 1 as
given by Theorem 1.3.3.

Let x and y be two elements of an R-module M , and set

(
x′ y′

)
=
(
x y

)( b u
−a v

)
.

Then
ax+ by = abd−1x′ + dy′ .
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Proof. Since b ∈ b−1d and a ∈ a−1d, this is clearly a special case of
Proposition 1.3.4 with c = abd−1. ⊓⊔

Corollary 1.3.6. Let a, b be two ideals. Assume that a, b, c, and d are four
elements of K such that

ad− bc = 1, a ∈ a, b ∈ b, c ∈ b−1, d ∈ a−1 .

Let x and y be two elements of an R-module M , and set

(
x′ y′

)
=
(
x y

)(a c
b d

)
.

Then
ax+ by = Rx′ + aby′ .

Proof. This is also a special case of Proposition 1.3.4 with c = R and
d = ab. We will see in Proposition 1.3.12 how to find a, b, c, and d, given a

and b. ⊓⊔

Remarks

(1) The type of elementary transformation described in Proposition 1.3.4,
particularly in its two corollaries above, will be the only one we are
allowed to use. For example, if we want simply to replace x by x− qy for
some q in the field K (which is the usual elementary transformation), we
must have q ∈ ba−1, as can easily be checked.

(2) With the notation of Proposition 1.3.4, note that we also have the formal
equality

(
c−1 d−1

)
=
(
a−1 b−1

)(a c
b d

)
.

Indeed, since a ∈ ac−1 and b ∈ bc−1, it is clear that aa−1 + bb−1 ⊂
c−1. Conversely, since e = ad − bc, we have e ∈ abd−1 + bad−1, hence
ecd ⊂ abc + bac, and since ab = ecd, we obtain the reverse inclusion
c−1 ⊂ aa−1 +bb−1. The second equality d−1 = ca−1 +db−1 is proved in a
similar manner. We will see in Section 1.7 that the “real” reason for these
identities is that for any nonzero ideal a, the ideal a−1 can be canonically
identified with the set of R-linear maps from a to R (see Exercise 6).

1.3.2 Deterministic Algorithms for the Approximation Theorem

It will also be useful (although not essential) to have some algorithms linked
to the approximation theorem in Dedekind domains. In this section, we give
straightforward deterministic versions, but in practice it is much better to
use the randomized methods that we explain in the next section.
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Proposition 1.3.7. Given ideals ai for 1 ≤ i ≤ k whose sum is equal to R,
we can in polynomial time find elements ai ∈ ai such that

∑
i ai = 1.

Proof. Same proof as for Proposition 1.3.1, except that we concatenate
the k HNF matrices of the ideals and we split Z into k pieces at the end.
Note that the matrix U will be an nk × nk unimodular matrix, which can
become quite large. ⊓⊔

Proposition 1.3.8. Let S be a finite set of prime ideals of R and let
(ep)p∈S ∈ ZS. There exists a polynomial-time algorithm that finds a ∈ K
such that vp(a) = ep for p ∈ S and vp(a) ≥ 0 for p /∈ S.

Proof. We can write ep = fp− gp with fp ≥ 0 and gp ≥ 0. If we can find n
(resp., d) such that the conditions are satisfied with ep replaced by fp (resp.,
gp), it is clear that a = n/d satisfies our conditions. Thus, we may assume
that ep ≥ 0 for p ∈ S. Following the classical proof (see, for example, [Coh0,
Proposition 4.7.8]), we compute the ideal product

I =
∏

p∈S
pep+1

and we set for each p ∈ S

ap = I · p−ep−1 .

Then the ap are integral ideals that sum to R, so by Proposition 1.3.7, we can
in polynomial time find ap ∈ ap whose sum is equal to 1. Furthermore, we can
find bp ∈ pep r pep+1 (for example, by taking the epth power of an element
of p r p2 which can be found in polynomial time). Then a =

∑
p∈S apbp is a

solution to our problem. ⊓⊔

Corollary 1.3.9. Given two integral ideals a and b of R such that the fac-
torization of the norm of b is known, there exists a polynomial-time algorithm
that finds x ∈ K such that xa is an integral ideal coprime to b, and similarly
finds y ∈ K such that ya−1 is an integral ideal coprime to b.

Proof. For x, apply Proposition 1.3.8 to S equal to the prime ideal factors
of b and to ep = −vp(a) for all p ∈ S. For y, apply Proposition 1.3.8 to S
equal to the prime ideal factors of a and b and to ep = vp(a) for all p ∈ S. ⊓⊔

Proposition 1.3.10. Let a be an integral ideal of R and a ∈ a, a 6= 0.
Assume that the prime ideal factorization of a is known. Then there exists a
polynomial-time algorithm that finds b ∈ a such that a = aR+ bR.

Proof. Write aR =
∏

p pep with ep ≥ 0. Thus, a =
∏

p pvp(a) with 0 ≤
vp(a) ≤ ep. By Proposition 1.3.8 we can, in polynomial time, find b ∈ R such
that vp(b) = vp(a) for all p | a; by looking at p-adic valuations, it is clear that
a = aR+ bR. ⊓⊔
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Remarks
Recall that R is the ring of integers of a number field.

(1) If p is a prime ideal given by a Z-basis, the above proposition shows that
we can, in polynomial time, find a two-element generating system for
p. Indeed, we take a = p, and using the polynomial-time algorithm of
Buchmann and Lenstra (see [Coh0, Algorithm 6.2.9]), we can factor pR
into prime ideals so the condition is satisfied.

(2) To factor a it is enough to factor the absolute norm N (a) ∈ Z of a,
since we can use the Buchmann–Lenstra algorithm to factor into prime
ideals the prime factors of N (a), then use [Coh0, Algorithm 4.8.17] for
computing p-adic valuations, which is also polynomial-time as soon as a
two-element generating set is known for every prime ideal p, which is the
case by (1).

(3) As mentioned earlier, it is much faster in practice to perform a search
for the elements that we need in Corollary 1.2.11 and Proposition 1.3.10.
Of course, the time to perform this search is a priori exponential, but
in practice it will always be very fast (see Algorithms 1.3.14 and 1.3.15
below).

The strong form of the approximation theorem can be dealt with in the
same manner:

Proposition 1.3.11. Let S be a finite set of prime ideals of R, let (ep)p∈S ∈
ZS , and let (xp)p∈S ∈ KS. Then there exists a polynomial-time algorithm that
finds x ∈ K such that vp(x− xp) = ep for p ∈ S and vp(x) ≥ 0 for p /∈ S.

Proof. Assume first that the ep are nonnegative and xp ∈ R. Then we
introduce the same ideals I and ap and elements ap as in the proof of Propo-
sition 1.3.8. If we set

x =
∑

p∈S
apxp ,

it is easy to see that x satisfies the required conditions.
Consider now the general case. Let d ∈ R be a common denominator for

the xp, and multiply d by suitable elements of R so that ep + vp(d) ≥ 0 for
all p ∈ S. According to what we have just proved, there exists y ∈ R such
that

∀p ∈ S, vp(y − dxp) = ep + vp(d) and

∀p | d, p /∈ S, vp(y − dxp) = vp(d) .

It follows that x = y/d satisfies the given conditions. ⊓⊔
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Finally, we show how to find elements satisfying Corollary 1.3.6.

Proposition 1.3.12. Let a and b be two (fractional) ideals in R. Assume
that the prime ideal factorization of a or of b is known. Then it is possible
to find in polynomial time elements a ∈ a, b ∈ b, c ∈ b−1, and d ∈ a−1 such
that ad− bc = 1.

Proof. Multiplying if necessary a and b by an element of Q∗, we can reduce
to the case where a and b are integral ideals. Assume, for example, that the
factorization of b is known. According to Corollary 1.2.11, we can, in poly-
nomial time, find a ∈ R such that aa−1 is an integral ideal (or, equivalently,
a ∈ a) and coprime to b. According to Proposition 1.3.1, we can thus find
e ∈ aa−1 and f ∈ b such that e+ f = 1. Clearly, b = f , c = −1, and d = e/a
satisfy the required conditions. ⊓⊔

Remark. All of the above can also be done in polynomial time without
knowing any prime ideal factorizations by using factor refinement , which we
will not explain here (see [Bac-Sha1]).

1.3.3 Probabilistic Algorithms

The algorithms given above suffer from two defects. First, although they
are polynomial-time, they are rather slow; second, the size of the computed
objects will usually be unreasonably large. We have given the algorithms just
to show their existence (in any case, they are all very easy), but in practice
it is much better to use randomized algorithms, as is usually the case in
computational problems. Although we have already done so, we explicitly
specialize to R = ZK .

In all these randomized algorithms, we will have to pick at random ele-
ments from a given fractional ideal. This can be done in the following simple
way.

Algorithm 1.3.13 (Random Element in an Ideal). Let a be an ideal of a
number field K of degree m over Q given by some generating system over Z.
This algorithm outputs a small random element of a.

1. [LLL-reduce] Using an algorithm for LLL-reduction, compute an LLL-reduced
basis (αi)1≤i≤m for the ideal a.

2. [Output random element] For 1 ≤ i ≤ m, let xi be randomly chosen integers
such that |xi| ≤ 3. Output

∑
1≤i≤m xiαi and terminate the algorithm.

Remarks

(1) On the one hand, it is essential to do an LLL-reduction in the first step so
as to have small elements. On the other hand, in practice this algorithm
is not used as written since we will need several random elements from
the same ideal a. Hence, we compute once and for all an LLL-reduced
basis of a, and then execute step 2 as many times as necessary.
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(2) The constant 3 used in step 2 is arbitrary but is more than sufficient for
essentially all purposes. Probably the constant 2 would also be more than
enough, and perhaps even the constant 1 for most applications. Since a
factor of 3 in the size of the coefficients is usually not too costly, the
constant 3 seems a good choice.

We now give simple-minded but efficient randomized versions of the algo-
rithms implicit in Corollary 1.3.9, Proposition 1.3.10, and Proposition 1.3.12.

Algorithm 1.3.14 (Coprime Ideal Class). Given two integral ideals a and b

of a number field K of degree m over Q, this algorithm computes α ∈ K such
that αa is an integral ideal coprime to b.

1. [Compute a−1] Using [Coh0, Algorithm 4.8.21], compute the HNF of the ideal
a−1 on some fixed integral basis, then an LLL-reduced basis (αi) of a−1.

2. [Pick random element] Using the (αi) and step 2 of Algorithm 1.3.13, pick a
small random element α ∈ a−1.

3. [Check if OK] Form the m × 2m matrix M whose first m columns give the
product of α by the basis elements of a, and the lastm columns gives a Z-basis
of b on the fixed integral basis. Compute the HNF of the ideal sum αa + b by
computing the HNF of the matrix M . If this HNF is not equal to the identity
matrix, go to step 2. Otherwise, output α and terminate the algorithm.

Since α is chosen in a−1, we have αa+b = ZK if and only if vp(α) = −vp(a)
for every prime ideal p dividing b. This occurs with probability

∏
p|b(1 −

1/(N (p))), so the algorithm should be successful quite rapidly. ⊓⊔

We leave as a (trivial) exercise for the reader to write the corresponding
algorithm for computing β ∈ K such that βa−1 is coprime to b (Exercise 10).
In fact, we will use it implicitly in Algorithm 1.3.16.

Remark. In this algorithm as well as in the following two, it is not really
necessary to compute the full HNF of the matrix M , only the determinant
of this HNF, which usually can be done much faster.

Algorithm 1.3.15 (Two-Element Representation). Given a fractional ideal a

in a number field K and a nonzero element a ∈ a, this algorithm computes b ∈ a

such that a = aZK + bZK .

1. [Compute an LLL-reduced basis] If not given in this form, compute first the
HNF matrix A of the ideal a on a fixed integral basis. Then, using an LLL
algorithm, compute an LLL-reduced basis (αi)1≤i≤m of a.

2. [Compute matrix Ma] Compute the matrix Ma whose columns give on a fixed
integral basis the product of a by the elements of the integral basis (thus Ma

will be equal to aIm if a ∈ Q).

3. [Pick random element] Using the (αi) and step 2 of Algorithm 1.3.13, pick a
small random element b ∈ a, and compute the matrix Mb in a similar way as
the matrix Ma.
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4. [Check if OK] Compute the HNF of the matrix (Ma|Mb) obtained by con-
catenating the matrices Ma and Mb. If it is not equal to A, go to step 3.
Otherwise, output b and terminate the algorithm.

A similar analysis to the one made above shows that even though the
algorithm may seem simple-minded, it is in fact rather efficient. ⊓⊔

Algorithm 1.3.16 (ad−bc = 1 Algorithm). Given two fractional ideals a and
b, this algorithm outputs four elements a, b, c, and d such that a ∈ a, b ∈ b,
c ∈ b−1, d ∈ a−1, and ad− bc = 1.

1. [Remove denominators] Let d1 ∈ Q (or even in K) be a common denominator
for the generators of a, and similarly d2 for b, and set a← d1a, b← d2b.

2. [LLL-reduce] Using an LLL-algorithm, compute an LLL-reduced basis (αi) of
a.

3. [Compute a−1] Using [Coh0, Algorithm 4.8.21], compute the HNF of a−1 on
some fixed integral basis.

4. [Pick random element] Using the (αi) and step 2 of Algorithm 1.3.13, pick a
small random element α ∈ a.

5. [Check if OK] Form the m × 2m matrix M whose first m columns give the
product of α by the basis elements of a−1, and the last m columns give a
Z-basis of b on the fixed integral basis. Compute the HNF of the ideal sum
αa−1 + b by computing the HNF of the matrix M . If this HNF is not equal
to the identity matrix, go to step 4.

6. [Euclidean step] Using Algorithm 1.3.2, compute e ∈ αa−1 and f ∈ b such
that e+ f = 1.

7. [Terminate] Set a ← α/d1, b ← f/d2, c ← −d2, set d ← ed1/α if α 6= 0,
d← d1 otherwise, and terminate the algorithm.

Remarks

(1) In step 5, if we keep the unimodular transformation matrix U of the
HNF algorithm, the elements e and f necessary for step 6 can be read off
immediately as in Algorithm 1.3.2 by looking at an appropriate column
of U .

(2) The special case α = 0 can occur only if b = ZK (after step 1), and since
in that case a = 0 and bc = −1, we can choose any value of d belonging
to a−1. Since after step 1, a is an integral ideal, 1 ∈ a−1, and hence we
may take d = d1.

1.4 The Hermite Normal Form Algorithm in Dedekind
Domains

In this section we will consider only finitely generated, torsion-free R-
modules; we refer to Section 1.7 for torsion modules.
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1.4.1 Pseudo-Objects

In view of Theorem 1.2.25, it is natural to give the following definition.

Definition 1.4.1. Let M be a finitely generated, torsion-free R-module, and
set V = KM .

(1) A pseudo-element of V is a sub-R-module of V of the form aω with
ω ∈ V and a a fractional ideal of R or, equivalently, an equivalence class
of pairs (ω, a) formed by an element of V and a fractional ideal of R
under the equivalence relation (ω, a) R (ω′, a′) if and only if aω = a′ω′

as sub-R-modules of rank 1 of V .
(2) The pseudo-element aω is said to be integral if aω ⊂M .
(3) If ai are fractional ideals of R and ωi are elements of V , we say that

(ωi, ai)1≤i≤k is a pseudo-generating set for M if

M = a1ω1 + · · ·+ akωk .

(4) We say that (ωi, ai)1≤i≤k is a pseudo-basis of M if

M = a1ω1 ⊕ · · · ⊕ akωk .

Note that, according to Theorem 1.2.25, any finitely generated, torsion-
free module has a pseudo-basis.

Let (ωi, ai)1≤i≤n be a pseudo-basis of M . Then n is equal to the rank of
M . It is clear that, among other transformations, we can multiply ai by a
nonzero element of K as long as we divide ωi by the same element, and we
will still have a pseudo-basis. In particular, if so desired, we may assume that
the ai are integral ideals, or that the ωi are elements of M . On the other hand,
it is generally not possible to have both properties at once. For example, let
M = a be a nonprincipal, primitive integral ideal. The general pseudo-basis
of M is (a, a/a), and so to have both an element of M and an integral ideal,
we would need a ∈ a and a/a ⊂ R, which is equivalent to a = aR, contrary
to our choice of a.

Furthermore, restricting either to elements of M or to integral ideals
would be too rigid for algorithmic purposes, so it is preferable not to choose
a pseudo-basis of a particular type.

We will systematically represent finitely generated, torsion-freeR-modules
by pseudo-bases. To be able to do this, we need to know how to compute such
pseudo-bases and how to perform usual operations on these pseudo-bases. As
in the case of R = Z, the basic algorithm for doing this is the Hermite
normal form algorithm, and we will see that such an algorithm does indeed
exist. Before doing this, however, let us see how one can go from one basis to
another.
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The following proposition is a generalization of Proposition 1.3.4.

Proposition 1.4.2. Let (ωi, ai)i and (ηj , bj)j be two pseudo-bases for an R-
module M , and let U = (ui,j) be the n × n matrix giving the ηj in terms of
the ωi (so that (η1, . . . , ηn) = (ω1, . . . , ωn)U).

Set a = a1 · · · an and b = b1 · · · bn. Then ui,j ∈ aib
−1
j and a = det(U)b

(note that, by Theorem 1.2.25, we know that a and b are in the same ideal
class). Conversely, if there exist ideals bj such that a = det(U)b (with b =
b1 · · · bn) and ui,j ∈ aib

−1
j , then (ηj , bj)j is a pseudo-basis of M , where the

ηj are given in terms of the ωi by the columns of U .

Proof. Since

ηj ∈ b−1
j M = b−1

j

n⊕

i=1

aiωi =

n⊕

i=1

aib
−1
j ωi ,

it follows that ui,j ∈ aib
−1
j .

It is easily proven by linearity or by induction on n that e = det(U) ∈
ab−1, so eb ⊂ a. Similarly, the matrix U−1 expresses the ωj in terms of the
ηi, so det(U−1) ∈ ba−1. But since det(U−1) = 1/e, we have a/e ⊂ b or,
equivalently, a ⊂ eb, from which it follows that a = eb.

Conversely, if U has the above properties, by looking at the adjoint matrix
of U it is easy to see that U−1 is of a similar form with a and b exchanged (it
is of course essential that a = det(U)b). If X = (x1, . . . , xn)t is the column
vector of components of an element m of M in the pseudo-basis (ωi, ai)i, then
m = (ω1, . . . , ωn)X = (η1, . . . , ηn)U−1X , and U−1X = (y1, . . . , yn)

t satisfies
yi ∈ bi for 1 ≤ i ≤ n. Since the yi are unique, this shows that (ηj , bj)j is a
pseudo-basis of M , proving the proposition. ⊓⊔

It is clear that Proposition 1.3.4 is the special case n = 2 of this proposi-
tion. Since that special case is constantly used, however, we have presented
it separately.

Corollary 1.4.3. Let M be a finitely generated, torsion-free R-module to-
gether with a nondegenerate, bilinear pairing T (x, y) from M × M to R
(for example, M = ZL, where L is a number field containing K, and
T (x, y) = TrL/K(x · y)). For any pseudo-basis B = (ωj , aj) of M , let
discT (B) be the ideal defined by discT (B) = det(T (ωi, ωj))a

2, where as usual
a = a1 · · · an. Then if B′ = (ηj , bj) is another pseudo-basis of M , we have
discT (B′) = discT (B).

Proof. Note that, since in general ωj /∈ M , in the above definition we
extend the bilinear form T to V × V (where V = KM) by bilinearity.

Let U be the matrix expressing the ηj in terms of the ωi. We know that
a = det(U)b. By bilinearity, it is clear that if G (resp., G′) is the matrix of
the T (ωi, ωj) (resp., T (ηi, ηj)), then G′ = U tGU . It follows that
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discT (B′) = det(G′)b2 = det(G) det(U)2a2/ det(U)2 = det(G)a2 = discT (B).
⊓⊔

Since discT (B) does not depend on the chosen pseudo-basis B, we will
denote it by dT (M) and call it the discriminant ideal of M with respect to
the pairing T (x, y).

Remark. We can also define det(T (ωi, ωj)) as an element dT (M) ∈
K∗/K∗2, since, under a change of pseudo-basis, this determinant is mul-
tiplied by det(U)2 ∈ K∗2. The pair discT (M) = (dT (M), dT (M)) will simply
be called the discriminant of M with respect to T . Note that knowledge of
one of the components of the pair does not imply knowledge of the other;
hence the pair itself is useful. In the absolute case where M = ZK is the
ring of integers of a number field K considered as a Z-module and T is the
trace, the discriminant ideal dT (M) gives the absolute value of the usual
discriminant, and dT (M) gives its sign (and some other information already
contained in dT (M)).

Since we represent finitely generated, torsion-free modules by pseudo-
bases, we must also explain how to represent linear maps between such mod-
ules. This is done using the following proposition, which is, of course, similar
in nature to Proposition 1.4.2.

Proposition 1.4.4. Let (ωi, ai)i be a pseudo-basis for a finitely generated,
torsion-free module M , and similarly (ω′

j , a
′
j)j for a module M ′. Let f be a

K-linear map from M ′ to M . There exists a matrix A = (ai,j) such that

ai,j ∈ aia
′
j
−1

and

f

(
∑

j

a′jω
′
j

)
=
∑

i

(
∑

j

ai,ja
′
j

)
ωi .

Conversely, if A = (ai,j) is such that ai,j ∈ aia
′
j
−1 for all i, j, the above

formula defines a K-linear map f from M ′ to M .

Proof. The (very easy) proof is left to the reader (Exercise 11). The matrix
A will of course be called the matrix of the map f on the chosen pseudo-bases
of M ′ and M . Note that we need only a matrix and not a pseudo-matrix (see
Definition 1.4.5) to represent a map. Thus, we will represent maps by such
matrices A. ⊓⊔

1.4.2 The Hermite Normal Form in Dedekind Domains

The main theorem of this section is that the notion of Hermite normal form
can be extended to Dedekind domains. As is well known, the Hermite normal
form algorithm is a direct generalization of the extended Euclidean algorithm.
Since we now have such an algorithm available to us (Theorem 1.3.3), it is
not surprising that this can be done.
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We first introduce a definition.

Definition 1.4.5. (1) A pseudo-matrix is a pair (A, I), where A = (ai,j) is
an n× k matrix with entries in K, and I = (ai) is a list of k fractional
ideals.

(2) The map associated with this pseudo-matrix is the map f from a1×· · ·×ak
to Kn defined by f(a1, . . . , ak) =

∑
1≤j≤k ajAj, where the Aj are the

columns of A.
(3) The module associated with this pseudo-matrix is the module M =∑

1≤j≤k ajAj ⊂ Kn, or in other words the image of the map f , so that
(Aj , aj) is a pseudo-generating set for M . We will also call this module
the image of the pseudo-matrix (A, I).

(4) The kernel of the pseudo-matrix (A, I) is the kernel of the associated map
f .

Theorem 1.4.6 (Hermite Normal Form in Dedekind Domains). Let
(A, I) be a pseudo-matrix, where I = (ai) is a list of k fractional ideals, and
A = (ai,j) is an n × k matrix. Assume that A is of rank n (so k ≥ n)with
entries in the field of fractions K of R (we could just as easily consider the
case of a matrix of lower rank). Let M =

∑
j ajAj be the R-module asso-

ciated with the pseudo-matrix (A, I). There exist k nonzero ideals (bj)1≤j≤k
and a k × k matrix U = (ui,j) satisfying the following conditions, where we
set a = a1 · · · ak and b = b1 · · · bk.
(1) For all i and j we have ui,j ∈ aib

−1
j .

(2) We have a = det(U)b.
(3) The matrix AU is of the following form:

AU =





0 0 . . . 0 1 ∗ . . . ∗
0 0 . . . 0 0 1 . . . ∗
...

...
. . .

...
...

. . .
. . .

...
0 0 . . . 0 0 . . . 0 1




,

where the first k − n columns are zero (we will write this in abbreviated
form as AU = (0|H)).

(4) If we call ωj the elements corresponding to the nonzero columns of AU
and cj = bk−n+j for 1 ≤ j ≤ n, then

M = c1ω1 ⊕ · · · ⊕ cnωn ;

in other words, (ωj , cj)1≤j≤n is a pseudo-basis of the image M of the
pseudo-matrix (A, I).

(5) If we denote by Uj the columns of U , then (Uj , bj)1≤j≤k−n is a pseudo-
basis for the kernel of the pseudo-matrix (A, I).
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Proof. We give the proof of the existence of the HNF as an algorithm,
very similar to [Coh0, Algorithm 2.4.5], which is the naive HNF algorithm.

Algorithm 1.4.7 (HNF Algorithm in Dedekind Domains). Given an n × k
matrix A = (ai,j) of rank n, and k (fractional) ideals aj in a number field K,
this algorithm computes k ideals bj and a k × k matrix U such that these data
satisfy the conditions of Theorem 1.4.6. We will make use only of elementary
transformations of the type given in Theorem 1.3.3 combined with Corollary
1.3.5. We denote by Aj (resp., Uj) the columns of A (resp., U).

1. [Initialize] Set i← n, j ← k, and let U be the k × k identity matrix.

2. [Check zero] Set m← j, and while m ≥ 1 and ai,m = 0, set m← m− 1. If
m = 0, the matrix A is not of rank n, so print an error message and terminate
the algorithm. Otherwise, if m < j, exchange Am with Aj , am with aj, Um
with Uj, and set m← j.

3. [Put 1 on the main diagonal] Set Aj ← Aj/ai,j , Uj ← Uj/ai,j , and aj ←
ai,jaj. (We now have ai,j = 1.)

4. [Loop] If m = 1, go to step 6. Otherwise, set m ← m − 1, and if ai,m = 0,
go to step 4.

5. [Euclidean step] (Here ai,j = 1 and ai,m 6= 0.) Using the algorithm contained
in the proof of Theorem 1.3.3, set d = ai,mam + aj and find u ∈ amd−1

and v ∈ ajd
−1 such that ai,mu + v = 1. Then set (Am, Aj) ← (Am −

ai,mAj , uAm+vAj), (Um, Uj)← (Um−ai,mUj , uUm+vUj), and (am, aj)←
(amajd

−1, d). Finally, go to step 4.

6. [Final reductions of row i] For m = j + 1, . . . , n, find q ∈ ama−1
j such that

ai,m− q is small (see below), and set Am ← Am− qAj and Um ← Um− qUj.
7. [Finished?] If i = 1, then output the matrix U , the modified matrix A (the

matrix AU in the notation of Theorem 1.4.6), and the modified ideals aj (or
bj in the notation of Theorem 1.4.6), and terminate the algorithm. Otherwise,
set i← i− 1, j ← j − 1, and go to step 2.

Proof of Theorem 1.4.6 and Algorithm 1.4.7.
Ignoring step 6 for the moment, we clearly see that this algorithm, which

is essentially identical to the one for Z, terminates with a new matrix A of
the form required by Theorem 1.4.6. Furthermore, the elementary transfor-
mations that are used are either exchanges of columns (and the correspond-
ing ideals) or transformations allowed by Corollary 1.3.5; hence the module
a1ω1 + · · ·+ akωk stays unchanged.

Call a the initial ideal product and b the current one. All the elementary
operations are of determinant ±1 (in which case b is unchanged), except in
step 3 where the determinant is 1/ai,j and b is multiplied by ai,j ; hence the
relation a = det(U)b is preserved throughout. We also clearly have ui,j ∈
aib

−1
j . This shows (1), (2), and (3) of the theorem.
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Upon termination we have a direct sum, and not simply a sum, since the
last n columns of A are then linearly independent, showing (4).

Finally, let us prove (5). Since for all i, j we have ui,j ∈ aib
−1
j and AUj = 0

for 1 ≤ j ≤ k − n, it is clear that (Uj , bj) belongs to the kernel of (A, I) for
1 ≤ j ≤ k − n. Conversely, let X ∈ a1 × · · · × ak be an element of the kernel
of (A, I). Set Y = U−1X = (y1, . . . , yk)

t. Since U is invertible, AX = 0 if
and only if AUU−1X = AUY = 0 and, using the special form of the matrix
AU , if and only if yj = 0 for k − n+ 1 ≤ j ≤ k. Hence, AX = 0 if and only
if X = UY =

∑
1≤j≤k−n yjUj . By symmetry with (1), U−1 = (vi,j) with

vi,j ∈ bia
−1
j , hence yi ∈ bi so X ∈∑1≤j≤k−n bjUj , as was to be proved. We

will come back to step 6 of the algorithm in Section 1.4.3. ⊓⊔

Remark. Note that this proof gives an algorithm to find an HNF of a
matrix, but this algorithm is certainly not polynomial-time since the cor-
responding naive algorithm for HNF over Z is already not polynomial-time
because of coefficient explosion. The existence of a polynomial-time algorithm
for HNF reduction (including finding the matrix U) is rather recent (see [Haf-
McC]). Note that in practice, n will be the relative degree of number fields
extensions, and so in many cases the naive algorithm will be sufficient.

We now consider the problem of uniqueness in Theorem 1.4.6. We first
need a definition.

Definition 1.4.8. Let (A, I) be a pseudo-matrix with I = (aj). If i1, . . . , ir
are r distinct rows of A and j1, . . . , jr are r distinct columns, we define the
minor-ideal corresponding to these indices as follows. Let d be the determinant
of the r× r minor extracted from the given rows and columns of A. Then the
minor-ideal is the ideal daj1 · · · ajr .

With this definition we can state the following result.

Theorem 1.4.9. With the notation of Theorem 1.4.6, for 1 ≤ j ≤ n, set
cj = bk−n+j. Then the ideals cj are unique. More precisely, if we call gj =
gj(A) the ideal generated by all the (n+ 1− j)× (n+ 1− j) minor-ideals in
the last n+ 1− j rows of the matrix A, then cj = gn+1−jg

−1
n−j.

Proof. One easily checks that the ideals gm(A) are invariant under the
elementary transformations of the type used in Algorithm 1.4.7. In particular,
gj(A) = gj(AU). But in the last n+1−j rows of AU there is a single nonzero
minor whose value is trivially equal to 1; hence we have gj(A) = cn+1−j · · · cn,
proving the theorem. ⊓⊔

Proposition 1.4.10. If AU is of the form given by Theorem 1.4.6, a nec-
essary and sufficient condition for AV to be of the same form with the same
ideals bj for j > k − n is that U−1V be a block matrix (B C

0 D ) with D an
n× n upper-triangular matrix with 1 on the diagonal such that for each i, j
the entry in row i and column j belongs to cic

−1
j .
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Proof. Trivial and left to the reader. ⊓⊔

Corollary 1.4.11. For each i and j with 1 ≤ i < j ≤ n, let Si,j be a system
of representatives of K/cic

−1
j . Write AU = (0|H) as in Theorem 1.4.6. Then

in that theorem, we may assume that for every i and j such that i < j the
entry in row i and column j of the matrix H is in Si,j, in which case the
matrix H is unique.

Proof. For i < j, let hi,j be the entry in row i and column j of the matrix
H . There exists a unique h′i,j ∈ Si,j such that

q = h′i,j − hi,j ∈ cic
−1
j .

If the Hj are the columns of H , then by Proposition 1.4.10 the replacement
of Hj by Hj − qHi is a legal elementary operation that transforms hi,j into
h′i,j , proving the existence. The uniqueness follows also from this, since there
was a unique possible q. ⊓⊔

1.4.3 Reduction Modulo an Ideal

We can now comment on step 6 of Algorithm 1.4.7. By Corollary 1.4.11, the
reduction done in step 6 is legal. Ideally, for each i and j, we would like to
find a system of representatives of K/cic

−1
j as well as an algorithm for finding

the representative of a given element of K. There are at least two different
methods for doing this, both of which have advantages and disadvantages.

The first method is to compute the (usual) HNF matrix H of cic
−1
j on

some fixed integral basis of K. If (di)1≤i≤m are the diagonal elements of H
(with m = [K : Q]), then we can take S =

∏
1≤i≤m Q/diZ (and, for example,

the interval [0, di[ as system of representatives of Q/diZ). If x ∈ K, we
express x as a column vector (with rational entries) on the integral basis and
then reduce x modulo cic

−1
j from bottom up by subtracting from x suitable

multiples of the columns of H so that the coordinates of x fall in the interval
[0, di[ for each i.

We write this out explicitly as an algorithm.

Algorithm 1.4.12 (HNF Reduction Modulo an Ideal). Given an ideal a by
its m × m upper-triangular HNF matrix H = (hi,j) in some basis of K, and
an element x ∈ K given by a column vector X = (xi) in the same basis, this
algorithm computes a “canonical” representative of x modulo a, more precisely
an element y ∈ K such that x− y ∈ a and the coordinates yi of y in the basis
satisfy 0 ≤ yi < hi,i.

1. [Initialize] Set i← m, y ← x.

2. [Reduce] Set q ← ⌊yi/hi,i⌋, y ← y− qHi (recall that Hi is the ith column of
H).

3. [Finished?] If i = 1, output y and terminate the algorithm; otherwise set
i← i− 1 and go to step 2.
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This method has the advantage of giving a unique and well-defined rep-
resentative of x modulo cic

−1
j as well as an algorithm to find it. In practice,

however, it often happens that the first few rows of the HNF matrix H are
very large, and the others much smaller. Hence the resulting “reduced” ele-
ment will in fact often be quite large.

The second method consists of first finding an LLL-reduced basis L of
cic

−1
j , which will generally have much smaller entries than the HNF matrix

H . We must then find an element q ∈ cic
−1
j such that x−q is small (we already

mentioned the need for this in the remarks following Proposition 1.3.1). It
is well known that this is a difficult problem (probably NP-complete). If,
however, we write x =

∑
1≤j≤m xjLj with xj ∈ Q (where the Lj are the

elements of the basis L) and choose

q =
∑

1≤j≤m
⌊xj⌉Lj

(where ⌊a⌉ denotes one of the nearest integers to a), it is clear that q ∈ cic
−1
j

and that x− q is reasonably “small”. Note that it is essential that the basis
L be LLL-reduced before doing this operation, otherwise x− q would not be
small at all in general.

We write this out explicitly as an algorithm.

Algorithm 1.4.13 (LLL-Reduction Modulo an Ideal). Given an ideal a by
an m ×m matrix H = (hi,j) representing a Z-basis of a in some basis of K,
and an element x ∈ K given by a column vector X = (xi) in the same basis,
this algorithm computes a noncanonical but “small” representative of x modulo
a, in other words an element y ∈ K such that x− y ∈ a and the coordinates yi
of y in the basis are reasonably small.

1. [LLL-reduce] Using the LLL algorithm or one of its variants, let L be the matrix
of an LLL-reduced basis of a.

2. [Find coefficients] Using Gaussian elimination, find the solution Z = (zi) to
the linear system LZ = X (we have Z = L−1X , but it is faster to compute
Z directly than to invert L unless many elements are to be reduced modulo
the same ideal).

3. [Reduce] Set Y ← X −∑1≤i≤m⌊zi⌉Li, output the element y corresponding
to Y , and terminate the algorithm.

The main advantage of this method is that the reduced vector will have
much smaller entries. The reduction is not unique, however, and takes more
time since the LLL algorithm is usually slower than the HNF algorithm,
although it can of course be performed once and for all for a given ideal.
Only practice can tell which method will be preferable. In the modular HNF
method explained below, however, it is essential to use this method to avoid
coefficient explosion.
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The above algorithm can be improved by using an unpublished idea due
to Peter Montgomery. Instead of doing an LLL-reduction of the ideal, which
is an expensive operation, we can perform a fast partial reduction of the
matrix (a matrix A with columns Aj will be said to be partially reduced if
for any distinct columns we have ‖Ai ±Aj‖ ≥ ‖Aj‖).

The resulting basis will usually not be LLL-reduced, but its entries will
be of much smaller size than the Hermite-reduced one. Furthermore, this
method is particularly well suited to matrices that have a few rows much
larger than the others, such as typical HNF matrices for ideals.

1.5 Applications of the HNF Algorithm

1.5.1 Modifications to the HNF Pseudo-Basis

It is first necessary to make a number of remarks concerning the implemen-
tation of the HNF algorithm in Dedekind domains (Algorithm 1.4.7).

Usually a torsion-free R-module M will be given by a generating set
expressed in a fixed basis B of KM . Using Algorithm 1.4.7, we can find
a pseudo-basis (ωj , aj)1≤j≤n that has the special property of being upper-
triangular with 1 on the diagonal when expressed on B.

We can now start modifying this pseudo-basis. We can first choose to have
only integral (and even primitive) ideals aj by dividing them by suitable ele-
ments of Q∗ and multiplying the corresponding ωj by the same. Alternatively,
we can ask that ωj ∈M , and this is done in a similar manner.

Then we can ask for a pseudo-basis such that all the ideals are equal to R
except perhaps the last, whose ideal class will then be the Steinitz class of M .
That this is possible follows from Proposition 1.2.19 together with Corollary
1.3.6. By induction, using legal elementary transformations on the matrix A,
we can replace ideal pairs (aj , aj+1) by (R, ajaj+1), and hence at the end
of the process all ideals except perhaps the last one will be equal to R, as
desired. Note, however, that to apply Proposition 1.3.12 in a deterministic
manner, it is necessary to know the prime decompositions of the norms of the
aj . In practice, this is always the case, but of course in general this is perhaps
not a polynomial-time operation. Thus, in practice we use Algorithm 1.3.16,
which is probabilistic but much faster.

Finally, note that if we perform the above transformations on the matrix
and the ideals, the resulting pseudo-basis will no longer be represented by a
triangular matrix.

If we are still not content with this, we could, if desired, obtain an (n+1)-
element generating set of our module by replacing ωnan with aωn+bωn, where
an = aR + bR is found using Algorithm 1.3.15. This will, of course, not be
a direct sum. Note that the search for a and b can be done in deterministic
polynomial time if the norm of an is completely factored, since a can be taken
equal to the norm of an.
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We may also like to know if our module M is free and find a basis. Using
the techniques developed in [Coh0, Chapter 6], once we find a relation matrix
that is sufficient to compute the class group and regulator of R, it is quite
easy to determine whether or not an ideal is principal and, if it is, to find
a generator. Note that [Coh0] assumes the GRH, but evidently the same
technique applies as long as we have obtained a relation matrix.

So we test whether an is a principal ideal. If not, nothing more can be
done: according to Theorem 1.2.25, M is not free, so use either the pseudo-
basis (probably the best) or the (n+ 1)-element generating set. If an = aR,
then after we replace ωn by aωn, (ωj)1≤j≤n is an R-basis of M .

If we want to know only whether or not M is free, without explicitly
finding a basis, then it is not necessary to use Proposition 1.3.12 inductively:
we use the initial HNF pseudo-basis and test whether or not a1 . . . an is a
principal ideal.

1.5.2 Operations on Modules and Maps

As in the absolute case, the existence of an HNF algorithm (including an
essential uniqueness statement) allows us to perform all of the standard op-
erations on finitely generated, torsion-free modules. Let M and N be two
such modules, assumed to be inside a larger module.

(1) To compute M +N , we simply compute the HNF of the concatenation
of the HNF pseudo-bases of M and N .

(2) To check whether M = N , we simply check that the HNF of M and that
of N are the same (this is of course the essential place where we need a
unique HNF representative).

(3) To check whether N ⊂ M , we check that the HNF of M +N and that
of M are the same. Depending on the context, however, there may be
faster methods.

(4) To compute the product MN when this makes sense, we form all the
possible products of the generators and their corresponding ideals, and
compute the HNF of the resulting pseudo-matrix. Usually, however, there
are faster methods. For example, if M is an ideal given by a pseudo–two-
element representation (see Definition 2.3.6) and if N is given in HNF,
we must only multiply the generators and ideals of N by the two pseudo-
elements of M .

(5) To compute the image and the kernel of a map f from N to M , we
proceed as follows. Let (ω′

j , a
′
j)j and (ωi, ai)i be pseudo-bases of N and

M , respectively, and let A be the matrix of f in these pseudo-bases.
Since (f(ω′

j), a
′
j)j is a pseudo-generating set for the image of f (note

that the ideals a′j have not changed), we compute the HNF of (A, (a′j))
using Algorithm 1.4.7 and thus obtain a pseudo-basis of the image of f .
According to Theorem 1.4.6, the pseudo-matrix (Uj , bj)1≤j≤k−n gives a
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pseudo-basis of the kernel of f , where U is the transformation matrix
given by Theorem 1.4.6.

(6) Computing the intersection M ∩N of two modules is slightly more dif-
ficult. In [Coh0, Exercise 18 of Chapter 4], we have given a possible so-
lution. However, the following algorithm is more elegant and useful also
over Z. (I thank D. Ford for having pointed it out to me, together with
a reference to [Zim].)

Algorithm 1.5.1 (Intersection of Modules). Let M and N be two modules of
the same rank n given by some pseudo-generating sets. This algorithm computes
an HNF pseudo-basis for M ∩N .

1. [Compute pseudo-bases of M and N ] Using Algorithm 1.4.7, compute the
HNF (A, I) and (B, J) of the modules M and N , with I = (ai) and J = (bj)
(only a pseudo-basis is necessary, not the HNF).

2. [Compute HNF of big matrix] Let C be the block matrix

C =

(
A 0
A B

)
.

Using Algorithm 1.4.7, compute the HNF (H, (cj)) of the pseudo-matrix
(C, (I|J)).

3. [Terminate] Let H1 be the upper-left n × n submatrix of H , and let J1 be
the first n ideals (cj). Output the pseudo-matrix (H1, J1) as representing a
pseudo-basis of M ∩N and terminate the algorithm.

Proof. The HNF reduction done in step 2 can be written in block matrix
form, (

A 0
A B

)(
U1 U2

U3 U4

)
=

(
H1 H2

0 H4

)
,

with the additional conditions ui,j ∈ aic
−1
j and a = det(U)c, with notation

similar to that of Theorem 1.4.6.
This implies in particular that H1 = AU1 and AU1 + BU3 = 0. Thus, if

Vj is the jth column of U1, we have (cjVj)i ⊂ ai, hence cjAVj ⊂ M since
(A, (ai)) is a pseudo-matrix for M . It follows that the module defined by
(H1, J1) is a submodule of M . But since BU3 = −AU1, the same reasoning
on B and U3 shows that it is also a submodule of N ; hence it is a submodule
of M ∩N .

Conversely, an element of M ∩ N can be represented as AX = −BY
for some vectors X = (xi) and Y = (yj) such that xi ∈ ai and yj ∈ bj .
It follows that the vector

(
X
Y

)
belongs to the kernel of the pseudo-matrix

((A|B), (I|J)), and Theorem 1.4.6 (5) tells us that this vector will be in the

image of (
(
U1

U3

)
, J1). In particular, X will be in the image of (U1, J1); hence

our initial element will be in the image of (AU1, J1) = (H1, J1), as was to be
proved. ⊓⊔



1.5 Applications of the HNF Algorithm 37

Remarks

(1) We have given the algorithm for two modules of the same rank n, because
this is the only application that we have in mind (ideals in relative ex-
tensions), but the algorithm can easily be generalized to the case where
the ranks are different (Exercise 12).

(2) In step 3, if we let H4 be the lower-right n×n submatrix of H and J2 the
last n ideals (bj), the same proof shows that (H4, J2) is a pseudo-matrix
giving a pseudo-basis of M +N .

1.5.3 Reduction Modulo p of a Pseudo-Basis

Another natural question is the following. Assume that M is a finitely gener-
ated, torsion-free module, and that, thanks to the above algorithms, we have
written M =

⊕
i aiωi in terms of a pseudo-basis.

Let p be a prime ideal of R. Then M/pM is in a natural manner a vector
space over the field k = R/p, and we can ask for a basis of this vector space
over k. This can be done using the following algorithm.

Algorithm 1.5.2 (Reduction Modulo p of a Pseudo-Basis). Let (ωi, ai) be
a pseudo-basis for a finitely generated, torsion-free R-module M , and let p be a
(nonzero) prime ideal of R. This algorithm outputs a basis (ηi) for M/pM over
the field k = R/p.

1. [Find two-element representation] For each i, use Algorithm 1.3.15 to find
ui and vi in ai such that ai = uiR + viR (one can, for example, choose
ui = N (ai), but any other choice will do), and set αi ← ui.

2. [Find αi] For each i, using [Coh0, Algorithm 4.8.17], compute vp(ui) and
vp(vi), and if vp(vi) < vp(ui) set αi ← vi .

3. [Terminate] For each i, let ηi = αiωi. Output the ηi and terminate the algo-
rithm.

Proof. If ai = uiR + viR, then vp(ai) = min(vp(ui), vp(vi)); hence by
our choice of αi we have vp(ai) = vp(αi), so αi ∈ ai r pai. This is easily
seen to imply that the map from R/p to ai/pai sending x to xαi is a group
isomorphism; hence we have

M/pM =
⊕

i

(ai/pai)ωi =
⊕

i

(R/p)αiωi ,

and thus the
(
αiωi

)
form a k-basis of M/pM . ⊓⊔

If x ∈ M , we will also want to compute the coefficients of x on the
k-basis we have just computed. This is done as follows. By definition, we
have x =

∑
i aiωi with ai ∈ ai. Thus, with the notation of the algorithm,

x =
∑

i(ai/αi)ηi. Since ai ∈ ai,
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vp(ai) ≥ vp(ai) = vp(αi) ;

in other words, vp(ai/αi) ≥ 0. By an algorithmic version of the approximation
theorem (for example, Proposition 1.3.11), we can find yi ∈ ZK such that
vp(ai/αi−yi) ≥ 1. Hence in M/pM we have x =

∑
i yiηi, which is the desired

decomposition. We will later see a more efficient algorithm for computing the
yi (Algorithm 4.2.22, see Exercise 13).

1.6 The Modular HNF Algorithm in Dedekind Domains

1.6.1 Introduction

It is well known that the usual HNF over Z suffers from coefficient explosion,
which often makes the algorithm quite impractical, even for matrices of rea-
sonable size. Since our algorithm is a direct generalization of the naive HNF
algorithm, the same phenomenon occurs. Hence, it is necessary to improve
the basic algorithm.

In the case of the ordinary HNF, there are essentially two ways of doing
this, depending on what one wants.

The first method is the “modular” method. If we can compute the deter-
minant of the lattice generated by the columns of our matrix, all computa-
tions can then be done modulo this determinant, and the final HNF matrix
can be recovered by a simple GCD procedure (see [Coh0, Algorithm 2.4.6]).
This method is polynomial-time, but it has the disadvantage of not comput-
ing directly the (unimodular) transformation matrix U . In most cases, this
is not needed anyway, but in other cases it is essential (see, for example, the
proof of Proposition 1.3.1). If we want the matrix U , it can be recovered
from the modular method, but its entries will often be large and the method
involves larger matrices (see Algorithm 1.6.3).

The other methods, due essentially to Havas (see [Hav-Maj1], [Hav-Maj2],
and the references therein), are more heuristic in nature (they are not prov-
ably polynomial-time) but have the advantage of giving small transformation
matrices U . Since in our applications to relative extensions of number fields
we will often not need the matrix U , we will not consider here the general-
ization of Havas’s algorithms to the Dedekind case, although they certainly
can be generalized.

Hence, the purpose of this section is to explain how the usual modular
HNF algorithm can be modified to work over Dedekind domains. Although
quite simple, this generalization is not absolutely straightforward, so we give
some details, closely following the exposition of [Coh0] and [Coh1].

1.6.2 The Modular HNF Algorithm

We have defined above the notion of a minor-ideal of a pseudo-matrix (A, I).
In particular, g1(M) is the ideal of R generated by all n× n minor-ideals of



1.6 The Modular HNF Algorithm in Dedekind Domains 39

the pseudo-matrix (A, I). We will say that g1(M) is the determinantal ideal
of the module M . It is clearly a generalization of the notion of determinant
of a lattice.

Since there are
(
k
n

)
minors of order n, it could be a lengthy task to compute

g1(M) explicitly, except of course when k = n or even k = n+1 (note that the
computation of each minor is an ordinary determinant computation that can
be done with the usual Gauss–Bareiss pivoting strategy, which only involves
exact divisions).

We do not, however, really need the determinantal ideal itself but only
an integral multiple of it. Furthermore, if we choose n− 1 fixed independent
columns, and consider the k − n + 1 order-n minors obtained by choosing
successively each of the remaining columns, we have a much more reasonable
number of minor-ideals to compute, their computation is very fast (since
n − 1 of the pivoting steps are done once and for all), and the ideal sum of
all these minor-ideals gives a reasonably sized multiple of the determinantal
ideal g1(M).

Hence, we may assume that we have computed an ideal ∆ that is an
integral multiple (in other words, a subset) of the determinantal ideal g1(M)
of M . We now describe what modifications must be made to Algorithm 1.4.7.
We will make the computations in this algorithm modulo ∆, and then we will
have to recover the correct HNF pseudo-matrix by suitable ideal operations.

First, we must compute modulo ∆. Recall that the individual columns Aj
or ideals aj are quite arbitrary and that only the rank 1 submodule ajAj of
M is a reasonable object to consider. Hence, we must reduce modulo ∆ not
the column Aj itself, but the module ajAj . In other words, we must reduce
the column Aj modulo the ideal ∆a−1

j .
Hence, we will modify step 5 of Algorithm 1.4.7 as follows. Before return-

ing to step 4, we will set Am ← Am (mod ∆a−1
m ) and Aj ← Aj (mod ∆a−1

j ).
Here, the reduction modulo an ideal is understood in the sense of the LLL-
reduction Algorithm 1.4.13.

Since in the inner loop of Algorithm 1.4.7, the column index j is fixed
and only m varies, it can also be argued that we should perform only the
reduction of the column Am, and perform the reduction of Aj only when
the m-loop is finished. Although this avoids almost half of the (expensive)
reductions, it may lead to much larger intermediate entries, so it is not clear
if this method is preferable.

Once this modified algorithm is finished, we must execute the following
supplementary algorithm to recover the true HNF pseudo-basis of M .

Algorithm 1.6.1 (Modular HNF Algorithm in Dedekind Domains). Given
an n × k matrix A = (ai,j) of rank n, and k (fractional) ideals aj in a number
field K, this algorithm computes an HNF pseudo-basis (W, I) of the module
M =

∑
j ajAj , where W is an n × n upper-triangular matrix with 1 on the
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diagonal, and I = (b1, . . . , bn) is a list of n ideals. We assume that we have
computed a multiple ∆ of the determinantal ideal of M .

1. [Compute HNF modulo ∆] Using Algorithm 1.4.7, together with the modifi-
cations that we have just described for working modulo ∆, let B = (bi,j) be
the n × n HNF matrix obtained by discarding the first k − n zero-columns
from the resulting matrix AU , and let bj be the corresponding ideals (we dis-
card in Algorithm 1.4.7 all the statements concerning the matrix U). Then set
B← ∆, i← n.

2. [Euclidean step] Set d = bi,ibi + B, and using Theorem 1.3.3, find u ∈ bid
−1

and v ∈ Bd−1 such that bi,iu+v = 1. Then set Wi ← uBi (mod Bd−1) and
bi ← d (here again reduction is done using Algorithm 1.4.13). Set wi,i ← 1.
(Note that ubi,i ≡ 1 (mod Bd−1), but the reduction modulo Bd−1 may not
reduce it to 1.)

3. [Finished?] If i > 1, set B ← Bd−1 and go to step 2. Otherwise, for i =
n − 1, n − 2, . . . , 1, and for j = i + 1, . . . , n, using Algorithm 1.4.13, find
q ∈ bib

−1
j such that wi,j − q is small, and set Wj ← Wj − qWi. Output the

matrix W and the ideal list I = (b1, . . . , bn), and terminate the algorithm.

Proof. The proof of this algorithm’s validity is essentially the same as
in the classical case (see [Coh0, Algorithm 2.4.6] and [Coh1]); for brevity’s
sake we do not repeat it here. The gi(A), which are defined in the classical
case as the GCD of all i× i minors extracted from the last i rows of A, are
replaced in our situation by the minor-ideal gi(M), which plays exactly the
same role (and reduces to the classical definition in the case where ZK = Z).
Note that, according to Proposition 1.3.4, for example (see also the remark
after Corollary 1.3.6), the elementary column transformations made in step
3 are legal. ⊓⊔

As in the absolute case, it is more efficient in practice to interleave Algo-
rithms 1.4.7 and 1.6.1 into a single algorithm, analogous to [Coh0, Algorithm
2.4.8]. The proof of this algorithm’s validity follows from the proofs given
above.

Algorithm 1.6.2 (Modular HNF Algorithm in Dedekind Domains). Given
an n × k matrix A = (ai,j) of rank n, and k (fractional) ideals aj in a number
field K, this algorithm computes an HNF pseudo-basis (W, I) of the module
M =

∑
j ajAj , where W is an n × n upper-triangular matrix with 1 on the

diagonal, and I = (b1, . . . , bn) is a list of n ideals. We assume that we have
computed a multiple ∆ of the determinantal ideal of M .

1. [Initialize] Set i← n, j ← k, and B← ∆.

2. [Check zero] Set m ← j, and while m ≥ 1 and ai,m = 0, set m ← m − 1.
(Note that since we know that ∆ is a nonzero ideal, it is not necessary to
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check that the matrix A is of maximal rank.) If m < j, exchange Am with Aj
and am with aj .

3. [Put 1 on the main diagonal] Set Aj ← Aj/ai,j , aj ← ai,jaj, and m ← j.
(We now have ai,j = 1.)

4. [Loop] If m = 1, go to step 6. Otherwise, set m ← m − 1, and if ai,m = 0,
go to step 4.

5. [Euclidean step] (Here ai,j = 1 and ai,m 6= 0.) Using the algorithm contained
in the proof of Theorem 1.3.3, set d = ai,mam + aj and find u ∈ amd−1 and
v ∈ ajd

−1 such that ai,mu+v = 1. Then set in this order (Am, Aj)← (Am−
ai,mAj , uAm+vAj), (am, aj)← (amajd

−1, d), Am ← Am (mod Ba−1
m ), and

Aj ← Aj (mod Ba−1
j ), where the reduction is done using Algorithm 1.4.13.

Finally, go to step 4.

6. [Next row] Set d ← ai,jaj + B and using Theorem 1.3.3 once again com-
pute u ∈ ajd

−1 and v ∈ Bd−1 such that uai,j + v = 1. Set Wi ← uAj
(mod Bd−1) (where the reduction is again done using Algorithm 1.4.13),
ai ← d, and wi,i ← 1. For m = j + 1, . . . , n, using Algorithm 1.4.13 once
more, find q ∈ ama−1

j such that ai,m − q is small, and set Am ← Am − qAj .
7. [Finished?] If i = 1, output the matrix W and the modified ideals aj, and

terminate the algorithm. Otherwise, set B ← Bd−1, i ← i − 1, j ← j − 1
and go to step 2.

Remark. The above modular version performs well in practice, and it
seems quite plausible that, as in the case of R = Z, this algorithm is, in fact,
polynomial-time.

1.6.3 Computing the Transformation Matrix

We finish this section by giving an algorithm that shows one method of
recovering the unimodular transformation matrix by using the modular HNF
algorithm (this algorithm is, of course, applicable also in the absolute case).

Algorithm 1.6.3 (Modular HNF with Transformation Matrix). Given an
n× k matrix A = (ai,j) of rank n, and k (fractional) ideals aj in a number field
K, this algorithm computes a transformation matrix U , ideals bj for 1 ≤ j ≤ k,
an HNF pseudo-matrix (H, I) of the module M =

∑
j ajAj , where H is an

n×n upper-triangular matrix with 1 on the diagonal, and I = (bk−n+1, . . . , bk)
as in Theorem 1.4.6. We assume that we have computed a multiple ∆ of the
determinantal ideal of M .

1. [Find column permutation] Using a standard linear algebra algorithm over a
field, find indices ji for 1 ≤ i ≤ n such that the columns of index ji of the
matrix A are linearly independent. Let P be a permutation matrix sending
these indices to the integers [k − n + 1, k] so that the last n columns of the
matrix AP are linearly independent.
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2. [Apply modular HNF] Write AP = (A1|A2) in block matrix form, where A2

is an n × n matrix (which will be invertible, by step 1). Let C be the block

matrix defined by C =
(
Ik−n 0
A1 A2

)
. Let (H, (bj)) with H =

(
H1 H2

0 H4

)
be the

result of applying the modular HNF algorithm (Algorithm 1.6.2) to the pseudo-
matrix (C, (ap(j))), where p(j) is the permutation of the indices induced by
the permutation matrix P .

3. [Terminate] Set U1 ← H1, U2 ← H2, U3 ← −A−1
2 A1H1, U4 ← A−1

2 (H4 −
A1H2), H ← H4, I ← (bk−n+1, . . . , bk), and U ← P

(
U1 U2

U3 U4

)
. Output

(H, I), the transformation matrix U , and the ideals bi, and terminate the
algorithm.

Proof. The proof is left to the reader (Exercise 14). ⊓⊔

1.7 The Smith Normal Form Algorithm in Dedekind
Domains

Recall the elementary divisor theorem for torsion-free modules (Theorem
1.2.35).

Theorem. Let P and N be two torsion-free modules of rank p and n, respec-
tively, such that N ⊂ P (so n ≤ p). There exist fractional ideals b1, . . . , bp of
R, a basis (ω1, . . . , ωp) of V = PK, and integral ideals d1, . . . , dn such that

P = b1ω1 ⊕ · · · ⊕ bpωp and N = d1b1ω1 ⊕ · · · ⊕ dnbnωn

and such that di−1 ⊂ di for 2 ≤ i ≤ n.
The ideals di (for 1 ≤ i ≤ n) and the ideal classes of the ideal products

b1 · · · bn and bn+1 · · · bp depend only on P and N .

In other words, this theorem says that we can find pseudo-bases of P and
N that differ only in their ideals, in a specific way. Our main goal is to give
an algorithm to find these pseudo-bases. This will be the Smith normal form
algorithm (SNF).

Before doing this, we must generalize the notion of a pseudo-matrix. If
(A, I) is a pseudo-matrix with A = (ai,j) an n× k matrix with entries in K,
and I = (ai) a vector of k ideals, it is natural to consider the linear map f
from a1 × · · · × ak to Kn, defined by

f(a1, . . . , ak) =
∑

1≤j≤k
ajAj ,

where as usual Aj denotes the jth column of A, considered as an element
of Kn. The image of this map f is exactly the module M =

∑
j ajAj with

which we have worked.
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We must now consider the more general situation where the map f is a
linear map from N = a1 × · · · × an to P = b1 × · · · × bp for some other
ideals bi. If we call ij the jth canonical injection from aj to N (defined by
ij(a) = (0, . . . , 0, a, 0, . . . , 0), where a is at the jth component) and pi the ith
canonical projection from P to bi (defined by pi(b1, . . . , bn) = bi), we will set

fi,j = pi ◦ f ◦ ij .
This is a linear map from aj to bi. Conversely, given any family of linear
maps gi,j from aj to bi, we can define in a unique manner a linear map f
from N to P such that fi,j = gi,j.

Let a and b be two ideals and g an R-linear map from a to b. By tensoring
with the field K we can extend this to a K-linear map from K to K (which
we denote again by g); such a map is of the form g(x) = λx for some λ ∈ K.
Conversely, such a λ gives a map from a to b if and only if λa ⊂ b, hence if
and only if λ ∈ ba−1. This leads us to the following definition.

Definition and Proposition 1.7.1. Let N = a1ω1 ⊕ · · · ⊕ anωn and P =
b1η1 ⊕ · · · ⊕ bpηp be two torsion-free R-modules given by pseudo-bases, and
let A = (ai,j) be a p× n matrix. Let I = (b1, . . . , bp) and J = (a1, . . . , an).

(1) We will say that (A, I, J) is an integral pseudo-matrix if for each i and
j we have ai,j ∈ bia

−1
j .

(2) Given such a pseudo-matrix (A, I, J), the map f from N to P associated
with it is the map defined by setting

f

(
∑

j

xjωj

)
=
∑

j

xjf(ωj) =
∑

j

xj
∑

i

ai,jηi =
∑

i

ηi

(
∑

j

ai,jxj

)
,

which makes sense since ai,jxj ∈ bi.
(3) The module M associated with (A, I, J) is the quotient module

P/f(N) = (b1η1 ⊕ · · · ⊕ bpηp)/f(a1ω1 ⊕ · · · ⊕ anωn) .

Note that the module M associated with a pseudo-matrix (A, I, J) is a
torsion module if and only if p = n, that is, if A is a square matrix of nonzero
determinant.

We can now state the main theorem of this section. For simplicity we
state it for square matrices, but it is easily extended to the general case.

Theorem 1.7.2 (Smith Normal Form in Dedekind Domains). Let
(A, I, J) be an integral pseudo-matrix as above, with A = (ai,j) an n × n
matrix and I = (b1, . . . , bn), and J = (a1, . . . , an) two vectors of n ideals
such that ai,j ∈ bia

−1
j .

There exist vectors of ideals (b′1, . . . , b
′
n) and (a′1, . . . , a

′
n) and two n × n

matrices U = (ui,j) and V = (vi,j) satisfying the following conditions, where

for all i we set di = a′ib
′
i
−1

, and we set a = a1 · · · an, b = b1 · · · bn, a′ =
a′1 · · · a′n, and b′ = b′1 · · · b′n.
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(1) a = det(U)a′ and b′ = det(V )b (note the reversal).
(2) The matrix VAU is the n× n identity matrix.
(3) The di are integral ideals, and for 2 ≤ i ≤ n we have di−1 ⊂ di.

(4) For all i, j we have ui,j ∈ aia
′
j
−1

and vi,j ∈ b′ib
−1
j .

Proof. Again we prove this theorem by giving an explicit algorithm for
constructing the Smith normal form. We follow closely [Coh0, Algorithm
2.4.14], except that we do not work modulo the determinant (although such
a modular version of the Smith normal form algorithm is easily written).

Algorithm 1.7.3 (SNF Algorithm in Dedekind Domains). Given an invert-
ible n× n matrix A = (ai,j), and two lists of n (fractional) ideals I = (bi) and
J = (aj) in a number field K, this algorithm computes two other lists of n ideals
b′i and a′j and two n×n matrices U and V such that these data satisfy the con-
ditions of Theorem 1.7.2. We will only make use of elementary transformations
of the type given in Theorem 1.3.3 combined with Corollary 1.3.5. We denote by
Aj (resp., Uj) the columns of A (resp., U), and by A′

j (resp., V ′
j ) the rows of

A (resp., V ).

1. [Initialize i] Set i ← n, and let U and V be the n × n identity matrix. If
n = 1, output b1, a1, U , and V , and terminate the algorithm.

2. [Initialize j for row reduction] Set j ← i and c← 0.

3. [Check zero] If j = 1, go to step 5. Otherwise, set j ← j − 1. If ai,j = 0, go
to step 3.

4. [Euclidean step] Using the algorithm of Theorem 1.3.3, set d← ai,iai+ai,jaj
and find u ∈ aid

−1 and v ∈ ajd
−1 such that ai,iu + ai,jv = 1. Then set

(Aj , Ai)← (ai,jAj − ai,iAi, uAi+ vAj), (Uj , Ui)← (ai,jUj − ai,iUi, uUi+
vUj), (aj , ai)← (aiajd

−1, d). Finally, go to step 3.

5. [Initialize j for column reduction] Set j ← i, and if ai,i 6= 1, set Ui ← Ui/ai,i,
ai ← ai,iai, ai,i ← 1.

6. [Check zero] If j = 1, go to step 8. Otherwise, set j ← j − 1. If aj,i = 0, go
to step 6.

7. [Euclidean step] Using the algorithm of Theorem 1.3.3, set d← b−1
i +aj,ib

−1
j

and find u ∈ b−1
i d−1 and v ∈ b−1

j d−1 such that u + aj,iv = 1. Then set
(A′

j , A
′
i)← (aj,iA

′
j −A′

i, uA
′
i + vA′

j), (V ′
j , V

′
i )← (aj,iV

′
j − V ′

i , uV
′
i + vV ′

j ),

(bj , bi)← (bibjd, d
−1). Finally, set c← c+ 1 and go to step 6.

8. [Repeat stage i?] If c > 0, go to step 2.

9. [Check the rest of the matrix] Set b← aib
−1
i . For 1 ≤ k, l < i, check whether

ak,lalb
−1
k ⊂ b. As soon as this is not the case, set d ← bib

−1
k . Let d be an

element of d such that ak,ld /∈ aia
−1
l (such an element must exist and is easy

to find — for example, by looking at the Z-basis of d given by the ordinary
HNF). Set A′

i ← A′
i + dA′

k and V ′
i ← V ′

i + dV ′
k , and go to step 2.

10. [Next stage] (Here ak,lalb
−1
k ⊂ b for all k, l < i.) If i ≥ 3, set i ← i − 1

and go to step 2. Otherwise, set U1 ← U1/a1,1, a1 ← a1,1a1, and a1,1 ← 1,
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output the matrices U and V , the two ideal lists (bi) and (aj), and terminate
the algorithm.

Proof. Contrary to the HNF algorithm whose proof was immediate, there
are several things to be checked. First we must check that this algorithm is
valid. It is easily verified that all the elementary operations used are legal
ones and that the identities a = det(U)a′ and b′ = det(V )b are preserved
throughout. Furthermore, upon termination the matrix A will be the identity
matrix and we will have aj,jb

′
j
−1

a′j ⊂ ai,ib
′
i
−1

a′i for all j < i. Hence, since
ai,i = aj,j = 1, we obtain from the definition of the di that dj ⊂ di for all
j < i. In addition, it is easily checked that the ideal c =

∑
i,j ai,jajb

−1
i is

preserved by all the elementary transformations of rows and columns that
we perform. Since we have assumed that ai,j ∈ bia

−1
j , it follows that c is an

integral ideal. But in the final pseudo-matrix we have c =
∑

i a
′
ib

′
i =

∑
i di =

dn, since dj ⊂ di for j < i. Thus dn is an integral ideal; hence all the di are
integral ideals.

Note that we could interpret all the di in the same way by taking the sum
of all (n − i)× (n− i) minor-ideals of the pseudo-matrix, where the minor-
ideals of an integral pseudo-matrix (A, I, J) are defined as for a pseudo-matrix
(A, I) (Definition 1.4.8), except that we must multiply the determinant d by
the product of the ideals ajb

−1
i and not only by the product of the ideals aj.

We must now show that the algorithm terminates. First note that the
effect of steps 2 to 8 on the triplet (ai,i, ai, b

−1
i ) is to transform it into



1,
∑

j≤i
ai,jaj, b

−1
i +

∑

j<i

a′j,ib
−1
j



 ,

where the a′j,i are the entries of the matrix after step 4. Hence, the product

ai,iaib
−1
i , which is an integral ideal throughout the algorithm (since it is

included in the ideal c = dn), can only get larger. Since all the ideals are
nonzero, steps 2 to 8 can leave this product unchanged only if ai,j = 0 and
a′j,i = 0 for all j < i, and this implies that c = 0, which is the termination
condition of the loop from steps 2 to 8. Thus, we have a strictly increasing
sequence of integral ideals, which is therefore finite. Hence we reach step 9
after a finite number of steps.

One loop from step 9 back to step 5 again transforms the triplet (1, ai, b
−1
i )

into (
1, ai +

∑

j<i

dak,jaj , b
−1
i

)
.

Hence, since dak,l /∈ aia
−1
l , it follows that the new ideal ai is strictly larger,

and hence the new ai,iaib
−1
i also. We again have a strictly increasing sequence

of integral ideals, which is therefore finite; hence we execute step 9 only a
finite number of times, and so the algorithm terminates. ⊓⊔
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Remarks

(1) Considering step 7 of the algorithm, in practice it will probably be better
to keep the ideals b−1

i and not the ideals bi themselves, so as to diminish
the number of ideal inversions.

(2) As mentioned earlier, it is very easy to introduce a modular version of
the SNF algorithm, as in [Coh0, Algorithm 2.4.14]. Such a variant is
necessary in certain cases to avoid coefficient explosion. In addition, the
algorithm is easily modified to deal with singular or nonsquare matrices.

(3) Note that the module M associated with the pseudo-matrix (A, I, J) will
be isomorphic to

R/d1 ⊕ · · · ⊕R/dn ,

and thus this gives the complete structure of M as an R-module.

1.8 Exercises for Chapter 1

1. Let K be a number field, and let x ∈ K∗. With the notation of Proposition
1.2.7, show that

Y

1≤i≤r1+r2

|x|ni
σi

= 1/ |N (x)| and
Y

p

|x|p = |N (x)| ,

thus proving Proposition 1.2.7.

2. Give a counterexample to Proposition 1.2.8 if one asks that |x|i ≤ 1 for all
places | |i /∈ S.

3. With the notation of Definition 1.2.14, show that the relation

(a1/a2)αR(b1/b2)β ⇐⇒ b2a1α− a2b1β = 0

is not in general an equivalence relation.

4. Someone remembered the definition of a projective module P as a module such
that for every surjective map f from a module F to P and any map g from a
module G to P , there exists a map h from G to F such that g = f ◦ h (see
the diagrams below, where the first diagram illustrates Definition 1.2.16 and
the second the present definition). Is this definition correct? If yes, prove it;
otherwise, give a counterexample.

P

h
��

g

��
F

f
// G // 0

G

h
��

g

��
F

f
// P // 0

5. Let R be a Dedekind domain, let a and b be two fractional ideals of R, and let
a, b, c, and d be elements of R.

a) Show that a necessary and sufficient condition for the existence of ideals c
and d satisfying Proposition 1.3.4 is that ad−bc 6= 0 and (ab+ba)(cb+da) =
(ad− bc)ab.
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b) If this condition is satisfied, show that

c =
cb + da

ad− bc
=

a

a
∩ b

b
= (ab + ba)−1ab and

d =
ab + ba

ad− bc
=

a

c
∩ b

d
= (cb + da)−1ab .

6. Let a be a nonzero fractional ideal of a Dedekind domain R. Show that there is
a canonical isomorphism between a−1 and the R-module of R-linear maps from
a to R.

7. Using the Hermite and Smith normal form algorithms, give another proof of the
structure theorem for finitely generated modules over Dedekind domains.

8. Let R be a Dedekind domain with field of fractions K.

a) For each α, β in K, show that there exist u and v in R such that

uα2 + vβ2 = αβ .

b) Using Algorithm 1.3.2, give an algorithm to compute u and v when R = ZK

is the ring of integers of a number field.
c) Show that the result of a) can be false if R is not a Dedekind domain (take,

for example, R = Z[X] or R = Z
ˆ

√
8
˜

).
d) Show that the result of a) may be true even if R is not a Dedekind domain

(take, for example, R = Z
ˆ

√
5
˜

).

e) More generally, if R = Z
ˆ

√
D
˜

with D a nonsquare integer, show that the
result of a) is valid if and only if D is squarefree (which is not the same
condition as saying that R is a Dedekind domain).

9. Let R be a Dedekind domain and a a fractional ideal of R. Set n = a ∩ R and
d = a−1 ∩R. Show that n and d are coprime integral ideals such that a = nd−1.

10. Modify Algorithm 1.3.14 so that it instead computes a β ∈ K such that βa−1

is an integral ideal coprime to b.

11. Prove Proposition 1.4.4.

12. Write a generalization of Algorithm 1.5.1 to the case where the modules have
different ranks.

13. Using the ideas of Algorithm 4.2.22, write an efficient algorithm to compute the
coefficients yi such that x =

P

i yiηi, with the notation of Section 1.5.3.

14. Prove the validity of Algorithm 1.6.3.
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2. Basic Relative Number Field Algorithms

Having the necessary tools for dealing theoretically and algorithmically with
modules over Dedekind domains, we are now going to study in detail rel-
ative extensions of number fields. In the first section, we emphasize the
field-theoretic properties, while in the rest of this chapter we study the ring-
theoretic properties.

2.1 Compositum of Number Fields and Relative and
Absolute Equations

2.1.1 Introduction

A number field L can be represented in many different ways, all having their
relative advantages and disadvantages. In [Coh0] we consider number fields
L to be given as L = Q(θ), where θ is a root of some polynomial T ∈ Q[X ].
A number field L is thus explicitly considered as a finite extension of Q, in
other words as an absolute extension, with T (X) being an absolute defining
polynomial or an absolute equation for the number field L.

In most problems of algebraic number theory, it is often more natural
to consider relative extensions L/K. In other words, we have a base field
K, and a number field L, which is given as L = K(θ), where θ is a root
of some polynomial T ∈ K[X ], called a relative defining polynomial or a
relative equation for L over K. Of course, L is still a number field in its own
right and as such can also be given by an absolute defining polynomial if so
desired (we will see in Section 2.1.5 how to achieve this), but it is usually
preferable to keep the field L given by its relative defining polynomial. There
are at least two reasons for this. First, the relative defining polynomial will
be considerably simpler than the absolute one (for instance, it will be of
much lower degree). Second, the K-structure on L gives considerably more
arithmetical information than considering L on its own.

If K = Q(θ1) and L = K(θ2), we can write L = Q(θ1, θ2), in this case
considered as a tower of extensions L/K/Q. In the special case where the
minimal monic polynomial of θ2 in K[X ] has in fact coefficients in Q, we can
consider the number field K2 = Q(θ2), and in this case L is a compositum of
the number fields K and K2.
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There are still other ways to represent a number field L. For example, we
can choose a Q-basis of L (or a K-basis, if we view L as a relative extension),
and represent L by the multiplication table of this basis. If n = [L : Q] (or
n = [L : K] in the relative case), this is an n × n × n array with entries in
Q (or K). Although computationally more cumbersome and expensive, this
representation can sometimes also be useful, but we will not study it here.

A completely different way is to represent a number field by a system
of polynomials in several indeterminates, assuming that the solution is zero-
dimensional. This touches upon difficult problems of computational algebraic
geometry, in particular Gröbner basis computations, and we refer to the abun-
dant literature on the subject (see, for example, [Co-Li-Os] and [Bec-Wei]).

In this chapter, we fix a number field K and identify it with a subfield
of C. We will only consider number fields L that are extensions of K and
contained in the algebraic closure K of K in C. In particular, L will be a
K-vector space, and one of the embeddings of K (and L) in C is the identity.
We will say that K is the base field , and L is a relative extension, or a number
field over K. If L is a relative extension of a number field K, the dimension
n = dimK(L) will be denoted [L : K] and called the relative degree of L over
K. If M is a relative extension of L, we clearly have the transitivity relation
[M : K] = [M : L][L : K].

2.1.2 Étale Algebras

Let L = K(θ) be a relative extension of number fields, where θ is the root
of an irreducible polynomial T (X) ∈ K[X ]. As already remarked in [Coh0],
we have an isomorphism of L with K[X ]/T (X)K[X ] obtained by sending θ
to the class of X . A natural question is to consider the case where T is not
irreducible. If the factorization of T in K[X ] is given by T (X) =

∏
i Ti(X)ei ,

where the Ti are nonassociate, irreducible polynomials in K[X ], the Chinese
remainder theorem tells us that

K[X ]/T (X)K[X ]≃
∏

i

K[X ]/T ei

i (X)K[X ]

(see Exercise 1). If ei = 1, K[X ]/Ti(X)K[X ] is a number field; while if
ei > 1, K[X ]/T ei

i (X)K[X ] has nonzero nilpotent elements and hence is an
inseparable algebra over K. These algebras have nasty properties, and we
want to exclude them. We have the following proposition.

Proposition 2.1.1. Let K be a number field, and let A be a finite-dimen-
sional commutative K-algebra (in other words, a finite-dimensional K-vector
space with an additional commutative ring structure with unit, compatible
with the vector space structure). The following three properties are equivalent.

(1) A has no nonzero nilpotent elements;
(2) The equation x2 = 0 in A implies x = 0;
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(3) The minimal polynomial in K[X ] of any element a ∈ A is squarefree.

Proof. That (1) implies (2) is trivial. Let us prove that (2) implies (3),
so assume (2), and let a ∈ A. The set Ia of polynomials P ∈ K[X ] such
that P (a) = 0 is clearly an ideal of K[X ]. Furthermore, since A is of finite
dimension n, say, the elements 1, a, . . . , an are K-linearly dependent; hence
Ia is nonzero. Therefore, Ia is generated by a monic polynomial Pa ∈ K[X ],
which will be called as usual the minimal polynomial of a in A. Assume
that Pa(X) = Q2(X)R(X) in K[X ], and let b = Q(a)R(a). We have b2 =
Pa(a)R(a) = 0; hence by (2), b = 0. But this means that Q(X)R(X) is
a multiple of the minimal polynomial Q2(X)R(X). If follows that Q(X) is
constant, so Pa is squarefree, as claimed.

Finally, if an = 0, the minimal polynomial of a must be a divisor of Xn,
and it must be squarefree by (3), so it must be equal to X . Hence a = 0 and
so (3) implies (1). ⊓⊔

Definition 2.1.2. Let K be a number field, and let A be a commutative K-
algebra. We say that A is an étale algebra (or a separable algebra)over K
if A is finite-dimensional over K and satisfies the equivalent properties of
Proposition 2.1.1.

In particular, a number field L that is an extension of K is trivially an
étale algebra. We will see in Corollary 2.1.6 that in fact every étale algebra
is isomorphic to a product of number fields.

Note that the minimal polynomial of an element of an étale algebra is
squarefree but not necessarily irreducible. In fact, this is another way of
saying that the difference between étale algebras and number fields is the
existence of zero divisors.

Before stating and proving the primitive element theorem, which is one
of the main results about étale algebras, we prove the following apparently
unrelated proposition (see [Coh0, Exercise 4 of Chapter 3]).

Proposition 2.1.3. Let B be a commutative ring with unit, and let T1 and
T2 be polynomials in B[X ]. There exist polynomials U1(X) and U2(X) in
B[X ] such that

U1(X)T1(X) + U2(X)T2(X) = R(T1(X), T2(X)) ∈ B ,

where as usual R(T1(X), T2(X)) denotes the resultant of the polynomials
T1(X) and T2(X).

Proof. LetM be the Sylvester matrix associated to the polynomials T1 and
T2 (see [Coh0, Lemma 3.3.4]). If deg(Ti) = ni, let U1(X) =

∑
0≤i<n2

xiX
i

and U2(X) =
∑

0≤i<n1
yiX

i be arbitrary polynomials of degree less than or
equal to n2 − 1 and n1 − 1, respectively, and let

Z = (xn2−1, . . . , x0, yn1−1, . . . , y0) and X = (Xn1+n2−1, . . . , X, 1)t .
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Then the matrix M can be defined by the equation

ZMX = U1(X)T1(X) + U2(X)T2(X) .

Let Madj be the adjoint matrix of M . By definition, we have

MadjM = det(M)In1+n2 = R(T1(X), T2(X))In1+n2 .

Hence, if Z is the last row of the matrix Madj, we have

ZMX = R(T1(X), T2(X)) = U1(X)T1(X) + U2(X)T2(X)

if U1(X) and U2(X) are related to Z as above. Since the entries of the ad-
joint matrix, hence of Z, are in the ring B, this proves the existence of the
polynomials U1(X) and U2(X) in B[X ] and also gives an algorithm to find
them. The algorithm mentioned in [Coh0, Exercise 5 of Chapter 3], based on
the subresultant algorithm is, however, much better in practice. ⊓⊔

Remark. The point of this proposition is that the polynomials U1 and
U2 can be chosen in B[X ], and not in a larger ring.

We can now prove a special case of the primitive element theorem.

Lemma 2.1.4. Let A = K[θ1, θ2] be an étale algebra generated by two ele-
ments. There exists θ ∈ A such that A = K[θ], and θ can be taken of the
form θ = θ2 + kθ1 for some k ∈ Z.

Remark. Note the use of square brackets in the expression A = K[θ].
Since A is not a field in general, we consider only polynomials in θ, and not
rational functions. On the other hand, when A is a field, it is easy to see that
K(θ) = K[θ], and this is the notation most commonly used in this case, to
emphasize that A is a field.

Proof. Let T1 and T2 be the minimal monic polynomials of θ1 and θ2,
respectively. Since A is an étale algebra, these polynomials are squarefree,
hence have distinct roots in some fixed algebraic closure K of K.

Let (θ
(i)
1 ) (resp., (θ

(j)
2 )) be the roots of T1 (resp., T2) in K. Since in general

A is not a field, we cannot assume that θ1 = θ
(i)
1 for some i. For any fixed i,

we can send θ1 to θ
(i)
1 and extend by linearity and multiplicativity, and since

θ
(i)
1 is a root of T1(X), this gives a K-algebra homomorphism from A to K,

which is injective if and only if A is a field. A similar statement is true for
T2.

Choose k ∈ Z different from the finite set of values

θ
(j)
2 − θ

(j′)
2

θ
(i′)
1 − θ(i)1

for i 6= i′ ,

and set θ = θ2 + kθ1. I claim that A = K[θ]. Indeed, since θ1 and θ2 are
elements of A, we have K[θ] ⊂ A. Conversely, let
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R(X) =
∏

i,j

(X − (θ
(j)
2 + kθ

(i)
1 )) .

By Galois theory or, equivalently, by the theorem on symmetric functions, or
by the explicit formula R(X) = RY (T1(Y ), T2(X − kY )), which we will use
below (where RY denotes the resultant with respect to the variable Y ), we
have R ∈ K[X ]. Furthermore, our choice of k, and the fact that T1 and T2

are squarefree, ensure that

(i, j) 6= (i′, j′) =⇒ θ
(j)
2 + kθ

(i)
1 6= θ

(j′)
2 + kθ

(i′)
1 .

Indeed, if we had equality in the right-hand side, we would have

k(θ
(i′)
1 − θ(i)1 ) = (θ

(j)
2 − θ

(j′)
2 ) .

Hence by our choice of k, we would have θ
(i′)
1 −θ

(i)
1 = θ

(j)
2 −θ

(j′)
2 = 0.Therefore

i′ = i and j′ = j since the polynomials T1 and T2 are squarefree.
It follows that, with our choice of k, R(X) is a squarefree polynomial in

K[X ].
Let us come back to the elements of our algebra. By abuse of notation, set

R(X,Z) = RY (T1(Y ), T2(X − ZY )) and θ(Z) = θ2 + Zθ1, so that R(X) =
R(X, k) and θ = θ(k). I claim that

R(θ(Z), Z) = RY (T1(Y ), T2(θ(Z)− ZY )) = 0 .

Note that this is not completely trivial: indeed, one cannot say that this
follows from the fact that the polynomials T1(Y ) and T2(θ(Z) − ZY ) have
the common root Y = θ1, since this implies vanishing of the resultant only
over a field.

Applying Proposition 2.1.3 to the ring B = K[X,Z], we see that there
exist polynomials U1(X,Y, Z) and U2(X,Y, Z) in K[X,Y, Z] such that

U1(X,Y, Z)T1(Y ) + U2(X,Y, Z)T2(X − ZY ) = R(X,Z) .

Replacing Y by θ1 and X by θ(Z) = θ2 + Zθ1 gives R(θ(Z), Z) = 0, as
claimed. In particular, replacing Z by k, we obtain R(θ, k) = R(θ) = 0.

If we take the derivative of the equality R(θ(Z), Z) = 0 with respect to
the formal variable Z, and denote by R′

X and R′
Z the partial derivatives of

R(X,Z) with respect to X and Z, we obtain θ1R
′
X(θ(Z), Z)+R′

Z(θ(Z), Z) =
0, hence in particular for Z = k the equation

θ1R
′
X(θ, k) +R′

Z(θ, k) = 0 . (1)

Note that R′
X(θ, k) = R′(θ). Since the polynomial R(X) = R(X, k) is square-

free, there exist polynomials U and V in K[X ] such that U(X)R′(X) +
V (X)R(X) = 1, and since R(θ) = 0, we obtain U(θ)R′(θ) = 1. Hence, mul-
tiplying the identity (1) by U(θ), we obtain θ1 = −U(θ)R′

Z(θ, k) ∈ K[θ], and
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evidently θ2 = θ − kθ1 ∈ K[θ] also, so A ⊂ K[θ], thus finishing the proof of
the lemma.

Note that we have proved much more, since we have also found a square-
free polynomial of which θ is a root, and an expression for θ1 and θ2 in terms
of θ. We will use this explicitly in the algorithms given below. The expression
for θ1 comes from the implicit function theorem in an algebraic setting. ⊓⊔

We can now easily prove the main classical theorem about étale algebras.

Theorem 2.1.5 (Primitive Element Theorem). LetK be a number field
and A be an étale algebra of dimension n over K. There exists θ ∈ A (called a
primitive element) such that A = K[θ], in other words such that 1, θ, . . . , θn−1

is a K-basis of A.

Proof. Since A is finite-dimensional overK, there exist elements θ1, . . . , θm
such that A = K[θ1, . . . , θm]. For example, we can take for the θi a K-basis
of A. We prove the theorem by induction on m. It is trivial for m = 1, and
for m = 2 it is nothing else than Lemma 2.1.4. Let m ≥ 3. By induction,
we assume that we have proved it for all i ≤ m − 1. Since the theorem is
true for m = 2, we can find α ∈ A such that K[θm−1, θm] = K[α]. But then
A = K[θ1, . . . , θm−2, α] is generated by m− 1 elements, and we conclude by
our induction hypothesis. ⊓⊔

As an immediate consequence we obtain the following corollary.

Corollary 2.1.6. Let A be an étale algebra over K.

(1) There exists a squarefree monic polynomial T (X) ∈ K[X ] (called as
above a defining polynomial for A/K) such that A is isomorphic to
K[X ]/T (X)K[X ].

(2) If T (X) =
∏

1≤i≤g Ti(X) is a decomposition of T (X) into irreducible
polynomials in K[X ], then A is isomorphic to the product K1×· · ·×Kg,
where Ki is the number field defined by Ki = K[X ]/Ti(X)K[X ].

(3) Conversely, any finite product of number fields over K (with component-
wise multiplication and addition) is an étale algebra over K.

Proof. (1). By Theorem 2.1.5, we know that A = K[θ] for some θ ∈ A.
If T is the minimal monic polynomial of θ in K[X ], then by definition of an
étale algebra the polynomial T (X) is squarefree, and the map sending θ to
the class of X clearly gives an isomorphism from A to K[X ]/T (X)K[X ].

(2). This is simply a restatement of the Chinese remainder theorem. More
explicitly, since the polynomials Ui(X) = T (X)/Ti(X) are (globally) coprime,
there exist polynomials Vi(X) such that

∑
1≤i≤g Ui(X)Vi(X) = 1. We set

ei = Ui(θ)Vi(θ). Then the map that sends the class of P in K[X ]/T (X)K[X ]
to
(
e1P , . . . , egP

)
in K1×· · ·×Kg is easily seen to be an algebra isomorphism

(see Exercise 1).
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(3). A product of fields cannot have nilpotent elements, so (3) is clear. ⊓⊔

As we shall see below, the introduction of étale algebras in addition to
number fields is not simply a desire to generalize. First, they occur naturally
in many contexts, as we shall see immediately, when we want to compute the
compositum of number fields. Second, many, if not most, of the algorithms
that we have given for number fields do not really use the nonexistence of
zero divisors and hence are directly applicable to étale algebras. So from
an algorithmic point of view, étale algebras are almost as simple as number
fields.

Let us look at the important example of the notions of discriminant, inte-
gral basis, and the corresponding algorithms such as the round 2 algorithms
(see [Coh0, Section 6.1]).

Let A be an étale algebra overK, which by Corollary 2.1.6 can be assumed
to be equal to K1 × · · · × Kg for some number fields Kj of degree nj over
K. Thus, n = [A : K] =

∏
1≤j≤g nj . We will identify each Kj with the

subalgebra of A formed by elements whose components on Kl for l 6= j are
zero. Equivalently, if ej = (0, . . . , 1, . . . , 0) ∈ A, where 1 is at the jth position,
the ej form a complete family of mutually orthogonal idempotents, and we
identify Kj with ejA.

If σ is a K-linear field homomorphism from A into C, then on each Kj,
σ restricts to some K-linear embedding σi,j of Kj into C. Conversely, if for
each j we choose K-linear embeddings σi,j of Kj into C, it is clear that there
exists a unique K-linear field homomorphism σ from A to C which restricts
to σi,j for each j given by

σ

(∑

j

xjej

)
=
∑

j

σi,j(xj)ej .

Hence, as in the number field case, there exist n =
∏
nj K-linear ring

homomorphisms of A into C. These are no longer embeddings, however; in
other words, they are not injective since A is not a field in general. As in the
number field case, we will denote them by σi.

The notions of trace and norm and more generally of characteristic poly-
nomial now generalize without difficulty and can be expressed either directly,
for example, via resultants, or through the embeddings σi.

The definitions of discriminant and integral basis (or pseudo-basis in the
relative case; see Section 2.2.3) then go through without change. The reader
who wants to explore further is warned, however, that the separability con-
dition mentioned in [Coh0, remark after the proof of Proposition 4.4.1] is
essential, although we can ignore it as long as we are in characteristic zero.

Finally, the reader can easily check that the description of the absolute
round 2 algorithm given in [Coh0, Section 6.1] is valid without modification
for étale algebras. In fact, it is applicable in even more general contexts.
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Similarly, the relative round 2 algorithm that will be given in Section 2.4 is
also valid without change.

We can also define the Galois group of an étale algebra and give algorithms
to compute it, analogous to the algorithms given in [Coh0, Section 6.3]. Note,
however, that the Galois groups are no longer transitive subgroups of Sn;
hence their classification is usually more complex (see Exercises 5 to 7).

2.1.3 Compositum of Two Number Fields

We consider the following problem. Let L1 and L2 be two number fields
defined over the base field K by their relative defining polynomials T1(X)
and T2(X), respectively. We would like to compute the compositum L of L1

and L2, which by definition is the smallest number field containing both L1

and L2.
As such, the above problem does not make any sense, for two reasons.

First, we must embed L1 and L2 into a fixed algebraic closure K of K. Once
this is done, the compositum does make sense, but on the other hand the
polynomial T1 alone does not in general determine the number field L1 since
any root of T1 can be chosen, so it is impossible to distinguish L1 from its
conjugate fields over K. Thus, to determine L1 we must give not only a
polynomial T1 but also some way to distinguish the root θ1 of T1 such that
L1 = K(θ1) from the other roots of T1.

Let L = L1L2 be the compositum of L1 and L2. To find a polynomial
defining L over K, we prove the following proposition.

Proposition 2.1.7. Let L1 = K(θ1) and L2 = K(θ2) be two number fields
defined over K, and let T1 (resp., T2) be the minimal monic polynomial of θ1
(resp., θ2) over K. Set

R(X,Z)←RY (T1(Y ), T2(X − ZY )) ,

where RY denotes the resultant with respect to Y . Then we have the following.

(1) There exists an integer k ∈ Z such that the polynomial R(X, k) is square-
free.

(2) If k is chosen as in (1), then the compositum L = L1L2 is given by
L = K(θ) with θ = θ2 + kθ1, and the minimal polynomial T (X) of θ is
one of the irreducible factors of R(X, k) in K[X ].

(3) If k and θ are as in (1) and (2), we have

θ1 = −R
′
Z

R′
X

(θ, k), θ2 = θ − kθ1, with R′
Z =

∂R

∂Z
, R′

X =
∂R

∂X
.

Proof. By definition, L = K(θ1, θ2). By the proof of Lemma 2.1.4, there
exists k ∈ Z such that R(X, k) is squarefree, and if θ = θ2 + kθ1, then
L = K(θ) with θ a root of R(X, k) = 0. Since L is a field, the minimal
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polynomial of θ is an irreducible factor of R(X, k) in K[X ]. Finally, in that
proof, we have also seen that θ1R

′
X(θ, k) +R′

Z(θ, k) = 0, and since we are in
a field and R(X, k) is squarefree, we obtain the formula for θ1, hence for θ2,
given in the proposition. ⊓⊔

In practice, a number field is often given only up to isomorphism, and thus
it is not possible to specify a specific root θ1, but only the polynomial T1(X)
of which it is a root. In that case, all irreducible factors of the resultant
R(X, k) give a possible compositum, and it makes perfectly good sense to
consider them all. In fact, since R(X, k) is squarefree, K[X ]/R(X, k)K[X ] is
an étale algebra that is isomorphic to the product of all possible compositums
of the number fields L1 and L2 defined by T1 and T2. It is reasonable to call
this algebra the compositum of the number fields defined by T1 and T2. Thus,
we are led to the following algorithm.

Algorithm 2.1.8 (Compositum of Two Number Fields). Given two irre-
ducible polynomials T1 and T2 in K[X ], this algorithm computes the relative
defining polynomials for all possible compositums L = K(θ) of the number
fields determined by T1 and T2, respectively, and expresses the generic roots θ1
and θ2 of T1 and T2 in terms of θ.

1. [Compute resultant] Using, for example, the subresultant algorithm ([Coh0,
Algorithm 3.3.7]) over the ring K[X,Z], compute

R(X,Z)←RY (T1(Y ), T2(X − ZY )) ,

where X and Z are formal variables. We denote as above by R′
X (resp., R′

Z)
the partial derivative of R(X,Z) with respect to X (resp., Z).

2. [Find integer k] For k = ±1, ±2, ..., compute s ← gcd(R(X, k), R′
X(X, k))

until s = 1.

3. [Compute θ1] (Here R(X, k) is squarefree.) Using the extended Euclidean
algorithm, compute polynomials U and V inK[X ] such that U(X)R′

X(X, k)+
V (X)R(X, k) = 1, and set A1(X)← −U(X)R′

Z(X, k) mod R(X, k).

4. [Factor R(X, k)] Using, for example, [Coh0, Algorithm 3.5.7] if K = Q and
[Coh0, Algorithm 3.6.4] otherwise, factor R(X, k) in K[X ] as R(X, k) =∏

1≤i≤g Ri(X) (we already know that R(X, k) is squarefree).

5. [Terminate] For i = 1 to i = g, output Ri(X) as the irreducible relative
defining polynomial of a compositum of number fields determined by T1 and
T2, output θ1 ← A1(X) mod Ri(X), θ2 ← X−kA1(X) mod Ri(X) as roots
of T1 and T2, respectively, and terminate the algorithm.

Remark. The polynomials Ri(X) output by the above algorithm often
have large coefficients, hence it is almost always necessary to modify them
before doing further work. For this, if the base field K is equal to Q, we use a
polynomial reduction algorithm such as the one in [Coh0, Algorithm 4.4.12].
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In the general case, we have to use relative polynomial reduction algorithms
which will be described in Section 2.4.2. In any case, we obtain a polynomial
Bi(X) such that the minimal monic polynomial over K of η = Bi(θ) is a
polynomial Si(X) that is hopefully simpler thanRi(X) (up to a multiplicative
constant, we have Si(X) = RY (Ri(Y ), X−Bi(Y ))). Since we now work with
Si(X) and its root η, we must express θ1 and θ2 in terms of η. Using Algorithm
2.1.12 below, we can compute a polynomial B−1

i such that θ = B−1
i (η); hence

θ1 = C1(η) and θ2 = C2(η) with

C1(X) = A1(B
−1
i (X)) mod Si(X) and

C2(X) = B−1
i (X)− kA1(B

−1
i (X)) mod Si(X) .

Another way to obtain smaller polynomials is to modify the type of ele-
ments chosen in Algorithm 2.1.8. Instead of trying elements of the form θ =
θ2+kθ1, we may try more generally any polynomial in θ1 and θ2 with rational
coefficients. This usually leads to rather complicated computations unless
the polynomials are very simple, such as the linear polynomials we have
just chosen. But it is also reasonable to look at θ = θ1θ2 + k1θ1 + k2θ2 for
small integers k1 and k2. This means that instead of computing R(X, k) =
RY (T1(Y ), T2(X − kY )), we compute

R(X, k1, k2) = RY (T1(Y − k2), T2((X − k1Y + k1k2)/Y )Y n2)

with n2 = deg(T2). As usual, if this polynomial is squarefree it defines the
compositum of the number fields defined by T1 and T2 as an étale algebra. We
can also recover θ1 and θ2 by proving a proposition analogous to Proposition
2.1.7 (see Exercise 8). It is, however, much better in this case to use the direct
method explained in Section 2.1.4.

Very often we can simply take k1 = k2 = 0, hence θ = θ1θ2, and in this
case it frequently happens that the polynomial R(X, 0, 0) is simpler than the
polynomial output by Algorithm 2.1.8.

We give an example. Assume that K = Q and that T1(X) = T2(X) =
X3 − 2. We apply Algorithm 2.1.8. After step 1, we find that

R(X,Z) = X9 − 6(Z3 + 1)X6 + 12(Z6 − 7Z3 + 1)X3 − 8(Z3 + 1)3 .

In step 2, k = 1 and k = −1 do not work, but both k = ±2 work, so we
choose k = 2, for example, so R(X, 2) = X9− 54X6 + 108X3− 5832. In step
3, we obtain A1(X) = (X7 − 63X4 + 1242X)/2268. In step 4, we get the
factorization into irreducibles in Q[X ] as R(X, 2) = (X3− 54)(X6 + 108). In
step 5, we first output R1(X) = X3 − 54, which is the trivial compositum
of the field Q(21/3) with itself, and θ1 ← A1(X) mod R1(X) gives X/3 mod
R1(X), which is indeed the change of variable necessary to transform R1(X)
into the initial polynomial X3 − 2. Note that θ2 = X − 2θ1 is also equal to
X/3, as it should be.
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We then output R2(X) = X6 + 108, which is the nontrivial compositum
of Q(21/3) with itself, hence its Galois closure, as well as θ1 = −X4/36 +
X/2 mod R2(X) and θ2 = X4/18 mod R2(X). Note that these formulas for
θ1 and θ2 come immediately from the algorithm but would not have been so
simple to obtain directly. The reader can check that θ31 ≡ θ32 ≡ 2 (mod X6 +
108).

A polynomial reduction algorithm such as [Coh0, Algorithm 4.4.11] gives
the new polynomial S2(X) = X6− 3X5 +5X3− 3X+1 (whose discriminant
is more than 1010 times smaller than that of R2(X)) and the polynomial
B2(X) = −X5/54−X3/36+X/3+1/2. Algorithm 2.1.12 gives us B−1

2 (X) =
4X5 − 10X4 − 6X3 + 19X2 + 11X − 9, and so we obtain finally C1(X) =
2X5 − 5X4 − 3X3 + 10X2 + 5X − 5 and C2(X) = −X2 +X + 1.

On the other hand, if we want to use θ = θ1θ2 + k1θ1 + k2θ2, we find that
(k1, k2) = (0, 0) does not work (it will never work when T1 = T2; see Exercise
10), but (k1, k2) = (−1, 0) works and gives

R(X,−1, 0) = X9 − 6X6 + 228X3 − 8

= (X3 + 6X − 2)(X6 − 6X4 − 4X3 + 36X2 + 12X + 4) .

The third degree factor defines as usual the same number field defined by
T1 and T2, and the sixth degree factor defines its Galois closure. Although
more coefficients are nonzero, it is a slightly simpler polynomial than the
polynomial X6 + 108 (for example, its discriminant is 144 times smaller),
and of course polynomial reduction leads to the same polynomial as the one
found above.

2.1.4 Computing θ1 and θ2

The formula θ1 = −R′
Z(θ, k)/R′

X(θ, k) implicitly used in Algorithm 2.1.8
has the advantage of simplicity but is usually not the most efficient. Indeed,
although R′

X(X, k) can be obtained as the derivative of the single-variable
resultant R(X), there does not seem to be any direct way of computing
R′
Z(θ, k) without computing a two-variable resultant R(X,Z). This, however,

is a rather expensive operation if we directly use the subresultant algorithm.
It is generally better to use modular variants, which amounts to computing
R(X, k) for several values of k, which is exactly what is needed in step 2.
There are at least two ways to obtain θ1 without knowing R(X,Z) as a
two-variable polynomial.

The first way is by looking more closely at the structure of the subresul-
tant algorithm ([Coh0, Algorithm 3.3.7]). This algorithm follows the steps of
an ordinary Euclidean algorithm, except that pseudo-divisions are used in-
stead of divisions. In our case, this means that we start with the polynomials
T1(Y ) and T2(X − kY ) considered as polynomials in Y only and essentially
perform successive Euclidean steps until we reach a constant polynomial in
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Y , which will be the desired resultant R(X) = R(X, k) if we follow the nor-
malizations of the algorithm properly. At each stage, the polynomial in Y is
a linear combination with coefficients in K[X,Y ] of the polynomials T1(Y )
and T2(X − kY ). In particular, they will vanish when we set simultaneously
Y = θ1 and X = θ2 + kθ1.

It can be shown that, when the final remainder R(X) is squarefree, the
degree of the preceding polynomial in the sequence will be exactly equal to 1
in the variable Y , and up to a constant, it will be equal to R′(X)Y +R′

Z(X, k)
(see Exercise 12). Since this will vanish when we set Y = θ1 andX = θ2+kθ1,
we obtain the formula θ1 = −R′(X)/R′

Z(X, k) as before, but without the
need for computing R(X,Z) explicitly.

The second way to compute θ1 is direct. Let N be the n1n2×n1n2 matrix
whose rows are indexed by pairs (i1, i2) with 0 ≤ i1 < n1 and 0 ≤ i2 < n2,
and whose columns, indexed by j for 0 ≤ j < n1n2, contain the coefficients
of θj = (θ2 + kθ1)

j on θi1θ
j
2, which can easily be computed by induction

using the polynomials T1 and T2. Since we know that θ1 belongs to K(θ),
the column vector V representing θ1 (whose entries are equal to 0 except for
(i1, i2) = (1, 0) for which V(1,0) = 1) belongs to the image of N in Kn1n2 .
By Gaussian elimination, we can thus find a column vector W such that
V = NW , and θ1 is thus equal to (1, θ, . . . , θn1n2−1)W .

Note that if we add an (n1n2 + 1)st column to the matrix N represent-
ing θn1n2 , the ordinary kernel of this matrix gives the polynomial R(X, k),
thus giving a way other than the subresultant to compute it. Practice shows
that, suitably implemented, these ideas lead to much better performance
than implementations based on the subresultant algorithm, even with the
improvement mentioned above (see Exercise 13).

Both of the methods just described can of course also be applied to the
case where one chooses θ = θ1θ2 or more generally θ = θ1θ2 + kθ2. Since this
case often gives simpler results, we isolate it as a formal algorithm.

Algorithm 2.1.9 (Compositum of Two Number Fields Using θ1θ2). Let
T1(X) and T2(X) be two monic irreducible polynomials in K[X ] of degree n1

and n2. This algorithm computes a relative defining polynomial for all the pos-
sible compositums L = K(θ) of the number fields determined by T1 and T2,
respectively, and expresses the generic roots θ1 and θ2 of T1 and T2 in terms of
θ.

1. [Modify θ1] By trying k = 0, ±1, etc., find k such that the characteristic
polynomial of θ2(θ1 + k) is squarefree. Set T1(X) ← T1(X − k), then write
T1(X) =

∑
0≤i1≤n1

t1,i1X
i1 and T2(X) =

∑
0≤i2≤n2

t2,i2X
i2 .

2. [Set up big matrix] Set n ← n1n2, and construct the n × (n + 1) matrix
N = (N(i1,i2),j) whose rows are indexed by pairs (i1, i2) with 0 ≤ i1 < n1

and 0 ≤ i2 < n2, and whose columns are indexed by integers j such that
0 ≤ j ≤ n as follows. Set N(0,0),0 ← 1, N(i1,i2),0 ← 0 for all (i1, i2) 6= (0, 0).
Then for j = 0, . . . , j = n− 1, and for all (i1, i2), set
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N(i1,i2),j+1 ← N(i1−1,i2−1),j − t1,i1N(n1−1,i2−1),j

− t2,i2N(i1−1,n2−1),j + t1,i1t2,i2N(n1−1,n2−1),j ,

where N(i1,i2),j is taken equal to 0 if either i1 < 0 or i2 < 0.

3. [Compute kernel] Using [Coh0, Algorithm 2.3.1], compute the kernel of N ,
which will be a one-dimensional space generated by some element (r0, . . . , rn)t

with rn 6= 0 which we normalize so that rn = 1. Set R(X)←∑
0≤j≤n rjX

j.

4. [Compute inverse image] Change the nth column of the matrix N by setting
N(1,0),n ← 1 and N(i1,i2),n ← 0 for (i1, i2) 6= (1, 0). Then once again using
[Coh0, Algorithm 2.3.1], compute the kernel of this new matrix N , which must
again be a one-dimensional space generated by some element (a0, . . . , an)

t

with an 6= 0 which we normalize so that an = −1.

5. [Compute θ1 and θ2] Set A1(X) ← ∑
0≤j<n ajX

j. Using the extended
Euclidean algorithm, compute polynomials U and V in K[X ] such that
U(X)A1(X) + V (X)R(X) = 1 and set A2(X)← XU(X) mod R(X).

6. [Factor R(X)] Using, for example, [Coh0, Algorithm 3.5.7] if K = Q
and [Coh0, Algorithm 3.6.4] otherwise, factor R(X) in K[X ] as R(X) =∏

1≤i≤g Ri(X) (we already know that R(X) is squarefree).

7. [Terminate] For i = 1 to i = g, output Ri(X) as the irreducible defining
polynomial of a compositum of number fields determined by T1 and T2, output
θ1 ← A1(X)−k mod Ri(X), θ2 ← A2(X) mod Ri(X) as roots of the initial
T1 and T2, respectively, where k has been computed in step 1, and terminate
the algorithm.

Remarks

(1) If k = 0 does not work in step 1, we change θ1 into θ1 + k and hence
T1(X) into T1(X − k) for some small k. The proof of the existence of
such a k is essentially identical to the proof of the primitive element
theorem (Exercise 2). To avoid any risk of confusion, it is preferable to
do this change before using this algorithm, and forget about the initial
polynomial T1(X) entirely, rather than handling θ2(θ1 + k). In other
words, we could reasonably ask the algorithm also to output the new
polynomial T1(X), and set θ1 ← A1(X) mod Ri(X) in the last step.

(2) After computing θ1 + k, to recover θ2 we use in step 5 the trivial formula
θ2 = θ/(θ1 + k). We can also obtain θ2 directly by still another kernel
computation where we set N(0,1),n ← 1 and N(i1,i2),n ← 0 for (i1, i2) 6=
(0, 1).

(3) Since we have two (or three if we use the preceding remark) matrix kernels
to compute of n× (n+ 1) matrices whose first n columns are the same,
we can considerably speed up the algorithm by solving the two (or three)
linear systems at once. This is a simple modification of the algorithm for
computing a matrix inverse [Coh0, Algorithm 2.2.2], where the work is
done only on two (or three) columns instead of n. The details are left
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to the reader (see Exercise 14), but an actual implementation must use
this.

One last problem can be asked in the context of the compositum of number
fields. Let K1 and K2 be two extensions of K determined by the polynomials
T1 and T2 as above, and let L be the étale algebra compositum of K1 and
K2, so that a defining polynomial for L/K is the resultant R(X, k), and θ =
θ2 + kθ1 (if desired, instead of the full compositum L, we could also consider
one of the number fields obtained by factoring R(X, k)). We would like to
compute a relative defining polynomial for L/K1 and for L/K2. The answer
to this problem is trivial but deserves to be mentioned. Since θ = θ2 +kθ1, we
clearly have T2(θ−kθ1) = T2(θ2) = 0. Hence, if we set U1(X) = T2(X−kθ1),
we have U1 ∈ K1[X ] and U1(θ) = 0. In addition, since L is the compositum
considered as an étale algebra, we have [L : K1] = [K2 : K] = deg(T2), so
U1 is the minimal polynomial of θ over K1; hence it is a relative defining
polynomial for L/K1 (if we had taken L to be a number field associated to
an irreducible factor of R(X, k), we would have had to consider a suitable
factor of U1).

Similarly, since k 6= 0, U2(X) = kdeg(T1)T1((X − θ2)/k) is the minimal
polynomial of θ over K2; hence it is a relative defining polynomial for L/K2.

2.1.5 Relative and Absolute Defining Polynomials

Let L1 be a number field over K, defined as L1 = K(θ1), where θ1 is a
root of the irreducible polynomial T1 ∈ K[X ] of degree n1. Let L2 = L1(θ2)
be a relative extension, defined by a root θ2 of the polynomial T2 ∈ L1[X ],
irreducible over L1 of degree n2 = [L2 : L1]. In this section, we give an
algorithm that allows us to go back and forth from the representation of
L2 as an L1-extension to the representation of L2 as a K-extension. (In
the case where K = Q, this of course allows us to go back and forth from
relative to absolute defining polynomials.) We will see that this is a natural
generalization of the algorithm for computing the compositum of two number
fields (Algorithms 2.1.8 or 2.1.9).

The following theorem is the analog (in fact, a generalization) of Propo-
sition 2.1.7.

Theorem 2.1.10. Let L1 = K(θ1) and L2 = L1(θ2) be two number fields,
where θ1 is a root of the irreducible polynomial T1(X) ∈ K[X ] of degree n1,
and θ2 is a root of the polynomial T2(X) ∈ L1(X) of degree n2, assumed to
be irreducible in L1(X). If T2(X) =

∑n2

m=0Am(θ1)X
m, we set W (X,Y ) =∑n2

m=0Am(Y )Xm, which makes sense only modulo T1(Y )K[X ]. Set

R(X,Z) = RY (T1(Y ),W (X − ZY, Y )) .

Then we have the following.
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(1) There exists an integer k ∈ Z such that the polynomial R(X, k) is square-
free.

(2) If k is chosen as in (1), then R(X, k) is irreducible in K[X ], and L2 =
K(θ), where θ = θ2 + kθ1 is a root of R(X, k).

(3) If k and θ are as in (1) and (2), we have

θ1 = −R
′
Z

R′
X

(θ, k), θ2 = θ − kθ1 .

Proof. The proof is very close to that of Lemma 2.1.4 and Proposition
2.1.7 (see also [Coh0, Lemma 3.6.2]).

(1). Let Ω = L2 be some algebraic closure of L2. Then Ω is also an

algebraic closure of K and of L1. We denote by θ
(i)
1 (resp., θ

(j)
2 ) the roots

of T1 (resp., T2) in Ω, chosen so that θ1 = θ
(1)
1 and θ2 = θ

(1)
2 . Note that

the θ
(i)
1 (resp., the θ

(j)
2 ) are distinct since T1 and T2 are irreducible and in

particular squarefree. Let k ∈ Z. The roots of R(X, k) in Ω are the numbers
X such that there exists a common root of T1(Y ) and W (X−kY, Y ), so that

Y = θ
(i)
1 and W (X − kθ(i)1 , θ

(i)
1 ) = 0.

Set

T
(i)
2 =

n2∑

m=0

Am(θ
(i)
1 )Xm = W (X, θ

(i)
1 ) ,

and let θ
(i,j)
2 be the roots of T

(i)
2 in Ω, ordered so that θ

(1,j)
2 = θ

(j)
2 . Thus the

roots of R(X, k) are the numbers γ(i,j) = θ
(i,j)
2 +kθ

(i)
1 . Furthermore, using as

before Sylvester’s determinant, it is easy to show that R(X, k) is a polynomial
in X of degree at most equal to n1n2. If we choose k ∈ Z different from the
finite set of values

θ
(i,j)
2 − θ(i

′,j′)
2

θ
(i′)
1 − θ(i)1

for i 6= i′ ,

the n1n2 values γ(i,j) are distinct, and hence the polynomial R(X, k) is
squarefree of degree exactly equal to n1n2, proving (1).

We prove (2) and (3) simultaneously. Let k be chosen as in (1). Keeping
the notation of the proof of Lemma 2.1.4, we obtain without change that for
θ = θ2+kθ1, we have θ1 = −(R′

Z/R
′
X)(θ, k) and θ2 = θ−kθ1. Since θ is a root

of R(X, k) ∈ K[X ], it is a root of some irreducible factor R1(X) of R(X, k) in
K[X ]. But then the number field K(θ) defined over K by the polynomial R1

contains L1 (since θ1 is a rational function of θ) and hence also contains L2

since θ2 = θ−kθ1. Since [L2 : K] = [L2 : L1][L1 : K] = n1n2 = deg(R(X, k)),
it follows that deg(R1) = deg(R(X, k)); in other words, R(X, k) is irreducible
in K[X ]. ⊓⊔

The corresponding algorithm is also essentially identical to Algorithm
2.1.8. Considering its importance it is useful to give it separately.
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Algorithm 2.1.11 (Relative to Absolute Defining Polynomial). Given an ir-
reducible polynomial T1 ∈ K[X ] defining a number field L1 = K(θ1) and a
polynomial T2 ∈ L1[X ], irreducible in L1[X ], hence defining a number field
L2 = L1(θ2), this algorithm computes a defining polynomial for L2 over K, in
other words, an irreducible polynomial R ∈ K[X ] such that L2 = K(θ) with θ
a root of R. Furthermore, it also computes θ1 and θ2 as polynomials in θ, and
the small integer k such that θ = θ2 + kθ1.

1. [Compute resultant] If T2(X) =
∑

mAm(θ1)X
m for some polynomials Am,

set W (X,Y ) ← ∑
mAm(Y )Xm. Using, for example, the subresultant algo-

rithm ([Coh0, Algorithm 3.3.7]) over the ring K[X,Z], compute

R(X,Z)←RY (T1(Y ),W (X − ZY, Y )) ,

where X and Z are formal variables. We will denote by R′
X (resp., R′

Z) the
partial derivative of R(X,Z) with respect to X (resp., Z).

2. [Find integer k] For k = 0, ±1, ±2, . . . , compute

s← gcd(R(X, k), R′
X(X, k))

until s = 1.

3. [Terminate] (Here R(X, k) is irreducible.) Using the extended Euclidean algo-
rithm, compute polynomials U and V in K[X ] such that U(X)R′

X(X, k) +
V (X)R(X, k) = 1, and set θ1 ← −U(X)R′

Z(X, k) mod R(X, k). Out-
put the defining polynomial R(X, k) for L2/K, output k, θ1, θ2 = X −
kθ1 mod R(X), and terminate the algorithm.

Again we give an example. Let K = Q, L1 = K(θ1), where θ1 is a root of
the polynomial T1(X) = X3 − 2, and L2 = L1(θ2), where θ2 is a root of the
polynomial T2(X) = X2 − θ1X + 1. We compute that

R(X,Z) = X6 + 3X4 − 2(2Z3 + 3Z2 + 3Z + 1)X3

+ 3X2 + 6(2Z3 + 3Z2 + Z)X

+ (4Z6 + 12Z5 + 12Z4 + 4Z3 + 1) .

Here we can take k = 0 (this was never possible when computing a composi-
tum; see Exercise 16), and hence R(X) = X6 + 3X4 − 2X3 + 3X2 + 1 is an
absolute defining polynomial for L2. Furthermore, the computations of step
3 show that θ1 = −(X5 + 3X3 − 2X2 − 2X) mod R(X).

The above algorithm is used when it is necessary to have a defining poly-
nomial for L2 over K and not only over L1 (although it is usually better
not to work over K, but sometimes it is impossible to do otherwise). The
results are then used as follows. If α ∈ L1 is given as a polynomial in θ1,
thanks to the formula expressing θ1 in terms of θ we can immediately com-
pute α in terms of θ and hence consider it as an element of L2. Conversely,
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if α =
∑

0≤i<n1n2
aiθ

i is an element of L2 which for some reason is known to
belong to L1 (for example, α may be the relative trace or norm of some other
element of L2), we want to express α as a polynomial in θ1 and not only as a
polynomial in θ. Thus, we want to find bj ∈ K such that α =

∑
0≤j<n1

bjθ
j
1.

Since θ1 is known as a polynomial in θ, we can compute (once and for all if this
has to be done for several α) coefficients ci,j for 0 ≤ i < n1n2 and 0 ≤ j < n1,

such that θj1 =
∑

0≤i<n1n2
ci,jθ

i. Finding the bj is thus equivalent to solving
the linear system of n1n2 equations in n1 unknowns

∑
0≤j<n1

ci,jaj = bi for
0 ≤ i < n1n2. This is done via a straightforward pivoting method (see, for
example, [Coh0, Algorithm 2.3.4]). Since there are many more equations than
unknowns in the system, this gives an excellent check of the correctness of
preceding computations. In fact, the system has a solution if and only if α
does belong to L1, so it provides a new verification of this fact.

Remark. It is important to note the similarities and differences between
the two problems studied above. The computation of the compositum of two
number fields corresponds clearly to the special case of the computation of
a relative extension L2/L1 in which the defining polynomial T2(X) not only
belongs to L1[X ], but in fact to K[X ], or in other words, that the corre-
sponding two-variable polynomial W (X,Y ) defined above does not depend
on Y . However, it is not quite a special case, since in the computation of ab-
solute defining polynomials, we assume that the polynomial T2 is irreducible
in L1(X), while for the compositum we have the weaker assumption that T2

should be irreducible in K[X ].
We could, however, write a common theorem and a common algorithm

by considering finite étale algebras over K instead of field extensions of K,
and in that case the polynomial T2 need not be irreducible. We leave this as
an easy exercise for the reader (Exercise 17).

Finally, note that most of the remarks made after Algorithm 2.1.8 — in
particular those about other ways of computing θ1 — still apply here and
must be used in a serious implementation.

Another interesting special case of the problem of computing absolute
defining polynomials is the reversion of an algebraic number. Assume that
L1 = K(θ1) is a number field of degree n over K defined by an irreducible
polynomial T1, and let θ2 = A(θ1), which is also known to be of degree n.
Since K(θ2) = K(θ1), we must be able to express θ1 in terms of θ2. Using
Algorithm 2.1.11, we let L2 = L1(θ2), where θ2 is a root of the polynomial
T2 of degree 1 over L1(X) defined by T2(X) = X −A(θ1). Clearly, L2 = L1.
We have W (X,Y ) = X −A(Y ), and hence R(X,Z) = RY (T1(Y ), X −ZY −
A(Y )). The polynomial R(X, 0) = RY (T1(Y ), X−A(Y )) is the characteristic
polynomial of α in L1 (see [Coh0, Proposition 4.3.4]). Hence, since α is of
degree n, R(X, 0) is irreducible and is thus equal to the minimal polynomial
of α. Theorem 2.1.10 then tells us that θ1 = −R′

Z(θ2, 0)/R′
X(θ2, 0).
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We can also solve the problem directly using the following algorithm.

Algorithm 2.1.12 (Reversion of an Algebraic Number). Let L = K(θ1) be
a number field of degree n over K defined by an irreducible polynomial T1, and
let θ2 = A(θ1) be an element of degree n. This algorithm computes a polynomial
B(X) ∈ K[X ] of degree less than n such that θ1 = B(θ2).

1. [Compute powers of θ2] For 0 ≤ j < n, compute Aj(X) ← Aj(X) mod
T1(X), and let Aj(X) =

∑
0≤i<n ai,jX

i.

2. [Solve linear system] Let M = (ai,j) be the matrix of the ai,j . Using ordinary
Gaussian pivoting in K, find a solution B = (b0, . . . , bn−1)

t to the linear
system MB = (1, 0, . . . , 0)t. If the system has no solution, output an error
message saying that θ2 is of degree strictly less than n and terminate. If the
system has more than one solution, output an error message saying that θ1 is
of degree strictly less than n and terminate.

3. [Terminate] Set B(X) ← ∑
0≤j<n bjX

j, output B(X), and terminate the
algorithm.

Proof. The (easy) proof of this algorithm’s validity is left to the reader
(Exercise 18). ⊓⊔

Finally, consider the following problem. Assume that we have a field ex-
tension L/K and that, in addition to the data for the base field K, we know
only an absolute defining polynomial for L (over Q or some other subfield
k of K). We want to find a defining polynomial for L/K. This is simply
the subfield problem considered in [Coh0, Section 4.5]. There are thus several
methods to do this, which are equivalent to factoring the absolute polynomial
defining L in the number field K. Any such factor of the correct degree gives
a relative defining polynomial. Note, however, that if the number fields are
specified together with embeddings (in C, for example), then one must choose
among the factors of the correct degree, selecting the one that corresponds
to the given extension. The details are left to the reader (Exercise 19).

2.1.6 Compositum with Normal Extensions

We keep the situation of the preceding section, but we will specialize to
K = Q (although most of what will be said applies with essentially no change
to the general case), so we change notation.

Let K = Q(θ1) be defined by a root of an irreducible polynomial T1(X) ∈
Q[X ] of degree n1, and let L = K(θ2) be a relative extension, defined by a root
θ2 of the polynomial T2 ∈ K[X ], irreducible over K of degree n2 = [L : K].
Recall that a special case of this situation is the compositum of two number
fields.

In the preceding section, we gave an algorithm for computing an absolute
defining polynomial T (X) for L/Q and for expressing θ1 and θ2 in terms of
the generic root θ of T .
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We will want to compute arithmetical invariants of L such as its discrim-
inant and integral basis, or to perform polynomial reduction on its defining
polynomial, either relative or absolute. Later we will see how to use the rela-
tive defining polynomial (which, as usual, gives simpler results). If instead we
want to use the absolute defining polynomial alone, the first major problem is
to factor its discriminant. This is generally quite a hard task (with the tech-
nology available in 1999, factoring 100-digit numbers is already quite hard;
the records, harnessing huge amounts of computing power, are in the 170-
digit range). In the special case where L is obtained as a compositum with
a normal extension of K (and also in more general cases), we have algebraic
methods for obtaining a partial factorization, which we now explain.

Thus, let L be the compositum of K with a number field K2 assumed to
be normal over Q with Galois group G. This is an important situation that
occurs, for example, when we deal with Kummer extensions (see Chapter 5),
where we first need to adjoin an nth root of unity, so that K2 = Q(ζn) and
G ≃ (Z/nZ)∗.

Let T2(X) be a polynomial defining K2/Q, and let θ2 be a root of T2 in
K2. As we have seen in Section 2.1.3, if we set

R(X,Z) = RY (T1(Y ), T2(X − ZY )) ,

we can find k ∈ Z such that R(X) = R(X, k) is squarefree and defines our
étale algebra L = Q[θ] with θ = θ2 + kθ1, and we also have

θ1 = −R
′
Z

R′
X

(θ, k), θ2 = θ − kθ1 .

If we want to work directly with the absolute polynomial R(X), we must
begin by factoring its discriminant. Since we have introduced parasitic factors,
its discriminant is generally large and hence difficult to factor. Using the
algebraic structure present in the construction of R(X), however, we can
considerably simplify the factoring process.

To simplify the computations, we will assume that T1 and T2 are monic
and with integer coefficients, since it is easy to reduce to this case. The reader
can easily modify the computations given below to the case where no such
preliminary reduction is made (see Exercise 20). Since K2 is normal over Q,
we can index the roots of T2 by G, so that if K2 = Q(β), we can set βσ = σ(β)
for any σ ∈ G = Gal(K2/Q), and these will be all the roots of T2. Thus, we
can write

T1(X) =
∏

0≤i<n1

(X − αi) and T2(X) =
∏

σ∈G
(X − βσ) ,

and we let n = n1n2 be the absolute degree of L.
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The definition of the resultant (see [Coh0, Definition 3.3.2]) shows that

R(X,Z) =
∏

0≤i<n1,σ∈G
(X − (αiZ + βσ)) ,

hence the formula for the discriminant ([Coh0, Proposition 3.3.5]) gives

D(Z) = discX(R(X,Z))

= (−1)n(n−1)/2
∏

(i2,σ2) 6=(i1,σ1)

((αi2 − αi1)Z + (βσ2 − βσ1))

= (−1)n(n−1)/2P1(Z) · P2 ,

with
P1(Z) =

∏

i2 6=i1

∏

σ1,σ2

((αi2 − αi1)Z + (βσ2 − βσ1))

and
P2 =

∏

i2=i1

∏

σ2 6=σ1

(βσ2 − βσ1) = (−1)n1n2(n2−1)/2 disc(T2)
n1 ,

where, of course, i1 and i2 vary implicitly between 0 and n1−1, while σ1 and
σ2 are in G. Hence,

D(Z) = (−1)n(n+n2−2)/2 disc(T2)
n1P1(Z) .

The discriminant of the absolute polynomial R(X) = R(X, k) defining L is
thus equal to D(k). We will see below that up to sign P1(k) is a square, but
it is simpler to keep it in the present form for now.

Let us compute this value in the simplest possible rational terms. Here
we will use in an essential way the fact that the number field K2 is a normal
extension of Q. Grouping terms with a given s = σ−1

1 σ2, we have

D(k) = (−1)n(n+n2−2)/2 disc(T2)
n1

∏

s∈G
Ds(k) ,

with
Ds(k) =

∏

σ∈G

∏

0≤i2 6=i1<n1

((αi2 − αi1)k + (βσs − βσ)) .

By Galois theory, since Ds(k) is invariant both by the Galois group of the
Galois closure of K/Q and by G, Ds(k) is a rational integer. In addition, if
we denote by 1G the unit element of G, then

D1G(k) = kn1n2(n1−1)
( ∏

0≤i2 6=i1<n1

(αi2 − αi1)
)n2

= kn1n2(n1−1)(−1)n1n2(n1−1)/2 disc(T1)
n2 ;

hence
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D(k) = (−1)akn1n2(n1−1) disc(T1)
n2 disc(T2)

n1

∏

s∈G,s6=1G

Ds(k) ,

with

a =
n(n+ n2 − 2) + n(n1 − 1)

2
≡ n1(n1 + 1)

2
n2(n2 + 1) ≡ 0 (mod 2) .

Furthermore, it is easy to see that

Ds−1(k) =
∏

σ∈G

∏

0≤i2 6=i1<n1

((αi2 − αi1)k + (βσs−1 − βσ))

=
∏

σ∈G

∏

0≤i2 6=i1<n1

((αi2 − αi1)k + (βσ − βσs))

= (−1)n1n2(n1−1)Ds(k) = Ds(k) .

In addition, if s2 = 1G and s 6= 1G, let H be a system of right coset
representatives of G modulo < s >, so that G = H ∪ Hs (disjoint union).
Then

Ds(k) =
∏

σ∈H

∏

i2 6=i1
((αi2 − αi1)k + (βσs − βσ))((αi2 − αi1)k + (βσs2 − βσs))

= Es(k)
2 ,

with
Es(k) =

∏

σ∈H

∏

i2 6=i1
((αi2 − αi1)k + (βσs − βσ)) .

Since Es(k) is still invariant by the Galois groups, it is rational. Hence it
follows that Ds(k) is a square when s2 = 1G and s 6= 1G.

Thus we have finally obtained the following result.

Lemma 2.1.13. With the above notation, we have

D(k) = kn1n2(n1−1) disc(T1)
n2 disc(T2)

n1

∏

s∈G,s6=1G

Ds(k) .

Furthermore, for all s, we have Ds−1 = Ds, and if s2 = 1G and s 6= 1G, then
Ds is the square of a rational integer.

Hence, we have split our large discriminant D(k) as a product of smaller
pieces Ds(k). This already shows that D(k) must factor relatively easily. This
is still theoretical, however, since we must also give a purely algebraic way of
computing Ds(k).

To do this, we make the following observation. Let

U(X) = RY (T1(Y ), T1(Y +X))/Xn1
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be the resultant in Y of T1 with a shifted version of the same polynomial T1

divided by Xn1. Then

U(X) =
∏

0≤i2 6=i1<n1

(αi2 − αi1 +X) .

Hence for s 6= 1G,

Ds(k) =
∏

σ∈G

(
kn1(n1−1)U((βσs − βσ)/k)

)

= kn1n2(n1−1)
∏

σ∈G
U((βσs − βσ)/k) .

If we set
Vs(X) =

∏

σ∈G
(X − (βσs − βσ)) ,

we have
Vs(X) =

∏

σ∈G
(X − σ(s(β) − β)) = Cs(β)−β(X) ,

where Cα(X) denotes the characteristic polynomial of α in the number field
K2 (see [Coh0, Definition 4.3.1]). Since K2/Q is a normal extension, s(β) is a
polynomial in β with rational coefficients, and hence we can set s(β) = As(β)
with As ∈ Q[X ]. Note that As can be computed algorithmically using one of
the algorithms for the field isomorphism problem ([Coh0, Section 4.5]). Thus,
using [Coh0, Proposition 4.3.4], we have

Vs(X) = RY (T2(Y ), X + Y −As(Y )) .

Finally, coming back to Ds(k), we see that

RX(U(X), Vs(kX)) = kn1n2(n1−1)
∏

σ∈G
U((βσs − βσ)/k) = Ds(k) .

We summarize what we have obtained in the following theorem.

Theorem 2.1.14. Let K1 = Q(θ1) and K2 = Q(θ2) be number fields of re-
spective degrees n1 and n2, and let T1(X) and T2(X) be the minimal monic
polynomials of θ1 and θ2, respectively. Assume that K2 is a normal extension
of Q with Galois group G. Let R(X) = R(X, k) be an absolute defining poly-
nomial for the compositum L of K1 and K2 as computed by Algorithm 2.1.8
(R is squarefree but not necessarily irreducible).

For s ∈ G, s 6= 1G, define As(X) to be the polynomial expressing s(θ2) in
terms of θ2, and set Vs(X) = RY (T2(Y ), X + Y −As(Y )) (this depends only
on the number field K2 and on s).

Let U(X) = RY (T1(Y ), T1(Y +X))/Xn1 (this depends only on the number
field K1), and for s 6= 1G, set
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Ds(k) = RX(U(X), Vs(kX)) .

Then

(1) for all s ∈ G, s 6= 1G, we have Ds(k) ∈ Z;
(2) we have the decomposition

disc(R(X)) = kn1n2(n1−1) disc(T1)
n2 disc(T2)

n1

∏

s∈G,s6=1G

Ds(k) ;

(3) for all s ∈ G, we have Ds−1(k) = Ds(k);
(4) if s2 = 1G and s 6= 1G, then Ds(k) is the square of a rational integer.

Remarks

(1) To use this theorem in practice, we let I be the set of elements s of
G such that s2 = 1G and s 6= 1G, and we let G1 be a complete set
of representatives for the equivalence relation on G − I − {1G} whose
equivalence classes are the pairs {s, s−1}. Then

disc(R(X)) = kn1n2(n1−1) disc(T1)
n2 disc(T2)

n1

( ∏

s∈G1

Ds(k)
∏

s∈I
Es(k)

)2

,

with Es(k) = Ds(k)
1/2 ∈ Z as above.

(2) If instead of choosing θ = θ2+kθ1 we choose θ = θ1θ2 (or, more generally,
θ = θ1θ2+k1θ1+k2θ2) as in Algorithm 2.1.9, a completely similar theorem
holds; see Exercise 9.

Let us look at an example. Let T1(X) = X4 − X3 + 2X + 1 and let
T2(X) = (X11−1)/(X−1) be the 11th cyclotomic polynomial, which defines
a cyclic extension of Q. An absolute defining polynomial for the compositum,
which is of degree 40, obtained by choosing θ = θ1 +θ2, has a discriminant of
several hundred digits. Even after casting out small prime factors less than
500, 000, say, and noting that the unfactored part is a square, the number
that remains to be factored still has 110 digits. Factoring such a number is
in general a feasible but formidable task. We know, however, that it must
factor in relatively small parts Ds(k), and indeed all the Ds(k) have around
34 digits, which are considerably easier numbers to factor.

If, on the other hand, we use θ = θ1θ2, we are in a very favorable case.
First, the discriminant of the compositum obtained in this way has less than
half the digits of the preceding one. Second, it is divisible only by very small
primes (the largest being 1319), so factoring becomes trivial. Even if it were
not so, we could have used the analog of Theorem 2.1.14 given in Exercise 9.

The method explained above can be generalized to the case where there
exist only some nontrivial Q-automorphisms of K2, and also to the case of
relative normal extensions of K1 not necessarily defined by a compositum.
The methods are completely similar, and the details are left to the reader.
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2.2 Arithmetic of Relative Extensions

The preceding section was essentially field-theoretical. In the present section,
which is mainly theoretical, we study the arithmetic of relative extensions,
in particular, the properties of the rings of algebraic integers.

We first briefly explain how the usual notions for absolute extensions ex-
tend to the relative case. We follow closely [Coh0, Section 4.1.2 and following].
Let K be a base field, L = K(θ) a relative extension, and T (X) ∈ K[X ] the
minimal monic polynomial of θ which is irreducible in K[X ]. More generally,
we could assume that L is only an étale algebra over K, in other words, that
T (X) is only squarefree.

2.2.1 Relative Signatures

We start with the following simple, but important, theorem.

Theorem 2.2.1. Let L = K(θ) be an extension of number fields with T (θ) =
0 as above, and let n = deg(T ) = [L : K]. Let σ be an embedding (an injective
field homomorphism) of K into an arbitrary field Ω (not necessarily a number
field). Assume that the polynomial T σ(X) has n roots in Ω, where T σ denotes
the polynomial obtained from T by applying σ to all the coefficients. Then σ
can be extended to exactly n embeddings of L into Ω.

Proof. Indeed, let α = A(θ) ∈ L = K(θ). If φ is an extension of σ to L,
we must have φ(α) = φ(A(θ)) = Aσ(φ(θ)). Since T (θ) = 0, we must have
T σ(φ(θ)) = 0, hence φ(θ) must be one of the n roots βi of T σ inΩ, so there are
at most n embeddings. Conversely, if we set φ(α) = Aσ(βi) and if α = A1(θ)
for some other polynomial A1, we have A1(X)−A(X) = T (X)U(X), hence

Aσ1 (βi) = Aσ(βi) + T σ(βi)U
σ(βi) = Aσ(βi) ,

so φ is a well-defined embedding of L extending σ. ⊓⊔

Corollary 2.2.2. Let k be a number field (for example, k = Q), K and K ′

two extensions of k, and L/K an extension of K of relative degree n. We
assume that all our number fields are subfields of C. Any k-isomorphism of
σ from K to K ′ extends to exactly n k-embeddings from L into C.

The following proposition gives a more precise way of stating these results.

Proposition 2.2.3. Let L = K(θ) be a relative extension of number fields,
and let T be the minimal monic polynomial of θ, as above. Let m = [K : Q]
and n = [L : K], so that [L : Q] = nm. For each of the m embeddings τi of
K into C, denote by T τi the polynomial obtained from T by applying τi on
the coefficients. Then we have the following.
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(1) Each of the m embeddings τi of K into C extends to exactly n embeddings
of L into C, given by θ 7→ θi,j, where the θi,j are the roots of T τi for
1 ≤ j ≤ n.

(2) There exist exactly n embeddings σj,K of L into C which are K-linear,
given by θ 7→ θj, where the θj are the roots of the polynomial T in C.

Proof. If σ is an embedding of L into C, then σ|K is an embedding of K
into C, so σ|K = τi for a certain i. If σ(θ) = θ′, applying σ to the equality
T (θ) = 0 we obtain T τi(θ′) = 0, and hence θ′ = θi,j for a certain index j.
Conversely, it is clear that

σ

(∑

k

akθ
k

)
=
∑

k

τi(ak)θ
k
i,j

defines an embedding of L into C, which extends τi.
This embedding will be K-linear if and only if τi(a) = a for all a ∈ K

— in other words, if τi is the identity map (recall that we have explicitly
embedded K into Q ⊂ C) — hence there are exactly n K-linear embeddings,
namely those that extend the identity of K. ⊓⊔

Definition 2.2.4. Let L/K be a relative extension of relative degree n, and
let τ be an embedding of K into C. We say that τ is ramified in L if τ is a
real embedding (that is, if τ(K) ⊂ R) and if at least one of the extensions of
τ to L is not a real embedding. It is unramified otherwise (in particular, a
nonreal embedding is unramified).

In terms of defining polynomials, if T (X) ∈ K[X ] is a polynomial defining
the field L over K, then a real embedding τ is unramified if and only if T τ

has only real roots in C.
The following is a simple consequence of this definition.

Proposition 2.2.5. Let L/K be a relative extension of relative degree n.
Denote by (r1, r2) (resp., (R1, R2)) the signature of the number field K (resp.,
L). If all the embeddings τ of K are unramified in L, we have (R1, R2) =
(nr1, nr2).

More generally, if R1,i (resp., 2R2,i) is the number of real (resp., non-
real) roots of T τi for 1 ≤ i ≤ r1, we have the formula

(R1, R2) =

( ∑

1≤i≤r1
R1,i, nr2 +

∑

1≤i≤r1
R2,i

)
.

Proof. If τ is a nonreal embedding of K, any extension of τ to L must
also be nonreal since L is an extension of K. On the other hand, if τ = τi is a
real embedding, the polynomial T τi has R1,i real and 2R2,i nonreal roots for
some nonnegative integers R1,i and R2,i such that R1,i + 2R2,i = n. Hence
the signature of L is equal to (R1, R2) with
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R1 =
∑

1≤i≤r1
R1,i and R2 =

∑

1≤i≤r1
R2,i + nr2 ,

as claimed. In the special case where all the τi are unramified, we have R1,i =
n and R2,i = 0, proving the formulas of the proposition. ⊓⊔

Note that when τ is a nonreal embedding, the polynomial T τ does not
necessarily have an even number of nonreal roots, since it is not invariant by
complex conjugation.

Recall that an extension L/K of number fields is Galois (or normal) if L
is globally invariant by the [L : K] K-linear embeddings of L into C. If this
is the case, the set of such embeddings is a group, called the Galois group
of L/K and denoted by Gal(L/K) (remember that all our number fields are
assumed to be subfields of C). If an element x ∈ L is such that g(x) = x for
all g ∈ Gal(L/K), then Galois theory tells us that x ∈ K.

If L/K is a Galois extension, then Proposition 2.2.5 simplifies consider-
ably, as follows.

Corollary 2.2.6. Keep the notation of Proposition 2.2.5, and assume in
addition that L/K is a Galois extension.

(1) If k is the number of ramified real places of K in L/K, we have (R1, R2) =
(n(r1 − k), n(r2 + k/2)).

(2) If n is odd, we have k = 0, so (R1, R2) = (nr1, nr2).

Proof. Let τ be a real embedding of K. If τ has a real extension to L, then
since L/K is Galois, the roots of the defining polynomial T τ can be expressed
as polynomials with coefficients in τ(K) of any one of them. Hence if one root
is real, all of them are, and if one is nonreal, all of them are. Thus, either τ
is unramified, or all the extensions of τ to L are nonreal. In the case where
n is odd, T τ is an odd-degree polynomial with real coefficients — hence has
at least one real root — so all real places τ are unramified, thus proving the
corollary. ⊓⊔

Corollary 2.2.7. Keep the notation of Proposition 2.2.5. Then

(1) we have R1 + 2R2 = n(r1 + 2r2) and R1 ≤ nr1 (or, equivalently, R2 ≥
nr2), and if n is odd, R1 ≥ r1;

(2) if L/K is a Galois extension, then in addition n | R1 (or, equivalently,
n | 2R2), and if n is odd, R1 = nr1 and R2 = nr2;

(3) conversely, if (1) is satisfied, there exists a relative extension L/K of
signature (R1, R2), and if (1) and (2) are satisfied, there exists a Galois
(even a cyclic) extension L/K of signature (R1, R2).

Proof. Statement (1) immediately follows from Proposition 2.2.5, and (2)
follows from Corollary 2.2.6. The cases n odd follow from the fact that a real
polynomial of odd degree has at least one real root.
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Conversely, assume (1). Since R1 ≤ nr1 and R1 ≡ nr1 (mod 2), we
can find r1 integers n1, . . . , nr1 such that ni ≤ n, ni ≡ n (mod 2), and∑

1≤i≤r1 ni = R1. For each i ≤ r1, choose a monic squarefree polynomial
Pi(X) ∈ R[X ] of degree n having exactly ni real roots; for example,

Pi(X) =
∏

1≤j≤ni

(X − j)
∏

1≤j≤(n−ni)/2

(X2 + j2) .

Write Pi(X) =
∑

0≤j≤n ai,jX
j, and let ε be a sufficiently small, positive real

number. By the approximation theorem (Proposition 1.2.8), we can find αj ∈
K such that

∣∣α(i)
j −ai,j

∣∣ ≤ ε for all i ≤ r1, where as usual α
(i)
j denotes the ith

conjugate of αj . Since Pi is squarefree, if ε is small enough, by continuity the

modified polynomials Qi(X) =
∑

0≤j≤n α
(i)
j Xj will have the same number

of real roots as Pi, in other words ni. By the approximation theorem once
again, we may also modify αj so that Qi(X) is irreducible in K[X ]. Once this
is done, we take Q(X) =

∑
0≤j≤n αjX

j and it is clear that a root of Q(X)
defines an extension L/K having the required signature.

Assume now that (1) and (2) are satisfied. Choose a large prime p > 2
such that p ≡ 1 (mod 2n) and p ∤ d(K). Since Q(ζp)/Q is ramified only
at p and K/Q is not, it follows that K ∩ Q(ζp) = Q. Let η = ζp + ζ−1

p ,
so that Q(η) is the totally real subfield of degree (p − 1)/2 of Q. Denote
by k = Q(θ) the unique totally real subfield of degree n of Q(η), which
exists since Gal(Q(η)/Q) ≃ (Z/((p − 1)/2)Z) and p ≡ 1 (mod 2n). Since
K ∩Q(ζp) = Q, we also have K ∩ k = Q, so K(θ)/K is a cyclic extension of
degree exactly equal to n, and by construction all the conjugates of θ over any
real place of K are real. Note, in addition, that the discriminant of K(θ)/K
will be divisible only by prime ideals above p, since this is the case for K(ζp).

If n is odd, then by (2) the signature of K(θ) is equal to (nr1, nr2),
so L = K(θ) is a field with suitable signature. Thus assume n even. Let
G = Gal(K(θ)/K), let σ be a generator of G, and set s = σn/2, which is thus
an element of order 2 in G.

Let α be any element of K∗ r K∗2 having zero p-adic valuation for all
prime ideals p above p. It follows in particular that K

(√
α
)

is linearly disjoint

from K(θ) over K. Consider the field L = K
(
(θ− s(θ))√α

)
. I claim that for

a suitable choice of α the field L will have the desired properties.
First, since K

(√
α
)

is linearly disjoint from K(θ) over K, L is the com-

positum of K(θ − s(θ)) with K
(√
α
)
. In addition, the Galois conjugates of

u = (θ−s(θ))√α are ui = (σi(θ)−s(σi(θ)))√α for 0 ≤ i < n, since changing√
α into −√α is equivalent to changing i into i+n/2 modulo n. If we choose

θ to be a normal basis of K(θ)/K, the ui are distinct and hence L/K is a
cyclic extension of degree n.

Next, let σi be a real embedding of K. Since all the embeddings of θ above
a real embedding of K are real by assumption, it follows that σi is ramified in
L/K if and only if σi(α) < 0. Thus, if we choose α so that σi(α) < 0 for R1/n
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of the real embeddings of K and σi(α) > 0 for the others, the number of real
embeddings of L will be equal to R1, as desired. (I thank Bjorn Poonen for
the idea leading to this last proof.) ⊓⊔

2.2.2 Relative Norm, Trace, and Characteristic Polynomial

If we denote by σi,K the n K-linear embeddings of L into C, then for α ∈ L
we define the (relative) characteristic polynomial Cα(X) of α by

Cα(X) =
∏

1≤i≤n
(X − σi,K(α)) ,

which belongs to K[X ] by Galois theory. If

Cα(X) =
∑

0≤i≤n
(−1)n−isn−i(α)X i ,

then s1(α) is called the relative trace of α and denoted TrL/K(α), and sn(α)
is called the relative norm of α and denoted NL/K(α). Evidently the trace is
additive and the norm is multiplicative. Note that similar statements are not
true for the other coefficients of the characteristic polynomial, which explains
the importance of these functions.

Furthermore, Proposition 2.2.3 implies immediately that the relative trace
and norm are transitive, in other words, that they satisfy

TrL/Q(α) = TrK/Q(TrL/K(α)) and NL/Q(α) = NK/Q(NL/K(α)) .

More generally, the characteristic polynomial itself (and hence all of its
coefficients) satisfies the transitivity property (see Exercise 21). This allows
an absolute characteristic polynomial to be computed from a relative one.

As in the absolute case, a characteristic polynomial can be computed
using resultants. Let L = K(θ). Then, if T is the minimal monic poly-
nomial of θ, and if α = A(θ) for some polynomial A ∈ K[X ], then
Cα(X) = RY (T (Y ), X − A(Y )), where RY denotes the resultant with re-
spect to Y . In particular, we have NL/K(α) = R(T (X), A(X)).

2.2.3 Integral Pseudo-Bases

We now explain in more detail how to generalize the notions of integral basis
and discriminant. This is a little less straightforward than for the preceding
notions, and it uses most of the ideas of Chapter 1.

As usual, let L/K be a relative extension of degree n. The ring of integers
ZL of L is not only a finitely generated free Z-module but is clearly also
a finitely generated ZK -module. The ring ZK is, however, in general not a
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principal ideal domain but only a Dedekind domain, and hence ZL is not
necessarily free (see Exercise 22 for an example). The theory developed in
Chapter 1 tells us that ZL has a pseudo-basis over ZK , and any such basis
will be called a relative integral pseudo-basis, or simply an integral pseudo-
basis .

If we assume that L is given by L = K(θ) with θ an algebraic integer ,
then ZK [θ] ⊂ ZL. Hence, as in the absolute case this implies that the relative
HNF pseudo-basis of ZL in the K-basis (1, θ, . . . , θn−1) must satisfy some
conditions, as follows.

Proposition 2.2.8. Let M be a ZK [θ]-module that is projective of rank n as
a ZK-module, and let (ωi, ai)1≤i≤n be a pseudo-basis of M in relative HNF
on the basis (1, θ, . . . , θn−1), where θ is assumed to be an algebraic integer.

(1) The ideals qi = a−1
i are divisible by q1, and we have

a1 ⊂ a2 ⊂ · · · ⊂ an ;

in other words,
q1 | q2 | · · · | qn .

(2) For all i ≤ n we have ωi ∈ ZK [θ]; in other words, if (H, (ai)) is the
pseudo-matrix representing the pseudo-basis (ωi, αi), then the entries of
H are in ZK .

Proof. We will prove (1) and (2) simultaneously by showing by induction
on j that ωj ∈ ZK [θ] and aj−1 ⊂ aj for j > 1. Since ω1 = 1, this is trivially
true for j = 1. Assume that it is true up to j − 1, and let a be any element
of aj−1. Since M is a ZK [θ]-module, we have aj−1θωj−1 ⊂ M ; hence in
particular,

aθωj−1 =
∑

1≤i≤n
xiωi with xi ∈ ai .

Since the matrix of the ωi is upper-triangular with 1 on the diagonal, we
obtain xi = 0 for i > j and xj = a. Since this is true for any a ∈ aj−1, we
therefore have aj−1 ⊂ aj. In addition,

aωj = aθωj−1 −
∑

1≤i<j
xiωi .

Since xi ∈ ai, and by induction we have a1 ⊂ · · · ⊂ aj−1 and ωi ∈ ZK [θ] for
i < j, we have for all a ∈ aj−1

a(ωj − θωj−1) ∈ aj−1ZK [θ] ,

Hence
aj−1(ωj − θωj−1) ⊂ aj−1ZK [θ] ,
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from which we deduce that ωj − θωj−1 ∈ ZK [θ], hence that ωj ∈ ZK [θ],
proving our induction hypothesis. Thus a1 ⊂ a2 ⊂ · · · ⊂ an; hence by taking
inverses, q1 ⊃ q2 ⊃ · · · ⊃ qn, showing that all the qi are divisible by q1 and
proving the proposition. ⊓⊔

Corollary 2.2.9. Let (ωi, ai) be an integral pseudo-basis of ZL in HNF on
(1, θ, . . . , θn−1), where θ is assumed to be an algebraic integer.

(1) The ideals qi = a−1
i are integral ideals, a1 = q1 = ZK , and

ZK = q1 | q2 | · · · | qn .

(2) For all i ≤ n we have ωi ∈ ZK [θ].
(3) For every i ≤ j, we have

qiqj+1−i | qj .

Proof. Since a1 = ZL ∩K = ZK , we have a1 = q1 = ZK and (1) and (2)
are restatements of Proposition 2.2.8. The proof of (3) is very similar to the
proof of the proposition: since the leading term of ωiωj+1−i is θj−1, we must
have aiaj+1−i ⊂ aj , so qiqj+1−i | qj. Note that (3) combined with the fact
that the qi are integral implies (1). ⊓⊔

Remark. The above proposition and its corollary are generalizations to
the relative case of [Coh0, Theorem 4.7.5 and Corollary 4.7.6]. Using the
notation of [Coh0, Corollary 4.7.6], property (3) translates into didj+1−i | dj
and is not given in [Coh0].

2.2.4 Discriminants

For 1 ≤ i ≤ n, let σi,K be the K-linear embeddings of L into C, and let
α1, . . . , αn be n elements of L. Since TrL/K(α) =

∑
1≤i≤n σi(α), as in the

absolute case we find that

det(σi(αj))
2 = det(TrL/K(αiαj)) .

This common quantity belongs to K and will be called the discriminant of
the αj and denoted d(α1, . . . , αn). We have d(α1, . . . , αn) = 0 if and only if
the αj are K-linearly dependent (see Exercise 23).

Let B = (ωj , aj) be a relative integral pseudo-basis. Then, according to
Corollary 1.4.3 and the remarks that follow, we can give two different invari-
ants that together generalize the discriminant in the absolute case. First, the
ideal

d(L/K) = d(ω1, . . . , ωn)(a1 · · · an)2

which we will call the relative discriminant ideal (or simply the discriminant
ideal) of L/K. Second, the quantity
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d(L/K) = d(ω1, . . . , ωn) ∈ K∗/K∗2

considered as an element ofK∗/K∗2, in other words, modulo nonzero squares.
The pair disc(L/K) = (d(L/K), d(L/K)) will simply be called the relative
discriminant of L over K.

As mentioned in Chapter 1, each component of the pair gives (related)
information. For example, in the absolute case the discriminant ideal d(L/K)
gives the absolute value of the discriminant, while d(L/K) gives its sign, along
with other information.

If L = K(θ) and θ is chosen to be an algebraic integer, the minimal
monic polynomial T of θ will have coefficients in ZK . Thus ZK [θ] ⊂ ZL, and
we can consider the module M = ZL/ZK [θ]. Since ZL and ZK [θ] are both
of ZK-rank equal to n = [L : K], it follows that M is a torsion ZK-module.
The order-ideal of M (in the sense of Definition 1.2.33) will be called the
index-ideal of ZK [θ] (or, by abuse of language, of θ) in ZL and denoted by f.

As in the absolute case, we have d(1, θ, . . . , θn−1) = disc(T ), where disc(T )
is the discriminant of the polynomial T , and we have the formula

disc(T )ZK = d(L/K)f2 ,

where d(L/K) is the relative discriminant ideal of L as defined above. It is
clear that in K∗/K∗2 we have d(L/K) = disc(T ).

Note also that if (ωi, ai) is an integral pseudo-basis in HNF, then the
matrix of the ωj on the θi−1 has determinant 1; hence

d(ω1, . . . , ωn) = d(1, θ, . . . , θn−1) = disc(T ) ,

so that
d(L/K) = disc(T )(a1 · · · an)2 .

Using the notation of Corollary 2.2.9, it follows that the index-ideal f is given
by

f = (a1 · · · an)−1 = q1 · · · qn .

In Section 2.4, we give an algorithm for computing relative integral
pseudo-bases and relative discriminants.

One of the main reasons for introducing the discriminant, in both the
absolute case and the relative case, is that it is an invariant of the number
field, more precisely of its ring of integers. It should be noted, however, that
we can define finer invariants, although it seems that they have not been
used in the literature. The invariance of the discriminant (or the discriminant
ideal in the relative case) comes from the invariance of the determinant of a
bilinear form by change of basis. The determinant is equal to the product of
the elementary divisors of the Smith normal form however, and each of these
is also an invariant. More precisely, we have the following proposition.
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Proposition 2.2.10. Let B = (ωj , aj) be a relative pseudo-basis. Let T =
(TrL/K(ωiωj)), I = (a−1

1 , . . . , a−1
n ), and J = (a1, . . . , an). Then (T, I, J) is

an integral pseudo-matrix. For 1 ≤ i ≤ n, let di be the elementary divisors of
this pseudo-matrix in the sense of Theorem 1.7.2. The di are independent of
the chosen pseudo-basis B (hence are invariants of the field extension), and
their product is equal to the relative discriminant ideal.

Proof. The proof is straightforward and left to the reader (see Exercises
24 and 25). ⊓⊔

It is natural to call these ideals di the elementary discriminantal divisors
of the field extension. We have stated the above proposition in the relative
case, but evidently it also gives nontrivial invariants in the absolute case.

2.2.5 Norms of Ideals in Relative Extensions

As usual, let L/K be a relative extension of number fields, and let I be a
nonzero integral ideal of ZL. The absolute norm of I is the order of ZL/I,
but, as above in the case of ZL, we have a richer structure since ZL/I is a
ZK -torsion module.

Definition 2.2.11. Let L/K be a relative extension, and let I be an integral
ideal of ZL. The relative norm of I is the order-ideal of the ZK-torsion module
ZL/I, or the index-ideal [ZL : I] in the sense of Definition 1.2.33. It is an
ideal of ZK denoted NL/K(I). In other words, if ZL/I =

⊕
i(ZK/di)αi as a

torsion ZK-module, then NL/K(I) =
∏
i di.

Since we can identify integral ideals of Z with positive integers, the above
definition generalizes the usual definition of the norm of an ideal, and thus
we can use the same notation. We will later give other equivalent definitions
of the norm of an ideal.

Proposition 2.2.12. (1) If I and J are two integral ideals of ZL, we have

NL/K(IJ) = NL/K(I)NL/K(J) .

(2) We have
NK/Q(NL/K(I)) = NL/Q(I) .

(3) If α ∈ ZL, we have

NL/K(αZL) = NL/K(α)ZK .

Proof. The proof of (1) is exactly as in the absolute case (see, for example,
[Coh0, Proposition 4.6.8]), replacing the index [M : N ] by the index-ideal
[M : N ] (that is, by the order-ideal of M/N ; see Definition 1.2.33).

For (2), write ZL/I =
⊕

i(ZK/di)αi. Then NL/K(I) =
∏
i di. For each

i, write ZK/di ≃
⊕

j Z/di,jZ, so that NK/Q(di) =
∏
j di,j , and hence by
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(1), NK/Q(NL/K(I)) =
∏
i

∏
j di,j . On the other hand, we have ZL/I ≃⊕

i,j Z/di,jZ, so NL/Q =
∏
i

∏
j di,j by Proposition 1.2.34, proving (2).

(3). Let (ωj , aj) be a relative integral pseudo-basis of ZL over ZK , let
σ1,K , . . . , σn,K be the K-linear embeddings of L into C, and let Ω be the
matrix defined by

Ω =




σ1(ω1) . . . σ1(ωn)

...
. . .

...
σn(ω1) . . . σn(ωn)



 .

Since α ∈ ZL, multiplication by α induces a ZK -linear map from ZL to itself,
which can be represented by the matrix Mα expressing the αωj in terms of
the ωi. In other words, we have

(ω1, . . . , ωn)Mα = α(ω1, . . . , ωn) .

Applying the σi to the above equality, we deduce that

Ω ·Mα =




σ1(α) . . . 0

...
. . .

...
0 . . . σn(α)



 ·Ω .

Since the matrix of the σi(ωj) is invertible (its square multiplied by the square
of the product of the ai is the relative discriminant ideal d(L/K)), it follows
that the characteristic polynomial of Mα is the same as the characteristic
polynomial Cα(X) of α; in particular, the relative norm NL/K(α) is equal to
the determinant of Mα.

Let I = (ai) be the list of ideals in the integral pseudo-basis. Since α ∈ ZL,
the pseudo-matrix (Mα, I, I) is an integral pseudo-matrix in the sense of
Definition 1.7.1, and the map f associated to it is multiplication by α. Using
Theorem 1.7.2 and the subsequent remarks, we see that

ZL/αZL ≃
⊕

1≤i≤n
ZK/di

for some (unique) integral ideals di satisfying di−1 ⊂ di for 2 ≤ i ≤ n, which
can be computed using the SNF algorithm in Dedekind domains (Algorithm
1.7.3). Set d =

∏
1≤i≤n di. Using the formulas and notation of Theorem 1.7.2,

we have, since a = b,

ZK = det(V ) det(Mα) det(U)ZK = b′b−1NL/K(α)aa′
−1

= NL/K(α)d−1 ;

hence
NL/K(α)ZK = d = NL/K(αZL) ,

proving the proposition. ⊓⊔



82 2. Basic Relative Number Field Algorithms

Remarks

(1) As in the absolute case, the result of (1) (multiplicativity of the norm on
ideals) is valid only for the maximal order ZL and not for a suborder.

(2) The result of (2) above (transitivity of the norm on ideals) is the same if
we replace Q by any other number field k.

(3) We remark in [Coh0] that for an absolute extension,

NK/Q(αZK) =
∣∣NK/Q(α)

∣∣

with an absolute-value sign. This is equivalent to

NK/Q(αZK)Z = NK/Q(α)Z ,

as claimed above.
(4) Thanks to the multiplicativity of the norm, as in the absolute case we

can define the norm of a fractional ideal. It is equal to the fractional
index-ideal in the sense of Definition 1.2.33.

An equivalent definition of the norm of an ideal results from the following
proposition.

Proposition 2.2.13. Let I be a fractional ideal of L. Then NL/K(I) is the
ideal of K generated by all the NL/K(α) for α ∈ I. More precisely, there
exist α and β in I such that NL/K(I) = NL/K(α)ZK +NL/K(β)ZK .

Proof. Clearly, if α ∈ I then NL/K(α) ∈ NL/K(I). To prove the converse,
we proceed in two steps. First, by the approximation theorem in Dedekind
domains, we can find α ∈ L such that vP(α) = vP(I) for all P above the
prime ideals p of K such that vp(NL/K(I)) 6= 0, and vP(α) ≥ 0 for all other
P. With this choice of α, it is clear that α ∈ I and thatNL/K(α) = NL/K(I)a
with a an integral ideal of ZK coprime to NL/K(I). Applying once again the
approximation theorem, we can find β ∈ ZL such that vP(β) = vP(I) for all
P above the prime ideals p of K such that vp(NL/K(α)) 6= 0, and vP(β) ≥ 0
for all other P. It is clear that β ∈ I and that NL/K(β) = NL/K(I)b, where
b is an integral ideal coprime to NL/K(α), hence in particular to a. Thus,
the ideal generated by NL/K(α) and NL/K(β) is equal to NL/K(I), proving
the proposition. ⊓⊔

We consider now the special case of prime ideals. If P is a prime ideal of
ZL, the ideal p = P ∩ ZK is clearly a prime ideal of ZK , and we say that P

is above p, or that p is below P. We have the usual formulas

pZL =
∏

1≤i≤g
Pei

i ,

where the Pi are all the ideals above p and the ei = e(Pi/p) are the ramifi-
cation indices . If
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fi = f(Pi/p) = dimZK/p(ZL/Pi) ,

we call fi the residual degree of Pi, and we have the formula

∑

1≤i≤g
eifi = n = [L : K] .

In Section 2.4.3 we give an algorithm for computing the Pi, ei, and fi,
generalizing the Buchmann–Lenstra algorithm [Coh0, Algorithm 6.2.9]. For
now, we note the following.

Lemma 2.2.14. Let P be a prime ideal of L above p, and let f = f(P/p)
be its residual degree. Then

NL/K(P) = pf .

Proof. We have ZL/P ≃ (ZK/p)f as ZK/p-modules, hence also as ZK-
modules, thus we conclude by Proposition 1.2.34. Note that the elementary
divisors di of ZL/P are given by di = p for 1 ≤ i ≤ f and di = ZK for
f < i ≤ n. ⊓⊔

Remarks

(1) We can use this lemma to give still another definition of the norm of an
ideal: we define NL/K(P) as pf , and extend to all fractional ideals by
multiplicativity. Thanks to Proposition 2.2.12, this definition agrees with
the preceding one.

(2) We thus have seen three definitions of the relative norm of an ideal I:
first as the order-ideal of the torsion module ZL/I; second as the ideal
generated by the norms of the elements of I; third as the power product of
the norms of the prime ideals dividing I with the definition given above.

(3) A fourth definition is to set

NL/K(I) =
(∏

i

σi(I)
)
∩K ,

where the σi are all the embeddings of L into C and the product is
considered in the Galois closure of L/K in C (see Exercise 26).

2.3 Representation and Operations on Ideals

2.3.1 Representation of Ideals

Let L = K(θ) be a relative extension of degree n, where we assume θ to be
an algebraic integer, and let (ωi, ai) be an integral pseudo-basis, which we
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may assume to be in relative HNF. This pseudo-basis is represented by a
pseudo-matrix (HZ , ai) in HNF on (1, θ, . . . , θn−1).

Now let I be a (nonzero) ideal of L. Since I is a torsion-free ZK-module
of rank n, it also has a ZK-pseudo-basis (γi, ci)1≤i≤n such that

I =
⊕

1≤i≤n
ciγi ,

and we may also assume that this pseudo-basis is given on (1, θ, . . . , θn−1) by
a pseudo-matrix (HI , ci) in HNF.

The following proposition gives most of the information that we need on
the ideal I. In particular, it allows us to determine whether I is an integral
ideal and to compute NL/K(I).

Proposition 2.3.1. Keep the above notation, let H = H−1
Z HI (which is the

matrix giving the γj on the basis of the ωi), and write H = (hi,j).

(1) Let qi = a−1
i (which are integral ideals by Corollary 2.2.9). Then for all

i ≤ j we have
cj | cjqj+1−i | ci ,

and, in particular,
cn | cn−1 | · · · | c1 .

(2) For all j we have γj ∈ ZK [θ], and for all i and j we have hi,j ∈ ZK .
(3) I is an integral ideal if and only if for all i and j with i ≤ j we have

hi,j ∈ aic
−1
j , which implies in particular cj ⊂ aj for all j (since hj,j = 1).

(4) For all I (not necessarily integral)we have

NL/K(I) =
∏

1≤j≤n
cja

−1
j =

∏

1≤j≤n
cjqj .

Proof. The proof of (1) is essentially identical to the proof of Corollary
2.2.9 (3): since the leading term of γiωj+1−i is θj−1 and I is an ideal, we
must have ciaj+1−i ⊂ cj , in other words cjqj+1−i | ci, and (1) follows since
qj+1−i is an integral ideal.

Since I is a ZL-module, it is in particular a ZK [θ]-module and a projective
ZK -module of rank n, so Proposition 2.2.8 (2) implies that γj ∈ ZK [θ]. This
means that the matrix HI giving the γj on the basis (1, θ, . . . , θn−1) has
entries in ZK . This is also the case for the matrix HZ , and since this matrix
has determinant 1, it follows thatH = H−1

Z HI also has entries in ZK , proving
(2).

The ideal I is integral if and only if for all j we have cjγj ⊂ ZL, if and
only if for all c ∈ cj

c
∑

i≤j
hi,jωi =

∑

i≥1

xiωi with xi ∈ ai ,
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hence if and only if for all c ∈ cj , chi,j ∈ ai, hence hi,j ∈ c−1
j ai, proving (3).

Let us prove (4). By the elementary divisor theorem for torsion-free mod-
ules (Theorem 1.2.35), there exists a K-basis (ei), ideals bi and di such that
di | di−1 for i ≥ 2, and

ZL =
⊕

i

biei, I =
⊕

dibiei .

By definition, we have NL/K(I) =
∏
i di.

Let Ω be the matrix giving the ωj in terms of the ei. Then the matrix
giving the αj in terms of the ei is equal to ΩH . By Proposition 1.4.2, since
(ej , bj) and (ωj , aj) are both pseudo-bases of ZL, we have

∏

j

bj = det(Ω)
∏

j

aj .

Similarly, ∏

j

djbj = det(ΩH)
∏

j

cj .

Since det(H) = 1, it follows by dividing that

∏

j

dj =
∏

j

cja
−1
j ,

proving (4) and the proposition. ⊓⊔

In view of this proposition, we will always assume that an ideal is repre-
sented by a pseudo-matrix (H, ci) in HNF on a basis (ω1, . . . , ωn) (although
the pseudo-matrix giving the integral pseudo-basis on (1, θ, . . . , θn−1) must
evidently also be kept). This has the usual advantages of the HNF, in partic-
ular the uniqueness property (see Proposition 2.3.2 below). The main disad-
vantage of the HNF representation is that it is costly, particularly for ideal
operations.

In fact, considering the above lemma, it would even be more natural to
represent the ideal by the pseudo-matrix (H, cia

−1
i ). For this to make sense,

we would have had to define the notion of pseudo-matrix with respect to a
pseudo-basis and not only with respect to a basis as we have done up to now,
so as to take into account not only the ωi but also the ideals ai. We leave the
(trivial) definitions and modifications to the reader.

To test ideals for equality (hence also for inclusion using I ⊂ J if and
only if I + J = J), we need to have uniqueness of the representation of an
ideal. The HNF representation does give uniqueness if one is careful about
the choice of the off-diagonal entries (see Corollary 1.4.11). More precisely:
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Proposition 2.3.2. Keep the above notation. Assume that I is an integral
ideal, so that in particular by Proposition 2.3.1, we have for all i, ci ⊂ ai (or,
equivalently, ai | ci). Let Si be a system of representatives of ZK/(cia

−1
i ).

For all i and j such that i < j, choose ci,j ∈ aic
−1
j such that vp(ci,j) =

vp(aic
−1
j ) for all prime ideals p of ZK such that vp(ai) < vp(ci). Then for

i < j we may choose hi,j ∈ ci,jSi, and the pseudo-matrix (H, cj) is then
uniquely determined by the ideal I.

Proof. According to Corollary 1.4.11, to obtain a unique pseudo-matrix
(H, cj) we must choose hi,j ∈ Si,j , where Si,j is a system of representatives
of K/cic

−1
j . Since I is an integral ideal, hi,j ∈ aic

−1
j , so it is enough to

define a system of representatives of aic
−1
j /cic

−1
j . If ci,j satisfies the conditions

of the proposition, it is easy to check that the map x 7→ ci,jx induces an
isomorphism from ZK/(cia

−1
i ) to aic

−1
j /cic

−1
j (see Exercise 27), proving the

proposition. Note that by Proposition 2.3.1, we have for i ≤ j, aic
−1
j ⊂

aic
−1
i ⊂ ZK ; hence aic

−1
j is an integral ideal. ⊓⊔

Following this proposition, we can give an algorithm that gives a small
HNF pseudo-matrix for an integral ideal.

Algorithm 2.3.3 (Small HNF Pseudo-Matrix of an Integral Ideal). Let L/K
be a relative extension of degree n. Given an integral ideal I by a pseudo-matrix
in HNF (H, (cj)) with H = (hi,j) expressed on a relative integral pseudo-basis
(ωi, ai), this algorithm gives another such pseudo-matrix in HNF (H ′, cj) with
H ′ = (h′i,j) having “reduced” entries.

1. [Compute the ideals c−1
j ] For 1 ≤ j ≤ n, compute the ideal bj ← c−1

j using,
for example, [Coh0, Algorithm 4.8.21]. Then set i← n and H ′ ← H .

2. [Loop on rows] Set i← i− 1. If i = 0, output (H ′, cj) with H ′ = (h′i,j) and
terminate the algorithm. Otherwise, set j ← n+ 1.

3. [Loop on columns] Set j ← j − 1. If j = i, go to step 2.

4. [Main reduction step] Set a← cibj . Using Algorithm 1.4.13 (with partial LLL-
reduction), compute λ ∈ cibj such that hi,j−λ is “small” in the sense of that
algorithm.

5. [Update column j] For 1 ≤ k ≤ i, set h′k,j ← h′k,j − λh′k,i and go to step 3.

Definition and Proposition 2.3.4. Let I be a fractional ideal of ZL.

(1) We will say that I is a primitive ideal if I is an integral ideal of ZL and if
for any integral ideal a of ZK different from ZK , a−1I is not an integral
ideal.

(2) If I is a fractional ideal of ZL, there exists a unique fractional ideal a

of K such that a−1I is a primitive ideal. This ideal a will be called the
content of the ideal I.
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Proof. Consider the set E of all fractional ideals a of K such that I ⊂ aZL.
This set is nonempty since if d ∈ Z is a denominator for I, we may choose
a = (1/d)ZK . Set c =

⋂
a∈E a. Then c is an ideal of K that clearly still

belongs to E, so it is the unique minimal element of E. It follows that c−1I is
an integral ideal. In addition, if b is an integral ideal different from ZK such
that b−1c−1I is integral, then bc ∈ E and bc is a strict subset of c — which is
absurd since c is minimal — so c−1I is primitive. Finally, if a−1I is primitive,
then a ∈ E, hence c ⊂ a, so ca−1 is an integral ideal such that (ca−1)−1a−1I
is integral. Hence ca−1 = ZK , so a = c, proving uniqueness. ⊓⊔

Proposition 2.3.5. Keep the notation of Proposition 2.3.1, in particular
that I is an ideal of L, (γj , cj) is a pseudo-basis of I, and the matrix (hi,j)
of the γj on the ωi is in HNF.

(1) The content c(I) of I is given by

c(I) =
∑

1≤i≤j≤n
hi,jcjqi =

∑

1≤i≤j≤n
hi,jcja

−1
i .

(2) The ideal I is an integral ideal of ZL if and only if c(I) is an integral
ideal of ZK .

(3) The ideal I is primitive if and only if c(I) = ZK .

Proof. The proof follows immediately from Proposition 2.3.1 and is left
to the reader (Exercise 28). ⊓⊔

The other privileged representation of an ideal I is a two-element rep-
resentation I = αZL + βZL, which is independent of the relative structure.
Considering the definition of a pseudo-matrix, it is more natural to give the
following definition in the relative case.

Definition 2.3.6. Let I be an ideal of L. We say that ((α, a), (β, b)) is a
pseudo–two-element representation of the ideal I if a and b are ideals of ZK
(not necessarily integral) and if α and β are elements of L such that

I = αaZL + βbZL .

In other words, a pseudo–two-element representation of I is a representa-
tion of I by two pseudo-elements in the sense of Definition 1.4.1.

When ZK is a principal ideal domain, a and b are principal ideals, so this
does give a two-element representation. In the general case, however, this
definition is more flexible than the representation I = αZL+βZL. Note that
if I = αaZL+βbZL, then αa ⊂ I and βb ⊂ I, but we do not necessarily have
α or β in I. By abuse of language, we will sometimes talk about “two-element
representations” instead of “pseudo–two-element representations”.
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It is important to be able to go back and forth between HNF and two-
element representations. As usual, in one direction this is straightforward.
Let I = αaZL + βbZL be a pseudo–two-element representation of I, and
let (ωi, ai)1≤i≤n be an integral pseudo-basis. Then (αωi, βωi, aai, bai)i is a
2n-element pseudo-generating set for I. Hence we obtain the HNF of I by
computing the HNF of the corresponding pseudo-matrix, using one of the
HNF algorithms of Chapter 1. We see here that the introduction of the extra
data a and b has not added any complexity to the problem.

Given the HNF (γi, ci)1≤i≤n of I, finding a pseudo–two-element represen-
tation is slightly trickier. Of course, using the approximation theorem ([Coh0,
Propositions 4.7.7 and 4.7.8]), we can give a deterministic algorithm for doing
so, but this will be costly in general. A better way is to use a simple-minded
generalization of [Coh0, Algorithm 4.7.10] based on the following lemma.

Lemma 2.3.7. Let I be an integral ideal of ZL. Let α ∈ K, let a be a frac-
tional ideal of ZK such that αa ⊂ I, and assume that

NL/K(I) +NL/K(αa)(NL/K(I))−1 = ZK .

Then I = NL/K(I)ZL + αaZL; in other words,

((1,NL/K(I)), (α, a))

is a pseudo–two-element representation of I.

Proof. We have a ZK-module isomorphism

ZL/I ≃
⊕

i

ZK/di ,

with NL/K(I) =
∏
i di. Since the di are integral ideals, we have

NL/K(I) · (ZK/di) = {0}

for all i, hence NL/K(I) · (ZL/I) = {0}, in other words NL/K(I) ∈ I. Since
αa ⊂ I and I is an ideal, it follows that NL/K(I)ZL + αaZL ⊂ I.

Conversely, let J = NL/K(I)ZL + αaZL, let P be a prime ideal of ZL,
and let p = P ∩ ZK be the prime ideal of ZK below P. We will show that
vP(J) ≤ vP(I) for all P, which will show that I ⊂ J , and hence the equality
I = J , as claimed in the lemma. If vP(J) = 0, there is nothing to prove since
I is an integral ideal, so assume that vP(J) > 0. Since

vP(J) = min(vP(NL/K(I)), vP(αa)) ,

we have P | NL/K(I) and hence p | NL/K(I). By assumption, this implies
that p ∤ NL/K(αa)(NL/K(I))−1, or in other words that vp(NL/K(αaI−1)) =
0. This means that vQ(αa) = vQ(I) for all prime ideals Q above p, and in
particular for Q = P. Thus, when P | J ,
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vP(J) = min(vP(NL/K(I)), vP(I)) ≤ vP(I) ,

proving the lemma. ⊓⊔

To obtain an algorithm for a pseudo–two-element representation from this
lemma, we must do two things. First, compute the ideal NL/K(I), which is
easily done from the HNF representation using Proposition 2.3.1 (4). Second,
we must look for α and a satisfying the required properties. For this, we write
α =

∑
1≤i≤n xiγi on the pseudo-basis (γi, ci), with xi ∈ ci, and try small

coefficients xi until a suitable element α is obtained. In practice, it will be
obtained very rapidly; in fact, very frequently we can take (α, a) = (γi, ci)
for some i. Thus, the following algorithm is reasonable.

Algorithm 2.3.8 (Pseudo–Two-Element Representation of an Ideal). Given
a relative extension L/K of degree n and an integral ideal I of L given by
a pseudo-generating set (γi, ci)1≤i≤k, this algorithm computes NL/K(I) and
(α, a) such that ((1,NL/K(I)), (α, a)) is a pseudo–two-element representation
of I. We let (ωi, ai) be an integral pseudo-basis of ZL.

1. [Compute HNF] If necessary, using one of the algorithms for HNF in Dedekind
domains, compute the HNF corresponding to the pseudo-generating set
(γi, ci), and replace (γi, ci) by this HNF. Set n ← ∏

1≤i≤n cia
−1
i (thus

NL/K(I) = n).

2. [Check generators] For i = 1, . . . , n, do the following. Compute the ideal sum
n + NL/K(γici)n

−1. If it is equal to ZK , output the pseudo–two-element
representation ((1, n), (γi, ci)) and terminate the algorithm.

3. [Choose random elements of ci] Using Algorithm 1.3.13, for i = 2, . . . , k
choose random elements λi ∈ ci, and let α←∑

2≤i≤k λiγi.

4. [Check α] Compute the ideal sum n + NL/K(α)n−1. If it is equal to ZK ,
output the pseudo–two-element representation ((1, n), (α,ZK)) and terminate
the algorithm; otherwise, go to step 3.

If I is not an integral ideal, we simply multiply I by a suitable denominator
d to make it integral, and divide by d the pseudo–two-element representation
found by this algorithm.

In the case where I is a prime ideal, there is a simpler variant of this
algorithm which we give below (Algorithm 2.3.11). We postpone to that al-
gorithm the discussion of the above algorithm.

2.3.2 Representation of Prime Ideals

As in the absolute case, the case of prime ideals of ZL is particularly impor-
tant — and also simpler.

We first note that [Coh0, Theorem 4.8.13] can trivially be extended to
the relative case, and we leave the proof to the reader:
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Proposition 2.3.9. Let L/K be a relative extension, with L = K(θ) and
θ an algebraic integer whose minimal monic polynomial in K[X ] is denoted

T (X), and let p be a prime ideal of ZK . Let T (X) =
∏

1≤i≤g Ti(X)
ei

be the

factorization of T (X) into a product of powers of distinct, monic, irreducible
polynomials in (ZK/p)[X ]. If p does not divide the index-ideal f = [ZL :
ZK [θ]], the prime ideal decomposition of pZL is given by

pZL =
∏

1≤i≤g
Pei

i ,

with
Pi = ((1, p), (Ti(θ),ZK)) = pZL + Ti(θ)ZL

and fi = f(Pi/p) = deg(Ti).

In the general case, we have the following lemma, which gives more precise
information than Lemma 2.3.7 in the case of prime ideals.

Lemma 2.3.10. Let P be a prime ideal of L above a prime ideal p of K,
let f = f(P/p) = dimZK/p(ZL/P) be the residual degree of P, and finally
let α ∈ L and a be a fractional ideal of K such that αa ⊂ P. Let π be any
element of pa−1 such that vp(πa) = 1. Then

P = ((1, p), (α, a)) = pZL + αaZL

if and only if vp(NL/K(αa)) = f or vp(NL/K((α+ π)a) = f .

Proof. Assume first that vp(NL/K(αa)) = f . Since P | αa, we can write

αa = PI for some integral ideal I of ZL. Since NL/K(P) = pf by Lemma
2.2.14, we have vp(NL/K(I)) = 0. This means that vQ(I) = 0 for all prime
ideals Q above p, including P. Thus vP(αa) = 1 and vQ(αa) = 0 for the
other Q above p. Since vP(p) ≥ 1, this implies that min(vQ(p), vQ(αa)) = 0
for all prime ideals Q different from P (and not only for those above p) and
is equal to 1 for Q = P, thus showing the equality P = pZL + αaZL.

Assume now that vp(NL/K((α + π)a) = f . Since (α + π)a ⊂ αa + πa ⊂
P + p ⊂ P, we conclude as above that P = pZL + (α + π)aZL, and this is
equal to pZL + αaZL since πa ⊂ p.

Conversely, assume that P = pZL + αaZL. This again means that for
each prime ideal Q above p other than P we have vQ(αa) = 0 and that
min(vP(αa), vP(p)) = 1. Note that vP(p) = e(P/p) is the ramification index
of P. We consider two cases. Assume first that P is ramified, so that e(P/p) >
1. Then vP(αa) = 1, and since vQ(αa) = 0 for the other prime ideals Q above
p, we have

vp(NL/K(αa)) =
∑

Q|p
f(Q/p)vQ(αa) = f(P/p) = f ,
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as claimed.
Assume now that P is unramified, so that e(P/p) = 1. In this case, we

can only assert that vP(αa) ≥ 1. If vP(αa) = 1, we conclude as before that
vp(NL/K(αa)) = f . So assume vP(αa) > 1. Since vP(αa) > vP(πa), we have
vP(α+ π)a = vP(πa) = 1, and for Q above p but different from P, we have

0 = vQ(αa) < vQ(p) ≤ vQ(πa) ,

hence vQ((α+π)a) = vQ(αa) = 0, and it follows as before that vp(NL/K((α+
π)a)) = f , as claimed. ⊓⊔

Thus, finding a pseudo–two-element representation of a prime ideal is
easier than in the general case (Algorithm 2.3.8). Thanks to Proposition
2.3.9 a prime ideal is, however, usually obtained directly together with a
pseudo–two-element representation. We will always assume that a prime ideal
is represented in this way. When a pseudo–two-element representation is not
known, the following algorithm allows us to compute such a representation,
using Lemma 2.3.10.

Algorithm 2.3.11 (Pseudo–Two-Element Representation of a Prime Ideal).
Given a relative extension L/K and a prime ideal P of L given by a pseudo-
generating set (γi, ci)1≤i≤k, this algorithm computes a pseudo-element (α, a)
such that ((1, p), (α, a)) is a pseudo–two-element representation of P. We as-
sume that the relative norm pf of P is known (this is always the case in practice
and can always be obtained from the (γi, ci)) and that γ1 = 1, c1 = p (if this
is not the case, add it to the generating set). We let p = pZK + πZK with
vp(π) = 1 (if this is not the case, replace π by π + p).

1. [Check generators] For i = 1, . . . , k, do the following. Compute

v ← vp(NL/K(γici)) .

If v = f , output (γi, ci) and terminate. Otherwise, compute

v ← vp(NL/K((γi + π)ci)) .

If v = f , output (γi, ci) and terminate.

2. [Choose random elements of ci] Using Algorithm 1.3.13, for i = 2, . . . , k,
choose random elements λi ∈ ci, and let α←∑

2≤i≤k λiγi.

3. [Check α] Compute v ← vp(NL/K(α)). If v = f , output (α,ZK) and termi-
nate. Otherwise, compute v ← vp(NL/K(α + π)). If v = f , output (α,ZK)
and terminate; otherwise, go to step 2.

Remarks (Also valid for Algorithm 2.3.8)

(1) If k > n, to speed up the algorithm, it may be worthwhile first to find
a pseudo-basis of P using one of the algorithms for HNF in Dedekind
domains, as we have done systematically in Algorithm 2.3.8.
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(2) The manner in which the random elements of ci are chosen is not im-
portant, since the algorithm is expected to find a result very rapidly (of
course, it is preferable to take elements that are small in some sense). In
fact, we want min(e(P/p), vP(α)) = 1, and vQ(α) = 0 for all other prime
ideals Q dividing p. The probability that a random α ∈ P satisfies these
conditions can be estimated to be

∏

Q|p
(1 − 1/NL/Q(Q)) ,

where the product is over all prime ideals above p if P is unramified, and
all prime ideals above p except P if P is ramified. This quantity is not
small, so very few trials should be necessary.

(3) We have not used the systematic backtracking method of [Coh0, Algo-
rithm 4.7.10], since this would be in general much more costly and is
essentially equivalent to using absolute instead of relative representa-
tions. In fact, even in the absolute case, it is probably preferable to use
random elements of Z instead of a systematic backtracking procedure.

(4) There is a completely different method to find a two-element represen-
tation (valid also in the absolute case), by directly using the approxima-
tion theorem in Dedekind domains. Indeed, we have P = ((1, p), (α, a))
if and only if vQ(αa) = 0 for all Q | p and different from P, and
min(e(P/p), vP(αa)) = 1, which is, for example, the case if vP(αa) = 1.
We can plug this in the deterministic version of the approximation the-
orem with a = ZK (Proposition 1.3.8), and obtain in this way a two-
element representation. In practice, however, this method is less efficient
than the random search method described above.

2.3.3 Computing Valuations

As in the absolute case, we also want to compute P-adic valuations, and for
this we proceed in a similar way. Assume that we have computed (β, b) such
that

pP−1 = pZL + βbZL

(this is possible; see Algorithm 2.3.14). Let I be an integral ideal of ZL.
Then vP(I) is the largest nonnegative integer v such that P−vI ⊂ ZL or,
equivalently, (βbp−1)vI ⊂ ZL, and this can easily be tested. This is the natu-
ral generalization of [Coh0, Lemma 4.8.16]. The following lemma generalizes
[Coh0, Lemma 4.8.15] for the maximal order.

Lemma 2.3.12. We have pP−1 = pZL + βbZL if and only if βbP ⊂ pZL
and βb 6⊂ pZL.

Proof. Assume first that pP−1 = pZL + βbZL. Thus βb ⊂ pP−1; hence
βbP ⊂ pZL. Furthermore, if we had βb ⊂ pZL, we would have pP−1 = pZL,
hence P−1 = ZL, which is impossible since P 6= ZL. Thus, βb 6⊂ pZL.
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Conversely, assume that βbP ⊂ pZL and βb 6⊂ pZL. Then P ⊂ P +
βbPp−1 ⊂ ZL, and since P is a maximal ideal, it follows that P + βbPp−1

is equal either to P or to ZL. But P + βbPp−1 = P implies βbPp−1 ⊂ P;
hence βb ⊂ pZL since P is invertible, contrary to our assumption. Thus,
P + βbPp−1 = ZL, and hence pZL + βbZL = pP−1, as claimed. ⊓⊔

Thus, as in the absolute case, we will represent a prime ideal P by
P = (p, (α, a), e, f, (β, b)), and we will be able conveniently to perform all
operations involving P. We give below algorithms for computing (β, b) and
for computing valuations using (β, b).

Algorithm 2.3.13 (Valuation at a Prime Ideal). Let I be an integral ideal of
ZL. Let (ωi, ai) be a pseudo-basis in HNF of ZL, let (γi, ci) be a pseudo-basis of
I, and let (H, ci) be the pseudo-matrix giving this pseudo-basis on the ωi, where
H is in HNF. Finally, let P = (p, (α, a), e, f, (β, b)) be a prime ideal of ZL given
as above. This algorithm computes the P-adic valuation vP(I) of I.

1. [Make integral] If I is not an integral ideal, let d ∈ Z such that dI is integral,
set I ← dI (in other words, set ci ← dci for all i), and set v ← −vp(d)e(P/p),
where p is the prime number below P and e(P/p) is the absolute ramification
index of P. Otherwise, set v ← 0.

2. [Check if p ∤ NL/K(I)] If vp

(∏
i ai
)

= vp

(∏
i ci
)
, output v and terminate the

algorithm. Otherwise, set A← H .

3. [Multiply] Set ci ← bci for all i, and set A← βA in the following sense. Each
column of A corresponds to an element of L in the K-basis ωi, and these
elements are multiplied by β and expressed again on the ωi.

4. [Simple test] Using Algorithm 1.6.2, replace (A, ci) by its HNF. If for some j,
we have vp(cj) = vp(aj), output v and terminate the algorithm.

5. [Complete test] If A = (ai,j), check whether there exist i and j with i < j
such that vp(ai,j) = vp(ai)− vp(cj). If such a pair (i, j) exists, output v and
terminate the algorithm. Otherwise, for all j set cj ← p−1cj , set v ← v + 1,
and go to step 3.

Proof. Step 1 is clear, since

vP(I) = vP(dI)− vP(d) = vP(dI)− e(P/p)vp(d) .

On the other hand, by Proposition 2.3.1, we haveNL/K(I) =
∏
i cia

−1
i . Thus,

if I is an integral ideal such that p ∤ NL/K(I), we have vP(I) = 0, giving
step 2. At the end of step 3, we have replaced I by βbI, and by the definition
of (β, b), we have P | I if and only if βbI ⊂ pZL; in other words, if and
only if βbp−1I is an integral ideal. By Proposition 2.3.1, this will be true if
and only if for all i, ci ⊂ pai and for all i ≤ j, ai,j ∈ paic

−1
j . Since I is an

integral ideal, we have ci ⊂ ai and ai,j ∈ aic
−1
j ; hence P ∤ I if and only if

there exists i such that vp(ci) = vp(ai) or if there exist i and j such that
vp(ai,j) = vp(ai)− vp(cj), proving the algorithm’s validity. ⊓⊔
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Finally, it remains to see how to compute (β, b) satisfying the conditions
of Lemma 2.3.12. This is done by using the following algorithm.

Algorithm 2.3.14 (Prime Ideal Inversion). Given a prime ideal P = pZL +
αaZL, this algorithm computes a pair (β, b) satisfying the conditions of Lemma
2.3.12 — in other words such that P−1 = ZL + p−1βbZL — so as to be able
to compute valuations at P.

1. [Change αa] If a is not an integral ideal, compute an integer d (for example,
the denominator of the HNF of a) such that da is integral, and set a← da and
α ← α/d. Using [Coh0, Algorithm 4.8.17], compute a uniformizer π of p−1

(see Corollary 1.2.10) and the valuation v ← vp(a). If v 6= 0, set a ← πva,
α← π−vα (now a is an integral ideal coprime to p).

2. [Find basis of ZL/pZL] Using Algorithm 1.5.2 on the pseudo-basis (ωi, ai)
of ZL, compute elements ηi ∈ ZL such that

(
ηi
)
1≤i≤n is a ZK/p-basis of

ZL/pZL.

3. [Compute structure constants] Using Algorithm 1.3.2, compute a ∈ a and
b ∈ p such that a + b = 1 (we now know that aα ∈ ZL and that aα ≡ α
(mod pa−1ZL)). Compute constants ai,j ∈ ZK such that

aαηi ≡
∑

1≤j≤n
ai,jηj (mod pZL) .

4. [Solve system] By ordinary Gaussian elimination in the field ZK/p, find a
nontrivial solution to the system of congruences

∑
1≤i≤n ai,jxi ≡ 0 (mod p).

5. [Terminate] Set β ← ∑
1≤i≤n xiηi, set b ← aa−1, output (β, b), and termi-

nate the algorithm.

Proof. We must show that this algorithm is valid. Step 1 is standard and
reduces a to the case of an integral ideal coprime to p. Thus, there exist a ∈ a

and b ∈ p such that a + b = 1, so a ≡ 1 (mod p). Since aα ⊂ P ⊂ ZL, we
have α ∈ a−1ZL and so aα ∈ ZL and α − aα = bα ∈ pa−1ZL, as claimed.
Thus, aαηi ∈ ZL, and reducing modulo p we can compute the constants ai,j .

By definition, the matrix (ai,j) is congruent modulo pZL (hence modulo
p since ai,j ∈ ZK) to the matrix of multiplication by aα on the basis of the
ηi. Thus, its determinant is congruent modulo p to NL/K(aα). Since aα ∈
aα ⊂ P, we have pf(P/p) = NL/K(P) | NL/K(aα), hence det((ai,j)) ∈ p.

It follows that the matrix
(
ai,j
)

is singular in ZK/p.Hence there exists a
nontrivial solution to the system of congruences of step 4. If β and b are chosen
as in step 5, we have αβab = aαβZK ⊂ pZL, βb = βaa−1 ⊂ βZK ⊂ ZL, and
β /∈ pZL, so βb 6⊂ pZL since b = aa−1 and both a and a are coprime to p. ⊓⊔

2.3.4 Operations on Ideals

To add two ideals, we use both HNFs and concatenate them to form an n×2n
pseudo-matrix M , and use one of the HNF algorithms in ZK to compute the



2.3 Representation and Operations on Ideals 95

HNF of M , which is the HNF of the ideal sum. Since the determinantal ideal
of the individual ideals is easily computed, we can use any one of them in the
modular HNF algorithm.

To multiply two ideals, we could use both HNFs, and form an n × (n2)
pseudo-matrix of basis element products, and HNF-reduce this matrix. This
is costly, and it is better to represent one of the ideals by its HNF and the
other one by a pseudo–two-element representation ((α, a), (β, b)). By mul-
tiplying α and β in L by each basis element of the HNF, and multiplying
the corresponding ideals of the pseudo-matrix by a and b, we obtain an
n × 2n pseudo-matrix whose columns form a pseudo-generating set of the
ideal product, and we can then obtain the HNF of this product by HNF-
reduction. When n is large, this is much faster than the use of both HNF
representations. Of course, to be able to use this method, we must be able to
go back and forth between the two types of representations, and this is done
using the methods explained in Section 2.3.1, especially Algorithm 2.3.8.

Remarks

(1) This method for computing ideal products is evidently also very useful
in the absolute case and is not stressed enough in [Coh0] since a two-
element representation was thought to be costly to compute at the time
of writing. Practice has shown that this is not the case. In fact, it is not
difficult to give complexity estimates for this problem, which show that
finding a two-element representation is rather fast (see Algorithm 1.3.15).

(2) To compute an ideal product, one could also think of using both pseudo–
two-element representations. This would involve computing only 2×2 = 4
products. Unfortunately, this is only superficially attractive since it then
becomes costly to obtain either a pseudo–two-element representation or
an HNF from this four-element representation. For example, to obtain
the HNF, one would need to multiply each of the four products by the n
pseudo-basis elements, and HNF-reducing an n×4n pseudo-matrix. This
is twice as expensive as the method that we have suggested. Indeed, the
use of at least one of the HNFs for the ideals avoids extra multiplications
by pseudo-basis elements (see Exercise 29). It seems, however, that suit-
ably implemented, this method can be very slightly faster than the one
we suggest for very large degrees (see [Hop]).

Another important algorithm not mentioned in [Coh0], but essential for
many applications, is that of raising an ideal I to an integer power. We
could, of course, use one of the binary powering algorithms, using the method
explained above for ideal multiplication. There is, however, a much better
method based on the following proposition, whose absolute counterpart was
also not sufficiently stressed in [Coh0].

Proposition 2.3.15. Let I = αaZL+βbZL be a pseudo–two-element repre-
sentation of an ideal I, and let k be a nonnegative integer. Then
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Ik = αkakZL + βkbkZL .

In the special case where P = pZL + αaZL is a prime ideal, we even have

Pk = psZL + αkakZL with s =

⌈
k

e(P/p)

⌉
.

Proof. The equality I = αaZL + βbZL is equivalent to

vP(I) = min(vP(αa), vP(βb))

for all prime ideals P of L, and hence

vP(Ik) = kvP(I) = min(vP(αkak), vP(βkbk)) ,

proving our first claim. In the case of a prime ideal P = pZL + αaZL, we
have min(vQ(p), vQ(αa)) = 0 for any prime ideal Q different from P, while
min(vP(p), vP(αa)) = min(e(P/p), vP(αa)) = 1.

It follows that min(vQ(ps), vQ(αkak)) = 0 for any such prime ideal Q

and any strictly positive s. For the prime ideal P, we may assume that P is
ramified; otherwise the result is not any stronger than the general claim. If
e(P/p) > 1, we necessarily have vP(αa) = 1, and so

min(vP(ps), vP(αkak)) = min(s · e(P/p), k) = k

if and only if s ≥ k/e(P/p), proving the proposition. ⊓⊔

Thus, to compute Ik, we first compute a pseudo–two-element repre-
sentation I = αaZL + βbZL using Algorithm 2.3.8. We then compute
Ik = αkakZL + βkbkZK (or Pk = psZL + αkakZL in the case of a prime
ideal) by a binary powering method. Finally, if desired we transform this into
an HNF representation as usual by doing an HNF reduction of an n × 2n
pseudo-matrix. Evidently this method is much less costly than the naive
method, since we simply have to compute powers of two ideals in the base
field K, and only powers of two elements of L.

Finally, consider the question of computing the inverse of an ideal. We
proceed essentially as in [Coh0, Section 4.8.4].

Definition 2.3.16. Let L/K be an extension of number fields. The relative
different D(L/K) is the ideal of ZL defined as the inverse of the ideal (called
the relative codifferent)

D(L/K)−1 = {x ∈ L, TrL/K(xZL) ⊂ ZK} .

As in the absolute case, the relative different is an integral ideal of ZL
whose relative norm is the relative discriminant ideal d(L/K), and the prime
ideals that divide D(L/K) are exactly the prime ideals of L that are ramified.
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We will also need the following easy, but important, result.

Proposition 2.3.17 (Transitivity of the Different). Let L/K be a rela-
tive extension of number fields, and let k be a subfield of K (for example,
k = Q). Then D(L/k) = D(L/K)D(K/k).

Proof. Let a be an ideal of L. Using the transitivity of the trace, by
definition of the codifferent, we have

a ⊂ D(L/K)−1 ⇐⇒ TrL/K(a) ⊂ ZK

⇐⇒ D(K/k)−1 TrL/K(a) ⊂ D(K/k)−1

⇐⇒ TrK/k(D(K/k)−1 TrL/K(a)) ⊂ Zk

⇐⇒ TrK/k(TrL/K(D(K/k)−1a)) ⊂ Zk

⇐⇒ TrL/k(D(K/k)−1a) ⊂ Zk

⇐⇒ D(K/k)−1a ⊂ D(L/k)−1

⇐⇒ a ⊂ D(K/k)D(L/k)−1 .

It follows that D(L/K)−1 = D(K/k)D(L/k)−1, proving the proposition. ⊓⊔

As we shall see in Theorem 2.5.1, an important consequence of this propo-
sition is the transitivity property for relative discriminants.

The analog of [Coh0, Proposition 4.8.19] is the following.

Proposition 2.3.18. Let (ωi, ai) be an integral pseudo-basis of ZL, and let
I be an ideal of ZL given by a pseudo-matrix (M, ci), where the columns of
(M, ci) give the coordinates of a pseudo-basis (γi, ci) on the ωi.

If T = (TrL/K(ωiωj)), the pseudo-matrix ((M tT )−1, c−1
i ) represents a

pseudo-basis of the ideal I−1D(L/K)−1 on the ωi.

Proof. The proof is almost identical to the absolute case. By definition
of M , the entry of row i and column j in M tT is equal to TrL/K(γiωj). If
V = (vi) is a column vector with vi ∈ K, then V belongs to the image of
the pseudo-matrix ((M tT )−1, c−1

i ) if and only if M tTV is a vector (xi) with
xi ∈ c−1

i . This implies that for all i,

TrL/K

(
γici

(∑

j

vjωj

))
⊂ ZK ,

hence that TrL/K(xI) ⊂ ZK with x =
∑
j vjωj . Since xI = xIZL, the

proposition follows. Note that, in the same way that D(L/K)−1 is the dual
of ZL for the trace form, the ideal I−1D(L/K)−1 is the dual of the ideal I
for the trace form. ⊓⊔
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The analog of [Coh0, Algorithm 4.8.21] is thus as follows.

Algorithm 2.3.19 (Ideal Inversion). Given a relative integral pseudo-basis
(ωi, ai) of ZL and an integral ideal I of ZL given by an n × n pseudo-matrix
(M, ci) whose columns give the coordinates of a relative pseudo-basis (γi, ci) of
I on the ωi, this algorithm computes the HNF of the inverse ideal I−1.

1. [Compute d(L/K)D(L/K)−1] Compute the n×nmatrix T = (TrL/K(ωiωj)).
Let d ← det(T )

∏
1≤i≤n a2

i (this is the relative ideal-determinant d(L/K) of
L and hence is usually available with the ωi). Finally, call δj the elements of
L whose coordinates on the ωi are the columns of T−1 (thus, (δj , da

−1
j ) will

be a pseudo-basis of the integral ideal d(L/K)D(L/K)−1).

2. [Find a pseudo–two-element representation] Using Algorithm 2.3.8, compute
a pseudo–two-element representation ((α, a), (β, b)) of d(L/K)D(L/K)−1

corresponding to the pseudo-basis (δj , da
−1
j ) computed in step 1.

3. [Compute d(L/K)D(L/K)−1I] Let (N, bi) be the HNF of the n×2n pseudo-
matrix whose columns are the coordinates on the integral basis of the products
γiα and γiβ with corresponding ideals cia and cib (this will be a pseudo-basis
of d(L/K)D(L/K)−1I).

4. [Compute I−1] Set P ← (N tT )−1. Output the HNF of the pseudo-matrix
(P, db−1

i ) and terminate the algorithm.

The proof of this algorithm’s validity is left to the reader. We have in-
cluded in this algorithm one of the remarks made after [Coh0, Algorithm
4.8.21] to speed up step 3. The other remarks are also applicable here. In
particular, the computations in steps 1 and 2 are independent of the ideal I.

There exists a completely different and faster method for computing ideal
inverses, both in the absolute and in the relative case, that can be used when
a two-element representation is known (as we have seen in Algorithm 2.3.8,
this is in general quite easy to compute). It is based on the following easy
lemma.

Lemma 2.3.20. Let I = αaZL + βbZL be a pseudo–two-element represen-
tation of an ideal of L. Then

I−1 = (α−1a−1ZL) ∩ (β−1b−1ZL) .

Proof. Indeed, by looking at valuations, it is clear that for any two ideals
I and J in a Dedekind domain we have (I + J)(I ∩ J) = IJ (which is the
generalization to ideals of the formula gcd(a, b) lcm(a, b) = ab). Applying this
to the two ideals α−1a−1ZL and β−1b−1ZL of ZL and multiplying by αβab

immediately gives the desired result. ⊓⊔

The main operation which must be done is thus ideal intersection, which
is computed using Algorithm 1.5.1. This gives the following algorithm.
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Algorithm 2.3.21 (Ideal Inversion). Given a fractional ideal I of L, this al-
gorithm computes the HNF of the inverse ideal I−1.

1. [Compute two-element] If not already in this form, using Algorithm 2.3.8 com-
pute a pseudo–two-element representation I = αaZL + βbZL.

2. [Compute inverses] Using the present algorithm in the absolute case, using
true two-element representations of a and b, compute I1 ← (a−1/α)ZL and
I2 ← (b−1/β)ZL.

3. [Compute intersection] Using Algorithm 1.5.1, compute an HNF pseudo-basis
(γi, ci) for the intersection I3 ← I1 ∩ I2.

4. [Terminate] For each i set αi ← αβγi and ai ← abci, output the HNF of the
pseudo-basis (αi, ai) of I−1, and terminate the algorithm.

2.3.5 Ideal Factorization and Ideal Lists

For future use, we describe here some algorithms for computing ideal factor-
izations and ideal lists. These algorithms have nothing to do with relative
extensions and could have been included in [Coh0].

The following is an algorithm for computing prime ideal factorizations,
whose proof is immediate.

Algorithm 2.3.22 (Ideal Factorization). Let K be a number field and I be
a fractional ideal of K. This algorithm computes the prime ideal factorization
I =

∏
p pvp of I.

1. [Remove denominator] Let d be a positive integer such that dI = J is an
integral ideal (d = 1 if I was already integral). If d 6= 1, apply recursively
this algorithm to the ideals dZK and J , output the prime ideal factorization
of I = Jd−1 by subtraction of the exponents in the factorization of J and d,
and terminate the algorithm.

2. [Compute N = N (J)] (Here J = I is an integral ideal.) If J is not given in
HNF, perform an HNF reduction to reduce to that case, and let H be the
HNF matrix of J . Let N be the product of the diagonal entries of H (so
N = det(H) = N (J)).

3. [Factor N ] Factor N as N =
∏
p p

ap , with ap ≥ 0.

4. [Compute prime ideals] Using [Coh0, Algorithm 6.2.9], for each prime p such
that ap > 0, compute the prime ideal decomposition of pZK as pZK =∏

p|p pep .

5. [Compute valuations] For each p such that ap > 0, and each p | p found in
step 4, use [Coh0, Algorithm 4.8.17] to compute vp ← vp(J). Output the
factorization I =

∏
p pvp and terminate the algorithm.
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Remarks

(1) It is essential to remove the denominator of I in step 1, since otherwise
the factorization of the norm would not include all the possible p (for
example, if p and p′ are prime ideals of the same residual degree over the
same prime p, p′p−1 is an ideal of norm 1).

(2) We can speed up the computation in step 5 by noticing that the factor-
ization of the norm gives us the equality ap =

∑
p|p vp(J)f(p/p). Since

all the coefficients are nonnegative, as soon as this equality is achieved,
we know that all the other p above p (if any remain) will not divide J .

We will also need to find the list of integral ideals of K of norm less than
or equal to some bound B, and perhaps satisfying some additional conditions.
Although easily done, there are some slightly subtle tricks involved. The basic
algorithm where no conditions are imposed is the following.

Algorithm 2.3.23 (Ideal List). Let K be a number field and B be a positive
integer. This algorithm outputs a list of lists L such that for each n ≤ B, Ln is
the list of all integral ideals of absolute norm equal to n.

1. [Initialize] For 2 ≤ n ≤ B set Ln ← ∅, then set L1 ← {ZK} and p← 0.

2. [Next prime] Replace p by the smallest prime strictly larger than p. If p > B,
output L and terminate the algorithm.

3. [Factor pZK ] Using [Coh0, Algorithm 6.2.9], factor pZK as pZK =
∏

1≤i≤g pei

i

with ei ≥ 1, and let fi = f(pi/p). Set j ← 0.

4. [Next prime ideal] Set j ← j + 1. If j > g, go to step 2. Otherwise, set
q ← pfj , n← 0.

5. [Loop through all multiples of q] Set n ← n + q. If n > B, go to step 4.
Otherwise, set Ln ← Ln ∪ pjLn/q, where pjLn/q is the list of products by
the ideal pj of the elements of Ln/q and go to step 5.

Remark. The only subtle point of this algorithm is step 5. Since we loop
by increasing multiples n of q, if L′ denotes the list at the end of step 4, then
step 5 is equivalent to setting

Ln ←
⋃

1≤k≤vq(n)

pkjL′n/qk

for all n.
In the sequel, we will need two modifications of this algorithm. In the first

modification, we want only squarefree ideals a — in other words ideals whose
prime ideal factorization has only exponents 0 or 1. To do this, it is sufficient
in step 5 to loop through the multiples of q in decreasing order, giving the
following algorithm.
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Algorithm 2.3.24 (Squarefree Ideal List). Let K be a number field and B
be a positive integer. This algorithm outputs a list of lists L such that for each
n ≤ B, Ln is the list of all squarefree integral ideals of absolute norm equal to
n.

1. [Initialize] For 2 ≤ n ≤ B set Ln ← ∅, then set L1 ← {ZK} and p← 0.

2. [Next prime] Replace p by the smallest prime strictly larger than p. If p > B,
output L and terminate the algorithm.

3. [Factor pZK ] Using [Coh0, Algorithm 6.2.9], factor pZK as pZK =
∏

1≤i≤g pei

i

with ei ≥ 1, and let fi = f(pi/p). Set j ← 0.

4. [Next prime ideal] Set j ← j+1. If j > g, go to step 2. Otherwise, set q ← pfj

and set n← q(⌊B/q⌋+ 1).

5. [Loop through multiples of q] Set n← n−q. If n < 1, go to step 4. Otherwise,
set Ln ← Ln ∪ pjLn/q and go to step 5.

Let ℓ be a fixed prime. In the second more technical modification, we need
the list of ideals that we will call “conductors at ℓ” for reasons we will see in
class field theory, that is, ideals a such that vp(a) = 0 or 1 for all p ∤ ℓ, while
2 ≤ vp(a) ≤ ⌊ℓe(p/ℓ)/(ℓ− 1) + 1⌋ if p | ℓ. For this, we must loop differently
depending on whether or not p | ℓ, giving the following algorithm.

Algorithm 2.3.25 (Conductor at ℓ Ideal List). Let K be a number field, let
ℓ be a prime number, and let B be a positive integer. This algorithm outputs a
list of lists L such that for each n ≤ B, Ln is the list of all integral ideals of
absolute norm equal to n which are conductors at ℓ in the above sense.

1. [Initialize] For 2 ≤ n ≤ B set Ln ← ∅, then set L1 ← {ZK} and p← 0.

2. [Next prime] Replace p by the smallest prime strictly larger than p. If p > B,
output L and terminate the algorithm.

3. [Factor pZK ] Using [Coh0, Algorithm 6.2.9], factor pZK as pZK =
∏

1≤i≤g pei

i

with ei ≥ 1, and let fi = f(pi/p). Set j ← 0.

4. [Next prime ideal] Set j ← j + 1. If j > g, go to step 2. Otherwise, set
q ← pfj , set q1 ← q if p 6= ℓ, q1 ← q2 if p = ℓ, and set n← q1(⌊B/q1⌋+ 1).

5. [Loop through multiples of q1] Set n ← n − q1. If n < 1, go to step 4.
Otherwise, do as follows. If p 6= ℓ, set Ln ← Ln∪pjLn/q. On the other hand,
if p = ℓ, set

ks ← ⌊min(vℓ(n)/fj , ℓej/(ℓ− 1) + 1)⌋
and

Ln ← Ln ∪
⋃

2≤k≤ks

pkjLn/qk ,

where pkjLn/qk is the list of products by the ideal pkj of the elements of Ln/qk ,
and go to step 5.
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2.4 The Relative Round 2 Algorithm and Related
Algorithms

Let L/K be a relative extension. The ring of integers ZL of L is a ZK-module
in a natural way, and thus we want to compute ZL as a ZK -module, not only
as a Z-module. This has three advantages. First, the ZK-module structure is
richer than the Z-module structure. Second, as we shall see, it is much easier
to compute the ZK -module structure than the Z-module structure, since the
relative degree n = [L : K] is much smaller than the absolute degree. Finally,
if the Z-module structure is really desired, it is trivial to obtain it from the
ZK -module structure (see Section 2.5.1).

In case a number field L is given as a relative extension, this allows us
to compute integral bases and discriminants for much larger degrees than
would be possible otherwise. For example, in [Dab1] such computations are
made for an extension of degree 33 of a base field of degree 32, whereas
directly computing the discriminant of an absolute number field of degree
32× 33 = 1056 is almost impossible using current algorithms.

2.4.1 The Relative Round 2 Algorithm

In this section, we explain how to generalize the round 2 algorithm to the
relative case. We assume that we know everything needed about the base
ring ZK , and we must find an algorithm for computing a ZK-pseudo-basis
of ZL, in other words a relative integral pseudo-basis. We set R = ZK , n =
[L : K], m = [K : Q], and we assume that L is given as L = K(θ) for some
algebraic integer θ whose minimal monic polynomial over K is denoted by
T (X) ∈ ZK [X ].

We follow closely the exposition given in [Coh0, Chapter 6].

Definition 2.4.1. Let O ⊂ ZL be an order in L and let p be a prime ideal
of ZK .

(1) We will say that O is p-maximal if the order-ideal (see Definition
1.2.33) of the torsion module ZL/O is not divisible by the ideal p or,
equivalently, if pZL +O = ZL.

(2) We define the p-radical Ip of O as follows:

Ip = {x ∈ O | ∃m ≥ 1 such that xm ∈ pO} .

Then, as in the absolute case, it is easy to prove that Ip is an ideal of
O equal to the product of all distinct prime ideals of O lying above p. To
compute Ip (or more precisely Ip/pO) explicitly, we may use the following
proposition, which is also proved as in the absolute case.

Proposition 2.4.2. Let q = NK/Q(p) = |ZK/p| and let j ≥ 1 be such that
qj ≥ n, where n = [L : K]. Then Ip/pO is the kernel of the ZK/p-linear map

x 7→ xq
j

from O/pO into itself.
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When p is large, however, there is a more efficient method for computing
the p-radical based on the following proposition, which should have been
included in [Coh0] for the absolute case.

Proposition 2.4.3. Let p be the prime number below p, assume that p >
n = [L : K], and let α ∈ O. The following three properties are equivalent.

(1) α ∈ Ip.
(2) The characteristic polynomial Cα(X) of α over K satisfies Cα(X) ≡ Xn

(mod p).
(3) For all β ∈ O we have TrL/K(αβ) ∈ p.

Proof. The proof that (1) implies (2) is the same as the proof of Proposi-
tion 2.4.2 (see [Coh0], Lemma 6.1.6): if α ∈ Ip, multiplication by α induces a
nilpotent map from the ZK/p-vector space O/pO to itself, hence its eigenval-
ues are all equal to 0, so its characteristic polynomial is equal to Xn modulo
p. Conversely, (2) implies (1) by the Cayley–Hamilton theorem (note that
the equivalence of (1) and (2) does not use the condition p > n).

Assume now that α ∈ Ip. Then for all β ∈ O we have αβ ∈ Ip; hence
by what we have just proved, Cαβ(X) ≡ Xn (mod p), and in particular
TrL/K(αβ) ∈ p.

Conversely, assume (3). If we apply (3) to β = αk−1 for k ≥ 1, we deduce
that TrL/K(αk) ∈ p for all k ≥ 1. Let Cα(X) = Xn +

∑n
j=1(−1)jajX

n−j

be the characteristic polynomial of α, where the aj ∈ ZK are the elementary
symmetric functions of α. Newton’s relations between elementary symmetric
functions and sums of powers give the recursion

kak =

k∑

j=1

(−1)j−1ak−j TrL/K(αj) .

Since TrL/K(αj) ∈ p for j ≥ 1, it follows by induction that ak ∈ p for k < p,
since k < p implies k /∈ p. Since p has been assumed to be larger than n, it
follows that ak ∈ p for 1 ≤ k ≤ n, proving (2). ⊓⊔

Condition (3) can easily be transformed into an algorithm for computing
the p-radical as follows. Let

(
ωi
)
1≤i≤n be a ZK/p-basis of O/pO. It is clear

that (3) is equivalent to TrL/K(αωi) ∈ p for 1 ≤ i ≤ n. Thus, if we write
α ≡∑1≤j≤n xjωj (mod p), we obtain the following linear system in ZK/p:

∑

1≤i≤n
xi TrL/K(ωiωj) ≡ 0 (mod p) ;

hence Ip/pO is the kernel of the matrix (TrL/K(ωiωj)) over ZK/p, which
can easily be found using Gaussian elimination. If p is large, the resulting
computation will be much shorter than the computation based on Proposition
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2.4.2. We leave the details of the resulting algorithm to the reader (Exercise
32).

Zassenhaus’s theorem, being a local statement, goes through without
change:

Proposition 2.4.4. Set

O′ = {x ∈ L | xIp ⊂ Ip} .

Then

(1) O′ is an order in L containing O;
(2) O′ = O if and only if O is p-maximal;
(3) if O′ 6= O, then the order-ideal of O′/O is equal to pk for some k such

that 1 ≤ k ≤ n.

To compute O′ algorithmically, we use the following proposition, whose
proof is immediate.

Proposition 2.4.5. Let U be the kernel of the ZK-linear map

α 7−→
(
β 7→ αβ

)

from O to EndZK/p(Ip/pIp); then O′ = p−1U .

Finally, we must explain how to find a ZK/p-basis of Ip/pIp knowing one
of Ip/pO. There are slight differences with the absolute case, so we give all
the details.

As in [Coh0, Chapter 6], let β1, . . . , βl in Ip be such that
(
βi
)
1≤i≤l is a

basis of Ip/pO as a ZK/p-vector space. Using Algorithm 1.5.2, from a given
pseudo-basis (ωi, ai) of O, we may compute a ZK/p-basis of O/pO. Thus, we
can use [Coh0, Algorithm 2.3.6] to supplement the βi with βl+1, . . . , βn so
that the

(
βi
)
1≤i≤n form a basis of O/pO.

Let π ∈ p r p2, so that π is an element of ZK whose valuation at p is
exactly equal to 1 (if p = pZK + αZK , then π can be taken to be either α
or α + p). I claim that if we set αi = βi for 1 ≤ i ≤ l and αi = πβi for
l + 1 ≤ i ≤ n, then

(
αi
)
1≤i≤n is a basis of Ip/pIp (by abuse of notation we

will write x for the reduction of x mod p, pO, or pIp).
First, it is clear that αi ∈ Ip for all i, since π ∈ p and pO ⊂ Ip. Further-

more, Ip/pIp is a ZK/p-vector space of dimension n. Hence we must simply
prove that the αi are ZK/p-linearly independent. So assume that there exist
ai ∈ ZK such that

∑n
i=1 aiαi = 0 or, equivalently,

n∑

i=1

aiαi ∈ pIp .
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Since Ip ⊂ O and π ∈ p, this implies that
∑l

i=1 aiβi ∈ pO; hence ai ∈ p for
1 ≤ i ≤ l, since the βi are ZK/p-linearly independent.

Hence we have

π
n∑

i=l+1

aiβi ∈ pIp .

Since π /∈ p2, we can write πZK = pb for some ideal b prime to p. Let u ∈ b

such that u /∈ p. Then (u/π)p ⊂ ZK . Multiplying our relation by u/π, we
obtain

u
∑

l+1≤i≤n
aiβi ∈ (u/π)pIp ⊂ Ip ;

hence
∑
l+1≤i≤n aiβi ∈ Ip/pO since u is invertible in ZK/p. But since the

subspace generated by the βi for l + 1 ≤ i ≤ n is in direct sum with Ip/pO,
this implies that ai ∈ p also for i ≥ l + 1, thus proving our claim. ⊓⊔

Finally, an important point must be clarified. Most of the computations
are done in the residue field ZK/p. Since this is not simply Z/pZ, we must
explain how elements are represented. The way that we have chosen is based
on the following proposition.

Proposition 2.4.6. Let (ω1, . . . , ωm) be a Z-integral basis of a number field
K, let p be a prime ideal of degree f of ZK , and let A = (ai,j)1≤i,j≤m be its
Hermite normal form on the integral basis. Let D1 (resp., Dp) be the set of
indices i ∈ [1,m] such that ai,i = 1 (resp., ai,i = p). Then

(1) |Dp| = f and |D1| = m− f ;
(2) if i ∈ D1, then ai,j = 0 for j > i (each off-diagonal entry of row i is

equal to zero);
(3) if j ∈ Dp, then ai,j = 0 for i < j (each off-diagonal entry of column j is

equal to zero).

Proof. Call αj the HNF basis elements of p given by the matrix A. The
determinant ofA is equal to the index of p in ZK , hence is equal toN (p) = pf ,
so the diagonal entries of the HNF matrix must be powers of p. Assume that
aj,j = pk. Since pZK ⊂ p, we have pωj =

∑
1≤i≤m xiαi for some integers

xi. Since the matrix A is triangular, we deduce that xi = 0 for i > j, and
in addition p = xjaj,j = xjp

k, and it follows that k = 0 or k = 1, so the
diagonal entries are equal to 1 or p. Since the determinant is equal to pf , we
have f diagonal entries equal to p, proving (1). (2) is a trivial consequence of
the definition of the HNF.

For (3), let j be such that aj,j = p. Then

∑

i<j

ai,jωi = αj − pωj ∈ p .

Let i0 be the largest index i in the sum (if it exists) such that ai,j 6= 0. Thus,
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β = ai0,jωi0 +
∑

i<i0

ai,jωi ∈ p .

Since ai0,j 6= 0, by definition of the HNF we have ai0,i0 > 1, so ai0,i0 = p.
But then, once again writing β =

∑
xiαi, we obtain xi = 0 for i > i0 and

xi0ai0,i0 = xi0p = ai0,j. Since 0 ≤ ai0,j < p, this implies that ai0,j = 0, a
contradiction. It follows that αj = pωj, which is (3). ⊓⊔

Corollary 2.4.7. Keep the notation of the preceding proposition. The classes
modulo p of the ωi for i ∈ Dp form an Fp-basis of ZK/p.

Proof. Since |Dp| = f = dimFp(ZK/p), we must simply show that the

classes ωi for i ∈ Dp are Fp-linearly independent. Assume that
∑

i∈Dp
xiωi =

0, in other words that
∑

i∈Dp
xiωi ∈ p, where we can assume that 0 ≤ xi < p.

Using the same method as in the proof of the proposition, letting i0 be the
largest index i ∈ Dp (if it exists) such that xi 6= 0, the triangular form of
the HNF implies that ai0,i0 | xi0 . Since 0 ≤ xi0 < p and ai0,i0 = p, we have
xi0 = 0, which is absurd, proving the corollary. ⊓⊔

We will thus represent an element of ZK/p as an m-tuple v = (vi) of
elements of Z/pZ, where vi = 0 when i ∈ D1. If x ∈ ZK is represented as an
m-tuple on the integral basis, we can then reduce x modulo p by subtracting
xiAi to x for each i ∈ D1 (where Ai is the ith column of A) and reducing
xi mod p for all other i. Since our HNF matrices are upper-triangular, the
subtraction of the xiAi must be done from bottom up. Also, by (3) above,
we may reduce xi modulo p for i ∈ Dp without subtracting a multiple of Ai
from x since all the off-diagonal entries of Ai are equal to zero. Note that
this is a special case of Algorithm 1.4.12.

We will also want to reduce elements that are not in ZK but in S−1ZK ,
where S = ZK r p. In this case the above procedure may not work since
some of the xi can have a denominator divisible by p (even though x itself
is in S−1ZK). In that case, we proceed as follows. Using Algorithm 1.3.2, we
compute an element α such that α ≡ 1 (mod p) and α ∈ p/pe(p/p). If k is
the largest exponent of p appearing in the coefficients of x, it is clear that
xαk ∈ ZK and xαk ≡ x (mod p) so we may apply the reduction procedure
to xαk instead of x. It is clear that the result is independent of the choice of
α.

Finally, the Dedekind criterion ([Coh0, Theorem 6.1.4]) can also be easily
generalized as follows.

Theorem 2.4.8. Let L/K be a relative extension, with L = K(θ) and θ an
algebraic integer whose minimal monic polynomial in K[X ] is denoted T (X);
let p be a prime ideal of ZK , and let β be a uniformizer of p−1, so that
β ∈ ZK r p−1.
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Let T (X) =
∏

1≤i≤k Ti(X)
ei

be the factorization of T (X) in (ZK/p)[X ]
with the Ti monic. Set

g(X) =
∏

1≤i≤k
Ti(X), h(X) =

∏

1≤i≤k
Ti(X)ei−1 ,

so that g(X)h(X)− T (X) ∈ p[X ]. Set

f(X) = β · (g(X)h(X)− T (X)) ∈ ZK [X ] ,

and let U be a monic lift of T/
(
f, g, h

)
to ZK [X ]. The order given by Zassen-

haus’s theorem starting with O = ZK [θ] is equal to

O′ = ZK [θ] + p−1U(θ)ZK [θ] .

In particular, O is p-maximal if and only if
(
f, g, h

)
= 1 in (ZK/p)[X ].

Remarks

(1) The proof of this theorem is essentially identical to the one in the absolute
case and is left to the reader (Exercise 33).

(2) The result does not depend on the uniformizer β that we choose.
(3) A more direct construction of O′ can be obtained by generalizing [Coh0

(third printing), Exercise 3 of Chapter 6]; see Exercise 34.
(4) Because of the presence of the ideal p−1, O′ is not free in general. Using

an HNF algorithm in Dedekind domains, we can obtain a pseudo-basis
for O′ if desired.

We can now give the complete relative round 2 algorithm, in a form
slightly different from that of [Coh0]. We start with a “driver” algorithm.

Algorithm 2.4.9 (Relative Round 2). Let L/K be a relative extension, with
L = K(θ) and θ an algebraic integer whose minimal monic polynomial in K[X ]
is denoted T (X). This algorithm computes a pseudo-basis (ωi, ai) for ZL and
the relative discriminant disc(L/K) = (d(L/K), d(L/K)).

1. [Factor discriminant of polynomial] Using [Coh0, Algorithm 3.3.7], compute
D ← disc(T ), and let d(L/K) ← D in K∗/K∗2. Using Algorithm 2.3.22,
factor DZK as DZK =

∏
1≤i≤k pvi

i .

2. [Initialize] Set j ← 0, O ← ZK [θ], ωi ← θi−1, and ai ← ZK for 1 ≤ i ≤ n,
and set d(L/K)← DZK .

3. [Finished?] If j = k, output (ωi, ai), disc(L/K) = (d(L/K), d(L/K)), and
terminate the algorithm. Otherwise, let j ← j + 1, p← pj.

4. [Compute p-maximal order] If vj < 2, go to step 3. Otherwise, using Algorithm
2.4.11 below, compute a pseudo-basis (ωi,p, ai,p) of a p-maximal order Op

containing ZK [θ] as well as the integer sp such that the order-ideal of the
torsion module Op/ZK [θ] (in other words, the index-ideal [Op : ZK [θ]]) is
equal to psp .
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5. [Join orders] If sp 6= 0, use Algorithm 2.4.10 to set O ← OOp, let (ωi, ai)
be the corresponding pseudo-basis, and set d(L/K)← d(L/K)p−2sp . Go to
step 3.

Given two orders O and O′ in ZL, we define their product OO′ as the
smallest order containing both O and O′. It is clear that it is the set of linear
combinations of products of elements of O by elements of O′. The following
trivial algorithm computes this product.

Algorithm 2.4.10 (Product of Orders). Let O and O′ be orders of L given
by pseudo-bases (ωi, ai) and (ηj , bj), respectively. This algorithm computes a
pseudo-basis for OO′.

1. [Form products] Let E be the list of element products ωiηj , and let L be the
list of ideal products aibj.

2. [Apply HNF] Using Algorithm 1.6.2, output the pseudo-basis for the module
whose pseudo-generating set is (E,L), and terminate the algorithm.

Remark. Contrary to the case of ideal products where the use of a two-
element representation considerably speeds up the algorithm, I do not see
how to apply a similar method here.

We can now explain the construction of a p-maximal order, which is the
essential part of the relative round 2 algorithm.

Algorithm 2.4.11 (Relative Round 2 at p). Let L/K be a relative extension
of degree n, with L = K(θ) and θ an algebraic integer whose minimal monic
polynomial in K[X ] is denoted by T (X). Let p be a prime ideal of ZK , and let
p be the prime number below p. This algorithm computes an integral pseudo-
basis (ωi, ai) for a p-maximal order Op containing ZK [θ] as well as the p-adic
valuation sp of the order-ideal of Op/ZK [θ]. We assume given vp = vp(disc(T ))
(otherwise, compute it using [Coh0, Algorithms 3.3.7 and 4.8.17]).

1. [Initialize] For i = 1, . . . , n, set ωi ← θi−1, ai ← ZK , and sp ← 0.

2. [Trivial case] If vp < 2, ZK [θ] is p-maximal, so output (ωi, ai) and sp and
terminate the algorithm.

3. [Find uniformizers of p and p−1] Using [Coh0, Algorithm 4.7.10] if necessary,
compute π such that p = pZK + πZK . If vp(π) > 1, set π ← π + p. Then,
using steps 1 and 2 of [Coh0, Algorithm 4.8.17], find β ∈ ZK such that
pp−1 = pZK + βZK , and set β ← β/p (β will be a uniformizer of p−1 and
π a uniformizer of p).

4. [Factor modulo p] Using a factorization algorithm in the finite field ZK/p,
factor T modulo p as T =

∏
i Ti

ei
, where the Ti are distinct, monic, ir-

reducible polynomials in (ZK/p)[X ] and ei > 0 for all i. Set g ← ∏
Ti,

h← T/g, f ← β · (gh− T ), Z ←
(
f, g, h

)
, U ← T/Z, and z ← deg(Z).
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5. [Apply Dedekind] If z = 0, then ZK [θ] is p-maximal, so output (ωi, ai) and
sp and terminate the algorithm. Otherwise, apply Algorithm 1.6.2 to the
pseudo-generating set

((ω1, . . . , ωn, ω1, . . . , ωz), (a1, . . . , an, p
−1, . . . , p−1))

(of course at this stage we still have ωi = θi−1 and ai = ZK), replace (ωi, ai)
by the new pseudo-basis obtained in this way, and set sp ← z.

6. [Finished?] If 2sp + 1 ≥ vp, output (ωi, ai) and sp and terminate the algo-
rithm.

7. [Compute p-radical] If p ≤ n, proceed as follows. Set q ← N (p), set q1 ← q,
and while q1 < n, set q1 ← q1 · q. Then compute the n × n matrix A =
(ai,j) over ZK/p such that ωq1j =

∑
1≤i≤n ai,jωi. On the other hand, if

p > n, compute the n × n matrix A = (ai,j) over ZK/p such that ai,j =
TrL/K(ωiωj). Finally, using [Coh0, Algorithm 2.3.1], compute a ZK/p-basis

β1, . . . , βl of the kernel of A (this will be a basis of Ip/pO).

8. [Compute basis of O/pO] Using Algorithm 1.5.2 on the (ωi, ai), compute a
ZK/p-basis of O/pO.

9. [Compute basis of Ip/pIp] Using [Coh0, Algorithm 2.3.6], supplement the βi
found in step 7 with βl+1, . . . , βn so that the

(
βi
)
1≤i≤n form a ZK/p-basis

of O/pO. Set αi = βi for 1 ≤ i ≤ l and αi = πβi for l + 1 ≤ i ≤ n (where
π was found in step 3), where the βi are any lifts to O of βi ∈ O/pO.

10. [Compute big matrix] Compute coefficients ci,j,k ∈ ZK/p such that ωkαj ≡∑
1≤i≤n ci,j,kαi (mod pIp). Let C be the n2 × n matrix over ZK/p such

that C(i,j),k = ci,j,k.

11. [Compute new order] Using [Coh0, Algorithm 2.3.1], compute a basis γ1, . . . ,
γk of the kernel of C, where the γi are considered as elements of (ZK/p)n.
For 1 ≤ i ≤ n, set vi ← ωi, bi ← ai; for 1 ≤ i ≤ k, let vn+i be a lift of γi to
ZnK , and set bn+i ← p−1. Apply Algorithm 1.6.2 to the pseudo-generating
set (vi, bi)1≤i≤n+k, and let (ω′

i, a
′
i) be the HNF-pseudo-basis thus obtained.

12. [Finished?] Let t ← ∑
1≤i≤n(vp(ai) − vp(a′i)), and for all i set (ωi, ai) ←

(ω′
i, a

′
i). If t = 0, output (ωi, ai) and sp and terminate the algorithm; other-

wise set sp ← sp + t and go to step 6.

Remarks

(1) Since most computations in this algorithm must be performed in the finite
field ZK/p, it is important to note that we will represent elements of this
field as explained after Corollary 2.4.7 and not in some more abstract
manner.

(2) We need to factor polynomials in (ZK/p)[X ]. Although we have not given
the algorithms explicitly, the algorithms given in [Coh0, Chapter 3] for
factoring in (Z/pZ)[X ] can easily be extended to the case of general
finite fields. The details are left to the reader, who can also read general
computer algebra books such as [GCL].
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(3) To compute the p-radical, we have used Proposition 2.4.2 for p ≤ n and
Proposition 2.4.3 for p > n; this seems to be the best choice.

(4) We can, of course, present the algorithm as in [Coh0], by keeping a single
order that we enlarge for each p until ZL is obtained, instead of computing
a p-maximal order for each p and putting the orders together only at the
end. The method given here is, however, usually faster.

2.4.2 Relative Polynomial Reduction

In most applications, it is essential to reduce polynomials defining a given
number field. When the number field is given by an absolute defining polyno-
mial, we use the Polred algorithm or one of its variants (for example, [Coh0,
Algorithm 4.4.12]). When the number field is given by a relative defining
polynomial, we have more choices. Let L/K be given by a defining poly-
nomial T2(X) ∈ K[X ]. A first possibility is the use of a relative version of
the Polred algorithm using a relative version of the LLL algorithm or of the
Fincke–Pohst algorithm. This is probably the best approach, but the neces-
sary relative lattice algorithms (see [Fie-Poh]) are for now not good enough
to provide excellent reduction, although they do help somewhat.

A second possibility is the use of the absolute Polred algorithm, but us-
ing a relative integral pseudo-basis instead of an absolute one. This method
works quite well and is far superior to the naive method consisting of apply-
ing Polred on some absolute defining polynomial. A possible algorithm is as
follows.

Algorithm 2.4.12 (Simple Relative Polynomial Reduction). Let K = Q(θ1)
be a number field defined by a root θ1 of an irreducible polynomial T1(X) ∈
Q[X ], and let L = K(θ2) be a relative extension defined by a root θ2 of an
irreducible polynomial T2(X) ∈ K[X ]. We let m = [K : Q] = deg(T1) and
n = [L : K] = deg(T2). Finally, if T2(X) =

∑
1≤k≤n Ak(θ1)X

k for some poly-

nomials Ak, we set W (X,Y ) ← ∑
1≤k≤n Ak(Y )Xk. This algorithm computes

polynomials P (X) ∈ Q[X ] defining subfields of L, those defining L usually being
simpler than the absolute defining polynomial computed by Algorithm 2.1.11.

1. [Compute roots] Compute the complex roots θ
(i)
1 of the polynomial T1(X) for

1 ≤ i ≤ m. For 1 ≤ i ≤ m, set T
(i)
2 (X) ← W (X, θ

(i)
1 ), and let θ

(i,j)
2 be the

complex roots of T
(i)
2 (X) for 1 ≤ j ≤ n.

2. [Compute relative pseudo-basis] Using Algorithm 2.4.9, compute a relative
integral pseudo-basis (ωj , aj). For 1 ≤ j ≤ n, compute an LLL-reduced
basis (αi,j)1≤i≤m of aj. Write ωj = Wj(θ1, θ2) and αi,j = Ai,j(θ1) with
Wj(X,Y ) ∈ Q[X,Y ] and Ai,j(X) ∈ Q[X ]; for 1 ≤ i ≤ m and 1 ≤ j ≤ n,
set Bi,j(X,Y )←Wj(X,Y )Ai,j(Y ).

3. [Compute absolute T2-matrix] For all i1, i2, j1, j2 such that 1 ≤ i1, i2 ≤ m
and 1 ≤ j1, j2 ≤ n, set
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a(i1,j1),(i2,j2) ←
∑

i3,j3

Bi1,j1(θ
(i3,j3)
2 , θ

(i3)
1 )Bi2,j2(θ

(i3,j3)
2 , θ

(i3)
1 ) .

4. [Apply LLL] Let A be the nm×nm matrix whose entries are the a(i1,j1),(i2,j2)

(this will be a real, positive-definite, symmetric matrix). Apply one of the LLL
algorithms (for example, [Coh0, Algorithm 2.6.3]) to this matrix, thus finding
an LLL-reduced basis bk for 1 ≤ k ≤ nm.

5. [Compute corresponding polynomial] For 1 ≤ k ≤ nm, proceed as follows. The
coordinates of bk are indexed by pairs (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n,
so let bk = (ui,j). Set

γk ←
∑

i,j

ui,jωjαi,j .

Using [Coh0, Section 4.3], compute the characteristic polynomial Ck ∈ Q[X ]
of γk.

6. [Terminate] For each k ≤ nm, compute Pk(X)← Ck(X)/(Ck(X), C′
k(X)).

Output the Pk(X) and terminate the algorithm.

Remarks

(1) As usual in polynomial reduction algorithms, we may not be interested in
all the polynomials Pk, but only in those that define the field L, in other
words those whose degree is equal to mn, and among those, in the ones
with the smallest “size”, for example in the sense of [Coh0, Algorithm
4.4.12]. For this, we modify step 6 accordingly.

(2) In step 4, we only find small elements for the T2 norm in the sense of
the LLL algorithm. If desired, we can strengthen the search and look for
elements having the smallest T2 norm, using the Fincke–Pohst algorithm
([Coh0, Algorithm 2.7.7]).

2.4.3 Prime Ideal Decomposition

The Buchmann–Lenstra algorithm for prime decomposition ([Coh0, Algo-
rithm 6.2.9) can also be extended very simply as follows.

Algorithm 2.4.13 (Relative Prime Ideal Decomposition). Let L/K be a rel-
ative extension of degree n, with L = K(θ) and θ an algebraic integer whose
minimal monic polynomial in K[X ] is denoted T (X). Let p = pZK + πZK be
a prime ideal of ZK , where vp(π) = 1 (change π into π + p if this is not the
case). This algorithm computes the prime ideal factorization pZL =

∏
1≤i≤g Pei

i

by giving for each i the values ei = e(Pi/p), fi = f(Pi/p), and a two-element
representation Pi = ((1, p), (α, a)) = pZL + αaZL. We assume that we have
already computed a pseudo-basis (ωi, ai) of ZL and the relative discriminant
ideal d(L/K). All the ideals I that we will use (except for the final Pi) will be
represented by ZK/p-bases of I/pZL.
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1. [Check if easy] If vp(disc(T )) = vp(d(L/K)), let T (X) =
∏

1≤i≤g Ti(X)
ei

in
(ZK/p)[X ] be the factorization of T (X) into distinct, monic, irreducible poly-
nomials over the finite field ZK/p (obtained by straightforward generaliza-
tions of the algorithms of [Coh0, Section 3.4]). For each i, let fi ← deg(Ti),
Pi ← pZL + Ti(θ)ZL, output the ei, fi, Pi = ((1, p), (Ti(θ),ZK)), and
terminate the algorithm.

2. [Compute ZK/p-basis of ZL/pZL] Using Algorithm 1.5.2 on the pseudo-basis
(ωi, ai), compute a ZK/p-basis

(
ηi
)

of ZL/pZL.

3. [Compute Ip/pZL] If p ≤ n, proceed as follows. Set q ← N (p) and q1 ←
q, and while q1 < n, set q1 ← q1 · q. Then compute the n × n matrix
A = (ai,j) over ZK/p such that ηq1j =

∑
1≤i≤n ai,jηi. On the other hand,

if p > n, compute the n× n matrix A = (ai,j) over ZK/p such that ai,j =
TrL/K(ηiηj). Finally, using [Coh0, Algorithm 2.3.1], compute the kernel Ip
of A as a ZK/p-vector space.

4. [Initialize list] Set L ← {Ip} and c ← 1 (L will be a list of c ideals of
ZL/pZL).

5. [Finished?] If c = 0, terminate the algorithm.

6. [Compute separable algebra A] Let H be an element of L. Compute a
ZK/p-basis of A = ZL/H = (ZL/pZL)/(H/pZL) in the following way.
If β1, . . . , βr is the given ZK/p-basis of H , set βr+1 ← 1. Using [Coh0, Al-
gorithm 2.3.6] and the given basis ηi of ZL/pZL, supplement this family into
a basis

(
βi
)
1≤i≤n of ZL/pZL. Then set f ← n − r, and for 1 ≤ i ≤ f set

γi ← βr+i.

7. [Compute multiplication table] (Here the γi form a ZK/p-basis of A whose
first element is 1.) By using [Coh0, Algorithm 2.3.5], compute coefficients
ai,j,k and bi,j,k in ZK/p such that

γiγj =
∑

1≤k≤f
ai,j,kγk +

∑

1≤k≤r
bi,j,kβk .

The multiplication table of the γi (which will be used implicitly from now on)
is given by the ai,j,k (we can discard the bi,j,k).

8. [Compute V = Ker(φ)] Let M be the matrix of the map α 7→ αq−α from A
to A on the ZK/p-basis that we have found (where q = |ZK/p| = N (p) as
above). Using [Coh0, Algorithm 2.3.1], compute a basis M1 of the kernel of
M (whatever algorithm is used, ensure that the first column ofM corresponds
to α = 1).

9. [Do we have a field?] If M1 has at least two elements (that is, if the kernel
of M is not one-dimensional), go to step 10. Otherwise, apply Subalgorithm
2.4.14 below, and output a two-element representation ((1, p), (α, a)), the
ramification index e, and the residual degree f corresponding to the prime
ideal H . Remove the ideal H from the list L, set c← c−1, and go to step 5.
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10. [Find m(X)] Let α ∈ A be an element of M1 that is not proportional to 1.
By computing the successive powers of α in A, let m(X) ∈ (ZK/p)[X ] be
the minimal monic polynomial of α in A.

11. [Factor m(X)] (We know that m(X) is a squarefree product of linear polyno-
mials.) By using [Coh0, Section 3.4] or simply by trial and error if q is small,
factor m(X) into linear factors as m(X) = m1(X) · · ·mk(X) in (ZK/p)[X ].

12. [Split H] As above, let r = dimZK/p

(
H
)
. For 1 ≤ i ≤ r, do as follows. Set

αi ← mi(α), let Mi be the n × (r + n) matrix over ZK/p whose first r
columns give the basis of H and the last express the αiηj on the ηk (recall
that (ηj) is a ZK/p-basis of ZL/pZL computed in step 2). Finally, let Hi be
the image of Mi computed using [Coh0, Algorithm 2.3.2].

13. [Update list] Remove H and add H1, . . . , Hk to the list L, set c← c+ k− 1
and go to step 6.

The following straightforward algorithm explicitly computes the prime
ideal P from a ZK/p-basis of P/pZL.

Subalgorithm 2.4.14 (Compute P from P/pZL). Given an integral pseudo-
basis (ωi, ai) of ZL, a prime ideal p of ZK , and a prime ideal P above p

given modulo pZL in the form H = H/pZL as a ZK/p-vector space, this al-
gorithm computes a pseudo–two-element representation of P, the ramification
index e(P/p), and the residual degree f(P/p).

1. [Lift basis of P] Set s ← dimZK/p

(
H
)
, let β1, . . . , βs be lifts to ZL of a

ZK/p-basis of H , and set f = f(P/p)← n− s.
2. [Compute pseudo-generating set] Set γi ← ωi and ci ← pai for 1 ≤ i ≤ n,
γi+n ← βi and ci+n ← ZK for 1 ≤ i ≤ s ((γi, ci) is now a pseudo-generating
set of P, with γ1 = 1 and c1 = p if the pseudo-basis of ZL is in HNF).

3. [Compute pseudo–two-element representation] Using Algorithm 2.3.11, com-
pute a pseudo–two-element representation P = ((1, p), (α, a)) of the prime
ideal P.

4. [Compute e(P/p)] Using Algorithms 2.3.14 and 2.3.13, compute the P-adic
valuation e = e(P/p) of pZL (note that (ωi, pai) is a pseudo-basis of pZL).
Output P, e, and f , and terminate the algorithm.

Remarks

(1) As already noted after [Coh0, Algorithm 6.2.9], the method given above is
faster than the initial Buchmann–Lenstra method since it avoids costly
ideal multiplications and divisions. Apart from that, the algorithm is
essentially identical.

(2) Of course, in practice one also keeps the pseudo-element (β, b) computed
by Algorithm 2.3.14 in step 4 so as to be able to compute P-adic valua-
tions with Algorithm 2.3.13.
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2.5 Relative and Absolute Representations

In this section, we consider the problem of going back and forth from relative
to absolute representations of ideals and orders. Let the base field K be
given as K = Q(θ1) (or k(θ1) for some subfield k of K, but for simplicity of
exposition we will restrict to k = Q), and let L/K be a relative extension
given as L = K(θ2). In Section 2.1.5 we have seen how to compute an absolute
defining polynomial for L/Q, more precisely how to find a small integer k such
that θ = θ2 + kθ1 satisfies L = Q(θ), how to find the minimal polynomial of
θ over Q, and how to express θ1 and θ2 in terms of θ (see Algorithm 2.1.11).
Although it is preferable to work systematically with relative extensions, it
is sometimes unavoidable to work also with absolute extensions, and in this
case the above data are essential. In particular, when we perform operations
between elements of K (represented as polynomials in θ1 with coefficients in
Q) and elements of L (represented as polynomials in θ2 with coefficients in
K = Q(θ1)), it is necessary to replace the expressions of θ1 and θ2 by the
polynomials in θ as output by Algorithm 2.1.11.

To simplify the computations and to avoid many possible sources of errors,
we suggest changing the relative defining polynomial so that k = 0 and θ =
θ2. Indeed, since θ = θ2 +kθ1 and θ ∈ K, we clearly have K(θ) = K(θ2) = L,
and if T2 is the minimal polynomial of θ2 in K[X ], it is clear that the minimal
polynomial of θ over K is T (X) = T2(X − kθ1) ∈ K[X ].

Hence, from now on we assume that θ2 = θ.

2.5.1 Relative and Absolute Discriminants

Let (ωi, ai) be the HNF pseudo-basis of ZL on the power basis θi−1, and
let T (X) be the minimal monic polynomial of θ. Since the matrix of the ωj
in terms of the θi−1 is upper-triangular with 1 in the diagonal, the relative
discriminant ideal d(L/K) is given by the formula (see Section 2.2.3)

d(L/K) = d(ω1, . . . , ωn)
∏

1≤i≤n
a2
i = disc(T )

∏

1≤i≤n
a2
i .

From this, it is easy to compute the absolute discriminant using the following
important theorem.

Theorem 2.5.1. Let L/K be an extension, and as usual let d(L/K) be the
discriminant ideal of L/K. Denote by (r1, r2) (resp., (R1, R2)) the signature
of K (resp., L). The absolute discriminant d(L) of L is given by the following
formula:

d(L) = (−1)R2−[L:K]r2d(K)[L:K]NK/Q(d(L/K)) ,

where R2 − [L : K]r2 is given by Proposition 2.2.5.
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Proof. This theorem immediately follows from the transitivity of the dif-
ferent. Indeed, by Proposition 2.3.17, we have D(L/Q) = D(L/K)D(K/Q).
Taking norms, and using d(L/K) = NL/K(D(L/K)) for any extension L/K,
we obtain

d(L)Z = d(L/Q) = NL/Q(D(L/Q)) = NK/Q(NL/K(D(L/K)D(K/Q)))

= NK/Q(d(L/K)D(K/Q)[L:K]) = NK/Q(d(L/K))d(K)[L:K] .

It follows that d(L) = ±d(K)[L:K]NK/Q(d(L/K)). By [Coh0, Proposition
4.8.11], we know that the sign of d(K) is (−1)r2 and that of d(L) is (−1)R2 ,
from which the theorem follows. ⊓⊔

It is possible to give an alternate proof of this theorem using only the
expression of the discriminant as a determinant of traces (see [Bou2]), but the
proof given here is much more natural and directly follows [Ser]. Of course, as
in Proposition 2.3.17, we can replace the base field Q by an arbitrary number
field k.

2.5.2 Relative and Absolute Bases

Consider now the problem of the absolute integral basis of ZL. As in the
proof of Theorem 2.5.1, from an integral pseudo-basis (ωj , aj) and Z-bases
(αi,j) of aj , we immediately obtain an integral basis αi,jωj for ZL. Although
in general it is not in HNF, it is usually not a good idea to put it in HNF
(although using an HNF reduction algorithm, this is trivially done if desired)
since an HNF is usually very badly skewed. For example, in applications such
as the polynomial reduction algorithm Polred, we want an LLL-reduced basis
for the T2-norm (see Algorithm 2.4.12).

Usually the ωj will be given on the relative power basis 1, θ2, . . . , θ
n−1
2 ,

and the αi,j will be given on an absolute power basis 1, θ1, . . . , θ
m−1
1 of K/Q

(or as an HNF on an absolute integral basis of ZK whose columns are easy to
transform into polynomials in θ1). To perform operations such as the element
product αi,jωj , we must express θ1 as a polynomial in θ as explained above
(or express both θ1 and θ2 as polynomials in θ if we have not changed the
relative defining polynomial so that θ = θ2).

The same method applies to ideals, except that one must be careful that
the pseudo-matrix representation of the pseudo-basis (βj , bj) of an ideal is
usually given on the K-basis ωi and not on the power basis θi−1, so we
must first convert the generating elements of the ideal into polynomials in θ
before performing the conversion. Once the absolute Z-basis of the ideal is
obtained, expressed as a matrix on powers on θ, by using linear algebra we
can transform this matrix so as to get the matrix on the absolute integral
basis. At this point it is very important to know which absolute integral
basis is chosen, either the absolute HNF basis or the basis we obtained above
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from the relative HNF basis, which is less skewed. The choice is not very
important, but evidently it must be consistent.

Conversely, if only an absolute integral basis (ηj)1≤j≤mn of ZL is known,
then I do not see any really better method to find a pseudo-basis of ZL than
to apply Algorithm 1.6.2 to the pseudo-generating set (ηj ,ZK). For an ideal
I of ZL, we can do as for ZL, but assuming that a pseudo-basis (ωj, aj) of
ZL is known, we can do much better as follows. From some absolute Z-basis
of I, compute an absolute two-element representation (α, β) using Algorithm
1.3.15 (in the absolute case). If we set βj = αωj and bj = aj for 1 ≤ j ≤ n,
βj+n = βωj and bj+n = aj for 1 ≤ j ≤ n, we obtain a 2n-element pseudo-
generating set of I, to which we apply Algorithm 1.6.2. This is, of course,
much less costly than applying it to an mn-element pseudo-generating set.

Considering its importance, we isolate from the above discussion an al-
gorithm to compute the relative norm of an ideal when one knows only an
absolute basis of the ideal and a relative pseudo-basis of ZL (if one knows a
relative pseudo-basis of the ideal, the answer is given by Proposition 2.3.1).

Algorithm 2.5.2 (Relative Norm of an Ideal). Given an absolute basis of an
ideal I of L and a pseudo-basis (ωj , aj) of ZL, this algorithm computes the
relative norm NL/K(I).

1. [Compute two-element representation] Using Algorithm 1.3.15 for the number
field L, compute an absolute two-element representation (α, β) of the ideal I.

2. [Compute pseudo-generating set] Set βj ← αωj and bj ← aj for 1 ≤ j ≤ n,
βj+n ← βωj and bj+n ← aj for 1 ≤ j ≤ n.

3. [Apply Hermite] By applying Algorithm 1.6.2 to the 2n-element pseudo-
generating set (βj , bj)1≤j≤2n, compute a pseudo-basis (γj , cj)1≤j≤n of the
ideal I (and output this pseudo-basis if desired).

4. [Terminate] Output NL/K(I)←∏
1≤j≤n cja

−1
j and terminate the algorithm.

2.5.3 Ups and Downs for Ideals

An important special case of the above is when a prime ideal P of ZL is
given by an absolute two-element representation P = pZL + βZL. The above
method gives a pseudo-basis (βj , bj) for P. We can then apply Algorithm
2.3.11 to find a two-element relative representation ((1, p), (α, a)). However,
we can obtain this representation more directly as follows.

Algorithm 2.5.3 (Prime Ideal Down). Given an absolute two-element repre-
sentation of a prime ideal P = pZL + αZL, this algorithm computes the prime
ideal p of ZK below P (the relative two-element representation will then simply
be P = pZL + αZL).

1. [ComputeNL/K(α)] Using the subresultant algorithm and Section 2.2.2, com-
pute a← NL/K(α).
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2. [Easy case] If it is known in advance that p is unramified in K/Q (for example,
if P itself is unramified in L/Q), output p← pZK + aZK and terminate the
algorithm.

3. [Difficult case] Using [Coh0, Algorithm 6.2.9], compute the prime ideals pi of
ZK above p.

4. [Loop] Using [Coh0, Algorithm 4.8.17], for each i compute vi ← vpi(a) until
vi > 0 (if no such i exists, there is an error). For this index i, set p ← pi,
output p, and terminate the algorithm.

Proof. We note that for every prime ideal Q of ZL above p and different
from P, we have vQ(α) = 0. It follows that the relative norm NL/K(α)
is of the form NL/K(α) = pua, where a is an ideal coprime to pZK and
u = vP(α)f(P/p) ≥ 1. Thus, if we know that p is unramified, then P∩ZK =
p = pZK+NL/K(α)ZK as can be seen, for example, by computing valuations
at all prime ideals, proving the validity of step 2. If p is ramified, the loop
in step 4 gives a unique index i such that vpi(NL/K(α)) > 0, in other words
the index i for which p = pi, proving the validity of step 4. Finally, we note
that, if p = P ∩ ZK , we have

P = pZL + αZL ⊂ pZL + αZL ⊂ P + αZL = P ;

hence P = ((1, p), (α,ZK)) = pZL + αZL is a relative two-element represen-
tation of P. ⊓⊔

Assume now that we have an integral pseudo-basis (ωi, ai) of ZL and
an ideal I of ZL given by a pseudo-basis (βi, bi). Computing the intersection
I∩ZK is very easy. If not already in this form, use Algorithm 1.6.2 to compute
the HNF of the given pseudo-basis, obtaining a new pseudo-basis (β′

i, b
′
i). By

definition of the HNF we have β′
i = 1, and so I ∩ ZK = b′1. This of course

assumes that the integral pseudo-basis for ZL is always chosen such that
ω1 = 1.

If I = P is a prime ideal given by a two-element representation P =
((1, p), (α, a)), we need not do this since P ∩ ZK = p.

Finally, if P is a prime ideal given by an absolute two-element represen-
tation P = pZL + αZL, we apply Algorithm 2.5.3 to compute p = P ∩ ZK .

Conversely, let c be an ideal of ZK . To compute the ideal cZL as a relative
HNF representation is trivial thanks to the chosen representation: if (ωi, ai)
is a pseudo-basis of ZL, then (ωi, cai) is a pseudo-basis of cZL. In fact, since
this ideal is now considered as an ideal of ZL, it will be represented as a
pseudo-matrix on the ωi (and not on the θi−1), and the matrix component
will simply be the n× n identity matrix, and the ideals will be the cai. If we
also want an absolute HNF representation, we use the method explained in
Section 2.5.2. In other words, we use the following algorithm.

Algorithm 2.5.4 (Ideal Up in Absolute HNF). Let (ωj , aj)1≤j≤n be a
pseudo-basis of ZL and let (ηk) be an absolute Z-basis of ZL, not necessarily
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coming from the pseudo-basis nor in HNF. Given an ideal c of ZK , this algorithm
computes the absolute HNF representation of the ideal cZL of ZL with respect
to the (ηk).

1. [Compute relative HNF] For all j set cj ← ajc and let (γi,j)i be a Z-basis of
cj ; then for all i and j set αi,j ← ωjγi,j .

2. [Compute absolute HNF] For all i and j, let M(i,j) be the column vector of
the coordinates of αi,j on the ηk, and let M be the matrix whose columns,
indexed by pairs (i, j), are the M(i,j). Output the HNF of the matrix M and
terminate the algorithm.

Finally, if c is a prime ideal of ZK , and we want to know the prime ideals
above c in ZL or the factorization of cZL, we apply Algorithm 2.4.13.

2.6 Relative Quadratic Extensions and Quadratic Forms

As its title indicates, the aim of this section is to study the special case of
relative quadratic extensions, and in particular to show that the usual theory
of binary quadratic forms can naturally be extended to the relative case. This
will give us a powerful computational tool that, as in the absolute case, we
will use in Chapter 7 for computing relative class and unit groups.

2.6.1 Integral Pseudo-Basis, Discriminant

Let K be a base field, D ∈ K∗ r K∗2, and L = K
(√
D
)
, so that L is the

general quadratic extension of K. Since K
(√
D
)

= K
(√

Df2
)

for all f ∈ K∗,
we may assume that D ∈ ZK , and we make this assumption from now on.

In the absolute case, we can go a step further and assume that D is
squarefree (in which case D is the so-called radicand), or that D is the dis-
criminant of L (so D is squarefree congruent to 1 modulo 4 or equal to 4
times a squarefree integer congruent to 2 or 3 modulo 4). Thanks to these
reductions, there is a bijection between quadratic extensions of Q and such
integers D.

In the relative case the situation is not that easy when the base field K
has a nontrivial class group: we may, of course, assume thatD is “squarefree”,
meaning that it is not divisible by the square of a nonunit of ZK , but such a
reduction is not sufficient since we can still have DZK = f2d with a nontrivial
ideal f. In addition, such a “squarefree reduction” would in general not be
unique (see Exercise 36). We will see however, in Chapter 9 a way to do this
properly (see Lemma 9.2.2 and Algorithm 9.2.3).

Thus, the only assumption we will make is that D ∈ ZK , and we write
DZK = f2d with f an integral ideal and d a squarefree ideal, which can be
done uniquely.



2.6 Relative Quadratic Extensions and Quadratic Forms 119

We know that ZL has a pseudo-basis over ZK in HNF. Thus, in our case
Corollary 2.2.9 tells us that the corresponding pseudo-matrix on the basis
(1,
√
D) is equal to ((

1 −δ
0 1

)
, (ZK , q

−1)

)
,

where δ ∈ ZK and q is an integral ideal of ZK .
In addition, the definition of the ideal-discriminant shows that the rela-

tive ideal-discriminant d(L/K) is given by the formula d(L/K) = 4Dq−2 =
(2fq−1)2d, and the index-ideal

[
ZL : ZK

[√
D
]]

is equal to q.

Proposition 2.6.1. Assume as above that D ∈ ZK , and set DZK = f2d

with f integral and d squarefree. Then

(1)
2f ⊂ q ⊂ f ⊂ ZK

or, equivalently,

1 ∈ ZK ⊂ f−1 ⊂ q−1 ⊂ 1

2
f−1 ;

(2) δ ∈ f ⊂ 1
2q ∩ ZK ;

(3) D − δ2 ∈ q2.

Conversely, if these conditions are satisfied, then O = ZK ⊕ q−1(
√
D − δ) is

an order of L containing ZK
[√
D
]
.

Proof. Let α = a+ b
√
D with a and b in K, not necessarily integral. Then

α ∈ ZL if and only if 2a ∈ ZK and a2 − b2D ∈ ZK . Indeed, if α ∈ ZL,
then σ(α) = a − b

√
D ∈ ZL, where σ denotes the unique nontrivial K-

automorphism of L, hence α + σ(α) = 2a ∈ ZL ∩ K = ZK and similarly
ασ(α) = a2 − b2D ∈ ZK . Conversely, if these conditions are satisfied, then α
is a root of the monic polynomial X2− 2aX+ (a2− b2D) with coefficients in
ZK , hence is an algebraic integer, proving our claim.

Thus, if α = a + b
√
D ∈ ZL we have a ∈ 1

2ZK and a2 − b2D ∈ ZK , and
since 2a ∈ ZK , we have 4b2D ∈ ZK . This means that for any prime ideal p,

2vp(2b) + 2vp(f) + vp(d) ≥ 0 .

Since d is squarefree, vp(d) ≤ 1; thus for all prime ideals p we have vp(2b) +
vp(f) ≥ 0, in other words 2b ∈ f−1. We have thus proved that ZL ⊂ 1

2 (ZK +

f−1
√
D).

In the other direction, let us show that ZK + f−1
√
D ⊂ ZL. For ZK , this

is trivial. Let u ∈ f−1. Then

(u
√
D)2 = u2D ∈ f−2f2d ⊂ d ⊂ ZK ,

so u
√
D is an algebraic integer, hence u

√
D ∈ ZL, so f−1

√
D ⊂ ZL, as

claimed. To summarize, we have shown the double inclusion
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ZK + f−1
√
D ⊂ ZL ⊂

1

2
(ZK + f−1

√
D) .

The precise determination of ZL (or, equivalently, of the behavior at the
prime ideals dividing 2) can be achieved either by using the relative round 2
algorithm (Algorithm 2.4.9) or by using Hecke’s Theorem 10.2.9, but we will
not need it in the theoretical analysis, only in the algorithms.

Since we know that ZL = ZK ⊕ q−1(
√
D − δ), it follows from the above

inclusions that f−1 ⊂ q−1 ⊂ 1
2 f−1, or, equivalently, 2f ⊂ q ⊂ f, proving (1).

From the first inclusion above, we also deduce that

f−1
√
D ⊂ ZL = ZK ⊕ q−1(

√
D − δ) .

Thus, if u ∈ f−1, u
√
D = u(

√
D − δ) + uδ and since

u(
√
D − δ) ∈ f−1(

√
D − δ) ⊂ q−1(

√
D − δ) ⊂ ZL ,

we deduce that uδ ∈ ZL ∩K = ZK for all u ∈ f−1; in other words, that δ ∈ f,
proving (2).

To prove (3), we have q−1(
√
D − δ) ⊂ ZL, so by applying the automor-

phism σ (which leaves K pointwise invariant) we also have q−1(−
√
D− δ) ⊂

ZL, and hence by multiplying we obtain q−2(δ2−D) ⊂ ZL∩K = ZK , proving
(3). Note that we could hope for a stronger result such as D − δ2 ∈ 4f2 or
even D− δ2 ∈ 2fq, but this is not true in general (see Exercise 37). Of course,
a stronger result can be obtained by computing q explicitly by the round 2
algorithm or by Hecke’s theorem, but the statement obtained is not simple.

Conversely assume that these conditions are satisfied and let O = ZK ⊕
q−1(
√
D − δ). Since 1 ∈ q−1, ZK

[√
D
]
⊂ O. Furthermore, let q ∈ q−1,

and let α = q(
√
D − δ) = −qδ + q

√
D. By conditions (2) and (3) we have

−2qδ ∈ 2q−1δ ∈ ZK and

(−qδ)2 − q2D = q2(δ2 −D) ∈ q−2(δ2 −D) ∈ ZK ;

hence by the necessary and sufficient condition proved above, we have α ∈ ZL.
This shows that ZK

[√
D
]
⊂ O ⊂ ZL. Hence, to show that O is an order, it

is sufficient to show that O is a ring. Since it is trivially stable by addition
and since 1 ∈ O, we must simply show that O is stable by multiplication.

This is of course equivalent to showing that q−2(
√
D− δ)2 ⊂ O. For this,

note that

q−2(
√
D − δ)2 = q−2(D − δ2 + 2δ(δ −

√
D))

⊂ q−2(D − δ2) + q−1(2q−1δ)(δ −
√
D)

⊂ ZK + q−1(δ −
√
D) = O

by conditions (2) and (3), finishing the proof of the proposition. ⊓⊔
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Remarks

(1) Corollary 2.2.9, which only uses the ZK
[√
D
]
-module structure, tells us

only that q ⊂ ZK and that δ ∈ ZK .
(2) The general integral pseudo-basis of the form ZL = ZK ⊕ q−1(

√
D − ε)

is obtained with ε = δ + η for an arbitrary η ∈ q, see Exercise 38.

2.6.2 Representation of Ideals

We assume that q and δ are known (obtained, for example, by the relative
round 2 algorithm), and we now want to work with ideals in the relative
extension L/K. The following proposition gives the result that we need.

Proposition 2.6.2. Let I be a fractional ideal of L. There exist unique ideals
n and a and an element b ∈ ZK such that

I = n(a⊕ q−1(
√
D − b)) .

In addition, we have the following:

(1) the ideal a is an integral ideal;
(2) we have δ − b ∈ q, and in particular b ∈ f;
(3) the ideal c = (b2 −D)(aq2)−1 is an integral ideal.

Conversely, if these conditions are satisfied, then I = n(a⊕ q−1(
√
D − b)) is

an ideal of L.

Proof. By Proposition 2.3.1, I has a pseudo-basis in HNF of the form
((1,
√
D − b), (c1, c2)) with b ∈ ZK and c2q | c1. Set a = c1(c2q)

−1 and
n = c2q = c1a

−1. Then a is an integral ideal and

I = n(a⊕ q−1(
√
D − b)) ,

proving (1).
Set J = In−1 = a ⊕ q−1(

√
D − b). We must express the fact that I

(or, equivalently, J) is an ideal of ZL = ZK ⊕ q−1(
√
D − δ). This is clearly

equivalent to q−1(
√
D− δ)J ⊂ J , hence to q−1(

√
D− δ)a ⊂ J and q−1(

√
D−

δ)q−1(
√
D − b) ⊂ J .

The first condition is equivalent to aq(
√
D − δ) ∈ J for all a ∈ a and

q ∈ q−1. We have

aq(
√
D − δ) = aq(

√
D − b) + aq(b − δ) ,

and since a is an integral ideal, aq(
√
D − b) ∈ J , so the first condition is

equivalent to aq(b− δ) ∈ J , hence to aq(b− δ) ∈ a for all a ∈ a and q ∈ q−1.
This is in turn equivalent to b− δ ∈ q, which implies that b ∈ δ+q ⊂ f+ f = f

by Proposition 2.6.1, proving (2). Conversely, it is clear that if (1) and (2)
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are satisfied (more precisely, (1) and b − δ ∈ q), then the first condition is
satisfied.

Multiplying by q, the second condition on J means that for all q ∈ q−1

we have
q(D + bδ − (b+ δ)

√
D) ∈ aq⊕ ZK(

√
D − b) .

This implies that q−1(b+δ) ⊂ ZK , hence b+δ ∈ q. However, b+δ = b−δ+2δ ∈
q by (2) and Proposition 2.6.1, so this condition is already satisfied. Thus,
we write

q(D + bδ − (b+ δ)
√
D) = −q(b+ δ)(

√
D − b) + q(D − b2) .

We have −q(b+ δ)(
√
D− b) ∈ Jq, so the second condition on J is equivalent

to q(D − b2) ∈ aq for all q ∈ q−1, hence to D − b2 ∈ aq2. This proves (3),
and since we have considered only necessary and sufficient conditions, this
finishes the proof of the proposition. ⊓⊔

Proposition 2.6.3. Let I = n(a⊕ q−1(
√
D − b)) as in Proposition 2.6.2.

(1) The content of I in the sense of Definition 2.3.4 is the ideal n.
(2) The ideal I is an integral ideal of ZL if and only if n is an integral ideal

of ZK .
(3) The ideal I is primitive in L/K if and only if n = ZK .
(4) NL/K(I) = an2.

Proof. Note that with the notation of Proposition 2.3.5 we have h1,2 =
δ − b, hence by that proposition c(I) = (n, na, (δ − b)nq−1) = n since by
Proposition 2.6.2, a is an integral ideal and δ − b ∈ q, proving (1), and
(2) and (3) are immediate consequences. Statement (4) is a restatement of
Proposition 2.3.1 (4). ⊓⊔

Definition 2.6.4. A pseudo-quadratic form associated to the ideal I is the
quadruple (a, b, c; n) of ideals and element satisfying the conditions of Proposi-
tion 2.6.2. When possible, we will often call (a, b, c) itself the pseudo-quadratic
form associated to I.

Remarks

(1) The element b is not unique but is clearly defined modulo addition of an
arbitrary element of aq. Thus there is not a single pseudo-quadratic form
associated to I, but an equivalence class under the action of a group
generalizing the group of integer translations Γ∞ used in the absolute
case. The equivalence relation says that for all u ∈ aq we have

(a, b, (b2 −D)(q2a)−1; n) ∼ (a, b+ u, ((b+ u)2 −D)(q2a)−1; n) .
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(2) In the classical case K = Q and L = Q
(√
D
)
, we may choose D to be the

discriminant of the quadratic field (a choice we almost always make in
[Coh0]). When D ≡ 1 (mod 4) we have f = Z, q = 2Z, and δ = 1, while
when D ≡ 0 (mod 4) we have f = 2Z, q = 2Z, and δ = 0. Thus, an ideal
I can be written I = n(aZ⊕ ((−b+

√
D)/2)Z), and the conditions of the

proposition say that I is an ideal if and only if a ∈ Z, b ≡ δ (mod 2),
and 4a | (b2 − D), which are well-known results in the absolute case.
The quadratic form associated to the ideal I is the form (a, b, c) with
c = (b2 −D)/(4a), so the above definition is a perfect generalization to
the relative case (the number n is not preserved in the absolute case but
could be if desired).

(3) There is, however, one important difference between the relative and ab-
solute cases. Since we could work with primitive ideals, we could discard
the number n. In the relative case, the fact that n may not be a principal
ideal of ZK forbids us to discard it when doing class group computations.
This is the main reason for which, instead of simply writing a form as
(a, b, c), we have written it as (a, b, c; n). We will however, omit the n when
it is not necessary or when it is equal to ZK . We will come back to the
use of n later.

(4) The ideal ZL = ZK ⊕ q−1(
√
D − δ) is represented by the unit form

(ZK , δ, (δ
2 −D)q−2; ZK).

(5) Although we use the word “pseudo”-quadratic form, there really is a
quadratic form here, which is the form

x2 + 2bxy + (b2 −D)y2 with (x, y) ∈ n(a× q−1) .

Since we will not need this explicitly, I leave to the reader the study of
this form and the generalizations of the correspondence between classes
of ideals and classes of forms seen in [Coh0, Chapter 5] (see Exercise 39).

2.6.3 Representation of Prime Ideals

Let p be a prime ideal of ZK , and assume first that p remains inert in ZL.
Then the quadratic form associated to the ideal P = pZL is

(ZK , δ, (δ
2 −D)q−2; p) .

This is already one instance where it is important to keep the fourth com-
ponent; otherwise all inert prime ideals in L/K would be represented by the
same form.

Assume now that p is not inert in L/K and let P be one of the prime ideals
above p. Thanks to the existence of a pseudo–two-element representation, we
know that there exist β ∈ L and an ideal b of K such that P = pZL + βbZL.
Since P is not inert, β /∈ K (otherwise P = (p + βb)ZL = mZL, hence m = p

and so P = pZL), and since L = K
(√
D
)
, we can write βb = (

√
D− cp)a for

some cp ∈ L and some ideal a of K, so that
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P = pZL + a(
√
D − cp)ZL

(this is, of course, not a direct sum).
We want to represent this as a pseudo-quadratic form. This is done by

the following proposition.

Proposition 2.6.5. Let p be a prime ideal of ZK that is not inert in L/K,
and let P = pZL + a(

√
D − cp)ZL be a prime ideal above p. Then p + aq +

a(δ+ cp) = ZK . Let u ∈ p, v ∈ aq, and w ∈ a such that u+ v+w(δ+ cp) = 1
(recall that such elements can be found algorithmically by Algorithm 1.3.2).
Then

P = p⊕ q−1(
√
D − (uδ + vcp − w(D + cpδ))) ;

in other words, if we set bp = uδ+vcp−w(D+cpδ), a pseudo-quadratic form
associated to P is the form (p, bp, (b

2
p −D)(q2p)−1; ZK).

Proof. By Proposition 2.6.2, we can write P = n(a ⊕ q−1(
√
D − bp)) for

unique ideals a and n. Since P is an integral ideal, n is integral, and since
P is not inert, n must be equal to ZK . In addition, a = P ∩K = p. Thus,
we know a priori that P = p ⊕ q−1(

√
D − bp) for some element bp, and any

element b such that
√
D − b ∈ Pq will be suitable.

Replacing ZL by ZK ⊕ q−1(
√
D − δ), we have

Pq = pq + p(
√
D − δ) + aq(

√
D − cp) + a(

√
D − cp)(

√
D − δ) .

Since we know that Pq = pq⊕ZK(
√
D−bp), we have p+aq+a(δ+cp) = ZK .

Thus, let u ∈ p, v ∈ aq and w ∈ a be such that u+ v + w(δ + cp) = 1. Then

u(
√
D − δ) + v(

√
D − cp)− w(D + cpδ − (cp + δ)

√
D) ∈ Pq ,

hence
√
D − (uδ + vcp − w(D + cpδ)) ∈ Pq, so we can take bp = uδ + vcp −

w(D + cpδ), proving the proposition. ⊓⊔

Remark. In most cases, the ideals p and aq are already coprime. This is in
particular the case when p does not divide the index-ideal

[
ZL : ZK

[√
D
]]

=
q, since in that case Proposition 2.3.9 tells us that we can take a = ZK . It
can also occur even when p | q. If this happens, the formulas simplify since
we can choose w = 0.

We now consider the problem of computing valuations with respect to
a prime ideal P. In the quadratic case, this is much simpler than applying
Algorithms 2.3.13 and 2.3.14. Let I = n(a ⊕ q−1(

√
D − b)) be an ideal and

P a prime ideal of L. If P = pZL is inert, we clearly have vP(I) = vp(n).
Otherwise, we still have vP(I) = vP(n)+vP(In−1) and vP(n) = e(P/p)vp(n).
Thus, we may assume that n = ZK , so that I is a primitive ideal.
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If p is ramified, so that pZL = P2, then vP(I) = vp(NL/K(I)) = vp(a).

Consider finally the case where p = PP′ is split. If I = Pv · P′v′ · J
with J coprime to P and P′, we have vp(a) = vp(NL/K(I)) = v + v′. Since
I is primitive, we cannot have p | I, so v and v′ cannot be simultaneously
nonzero. Hence we have v = 0 or v = vp(a). Assume that vp(a) > 0 (otherwise
v = vP(I) = 0). Then v = vp(a) if and only if I ⊂ P. Since a ⊂ P, v = vp(a)
if and only if

q−1(
√
D − b) ⊂ P = p⊕ q−1(

√
D − bp) .

This condition says that for all q ∈ q−1 we have q(
√
D − b) = q(

√
D − bp) +

q(bp − b) ∈ P, hence that q(bp − b) ∈ p, so that bp − b ∈ pq. Thus we test if
this condition is satisfied. If it is, vP(I) = vp(a); otherwise, vP(I) = 0.

We can write this down as a formal algorithm.

Algorithm 2.6.6 (Valuation at P for a Relative Quadratic Extension). Let
P be a prime ideal of L above p and let I = n(a⊕ q−1(

√
D− b)) be an ideal of

L given as explained in Proposition 2.6.2. This algorithm computes the P-adic
valuation vP(I). All p-adic valuations in the base field K are computed using
[Coh0, Algorithm 4.8.17].

1. [Inert case] If pZL = P is inert, output v ← vp(n) and terminate the algorithm.

2. [Ramified case] If pZL = P2, output v ← 2vp(n) + vp(a) and terminate the
algorithm.

3. [Split case] (Here pZL = PP′.) If vp(a) = 0 or if vp(bp − b) ≤ vp(q) set
v ← vp(n); otherwise, set v ← vp(n) + vp(a). Output v and terminate the
algorithm.

2.6.4 Composition of Pseudo-Quadratic Forms

We now consider the problem of computing the compositum of two pseudo-
quadratic forms, of course defined as the product of the corresponding ideals.
The result is completely analogous to the absolute case, as follows.

Proposition 2.6.7. For i = 1, 2, and 3, let Ii = ni(ai ⊕ q−1(
√
D − bi)) be

three ideals of L, and assume that I3 = I1I2. Then n3, a3, b3 are given by
the following formulas. Set d = a1 + a2 + q−1(b1 + b2) and let a1 ∈ a1d

−1,
a2 ∈ a2d

−1, and q ∈ q−1d−1 such that a1 + a2 + q(b1 + b2) = 1. Then

n3 = dn1n2, a3 = a1a2d
−2, b3 = b2 + a2(b1 − b2) + q(D − b22) .

(We may, of course, reverse the roles of 1 and 2 in the formula for b3.)

Proof. The proof is identical to that of the absolute case. We have I1I2 =
n1n2J with

J = a1a2+a1q
−1(
√
D−b2)+a2q

−1(
√
D−b1)+q−2(D+b1b2−(b1+b2)

√
D) .
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The ideal of coefficients of
√
D is

q−1(a1 + a2 + q−1(b1 + b2)) = q−1d = (n3/(n1n2))q
−1 ,

hence n3 = n1n2d, and by multiplicativity of the norm we know that
NL/K(J) = a1a2 = d2a3, so a3 = a1a2d

−2, as claimed.
Finally, if a1 ∈ a1d

−1, a2 ∈ a2d
−1 and q ∈ q−1d−1 are such that a1 + a2 +

q(b1 + b2) = 1, then

a1(
√
D − b2) + a2(

√
D − b1)− q(D + b1b2 − (b1 + b2)

√
D) ∈ Jq ,

which is equal to
√
D − b3 with

b3 = a1b2 + a2b1 + q(D + b1b2)

= b2(1− a2 − q(b1 + b2)) + a2b1 + q(D + b1b2)

= b2 + a2(b1 − b2) + q(D − b22) ,
proving the proposition. ⊓⊔

In view of this proposition, it is reasonable to set the following definition
(keeping in mind that a pseudo-quadratic form is really defined only modulo
the equivalence relation mentioned in Remark (1) above).

Definition 2.6.8. We define the compositum of two forms (a1, b1, c1; n1)
and (a2, b2, c2; n2) by the following formulas. Set d = a1 + a2 + q−1(b1 + b2),
let a1 ∈ a1d

−1, a2 ∈ a2d
−1 and q ∈ q−1d−1 be such that a1+a2+q(b1+b2) = 1,

and, finally, b3 = b2 + a2(b1 − b2) + q(D − b22). Then

(a1, b1, c1; n1) · (a2, b2, c2; n2) = (a1a2d
−2, b3, (b

2
3 −D)q−2d2(a1a2)

−1; dn1n2) .

Corollary 2.6.9. If I = n(a ⊕ q−1(
√
D − b)), then I−1 = n−1a−1(a ⊕

q−1(
√
D + b)). In other words, in terms of pseudo-quadratic forms we have

(a, b, c; n)−1 = (a,−b, c; n−1a−1) .

Proof. By the above proposition, we have

(a⊕ q−1(
√
D − b))(a ⊕ q−1(

√
D + b)) = d(a3 ⊕ q−1(

√
D − b3))

with d = a+a+(b−b)q−1 = a, a3 = a2d−2 = ZK . In addition, we may choose
a1 = 1 ∈ ad−1, a2 = 0, q = 0, so that b3 = b2 ≡ δ (mod q) by Proposition
2.6.2; hence

(a ⊕ q−1(
√
D − b))(a ⊕ q−1(

√
D + b)) = a(ZK ⊕ q−1(

√
D − δ)) = aZL ,

and the first formula of the corollary follows. The second follows from the
trivial observation that (−b)2 = b2. ⊓⊔

Note that it is essential to keep the additional factor a−1 occurring in this
corollary, which is discarded in the absolute case.
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2.6.5 Reduction of Pseudo-Quadratic Forms

Up to now, the analogy with the absolute case has been perfect. The situation
breaks down when we consider the problem of reduction of pseudo-quadratic
forms.

In any reduction procedure for forms of two variables, there are two com-
pletely distinct kinds of reduction steps. First are the translations, corre-
sponding essentially to changing x into x+ ky while leaving y unchanged. In
the absolute case over the integers, this corresponds to using the group Γ∞
already mentioned above and in [Coh0, Chapter 5] of integer translations.

The second type is the inversions, corresponding essentially to the ex-
change of the variables x and y, perhaps with sign or similar harmless changes.

A third kind can also occur, multiplication of x or y by elements of K.
To take a very typical example, the LLL algorithm, as described in [Coh0,

Section 2.6], operates in its primitive form only on pairs of vectors and hence
is a succession of translations (Subalgorithm RED) and exchanges (Subalgo-
rithm SWAP).

We first consider translations. In the case of ordinary quadratic forms
over Z, they correspond to transformations not changing the corresponding
ideal. In our case, if I = n(a⊕ q−1(

√
D− b)), a translation b 7→ b+ k will not

change the ideal if and only if k ∈ aq. We then need to define what we mean
by translation-reduced ; in other words, we need to choose a “small” value of
b modulo aq representing the ideal.

As we have seen in Section 1.4.3, there are two ways to do this. One gives
a canonical representative, using the HNF of the ideal aq (see Algorithm
1.4.12). Although not too large (the coefficients are at most equal to the
absolute norm of aq), this can still be large enough to create problems later
on. It does have an advantage, which must be used in any implementation,
since it allows us to test ideals for equality since this representation is unique.

The second method, using an LLL basis of aq (see Algorithm 1.4.13),
gives much smaller coefficients and so should be used for practical reduction.
It has two disadvantages. The first one is that we lose uniqueness. This does
not matter much, since for the rare times that we want to test ideal equality,
we can always perform an HNF-type reduction. The second, more subtle
disadvantage is that it is slow , since LLL is quite a sophisticated algorithm.
Of course, we are dealing with rather small matrices here (of the size the
absolute degree of the base field), but we are talking about an absolutely
basic operation that may be performed several thousand times or more. As
already mentioned after Algorithm 1.4.13, a good compromise is to use the
notion of partial reduction introduced by P. Montgomery.

The second type of operations, corresponding to inversions, is simply
a swap. We want to transform the pseudo-quadratic form (a, b, c; n) into
(c,−b, a; m) for some m. This is indeed possible, as the following proposition
shows.
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Proposition 2.6.10. Let (a, b, c; n) be a pseudo-quadratic form and I =
n(a⊕ q−1(

√
D − b)) the corresponding ideal. We have the equality

naq(c⊕ q−1(
√
D + b)) = (

√
D + b)I .

In particular, the ideal class in Cl(L) of the ideal corresponding to (a, b, c; n)
is equal to ideal class of the ideal corresponding to (c,−b, a; naq).

Proof. This follows trivially from the equality

c⊕ q−1(
√
D + b) = (

√
D + b)(aq)−1(a ⊕ q−1(

√
D − b)) .

⊓⊔

This is the exact analog of the classical swap operation on ordinary
quadratic forms except that, as usual, the behavior of the fourth component
is important.

The problem starts to become difficult when we want to define what
we mean by a swap-reduced pseudo-quadratic form. The closest analog of
the classical case is the CM-case where the base field K is totally real (for
example, a real quadratic field) and D is totally negative. Ideally, as in the
imaginary quadratic case, one would like a definition of reducedness that
would ensure that each ideal class contains exactly one reduced form. It
seems that such a definition is difficult to find, and it would be very nice if
one could be given.

If we stupidly copy the definition of the imaginary quadratic case, we can
set the following unpleasant definition (but this is all I can offer at present).

Definition 2.6.11. We say that a form (a, b, c; n) is pseudo-reduced if b is
LLL-reduced modulo aq in the sense of Algorithm 1.4.13 as explained above
(partially LLL-reduced suffices in practice) and if we have the inequality

N (a) ≤ N (c) =
∣∣N (b2 −D)

∣∣ /N (aq2) .

Although it is mathematically unpleasant, experiment has shown that it
is usually sufficient for practical applications.

The reduction algorithm of a pseudo-quadratic form is, of course, imme-
diate and need not be written formally: we partially reduce (or LLL-reduce
if we agree to spend more time, but this is not a good practical choice) the
element b modulo aq. If N (a) > N (c) =

∣∣N (b2 −D)
∣∣ /N (aq2) — in other

words, if
∣∣N (b2 −D)

∣∣ < N (aq)2 — we swap a and c and change b in −b
and modify the fourth component as explained in Proposition 2.6.10, and we
iterate this process until the form is reduced.

In Section 7.3.2, we will see a relative ideal reduction method that gener-
alizes the above to arbitrary relative extensions.
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2.7 Exercises for Chapter 2

1. Let
T (X) =

Y

1≤i≤g

Ti(X)ei

be a decomposition of T in K[X] into nonassociate irreducible factors. Using
the Chinese remainder theorem, show that

K[X]/T (X)K[X] ≃
Y

1≤i≤g

K[X]/Ti(X)eiK[X] .

2. Prove the following variant of the primitive element theorem. If K1 = Q(θ1) and
K2 = Q(θ2) are two number fields, there exists a (small) integer k such that
K1K2 = K(θ1θ2 + kθ2).

3. Let A be a ring. Show that A has no nonzero nilpotent elements if and only if
x2 = 0 implies x = 0 in A.

4. Let A be an étale algebra over K. Show that A is an integral domain if and
only if A is a field.

5. Compute the Galois group of the separable but reducible polynomials P1(X) =
(X−2)(X3−X−1), P2(X) = (X2−2)(X2−3), and P3(X) = (X2−2)(X2−8).
Compute also the discriminants of the corresponding étale algebras.

6. Classify up to conjugacy (and not only up to abstract isomorphism) all non-
transitive subgroups of Sn for n = 2, 3, 4, and 5. For each of these groups, give
an example of a polynomial in Z[X] whose Galois group is isomorphic (as a
subgroup of Sn) to the given group.

7. Write a complete algorithm for computing the Galois group of separable but
not necessarily irreducible polynomials over Q[X] in degree up to 5, generalizing
the algorithms of [Coh0, Section 6.3].

8. Let T1 and T2 be two monic irreducible polynomials in Q[X] of degree n1 and
n2, respectively, and let θ1 (resp., θ2) be a root of T1 (resp., θ2). If θ = θ1θ2 +
k1θ1 + k2θ2, show that θ is a root of R(X,k1, k2) = 0, where R(X,Z1, Z2) =
RY (T1(Y − Z2), Y

n2T2((X − Z1Y + Z1Z2)/Y )). Assuming that R(X, k1, k2)
is squarefree, express θ1 and θ2 in terms of θ using the partial derivatives of
R(X,Z1, Z2).

9. Continuing the previous exercise, show that the exact analog of Theorem
2.1.14 for R(X) = R(X, 0, 0) (assuming it is squarefree) is true with Vs(X) =
RY (T2(Y ),XY − As(Y )) and

U(X) =
RY (T1(Y ),Xn1T1(Y/X))

(X − 1)n1T1(0)
,

except that the result must also be multiplied by T1(0)
n2(n2−1)T2(0)

n1(n1−1).
Give the corresponding formulas for Vs and U when R(X) = R(X, k1, k2).

10. If T is an irreducible polynomial of degree n, show that RY (T (Y ), Y nT (X/Y ))
is never squarefree.

11. At the end of the example given after Algorithm 2.1.8, θ1 and θ2 are two cube
roots of 2 in the number field defined by the polynomial R2(X) = X6 + 108.
Compute the third cube root of 2 in this field. Do the same for the reduced
polynomial S2(X) = X6 − 3X5 + 5X3 − 3X + 1.
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12. Show that, as claimed in the text, when the resultant in Y of two squarefree
polynomials T1(Y ) and T2(X − kY ) is squarefree, the next-to-last polynomial
in the polynomial remainder sequence given by the subresultant algorithm is
of degree equal to 1 and equal to R′(X)Y + R′

Z(X, k) up to a multiplicative
constant.

13. Implement the computation of the compositum of two number fields, including
the computation of θ1 and θ2, both by using the subresultant algorithm, and by
using the other methods mentioned after Algorithm 2.1.8, and compare their
relative speed.

14. Let M be an n × n invertible square matrix, and for 1 ≤ i ≤ d let Bi be a
column vector with n entries.

a) Show how to modify [Coh0, Algorithm 2.2.2] so as to compute the d solu-
tions to MXi = Bi simultaneously.

b) Estimate the running time of this algorithm, and compare it with the
running time of [Coh0, Algorithms 2.2.1 and 2.2.2].

c) Modify Algorithm 2.1.9 so that it uses the above method to compute si-
multaneously R(X), θ1 and θ2.

15. (D. Simon) Let T1(Y ) be a polynomial of degree n1, letW (X,Y ) be a polynomial
of degree n2 in X, and let R(X) = RY (T1(Y ),W (X,Y )) (so that in the context
of Theorem 2.1.10, R(X) is the defining polynomial of the extension L2/K if Z
can be taken equal to 0).

a) Show that Tn2
1 divides RX(R(X),W (X,Y )).

b) If, in addition, W (X,Y ) is of the special form W (X,Y ) = A(X)Y +B(X),
show that

RX(R(X),W (X,Y )) = T1(Y )n2R(A(X),B(X))n1 .

16. Show that, in Algorithm 2.1.8, the choice of k = 0 in step 2 always leads to a
nontrivial GCD when deg(T1) > 1.

17. Write a common generalization to Algorithms 2.1.8 and 2.1.11 in the context of
étale algebras.

18. Prove the validity of Algorithm 2.1.12.

19. Let L/K be an extension of number fields, and assume that, in addition to the
data for the base field K, we know only an absolute defining polynomial P (X)
for L/Q. Write an algorithm for computing a relative defining polynomial for
L/K.

20. Generalize Theorem 2.1.14 to the case where T1 and T2 are not necessarily
monic and have only rational (as opposed to integral) coefficients.

21. Show that the characteristic polynomial is transitive in the following sense. If
L/K is a relative extension, if α ∈ L, and if Cα,K(X) (resp., Cα,Q(X)) denotes
the relative (resp., absolute) characteristic polynomial of α, then

Cα,Q(X) = NK/Q(Cα,K)(X) ,

where the norm of a polynomial is obtained by computing the product of all
the polynomials obtained by applying the [K : Q] embeddings of K into C.

22. Let K = Q
`

√
10
´

and L = K
`√−1

´

. Using the relative round 2 algorithm, show
that ZL is not a free ZK -module.

23. Let L/K be a relative extension of number fields of degree n, and let α1, . . . , αn

be n elements of L. Show that, as claimed in the text, d(α1, . . . , αn) = 0 if and
only if the αj are K-linearly dependent.
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24. Prove Proposition 2.2.10.

25. Using the explicit parameterization of cyclic cubic fields given in [Coh0, Section
6.4.2], compute the elementary discriminantal divisors of cyclic cubic fields over
Q. Do the same for pure cubic fields Q( 3

√
m).

26. If I is an ideal of L, show that, as claimed in the text, NL/K(I) =
`

Q

σi
σi(I)

´

∩
K, where the σi are the n K-embeddings of L into C and the product is con-
sidered in the Galois closure of L/K in C.

27. Let b be an integral ideal and a any ideal of ZK . Let α ∈ a be such that
vp(α) = vp(a) for all p | b. Show that the map x 7→ αx induces a ZK-module
isomorphism from ZK/b to a/ab.

28. Prove Proposition 2.3.5.

29. Let I = (αi, ai) be an ideal of ZL given by a pseudo-basis (not necessarily
in HNF), and let J = ((α, a), (β, b)) be an ideal of ZL given by a pseudo–two-
element representation. Show that, as claimed in the text, ((αiα,αiβ), (aia, aib))
is a 2n-element pseudo-generating set of the ideal product IJ .

30. Let K = Q
`

√
D
´

be a quadratic field of discriminant D, and let p be a prime

number that splits in K as K = pp. Compute explicitly the HNF of the ideal pk

on the usual integral basis (1, ω) ofK, where ω = (δ+
√
D)/2 with δ = D mod 2.

In addition, express your result using the truncation of a p-adic number (note
that the corresponding exercise for inert or ramified primes is trivial).

31. Generalize Algorithm 2.3.24 to compute the list of all nth power free ideals of
norm less than or equal to B — in other words, ideals not divisible by any nth
prime power.

32. Write and implement an algorithm for computing the p-radical based on Propo-
sition 2.4.3, and compare its efficiency with the corresponding algorithm based
on Proposition 2.4.2 when p is large.

33. Prove Theorem 2.4.8, following closely the proof of the absolute case given in
[Coh0, Section 6.1.2].

34. (F. Diaz y Diaz) With the notation of Theorem 2.4.8, show that the Dedekind
criterion can be restated as follows. Let ri(X) ∈ ZK [X] be the remainder of
the Euclidean division of T (X) by ti(X). We evidently have ri ∈ p[X]. Set
di = 1 if ei ≥ 2 and ri ∈ p2[X], di = 0 otherwise. Then we can take U(X) =
Q

1≤i≤k t
ei−di
i . In particular, ZK [θ] is p-maximal if and only if ri /∈ p2[X] for

every i such that ei ≥ 2.

35. Let L = K(α) be a relative extension of number fields, and let (ωi, ai) be an
integral pseudo-basis of ZL. Let β = B(α) with B ∈ K[X] be an element of L,
and let N = K(β) be the subfield of L generated by β. Write an algorithm that
directly computes an integral pseudo-basis of ZN using the polynomial B(X)
and the pseudo-basis (ωi, ai).

36. Consider K = Q
`√−23

´

, ω = (−1 +
√−23)/2, and D = 8ω + 12. Show that

D = 22(2ω+3) = ω2(ω+3) and that this gives two essentially distinct squarefree
decompositions of D (thus showing that when the class number is larger than
1, this notion does not make sense for elements).

37. By simply considering the case K = Q, show that, as claimed in Section 2.6, we
do not have D − δ2 ∈ 2fq in general.

38. Let L = K(
√
D) be a quadratic extension with D ∈ ZK .

a) Show directly that there exists an integral ideal q such that d(L/K) =
4Dq−2.
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b) Show that ZL = ZK ⊕ q−1(
√
D − δ) if and only if δ ∈ 1

2
q ∩ ZK and

D− δ2 ∈ q2, and that two such elements δ can only differ by an arbitrary
element of q.

c) Can the condition δ ∈ 1
2
q ∩ ZK be replaced by the condition δ ∈ 1

2
q?

39. Generalize the correspondence between classes of ideals and classes of forms
seen in [Coh0, Chapter 5] to the relative case, as suggested in Remark (5) after
Definition 2.6.4.



3. The Fundamental Theorems of Global Class
Field Theory

In this chapter, we give the main results of global class field theory for the
case of number fields. We refer the reader to [Art-Tat], [Gras], [Has1], [Jan], or
[Mart4] for more detailed statements and proofs. We present the results “à la
Hasse”, without using ideles. This is more suitable for algorithmic treatment.
For an idelic treatment, we refer to [Neu]. I have largely benefited from the
notes of J. Martinet [Mart4] in writing this chapter.

This chapter is entirely theoretical, and we defer all algorithms until Chap-
ters 4, 5, and 6. However, as the reader will see, the presentation of the
material is very concrete.

Class field theory is one of the most remarkable and important theories in
number theory. In fact, a large part of the current trends in number theory
(for example, the Langlands program) can be thought of as an attempt to
generalize class field theory.

One of its remarkable aspects is that it gives a canonical bijection between
rather different objects: on the one hand, classes of congruence subgroups (see
definitions below), which are nothing more than certain groups of ideals in
a base field K; on the other hand, K-isomorphism classes of finite Abelian
extensions of K. There are two parts to this theorem (in fact, three, as we
shall see), the injectivity and the surjectivity, but what is truly spectacular
is certainly the surjectivity since it predicts a priori the existence of certain
number fields, and it gives their discriminant and signature. Finding these
number fields in practice is another matter (although in some sense we will
simply follow the proof of the theorem), and we will explain in Chapters 5
and 6 how this is done.

3.1 Prologue: Hilbert Class Fields

Before explaining the general theory, we start with a special case that already
embodies a large part of the theory. It will be generalized in the subsequent
sections.

We will say that an extension L/K of number fields is unramified if there
are no places of K that ramify in L. This means the following: for every prime
ideal p of K, we have a decomposition
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pZL =
∏

Pi|p
Pei

i ,

and we want p to be unramified, in other words, we want all ei to be equal
to 1. This must be true for every prime ideal of K. Since the ramified prime
ideals are exactly those that divide the relative discriminant, this is equivalent
to asking that d(L/K) = ZK . In addition, we also require the embeddings
σi (or, equivalently, the places at infinity) to be unramified (see Definition
2.2.4).

We are concerned with finite Abelian unramified extensions L of a fixed
base field K. There are several reasons for the restriction to the case of
Abelian extensions, but perhaps the most important one is that very little is
known in the non-Abelian case (see [Yam] and Exercise 1).

Hilbert and Furtwängler showed that there exists a maximal unramified
Abelian extension of K (denoted by K(1)) in a strong sense: every Abelian
unramified extension of K is isomorphic to a subextension of K(1). This field
K(1) is called the Hilbert class field of K and has remarkable properties. First
and foremost, the Galois group of K(1)/K is isomorphic to the class group
Cl(K), hence in particular [K(1) : K] = h(K), the class number of K. This
isomorphism is explicitly given (all of this will be described in a more general
setting below).

Second, the decomposition in K(1) of a prime ideal of K can easily be
described: if p is a prime ideal of K, and if f is the least power of p such that
pf is a principal ideal of K, then p splits into h(K)/f distinct prime ideals
of K(1) of degree f .

By Galois theory, the subextensions of K(1)/K (and thus all unramified
Abelian extensions of K up to isomorphism) correspond in a one-to-one way
to subgroups of the Galois group, hence to subgroups of the class group Cl(K)
or, equivalently, to subgroups C of the group I(K) of fractional ideals of K
containing the group P (K) of principal ideals of K.

Note once again that we are talking about Abelian extensions. The study
of general unramified extensions is much more difficult (see, for example,
[Yam]).

When there is ramification, the situation is completely analogous, except
that we must replace the ordinary class group by a more general class group
called the ray class group, which we study in the next section.

The Hilbert class field extension K(1)/K also possesses the capitulation
property: every ideal of K becomes principal in K(1); in other words, if a is
an ideal of K, then aZK(1) is a principal ideal of ZK(1) (this is a theorem
due to Furtwängler). This does not mean that K(1) is itself principal (see
Exercise 1). In fact, in the 1960s Golod and Shafarevitch proved that there
exist infinite class field towers , meaning that there exist number fields H0

such that if we define Hn to be the Hilbert class field of Hn−1 for n ≥ 1,
then Hn is never equal to Hn−1 (or, equivalently, Hn−1 has a nontrivial class
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group). This implies that there exist number fields that are not subfields of
a number field whose ring of integers is a principal ideal domain.

The capitulation property was initially one of the main motivations for
the study of class fields, but the further development of class field theory by
Artin and Takagi has shown that this is more of an additional property than
a basic one. We will come back to the study of capitulation in Chapter 7.

3.2 Ray Class Groups

3.2.1 Basic Definitions and Notation

The following definitions summarize most of the notions we will need to study
ray class groups.

Definition 3.2.1. (1) A modulus m in K is a pair (m0,m∞), where m0 is
an integral ideal and m∞ is a set of real embeddings of K into C. We
will write this formally as m = m0m∞.

(2) If m = m0m∞ and n = n0n∞ are two moduli, we say that n divides m

(and write n | m) if n0 | m0 (or, equivalently, n0 ⊃ m0) and n∞ ⊂ m∞.
(3) We define

(ZK/m)∗ = (ZK/m0)
∗ × F m∞

2 .

(4) If a is a nonzero fractional ideal of K, we say that a is coprime to m if
vp(a) = 0 for all p | m0 or, equivalently, if we can write a = b/c with b and
c integral ideals coprime to m0 in the usual sense (b+m0 = c+m0 = ZK).
The set of ideals coprime to m is a group and is denoted by Im(K) (or
Im if the field K is understood). If α ∈ K∗, we say that α is coprime to
m if the principal ideal αZK is coprime to m.

Remark. When a is not an integral ideal of K, the condition that a is
coprime to m is of course not equivalent to a + m0 = ZK , since this equality
implies that a is integral.

We have a natural group homomorphism ρ from the elements of K∗ co-
prime to m into (ZK/m)∗ defined as follows. Any α coprime to m in the above
sense can be written as α = β/γ for β and γ in ZK and coprime to m (see
Algorithm 4.2.22 for an algorithmic way of finding β and γ). Thus, we can
define the class α ∈ (ZK/m0)

∗ by setting α = β/γ, and it is clear that this
does not depend on the choice of β and γ. We then define ρ by setting

ρ(α) =
(
α, (sign(σi(α))σi∈m∞)

)
,

where sign(x) is set equal to 0 or 1 in F2 according to whether x is positive
or negative. The strong approximation theorem in Dedekind domains (more
precisely, Corollary 1.2.9) tells us that ρ is surjective. Thus, any element of
(ZK/m)∗ can be represented as ρ(α) for some α ∈ ZK .
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In algorithmic practice, this is not the nicest way to represent an element
of (ZK/m)∗. We will see that it is much better simply to keep the initial
definition and to represent an element as

(
α, (s1, . . . , s|m∞|)

)
, where α is the

class of α modulo m0 and si ∈ F2 (see Sections 4.2.4 and 4.3.2).

Definition 3.2.2. Let m be a modulus in K.

(1) If α ∈ K∗ is coprime to m and the modulus m is understood, we write α
instead of ρ(α) as defined above.

(2) If α ∈ K∗, we say that
α ≡ 1 (mod ∗m)

if for all p dividing m0 we have vp(α − 1) ≥ vp(m0), and if for all em-
beddings σi ∈ m∞ we have σi(α) > 0. We will write K∗

m for the group of
such α.

(3) If α and β are in K∗, we say that α ≡ β (mod ∗m) if α and β are coprime
to m and if α/β ≡ 1 (mod ∗m).

Remarks

(1) The condition α ≡ 1 (mod ∗m0) is equivalent to α ≡ 1 (mod m0) only if
we restrict to α ∈ ZK , which would not be usable for our needs.

(2) If α and β are coprime to m, the condition α ≡ β (mod ∗m) is clearly
equivalent to α = β, where α is defined above. When m∞ is nonempty,
this is not a property of the number α− β alone.

We will write Pm(K) (or Pm if the field K is understood) for the set of
all (fractional) principal ideals of ZK that can be generated by an element α
such that α ≡ 1 (mod ∗m); in other words, ideals of the form αZK for such
an α. It is clear that Pm(K) is a subgroup of Im(K), sometimes called the
ray group of m.

Let a ∈ Pm(K). It is clear that a = αZK = βZK with α and β in K∗
m if

and only if β/α is a unit u such that u ∈ K∗
m. These units form a subgroup

of the unit group U(K), which we will denote by Um(K) = U(K) ∩ K∗
m.

From the definitions, it is clear that we have the following exact sequence,
which generalizes the corresponding exact sequence for the trivial modulus
m, where m0 = ZK and m∞ = ∅:

1 −→ Um(K) −→ K∗
m −→ Pm(K) −→ 1 .

Finally, we define the ray class group Clm(K) by the formula Clm(K) =
Im(K)/Pm(K), so that we also have the exact sequence

1 −→ Pm(K) −→ Im(K) −→ Clm(K) −→ 1 .

The following proposition will be crucial for us in the sequel. By abuse of
notation, we write again ρ for the restriction of ρ to the unit group U(K).
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Proposition 3.2.3. We have the following five-term exact sequence

1 −→ Um(K) −→ U(K)
ρ−→ (ZK/m)∗

ψ−→ Clm(K)
φ−→ Cl(K) −→ 1

(recall that Um(K) = U(K) ∩ K∗
m is the group of units congruent to 1

(mod ∗m)).

All the maps are essentially clear, except perhaps for ψ which sends an
element ρ(α) ∈ (ZK/m)∗ to the ideal class of αZK in Clm(K) (which is
usually not the trivial class, since α /∈ K∗

m in general). Note that this is
not the map (which could be considered more natural from the algorithmic
representation; see Sections 4.2.4 and 4.3.2) that sends

(
α, s1, . . . , s|m∞|

)
to

the ideal class of αZK . In fact, this map would not even be well-defined.
Proof. The kernel of ρ is by definition the set of units congruent to 1

(mod ∗m) and so is equal to Um(K). Furthermore, the map ψ that we have
just described is well-defined (for the other maps this is clear). Indeed, if
ρ(α) = ρ(β), this means that α ≡ β (mod m0), that α and β are coprime to
m0, and that sign(σi(α)) = sign(σi(β)) for σi ∈ m∞. These conditions mean
precisely that α/β ≡ 1 (mod ∗m), and so the principal ideals αZK and βZK
are in the same ideal class modulo Pm(K) or, equivalently, have the same
image in Clm(K).

Assume now that ρ(α) ∈ (ZK/m)∗ is sent to the unit element of Clm(K).
This means that αZK ∈ Pm(K), so there exists β ≡ 1 (mod ∗m) such that
αZK = βZK , hence u = α/β is a unit; in other words, it belongs to U(K).
Since β ≡ 1 (mod ∗m), we have u = α in (ZK/m0)

∗, but also sign(σi(u)) =
sign(σi(α)). Thus, ρ(u) = ρ(α), and so the kernel of ψ is indeed equal to the
image of ρ.

Now let a be an ideal class in Clm(K) which is sent to the trivial class
in Cl(K). This simply means that a = αZK is a principal ideal coprime to
m, hence α is also coprime to m, and this shows that the kernel of φ is the
image of ψ.

Finally, the surjectivity of φ follows from the approximation theorem in
Dedekind domains, more precisely from Corollary 1.2.11, since one can choose
as representative of an ideal class an ideal coprime to m. ⊓⊔

As in the case of ordinary integers, we can define the Euler φ-function
for moduli by φ(m) = |(ZK/m)∗|. If m0 =

∏
p|m0

pap , we have the following

immediate generalization of the usual formula over Z (Exercise 4):

φ(m) = 2|m∞| ∏

p|m0

N (p)ap−1(N (p)− 1) = 2|m∞|N (m0)
∏

p|m0

(1−N (p)−1) .

Corollary 3.2.4. The ray class group is finite. Its cardinality, which we will
denote by hm(K) (or simply by hm when the field is understood), is given by
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hm(K) = h(K)
φ(m)

[U(K) : Um(K)]
.

In particular,
h(K) | hm(K) | h(K)φ(m) .

Proof. The proof is clear from the proposition. ⊓⊔

This corollary can be seen as a first approach in computing the ray class
group, but later we shall see a method that gives the full result (including
the structure, as we have done for the ordinary class group). Of course, even
if we want only the cardinality, the main problem is the computation of the
index [U(K) : Um(K)].

3.3 Congruence Subgroups: One Side of Class Field
Theory

In this section, the field K is fixed, so we write Im instead of Im(K), Pm

instead of Pm(K), Clm instead of Clm(K), and so on.

3.3.1 Motivation for the Equivalence Relation

We will ultimately want a bijection between two sets: the two “sides” of class
field theory. We must describe both sets, and we start with the easy side.

Recall that to describe unramified extensions we used subgroups of the
group of fractional ideals containing the group of principal ideals. In our more
general situation, we do exactly the same. We will say that C is a congruence
subgroup modulo m if C is a group of fractional ideals such that

Pm ⊂ C ⊂ Im .

(Some authors call such a C an ideal group modulo m.)
We can also consider the set of classes C = C/Pm ⊂ Clm; so if desired

we can consider a congruence subgroup as a subgroup of the ray class group
Clm. To indicate the modulus to which C corresponds, we will usually write
(m, C) for a congruence subgroup modulo m.

Keeping in mind the example of Hilbert class fields, we want to introduce
an equivalence relation between congruence subgroups, so that subgroups
in the same equivalence class define the same number field. We proceed as
follows: if (m, C) is a congruence subgroup, one of the main results of class
field theory will tell us that, exactly as in the Hilbert class field situation, there
exists a generalized Hilbert class field K(m) (which we will call the ray class
field for the modulus m) such that, among other properties, Gal(K(m)/K) ≃
Clm. Let L be the Abelian extension corresponding to (m, C); in other words

L = K(m)C is the fixed field of K(m) by C, so that
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Gal(L/K) ≃ Clm/C ≃ Im/C .

The subextensions of K(m) are in one-to-one correspondence with the con-
gruence subgroups C by Galois theory.

If m is a multiple of n, class field theory tells us that K(n) can be con-
sidered as a subfield of K(m). Thus, if m1 and m2 are any moduli, we can
consider K(m1) and K(m2) as subfields of a single K(m), for example, with
m = m1m2 (in fact any common multiple of m1 and m2 will do). We can then
say that two congruence subgroups (m1, C1) and (m2, C2) are equivalent if

they define the same number field or, equivalently, if K(m1)
C1 = K(m2)

C2 ,
considered as subfields of K(m) (see diagram below). Note that we ask that
the fields be identical , not only isomorphic, and this is why we need to embed
the whole situation in a single number field K(m). From this definition, it is
clear that it is an equivalence relation.

K(m)

Clm

vv
vv

vv
vv

v

C

II
III

II
II

K(m1)

Clm1

C1 IIIIII
IIII

K(m2)

Clm2

C2
uuuuuuu

uuu

L

K

Let us transform this definition into one that does not involve the field
K(m), since after all we do not yet know the results of class field theory.

Let L = K(m1)
C1 = K(m2)

C2 . By Galois theory, L = K(m)C for some
congruence subgroup C of m. The equivalence relation means that the natural
maps from Clm/C to Clmi/Ci are isomorphisms for i = 1 and i = 2. It can
easily be shown as a consequence of the approximation theorem for Dedekind
domains that the maps in question are always surjective (see Exercise 5).
Thus, we have (m1, C1) ∼ (m2, C2) if and only if the maps are injective, and
this is easily seen to be equivalent to Im ∩ Ci = C for i = 1 and i = 2. Now
choose m = m1m2. Since Ci ⊂ Imi , we clearly have Im1m2∩C1 = Im2∩C1, and
similarly for C2. Thus, (m1, C1) ∼ (m2, C2) if and only if Im2 ∩C1 = Im1 ∩C2.
This does not involve any extraneous number fields or moduli, so we can
forget about the motivation coming from class field theory and start from
scratch the study of the relation ∼ between congruence subgroups.

3.3.2 Study of the Equivalence Relation

We begin with the following lemma, which is an immediate consequence of
the strong approximation theorem.
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Lemma 3.3.1. Let m1 and m2 be two arbitrary moduli, and let a ∈ Im1 .
There exists α ≡ 1 (mod ∗m1) such that αa is an integral ideal coprime to
m1m2.

Proof. For the infinite places, we of course simply ask that σ(α) > 0 for
all σ | m1. For the finite places, let p be a prime ideal. If p | m1, we ask that
vp(α − 1) ≥ vp(m1). Then, since a ∈ Im1 we necessarily have vp(α) = 0 =
−vp(a). If p ∤ m1 and p | m2, we ask that vp(α) = −vp(a). Finally, if p ∤ m1m2,
we ask that vp(α) ≥ −vp(a). Thus, the conditions are compatible. The strong
approximation theorem (more precisely, Corollary 1.2.9) shows the existence
of an α with the desired properties, and it is clear that such an α satisfies
the conditions of the lemma. ⊓⊔

Corollary 3.3.2. Let m1 and m2 be two arbitrary moduli.

(1) We have Im2 ⊂ Im1Pm2 (and, of course, also Im1 ⊂ Im2Pm1).
(2) If m2 | m1 and C2 is a congruence subgroup modulo m2 (for example,

C2 = Pm2), then we have the equality Im2 = Im1C2.

Proof. If a ∈ Im2 , by the above lemma, we can find α ≡ 1 (mod ∗m2) such
that αa ∈ Im1 . Since αZK ∈ Pm2 , we thus have a ∈ Im1Pm2 , so

Im2 ⊂ Im1Pm2 ⊂ Im1C2

for any congruence subgroup C2 modulo m2. If m2 | m1, then Im1 ⊂ Im2 and
C2 ⊂ Im2 , so the reverse inclusion is also valid, thus proving the corollary. ⊓⊔

Referring to the discussion of the preceding section, we can now set the
following definition.

Definition 3.3.3. We will say that two congruence subgroups (m1, C1) and
(m2, C2) of K are equivalent, and write (m1, C1) ∼ (m2, C2), if

Im2 ∩ C1 = Im1 ∩ C2 .

The following proposition is essential for this definition to make sense.

Proposition 3.3.4. (1) The relation ∼ defined above between congruence
subgroups is an equivalence relation.

(2) If (m1, C1) ∼ (m2, C2), then Im1/C1 ≃ Im2/C2; in other words, we have
Clm1/C1 ≃ Clm2/C2.

Proof. (1). The reflexivity and symmetry are trivial, so the only thing
to prove is the transitivity. Assume that (m1, C1) ∼ (m2, C2) and (m2, C2) ∼
(m3, C3); in other words, that Im2∩C1 = Im1∩C2 and Im3∩C2 = Im2∩C3. We
must prove that (m1, C1) ∼ (m3, C3) or, equivalently, that Im3∩C1 = Im1∩C3.

Let a ∈ Im3 ∩ C1. Since a ∈ C1 ⊂ Im1 we must only show that a ∈ C3.
By Lemma 3.3.1, since a ∈ Im1m3 , we can find α ≡ 1 (mod ∗m1m3) such that
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αa is an integral ideal coprime to m1m2m3. Since αZK ∈ Pm1 ⊂ C1 and C1

is a group, it follows that αa ∈ C1, and since αa is coprime to m2 we have
αa ∈ Im2 ∩ C1 = Im1 ∩ C2, so αa ∈ C2. But since αa is also coprime to m3,
we have αa ∈ Im3 ∩C2 = Im2 ∩C3, so αa ∈ C3. Finally, since αZK ∈ Pm3 and
C3 is a group containing Pm3 , we deduce that a = αaα−1 ∈ C3, as was to be
proved. We have proved the inclusion Im3 ∩ C1 ⊂ Im1 ∩ C3, and the reverse
inclusion follows by symmetry.

(2). Once again by Lemma 3.3.1, for any a ∈ Im1 there exists α ≡ 1
(mod ∗m1) such that (αa,m2) = 1. Although α is not unique, the class of αa

modulo C2 is well-defined since if α and α′ are two such elements, α′/α is
coprime to m2 and is in Pm1 ⊂ C1 and hence belongs to C1 ∩ Im2 = C2 ∩ Im1

and hence to C2.
The same reasoning shows that the map thus defined induces a well-

defined map from Im1/C1 to Im2/C2 and that this map is an isomorphism.
⊓⊔

Note that the isomorphism between Im1/C1 and Im2/C2 is canonical ,
meaning that it does not depend on any special choices we have made.

The following proposition explains what happens in the important special
case when one of the moduli divides the other.

Proposition 3.3.5. (1) Let (m1, C1) be a congruence subgroup, and let m2

be a divisor of m1 (see Definition 3.2.1). There exists a congruence sub-
group C2 modulo m2 such that (m1, C1) ∼ (m2, C2) if and only if

Im1 ∩ Pm2 ⊂ C1 .

If this condition is satisfied, we necessarily have C2 = C1Pm2 .
(2) Conversely, if (m2, C2) is a congruence subgroup and m1 is a multiple of

m2, there exists a unique congruence subgroup C1 modulo m1 such that
(m1, C1) ∼ (m2, C2) given by C1 = C2 ∩ Im1 .

Proof. (1). If m2 | m1, we have (m1, C1) ∼ (m2, C2) if and only if Im1∩C2 =
C1. Thus, since Pm2 ⊂ C2,

Im1 ∩ Pm2 ⊂ Im1 ∩ C2 = C1 .

Furthermore,

C1Pm2 = (Im1 ∩ C2)Pm2 ⊂ C2Pm2 = C2 .

Set C′
2 = C1Pm2 . Then I claim that (m1, C1) ∼ (m2, C

′
2). Indeed, this means

that C1 = Im2 ∩C1 = Im1 ∩C1Pm2 or, equivalently (since the other inclusion
is obvious), that Im1 ∩ C1Pm2 ⊂ C1. But this follows from the inclusion
Im1 ∩ Pm2 ⊂ C1 by multiplying both sides by the group C1.
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Thus, since our equivalence relation is transitive, we have (m2, C2) ∼
(m2, C

′
2), which of course means that C2 = C′

2, and so that C2 = C1Pm2 , as
claimed.

Conversely, if we assume Im1 ∩ Pm2 ⊂ C1 and C2 = C1Pm2 , then by
multiplication by C1 we get as above Im1∩C2 ⊂ C1; since the reverse inclusion
is trivial, we have equality, proving (1).

Statement (2) is a trivial consequence of the definition. ⊓⊔

Notation. The following notation will be very useful. If (m, C) is a con-
gruence subgroup, we will write hm,C = |Im/C| =

∣∣Clm/C
∣∣.

Proposition 3.3.6. Let m1 and m2 be two moduli such that m2 | m1, and
let C1 and C2 be two congruence subgroups modulo m1 and m2, respectively,
such that C1 ⊂ C2.

(1) We have a canonical isomorphism

Im2/C2 ≃
Im1/C1

(Im1 ∩ C2)/C1
.

In particular, we have

hm1,C1

hm2,C2

= |(Im1 ∩ C2)/C1| .

(2) We have hm1,C1 = hm2,C2 if and only if (m1, C1) ∼ (m2, C2).

Proof. Applying Corollary 3.3.2, we have

Im2

C2
≃ Im1C2

C2
≃ Im1

Im1 ∩ C2
≃ Im1/C1

(Im1 ∩ C2)/C1
,

proving (1).

(2). We have already seen in Proposition 3.3.4 that if (m1, C1) ∼ (m2, C2),
then hm1,C1 = hm2,C2 even when m2 does not divide m1. Conversely, assume
that we have this equality. By (1) we have Im1 ∩ C2 = C1, and in particular
Im1 ∩Pm2 ⊂ C1, so by Proposition 3.3.5 we deduce that (m1, C1) ∼ (m2, C2).

⊓⊔

Note that this proposition is clearly not true if we do not assume that
m2 | m1.

Corollary 3.3.7. Let m1 and m2 be two moduli such that m2 | m1, let C1 be
a congruence subgroup modulo m1, and let C2 = C1Pm2 .

Then |(Im1 ∩ C2)/C1| = hm1,C1/hm2,C2 divides φ(m1)/φ(m2).
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Proof. By the above proposition and Corollary 3.2.4, we have
∣∣∣∣
Im1 ∩ C2

C1

∣∣∣∣ =
hm1,C1

hm2,C2

=
φ(m1)

φ(m2)

1

[Um2(K) : Um1(K)](
∣∣C1

∣∣ /
∣∣C2

∣∣)
,

where Ci = Ci/Pmi for i = 1 and i = 2. Using the same proof as in (1) of
the above proposition and the hypothesis C2 = C1Pm2 instead of Corollary
3.3.2, we find a canonical isomorphism

C2 = C2/Pm2 ≃
C1/Pm1

(C1 ∩ Pm2)/Pm1

=
C1

(C1 ∩ Pm2)/Pm1

,

showing in particular that
∣∣C2

∣∣ divides
∣∣C1

∣∣, and the corollary follows. ⊓⊔

The next important result we will need about congruence subgroups is the
existence of a GCD. Note first that if m1 and m2 are two moduli, gcd(m1,m2)
is well-defined: we take the sum of the corresponding integral ideals and
the intersection of the places at infinity. This is clearly the largest modulus
dividing m1 and m2.

Before giving the result, we need a lemma.

Lemma 3.3.8. Let m1 and m2 be two moduli, and let α1 and α2 be elements
of K∗. A necessary and sufficient condition for the existence of β ∈ K∗ such
that

β ≡ α1 (mod ∗m1) and β ≡ α2 (mod ∗m2)

is that α1 ≡ α2 (mod ∗n) with n = gcd(m1,m2).

Proof. Recall that β ≡ α (mod ∗m) means that for all finite places p

dividing m, we have vp(β/α − 1) ≥ vp(m), and for infinite places σ dividing
m we have sign(σ(β/α)) > 0. The condition of the lemma is clearly neces-
sary. Conversely, assume that it is satisfied. In particular, it implies that
vp(α1/α2) = 0 for every p | n.

For each finite p dividing m1 or m2, we set the following approximation
conditions on β. If p | m1 and p ∤ m2 (resp., p | m2 and p ∤ m1), we ask that
vp(β−α1) ≥ vp(α1)+ vp(m1) (resp., vp(β−α2) ≥ vp(α2)+ vp(m2)). If p | m1

and p | m2 or, equivalently, if p | n, assume first that vp(m1) ≤ vp(m2). We
ask that vp(β − α2) ≥ vp(α2) + vp(m2), which implies

vp(β − α1) = vp(β − α2 + α2 − α1) ≥ min(vp(β − α2), vp(α2 − α1))

≥ min(vp(α2) + vp(m2), vp(α2) + vp(m1))

= vp(α2) + vp(m1) = vp(α1) + vp(m1)

since vp(α1) = vp(α2) in this case.
If vp(m2) < vp(m1)), we ask that vp(β − α1) ≥ vp(α1) + vp(m1), and in

the same way this implies vp(β − α2) ≥ vp(α2) + vp(m2).
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Finally, for the infinite places, we ask that sign(σ(β)) = sign(σ(αi)) if σ
divides mi. These conditions are compatible when σ divides both m1 and m2

since in that case sign(σ(α1/α2)) > 0.
Thus, we can apply the strong approximation theorem (more precisely,

Corollary 1.2.9) to show the existence of β satisfying our conditions, and we
will have β ≡ α1 (mod ∗m1) and β ≡ α2 (mod ∗m2). ⊓⊔

This lemma allows us to prove the last statement that we will need about
congruence subgroups.

Proposition 3.3.9. Let (m1, C1) and (m2, C2) be two congruence subgroups
such that (m1, C1) ∼ (m2, C2), and let n = gcd(m1,m2). There exists a unique
congruence subgroup C modulo n such that (n, C) ∼ (m1, C1) ∼ (m2, C2), and
C is given by C = C1Pn = C2Pn. The congruence subgroup (n, C) will be
called the GCD of the congruence subgroups (m1, C1) and (m2, C2) (note that
the GCD is defined only when the congruence subgroups are equivalent).

Proof. Set m = m1m2. By Proposition 3.3.5 (2), if we set D = Im ∩ C1 =
Im ∩ C2, we have (m1, C1) ∼ (m2, C2) ∼ (m, D). Applying part (1) of the
same proposition, we deduce that

Pm1 ∩ Im ⊂ D and Pm2 ∩ Im ⊂ D .

By the same proposition, to show the existence of C, we must show that
Pn ∩ Im ⊂ D. Thus, let a ∈ Pn ∩ Im. Since a ∈ Pn, there exists α ≡ 1
(mod ∗n) such that a = αZK . By Lemma 3.3.8, this implies the existence of
β ∈ K∗ such that β ≡ α (mod ∗m1) and β ≡ 1 (mod ∗m2). Since a ∈ Im, α
is coprime to m; hence β is coprime both to m1 and to m2 and hence to m.
It follows that (β/α)ZK ∈ Pm1 ∩ Im ⊂ D. Since βZK ∈ Pm2 ∩ Im ⊂ D and D
is a group, we obtain αZK = (βZK)((β/α)ZK )−1 ∈ D, as was to be proved.
Proposition 3.3.5 thus shows the existence of a unique congruence subgroup C
modulo n such that (n, C) ∼ (m, D), hence by transitivity (n, C) ∼ (m1, C1) ∼
(m2, C2), and the uniqueness statement of the same proposition implies that
C = C1Pn = C2Pn. ⊓⊔

Corollary 3.3.10. Let C be an equivalence class of congruence subgroups.
There exists a congruence subgroup (f, Cf) ∈ C (called the conductor of the
class) such that C consists exactly of all congruence subgroups of the form
(m, Cf ∩ Im) for all multiples m of f.

Proof. This immediately follows from the proposition by taking for f the
GCD of all moduli in the class C (which will, in fact, be the GCD of only a
finite number of moduli) and applying the proposition inductively. ⊓⊔
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Definition 3.3.11. (1) We say that f is the conductor of a congruence sub-
group (m, C) if there exists a congruence subgroup Cf modulo f (neces-
sarily equal to CPf) such that (f, Cf) is the conductor of the equivalence
class of (m, C).

(2) A modulus f is called a conductor if there exists a congruence subgroup
of conductor equal to f.

Proposition 3.3.12. (1) If a modulus f is equal to the conductor of (f, C),
then for all congruence subgroups D ⊂ C modulo f, the conductor of
(f, D) is also equal to f.

(2) A modulus f is a conductor if and only if the conductor of (f, Pf) is equal
to f.

Proof. (1). Assume that f is equal to the conductor of (f, C), let D ⊂ C,
and let n be the conductor of (f, D), so that n | f. By Proposition 3.3.5, we
have If ∩ Pn ⊂ D ⊂ C. Thus, (n, CPn) ∼ (f, C), and since f is the conductor
of (f, C) and n | f, we must have n = f, proving (1).

(2). If f is the conductor of (f, Pf), then f is a conductor, while if f is
a conductor — that is, if f is the conductor of (f, C) for some congruence
subgroup C — then f is the conductor of (f, Pf) by (1). ⊓⊔

Corollary 3.3.13. A modulus f is the conductor of the equivalence class of
(f, C) if and only if for any n | f, n 6= f, we have hn,CPn

< hf,C. In particular,
f is a conductor if and only if for all n | f, n 6= f, we have hn < hf.

Proof. This is an immediate consequence of Proposition 3.3.6 and the
above proposition. ⊓⊔

3.3.3 Characters of Congruence Subgroups

We now study the notion of characters modulo a modulus, or associated to
a congruence subgroup.

Definition 3.3.14. (1) Let m be a modulus. A character χ modulo m is a
group homomorphism from Im to C∗ such that Pm ⊂ Ker(χ).

(2) Let (m, C) be a congruence subgroup. We say that χ is a character of
(m, C) if χ is a character modulo m such that C ⊂ Ker(χ).

Remarks

(1) We can clearly identify characters χ modulo m with characters χ of the
finite Abelian group Clm = Im/Pm. In particular, there are hm such char-
acters. Similarly, we can identify characters χ of the congruence subgroup
(m, C) with characters χ of the finite Abelian group Im/C ≃ Clm/C;
hence, there are hm,C such characters. This is analogous to the possi-
bility of identifying congruence subgroups C with their quotients C by
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Pm, and for similar reasons it is preferable to give the basic definitions
without taking quotients.

(2) Since hm = Clm is finite, the values of χ, hence of χ, are roots of unity
of order dividing hm.

Definition 3.3.15. Let χ be a character modulo m.

(1) The conductor of χ, denoted f(χ), is the conductor of the congruence
subgroup (m,Ker(χ)).

(2) The character χ is said to be primitive if f(χ) = m.

If ψ is a character modulo some modulus m2, and if m1 is a multiple
of m2, we have a canonical homomorphism sm1,m2 from Im1 to Im2 , and
χ = ψ ◦ sm1,m2 is a character modulo m1 canonically associated to ψ.

Conversely, if χ is a character modulo m1, and if there exists a character
ψ modulo m2 such that χ = ψ ◦ sm1,m2 , we will say that χ can be defined
modulo m2 (see diagram).

Im1

sm1,m2 //

χ

��

Im2

ψ
}}

C∗

Proposition 3.3.16. Let χ be a character modulo m1.

(1) If m2 | m1, then χ can be defined modulo m2 if and only if Im1 ∩ Pm2 ⊂
Ker(χ), if and only if there exists a congruence subgroup C2 modulo m2

such that (m2, C2) ∼ (m1,Ker(χ)).
(2) The conductor of χ is equal to f if and only if χ can be defined modulo f

and if for every n | f and different from f, χ cannot be defined modulo n.
(3) In particular, χ is primitive if and only if for every m2 | m1 with m2 6= m1,

we have Im1 ∩ Pm2 6⊂ Ker(χ).

Proof. By Proposition 3.3.6, we have the following exact sequence:

1 −→ (Im1 ∩ Pm2)/Pm1 −→ Clm1 −→ Clm2 −→ 1 .

Thus, if χ can be defined modulo m2, then χ factors through Clm2 ; hence
it is trivial on the kernel of the map from Clm1 to Clm2 , that is, on (Im1 ∩
Pm2)/Pm1 . Conversely, if χ is trivial on this kernel, then clearly χ can be
lifted to a map from Clm2 to C∗; hence χ can be defined modulo m2.

Since Pm1 ⊂ Ker(χ), we see that χ can be defined modulo m2 if and only
if Im1∩Pm2 ⊂ Ker(χ). By Proposition 3.3.5, this is equivalent to the existence
of a congruence subgroup C2 modulo m2 such that (m2, C2) ∼ (m1,Ker(χ)).
Statements (2) and (3) are trivial consequences of (1) and of the definitions.

⊓⊔
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Proposition 3.3.17. Let (m, C) be a congruence subgroup, and let f be the
conductor of (m, C). Then

(1) we have C =
⋂
χKer(χ), where the intersection is taken over the char-

acters of the congruence subgroup (m, C);
(2) we have

f = lcm{f(χ)/ C ⊂ Ker(χ)} .
In other words, the conductor of (m, C) is the LCM (or the intersec-
tion) of the conductors of the characters of the congruence subgroup
(m, C).

Proof. (1). By assumption, C is included in the intersection. Conversely,
if C was not equal to the intersection, we could find an a ∈ Im, a /∈ C, such
that χ(a) = 1 for all characters χ of the congruence subgroup (m, C). But in
the finite quotient group Im/C, this means that χ

(
a
)

= 1 for all characters

of the group, hence that a = 1, so that a ∈ C, a contradiction.
(2). If χ is a character of the congruence subgroup (m, C), then C ⊂

Ker(χ). By definition of the conductor of a congruence subgroup, we have
Im∩Pf ⊂ C ⊂ Ker(χ). Hence by Proposition 3.3.16, χ can be defined modulo
f, and so f(χ) | f.

Conversely, let n be a multiple of all the f(χ) for χ a character of the
congruence subgroup (m, C). Let χ be such a character. Then by Proposition
3.3.16, since χ can be defined modulo f(χ), we have Im ∩ Pf(χ) ⊂ Ker(χ).
Therefore, since f(χ) | n, we have in particular Im ∩ Pn ⊂ Ker(χ), so

Im ∩ Pn ⊂
⋂

χ

Ker(χ) .

Thus, by (1) we have Im ∩ Pn ⊂ C, so by Proposition 3.3.5, there exists a
congruence subgroup C′ modulo n such that (n, C′) ∼ (m, C), and hence f | n,
proving the proposition. ⊓⊔

3.3.4 Conditions on the Conductor and Examples

The following proposition gives a number of necessary conditions a conductor
must satisfy.

Proposition 3.3.18. Let f be a conductor (in other words, the conductor of
some equivalence class of congruence subgroups). Then f satisfies the follow-
ing properties.

(1) If p | f and N (p) = 2, then p2 | f.
(2) If f = p2 with N (p) = 2, then p is ramified in K/Q.
(3) We cannot have f = f∞ with |f∞| = 1 and f0 = ZK (in other words f

cannot be reduced to a single real place).
(4) We cannot have N (f) = 3.
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Proof. (1). Assume p | f, N (p) = 2, and p2 ∤ f. Then f/p and p are coprime
ideals, so

φ(f) = φ(f/p)φ(p) = φ(f/p)(N (p)− 1) = φ(f/p) .

However, Uf(K) ⊂ Uf/p(K), so [U(K) : Uf(K)] ≥ [U(K) : Uf/p(K)]. Thus,
Corollary 3.2.4 implies that hf/p ≥ hf (and, since hf/p | hf, that hf/p = hf),
so by Corollary 3.3.13 we deduce that f is not a conductor.

(2), (3), and (4). First note that −1 ≡ 1 (mod ∗m) for a modulus m if and
only if m∞ = ∅ and vp(2) ≥ vp(m) for all p | m, hence if and only if m | 2ZK .
It follows that if m ∤ 2ZK , we have [U(K) : Um(K)] ≥ 2. Thus, if m ∤ 2ZK
and φ(m) = 2, then φ(f)/[U(K) : Um(K)] = 1, so hf = h = hZK , and f is not
a conductor.

If f = p2 with N (p) = 2, we have φ(f) = 2; and if p is unramified, then
f ∤ 2ZK , and so f is not a conductor.

If f = f∞ with |f∞| = 1, or if N (f) = 3, we have φ(f) = 2 and f ∤ 2ZK , so
f is not a conductor. ⊓⊔

We now specialize to the case where K = Q. Denote by ∞ the unique
place at infinity of Q.

Proposition 3.3.19. The moduli ∞, 3Z, 4Z, and mZ and (mZ)∞ for m ≡
2 (mod 4) are not conductors. All other moduli are conductors.

Proof. This is an easy consequence of Proposition 3.3.18 and the properties
of the φ-function, and the details are left to the reader (Exercise 8). ⊓⊔

For the case of imaginary quadratic fields, the result is as follows.

Proposition 3.3.20. Denote by pℓ (resp., pℓ and p′ℓ) the prime ideal(s) above
ℓ when ℓ is ramified (resp., split) in a quadratic field K. If K is an imaginary
quadratic field, all moduli are conductors with the following exceptions, given
in completely factored form:

(1) If K = Q
(√
−3
)
, the moduli p3, 2ZK , p7, p′7, p2

3, 2p3;

(2) if K = Q
(√
−1
)
, the moduli p2

2, p3
2, p5, p′5, and p2n, where n is not

divisible by p2;
(3) in all other cases, the excluded moduli are exactly those given by Propo-

sition 3.3.18: in other words, p2
2 and p′2

2
if p2 and p′2 are the unramified

ideals of degree 1 above 2 when d(K) ≡ 1 (mod 8), p3
2 when d(K) ≡ 0

(mod 4), p3 or p3 and p′3 if p3 and p′3 are ideals of degree 1 above 3 when
d(K) 6≡ 2 (mod 3), and p2n, where n is not divisible by p2, where p2 is
an ideal of degree 1 above 2, when d(K) 6≡ 5 (mod 8).

Proof. Once again the proof is left to the reader (Exercise 9). ⊓⊔
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Note that for real quadratic fields, or for more general number fields, the
situation is more complicated because of the presence of an infinite group of
units (see Exercise 10).

If we fix the cardinality of the ray class group Im/C, the conductor must
satisfy more conditions.

Proposition 3.3.21. Let (m, C) be a congruence subgroup, let f be its con-
ductor, let n = hm,C, let p be a prime ideal dividing f, and finally let ℓ be the
prime number below p.

(1) If vp(f) ≥ 2, we necessarily have ℓ | n. In other words, if ℓ ∤ n, then
vp(f) = 1.

(2) Conversely, if vp(f) = 1, then gcd(n,N (p)− 1) > 1, or stated otherwise,
if gcd(n,N (p) − 1) = 1, and in particular when n is a power of ℓ, then
vp(f) ≥ 2.

Proof. Since hf,CPf
= hm,C , replacing (m, C) by the equivalent congruence

subgroup (f, CPf), we may assume that f = m.
For (1), let p be such that vp(m) ≥ 2, and assume that ℓ ∤ n. If we set

n = m/p, it follows in particular that In = Im. Set G = CPn/C. We have

G ⊂ CIn/C = Im/C ≃ Clm/C ,

so |G| | hm,C = n.
On the other hand, Pn ⊂ In = Im, so Im ∩ CPn = CPn. Hence Corollary

3.3.7 tells us that |G| = hm,C/hn,CPn
divides φ(m)/φ(n). Since p2 | m, we

have φ(m)/φ(n) = N (p), and since we have assumed that ℓ ∤ n, it follows
that |G| divides gcd(n,N (p)) = 1.

It follows that CPn = C, so Pn ⊂ C. Thus Im ∩ Pn = Pn ⊂ C, so
Proposition 3.3.5 shows that the conductor divides n = m/p, which is absurd
since we have assumed that m is the conductor.

For (2), assume that vp(m) = 1 and set n = m/p. Then once again by
Corollary 3.3.7, we know that d = hm,C/hn,CPn

divides φ(m)/φ(n) = N (p)−1
since p ∤ n. On the other hand, since m is the conductor, we have d > 1, and of
course d divides n = hm,C . It follows that d | (n,N (p)−1), so (n,N (p)−1) >
1, as claimed. ⊓⊔

In particular, we deduce from this proposition that if n is a power of a
prime ℓ, then for any prime ideal p such that p | f, we have vp(f) = 1 if p is
not above ℓ, while vp(f) ≥ 2 if p is above ℓ (of course, some ideals above ℓ
may have vp(f) = 0). In addition, if p | f is above ℓ, we see from Proposition
3.3.21 that (n,N (p)− 1) = 1 implies ℓ | n.

The conductor must also satisfy upper bounds. For example, we have the
following proposition, which is in fact most easily proved using the “other
side” of class field theory; see Corollary 10.1.24.
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Proposition 3.3.22. Keep the notation of Proposition 3.3.21. If n = ℓ is
prime and p is a prime above ℓ dividing f, then

2 ≤ vp(f) ≤
⌊
ℓe(p/ℓ)

ℓ− 1

⌋
+ 1 ,

and these bounds are the best possible.

This terminates the description of the “easy” side of class field theory.
Although we have used some results of class field theory to motivate the
definition of equivalence, the definition itself as well as the proofs that we
have given are completely self-contained.

In this section on congruence subgroups, we have given complete proofs
and details since they are not difficult. In the next section on Abelian exten-
sions and Takagi’s theorem, we will omit almost all proofs since they form
books by themselves, and we instead refer to [Art-Tat], [Gras], [Has1], [Jan],
or [Neu].

3.4 Abelian Extensions: The Other Side of Class Field
Theory

We now consider the other — more important — side of class field theory:
finite Abelian extensions. The equivalence relation is trivial to define here. We
will say that two extensions L/K and L′/K are equivalent (or K-isomorphic)
if there exists a K-linear field isomorphism between L and L′; in other words,
a field isomorphism from L to L′ that leavesK pointwise fixed. If L and L′ are
K-isomorphic, they are isomorphic as number fields over Q, but the converse
is not necessarily true (see Exercise 2 of Chapter 9).

From now on, we let L/K be some (finite) Abelian extension of K of
degree n and Abelian Galois group G, and we let m be a modulus of K that is
assumed always to contain the places of K that ramify in L, that is the prime
ideals of K ramified in L/K as well as the real places of K that ramify (see
Definition 2.2.4). We will, in fact, need the slightly stronger condition that
m is a multiple of the conductor of L/K (see Definition 3.4.1 below). We are
going to define in two completely different ways two congruence subgroups
attached to m (and L, of course, which for the moment is assumed to be
fixed). One of the important theorems of class field theory is that these two
groups are equal.

3.4.1 The Conductor of an Abelian Extension

We first define the conductor of an Abelian extension L/K. For this, it is use-
ful, although not strictly necessary, to use some undefined p-adic terminology
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(see, for example, Definition 4.2.5). Let p be a prime ideal of K and let P be
some prime ideal of L above p. We will say that an element x ∈ K∗

p is a local
norm modulo p if there exists y ∈ L∗

P such that x = NLP/Kp
(y) (this does

not depend on the chosen P above p). If x ∈ K∗, this is equivalent to the
requirement that for all n ≥ 0 there exists yn ∈ L∗ such that x ≡ NL/K(yn)
(mod ∗pn), or even x/NL/K(yn) ≡ 1 (mod ∗pn).

We define a nonnegative integer kp to be the smallest k ≥ 0 such that
any element x ≡ 1 (mod ∗pk) coprime to p (this is, of course, necessary only
for k = 0) is a local norm modulo p. It can be shown that kp exists and that
kp = 0 if and only if p is unramified in L/K.

Definition 3.4.1. With the above notation, let

f0(L/K) =
∏

p

pkp ,

and let f∞(L/K) be the set of real places of K ramified in L. We define
the conductor of the Abelian extension L/K to be the modulus f(L/K) =
f0(L/K)f∞(L/K).

The definition of f0(L/K) involves only a finite number of prime ideals
since kp 6= 0 only for the ramified primes. Thus, the prime ideals that divide
the conductor are the ramified primes, and we will see in Theorem 3.5.10
that the finite part of the conductor divides the relative discriminant ideal
d(L/K).

3.4.2 The Frobenius Homomorphism

In this subsection, we recall some basic facts of algebraic number theory (see
Section 10.1.2 and [Marc]).

Let L/K be a normal extension of degree n with Galois group G =
Gal(L/K) (for the moment, not necessarily Abelian), and let p be an ideal of
K, possibly ramified. Then p decomposes in L as a product of prime ideals
pZL =

∏
1≤i≤g Pe

i . Since the extension is normal, the Pi are permuted tran-
sitively by the Galois group G and hence all have the same ramification index
e = e(Pi/p) and residual degree f = f(Pi/p). Thus, efg = n (Proposition
10.1.3).

Let P be one of the ideals Pi above p. Recall that the decomposition
group D(P/p) of P is the group of elements σ ∈ G fixing P globally, in other
words such that σ(P) = P (see Definition 10.1.4). We have |D(P/p)| = ef
and the fixed field LD of L by D(P/p) is an extension of K of degree g.

Recall also that the inertia group I(P/p) of P is the group of elements σ ∈
G such that σ(x) ≡ x (mod P) for all x ∈ ZL. We have I(P/p) ⊂ D(P/p),
and D(P/p)/I(P/p) is canonically isomorphic to Gal((ZL/P)/(ZK/p)). This
has a number of important consequences. First, we have |I(P/p)| = e, and
the fixed field LI of L by I(P/p) is an extension of K of degree fg, and
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it is the largest subextension of L/K in which p is unramified. Since G is
not necessarily Abelian, the extension LD/K is not necessary normal. On
the other hand, the extensions LI/LD and L/LI are normal. When G is
Abelian, we can say in colorful terms that p acquires its splitting behavior in
the extension LD/K of degree g, its residual degrees in the extension LI/LD

of degree f , and its ramification properties in the extension L/LI of degree
e, all these extensions being Abelian.

Finally, recall the existence (and uniqueness up to conjugation by an
element of I(P/p)) of a Frobenius homomorphism σP ∈ D(P/p) such that
for all x ∈ ZL we have σP(x) ≡ xN (p) (mod P) (see Proposition 10.1.5).

If P′ is some other ideal of ZL above p, by transitivity of the Galois action
we have P′ = τ(P) for some τ ∈ G, and we have D(P′/p) = τD(P/p)τ−1

and I(P′/p) = τI(P/p)τ−1 (see Section 10.1.2). In particular, if L/K is
Abelian, then D(P/p) and I(P/p) are independent of the choice of P above
p.

Let us come back to the situation where L/K is an Abelian extension,
and now assume that p is unramified in L/K, hence that I(P/p) = {1G}
for all P above p. The above discussion shows that there exists a canonical
element σP ∈ G, called the Frobenius homomorphism and characterized by
the congruence

σP(x) ≡ xN (p) (mod P) for all x ∈ ZL .

This homomorphism is of order exactly equal to the residual degree f(P/p).
Since our groupG is Abelian, σP only depends on p and hence will be denoted
σp. It is characterized by the congruence

σp(x) ≡ xN (p) (mod pZL) for all x ∈ ZL .

3.4.3 The Artin Map and the Artin Group Am(L/K)

Definition 3.4.2. Let L/K be an Abelian extension and m a modulus of K.
We say that m is a suitable modulus for the extension L/K if m is a multiple
of the conductor of L/K.

Let m be a suitable modulus of K, so that in particular m is divisible by
all ramified places. We will now define a group homomorphism from Im, the
group of fractional ideals coprime to m, into G, the Galois group of L/K. If
a ∈ Im, we can write

a =
∏

p|a
pvp(a) ,

where the prime ideals p do not divide m and in particular are unramified in
L/K. We set

ArtL/K(a) =
∏

p|a
σ
vp(a)
p ,
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where the product is of course taken in the group G. It is clear that this map
is well-defined and is a group homomorphism. This map is called the Artin

reciprocity map, and ArtL/K(a) is often denoted by
(
L/K

a

)
(and called the

Artin symbol) since it generalizes the Jacobi symbol
(
D
n

)
(see Exercise 11).

Note that, strictly speaking, we should write ArtL/K,m(a) to indicate that the
Artin map is defined on Im, but since clearly ArtL/K,m(a) does not depend
on m as long as it is a multiple of the conductor and coprime to a, we will
omit m. In fact, we shall see in Proposition 3.5.6 that we can even omit the
explicit mention of L/K if desired.

The first important theorem of class field theory (called Artin’s reciprocity
law since it implies more or less easily all the usual reciprocity laws) is the
following.

Theorem 3.4.3 (Artin reciprocity). (1) The Artin reciprocity map is a
surjective group homomorphism from Im to G = Gal(L/K).

(2) The kernel of the Artin reciprocity map is a congruence subgroup modulo
m; in other words, it contains Pm.

Thanks to this theorem, we can also view the Artin reciprocity map as a
surjective map from Clm = Im/Pm to G.

We will denote by Am(L/K) the kernel of the Artin reciprocity map,
which, by this theorem, is a congruence subgroup modulo m, and call it the
Artin group attached to the modulus m and the extension L/K.

3.4.4 The Norm Group (or Takagi Group) Tm(L/K)

We now define another congruence subgroup attached to m as follows. Denote
by Im,L the group of fractional ideals of L that are coprime to m, more
precisely to the extended ideal m0ZL (in other words, Im,L = ImZL(L)). The
relative norm NL/K of an ideal belonging to Im,L is clearly an ideal of K
coprime to m; hence it belongs to Im. Thus, the image group NL/K(Im,L) is
a subgroup of Im. However, it is not necessarily a congruence subgroup since
it need not contain Pm (see Exercise 12). Thus, we will set

Tm(L/K) = PmNL/K(Im,L)

and this is now a congruence subgroup modulo m that we will call the norm
group (or Takagi group) for the modulus m and the extension L/K.

The following theorem gives an easy way to compute the norm group.

Theorem 3.4.4. Let p be a prime ideal of K not dividing m.

(1) If f is the least positive integer such that pf ∈ Tm(L/K), then f =
f(P/p) is the residual degree of P, and hence p splits into g = n/f
prime ideals of degree f in L/K.
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(2) The norm group Tm(L/K) is generated by the ideals pf = NL/K(P) (with
f = f(P/p)), and in fact simply by the ideals of degree f equal to 1.

The second very important, and difficult, theorem of class field theory is
the following theorem.

Theorem 3.4.5. Let m be a suitable modulus for L/K (see Definition 3.4.2).
Then

Am(L/K) = Tm(L/K) .

The main point of this theorem (apart from its intrinsic beauty and in-
terest, and its consequences) is that the Artin group Am(L/K) is not easy to
compute directly, while the norm group Tm(L/K) is easy to compute thanks
to Theorem 3.4.4 (see Algorithm 4.4.3).

Another important result is the following.

Theorem 3.4.6. (1) If m and n are two suitable moduli for L/K, the con-
gruence subgroups (m, Am(L/K)) and (n, An(L/K)) are equivalent in the
sense of Definition 3.3.3.

(2) The conductor of the equivalence class of the family of congruence sub-
groups (m, Am(L/K)) is equal to the conductor f(L/K) of the Abelian
extension.

3.5 Putting Both Sides Together: The Takagi Existence
Theorem

3.5.1 The Takagi Existence Theorem

We now state the most important — and most difficult — theorem of classical
global class field theory, due to Takagi.

Theorem 3.5.1. (1) The map that sends an equivalence class of Abelian
extensions L/K to the equivalence class of the congruence subgroup
(m, Am(L/K)) for any suitable m for the extension L/K is a bijection
(by Theorem 3.4.6, this equivalence class is independent of m).

(2) More precisely, if (m, Am(L/K)) is equivalent to (m′, Am′(L′/K)) in
the sense of Definition 3.3.3, then the number fields L and L′ are K-
isomorphic.

(3) Conversely, if (m, C) is any congruence subgroup, there exists an Abelian
extension L/K, unique up to K-isomorphism, such that m is a suitable
modulus for L/K and C = Am(L/K) = Tm(L/K).

The proof that the map is injective is not very difficult. However, the proof
of the surjectivity is an existence proof and is very hard, like almost all such
existence proofs in mathematics. In fact, we will see that this phenomenon
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is also reflected in algorithmic practice. The difficulty with the proof lies
mainly in the very few tools that we have available to construct Abelian
extensions. The known proofs all rely on the method of Kummer extensions
(see Chapter 10), which is elementary but heavy to use, and we will do the
same in algorithmic practice in Chapter 5.

Thus, given a modulus m and a congruence subgroup C modulo m, we
know thanks to Takagi’s existence theorem that there exists an Abelian ex-
tension L/K corresponding to (m, C) under the Takagi map. This extension
L/K has the following additional properties (and is uniquely characterized
by the first two).

Proposition 3.5.2. With the above notation, we have the following.

(1) The Artin reciprocity map induces a canonical isomorphism from Clm/C
to Gal(L/K); so in particular, n = [L : K] =

∣∣Clm/C
∣∣ = hm,C.

(2) C = PmNL/K(Im,L).
(3) The conductor f = f(L/K) of the Abelian extension is equal to the con-

ductor of the corresponding congruence subgroup (this is Theorem 3.4.6).
(4) The places of K that ramify in L are exactly the divisors of f.

The splitting behavior in L/K of the prime ideals of K is completely
described by the following theorem, which generalizes Theorem 3.4.4 (1).

Theorem 3.5.3. Let L/K be an Abelian extension of degree n corresponding
to a congruence subgroup (m, C) under the Takagi map (with m a multiple of
the conductor of (m, C) but not necessarily equal to it), and let p be a prime
ideal of K. Let n = mp−vp(m) be the prime to p part of the modulus m. If we
let pZL =

∏
1≤i≤g Pe

i be the prime ideal decomposition of p in the extension
L/K, we have

e = e(Pi/p) =
n

|In/CPn|
=

∣∣∣∣
Im ∩ CPn

C

∣∣∣∣ =

∣∣∣∣
Im ∩ Pn

C ∩ Pn

∣∣∣∣ ,

f = f(Pi/p) is the order of the class of p in In/CPn (equivalently, it is the
least positive integer f such that pf ∈ CPn), hence g = n/ef is equal to the
index of the cyclic subgroup generated by the class of p in the group In/CPn.

In particular, if p is unramified in L/K, then the common residual degree
f is the smallest positive integer such that pf ∈ C, and g = n/f .

Definition 3.5.4. Let (m, C) be a congruence subgroup modulo m. The field
extension (or more precisely the equivalence class of field extensions)L/K
corresponding to (m, C) by Takagi’s theorem is called the ray class field for
(m, C). In particular, we denote by K(m) the ray class field for (m, Pm) and
call K(1) = K(ZK) the Hilbert class field of K.

As mentioned in the prologue, Proposition 3.5.2 shows in particular that
the Hilbert class field is the maximal unramified Abelian extension of K and
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that Gal(K(1)/K) ≃ Cl(K). In addition, the ray class field for (m, C) is
clearly equal to K(m)Art(C).

Another easy result we will need is the behavior of class fields under
extensions.

Proposition 3.5.5. As above, let L/K be the Abelian extension of K corre-
sponding to the congruence subgroup (m, C). Let K ′ be any (finite) extension
of K. Then LK ′/K ′ is an Abelian extension of K ′ corresponding to the con-
gruence subgroup (mZK′ ,N−1

K′/K(C)).

Note that if f is the conductor of L/K, then fZK′ is usually not equal to
the conductor of LK ′/K ′ but is only a multiple of it.

Finally, the following proposition gives the behavior of the Artin map
under restriction.

Proposition 3.5.6. Let N/K be an Abelian extension and let L/K be a
subextension of N/K.

(1) If m is a suitable modulus for the extension N/K, then m is a suitable
modulus for L/K and the restriction of ArtN/K to the ideals of L coprime
to m is equal to ArtL/K .

(2) If m is a suitable modulus for the extension N/L, then NL/K(m) is a
suitable modulus for the extension N/K.

Thus it is reasonable to drop completely the index L/K from the notation
ArtL/K . We will usually do this, except when we really want to insist on the
specific extension considered.

3.5.2 Signatures, Characters, and Discriminants

This section is taken almost verbatim from joint work of the author with
F. Diaz y Diaz and M. Olivier (see [Co-Di-Ol2]).

In this section, we let (m, C) be a congruence subgroup, and let L/K
be the Abelian extension corresponding to the equivalence class of (m, C)
by class field theory (well-defined up to K-isomorphism). We do not neces-
sarily assume that m is the conductor. We want to compute the signature
(R1, R2) of L, the relative discriminant ideal d(L/K), as well as the absolute
discriminant.

As before, we denote by hm,C the cardinality of the quotient group Im/C ≃
Clm/C. For simplicity, if n | m, we write hn,C instead of hn,CPn

. Note that
by the approximation theorem the natural map sm,n from Clm to Cln is
surjective and sm,n

(
C
)

= CPn.
A reformulation of Corollary 3.3.13 is as follows.

Proposition 3.5.7. A modulus m is the conductor of L/K if and only if for
all places p | m (including the places at infinity) we have hm/p,C < hm,C.
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Proof. Indeed, by Corollary 3.3.13 the condition is necessary; but con-
versely, if this condition is satisfied and if n | m, n 6= m, then if p | m/n, we
have hn,C ≤ hm/p,C < hm,C , so we conclude again by Corollary 3.3.13. ⊓⊔

The signature of L is given by the following proposition.

Proposition 3.5.8. Let (R1, R2) be the signature of L, so that R1 + 2R2 =
[L : Q] = [K : Q] · hm,C. Write m∞ for |m∞|. We have

R1 = hm,C

(
r1 −m∞ +

∑

v∈m∞

δ(hm,C − hm/v,C)

)
,

where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise.
In particular, if m is the conductor of L/K and n = [L : K] = hm,C, we

have
R1 = (r1 −m∞)n and R2 = (r2 +m∞/2)n .

In particular, if m∞ is odd, then n = hm,C is even.

Proof. Since L/K is normal, R1 is equal to [L : K] = hm,C times the
number of real places of K unramified in L. By definition of the ray class
group, the r1 − m∞ real places not in the modulus m are unramified. On
the other hand, let v ∈ m∞. If hm/v,C = hm,C , then v does not divide the
conductor of L, hence v is unramified in L. On the contrary, if hm/v,C < hm,C ,
then v divides the conductor of L, so v is ramified in L. This gives the first
formula of the proposition. The second follows immediately. ⊓⊔

Using the theory of characters of congruence subgroups developed in Sec-
tion 3.3.3, we now introduce the notion of character associated to an Abelian
extension.

Definition 3.5.9. Let L/K be an Abelian extension of conductor (m, C) (so
that m is the conductor of the extension and C is the corresponding norm
group). A character χ of the extension L/K is a character of the congruence
subgroup (m, C) in the sense of Definition 3.3.14.

Remark. By class field theory (Proposition 3.5.2) the Galois group
Gal(L/K) is canonically isomorphic to Clm/C, so we can also consider a
character of the extension L/K as being a character of its Galois group. The
set of characters of an Abelian extension L/K forms a group of cardinality
n = [L : K], isomorphic to Im/C ≃ Clm/C ≃ Gal(L/K).

The following result, due to Hasse, is essential for computing discrimi-
nants.

Theorem 3.5.10. Let L/K be an Abelian extension, and denote by Ĝ the
group of characters of L/K in the sense of Definition 3.5.9.
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(1) The conductor of L/K is given by f(L/K) = lcmχ∈ bG(f(χ)), where f(χ)

is the conductor of the character χ (see Definition 3.3.15).
(2) The discriminant ideal is given by d(L/K) =

∏
χ∈ bG f(χ)0, where as usual

f(χ)0 denotes the finite part of the modulus f(χ).
(3) We have f(L/K) | d(L/K), and both ideals are divisible by exactly the

same prime ideals: the prime ideals of K ramified in L/K.

Note that (1) is a reformulation of Proposition 3.3.17, once we know that
f(L/K) is the conductor of the associated congruence subgroup.

We now give a formula for the relative discriminant ideal d(L/K) and
hence for the absolute discriminant d(L) of L (see [Co-Di-Ol2]).

Theorem 3.5.11. Let (m, C) be a congruence subgroup, and let L/K be the
Abelian extension associated to (m, C) by class field theory (defined up to
K-isomorphism). Set n = [L : K] = hm,C.

(1) The relative discriminant ideal d(L/K) is given by d(L/K) =
∏

p|m pap

with
ap = vp(m)hm,C −

∑

1≤k≤vp(m)

hm/pk,C .

(2) Let f = f0f∞ be the conductor of the congruence subgroup (m, C) (or of
L/K), and set f∞ = |f∞|. The absolute discriminant of L is given by

d(L) = (−1)f∞n/2d(K)nNK/Q(d(L/K)) .

Proof. (1). Theorem 3.5.10 tells us that d(L/K) =
∏
χ∈ bG f(χ)0. Set

D(L/K) =
∏
χ∈ bG f(χ), so that d(L/K) is the finite part of D(L/K). Note

that this can also be taken as the definition of an extended discriminant ideal
if desired. Since it is just as simple, we will in fact compute a formula for
D(L/K).

For each n | m, denote by a(n) the number of characters of the congruence
subgroup (m, C) of conductor exactly equal to n. Since the total number of
characters is equal to the order of the group, we have the equation

∑

n|m
a(n) =

∣∣Clm/C
∣∣ = hm,C .

By Möbius inversion, it follows that

a(n) =
∑

q|n
µ(n/q)hq,C ,

where µ(n) is defined as in the case of ordinary integers (this is valid since a
modulus can be written as a product of finite or infinite primes in essentially
only one way).
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Thus, we have

D(L/K) =
∏

n|m

∏

f(χ)=n

f(χ) =
∏

n|m
na(n) =

∏

n|m
n

P

q|n µ(n/q)hq,C

=
∏

q|m

(
∏

c|(m/q)

(cq)µ(c)

)hq,C

=
∏

q|m
(p1(q)p2(q))

hq,C ,

where
p1(q) =

∏

c|(m/q)

cµ(c) and p2(q) =
∏

c|(m/q)

qµ(c) .

The product p2(q) is trivial to compute: we have

p2(q) = q
P

c|(m/q) µ(c) ,

and by definition of the µ-function, this exponent is equal to zero unless
m/q = ZK . Hence p2(q) = ZK if q 6= m, and p2(m) = m.

The product p1(q) is computed as follows. Set L(c) = p if c = pk is a
nontrivial prime power (including infinite primes, in which case k = 1), and
L(c) = ZK otherwise. The existence and uniqueness of the decomposition
of n into prime powers imply the equality

∏
c|n L(c) = n. By multiplicative

Möbius inversion, this gives

L(n) =
∏

c|n
(n/c)µ(c) =

∏

c|n
nµ(c)/

∏

c|n
cµ(c) .

By definition of µ the numerator is equal to ZK ; hence we obtain the formula
∏

c|n
cµ(c) = L(n)−1 .

The reader will certainly have recognized that the function L(n) is the
ideal-theoretic analog of the function eΛ(n) of elementary prime number the-
ory.

Using this result in our above formulas, we obtain p1(q) = L(m/q)−1;
hence,

D(L/K) = mhm,C

∏

q|m
L(m/q)−hq,C = mhm,C

∏

pk|m
p
−h

m/pk,C

=
∏

p|m
p
vp(m)hm,C−P

1≤k≤vp(m) hm/pk,C ,

and (1) follows by taking the finite part.
Note that the infinite part of D(L/K) is equal to

∏

v∈m∞

vhm,C−hm/v,C ,
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which is a restatement of Proposition 3.5.8.

To prove (2), we use the formula giving the absolute discriminant in terms
of the relative discriminant ideal (Theorem 2.5.1). Thus,

d(L) = (−1)R2−[L:K]r2d(K)nNK/Q(d(L/K)) .

Since by Proposition 3.5.8 we know that R2 = nr2 +f∞n/2 with n = [L : K],
the theorem is proved. We could have given the result without using the
conductor f, replacing f∞n/2 by

(m∞n−
∑

v∈m∞

δ(hm,C − hm/v,C))/2 ,

but of course this would have been ugly. ⊓⊔

Corollary 3.5.12. Assume that (m, C) is the conductor of the Abelian ex-
tension L/K and that ℓ = [L : K] is prime.

(1) We have d(L/K) = mℓ−1
0 , where m0 is the finite part of m.

(2) If p is a prime ideal dividing m (i.e., if p ramifies in L/K), then vp(m) ≥ 2
if and only if p is above ℓ.

Proof. (1). We always have hn,C | hm,C for all n | m, and when m is the
conductor, we also have hn,C < hm,C for all n | m different from m. Thus,
when ℓ = hm,C is prime, we must have hn,C = 1 for all n | m other than m,
and (1) easily follows from the theorem. Note, however, that it can also easily
be proved directly (see Exercise 14).

Statement (2) is simply a reformulation of Proposition 3.3.21. ⊓⊔

To conclude, we see that we have quite a good hold on the Abelian ex-
tension L/K, except that we do not know an explicit description of L —
for example, by a relative defining polynomial. This is the difficult part of
Takagi’s theorem, so it is not surprising. We will see in Chapters 5 and 6 how
this problem is solved in algorithmic practice.

3.6 Exercises for Chapter 3

1. The aim of this exercise is to construct explicitly a non-Abelian unramified
extension of a number field. You will need the techniques of Chapters 5 and 6,
as well as a package such as Pari/GP, Kant/Kash, or Magma, to perform the
computations.

a) Let K = Q
`

√
458
´

. Show that the class number of K is equal to 2 and

that the Hilbert class field of K is the field H1 = K
`

√
2
´

.
b) Show that the class number of H1 is equal to 3 and that the Hilbert class

field H2 of H1 is the field H1(α), where α is a root of the polynomial
x3 − 4x− 1.
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c) Show that H2 is an unramified extension of K, show that H2/K is not
Abelian, and compute relative and absolute defining polynomials for H2

over K.

2. Perform similar computations with the imaginary quadratic fieldK = Q
`√−30

´

.

3. Let L/K be a Galois extension of number fields, and denote as usual by L(1) the
Hilbert class field of L. Show that L(1)/K is a Galois extension. More generally,
let m be a modulus of L stable by Gal(L/K) (in other words, such that σ(m) = m
for all σ ∈ Gal(L/K)) and let C be a congruence subgroup modulo m also stable
by Gal(L/K). If N/L denotes the ray class field corresponding to (m, C) by the
Takagi correspondence, show that N/K is a Galois extension.

4. Prove the formula for φ(m) given in the text.

5. Let (m1, C1) and (m2, C2) be two congruence subgroups such that m2 | m1 and

C2 = C1Pm2 . Show that there is a natural map from Clm1/C1 to Clm2/C2 and
that this map is surjective.

6. Show that if C1 and C2 are two classes of congruence subgroups, one can sensibly
define the intersection C1 ∩ C2 and product C1C2 of these two classes.

7. Denote by f(C) the conductor of a class C of congruence subgroups. Show the
following.

a) If C1 ⊂ C2, then f(C2) | f(C1).
b) f(C1 ∩ C2) = lcm(f(C1), f(C2)).
c) f(C1C2) | gcd(f(C1), f(C2)).
d) Show that, even in the case K = Q, equality does not necessarily hold in

this last result.

8. Prove Proposition 3.3.19.

9. Prove Proposition 3.3.20.

10. Give the complete list of possible moduli m such that N (m0) ≤ 50 for the real

quadratic field Q
`

√
2
´

. Do you see a pattern?

11. Let K = Q, D a fundamental discriminant, L = Q
`

√
D
´

, and p a prime number
such that p ∤ D. Denote by τ the unique nontrivial field automorphism of L.

a) Show that the Frobenius homomorphism σp is equal to the identity if p is
split and is equal to τ otherwise.

b) Deduce that Art(nZ) =
“

L/K
nZ

”

is the identity if
`

D
n

´

= 1 and is equal to

τ if
`

D
n

´

= −1.
c) Express Artin’s reciprocity law (more precisely, Theorem 3.4.3 (2)) using

the Jacobi symbol
`

D
n

´

, and deduce the quadratic reciprocity law.

12. Show that NL/K(Im,L) does not necessarily contain Pm . In fact, is it possible
that NL/K(Im,L) contains Pm when L 6= K?

13. Prove Theorem 3.5.3 using Theorem 3.4.4.

14. Let (m, C) be the conductor of an Abelian extension L/K of prime degree ℓ.
Compute f(χ) for all the characters of the extension L/K (or, equivalently, of

the congruence subgroup (m, C)) and conclude that d(L/K) = mℓ−1
0 .

15. Let (m, C) be the conductor of the Abelian extension L/K, where we assume
that [L : K] = ℓr with ℓ prime.

a) Generalizing Corollary 3.5.12, show that

m
φ(ℓr)
0 = m

(ℓ−1)ℓr−1

0 | d(L/K) | m
ℓr−1
0 .
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b) Show that d(L/K) is always the (ℓ− 1)st power of an ideal.

c) Give an example where m
(ℓ−1)ℓr−1

0 6= d(L/K).

16. Let K be a number field, and let m = 4ZK be the modulus whose finite part is
the principal ideal generated by 4 and with no infinite part.

a) Assume that K is a quadratic field. Show that |Clm(K)| is odd if and
only if K is a real quadratic field of discriminant equal to 8 or to a prime
number p (necessarily congruent to 1 modulo 4).

b) Assume that |Clm(K)| is odd. Show that K is necessarily totally real. (I
do not have a complete answer to this question.)



4. Computational Class Field Theory

In Chapter 3 we gave the main theoretical results concerning global class
field theory over number fields. We are now going to study this subject from
the algorithmic point of view. In the present chapter, we give efficient algo-
rithms for computing ray class groups of number fields and for computing
the conductor and norm group of the Abelian extensions corresponding to
congruence subgroups of these ray class groups by Takagi’s Theorem 3.5.1.
Thanks to Proposition 3.5.8 and Theorem 3.5.11, this allows us to compute
their signature and discriminant.

In the next two chapters, we will explain how to solve the more difficult
problem of explicitly constructing relative or absolute defining polynomials
for these Abelian extensions, and we will give some applications, particularly
to the construction of number fields of small discriminant.

The following exact sequence associated to the ray class group correspond-
ing to a modulus m is an immediate consequence of Proposition 3.2.3:

1 −→ (ZK/m)∗/Im(U(K)) −→ Clm(K) −→ Cl(K) −→ 1 .

To compute the ray class group Clm(K) from this exact sequence, there
are three problems that a priori may seem difficult. First, the exact sequence
may not split. Hence, although it may be easy to compute the cardinality hm

of Clm(K), it may not be easy to compute its structure. Second, we will need
to compute the structure of the group (ZK/m)∗, and again this may not be
simple. Finally, we need to compute the image of the units in this group and
compute the quotient.

When doing this by hand, one gets the impression that these tasks are
not easy. In fact, this is quite a false impression, and we are going to see that
suitable systematic use of the (ordinary) Smith and Hermite normal forms
will lead to a nice and complete algorithmic solution to all of the above
problems. Using the same tools, we can also compute the group Um(K),
which also enters in Proposition 3.2.3 (see Exercise 1). Thus, the basic tools
we will need are algorithms to compute with Abelian groups.

This chapter is divided as follows. In Section 4.1, we describe the tools
necessary for dealing with finitely generated Abelian groups (usually finite).
In Section 4.2, we apply these tools to the algorithmic computation of the
groups (ZK/m)∗ for an arbitrary modulus m. In Section 4.3, we give a com-
plete algorithm for computing ray class groups of number fields and give the
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corresponding principal ideal algorithms. In Section 4.4, we explain how to
perform a number of additional explicit computations in class field theory.
We defer to Chapters 5 and 6 for algorithms to compute explicit polynomials
and for examples.

4.1 Algorithms on Finite Abelian groups

4.1.1 Algorithmic Representation of Groups

In this section, which is an expanded version of [Co-Di-Ol7], we consider
finitely generated (in fact, usually finite) Abelian groups, which in view of our
applications will be written multiplicatively. When we use the word “group”,
we will always mean a finitely generated Abelian group.

Even though we will work with Abelian groups, we will denote the group
operation multiplicatively since the groups we will consider are, for example,
class and unit groups or the group (ZK/m)∗, which are all written multiplica-
tively.

We will systematically use the following matrix notation. If A is a group
and (α1, . . . , αr) are elements of A, we let A be the row vector of the αi. If
X is a column vector with integer entries xi, we denote by AX the element∏
i α

xi

i of A. More generally, if M is a matrix with r rows having integer
entries, we denote by AM the row vector of the elements βj = AMj , where
Mj denotes the jth column of M .

Since the group operation is written multiplicatively, it is necessary to get
used to this notation (which is, of course, more natural when the group is
written additively), but it is extremely practical.

We will use the following additional notation. If A and B are row vectors,
or matrices with the same number of rows, we denote by (A|B) the (horizon-
tal) concatenation of A and B. If X and Y are column vectors, or matrices
with the same number of columns, we will denote by

(
X
Y

)
the (vertical) con-

catenation of X and Y .
We will always use row vectors to represent lists of elements in some

Abelian group, while column vectors and matrices will always have integer
(or sometimes rational) entries.

Finally, if A is a group, we will denote by 1A the unit element of A and
by 1A a row vector of unit elements of A.

Definition 4.1.1. Let A be a group, G = (g1, . . . , gr) be elements of A, and
M be an r× k integral matrix. We say that (G,M) is a system of generators
and relations for A if the gi are generators and if any relation between the gi
is a linear combination with integer coefficients of the columns of the matrix
M . In matrix terms, this can be written concisely as follows:

α ∈ A ⇐⇒ ∃X ∈ Zr, GX = α ,

GX = 1A ⇐⇒ ∃Y ∈ Zk, X = MY .
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In particular, we have GM = 1A.

A reformulation of the above definition is the existence of the following
exact sequence (called a presentation of A):

Zk
M−→ Zr

G−→ A −→ 1 .

Definition 4.1.2. Let A be a group. We say that (A,DA) is a Smith normal
form for A if (A,DA) is a system of generators and relations for A, if DA is
a diagonal matrix in Smith normal form (in other words, the diagonal entries
ai are nonnegative and satisfy ai+1 | ai for i < r), and if no diagonal entry
is equal to 1 (if A is infinite of rank n, this implies that ai = 0 for 1 ≤ i ≤ n
and ai > 0 for n < i ≤ r).

The elementary divisor theorem tells us that there exists a Smith normal
form and that the matrix DA is unique. However, the generators A are not
unique.

The following algorithm, although immediate, will be of constant use.

Algorithm 4.1.3 (SNF for Finite Groups). Let (G,M) be a system of gener-
ators and relations for a finite group A. This algorithm computes a Smith normal
form (A,DA) for A. It also outputs a matrix Ua that will be essential for discrete
logarithm computations.

1. [Apply HNF] Let H be the Hermite normal form of the matrix M obtained by
applying an HNF algorithm. If H is not a square matrix (equivalently, if M is
not of maximal rank), output an error message saying either that M cannot
be a complete system of relations or that A is an infinite group, and terminate
the algorithm.

2. [Apply SNF] Using a Smith normal form algorithm, compute unimodular ma-
trices U and V and a diagonal matrix D in Smith normal form such that
UHV = D. Set A′ ← GU−1.

3. [Remove trivial components] Let n be the largest i such that Di,i 6= 1 (0 if
none exist). Let DA be the matrix obtained from D by keeping only the first n
rows and columns, let A be the row vector obtained by keeping only the first
n entries of A′, and let Ua be the (not necessarily square) matrix obtained by
keeping only the first n rows of U . Output (A,DA), output Ua, and terminate
the algorithm.

This algorithm’s validity is clear. Note the important relation AUa = G.
⊓⊔

The reason for keeping the matrix Ua is also clear: if an element α of A
is known on the generators G as α = GX , then on the new generators A
we have α = A(UaX), so the matrix Ua allows us to go from one system of
generators to another.
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The following two definitions are rather imprecise but useful.

Definition 4.1.4. Let A be a group. We say that we have effectively com-
puted the group A if we have done the following.

(1) We have computed a system (G,M) of generators and relations for
the group A or, equivalently, by Algorithm 4.1.3, a Smith normal form
(A,DA).

(2) We have found an efficient algorithm that, given an element α ∈ A, finds
a column vector X with integer entries such that α = GX (or α = AX
if we have the SNF ). The column vector X will be called the discrete
logarithm of α on the given generators.

When we say that we have computed an Abelian group, or that a group
is known, we will always mean that we have effectively computed it in the
above sense. Note that this definition is not really a mathematical one since
we have not said what we mean by an efficient algorithm.

A similar definition applies to maps.

Definition 4.1.5. Let A and B be two groups and ψ a homomorphism from
A to B. We say that ψ is effective or if the following properties are true. If
B has been computed, then if α ∈ A, we can compute ψ(α) expressed on the
generators of B. Similarly, if A has been computed, then if β ∈ Im(ψ), we
can compute α ∈ A such that β = ψ(α).

4.1.2 Algorithmic Representation of Subgroups

A subgroup of a known group can of course be represented abstractly as
(A,DA) as for any other group, but this is often not convenient since it
forgets the subgroup structure. There is an alternate, richer representation,
based on the following proposition.

Proposition 4.1.6. Let B = (B,DB) be a finite Abelian group given in SNF,
where B = (βi)1≤i≤n. There is a natural one-to-one correspondence between
subgroups A of B and integral matrices H in Hermite normal form satisfying
H−1DB ∈ Mn(Z). The correspondence is as follows.

(1) The subgroup A associated to such a matrix H is the group given by gen-
erators and relations (not necessarily in SNF ), as A = (BH,H−1DB).

(2) Conversely, if A is a subgroup of B and B′ is a row vector of generators of
A, we can write B′ = BP for some integer matrix P . The corresponding
matrix H is the Hermite normal form of the matrix (P |DB).

(3) Let H be a matrix in HNF, and let A be the corresponding subgroup.
Then |A| = |B|/ det(H) or, equivalently, |B/A| = [B : A] = det(H).

Proof. Let B = (βi)1≤i≤n and let DB = diag((bi)1≤i≤n), where diag((bi)i)
denotes the diagonal matrix whose diagonal entries are the bi. By definition,
the following sequence is exact:
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1 −→
n⊕

i=1

biZ −→ Zn
φ−→ B −→ 1 ,

where
φ(x1, . . . , xn) =

∏

1≤i≤n
βxi

i .

Let (εi)1≤i≤n be the canonical basis elements of Zn, and let Λ be the lattice
defined by Λ =

⊕
i biεi. We thus have a canonical isomorphism B ≃ Zn/Λ,

obtained by sending the ith generator βi of B to the class of εi.
Subgroups of Zn/Λ are of the form Λ′/Λ, where Λ′ is a lattice such that

Λ ⊂ Λ′ ⊂ Zn. Such a lattice Λ′ can be uniquely defined by a matrix H in
Hermite normal form so that the columns of this matrix express a Z-basis of
Λ′ on the εi. The condition Λ′ ⊂ Zn means that H has integer entries, and
the condition Λ ⊂ Λ′ means that H−1DB also has integer entries, since it is
the matrix that expresses the given basis of Λ in terms of that of Λ′. In terms
of generators, this correspondence translates into the equality B′ = BH .
Furthermore, B′X = 1B if and only if BHX = 1B, hence HX = DBY , or
X = H−1DBY , and so if A is the subgroup of B corresponding to Λ′/Λ, it
is given in terms of generators and relations by (BH,H−1DB), proving (1).

For (2), we note that BDB = 1B, hence if B′′ = B(P |DB), we have simply
added some 1A’s to the generators of A. Thus, the group can be defined by
the generators B′′ and the matrix of relations of maximal rank (P |DB), hence
also by (B′′, H), where H is the Hermite normal form of this matrix.

For (3), we know that H−1DB expresses a basis of Λ in terms of a basis
of Λ′; hence

|A| = |Λ′/Λ| = det(H−1DB) = |B| / det(H) .

⊓⊔

Example. The matrix H corresponding to the subgroup {1B} of B is
H = DB, and the matrix corresponding to the subgroup B of B is H = In.

A matrix H in HNF such that H−1D ∈ Mn(Z) will be called a left divisor
of D. We will implicitly assume that all left divisors are in HNF, since if H is
a left divisor ofD, then for any unimodular matrix U ,HU is also a left divisor
of D. The above proposition states that subgroups of B are in canonical one-
to-one correspondence with left divisors of DB. Hence, it is usually better to
represent a subgroup A of B by the matrix H .

If we really want a Smith normal form for A, we simply apply Algorithm
4.1.3 to the system of generators and relations (BH,H−1DB) for the group
A.

Conversely, if we are given a subgroup A by an SNF (A,DA) together
with an injective group homomorphism ψ from A to B, we can compute the
HNF matrix H associated to ψ(A) as follows. Using the discrete logarithm
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algorithm in B, we compute an integral matrix P such that ψ(A) = BP ,
and H is simply the Hermite normal form of the matrix (P |DB). This is a
restatement of Proposition 4.1.6 (2).

Finding a discrete logarithm algorithm for a subgroup is done as follows.
If A is represented as a subgroup of B by a matrix H , then to compute the
discrete logarithm of β ∈ A, we first apply the discrete logarithm algorithm in
the full group B, thus obtaining an integer vectorX such that β = BX . Hence
β = BH(H−1X), so H−1X is the discrete logarithm on the generators BH
(it is an integer vector if and only if β ∈ A). We can of course left-multiply
by the matrix Ua output by Algorithm 4.1.3 to give the discrete logarithm
on the SNF (A,DA) if we have explicitly computed it.

In rest of this section, we are going to give a number of algorithms for
computing with Abelian groups, such as computing kernels, inverse images,
images, quotients, extensions, and so forth. In each case, we will choose the
most suitable representation for the result, either as an abstract group given
in SNF or as a subgroup by an HNF matrix H which is a left divisor of an
SNF matrix D as above. Going back and forth between these representations
is done as we have just explained. All the algorithms are easy but technical,
hence the reader is advised at first to skim through the rest of this section,
and to read it carefully only for an actual computer implementation.

4.1.3 Computing Quotients

Let

A ψ−→ B φ−→ C −→ 1

be an exact sequence of Abelian groups. In this section, we assume thatA and
B are known (in the sense of Definition 4.1.4) and that we want to compute
C. We assume also that the maps ψ and φ are effective. We do not necessarily
assume that ψ is injective. Let (A,DA) (resp., (B,DB)) be a Smith normal
form of A (resp., B) (it is only necessary for these to be generators and
relations, but usually they will be in SNF).

Since φ is surjective, it is clear that if we set B′ = φ(B), B′ is a system of
generators of C. We must find all the relations between them. Let V be such
a relation, expressed as a column vector. Then

B′V = 1C ⇐⇒ φ(BV ) = 1C ⇐⇒ BV ∈ Im(ψ) ⇐⇒ BV = ψ(A)X

for a certain integer vector X .
Since the group B is known, we know how to compute algorithmically a

matrix P such that ψ(A) = BP . Hence

B′V = 1C ⇐⇒ BV = BPX ⇐⇒ B(V − PX) = 1B
⇐⇒ V − PX ∈ Im(DB) ⇐⇒ V ∈ Im(P |DB) .

It follows that (φ(B), (P |DB)) is a system of generators and relations for
C, and we finish using Algorithm 4.1.3. Formally, this gives the following.
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Algorithm 4.1.7 (Quotient of Groups). Given two groups A = (A,DA) and

B = (B,DB) in SNF and an exact sequence A ψ−→ B φ−→ C −→ 1, this
algorithm computes the SNF of the group C.
1. [Compute P ] Using the discrete logarithm algorithm in B, compute a matrix
P such that ψ(A) = BP .

2. [Compute SNF] Apply Algorithm 4.1.3 to (φ(B), (P |DB)), output the SNF
(C,DC) of the result and the auxiliary matrix Ua, and terminate the algorithm.

To obtain a corresponding discrete logarithm algorithm, we proceed as
follows. Let γ ∈ C. Since φ is surjective and is effective, we can find β ∈ B
such that γ = φ(β). Since we know how to compute discrete logarithms in B,
we can find X such that β = BX . Hence

γ = φ(BX) = φ(B)X = CUaX ,

where Ua is the auxiliary matrix output by Algorithm 4.1.3. It follows that
the discrete logarithm of γ on the generators C is given by the vector UaX .

Remark. If the group A is given as a subgroup of B by a left HNF divisor
H of DB, and the map ψ is the natural injection, the algorithm simplifies
considerably since the HNF of (P |DB) is equal to H , since P = H is a
left divisor of DB. Thus we simply apply Algorithm 4.1.3 to the system of
generators and relations (φ(B), H).

4.1.4 Computing Group Extensions

Let A = (A,DA) and C = (C,DC) be two groups given in SNF, and assume
now that we have an exact sequence

1 −→ A ψ−→ B φ−→ C −→ 1 .

We want to compute the SNF (B,DB) of the group B.
Let B′ be arbitrarily chosen such that φ(B′) = C. If β ∈ B then for some

vector Y , we have φ(β) = CY = φ(B′)Y = φ(B′Y ), hence β−B′Y ∈ Ker(φ),
so β −B′Y = ψ(AX) for some integer vector X . Thus β = ψ(A)X +B′Y =
(ψ(A)|B′)R, where R =

(
X
Y

)
. It follows that (ψ(A)|B′) forms a generating

set for B (this is, of course, trivial, but we prefer to do everything in matrix
terms).

Let us find the relations between these generators. If R =
(
X
Y

)
is such

a relation, we have ψ(A)X + B′Y = 1B. If we apply φ to this relation, we
obtain φ(B′)Y = CY = 1C, hence Y ∈ ImDC , so that Y = DCY1 for some
integral vector Y1. Thus we have ψ(A)X +B′DCY1 = 1B.

Set B′′ = B′DC . Then φ(B′′) = φ(B′)DC = CDC = 1C , hence the
entries of B′′ are in Ker(φ) = Im(ψ), and since we have a discrete logarithm
algorithm in A, we can find a matrix P such that B′′ = ψ(AP ) = ψ(A)P .
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So finally, the equation for our relation is

ψ(A)X + ψ(A)PY1 = 1B ⇐⇒ ψ(A)(X + PY1) = 1B
⇐⇒ A(X + PY1) = 1A ⇐⇒ X + PY1 ∈ ImDA

⇐⇒ X + PY1 = DAT

for some integer vector T (note that here we have used the injectivity of ψ).
In other words, R =

(
X
Y

)
is a relation if and only if we have

R =

(
DA −P
0 DC

)(
T
Y1

)

for some integer vectors T and Y1. We then obtain the SNF as before by
applying Algorithm 4.1.3. Formally, this gives the following.

Algorithm 4.1.8 (Group Extensions). Given two groups A = (A,DA) and

C = (C,DC) in SNF, and an exact sequence 1 −→ A ψ−→ B φ−→ C −→ 1 with
ψ and φ effective, this algorithm computes the SNF (B,DB) of the group B.

1. [Compute generators] Compute B′ such that φ(B′) = C (which can be done
since φ is effective), and compute ψ(A).

2. [Compute P ] Set B′′ ← B′DC , and let A′′ be such that B′′ = ψ(A′′). (B′′ is
in the image of ψ and A′′ can be found since ψ is effective.) Using the discrete
logarithm algorithm in A, compute an integral matrix P such that A′′ = AP .

3. [Terminate] Set G← (ψ(A)|B′) and M ←
(
DA −P
0 DC

)
. Apply Algorithm 4.1.3

to the system of generators and relations (G,M), output the SNF (B,DB)
of B and the auxiliary matrix Ua, and terminate the algorithm.

It is easy to obtain a corresponding discrete logarithm algorithm. Let
β ∈ B. Using the discrete logarithm algorithm in C, we can find Y such that
φ(β) = CY = φ(B′)Y , hence φ(β − B′Y ) = 1C, so β − B′Y ∈ Im(ψ). Using
the discrete logarithm algorithm in A, we obtain β−B′Y = ψ(A)X for some
X , so β = (ψ(A)|B′)

(
X
Y

)
. Finally, this gives β = BUa

(
X
Y

)
; hence Ua

(
X
Y

)
is

our desired discrete logarithm.

Remark. From the above discussion, it is clear that the matrix −P mea-
sures the obstruction to the fact that the exact sequence is split. More pre-
cisely, if −P = 0, the sequence splits; conversely, if the sequence splits, then
one can find generators such that −P = 0 (see Exercise 2).

4.1.5 Right Four-Term Exact Sequences

In view of our application to ray class group computations, we will also use
right four-term exact sequences (we will see left four-term exact sequences in
Section 4.1.7). More precisely, assume that we have an exact sequence of the
form
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E ρ−→ Z ψ−→ B φ−→ C −→ 1 .

We assume that we know the groups E = (E,DE), Z = (Z,DZ), and C =
(C,DC), and we want to compute B. In the application we have in mind, E
is in general infinite, in which case the diagonal entry of DE is equal to 0 for
each infinite cyclic component. This could be treated as a three-term exact
sequence by introducing the quotient group Z/ρ(E), but it is more elegant
and just as easy to treat it directly as a right four-term exact sequence.

We proceed essentially as in Section 4.1.4. Let B′ be such that φ(B′) = C,
and let β ∈ B. We have φ(β) = CY for some Y , hence φ(β − B′Y ) = 1C ,
hence β − B′Y ∈ ψ(Z). It follows that β − B′Y = ψ(Z)X for some X ; in
other words, (ψ(Z)|B′) is a generating set for B.

Let us find the relations between these generators. If R =
(
X
Y

)
is such

a relation, we have ψ(Z)X + B′Y = 1B. If we apply φ to this relation, we
obtain φ(B′)Y = CY = 1C. Hence Y ∈ ImDC , so that Y = DCY1 for some
integral vector Y1. Thus we have ψ(Z)X +B′DCY1 = 1B.

Set B′′ = B′DC . Then φ(B′′) = φ(B′)DC = CDC = 1C . Thus all the
entries of B′′ are in Ker(φ) = Im(ψ). Since ψ is assumed to be effective,
we can find Z ′ such that ψ(Z ′) = B′′. Since we have a discrete logarithm
algorithm in Z, we can find a matrix P such that Z ′ = ZP .

Thus, R =
(
X
Y

)
is a relation if and only if ψ(Z)X +ψ(Z)PY1 = 1B, or in

other words Z(X+PY1) ∈ Ker(ψ) = Im(ρ). Thus there exists a vector T such
that Z(X + PY1) = ρ(E)T . Using again the discrete logarithm algorithm in
Z, we can find a matrix Q such that ρ(E) = ZQ. Hence we get Z(X+PY1−
QT ) = 1Z or, equivalently, X + PY1 −QT = DZT

′ for still another integer
vector T ′.

In other words, R =
(
X
Y

)
is a relation if and only if we have

R =

(
Q DZ −P
0 0 DC

)


T
T ′

Y1





for some integer vectors T , T ′, and Y1. We then obtain the SNF as before by
applying Algorithm 4.1.3. Formally, this gives the following.

Algorithm 4.1.9 (Right Four-Term Exact Sequences). Given three Abelian
groups E = (E,DE), Z = (Z,DZ), and C = (C,DC) in SNF and an exact

sequence E ρ−→ Z ψ−→ B φ−→ C −→ 1 with ρ, ψ, and φ effective, this algorithm
computes the SNF (B,DB) of the group B.

1. [Compute generators] Compute B′ such that φ(B′) = C (which can be done
since φ is effective), and compute ψ(Z).

2. [Compute P ] Set B′′ ← B′DC , and let Z ′ be such that B′′ = ψ(Z ′) (B′′ is
in the image of ψ and Z ′ can be found since ψ is effective). Using the discrete
logarithm algorithm in Z, compute a matrix P such that Z ′ = ZP .
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3. [Compute Q] Using the discrete logarithm algorithm in Z, compute a matrix
Q such that ρ(E) = ZQ.

4. [Terminate] Set G ← (ψ(Z)|B′) and M ←
(
Q DZ −P
0 0 DC

)
. Apply Algo-

rithm 4.1.3 to the system of generators and relations (G,M), output the SNF
(B,DB) of B and the auxiliary matrix Ua, and terminate the algorithm.

In our application to ray class group computations, the group E will be
the group of units of a number field, hence finitely generated but not finite in
general. As can be seen from step 3, however, only a finite set of generators is
needed. Apart from this group, all of the other groups we will use are finite.

It is again easy to obtain a corresponding discrete logarithm algorithm.
Let β ∈ B. Using the discrete logarithm algorithm in C, we can find Y
such that φ(β) = CY = φ(B′)Y , hence φ(β − B′Y ) = 1C so β − B′Y ∈
Im(ψ). Since Z has been computed and ψ is effective, using the discrete
logarithm algorithm in Z we obtain β − B′Y = ψ(Z)X for some X , so
β = (ψ(Z)|B′)

(
X
Y

)
. Finally, this gives β = BUa

(
X
Y

)
; hence Ua

(
X
Y

)
is our

desired discrete logarithm.

4.1.6 Computing Images, Inverse Images, and Kernels

Let B = (B,DB) and C = (C,DC) be two known Abelian groups, let φ be
an effective group homomorphism from B to C, and let A be a subgroup of
B given by an HNF matrix HB that is a left divisor of DB as explained in
Proposition 4.1.6. We can easily compute the image of φ using the following
algorithm.

Algorithm 4.1.10 (Image of a Subgroup). Let B = (B,DB) and C =
(C,DC) be two known Abelian groups in SNF, let φ be an effective group homo-
morphism from B to C, and let A be a subgroup of B given by a left divisor HB

of DB. This algorithm computes the image φ(A) as a subgroup of C; in other
words, it outputs a left divisor HC of DC that represents the subgroup φ(A)
according to Proposition 4.1.6.

1. [Compute matrix P ] Using the discrete logarithm algorithm in C, compute an
integer matrix P such that φ(B) = CP .

2. [Terminate] Let M ← (PHB|DC) be the horizontal concatenation of PHB

and DC . Let HC be the HNF of the matrix M (which is a left divisor of DC).
Output HC and terminate the algorithm.

Proof. By definition ofHB, B′ = BHB is a system of generators forA, and
φ(B′) = φ(B)HB = C(PHB). Hence, by Proposition 4.1.6 (2), the desired
matrix HC is the HNF of the matrix (PHB |DC). ⊓⊔

Once again, let B = (B,DB) and C = (C,DC) be two known Abelian
groups, let φ be an effective group homomorphism from B to C, but now let
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A be a subgroup of C, given by an HNF matrix HC that is a left divisor of
DC . We want to compute φ−1(A) as a subgroup of B. This is done as follows.

Algorithm 4.1.11 (Inverse Image of a Subgroup). Let B = (B,DB) and
C = (C,DC) be two known Abelian groups in SNF, let φ be an effective group
homomorphism from B to C, and let A be a subgroup of C given by a left divisor
HC of DC . This algorithm computes the inverse image φ−1(A) as a subgroup
of B; in other words, it outputs a left divisor HB of DB that represents the
subgroup φ−1(A) according to Proposition 4.1.6.

1. [Compute P ] Using the discrete logarithm algorithm in C, compute an integral
matrix P such that φ(B) = CP .

2. [Compute U1] Apply an HNF algorithm to the matrix (P |HC), and let U =(
U1 U2

U3 U4

)
be a unimodular matrix and H an HNF matrix such that (P |HC)U =

(0|H). We can discard the matrices U2, U3, U4, and H .

3. [Terminate] Let HB be the HNF of the matrix (U1|DB). Output HB and
terminate the algorithm.

Proof. Let X be an integer vector representing an element of B on the
generators B. We have

BX ∈ φ−1(A) ⇐⇒ φ(B)X ∈ A ⇐⇒ CPX = CHCY

⇐⇒ C(PX −HCY ) = 1C

for some integer vector Y , so BX ∈ φ−1(A) ⇐⇒ PX −HCY = DCZ for
some integer vector Z. We know, however, that HC is a left divisor of DC , so
DC = HCH

′
C for some integer matrix H ′

C . Hence X represents an element
of φ−1(A) on B if and only if there exist integer vectors Y and Z such that
PX−HC(Y +H ′

CZ) = 0, hence if and only if there exists an integer vector T
such that PX +HCT = 0. (Indeed, T = −(Y +H ′

CZ) exists, but conversely
if T is given, we can choose Z = 0 and Y = −T .)

We now use [Coh0, Proposition 2.4.9], which tells us that if

(P |HC)

(
U1 U2

U3 U4

)
= (0|H)

is the HNF decomposition of the matrix (P |HC), a Z-basis of the kernel

of (P |HC) is given by the columns of the matrix
(
U1

U3

)
. In other words,

PX +HCT = 0 if and only if there exists a column vector X1 such that
(
X

T

)
=

(
U1

U3

)
X1 .

Hence X represents an element of φ−1(A) if and only if it is in the image of
U1, hence a generating system of φ−1(A) is given by BU1, and we conclude
by Proposition 4.1.6 (2). ⊓⊔
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Remarks

(1) To compute the kernel φ−1({1C}) of the map φ, we apply the above
algorithm to the matrix HC = DC , which is the matrix representing
{1C} in the subgroup representation.

(2) It is easy to write an algorithm for computing the cokernel C/Im(φ) of
φ; see Exercise 4.

Finally, note the following lemma, which gives an important property of
the matrix U1 used in the above algorithm.

Lemma 4.1.12. Assume that we have a matrix equality of the form

(P |H1)U = (0|H) ,

where U is invertible and H1 is a square matrix with nonzero determinant. Let
r be the number of columns of P or, equivalently, the number of 0 columns
on the right-hand side. Then the upper-left r × r submatrix U1 of U has
nonzero determinant equal to ± det(H1)/ det(H), where the sign is equal to
the determinant of U .

Proof. Write U =
(
U1 U2

U3 U4

)
. One easily checks the block matrix identity

(
H1 0
−P H

)(
U1 U2

0 I

)
=

(
H1 0
0 H1

)(
U1 U2

U3 U4

)
.

Since det(H1) 6= 0, it follows that det(U1) det(H) = ± det(H1), where the
sign is equal to det(U). This proves the lemma. ⊓⊔

Note that it is easy to write the inverse of U1 in GLr(Q) in terms of the
block matrix decomposition of U−1; see Exercise 5.

4.1.7 Left Four-Term Exact Sequences

In Chapter 7, we will also use left four-term exact sequences. More precisely,
assume that we have an exact sequence of the form

1 −→ E ρ−→ A ψ−→ B φ−→ C .

We assume that we know the groups E = (E,DE), B = (B,DB), and C =
(C,DC), and we want to compute A. In the application we have in mind,
E , A, and B will in general be infinite, and in that case the diagonal entries
of the corresponding SNFs are equal to 0 for each infinite cyclic component,
but apart from this everything that we have done remains valid.

The above left four-term exact sequence could as usual be treated as a
concatenation of shorter exact sequences, but we prefer to treat it directly as
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a left four-term exact sequence. We will combine the ideas of Sections 4.1.6
and 4.1.4.

We first compute the kernel of φ, which is equal to the image of ψ, by using
Section 4.1.6. Following Algorithm 4.1.11 (with A = {1C}), we first compute
an integral matrix P such that φ(B) = CP . Using an HNF algorithm, we
compute a unimodular matrix U =

(
U1 U2

U3 U4

)
such that (P |DC)U = (0|H) is

in HNF. We let HB be the HNF of the matrix (U1|DB), so that HB is a left
divisor of DB such that BHB is a generating system for Ker(φ) = Im(ψ).

We now follow Section 4.1.4. Let A′ be such that ψ(A′) = BHB , which
is possible since the entries of BHB are in Im(ψ). Then as in Section 4.1.4,
(ρ(E)|A′) forms a generating set for A. Let us find the relations between
these generators. If R =

(
X
Y

)
is such a relation, we have ρ(E)X + A′Y =

1A. Applying ψ to this relation, we obtain ψ(A′)Y = BHBY = 1B, hence
HBY = DBY1 for a certain integer vector Y1. Since HB is a left divisor of
DB, this gives Y = H−1

B DBY1. Thus, we have ρ(E)X +A′H−1
B DBY1 = 1A.

Set A′′ = A′H−1
B DB. Then ψ(A′′) = ψ(A′)H−1

B DB = BDB = 1B. Thus
the entries of A′′ are in Ker(ψ) = Im(ρ), and since we have a discrete log-
arithm algorithm in E , we can find a matrix Q such that A′′ = ρ(EQ) =
ρ(E)Q. Thus, the equation for our relation is

ρ(E)X + ρ(E)QY1 = 1A ⇐⇒ ρ(E)(X +QY1) = 1A
⇐⇒ E(X +QY1) = 1E
⇐⇒ X +QY1 ∈ ImDE ⇐⇒ X +QY1 = DET

for some integer vector T (note that here we have used the injectivity of ρ).
In other words, R =

(
X
Y

)
is a relation if and only if we have

R =

(
DE −Q
0 H−1

B DB

)(
T
Y1

)

for some integer vectors T and Y1. We then obtain the SNF as before by
applying Algorithm 4.1.3. Formally, this gives the following.

Algorithm 4.1.13 (Left Four-Term Exact Sequences). Given three Abelian
groups E = (E,DE), B = (B,DB), and C = (C,DC) in SNF and an exact

sequence 1 −→ E ρ−→ A ψ−→ B φ−→ C with ρ, ψ, and φ effective, this algorithm
computes the SNF (A,DA) of the group A.

1. [Compute P ] Using the discrete logarithm algorithm in C, compute an integral
matrix P such that φ(B) = CP .

2. [Compute Ker(φ)] Apply an HNF algorithm to the matrix (P |DC), let U =(
U1 U2

U3 U4

)
be a unimodular matrix and H an HNF matrix such that (P |DC)U =

(0|H), and finally let HB be the HNF of the matrix (U1|DB). We can discard
all the matrices computed up to now except HB.

3. [Compute generators] Compute A′ such that ψ(A′) = BHB (which can be
done since ψ is effective), and compute ρ(E).
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4. [Compute Q] Set A′′ ← A′H−1
B DB and let E′′ be such that A′′ = ρ(E′′)

(A′′ is in the image of ρ and E′′ can be found since ρ is effective). Using the
discrete logarithm algorithm in E , compute an integral matrix Q such that
E′′ = EQ.

5. [Terminate] Set G ← (ρ(E)|A′) and M ←
(
DE −Q
0 H−1

B DB

)
. Apply Algorithm

4.1.3 to the system of generators and relations (G,M), output the SNF
(A,DA) of A and the auxiliary matrix Ua, and terminate the algorithm.

As usual, it is easy to obtain a corresponding discrete logarithm algorithm.
Let α ∈ A. Using the discrete logarithm algorithm in B, we can find Y
such that ψ(α) = BY . Since ψ(α) ∈ Ker(φ), the vector Z = H−1

B Y has
integral entries (see Exercise 6). Thus, ψ(α − A′Z) = BY − BHBZ = 0, so
α−A′Z ∈ Ker(ψ) = Im(ρ), and hence we can find an integral vector T such
that α − A′Z = ρ(E)T . Hence α = ρ(E)T + A′Z = G

(
T
Z

)
, and the discrete

logarithm of α with respect to the generators A is equal to Ua
(
T
Z

)
.

4.1.8 Operations on Subgroups

It is easy to modify the preceding algorithms so that they perform oper-
ations on subgroups, represented as explained in Section 4.1.2. Thus, let
B = (B,DB) be a fixed Abelian group in SNF, and let A1 and A2 be sub-
groups of B given by HNF left divisorsH1 andH2 ofDB. We want to compute
their intersection and their sum, which by definition is the subgroup gener-
ated by A1 and A2. We leave the easy proof of the following algorithm to the
reader (Exercise 7).

Algorithm 4.1.14 (Intersection and Sum of Subgroups). Given an Abelian
group B = (B,DB) in SNF and two subgroups A1 and A2 given by HNF left
divisors H1 and H2 of DB, this algorithm computes the HNF left divisors of DB

giving the intersection A1 ∩ A2 and the sum A1 +A2 of A1 and A2.

1. [Compute HNF] Let (H1|H2)
(
U1 U2

U3 U4

)
= (0|H) be the HNF decomposition of

the matrix (H1|H2).

2. [Terminate] Let H3 be the HNF of (H1U1|DB) (or, equivalently, the HNF of
(H2U3|DB)). Output H3 as the HNF of the intersection and H as the HNF
of the sum, and terminate the algorithm.

If we want the intersection or the sum of more than two subgroups, we
can either apply the above algorithm recursively or directly use the HNF of
the concatenation of all the matrices. The first method is clearly preferable
since it is better to compute k − 1 times the HNF of an n× 2n matrix than
the HNF of a single n× kn matrix.

There is, however, another natural problem, which we will encounter be-
low. As above, let A1 and A2 be subgroups of B given by HNF divisors H1

and H2. We would like to compute the intersection of these two subgroups
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as a subgroup of A2, in other words as a left divisor of the SNF of A2 and
not of B. This is easily done using the following algorithm, whose easy proof
is again left to the reader (Exercise 8).

Algorithm 4.1.15 (Intersection of Subgroups in a Subgroup). Given an
Abelian group B = (B,DB) in SNF and two subgroups A1 and A2 given by HNF
left divisors H1 and H2 of DB, this algorithm computes the SNF (A2, DA2) of
A2 and the left HNF divisor of DA2 , giving A1 ∩A2 as a subgroup of A2.

1. [Compute SNF of A2] Using Algorithm 4.1.3 (except that one should skip step
1, which is not necessary) applied to the system of generators and relations
(BH2, H

−1
2 DB), compute the SNF (A2, DA2) of the group A2 and the matrix

Ua, and output this SNF.
2. [Compute HNF of intersection] Let (H1|H2)

(
U1 U2

U3 U4

)
= (0|H) be the HNF

decomposition of the matrix (H1|H2).

3. [Terminate] Output the HNF of the matrix (UaU3|DA2) as left HNF divisor
of DA2 representing A1 ∩ A2, and terminate the algorithm.

4.1.9 p-Sylow Subgroups of Finite Abelian Groups

Let C = (C,DC) be a group, and let p be a prime number. We would like to
compute the p-Sylow subgroup Cp of C. Recall that by definition, this is the
subgroup of C consisting of all elements g ∈ C whose order is a power of p.

We will use the following convenient notation, which should be standard
in number theory. If m ∈ Z, m 6= 0, we will denote by (p∞,m) the limit as
k → ∞ of (pk,m). Of course, this sequence stabilizes for k large enough, so
the limit exists; more precisely, (p∞,m) = pvp(m), where as usual vp(m) is
the p-adic valuation of m. The following proposition gives the answer to our
question.

Proposition 4.1.16. Let C = (C,DC) be a group given in SNF, with C =
(γi)1≤i≤n and DC = diag((ci)1≤i≤n), and let p be a prime number. Let rc be
the largest index i ≤ n such that p | ci (rc = 0 if none exist). Then Cp is
given in SNF by Cp = (Cp, DC,p), where

Cp = (γ
ci/(p

∞,ci)
i )1≤i≤rc and DC,p = diag((p∞, ci)1≤i≤rc) .

Proof. Let g ∈ Cp. There exists a ≥ 0 such that gp
a

= 1. Let g =∏
1≤i≤n γ

xi

i . Thus, ci | paxi, hence (ci/(p
a, ci)) | xi, which implies that

(ci/(p
∞, ci)) | xi. Hence, if we set γi,p = γ

ci/(p
∞,ci)

i , the γi,p are genera-
tors of Cp, and we can restrict to i ≤ rc, since otherwise the γi,p are equal
to 1. It is clear that the matrix of relations between the γi,p is given by
DC,p = diag((p∞, ci)), and since this is already in SNF, this proves the propo-
sition. ⊓⊔

Since this proposition gives explicitly the SNF of Cp, it is not necessary
to give a formal algorithm. If we want to consider Cp as a subgroup of C,
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the corresponding HNF left divisor of DC is evidently the diagonal matrix
diag((ci/(p

∞, ci))1≤i≤n).

Consider now a more theoretical problem, which may be useful in certain
cases. Assume that we have an exact sequence of Abelian groups. What
happens when we take p-Sylow subgroups? The answer to this question is
as follows. Taking p-Sylow subgroup is a left exact functor in the category of
Abelian groups, and it is even an exact functor in the subcategory of finite
Abelian groups. This means that we have the following proposition.

Proposition 4.1.17. (1) Let 1 −→ A ψ−→ B φ−→ C be an exact sequence of
Abelian groups, which are exceptionally not assumed to be finite. Then

1 −→ Ap
ψp−→ Bp

φp−→ Cp is also an exact sequence, where the maps are
simply the restrictions of the corresponding maps.

(2) Let · · · −→ A −→ B −→ C −→ · · · be an exact sequence of finite Abelian
groups of any length. Then · · · −→ Ap −→ Bp −→ Cp −→ · · · is again
an exact sequence.

Proof. For (1), we first note that if ψ is a group homomorphism from A to
B, then clearly ψ(Ap) ⊂ Bp, so the restricted maps are well-defined. Exactness
at A is also clear since the restriction of an injective map is injective. In
addition, the identity φ ◦ ψ = 0 is preserved by restriction. Thus, we must
simply show that Ker(φp) ⊂ Im(ψp). Let x ∈ Ker(φp). This means first that
φ(x) = 1 in C, hence by the exactness of the initial sequence, that x = ψ(y) for
some y ∈ A. It also means that xp

a

= 1 for some a ≥ 0. But then ψ(yp
a

) = 1,
hence yp

a

= 1 since ψ is injective, and so y ∈ Ap, and x ∈ Im(ψp) as desired.

Since any exact sequence is made up of short exact sequences of the type

1 −→ A ψ−→ B φ−→ C −→ 1, it is enough to prove (2) for short exact sequences
of this type, the general result following by induction. By (1), we already know
that the sequence of p-Sylow subgroups is exact at Ap and at Bp. We must
show that it is exact at Cp or, equivalently, that φp is surjective. For this, we
use in an essential way the fact that the groups are finite by using a counting
argument. Let |A| = pak, |B| = pbm, and |C| = pcn, where p ∤ kmn. By
the exactness of the initial exact sequence, we have pbm = pakpcn, hence in
particular b = a+ c. By the structure theorem for finite Abelian groups, we
have |Ap| = pa, |Bp| = pb, and |Cp| = pc, and hence |Cp| = |Bp| / |Ap|. But
since we already know exactness atAp and Bp, we have |φp(Bp)| = |Bp| / |Ap|,
hence |φp(Bp)| = |Cp|, thus showing that φp is surjective, as claimed. ⊓⊔

Remark. It is easy to see that (2) is false when the groups are not
necessarily assumed to be finite. For example, consider the following exact
sequence

0 −→ Z
[p]−→ Z

s−→ Z/pZ −→ 0 ,
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where [p] denotes multiplication by p and s is the canonical surjection. The
sequence of p-Sylow subgroups is 0 −→ 0 −→ 0 −→ Z/pZ −→ 0, which
clearly is not exact.

4.1.10 Enumeration of Subgroups

In Chapter 3, we saw that Abelian extensions correspond to equivalence
classes of congruence subgroups or, equivalently, to equivalence classes of sub-
groups of ray class groups Clm(K), which are finite Abelian groups. Thus, it
is important to be able to enumerate these groups. We consider this problem
here.

Let C = (C,DC) be a fixed Abelian group given in SNF. By Proposition
4.1.6, enumerating subgroups of C is equivalent to enumerating HNF matrices
H that are left divisors of DC (two matrices M and M ′ that differ only by
right multiplication by a unimodular matrix U defining the same subgroup).

The question of finding these divisors in an efficient manner is not imme-
diate (see Theorem 4.1.18 below). In the context of class groups, however,
it is reasonable to assume that C will often be cyclic or close to cyclic (see
[Coh0, Section 5.10]). Hence, we can proceed as follows. Let n be the number
of cyclic components of C as above, and let DC = diag(c1, . . . , cn).

If n = 1, H divides DC if and only if H = (e1), where e1 | c1 and e1 ≥ 1;
hence, we simply look at all (positive) divisors of c1.

If n = 2, then an immediate computation shows that H =
(
e1 f1
0 e2

)
divides

DC if and only if for i = 1 and i = 2, ei is a positive divisor of ci, and
f1 = ke1/ gcd(e1, c2/e2) with 0 ≤ k < gcd(e1, c2/e2) (see Exercise 9).

If n ≥ 3, we can try all possible HNF matrices H = (ei,j) with ei,i | ci
and

ei,i+1 ≡ 0 (mod ei,i/ gcd(ei,i, ci+1/ei+1,i+1)) ,

which are easily seen to be necessary conditions (see Exercise 9).
However, this is wasteful, since we need to examine many more HNF

matrices than there are subgroups. Thus, we need a method that enables us
to construct the HNF matrices that correspond to subgroups only (in other
words, the left divisors of DC).

We first make an important reduction. As in the preceding section, let

Cp be the p-Sylow subgroup of C, generated by the γ
ci/(p

∞,ci)
i . I claim that

it suffices to enumerate the subgroups of Cp for each p. Indeed, let B be a
subgroup of C given by an HNF matrix H . The p-Sylow subgroup Bp of B is,
of course, equal to B ∩ Cp. We want to consider it as a subgroup of Cp, and
as such it can be computed as a left divisor Hp of the matrix DC,p given by
Proposition 4.1.16, by using Algorithm 4.1.15 (note that in that algorithm Ua
is the identity matrix in our case). Conversely, if for each p we are given a left
divisor of Hp of DC,p corresponding to a subgroup Bp of Cp, then it is clear
that DCD

−1
C,pHp is a left divisor of DC corresponding to Bp considered as a



180 4. Computational Class Field Theory

subgroup of C, and hence we can reconstruct the subgroup B by summing
these subgroups using Algorithm 4.1.14.

Although the above may sound like useless nitpicking, it is essential for a
correct implementation.

Once this reduction is made, we may assume that our group C is a p-
group, in other words that its order is a power of p. In this case, the complete
answer to our problem has been given by G. Birkhoff (see [Bir], [But]).

I give the theorem as stated by L. Butler (slightly modified for our pur-
poses) and refer to [Bir] and [But] for details and proof.

Theorem 4.1.18. Let C = (C,DC) be an Abelian p-group in SNF, and write
DC = diag((pxi)1≤i≤s). Consider all the matrices M obtained as follows.

(1) We choose an integer t such that 0 ≤ t ≤ s and a family of integers
(yi)1≤i≤t such that yi+1 ≤ yi for i < t and such that yi ≤ xi. We set by
convention yi = 0 for t < i ≤ s.

(2) We choose a permutation σ of [1, s] such that for all i ≤ t, yi ≤ xσ(i),
and for all i < s such that yi = yi+1, then σ(i) > σ(i+ 1). Set τ = σ−1.

(3) We choose integers ci,j for τ(i) > j, 1 ≤ i ≤ s, 1 ≤ j ≤ t, satisfying the
following:

(a) i < σ(j) =⇒ 1 ≤ ci,j ≤ pyj−yτ(i) ;

(b) i > σ(j) and xi < yj =⇒ 1 ≤ ci,j ≤ pxi−yτ(i) ;

(c) i > σ(j) and xi ≥ yj =⇒ 1 ≤ ci,j ≤ pyj−yτ(i)−1 .

(4) We define the s× t matrix M = (mi,j) by setting

mi,j =






pxi if τ(i) < j

pxi−yj if τ(i) = j

ci,jp
xi−yj if τ(i) > j in case (a)

ci,j if τ(i) > j in case (b)

ci,jp
xi−yj+1 if τ(i) > j in case (c).

To each subgroup A of C is associated a unique such matrix M , where
the SNF of A is (CM, diag((pyi)1≤i≤t)) and conversely each such matrix M
gives rise to a subgroup whose corresponding left HNF divisor of DC is the
HNF of the matrix (M |DC).

Using this theorem and the algorithmic reductions to p-groups that we
have made above, we can now easily write a complete algorithm for the
enumeration of subgroups of a finite Abelian group, but we will not do this
formally (see Exercise 10). Note that it may be more efficient to first choose
the permutation and then the yi.

Let us give an example. Assume that we want to describe all subgroups
of C = (Z/p2Z) × (Z/pZ) using Birkhoff’s theorem. We find the following
matrices M and the corresponding left HNF divisors obtained as the HNF of
(M |DC), where DC = diag(p2, p).
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(1) For t = 0, M is the 2× 0 matrix and

H = DC =

(
p2 0
0 p

)
.

(2) For t = 1, y1 = 1, and σ the identity,

M =

(
p
p

)
, H =

(
p 0
0 p

)
.

(3) For t = 1, y1 = 1, and σ the transposition,

M =

(
c1,1p
p

)
, H =

(
p2 c1,1p
0 1

)
,

where c1,1 takes every integer value such that 1 ≤ c1,1 ≤ p.
(4) For t = 1, y1 = 2, σ is necessarily the identity,

M =

(
1
c2,1

)
, H =

(
p c−1

2,1

0 1

)

if p ∤ c2,1,

H =

(
1 0
0 p

)

if p | c2,1. Here, c2,1 takes every integer value such that 1 ≤ c2,1 ≤ p, and
when p ∤ c2,1, c

−1
2,1 is the inverse of c2,1 modulo p such that 1 ≤ c−1

2,1 < p.
(5) For t = 2, y1 = y2 = 1, σ is necessarily the transposition,

M =

(
p p
1 p

)
, H =

(
p 0
0 1

)
.

(6) For t = 2, y1 = 2, y2 = 1, σ is necessarily the identity,

M =

(
1 p2

1 1

)
, H =

(
1 0
0 1

)
.

This gives a total of 1 subgroup of order 1, p + 1 subgroups of order p,
p+ 1 subgroups of order p2, and 1 subgroup of order p3.

The situation simplifies considerably if we want to enumerate not all sub-
groups, but only subgroups of given index . (By class field theory, in the ray
class field case, computing congruence subgroups of given index is equivalent
to computing Abelian extensions of given degree.) In particular, if the degree
is prime, we have the following proposition.

Proposition 4.1.19. Let C = (C,DC) be an Abelian group given in SNF,
with DC = diag((ci)i), and let ℓ be a prime number. Let rc be the largest
index i such that ℓ | ci (rc = 0 if none exist), so that rc is the ℓ-rank of C.

The subgroups of C of index ℓ correspond under Proposition 4.1.6 to
matrices H = (hi,j) such that there exists a row index k (necessarily
unique) satisfying the following properties.



182 4. Computational Class Field Theory

(1) We have k ≤ rc.
(2) For i 6= k, then hi,j = 0 for j 6= i and hi,i = 1.
(3) We have hk,k = ℓ, hk,j = 0 if j < k or j > rc, and 0 ≤ hk,j < ℓ if

k < j ≤ rc.
In particular, there are (ℓrc−1)/(ℓ−1) subgroups of index ℓ (this is, of course,
a well-known and easy result).

Proof. The proof of this proposition is easy and is left to the reader (Ex-
ercise 11). ⊓⊔

This proposition leads to the following algorithm.

Algorithm 4.1.20 (Subgroups of Index ℓ). Given an Abelian group C =
(C,DC) in HNF with DC = diag((ci)1≤i≤n) and a prime number ℓ, this al-
gorithm computes the list C of all subgroups of C of index ℓ as HNF left divisors
of DC .

1. [Initializations] Let C ← ∅, let rc be the largest index i (0 if none exist) such
that ℓ | ci, and set k ← 0.

2. [Loop on k] Set k ← k + 1. If k > rc, output C and terminate the algorithm.
Otherwise, set A← −1.

3. [Loop on A] Let A ← A + 1. If A ≥ ℓrc−k−1, go to step 2. Otherwise, let
H ← In be the identity matrix of order n, set Hk,k ← ℓ, set j ← k, and
a← A.

4. [Loop on j] Set j ← j + 1. If j > rc, set C ← C ∪ {H} and go to step 3.
Otherwise, let a = ℓq + r be the Euclidean division of a by ℓ with 0 ≤ r < ℓ,
set Hk,j ← r, a← q, and go to step 4.

4.1.11 Application to the Solution of Linear Equations
and Congruences

It is easy to apply the above techniques to the solution of a system of lin-
ear equations in integers or to a system of linear congruences. For the first
problem, we can use the following algorithm (which should be in [Coh0]).

Algorithm 4.1.21 (Solving Linear Systems in Integers). Given an m × n
matrix P with integer entries and an m-component integral column vector B,
this algorithm either says that the system of linear equations PX = B has no
integral solution, or gives the general solution as a particular solution together
with the general solution of the homogeneous system.

1. [Compute HNF] Using an HNF algorithm, compute a unimodular n×n matrix
U and a (not necessarily square) HNF matrix H such that PU = (0|H), let
k be the number of columns equal to 0 in the right-hand side, and write
U = (U1|U2), where U1 is an n× k and U2 is an (n− k)× n matrix.
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2. [Compute inverse image] Using [Coh0, Algorithm 2.3.4], check whether there
exists an inverse image Z2 of Y by H (if it exists it will be unique). If it does
not exist or if it does not have integral entries, the system has no solution, so
terminate the algorithm.

3. [Solve system] OutputX0 ← U2Z2 as a particular solution of our linear system,
the columns of the matrix U1 as a Z-basis of the homogeneous system, and
terminate the algorithm.

Proof. The easy proof is left to the reader (Exercise 13). ⊓⊔

Consider now the similar problem with congruences. Let P = (pi,j) be
an m × n matrix with integer entries, let (d1, . . . , dm) be a set of positive
integers, and let B = (b1, . . . , bm)t be an integral column vector. We want to
solve the system of m linear congruences in the n unknowns xj

∑

1≤j≤n
pi,jxj ≡ bi (mod di) for 1 ≤ i ≤ m .

We must first give a meaning to the problem. Let

C =
⊕

1≤i≤m
(Z/diZ) ,

and, if V is an integer column vector with m components, denote by V the
image of V in C by the natural surjection from Zm to C. The matrix P defines
a natural map from Zn to C which sends X to PX. Since C is a finite group,
the kernel of this map is a lattice in Zn that can therefore be represented as
an HNF matrix H . If X0 is a particular solution of our system (if it exists),
the set of solutions to our system of congruences is then equal to X0 +HZ
for any integer vector Z.

This solution is not completely satisfactory, however. Since we are dealing
only with finite groups, we really want a finite solution set. Let d be the lowest
common multiple (LCM) of the di, in other words the exponent of the group
C. Then clearly we can ask for solution vectors modulo d; in other words, we
introduce B = (Z/dZ)n and consider P as a map from B to C. The kernel of
this map can now be computed by Algorithm 4.1.11 as a subgroup of (Z/dZ)n,
and we can then compute its SNF in its own right, giving the solution set
of the homogeneous system as a group (A,DA), where the generators A are
elements of (Z/dZ)n and DA = diag(a1, . . . , ar) is a diagonal matrix in SNF
such that ai | d for all i.

To transform this into an algorithm, let D = diag(d1, . . . , dm) be the
diagonal matrix of the di (which is not in SNF in general). Using the tech-
niques of Section 4.1.6, we proceed as follows. Let U be an (m+n)× (m+n)
unimodular matrix such that (P |D)U = (0|H) with H in HNF, and write
U =

(
U1 U2

U3 U4

)
. If X = (x1, . . . , xn)

t is a column vector representing a so-
lution to our system of congruences, there exists another column vector
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Y such that (P |D)
(
X
Y

)
= B or, equivalently, (P |D)U

(
Z1

Z2

)
= B if we set

(
Z1

Z2

)
= U−1

(
X
Y

)
. Since (P |D)U = (0|H), we obtain HZ2 = B. Thus, our

system has a solution if and only if H−1B is an integral vector. The gen-

eral solution to our system is thus
(
Z1

Z2

)
=
(

Z1

H−1B

)
for an arbitrary integral

vector Z1; hence
(
X
Y

)
= U

(
Z1

H−1B

)
, so

X = U1Z1 + U2H
−1B

is the general solution in Zn of our system of congruences.
The vector U2H

−1B represents a particular solution to our system, while
U1Z1 is the general solution of the homogeneous system. To obtain the solu-
tion as a subgroup of B = (Z/dZ)n, as in the final step of Algorithm 4.1.11
we compute the HNF HB of (U1|dIn).

Putting all this together gives the following algorithm.

Algorithm 4.1.22 (Linear System of Congruences). Let
∑

1≤j≤n pi,jxj ≡ bi
(mod di) for 1 ≤ i ≤ m be a system of m linear congruences in the n unknowns
xj , and let d be the LCM of the di. This algorithm either says that the system
has no solution, or gives the general solution as a particular solution together
with the general solution of the homogeneous system, considered in (Z/dZ)n.
We will denote by P the m× n matrix of the pi,j , by D the diagonal matrix of
the di, by B the column vector of the bi, and represent solutions to our system
by column vectors X with n components.

1. [Compute HNF of (P |D)] Apply an HNF algorithm to the matrix (P |D), and
let U =

(
U1 U2

U3 U4

)
be a unimodular matrix and H an HNF matrix such that

(P |D)U = (0|H). We can discard the matrices U3 and U4.

2. [Test if solution] Let Z2 ← H−1B. If Z2 is not an integral vector, the system
has no solution, so terminate the algorithm. Otherwise, set X0 ← U2Z2 (this
is a particular solution to our system).

3. [Terminate] Let HB be the HNF of the matrix (U1|dIn). Output HB and
terminate the algorithm (the general solution to our system in B = (Z/dZ)n

will be X0 +HBZ for an arbitrary vector Z ∈ B).

Note in particular that the number of solutions of our system modulo d
is either 0 (if H−1B is not integral) or equal to dn/ det(HB).

If we want the solution of the homogeneous system as a group in its own
right, we apply Algorithm 4.1.3 to the system of generators and relations
(EHB , dH

−1
B ), where E is the canonical basis of (Z/dZ)n.

Finally, consider the problem of a combined system of linear congruences
and linear equations. This simply corresponds to the choice of some di equal
to 0 in the congruences. We cannot directly use Algorithm 4.1.22 since the
matrix D = diag(di) is not of maximal rank. We call such a system a mixed
linear system.
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There are two ways to solve the problem. The first one is to start by solving
the linear system using Algorithm 4.1.21, finding (if it exists) a particular
solution plus the general solution of the homogeneous system. We then plug
this into the system of congruences, giving a new system of congruences in
new variables, which we can then solve using Algorithm 4.1.22. We leave the
details to the reader (Exercise 14).

The second method is direct and gives the following algorithm, which is
only a slight modification of Algorithm 4.1.22, and we leave its proof to the
reader (Exercise 15).

Algorithm 4.1.23 (Mixed Linear System). Let
∑

1≤j≤n pi,jxj = bi for 1 ≤
i ≤ m1 and

∑
1≤j≤n pi,jxj ≡ bi (mod di) for m1 < i ≤ m = m1 + m2 be a

system of m1 linear equations and m2 linear congruences in the n unknowns xi,
and let d be the LCM of the di. This algorithm either says that the system has
no solution, or gives the general solution as a particular solution together with
the general solution of the homogeneous system. We will denote by P the m×n
matrix of the pi,j , by D the diagonal matrix of the di, by B the m-component
column vector of the bi, and represent solutions to our system by column vectors
X with n components. We assume that there do exist linear equations, in other
words, that there exists (i, j) with 1 ≤ i ≤ m1 and 1 ≤ j ≤ n such that pi,j 6= 0
(otherwise, use Algorithm 4.1.22).

1. [Compute HNF of (P |D0)] Let D0 ←
(

0
D

)
be the m ×m2 matrix obtained

by vertically concatenating an m1 ×m2 zero matrix with the diagonal matrix
D. Apply an HNF algorithm to the matrix (P |D0), and let U =

(
U1 U2

U3 U4

)
be

a unimodular matrix and H an HNF matrix such that (P |D0)U = (0|H).
We can discard the matrices U3 and U4. Note that the matrix H will not
necessarily be square, but its columns are independent.

2. [Test if solution] Using [Coh0, Algorithm 2.3.4], check whether there exists an
inverse image Z2 of B by H (if it exists, it will be unique). If it does not exist
or if Z2 is not an integral vector, the system has no solution, so terminate
the algorithm. Otherwise, set X0 ← U2Z2 (this is a particular solution to our
system).

3. [Compute integer kernel] Let P1 = (pi,j)1≤i≤m1,1≤j≤n be the matrix of the
linear system (obtained by extracting the first m1 rows of P ). Using an integer
kernel algorithm (for example, [Coh0, Algorithm 2.4.10]), compute a matrix
J whose columns give a Z-basis for the integer kernel of P1.

4. [Terminate] Let HB be the HNF of the matrix (U1|dJ). Output HB and
terminate the algorithm (the general solution to our system in Zn will be
X0 +HBZ for an arbitrary integer vector Z).

4.2 Computing the Structure of (ZK/m)∗

Let K be a number field and m a modulus of K. In this section, we explain
how to compute the group (ZK/m)∗ in the sense of Definition 4.1.4, using
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the tools we developed in the preceding section. The theoretical answer to
this question is solved, in principle, in [Nak2]. This is, however, not suited
to algorithmic purposes and, in addition, is much more complicated than the
solution we present below.

We give two answers to this question. The first answer gives a theoretical
and practical answer valid in many, but not all, cases (Section 4.2.2). The
second answer is slightly more complex, but gives a complete algorithmic
answer to the problem (Section 4.2.5). These solutions are complementary.

4.2.1 Standard Reductions of the Problem

Let m = m0m∞ with m0 =
∏

p pvp . An element of (ZK/m)∗ will be written

as a pair
(
α,w

)
, where α ∈ ZK is coprime to m0, and w ∈ (Z/2Z)m∞ .

Note that, although the natural map from the elements of ZK coprime to
m into (ZK/m)∗ is surjective (as a consequence of the strong approximation
theorem), it is not a good idea to represent elements of (ZK/m)∗ as

(
α, s(α)

)
,

where s(α) ∈ (Z/2Z)m∞ is the vector of signs of α at all the places of m∞.
The main reason for this will be seen in Section 4.3.2.

For each σ ∈ m∞, let eσ denote the corresponding canonical basis ele-
ment of (Z/2Z)m∞ (all its coordinates are equal to 0 except at σ, where the
coordinate is equal to 1). By definition, we have

(ZK/m)∗ = (ZK/m0)
∗ ⊕

⊕

σ∈m∞

(Z/2Z)eσ ,

so we are reduced to computing (ZK/m0)
∗. The reader may wonder why I go

to such pains in writing what is, after all, a trivial isomorphism, but I recall
that isomorphisms must be proscribed in algorithmic practice.

We now have a similar problem. We know theoretically that

(ZK/m0)
∗ ≃

∏

p

(ZK/p
vp)∗ ,

but this is not usable in algorithmic practice, since we must absolutely have
an equality and not an isomorphism. This is obtained by using the following
lemma.

Lemma 4.2.1. Let a and c be two coprime integral ideals of K, and set
b = ac.

(1) We can find in polynomial time elements a and c such that a ∈ a, c ∈ c,
and a+ c = 1.

(2) We have a split exact sequence

1 −→ (ZK/a)∗
ψ−→ (ZK/b)∗

φ−→ (ZK/c)
∗ −→ 1 ,



4.2 Computing the Structure of (ZK/m)∗ 187

where ψ
(
α
)

= cα+ a, φ
(
β
)

= β , and a section σ of φ is given by

σ
(
γ
)

= aγ + c. (Here denotes the classes in the respective groups, but
using the same notation for each will not lead to any confusion as long
as we know in which group we work.)

(3) Assume that (ZK/a)∗ =
⊕

(Z/aiZ)αi and (ZK/c)
∗ =

⊕
(Z/cjZ)γj . Then

(ZK/b)∗ =
⊕

(Z/aiZ)
(
cαi + a

)
⊕
⊕

(Z/cjZ)
(
aγj + c

)
.

(Note that this is not quite a representation in SNF, but it can easily be
transformed into one.)

Proof. The proof is a little tedious but straightforward.
(1). This is a restatement of Proposition 1.3.1.

(2) a). The map ψ is well-defined: if α = α′, then α′ − α ∈ a; hence,
(cα′ + a)− (cα+ a) = c(α′ − α) ∈ ac = b since c ∈ c.

b). The map ψ is a group homomorphism. Indeed, this follows from the
fact that a and c are orthogonal idempotents modulo b; in other words, that
ac ∈ b and

a2 − a = −a(1− a) = −ac = −c(1− c) = c2 − c ∈ b .

Hence,

ψ
(
α
)
ψ
(
α′) = (cα+ a)(cα′ + a) = cαα′ + a = ψ

(
αα′) .

c). The map ψ is injective. Indeed,

ψ
(
α
)

= 1 ⇐⇒ cα+ a ≡ 1 (mod ac) =⇒ cα ≡ 1 (mod a)

=⇒ α ≡ 1 (mod a) ⇐⇒ α = 1

since c ≡ 1 (mod a).
d). The map φ is clearly well-defined and is a group homomorphism.
e). By symmetry with a), b), and c), the map σ is well-defined and is an

injective group homomorphism. Furthermore, since a ≡ 1 (mod c), φ ◦ σ is
the identity map, which implies that σ is a section of φ and in particular that
φ is surjective.

Statement (3) is an immediate consequence of (2). ⊓⊔

Remarks

(1) This lemma can easily be generalized to the case where a and c are
coprime moduli (meaning that a0 + c0 = ZK and a∞ ∩ c∞ = ∅). The
proof of this is left to the reader (see Exercise 16).

(2) This lemma is simply the Chinese remainder theorem for ideals (or, more
generally, for moduli).
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(3) In Section 4.1.4 we mentioned that the matrix P introduced there
measures the obstruction to an exact sequence being split. Let A =
(ZK/a)∗ = (A,DA), B = (ZK/b)∗, and C = (ZK/c)

∗ = (C,DC). If
we follow Algorithm 4.1.8, we must first choose lifts B′ of C. Since our
sequence is split, we will take B′ = σ

(
C
)

= aC + c1ZK . Since σ is a

homomorphism, we have B′DC = σ
(
CDC

)
= σ(1C) = 1B, hence P = 0,

as claimed (see also Exercise 2).

By induction, it follows from this lemma that to compute the structure of
(ZK/m)∗ it is enough to compute the structure of (ZK/p

k)∗ for prime ideals
p. Hence, we can proceed in one of two ways. Either use Lemma 4.2.1 (3)
recursively or, preferably, we can use the following more global algorithm.

Algorithm 4.2.2 (Nonrecursive Chinese for Ideals). Let m0 =
∏

p pvp be an
integral ideal, and assume that we are given the SNF of (ZK/p

vp)∗ = (Gp, Dp).
This algorithm computes the SNF of (ZK/m0)

∗.

1. [Compute αp and βp] For each p | m0, do as follows. Using Algorithm 1.3.2,
compute αp and βp such that αp ∈ m0/p

vp , βp ∈ pvp , and αp + βp = 1.

2. [Terminate] Let G be the concatenation of the βp1ZK + αpGp and let D be
the diagonal concatenation of the SNF matrices Dp. Using Algorithm 4.1.3 on
the system of generators and relations (G,D), output the SNF of the group
(ZK/m0)

∗ and the auxiliary matrix Ua, and terminate the algorithm.

Proof. If Gp = (γi), it is clear that if we set γ′i = βp + αpγi then γ′i ≡ γi
(mod pvp); hence the γ′i are also generators of (ZK/p

vp)∗ with the same
matrix of relations Dp. In particular, the γ′i are coprime to pvp , but on the
other hand γ′i ≡ 1 (mod m0/p

vp), so the γ′i are also coprime to m0/p
vp , hence

to m0, so if we concatenate all the γ′i we clearly obtain a generating system
for (ZK/m0)

∗ whose matrix of relations is the diagonal concatenation of the
Dp. ⊓⊔

Note that, as usual, the matrix Ua allows us to obtain a corresponding
discrete logarithm algorithm.

We have thus reduced the problem to the computation of (ZK/p
k)∗. For

this, we first introduce a definition.

Definition and Proposition 4.2.3. Let a and b be (nonzero) ideals. As-
sume that a | b | ak for some positive integer k. We denote by (1 + a)/(1 + b)
the quotient set of 1+a by the equivalence relation R defined by (1+x) R (1+
y) ⇐⇒ x ≡ y (mod b). Multiplication in K induces a multiplication in
(1 + a)/(1 + b), which makes this set into an Abelian group.

Proof. It is clear that R is an equivalence relation. Since a is an ideal,
1+a is stable by multiplication, and since b is an ideal, R is compatible with
multiplication. Thus (1+a)/(1+b) has a natural commutative multiplication,
and the class of 1 is the unit element. We need only to show that any element
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has an inverse. But if x ∈ a, then by assumption xk ∈ b. It follows that for
any x ∈ a we have

(1 + x)

(
1 +

k−1∑

i=1

(−1)ixi
)

= 1 + (−1)k−1xk ;

hence, if we set y =
∑k−1
i=1 (−1)ixi, then y ∈ a and (1 + x)(1 + y)− 1 ∈ b, so

the class of 1 + y is an inverse of the class of 1 + x. Thus (1 + a)/(1 + b) is
in a natural way an Abelian group.

It is easy to prove that this group is also finite. This will, in fact, follow
from the results proven in the rest of this section. ⊓⊔

Proposition 4.2.4. Let p be a prime ideal of degree f , and let q = pf =
|ZK/p|. Set G = (ZK/p

k)∗. Let

W = {x ∈ G/ xq−1 = 1} and Gp = (1 + p)/(1 + pk) .

Then

(1) W ≃ (ZK/p)∗, and in particular W is a cyclic subgroup of order q − 1
of G. More precisely, if g0 is a generator of (ZK/p)∗, then ⌈log2(k)⌉
iterations of g ← g− (gq−1− 1)/((q− 1)gq−2) mod pk applied to g0 gives
a generator of W .

(2) Gp is a p-subgroup of G of order qk−1.
(3) G = W ×Gp.

Proof. (1). All nonzero elements of ZK/p are roots of the polynomial
equation Xq−1−1 = 0; hence this equation has exactly q−1 distinct solutions
in the field ZK/p. Thus

Xq−1 − 1 ≡
∏

a∈(ZK/p)∗

(X − a) (mod p) .

It follows from Hensel’s lemma that this factorization can be lifted to a fac-
torization modulo any power of p. Thus there exists a group isomorphism
between (ZK/p)∗ and solutions to Xq−1 − 1 ≡ 0 (mod pk); in other words,
between (ZK/p)∗ and W .

It follows that W is a cyclic group of order q − 1 = pf − 1 and that a
generator of W can be obtained by Hensel lifting a generator of (ZK/p)∗.
This is done using the Newton–Hensel iteration given in the proposition.

(2). If we send the class of 1 + x to the class of x, it is clear that, as a
set , Gp is isomorphic to p/pk. In fact, as we will see in more detail below, the
whole difficulty of the structure problem for (ZK/p

k)∗ comes from the fact
that this is only a set isomorphism, and not always a group isomorphism.
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In any case, it follows that

|Gp| =
∣∣p/pk

∣∣ = N (pk)/N (p) = qk−1 ,

so Gp is a p-subgroup of G of order qk−1 = pf(k−1).
(3). Consider the map φ from W ×Gp to G defined by φ((x, y)) = x ·y. It

is clearly a group homomorphism, and it is an isomorphism since an element
of W is characterized by its residue modulo p, and each nonzero residue is
attained. ⊓⊔

It follows from this proposition that to compute the structure of (ZK/m)∗

it is sufficient to compute the structure of Gp, which is of course the p-Sylow
subgroup of G.

4.2.2 The Use of p-adic Logarithms

To compute Gp, a natural idea is the use of p-adic logarithms. This is indeed
useful but cannot be applied in complete generality. We study it in detail
here.

We first recall some basic notions about p-adic numbers. We refer to [Ami],
[Bac], [Kob], and many other textbooks on the subject.

Definition 4.2.5. Let p be a prime ideal of ZK . A p-adic integer is a se-
quence (ak)k≥0, where ak ∈ ZK/p

k is such that ak+1 ≡ ak (mod pk). The
set of p-adic integers is an integral domain denoted ZK,p, and its field of
fractions, denoted Kp, is called the p-adic completion of the number field K.

In practice, although we will always work with elements modulo some
fixed power pk of p, it is much more convenient to consider this as the trun-
cation at level k of a p-adic number.

Definition 4.2.6. Let p be a prime ideal of ZK and x an element of K. We
define the p-adic logarithm of 1 + x by the expansion

logp(1 + x) =

∞∑

i=1

(−1)i−1 x
i

i
.

We define the p-adic exponential of x by the expansion

expp(x) =

∞∑

i=0

xi

i!
.

The basic properties of these p-adic functions are as follows.

Proposition 4.2.7. Let p be a prime ideal above a prime number p, and let
e = e(p/p) = vp(p) be its ramification index.
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(1) The expansion for logp(1+x) converges p-adically if and only if vp(x) ≥ 1.
(2) The expansion for expp(x) converges p-adically if and only if vp(x) >

e/(p− 1) or, equivalently, if and only if vp(x) ≥ 1 + ⌊e/(p− 1)⌋.
(3) We have

logp((1 + x)(1 + y)) = logp(1 + x) + logp(1 + y)

whenever this makes sense — more precisely, whenever vp(x) ≥ 1 and
vp(y) ≥ 1.

(4) We have expp(x + y) = expp(x) expp(y) whenever this makes sense —
more precisely, whenever vp(x) > e/(p− 1) and vp(y) > e/(p− 1).

(5) We have logp(expp(x)) = x and expp(logp(1 + x)) = 1 + x whenever
vp(x) > e/(p− 1).

Proof. (1). It is easily shown that a series
∑
i ui converges p-adically if

and only if ui tends to zero p-adically; in other words, if and only if the p-adic
valuation vp(ui) tends to infinity as i→∞.

We have

vp

(
xi

i

)
= ivp(x) − vp(i) = ivp(x)− evp(i) .

Thus, if vp(x) ≥ 1, we have vp(x
i/i) ≥ i−evp(i) ≥ i−e log(i)/ log(p)→∞ as

i→∞; hence the series converges p-adically. On the other hand, if vp(x) ≤ 0,
then vp(xi/i) ≤ −evp(i), which does not tend to +∞ as i→∞.

(2). We have

vp(i!) =
∑

j≥1

⌊
i

pj

⌋
,

hence vp(i!) < i/(p− 1), so vp(i!) ≤ (i− 1)/(p− 1) with equality if and only
if i is a power of p (see Exercise 17).

Thus

vp

(
xi

i!

)
= ivp(x)− evp(i!) ≥ i

(
vp(x) −

e

p− 1

)
→∞

as i→∞ when vp(x) > e/(p−1) or, equivalently, when vp(x) ≥ 1+⌊e/(p−1)⌋.
Conversely, if vp(x) ≤ e/(p − 1), then when i is a power of p we have

vp(xi/i!) = ivp(x) − e(i − 1)/(p − 1) ≤ e/(p− 1), and this does not tend to
infinity as i→∞, so the series does not converge in this case.

(3), (4), (5). The identities themselves are purely formal and are equiv-
alent to standard combinatorial identities on binomial coefficients, which in
turn can be proved via the properties of the usual (complex) logarithm and
exponential functions. We must, however, also find their domain of validity.
For (3), the result is clear since the functions logp(1+x) and logp(1+y) must
be defined; hence vp(x) ≥ 1 and vp(y) ≥ 1, but then vp(x+ y+ xy) ≥ 1 also.
The proof of (4) is similar.
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Let us prove (5). For logp(expp(x)) to be defined, we must have at least
vp(x) > e/(p − 1). Conversely, assume that this is satisfied. I claim that
vp(expp(x)− 1) ≥ 1, and so the logarithm will be defined.

Indeed, for all i > 0, we have

vp

(
xi

i!

)
= ivp(x) − e

∑

j≥1

⌊
i

pj

⌋
> ivp(x) −

ie

p− 1
> 0 ,

proving our claim.
Conversely, if vp(x) > e/(p− 1), then for all i we have

vp

(
xi

i

)
− vp(x) = (i− 1)vp(x)− evp(i) ,

so if i = pam with p ∤ m, we have

vp

(
xi

i

)
− vp(x) = (pam− 1)vp(x)− ea .

If we set f(a) = (pa − 1)vp(x)− ea, we have, for all a ≥ 1,

f(a)− f(a− 1) = pa−1(p− 1)vp(x) − e ≥ (p− 1)vp(x)− e > 0 ;

hence for all a ≥ 1 we have f(a) > f(0) = 0. From this it follows that
vp(xi/i) − vp(x) > 0 for a > 0, and for a = 0, vp(xi/i) − vp(x) = (i −
1)vp(x) > 0 when i > 1. So for i > 1, we have vp(x

i/i) > vp(x); hence
vp(logp(1 + x)) = vp(x). It follows that the exponential is defined, and the
identity follows. ⊓⊔

Corollary 4.2.8. Let p be a prime ideal above a prime number p, let e =
e(p/p) = vp(p) be its ramification index, and set k0 = 1 + ⌊e/(p − 1)⌋. For
any integers a and b such that b > a ≥ k0, the functions logp and expp induce

inverse isomorphisms between the multiplicative group (1 + pa)/(1 + pb) and
the additive group pa/pb. In particular, if e < p − 1 and k ≥ 2, they induce
inverse isomorphisms between Gp = (1 + p)/(1 + pk) and p/pk.

Proof. Set v = vp(x). We have seen above that if v > e/(p − 1), then
vp(logp(1 + x)) = vp(x) = v. Hence logp sends (1 + pa)/(1 + pb) to pa/pb,
and it is a group homomorphism because of the additive property of the
logarithm.

On the other hand, since v > e/(p − 1), the function expp(x) converges
for x ∈ pa. Furthermore, since vp(i!) ≤ (i− 1)/(p− 1), when v = vp(x) ≥ k0

we have

vp

(
xi

i!

)
= iv − evp(i!) ≥ v + (i− 1)

(
v − e

p− 1

)
.
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Therefore, if i > 1, we have vp(x
i/i!) > v; hence vp(expp(x) − 1) = v. It

follows that expp sends pa/pb to (1 + pa)/(1 + pb), and it is the inverse map
of logp by the proposition, proving the corollary. ⊓⊔

If p is an unramified prime ideal above a prime p ≥ 3, then k0 = 1,
and so we have an explicit isomorphism Gp ≃ p/pk. Hence, apart from a
small finite number of prime ideals, this corollary reduces a relatively difficult
multiplicative problem to a much easier additive one, as we will now see.

We first have the following easy lemma.

Lemma 4.2.9. Let a and b be (nonzero) integral ideals of ZK . The additive
group b/ab is isomorphic to the additive group ZK/a.

Proof. By the approximation theorem for Dedekind domains, there exists
α ∈ ZK such that vp(α) = vp(b) for all p dividing a and vp(α) ≥ vp(b)
for all p dividing b. In particular, α ∈ b. Thus the map x 7→ αx induces a
well-defined additive group homomorphism from ZK/a to b/ab. Since

αx = 0 ⇐⇒ αx ∈ ab ⇐⇒ ∀p vp(α) + vp(x) ≥ vp(a) + vp(b) ,

it follows from our choice of α that, for all p dividing a, we have vp(x) ≥ vp(a),
and hence x ∈ a so x = 0. Thus our map is an injective group homomorphism.
Since the norm is multiplicative in ZK , we have

|b/ab| = N (ab)/N (b) = N (a) = |ZK/a| ,

and hence our map is also surjective, proving the lemma. ⊓⊔

Coming back to our original problem, by Corollary 4.2.8 we know that if
b > a > e/(p− 1), the multiplicative group (1 + pa)/(1 + pb) is isomorphic to
pa/pb and hence, by the above lemma, to ZK/p

b−a.
The structure of these additive groups can be completely described as

follows.

Theorem 4.2.10. Let p a prime ideal above p, with ramification index e =
e(p/p) and residual degree f = f(p/p), and let k ≥ 1 be an integer. Write

k + e− 1 = eq + r with 0 ≤ r < e .

Then (
ZK/p

k
)
≃ (Z/pqZ)

(r+1)f ×
(
Z/pq−1Z

)(e−r−1)f
.

Proof. We have
∣∣ZK/pk

∣∣ = N (pk) = pkf , hence ZK/p
k is a p-group of

cardinality pkf , so we can write

ZK/p
k ≃

∏

i≥1

(Z/piZ)ai , with
∑

i≥1

iai = kf .
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Since pk ∈ pk, we must have ai = 0 for i > k. Let us assume that we have
computed ak, ak−1, . . . , aj+1 (initially with j = k). We want to compute aj .

Note that
pj−1(ZK/p

k) ≃
∏

i≥j
(Z/pi−j+1Z)ai ;

hence ∣∣pj−1(ZK/p
k)
∣∣ = ps with s =

∑

i≥j
(i− j + 1)ai .

On the other hand, we have

pj−1(ZK/p
k) = (pj−1ZK + pk)/pk .

The ideal b = pj−1ZK + pk is an integral ideal that contains pk and hence is
a power of p. Furthermore,

vp(b) = min(vp(pj−1), vp(p
k)) = min(e(j − 1), k) ,

so b = pmin(e(j−1),k).
Since the ideal norm is multiplicative and (ZK/p

a)/(pb/pa) ≃ ZK/p
b, we

have
∣∣pb/pa

∣∣ = N (p)a−b, from which it finally follows that

∣∣pj−1(ZK/p
k)
∣∣ = ps

′

with s′ = (k−min(e(j−1), k))f = max(k−e(j−1), 0)f .

Comparing the two expressions, we obtain the recursion formula
∑

i≥j
(i− j + 1)ai = max(k − e(j − 1), 0)f . (1)

Since ai = 0 for i > k, it follows by induction that aj = 0 for e(j − 1) ≥ k;
in other words, aj = 0 for j > ⌈k/e⌉ (this is clear anyhow since p⌈k/e⌉ ∈ pk).
Let k + e− 1 = eq + r with 0 ≤ r < e be the Euclidean division of k + e− 1
by e, so that q = ⌊(k + e − 1)/e⌋ = ⌈k/e⌉. Since ai = 0 for i > q, applying
the above recursion with j = q gives us

aq = (k − e(q − 1))f = (r + 1)f .

Applying the recursion with j = q − 1 gives us

aq−1 = (k − e(q − 2))f − 2aq = (e− 1− r)f .

Finally, since

qaq+(q−1)aq−1 = (qr+q+qe−q−qr−e+1+r)f = (eq−e+r+1)f = kf ,

we must have ai = 0 for i < q − 1, proving the theorem. ⊓⊔

As the following corollary shows, we can now obtain the multiplicative
structure of (ZK/p

k)∗ in most cases.
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Corollary 4.2.11. Let p be a prime ideal above p, with ramification index
e = e(p/p) and residual degree f = f(p/p), and let k ≥ 2 be an integer. Write

k + e− 2 = eq + r with 0 ≤ r < e .

Assume that p ≥ min(e+ 2, k). Then

(
ZK/p

k
)∗ ≃

(
Z/(pf − 1)Z

)
× (Z/pqZ)

(r+1)f ×
(
Z/pq−1Z

)(e−r−1)f
.

Proof. Assume first that k ≥ e + 2. Then p ≥ e + 2 or, in other words,
e < (p− 1). We can thus apply Corollary 4.2.8, and Lemma 4.2.9, Theorem
4.2.10, together with Proposition 4.2.4, imply the result in this case.

Assume now that k ≤ e + 1. Then e ≤ k + e − 2 ≤ 2e − 1; hence q = 1
and r = k − 2. Thus, we must prove that

(1 + p)/(1 + pk) ≃ (Z/pZ)(k−1)f ,

and since these groups have the same cardinality, we must simply show that
(1 + p)/(1 + pk) is killed by p. Since

(1 + x)p = 1 + xp +
∑

1≤i≤p−1

(
p

i

)
xi ,

when x ∈ p and 1 ≤ i ≤ p− 1, we have

vp

((
p

i

)
xi
)

= e+ ivp(x) ≥ e+ 1 ≥ k ,

and vp(x
p) = pvp(x) ≥ p ≥ k by assumption. Hence, if x ∈ p, we have

(1 + x)p ≡ 1 (mod pk), and so (1 + p)/(1 + pk) is killed by p, as claimed,
proving the corollary. ⊓⊔

This gives the solution for the structure problem in all but a finite number
of cases, but it seems hopeless to have a general nonalgorithmic answer to
the problem which is valid in every case. Even in [Nak2], the given answer is
algorithmic, although not very usable.

To illustrate this complexity, we give the following supplementary propo-
sition, which covers some more cases (the theorem can be extended at will if
desired; see Exercise 19).

Proposition 4.2.12. Let p be a prime ideal above p, of ramification index
e = e(p/p) and degree f , and let k ≥ 1 be an integer. We have

(ZK/p
k)∗ ≃ (Z/(pf − 1)Z)×Gp , where Gp =

k−1∏

i=1

(Z/piZ)ai

for certain nonnegative integers ai. For 2 ≤ k ≤ 4, they are given by the
following table.
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(1) If k = 2, then (a1) = (f).
(2) If k = 3, then (a1, a2) is given by

(0, f) if p ≥ 3 and e = 1;

(2f, 0) if p ≥ 3 and e ≥ 2;

(2, f − 1) if p = 2 and e = 1;

(0, f) if p = 2 and e ≥ 2.

(3) If k = 4, then (a1, a2, a3) is given by

(0, 0, f) if p ≥ 5 and e = 1;

(f, f, 0) if p ≥ 5 and e = 2;

(3f, 0, 0) if p ≥ 5 and e ≥ 3;

(0, 0, f) if p = 3 and e = 1;

(f + 2a, f − a, 0) if p = 3 and e = 2;

(f, f, 0) if p = 3 and e ≥ 3;

(1, 1, f − 1) if p = 2 and e = 1;

(f, f, 0) if p = 2 and e ≥ 2.

In the above, a = 1 if there exists x ∈ ZK such that x2 ≡ −3 (mod p3),
and a = 0 otherwise.

(Note that in this proposition, we have, as usual, mixed multiplicative and
additive notation.)

Proof. We must first prove that Gp is killed by pk−1; in other words, that

(1 + x)p
k−1 ≡ 1 (mod pk) for all x ∈ p. We prove this by induction on k. The

statement is trivially true for k = 1, so assume that it is true for k. Thus

(1 + x)p
k−1

= 1 + y with y ∈ pk. Hence

(1 + x)p
k

= (1 + y)p = 1 +
∑

1≤j≤p−1

(
p

j

)
yj + yp .

Since p |
(
p
j

)
for 1 ≤ j ≤ p− 1, we have

vp

((
p

j

)
yj
)

= e+ jvp(y) ≥ 1 + k .

On the other hand,

vp(yp) = pvp(y) ≥ pk ≥ k + 1

since p ≥ 2, from which our assertion follows by induction. Note that one can
prove a much more precise statement than this (see Exercise 20).
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Corollary 4.2.11 gives us directly a number of special cases. Specifically,
it gives the cases k = 2, k = 3 and p ≥ 3; k = 4 and p ≥ 5; and k = 4, p = 3,
and e = 1.

Let us look at the remaining cases. The easiest way is probably to use the
following lemma, similar to the proof of Theorem 4.2.10.

Lemma 4.2.13. With the notation of the above proposition, let pkj be the
cardinality of the kernel of the map x 7→ xp

j

from Gp into itself. The expo-
nents ai are given by ai = 0 for i ≥ k and the following backwards recursion:

aj = (k − 1)f −
k−1∑

i=j+1

(i− j + 1)ai − kj−1.

The reader is invited to compare this with recursion (1).
Proof. Since Gp = (1 + p)/(1 + pk) is killed by pk−1, we can write Gp ≃∏

1≤i≤k−1(Z/p
iZ)ai . Let Kj be the kernel of the map x 7→ xp

j

from Gp into

itself, and let pkj = |Kj | be its cardinality (it will be a power of p since Kj

is a subgroup of the p-group Gp). Then

Kj ≃
∏

1≤i≤j
(Z/piZ)ai

∏

j+1≤i≤k−1

(pi−jZ/piZ)ai ,

from which it follows that

kj =
∑

1≤i≤j
iai + j

∑

j+1≤i≤k−1

ai .

Since Gp = p(k−1)f , we have
∑

1≤i≤k−1 iai = (k−1)f , and so kj = (k−1)f−∑
j+1≤i≤k−1(i− j)ai. Changing j into j− 1 gives the backwards recursion of

the lemma. ⊓⊔

Resuming the proof of the corollary, we look at the cases not covered by
Corollary 4.2.11.

Assume first that k = 3, p = 2. We have K1 = {1 + x ∈ Gp, (1 + x)2 ≡ 1
(mod p3)}, so

K1 =
{
1 + x ∈ Gp, p3 | x(x+ 2)

}
=
{
1 + x ∈ Gp, p2 | x or p2 | x+ 2

}
.

Hence, if e ≥ 2, these two conditions are equivalent, so K1 = (1+p2)/(1+p3)
and 2k1 = N (p) = 2f , while if e = 1, K1 = ±(1 + p2)/(1 + p3), and 2k1 =
2N (p) = 2f+1. From the backwards recursion, it follows that a2 = f , a1 = 0
when e ≥ 2, while a2 = f − 1, a1 = 2 when e = 1 (note that k0 = 0). A
similar reasoning left to the reader gives the formulas for k = 4, p = 2.

Assume now that k = 4, p = 3, e ≥ 2 (the case e = 1 follows from
Corollary 4.2.11). By definition,
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K2 =
{
1 + x ∈ Gp, (1 + x)9 ≡ 1 (mod p4)

}
.

Since e ≥ 2, when x ∈ p, we have

(1 + x)9 ≡ 1 + 9x+ 36x2 + 84x3 ≡ 1 (mod p4) ,

and so K2 = Gp and hence 3k2 = 33f and a3 = 0.
Similarly,

K1 =
{
1 + x ∈ Gp, (1 + x)3 ≡ 1 (mod p4)

}
.

Since e ≥ 2, when x ∈ p, we have (1 + x)3 = 1 + 3x+ 3x2 + x3 ≡ 1 + 3x+ x3

(mod p4), and so

K1 =
{
1 + x ∈ Gp, p4 | x(3 + x2)

}
.

If e ≥ 3, this is equivalent to p2 | x; hence K1 = (1+p2)/(1+p4), so 3k1 = 32f ,
and the recursion formula gives a2 = f and a1 = f .

If e = 2, then either p2 | x or x2 ≡ −3 (mod p3), these two conditions
being exclusive. If this last congruence has no solution (if a = 0), then we
again have 3k1 = 32f and a2 = a1 = f . If the congruence has a solution x0,
we have vp(x0) = 1, and since x(3 + x2) ≡ x(x − x0)(x + x0) (mod p3), it
follows that

K1 =
{
1 + x ∈ Gp, x ≡ 0, x0,−x0 (mod p2)

}
,

and so 3k1 = 3 · 32f = 32f+1. The recursion formula gives a2 = f − 1 and
a1 = f + 2, as desired. ⊓⊔

Note that in the above cases, we have given only the abstract structure of
the groups (ZK/p

k)∗ and not a complete algorithmic description in the sense
of Definition 4.1.4, but this can also easily be done if desired (see Algorithm
4.2.15 below and the discussion that precedes it).

We see that the use of p-adic logarithms gives a satisfactory answer to our
structure problem in most cases (see Exercise 21 for still another possibility
of the same nature). However, it is not complete, and we must therefore look
for another idea to be able to treat the general problem. We shall see that
this idea indeed leads to a complete algorithmic and satisfactory solution to
the problem, but not to a theoretical formula of the same nature as the one
given by Proposition 4.2.12.

4.2.3 Computing (ZK/pk)∗ by Induction

We now explain how to algorithmically compute the groups (ZK/p
k)∗ in all

cases. The method is based on an induction procedure using the following
proposition.
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Proposition 4.2.14. (1) Let a ≤ b ≤ c be integers. We have the exact
sequence

1 −→ (1+pb)/(1+pc) −→ (1+pa)/(1+pc) −→ (1+pa)/(1+pb) −→ 1 .

(2) Assume that b ≤ 2a. Then the map from the multiplicative group (1 +
pa)/(1 + pb) to the additive group pa/pb, which sends the class of 1 + x
modulo 1 + pb to the class of x modulo pb, is well-defined and is a group
isomorphism.

Proof. The existence of the exact sequence is trivial. For (2), the definition
of (1 + pa)/(1 + pb) (Definition 4.2.3) shows that the map 1 + x 7→ x is a
bijection. However, it is not a group homomorphism in general (otherwise, Gp

would always be isomorphic to p/pk, and we have seen in Proposition 4.2.12
that this is not always the case). If, however, b ≤ 2a and x and y belong to
pa, we have pb | p2a | xy, and hence (1+x)(1+y) = 1+x+y+xy ≡ 1+x+y
(mod pb), and so the map is a group homomorphism. ⊓⊔

Assume that we can algorithmically compute pa/pb for a ≤ b ≤ 2a. Using
the explicit isomorphism above, we thus compute (1 + pa)/(1 + pb). Then
using Proposition 4.2.14 (1) and Algorithm 4.1.8, we inductively compute
(1+p)/(1+p2), (1+p)/(1+p4), . . . , (1+p)/(1+p2m

), Gp = (1+p)/(1+pk),
where m = ⌊log2(k − 1)⌋.

Thanks to Lemma 4.2.9 and Theorem 4.2.10, we know the structure of
pa/pb as an abstract Abelian group. Although everything is explicit, it is
not very convenient to deduce from the proof of Theorem 4.2.10 a system of
generators and relations for pa/pb.

To compute pa/pb algorithmically, the simplest is perhaps to proceed as
follows. Let p = pZK + πZK be a two-element representation of p, where we
may assume π chosen so that vp(π) = 1 (if this is not the case, then vp(p) = 1,
so p is unramified and we replace π by π + p).

Then for all m, if q = ⌈m/e⌉ = ⌊(m+ e− 1)/e⌋ as above, by Proposition
2.3.15 (or directly), we have pm = pqZK + πmZK .

From this, it is easy to compute the Hermite normal form of pm on some
fixed integral basis of ZK : construct the n × 2n matrix obtained by con-
catenating pq times the identity matrix with the n × n matrix giving the
endomorphism multiplication by πm on the integral basis, and then apply a
Hermite normal form algorithm to obtain the desired HNF.

Let A and B be the Hermite normal form of pa and pb, respectively.
Since pb ⊂ pa, the matrix A−1B, which expresses the HNF basis of pb on
the HNF basis of pa, has integer entries. If we apply the Smith normal
form algorithm to this matrix, we will find unimodular matrices U and V
such that UA−1BV = DC is a diagonal matrix in Smith normal form. If
DC = diag((ci)i) and we set C = AU−1, then the columns of C give the
coordinates on the chosen integral basis of elements γi ∈ pa, and we have
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pa/pb =
⊕

(Z/ciZ)γi, where γ denotes the class of γ modulo pb. If, in addi-
tion, b ≤ 2a, it follows from Proposition 4.2.14 that

(1 + pa)/(1 + pb) =
⊕

(Z/ciZ)(1 + γi) .

Note that the above is simply a rephrasing of the method explained in
Section 4.1.3.

We can now give formal algorithms for computing (ZK/p
k)∗. We begin

with a basic subalgorithm corresponding to Proposition 4.2.14.

Algorithm 4.2.15 (Computation of pa/pb and (1+pa)/(1+pb)). Let K be a
number field, let p be a prime ideal given by a two-element representation, and let
a and b be two positive integers such that b > a. This algorithm computes inte-
gers ca,i and elements γa,i ∈ pa such that pa/pb =

⊕
(Z/ca,iZ)γa,i and ca,i+1 |

ca,i. Hence, if in addition b ≤ 2a, (1 + pa)/(1 + pb) =
⊕

(Z/ca,iZ)(1 + γa,i).
Furthermore, it outputs an additional matrix Ua, which will be needed for discrete
logarithm computations.

1. [Compute HNF matrices] By using the method explained above, compute the
Hermite normal forms A and B of pa and pb, respectively.

2. [Apply Smith] Apply the Smith normal form algorithm to the integral matrix
A−1B, thus obtaining unimodular matrices U and V such that UA−1BV =
DC is a diagonal matrix in Smith normal form.

3. [Terminate] Let DC = diag((ca,i)i). For each i, let γa,i be the element of ZK
(in fact of pa) whose coefficients on the given integral basis are the entries
of the ith column of the matrix AU−1. Output pa/pb =

⊕
(Z/ca,iZ)γa,i,

and if b ≤ 2a, (1 + pa)/(1 + pb) =
⊕

(Z/ca,iZ)(1 + γa,i). For future use set
Ua ← UA−1, output the matrix Ua, and terminate the algorithm.

We could clean up the trivial components as we did at the end of Algo-
rithm 4.1.3. Since this is essentially going to be used only as a subalgorithm
of the complete algorithm for computing (ZK/m)∗, we will clean up at the
very end.

The corresponding discrete logarithm algorithm is essentially trivial. In-
deed, since a ≤ 2b, Proposition 4.2.14 tells us that

∏
(1 + γa,i)

xi ≡ 1 +
∑

xiγa,i (mod 1 + pb) .

Hence, if β ∈ (1 + pa)/(1 + pb), we want to solve
∑
xiγa,i = β − 1, or

in matrix terms on the integral basis, AU−1X = B − 1K , where B is the
column vector representing β on the integral basis, and 1K is the column
vector representing 1 (equal to (1, 0, . . . , 0)t since we chose an integral basis
starting with 1). It follows that X = UA−1(B − 1K) = Ua(B − 1K) is the
desired discrete logarithm, and this is the reason we have kept the matrix
Ua.



4.2 Computing the Structure of (ZK/m)∗ 201

The second basic subalgorithm we need is the following.

Algorithm 4.2.16 (Discrete Logarithm in (1 + p)/(1 + pk)). Let K be a
number field, p a prime ideal and k an integer, which we can assume to be greater
than or equal to 2; otherwise the problem is trivial. For each a ≥ 1 such that
2a ≤ k, we assume that we have computed the ca,i, γa,i, and Ua corresponding
to b = min(2a, k) by Algorithm 4.2.15. Finally, let β ∈ (1 + p), where β is given
by a column vector B on the integral basis. This algorithm computes the discrete
logarithm of β in (1 + p)/(1 + pk) with respect to the 1 + γa,i; more precisely,

it computes integers ya,i such that β =
∏
a,i (1 + γa,i)

ya,i
in (1 + p)/(1 + pk).

(The γa,i and ca,i do not give a Smith basis of (1 + p)/(1 + pk), but this is
not necessary. In addition, a will always be a power of 2.) As above, we let 1K
denote the column vector representing 1.

1. [Initialize] Set a← 1.

2. [Main step] Set Z ← Ua(B − 1K). If Z = (zi), for each i set ya,i ←
−((−zi) mod ca,i), where we choose the smallest nonnegative residue of −zi.
Finally, set β ← β

∏
i(1 + γ

−ya,i

a,i ). Note that this product should be reduced

modulo pk (see Section 4.3.2) and that the exponents are nonnegative.

3. [Loop and terminate] Set a ← 2a. If a < k, let B be the column vector
whose entries are the coefficients of β on the integral basis, and go to step 2.
Otherwise, output the ya,i and terminate the algorithm.

There is a little trick in the main step of this algorithm. We could have
simply set ya,i ← zi mod ci. We would then have to set β ← β/

∏
i(1 +

γ
ya,i

a,i ) mod pk, and although division modulo an ideal is not too difficult, it is
slower than multiplication, hence we prefer to use the above trick (see Section
4.3.2).

We are now ready to give the algorithm for computing (ZK/p
k)∗.

Algorithm 4.2.17 (Computation of (ZK/p
k)∗). Let K be a number field, let

p be a prime ideal of degree f above p given by a two-element representation,
and let k be a positive integer. This algorithm computes integers di and elements
δi of ZK such that (ZK/p

k)∗ =
⊕

(Z/diZ)δi with di+1 | di. It also outputs a
number of other quantities that will be needed in other algorithms.

1. [Initialize] If k = 1, go to step 4. Otherwise, set a← 1 and b← 2.

2. [Compute (1 + pa)/(1 + pb)] Using Algorithm 4.2.15, compute the quantities
ca,i, 1 + γa,i, and Ua giving the structure of (1 + pa)/(1 + pb). Call na the
number of cyclic components ca,i (or γa,i). For future use, output all these
quantities.

3. [Loop] Set a← 2a. If a < k, set b← min(2b, k) and go to step 2.

4. [Prime to p part] Set q ← pf . By choosing elements at random in ZK r p

(essentially by using Algorithm 1.3.13), find g0 ∈ ZK such that g0 mod p is
of order exactly q − 1 in (ZK/p)∗ (so that the class of g0 is a generator of
(ZK/p)∗).
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5. [Start computation of big matrix] Set c0,1 ← q− 1, γ0,1 ← g0− 1, n0 ← 1. In
the next step, we will compute a square h×h matrix H , where h =

∑
a≥0 na.

It is very convenient to index the rows and columns of H by the pairs (a, i)
as for the generators, and we will consider these pairs to be lexicographically
ordered, so that (a, i) ≤ (b, j) if and only if a < b or a = b and i ≤ j.

6. [Compute big matrix H] For each pair (a, i), do the following. Set Ha,i ← V ,
where V = (vb,j) is the column vector computed as follows. Set vb,j ← 0
for (b, j) < (a, i), set va,i ← ca,i. Let β ← (1 + γa,i)

ca,i . Using Algorithm
4.2.16, compute the discrete logarithm (yb,j) of β (we will have yb,j = 0 for
(b, j) ≤ (a, i)). Finally, for (b, j) > (a, i), set vb,j ← −yb,j.

7. [Terminate] Let G be the row vector of the 1 + γa,i (here is modulo pk),
and let H be the matrix whose columns are the Ha,i. Apply Algorithm 4.1.3
to the system of generators and relations (G,H), output the SNF (P,DP ),
the auxiliary matrix Up = Ua obtained in that algorithm, and terminate the
algorithm.

The corresponding discrete logarithm algorithm is the following.

Algorithm 4.2.18 (Discrete Logarithm in (ZK/p
k)∗). In addition to the data

given in Algorithm 4.2.17, we are given an element β ∈ ZK coprime to pk (or,
equivalently, to p). This algorithm computes the discrete logarithm of β with
respect to the δi output by Algorithm 4.2.17.

1. [Compute discrete log modulo p] Using, for example, Shanks’s baby-step,
giant-step method or a more sophisticated method, compute the discrete
logarithm y0,1 of β with respect to g0 in (ZK/p)∗ (this may be the most
time-consuming part of the algorithm if q = |ZK/p| is large). Then set
β ← β/g

y0,1

0 mod pk.
2. [Use Algorithm 4.2.16] (Here β ∈ (1 + p).) Compute the discrete logarithm

(ya,i) of β in (1 + p)/(1 + pk) in the sense of Algorithm 4.2.16, and let
Y = (ya,i) be the column vector of the ya,i (always in lexicographic order,
and including y0,1).

3. [Terminate] Using the matrix Up output in Algorithm 4.2.17 (whose columns
are indexed by the pairs (a, i), but whose rows are indexed normally), compute
X ← UpY , output X , and terminate the algorithm.

Remark. Using the result of Exercise 21, we have at our disposal at least
three methods for computing the structure of (1 + p)/(1 + pk).

(1) The use of p-adic logarithms. This method gives the result in one step
if e < p − 1; otherwise one needs to use other methods to compute the
structure of (1 + p)/(1 + pk0) with k0 = 1 + ⌊e/(p− 1)⌋.

(2) The use of the map 1+x 7→ x as we have done above. This method needs
to be applied recursively since it is applicable only for (1 + pa)/(1 + pb)
when b ≤ 2a, and the number of iterations is roughly log k/ log 2.
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(3) The use of the Artin–Hasse logarithm explained in Exercise 21, in other
words the map 1 + x 7→ ∑

1≤i<p(−1)i−1xi/i modulo pb. This method
also needs to be applied recursively (unless k ≤ p) since it is applicable
only for (1 + pa)/(1 + pb) when b ≤ pa, and the number of iterations
is roughly log k/ log p. Thus, this method always needs fewer iterations
than the previous method, at the expense of the computation of a more
complicated function. It is not clear which method is the fastest.

The computation of (ZK/p
k)∗ by the recursive method explained above

has the advantage of working in all cases, but it is rather heavy and can lead
to quite large generators. In the next section we will see how to reduce the size
of these generators. We can, however, usually improve the above algorithm by
using a combination of p-adic logarithms and exponentials, with the recursive
method. Indeed, by Corollary 4.2.8, we know that if k0 = 1 + ⌊e/(p − 1)⌋,
then the p-adic logarithm and exponential give isomorphisms between (1 +
pk0)/(1 + pk) and pk0/pk. Thus, we can use Algorithm 4.2.17 to compute
explicitly (1 + p)/(1 + pk0), p-adic techniques to compute (1 + pk0)/(1 + pk),
and Proposition 4.2.14 and Algorithm 4.1.8 to put both structures together.
The details are left to the reader, but a serious implementation should use
this approach (see Exercise 22).

One important special case of this that deserves mention is when e = p−1,
which is of frequent use in explicit constructions of Kummer theory (see
Chapter 5). In this case, we have the following proposition.

Proposition 4.2.19. Assume p is a prime ideal above p of ramification in-
dex e and residual degree f , and assume that e = p− 1. Let ωi be such that
(ZK/p) =

⊕
i∈Dp

(Z/pZ)ωi with the notation of Proposition 2.4.6 and Corol-

lary 2.4.7, and let π be a uniformizer of p (in other words, π ∈ prp2). Finally,
let γj as output by Algorithm 4.2.15 be such that p2/pp =

⊕
(Z/pcj Z)γj with

cj ≥ 1 (after removing the trivial components).
Then for all j we have cj = 1, (1 + p)/(1 + pp) is a Z/pZ vector space

of dimension ef = (p− 1)f , and a basis for this vector space is given by the
classes of 1 + πωi for i ∈ Dp, together with the classes of the expp(γj). In
other words,

(1 + p)/(1 + pp) =
⊕

i∈Dp

(Z/pZ)(1 + πωi)
⊕

1≤j≤(p−2)f

(Z/pZ) expp(γj) .

Proof. Since π is a uniformizer of p, we have p/p2 =
⊕

i∈Dp
(Z/pZ)πωi;

hence
(1 + p)/(1 + p2) =

⊕

i∈Dp

(Z/pZ)(1 + πωi) .

Note that these are equalities, and not only isomorphisms.
On the other hand, p2/pp is clearly killed by p, so cj = 1 for all j such

that cj > 0. Since e = p− 1, by Corollary 4.2.8, we also have
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(1 + p2)/(1 + pp) =
⊕

1≤j≤(p−2)f

(Z/pZ) expp(γj) .

Finally, I claim that the exact sequence

1 −→ (1 + p2)/(1 + pp) −→ (1 + p)/(1 + pp) −→ (1 + p)/(1 + p2) −→ 1

is split , which will prove the proposition. To prove this, instead of giving a
direct proof (which is easy; see Exercise 23), we will use Algorithm 4.1.8.

Using the same symbol to mean the class modulo different subgroups,
we have A =

(
expp(γj)

)
j
, DA = pIf(e−1), C =

(
1 + πωi

)
i∈Dp

, and DC = pIf

(where In always denotes the n × n identity matrix). Thus, following the
algorithm, we take B′ =

(
1 + πωi

)
i∈Dp

and ψ(A) =
(
expp(γj)

)
.

Set α = 1 + πωi. By the binomial theorem, we have

αp = 1 +
∑

1≤k≤p−1

(
p

k

)
πkωki + πpωpi .

Now vp(πpωpi ) ≥ pvp(π) = p, while for 1 ≤ k ≤ p− 1,

vp

((
p

k

)
πkωki

)
≥ vp(p) + k = e+ k ≥ p

since e = p− 1. It follows that B′′ = B′DC is made only of unit elements of
(1 + p)/(1 + pp); hence we can take A′′ also made of unit elements, so we can
take P = 0. Thus,

G = (ψ(A)|B′) =
((

expp(γj)
)
j

∣∣∣
(
1 + πωi

)
i∈Dp

)

and M = pIef , which is already in SNF, so we have proved both our claim
and the proposition. ⊓⊔

Remark. If we use the Artin–Hasse exponential expa (see Exercise 21),
we have also

(1 + p)/(1 + pp) =
⊕

1≤j≤(p−1)f

(Z/pZ) expa(δj) ,

where the δj are the generators of the additive group p/pp. This may seem
simpler than the formula given by the above proposition, but it is not clear
if it is really any faster since the computation of the expa(δj) is longer than
that of the πωi.

4.2.4 Representation of Elements of (ZK/m)∗

We are now ready to give a complete algorithm for computing (ZK/m)∗ and
the corresponding discrete logarithm algorithm. Before doing this, we must
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first explain how to represent elements of (ZK/m)∗. The immediate idea that
comes to mind is to represent them as classes of elements of ZK modulo
the equivalence relation defining (ZK/m)∗. In fact, this idea is almost forced
upon us by the notation used.

This has two closely related flaws. First, the surjectivity of the map going
from the subset of ZK of elements coprime to m to (ZK/m)∗ is not completely
trivial, since it is a consequence of the strong approximation theorem in
Dedekind domains. Second, the elements of ZK we will have to choose to
represent elements of (ZK/m)∗ will have to be quite “large” since they must
have specific signatures.

There is, however, a better representation. If m = m0m∞, we represent
an element in (ZK/m)∗ as a pair

(
α, v

)
, where α ∈ (ZK/m0)

∗ and v ∈ Fm∞
2

considered as a column vector. This is simply the definition of the group
(ZK/m)∗, but the whole point is that it is much simpler to handle these pairs
than directly elements of ZK together with their signatures. Note that even
when m is an ideal — in other words, when m∞ = ∅ — we still consider
pairs

(
α, v

)
, where v is the unique vector in 0-dimensional space over F2.

If
(
α, v

)
∈ (ZK/m)∗, we will say that α is the finite part and v the infinite

part , or the Archimedean part . The group law in (ZK/m)∗ corresponds to
multiplying the finite parts and adding the infinite parts.

In all the algorithms that we will present, the above representation is
sufficient and simpler than the one-element representation. In some cases,
however, it may be desirable to obtain such a one-element representation.
For this, the following naive algorithm works well.

Algorithm 4.2.20 (One-Element Representation in (ZK/m)∗). Let m =
m0m∞ be a modulus and

(
α, v

)
a pair representing an element of (ZK/m)∗,

with v = (vj)j∈m∞ . Call s the sign homomorphism from K∗ to Fm∞
2 . This algo-

rithm computes an element β ∈ ZK such that β ≡ α (mod ∗m0) and s(β) = v.

1. [Initialize] If it has not already been done, compute a Z-basis γ1, . . . , γn of
the ideal m0 and set k ← |m∞|.

2. [Find elements] By considering small linear combinations of the γi, find k
elements β1, . . . , βk in m0 such that the matrix A over F2 whose columns are
the s(1 + βj) is invertible.

3. [Multiply] Set w← A−1v, and let w = (wj)1≤j≤k. Set β ← α, and for each j
such that wj 6= 0, set β ← β(1 + βj). Output β and terminate the algorithm.

Evidently, if several conversions of this sort must be done, steps 1 and 2
should be done once and for all. The final β may be large, and it is desirable
to reduce it. This cannot be done too rashly, however, since we must preserve
the signature of β. We will discuss this in Section 4.3.2.

Warning. As we have already mentioned, the map from (ZK/m)∗ to
Clm(K) used in Proposition 3.2.3 is not the map coming from the algorith-
mically natural representation

(
α, v

)
but the map coming from the above

one-element representation.
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4.2.5 Computing (ZK/m)∗

Using Algorithm 4.2.2, we can now put everything together and obtain the
algorithmic description of the group (ZK/m)∗, in the sense of Definition 4.1.4.
Thanks to the representation explained above, the algorithms are very easy
to implement (they would be much more painful if we used the one-element
representation).

Call s the signature homomorphism from K∗ to Fm∞
2 defined by

s(α) = (sign(v(α)))v∈m∞ .

Denote by 0 the zero vector in Fm∞
2 . We will apply our exact sequence tech-

niques to the split exact sequence

0 −→ Fm∞
2 −→ (ZK/m)∗ −→ (ZK/m0)

∗ −→ 1 .

For 1 ≤ j ≤ |m∞|, set εj =
(
1, ej

)
∈ (ZK/m)∗, where ej denotes the jth

canonical basis element of Fm∞
2 . The εj form a generating set for Fm∞

2 , and the
matrix of relations between them is clearly equal to twice the identity matrix
of order k = |m∞|. If (C,DC) are generators and relations for (ZK/m0)

∗ with
C =

(
γi
)
, we lift the γi to γ′i =

(
γi,0

)
(this is the reason the sequence is

split). The γ′i together with the εj form a generating set for (ZK/m)∗ whose
relation matrix is equal to

(
DC 0
0 2Ik

)
and we conclude as usual with a Smith

normal form computation.

Combining all this with the methods of Sections 4.1.3 and 4.1.4, we obtain
the following algorithm for computing (ZK/m)∗.

Algorithm 4.2.21 (Computation of (ZK/m)∗). Given a modulus m = m0m∞,
this algorithm computes the SNF (ZK/m)∗ = (Z,DZ). The entries ζi of Z will
be represented as pairs

(
γi, vi

)
, where γi denotes the class modulo m0 of an ele-

ment coprime to m0 and vi ∈ Fm∞
2 . The algorithm also outputs some additional

information necessary for computing discrete logarithms.

1. [Factor m0] Using Algorithm 2.3.22, find distinct prime ideals p and exponents
vp such that m0 =

∏
p pvp .

2. [Compute the (ZK/p
vp)∗] For each p dividing m0, apply Algorithm 4.2.17,

thus finding integers dp,i and elements δp,i of ZK coprime to p such that
(ZK/p

vp)∗ =
⊕

i(Z/dp,iZ)δp,i, and let np be the number of cyclic compo-
nents in this sum. For future use output the auxiliary matrix Up also given by
this algorithm.

3. [Modify generators] For each p dividing m0 do the following. Using Lemma
4.2.1 applied to a = pvp and c = m0/a, compute elements ap ∈ a and cp ∈ c

such that ap + cp = 1. Then for all i, set εp,i ←
(
cpδp,i + ap,0

)
∈ (ZK/m)∗

(these generators are coprime to m0, and they are still congruent to the initial
δp,i modulo pvp).

4. [Deal with m∞] Set n∞ ← |m∞|, and for i = 1 to i = n∞ set d∞,i ← 2 and
ε∞,i ←

(
1, ej

)
, where ej is the jth canonical basis vector of Fm∞

2 .
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5. [Compute big matrix M ] Let S be the set formed by all prime ideals dividing
m0 and the symbol ∞. In this step, we will create a square h× h matrix M ,
where h =

∑
p∈S np. It is convenient to index the rows and columns of M by

the pairs (p, i) as for the generators. Then setM(p,i),(q,j) ← 0 if (q, j) 6= (p, i),
M(p,i),(p,i) ← dp,i otherwise.

6. [Terminate] Let G be the row vector of the εp,i, and let M be the matrix
whose columns are theMp,i. Apply Algorithm 4.1.3 to the system of generators
and relations (G,M), output the SNF (Z,DZ) and the auxiliary matrix Ua
obtained in that algorithm, and terminate the algorithm.

It will be useful to compute discrete logarithms for elements ofK∗ coprime
to m which are not necessarily in ZK (see Definition 3.2.1). For this, we need
the following subalgorithm.

Algorithm 4.2.22 (Coprime Representative Computation). Given a nonzero
integral ideal a and an element β of K∗ coprime to a, this algorithm computes
elements α and γ of ZK coprime to a such that β = α/γ. We assume β given
by its coordinates on an integral basis of K.

1. [Trivial case] Let d be the lowest common multiple of the denominators of the
coordinates of β, and set b← dZK + a. If b = ZK , set γ ← d, set α← dβ,
and terminate the algorithm.

2. [Compute exponent] Let b =
∏

p pvp be the prime ideal decomposition of b.
Denote by e(p) the ramification index of p. Compute

k ← sup
p|b
⌊vp(d)e(p)/vp⌋+ 1 ,

where vp(d) denotes the ordinary exponent of p in d and p is the prime number
below p.

3. [Compute d−1] Using standard ideal operations, compute the ideal d← dZK+
bk and the inverse ideal d−1.

4. [Terminate] (Here dd−1 and bkd−1 are coprime integral ideals.) Using Algo-
rithm 1.3.2, compute a and c such that a ∈ dd−1, c ∈ bkd−1, and a+ c = 1.
Output α← aβ and γ ← a, and terminate the algorithm.

We leave to the reader the (easy) proof of this algorithm’s validity (Ex-
ercise 24). Note that steps 3 and 4 are applications of Theorem 1.3.3. ⊓⊔

In the important special case where a = mZK is a principal ideal gener-
ated by an element of Z, we have the following proposition whose proof can
of course be immediately made into an algorithm (compare also with Lemma
1.2.31).

Proposition 4.2.23. Let β ∈ K∗ be such that vp(β) ≥ 0 for all p | mZK
(this is the case, in particular, if β is coprime to mZK). Then the least
common multiple of the denominators occurring in the representation of β
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on an integral basis is coprime to m. In other words, there exist d ∈ Z and
α ∈ ZK such that β = α/d and (d,m) = 1.

Proof. Write β = α0/d0 for α0 ∈ ZK and d0 ∈ Z, for the moment arbitrary.
Let

g = (d0,m
∞) =

∏

p|d0, p|m
pvp(d0) .

By definition, we have (d0/g,m) = 1. On the other hand, let p be a prime
ideal and p be the prime number below p. Then either p ∤ g, in which case
vp(α0/g) = vp(α0) ≥ 0, or p | g, in which case we have p | d0, p | m, and
vp(g) = vp(d0); hence vp(g) = vp(d0) = vp(g)e(p/p), so

vp

(
α0

g

)
= vp(α0)− vp(d0) = vp

(
α0

d0

)
= vp(β) ≥ 0 .

It follows that α0/g ∈ ZK , so β = (α0/g)/(d0/g) is a suitable representation,
proving the proposition. ⊓⊔

The discrete logarithm algorithm in (ZK/m)∗ applied to elements of K∗

coprime to m is as follows.

Algorithm 4.2.24 (Discrete Logarithm in (ZK/m)∗). Given a modulus m =
m0m∞, the structure (ZK/m)∗ =

⊕
i(Z/ziZ)ζi found by Algorithm 4.2.21, and

an element β ofK∗ coprime to m, this algorithm computes the discrete logarithm
of β with respect to the ζi. We assume β given by its coordinates on a fixed
integral basis. We let m0 =

∏
p pvp and, as in Algorithm 4.2.21, S is the set of

prime ideals dividing m0 union the symbol ∞.

1. [Check if integral] If β ∈ ZK (in other words, if the coordinates of β on the
integral basis are all integers), go to step 2. Otherwise, using Algorithm 4.2.22,
compute α and γ in ZK coprime to m such that β = α/γ. Let Lα (resp.,
Lγ) be the discrete logarithm of α (resp., γ) obtained by applying the present
algorithm. Output Lα − Lγ (where each coordinate can be reduced modulo
the respective zi), and terminate the algorithm.

2. [Compute modulo pvp ] (Here β ∈ ZK .) Using Algorithm 4.2.18, compute the
discrete logarithm (xp,i) of β in (ZK/p

vp)∗. Compute the vector V =
(
vi
)

of the signature of β, and for 1 ≤ i ≤ |m∞| set x∞,i ← vi, where vi is any
lift of vi to Z (for example, in {0, 1}). Finally, let X = (xp,i) be the column
vector indexed by the pairs (p, i) for p ∈ S.

3. [Terminate] Set W ← UaX , where Ua is the matrix output in step 6 of
Algorithm 4.2.21. Reduce each component wj of W modulo the corresponding
zj (for example, in the interval [0, zj − 1]), output W , and terminate the
algorithm.

This terminates the algorithmic computation of the group (ZK/m)∗.
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4.3 Computing Ray Class Groups

4.3.1 The Basic Ray Class Group Algorithm

Let m be a modulus. Recall the exact sequence coming from Proposition
3.2.3:

U(K)
ρ−→ (ZK/m)∗

ψ−→ Clm(K)
φ−→ Cl(K) −→ 1 .

To apply the techniques that we have developed, we need to verify a number
of things. First, the groups Cl(K) and U(K) must be known in the sense of
Definition 4.1.4. This can be done using either the techniques of [Poh-Zas] or
those of [Coh0]. Note that [Coh0] assumes the GRH, but in fact in practical
situations it is rather easy to remove the GRH condition by certifying the
result unconditionally. We refer to [Zan] and [Dia-Oli] for details. Note also
that we need a discrete logarithm algorithm in Cl(K) (in U(K) the problem
is ordinary linear algebra; see Algorithm 5.3.10). The solution to this is also
given in [Coh0], where, in fact, even more information is obtained as part of
the principal ideal algorithm: if an ideal is principal, the algorithm also gives
a generator. More precisely, if the gi are ideals such that the gi are the given
generators of Cl(K), then if g is an ideal of K, we can find (vi) such that
g =

∏
i gi

vi
, but the same algorithm gives also α ∈ K such that g = α

∏
i g
vi

i .
We will also do this in the context of ray class groups.

The group (ZK/m)∗ has been dealt with extensively in Section 4.2.
Finally, we must show that the maps are effective, in the sense of Defi-

nition 4.1.5. This is not completely trivial. First, consider the map ψ from
(ZK/m)∗ to Clm(K). Since Clm(K) is not yet known, to say that ψ is effec-
tive means that if g ∈ Clm(K) is of the form ψ

(
α
)
, we can find α ∈ ZK . But

then g is an ideal of K coprime to m that is a principal ideal in the ordinary
sense, hence by using the principal ideal algorithm mentioned above, we can
algorithmically find α such that g = αZK . Since g is coprime to m, α will
also be coprime to m. Using Algorithm 4.2.22, we can find β and γ such that
α = β/γ, and β and γ are integral and coprime to m, hence we can take
α = β/γ in (ZK/m)∗.

Consider now the map φ from Clm(K) to Cl(K). Since Clm(K) is not
yet known, to say that φ is effective means that if g ∈ Clm(K), we can
compute φ

(
g
)
∈ Cl(K), which is of course trivial, but it also means that if

g ∈ Cl(K) = Im(φ), we can find an ideal g′ coprime to m such that φ
(
g′
)

= g.
This follows from Algorithm 1.3.14.

We can now put everything together. We consider the above ray class
group exact sequence as a right four-term exact sequence and apply the re-
sults of Section 4.1.5, giving the following algorithm for computing the ray
class group Clm(K).

Algorithm 4.3.1 (Computing Ray Class Groups). Let m = m0m∞ be a
modulus. This algorithm computes ideals hi coprime to m such that the SNF of
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Clm(K) is (B,DB), where B =
(
hi
)
i

and hi denotes the ideal class of hi in
Clm(K). It also outputs some extra information necessary for computing discrete
logarithms. We assume that we have already computed U(K) = (E,DE) with
E = (εi)0≤i≤r , Cl(K) = (C,DC) with C = (γi) =

(
gi
)

(using [Poh-Zas] or
[Coh0]), and (ZK/m)∗ = (Z,DZ) with Z = (ζi) (using Algorithm 4.2.21). We
denote by ψ the map from (ZK/m)∗ to Clm(K).

1. [Find new gi] Using Algorithm 1.3.14, for each i compute α′
i ∈ K∗ such that

g′i = α′
igi is an integral ideal coprime to m. Let G′ be the row vector of the

g′i, and let A′ be the row vector of the α′
i. For future use, output the elements

α′
i.

2. [Find principal ideals] For each ideal gi, compute gci

i (whereDC = diag((ci)i)),
and using the principal ideal algorithm (see [Coh0, Algorithm 6.5.10]), find
αi ∈ ZK such that gci

i = αiZK .

3. [Compute P ] (Here the α′
i
ciαi are elements of ZK coprime to m.) Using Algo-

rithm 4.2.24, compute the matrix P whose columns are the discrete logarithms
of the α′

i
ciαi with respect to the ζi.

4. [Compute Q] Again using Algorithm 4.2.24, compute the matrix Q whose
columns are the discrete logarithms of the εj with respect to the ζi for 0 ≤
j ≤ r.

5. [Terminate] Let B′ ← (ψ(Z)|G′) and M ←
(
Q DZ −P
0 0 DC

)
. Apply Algo-

rithm 4.1.3 to the system of generators and relations (B′,M), and let (B,DB)
be the Smith normal form of Clm(K) thus obtained. If B = (βi), for each i
let hi be an ideal (coprime to m) belonging to the class βi. Output the hi,
DB, the auxiliary matrix Ua output by Algorithm 4.1.3, and terminate the
algorithm.

To end this section, we give a corresponding discrete logarithm algorithm
in Clm(K). As in the case of Cl(K) itself, we will actually solve a stronger
problem and write a principal ideal algorithm in ray class groups.

Algorithm 4.3.2 (Principal Ideal Algorithm in Ray Class Groups). Let m

be a modulus and let (ZK/m)∗ = (Z,DZ) and Clm(K) = (B,DB) be as
computed by Algorithms 4.2.21 and 4.3.1, respectively. Write B =

(
hi
)
i
, and let

H denote the row vector of ideals hi. Given a fractional ideal a coprime to m,
this algorithm computes a column vector V and an element β ∈ K such that
a = βHV and β ≡ 1 (mod ∗m).

1. [Work in Cl(K)] Applying the principal ideal algorithm in Cl(K), find a col-
umn vector W and γ ∈ K such that a = γGW (where G is the row vector of
the ideals gi whose classes are the given generators of Cl(K)).

2. [Work in (ZK/m)∗] Set α← γ/A′W , where the A′ = (α′
i) is the row vector

of elements computed in step 1 of Algorithm 4.3.1 (α will be coprime to m).
Using Algorithm 4.2.24, compute Y such that α ≡ ZY (mod ∗m), and let
α′ ← ZY as an element of ZK .
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3. [Terminate] Let Ua be the matrix output by Algorithm 4.3.1. Output V ←
Ua
(
Y
W

)
and β ← α/α′, and terminate the algorithm.

Remark. It is essential that the generators Z of (ZK/m)∗ used in this
algorithm be the same as those used in Algorithm 4.3.1.

This finishes the description of the algorithmic computation of the ray
class groups Clm(K). It should be emphasized that although many algorithms
and subalgorithms are involved, the basic computations are rather simple and
the main bottlenecks will be in two places. The first will be in the computation
of discrete logarithms in (ZK/p)∗. For this, considering the vast amount of
effort spent on the problem, we have nothing more to say.

The second bottleneck will be the size of the generators. Indeed, several
times we have to multiply a given set of generators by a unimodular matrix
U−1, or multiply generators by elements to make them coprime to certain
ideals. All this makes the coefficients of the generators grow in size. Since this
can rapidly make the algorithms completely useless in practice, we would like
to give a few indications on how to get down to generators of manageable
size.

4.3.2 Size Reduction of Elements and Ideals

The main place where size reduction is necessary is in Algorithm 4.1.3, that
is, in the SNF algorithm for Abelian groups. Recall that in this algorithm, a
system of generators and relations (G,M) is given, and after reducingM to its
HNF H , which is generally a harmless process, we use the SNF algorithm to
compute unimodular matrices U and V such that UHV = D (and afterwards
we remove the trivial components). The main difficulty comes from the fact
that the new generators are given essentially by GU−1, and these may be
large objects if U−1 has large entries.

There are several complementary ways to improve this situation, and all
should be applied.

(1) The matrix U−1 is not unique in general; hence, it is worthwhile to find a
matrix U−1 that is as small as possible. This can be done using the tech-
niques of [Hav-Maj2]. In many cases this just cannot be done, however,
and all possible matrices U−1 have large entries.

(2) Another idea is to observe that GM = 1 in the Abelian group; hence, if
we add to the columns of U−1 any Z-linear combination of the columns of
M (or of H), the resulting generators GU−1 are unchanged. The simplest
way for doing this reduction is probably as follows. Let X be a column
vector that we want to reduce modulo the columns of H . First compute
the matrix L obtained by applying the LLL algorithm to the columns of
H . Then replace X by X − L⌊L−1X⌉, where ⌊A⌉ denotes the result of
rounding each entry of a matrix to the nearest integer. This should now
be rather small.



212 4. Computational Class Field Theory

(3) We should try to avoid divisions as much as possible, since they are
generally expensive operations. For this, instead of computing a product
of the form

∏
i g
ui

i in the naive way, we write

∏

i

gui

i =
∏

i, ui>0

gui

i /
∏

i, ui<0

g−ui

i ,

so that we need to perform only one division.
(4) In the (very frequent) case where the group consists of classes of elements

of a set modulo some equivalence relation, the elements of the group are
usually given by the classes of some representatives, but the latter should
be chosen with care. In other words, we should try to reduce modulo the
equivalence relation as much as possible.
Let us look in detail at the two cases of importance to us; that of (ZK/m)∗

and that of Clm(K).

a) Recall that elements of (ZK/m)∗ are represented by pairs
(
α, v

)
with

α ∈ ZK coprime to m0 and v ∈ Fm∞
2 . To reduce such a pair, we

consider α represented by a column vector X on a fixed integral
basis. As in (2) we compute an LLL-reduced basis L of the ideal
m0, and set Y ← X − L⌊L−1X⌉ (see Algorithm 1.4.13). This will
be a reasonably small vector giving an element β congruent to α
modulo m0. We can then replace

(
α, v

)
by
(
β, v
)
. This is where the

two-element representation is the most useful since we do not have
to worry about the signature of β.

b) A simple but very important remark is that if m is the smallest pos-
itive integer belonging to m0 (the upper-left entry in the HNF rep-
resentation), we can reduce all the coefficients of β modulo m. This
can easily be done because we use the two-element representation of
elements of (Z/m)∗; if we had used the one-element representation,
it could not have been done so easily.

c) To reduce an ideal representing some ideal class in Clm(K), we pro-
ceed as follows. First, exactly as in the case of (ZK/m)∗, instead of
representing ideal classes as classes of ideals coprime to m0 modulo
Pm, we will represent them as pairs (a, v), where a ∈ Im0 is an ideal
coprime to m0 and v ∈ F∞

2 as usual. The equivalence relation R on
these pairs is defined by (a′, v′) R (a, v) if and only if there exists
β ≡ 1 (mod ∗m0) such that v′ = v+s(β). As in the case of (ZK/m)∗,
this representation avoids annoying problems due to signatures.

We will use the following basic algorithm.

Algorithm 4.3.3 (Reduction of an Ideal). Let a and b be coprime integral
ideals. This algorithm computes an element γ ∈ a such that γ ≡ 1 (mod b) and
a/γ an LLL-reduced ideal, in the sense of [Coh0, Section 6.5.1].
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1. [LLL-reduce] Let α be the first element of an LLL-reduced basis of the ideal

product ab for the quadratic form
∑ |σi(α)|2 (see step 2 of [Coh0, Algorithm

6.5.5]). If b = ZK , output α and terminate the algorithm.

2. [Use Algorithm 1.3.2] Using Algorithm 1.3.2, compute a ∈ a and b ∈ b such
that a+ b = 1.

3. [Terminate] Compute the element α′ ← a/α, and let q be the element obtained
by rounding to the nearest integer the coefficients of α′ on the integral basis.
Output γ ← a− qα and terminate the algorithm.

Using this algorithm, we can now write an algorithm for reducing a rep-
resentative of an ideal class modulo m.

Algorithm 4.3.4 (Reduction of the Representative of a Ray Ideal Class).
Given a modulus m = m0m∞ and an element of Clm(K) represented by a pair
(a, v) as above, this algorithm computes another representative (a′, v′) of the
same class in Clm(K) such that a′ is an “almost-reduced” integral ideal.

1. [Use Algorithm 4.3.3] Using Algorithm 4.3.3 applied to a and b = m0, compute
γ ∈ a such that γ ≡ 1 (mod m0) and a/γ is an LLL-reduced ideal.

2. [Use Algorithm 4.3.3 again] Again using Algorithm 4.3.3, but this time applied
to γ/a and m0 (which are integral coprime ideals), compute δ ∈ γ/a such that
δ ≡ 1 (mod m0) and (γ/a)/δ is an LLL-reduced ideal. Set α← δ/γ.

4. [Terminate] Set a′ ← αa and v′ ← v + s(α), output the pair (a′, v′), and
terminate the algorithm.

The proof of these algorithms’ validity is trivial and is left to the reader
(Exercise 25). ⊓⊔

4.4 Computations in Class Field Theory

Thanks to the above algorithms, we have complete control on the ray class
groups Clm(K). Let us look at what remains to be done to put the main
results of class field theory in algorithmic form.

4.4.1 Computations on Congruence Subgroups

First of all, we must enumerate congruence subgroups C modulo m or, equiv-
alently, subgroups C of Clm(K). This is, of course, done by enumerating HNF
left divisors of the SNF of Clm(K), as explained in Section 4.1.10. Usually,
Clm(K) does not have too many cyclic components, so this computation is
not difficult in practice. In addition, if we are interested only in subgroups
of given index, corresponding to Abelian extensions L/K of given degree,
the enumeration is much simpler in general, as can be seen, for example, in
Algorithm 4.1.20.
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Thus, if the SNF of Clm(K) is equal to (A,DA) and the HNF left divisor
of DA corresponding to the subgroup C is equal to HA, we will represent
the congruence subgroup (m, C) by the triplet (A,DA, HA). The following
algorithm, which is a reformulation in our special case of Algorithm 4.1.10,
shows how to go from a modulus to a divisor.

Algorithm 4.4.1 (Computation of CPn). Let (m, C) be a congruence sub-
group, and let n be a divisor of m such that Im ∩ Pn ⊂ C, so that by
Proposition 3.3.5 we have (m, C) ∼ (n, CPn). Let Clm(K) = (A,DA) and
Cln(K) = (B,DB) be the respective SNFs, with A =

(
ai
)
, and let HA the

HNF left divisor of DA representing the subgroup C of Clm(K). This algorithm
computes the HNF left divisor HB of DB representing the subgroup CPn of
Cln(K).

1. [Compute matrix P ] Using Algorithm 4.3.2, compute the discrete logarithms of
the ideals ai in Cln(K), thus obtaining a matrix P such that sm,n(A) = BP ,
where sm,n is the canonical surjection from Clm(K) to Cln(K).

2. [Compute HB] Let M ← (PHA|DB). Compute the HNF HB of M , output
HB, and terminate the algorithm.

We also need to compute the conductor of the congruence subgroup
(m, C). This is done by applying Corollary 3.3.13 as follows.

Algorithm 4.4.2 (Conductor of a Congruence Subgroup). Let (m, C) be a
congruence subgroup. This algorithm computes the conductor f of (m, C). Recall
that for any congruence subgroup (n, D) we denote by hn,D the cardinality of
the group Cln/D.

1. [Initialize] Set f← m, D ← C, h← hf,D.

2. [Loop] For each p | f (finite or infinite), computeDp ← DPf/p using Algorithm
4.4.1, compute hp ← hf/p,Dp

, and test whether hp = h. If this is true for some
p, set f← f/p, D ← Dp, h← hp, and go to step 2.

3. [Terminate] Output f (and D = CPf if desired) and terminate the algorithm.

Proof. If hf/p,DPf/p
= hf,D, then f is not the conductor by Corollary 3.3.13,

and by Proposition 3.3.6 we have (f/p, DPf/p) ∼ (f, D), so we can replace f by
f/p. Conversely, if for all p we have hf/p,DPf/p

< hf,D, then Corollary 3.3.13
tells us that f is the conductor. ⊓⊔

Remark. If we do not need to compute the conductor but simply need
to check whether or not m is equal to the conductor, we exit the algorithm
as soon as we find some p | m such that hp = h.

4.4.2 Computations on Abelian Extensions

Consider now the other side of class field theory: in other words, isomorphism
classes of Abelian extensions L/K.
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We first want to compute the norm group, that is, the Artin or Takagi
group corresponding to a modulus m. This is done using Theorem 3.4.4 as
follows.

Algorithm 4.4.3 (Computation of the Norm Group). Let L/K be an Abelian
extension defined by an irreducible monic polynomial T ∈ ZK [X ], and let m be a
modulus of K known to be a multiple of the conductor of L/K. We assume that
the SNF of the ray class group Clm(K) = (C,DC) has already been computed.
This algorithm computes the norm group Tm(L/K) = Am(L/K) as a subgroup
of Clm(K); in other words, it outputs an HNF matrix that is the left divisor of
DC corresponding to this subgroup.

1. [Initialize] Set n← [L : K], M ← DC , d← disc(T ), p← 0, g ← 0, i← 0.

2. [Finished?] If det(M) = n, output M and terminate the algorithm.

3. [Next p] If i < g, set i ← i + 1. Otherwise, replace p by the smallest prime
number strictly greater than p. Using [Coh0, Algorithm 6.2.9], factor pZK into
a power product of prime ideals (pi)1≤i≤g (the exponents ei are irrelevant),
and set i← 1. Finally, set p← pi.

4. [Factor pZL] If p | d or p | m, go to step 3. Otherwise, let T (X) =∏
1≤j≤g Tj(X) be the factorization of T (X) into distinct, monic, irreducible

polynomials in (ZK/p)[X ]. There will be no repeated factors, and all the Tj
will have the same degree; call it f .

5. [Compute discrete logarithm] Let L be the discrete logarithm of p on the given
generators of Clm(K), computed using Algorithm 4.3.2. Set M equal to the
Hermite normal form of the horizontal concatenation (M |fL) of M with the
one-column matrix (fL), and go to step 2.

Proof. We note that fL as computed in step 5 is the discrete logarithm of
pf on the generators C. Hence by Theorem 3.4.4, it corresponds to an element
of the norm group Tm(L/K) expressed on the generators. Thus, the successive
matrices M represent successively larger subgroups of Clm(K) (equivalently,
det(M) decreases), all contained in the norm group. Since we know that the
norm group is generated by the pf , we will obtain the norm group after a
finite number of steps, characterized by det(M) = [L : K] = n by Proposition
4.1.6 (3). ⊓⊔

Remark. In step 4, we have removed prime ideals p such that p | d and
p | m. This has two purposes. First, it removes prime ideals dividing m and in
particular ramified prime ideals, which is necessary for Theorem 3.4.4. But
also, p will not divide the index (vp(d) = vp(d(L/K)) = 0), so we are in

the easy case of Algorithm 2.4.13, where we simply need to factor T (X) in
(ZK/p)[X ]. In fact, since we need only to compute the common degree f of
the irreducible factors of T , we can simply use the distinct degree factorization
algorithm [Coh0, Algorithm 3.4.3], where we replace p by q = |ZK/p| without
actually finding the factors.
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It is now easy to compute the conductor of a finite Abelian extension
L/K.

Algorithm 4.4.4 (Conductor of an Abelian Extension). Let L/K be an
Abelian extension defined by an irreducible monic polynomial T ∈ ZK [X ]. This
algorithm computes the conductor f(L/K) and the corresponding norm group
Tf(L/K) = Af(L/K).

1. [Compute d(L/K)] Using Algorithm 2.4.9 and its subalgorithms, compute the
relative discriminant ideal d(L/K).

2. [Compute ramified real places] Set m∞ ← ∅, and for each real embedding σi
ofK, using Sturm’s algorithm ([Coh0, Algorithm 4.1.11]) test whether T σi has
only real roots. For each i for which this is not the case, set m∞ ← m∞∪{σi}.

3. [Compute norm group] Set m ← d(L/K)m∞. Using Algorithm 4.4.3 above,
let C ← Tm(L/K).

4. [Compute conductor] Using Algorithm 4.4.2, compute the conductor (f, CPf)
of (m, C), output f(L/K) ← f, Tf(L/K) ← CPf, and terminate the algo-
rithm.

Proof. Since m as defined in the algorithm is a multiple of the conductor,
the algorithm’s validity is a simple consequence of the (deep) result asserting
that the conductor of a congruence subgroup (m, C) is equal to the conductor
of the corresponding Abelian extension L/K (Theorem 3.4.6). ⊓⊔

Remark. We could modify the algorithm by taking disc(T ) instead of
d(L/K), which avoids the round 2 algorithm, at the cost of more class group
computations in step 4. Hence, it is not clear whether this gives any improve-
ment.

It is interesting to note that the above algorithms can also be used as an
efficient test to determine whether or not an arbitrary extension of number
fields L/K is Abelian. For this, we must first modify Algorithm 4.4.3 so that
it can still work for an arbitrary extension.

Algorithm 4.4.5 (Norm Group or Non-Abelian Extension). Let L/K be
an extension of number fields defined by an irreducible monic polynomial T ∈
ZK [X ]. Let m be a modulus of K known to be a multiple of the conductor of
Lab/K, where Lab is the maximal Abelian subextension of L/K. We assume that
the SNF of the ray class group Clm(K) = (C,DC) has already been computed.
This algorithm either outputs a failure message indicating under the GRH that
L/K is not Abelian or unconditionally computes the norm group Tm(L/K) =
Am(L/K) as a subgroup of Clm(K). In other words, it outputs an HNF matrix
that is a left divisor of DC corresponding to this subgroup.

1. [Initialize] Set n ← [L : K], M ← DC , d ← disc(T ), p ← 0, g ← 0, i ← 0
and B ← (4 log(|d(L)|) + 2.5[L : Q] + 5)2.



4.4 Computations in Class Field Theory 217

2. [Finished?] If p > B, do as follows. If det(M) 6= n, output a failure message
(L/K is not an Abelian extension), while if det(M) = n, output M . In either
case, terminate the algorithm.

3. [Next p] If i < g, set i ← i + 1. Otherwise, replace p by the smallest prime
number strictly greater than p. Using [Coh0, Algorithm 6.2.9], factor pZK into
a power product of prime ideals (pi)1≤i≤g (the exponents ei are irrelevant),
and set i← 1. Finally, set p← pi.

4. [Factor pZL] If p | d or p | m, go to step 3. Otherwise, let T (X) =∏
1≤j≤g Tj(X) be the factorization of T (X) into distinct, monic, irreducible

polynomials in (ZK/p)[X ]. There will be no repeated factors. If all the Tj do
not have the same degree, then output a failure message (L/K is not a nor-
mal extension) and terminate the algorithm. Otherwise, let f be the common
degree of the Tj.

5. [Compute discrete logarithm] Let L be the discrete logarithm of p on the given
generators of Clm(K), computed using Algorithm 4.3.2. Set M equal to the
Hermite normal form of the horizontal concatenation (M |fL) of M with the
one-column matrix (fL). If det(M) < n, output a failure message (L/K is
not an Abelian extension) and terminate the algorithm; otherwise go to step
2.

Proof. As this algorithm is essentially identical to Algorithm 4.4.3, we
need only to discuss the cases of failure. If the failure occurs in step 4 or
in step 5, then we can unconditionally assert that the extension L/K is not
Abelian (and even not normal if the failure is in step 4). If the failure occurs
because p > B in step 2, the situation is different.

A result of Bach and Sorenson [Bac-Sor] implies that, under the GRH,
the norm group will be generated by prime ideals of norm less than or equal
to the bound B computed in step 1. Thus, if the GRH is true, the primes
up to the bound B are sufficient, and hence the algorithm is correct as is
(and the extension is Abelian if det(M) = n). Thus, the correctness of the
algorithm is unconditional for the failure in steps 4 and 5 and is valid only
under the GRH for step 2. If we do not want to assume the GRH, we can
increase the bound B, but as usual we will have a much larger bound, of the

order of |d(L)|1/2. ⊓⊔

The modification of Algorithm 4.4.4 is now immediate.

Algorithm 4.4.6 (Is an Extension Abelian?). Let L/K be an extension of
number fields defined by an irreducible monic polynomial T ∈ ZK [X ]. This
algorithm determines under the GRH whether or not L/K is an Abelian extension.
If it is, it computes the Galois group G(L/K), the conductor f(L/K) and the
corresponding norm group Tf(L/K) = Af(L/K).

1. [Compute d(L/K)] Using Algorithm 2.4.9 and its subalgorithms, compute the
relative discriminant ideal d(L/K).
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2. [Compute ramified real places] Set m∞ ← ∅, and for each real embedding
σi of K, using Sturm’s algorithm ([Coh0, Algorithm 4.1.11]) test whether
T σi has only real roots. For each i for which this is not the case, do as
follows. Test whether all the roots are nonreal. If at least one root is real,
L/K is not a normal extension, so terminate the algorithm. Otherwise, set
m∞ ← m∞ ∪ {σi}.

3. [Compute norm group] Set m← d(L/K)m∞. Using Algorithm 4.3.1 compute
the ray class group Clm(K), then execute Algorithm 4.4.5 above. If the al-
gorithm fails, L/K is not an Abelian extension, so terminate the algorithm.
Otherwise, set C ← Tm(L/K) as computed by the algorithm.

4. [Compute conductor] Using Algorithm 4.4.2, compute the conductor (f, CPf)
of (m, C), output a message saying that L/K is Abelian with Galois group
isomorphic to Clm(K)/C, output f(L/K) ← f and Tf(L/K) ← CPf, and
terminate the algorithm.

This algorithm thus gives an answer to the question of whether or not
L/K is Abelian, sometimes unconditionally (steps 4 and 5 of Algorithm 4.4.5
or step 2 of the above algorithm), and sometimes conditionally under the
GRH (step 2 of Algorithm 4.4.5). Since we can have good confidence in the
validity of the GRH, if the result is conditional, we can assume that the
conclusion of the algorithm is probably true and then proceed to prove it
using other methods.

Finally, recall that Proposition 3.5.8 and Theorem 3.5.11 give us efficient
formulas allowing us to compute the signature and the relative or absolute
discriminant of L/K. Thus, by far the most important point that we have
not solved is the computation of an explicit relative (or absolute) defining
polynomial for the Abelian extension L/K corresponding to the (equivalence
class of the) congruence subgroup (m, C). This will be considered in Chapters
5 and 6.

4.4.3 Conductors of Characters

The formulas given in Theorem 3.5.11 have the great advantage that we do
not need to compute the conductors of individual characters. In this subsec-
tion, we explain how to do this if these conductors are really needed.

Let
Clm(K) = (G,DG) =

⊕

1≤i≤k
(Z/diZ)gi

be the SNF of Clm(K). Denote by ζn the specific primitive nth root of unity
exp(2iπ/n) and let ζ = ζd1 (recall that di divides d1 for all i). A character χ
is uniquely defined by a vector (a1, . . . , ak) with ai ∈ Z/diZ, so that

χ
(∏

i

gxi

i

)
=
∏

i

ζaixi

di
= ζ

P

i(d1/di)aixi .



4.5 Exercises for Chapter 4 219

By definition, the conductor of χ is equal to the conductor of the congruence
subgroup C = Ker(χ). Since this is a congruence subgroup, we can use the
above methods to compute its conductor. The only problem is to put this
group into an algorithmic form, in other words to compute the matrix H
associated to C by Proposition 4.1.6.

We have χ
(∏

i g
xi

i

)
= 1 if and only if there exists an integer y such that

∑

i

d1

di
aixi + d1y = 0 .

This is an instance of the integer kernel problem. We have seen in [Coh0,
Section 2.4.3] and in Section 4.1.6 how to solve it. In the present case, this
gives the following.

Set bi = (d1/di)ai, and let B = [b1, . . . , bk, d1], considered as a one-row
matrix. Using the Hermite normal form algorithm, we can compute a uni-
modular matrix U such that BU = [0, . . . , 0, d] for some d (equal to the GCD
of the entries of B). Write in block matrix form U =

(
U1 V
R a

)
, where U1 is

a k × k matrix, V is a one-column matrix, and R is a one-row matrix. The
column vectors X = (xi) such that there exists a y satisfying our equality
above are then exactly the Z-linear combinations of the columns of the ma-
trix U1. This means that the kernel of χ is defined by the matrix U1, or if we
want it in normalized form, by the HNF of (U1|DG). We can then compute
the conductor as usual.

Formally, this can be written as follows.

Algorithm 4.4.7 (Conductor of a Character). Let

Clm(K) = (G,DG) =
⊕

1≤i≤k
(Z/diZ)gi

be the SNF of the ray class group Clm(K), and let χ be a character defined by
χ
(∏

i g
xi

i

)
=
∏
i ζ
aixi

di
. This algorithm computes the conductor of χ (which is a

modulus of K).

1. [Apply HNF] For all i ≤ k, set bi ← (d1/di)ai, and set B ← (b1, . . . , bk, d1),
considered as a one-row matrix. Using the HNF algorithm, find a unimodular
matrix U such that BU = (0, . . . , 0, d).

2. [Compute H] Let U1 be the upper-left k × k submatrix of U , let H be the
HNF of (U1|DG), and call C the corresponding congruence subgroup.

3. [Terminate] Using Algorithm 4.4.2, compute the conductor f of the congruence
subgroup (m, C), output f, and terminate the algorithm.

4.5 Exercises for Chapter 4

1. Using Algorithm 4.1.11, give an algorithm for computing the group Um(K) of
units congruent to 1 (mod ∗m) as a subgroup of U(K).
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2. Prove the validity of the remark made after Algorithm 4.1.8.

3. Let B = (B,DB) and C = (C,DC) be two known Abelian groups in SNF, let A
be a subgroup of C given by a left divisor HC of DC , and let φ be an effective
group homomorphism from B to C/A. Show that we can use Algorithm 4.1.11
to compute Ker(φ) if in step 1 we simply replace φ(B) = CP by φ(B) = π(C)P ,
where π denotes the canonical surjection from C to C/A.

4. Let B = (B,DB) and C = (C,DC) be two known Abelian groups and let φ be an
effective group homomorphism from B to C. Give an algorithm for computing
the cokernel of φ, in other words the quotient C/φ(B).

5. With the notation of Lemma 4.1.12, give an explicit formula for U−1
1 in terms

of the block matrix decomposition of U−1.

6. With the notation of the proof of Algorithm 4.1.13, show that if ψ(α) = BY ,
the vector H−1

B Y has integral entries.

7. Prove the validity of Algorithm 4.1.14.

8. Prove the validity of Algorithm 4.1.15.

9. Let DC = diag(c1, . . . , cn) be a diagonal matrix in SNF, and let H = (ei,j) be
an n× n matrix in HNF.

a) If n = 2, show that H is a left divisor of DC if and only if ei,i | ci for
i = 1 and i = 2, and if e1,2 = ke1,1/ gcd(e1,1, c2/e2,2) with 0 ≤ k <
gcd(e1,1, c2/e2,2).

b) If n ≥ 3, show that for all i ≤ n we must have ei,i | ci, and for all i < n

ei,i+1 ≡ 0 (mod ei,i/ gcd(ei,i, ci+1/ei+1,i+1)) ,

but that these conditions are not sufficient.

10. Write and implement a formal algorithm for computing all subgroups of a given
algorithm using Birkhoff’s Theorem 4.1.18. In particular, determine whether it
is more efficient to choose first the yi and then the permutation, as written in
the text, or to do the reverse.

11. Prove Proposition 4.1.19.

12. Give a complete description of the subgroups of index n of a given Abelian group,
in the style of Proposition 4.1.19, for n = 4 and n = 6, and more generally for
n = p2 and n = pq when p and q are primes, and write the corresponding
algorithms analogous to Algorithm 4.1.20.

13. Prove the validity of Algorithm 4.1.21.

14. Write an algorithm for solving a mixed system of linear equations and linear
congruences by first solving the linear equations, and plugging the result into
the linear congruences, instead of using Algorithm 4.1.23 given in the text.
Compare the efficiency of both algorithms.

15. Prove the validity of Algorithm 4.1.23.

16. Extend Proposition 1.2.11 and Lemma 4.2.1 to the case where a and c are
coprime moduli, in other words to the case where a0+c0 = ZK and a∞∩c∞ = ∅.

17. Show that vp(i!) ≤ (i− 1)/(p− 1), and determine exactly the cases where there
is equality.

18. Let a be an integral ideal of a number field K.

a) Show that ZK/a is cyclic if and only if every prime ideal p dividing a has
residual degree equal to 1, every prime ideal p such that p2 | a is unramified
and if p and q are distinct prime ideals dividing a, then p and q are not
above the same prime number of Z.
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b) If K is a quadratic field, show that ZK/a is cyclic if and only if a is
a primitive ideal (in other words, an integral ideal not divisible by an
element of Z other than ±1).

c) Let p be a prime ideal of K, let p be the prime number below p, and let
e = e(p/p) and f = f(p/p). Show that (ZK/p

k)∗ is cyclic if and only if
either k = 1; or k = 2 and f = 1; or k ≥ 3, e = f = 1, and p ≥ 3; or k = 3,
f = 1, e ≥ 2, and p = 2.

d) Deduce from this a necessary and sufficient condition for (ZK/a)
∗ to be

cyclic, and specialize to the quadratic case.

19. Extend the table of Proposition 4.2.12 up to k = 9.

20. Let p be a prime ideal above a prime p, of ramification index e = e(p/p) and de-
gree f = f(p/p), and let k ≥ 1 be an integer. Denote by logp(x) = log(x)/ log(p)
the ordinary logarithm of x to base p. Prove the following strengthening of the
first statement of Proposition 4.2.12: the group (1 + p)/(1 + pk) is killed by ps,
where the integer s is given as follows.

a) If e < p− 1, then

s =

‰

k − 1

e

ı

.

b) If

p− 1 ≤ e < (p− 1)p⌊logp k⌋ ,

then

s =

&

k − p⌈logp(e/(p−1))⌉
e

’

+

‰

logp

„

e

p− 1

«ı

.

c) If e ≥ (p− 1)p⌊logp k⌋, then

s =
˚

logp k
ˇ

.

21. Let p be a prime. Define the Artin–Hasse logarithm loga by the formula

loga(1 + x) =

p−1
X

k=1

(−1)k−1 x
k

k
.

a) Using combinatorial identities, show that formally

loga((1 + x)(1 + y)) − loga(1 + x) − loga(1 + y)

is a polynomial whose nonzero monomials are of the form xmyn with m+
n ≥ p.

b) Define in a similar manner the Artin–Hasse exponential expa and prove
its basic properties and relations with loga.

c) Deduce from this that if a < b ≤ pa and p is an ideal above p, the map
(1 + x) 7→ loga(x) induces a group isomorphism from the multiplicative

group (1+pa)/(1+pb) to the additive group pa/pb, and in particular from
(1+p)/(1+pp) to p/pp (note that this gives an alternate proof of Corollary
4.2.11 when p ≥ k).

22. Write and implement an algorithm for computing the group (ZK/m)∗ using
a combination of p-adic logarithm techniques and the induction method, as
suggested after Algorithm 4.2.17.



222 4. Computational Class Field Theory

23. Assume that e(p/p) = p − 1 as in Proposition 4.2.19. Prove directly that the
exact sequence

1 −→ (1 + p
2)/(1 + p

p) −→ (1 + p)/(1 + p
p) −→ (1 + p)/(1 + p

2) −→ 1

is split.

24. Prove the validity of Algorithm 4.2.22.

25. Prove the validity of Algorithms 4.3.3 and 4.3.4.

26. Let (m1, C1) and (m2, C2) be two equivalent congruence subgroups represented
by triplets (G1, D1,H1) and (G2,D2, H2) as explained in the text. Give an
algorithm that computes the GCD (n, C) of these two congruence subgroups in
the sense of Proposition 3.3.9.



5. Computing Defining Polynomials Using
Kummer Theory

Class field theory deals with Abelian extensions of base fields. It gives com-
plete answers to the existence of Abelian extensions with given relative or
absolute discriminants. However, the algorithmic construction of these ex-
tensions is not completely straightforward. There are several ways to do this,
but at present the most efficient general method is the use of Kummer exten-
sions. In the next chapter, we will describe two other methods using analytic
techniques, one using Stark units and Stark’s conjecture, the other using com-
plex multiplication. Both of these methods impose restrictions on the base
field, but when they are applicable they are much more efficient.

5.1 General Strategy for Using Kummer Theory

If we look at the main theorem of Kummer theory (Theorem 10.2.5), we
see that we have at our disposal a powerful tool to construct all Abelian
extensions of a base field with given Galois group G, assuming that this base
field contains sufficiently many roots of unity (more precisely contains ζn,
where n is the exponent of G). To be able to use this, we must in general
adjoin ζn to the base field K, hence take as new base field Kz = K(ζn), and
use Kummer theory over Kz. Once the desired Abelian extension Lz/Kz is
obtained, we must then come back to the desired Abelian extension L/K,
which can be done using several methods. The aim of this chapter is to explain
all this in great detail.

5.1.1 Reduction to Cyclic Extensions of Prime Power Degree

Let K be a number field, and let (m, C) be a congruence subgroup modulo m,
where we need not assume for the moment that m is the conductor. The aim
of this chapter is to find an explicit defining polynomial for the extension
L/K corresponding to (m, C) by Takagi’s existence theorem in class field
theory. We can easily compute Clm(K)/C in SNF as

Clm(K)/C =
⊕

i

(Z/ciZ)ci .
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It is, however, often useful (and, in fact, essential if we use Kummer theory)
to split this group even more into its cyclic components of prime power order.
This is easily done by using the following equality. If d =

∏
1≤i≤k di with the

di pairwise coprime, then

(Z/dZ)g =
⊕

1≤i≤k
(Z/diZ)gd/di

(see Exercise 1), from which it follows that we can write

Clm(K)/C =
⊕

i

⊕

pvp‖ci

(Z/pvpZ)ci
ci/p

vp

.

With a suitable change of notation, we will write this as

Clm(K)/C =
⊕

1≤j≤s
(Z/bjZ)bj ,

where the bj are (not necessarily distinct) prime powers.

Proposition 5.1.1. Keep all the above notation. Let Cj be the congruence
subgroup modulo m generated by C and by the bi for i 6= j, and let Lj be the
subfield of K(m) corresponding to the congruence subgroup (m, Cj) under the
Takagi correspondence.

(1) The group Gal(Lj/K) is isomorphic via the Artin map to Clm(K)/Cj =
(Z/bjZ)bj, and in particular Lj/K is a cyclic extension of prime power
degree bj.

(2) The compositum in K(m) of the Lj is equal to the class field L corre-
sponding to the congruence subgroup (m, C).

Proof. By Galois theory we have Lj = K(m)Art(Cj), hence via the Artin
map, Gal(Lj/K) is isomorphic to Clm/Cj = (Z/bjZ)bj , so Lj/K is a cyclic
extension of prime power degree bj, proving the first statement. Furthermore,
by Galois theory the compositum of the Lj in K(m) corresponds to the
congruence subgroup (m,

⋂
j Cj). But since the only relations satisfied by the

bi in Clm(K)/C are bi
bi

= 1, it follows that bj /∈ Cj , hence that
⋂
j Cj = C,

proving the proposition. ⊓⊔

This proposition can be translated into the following algorithm.

Algorithm 5.1.2 (Splitting Class Field Extensions). LetK be a number field
and let (m, C) be a congruence subgroup modulo m. This algorithm computes a
list of congruence subgroups (mj , Cj) of conductor mj dividing m such that the
compositum in K(m) of the class fields Lj corresponding to (mj , Cj) is equal
to the class field L corresponding to (m, C) and such that the Lj/K are cyclic
extensions of prime power degree.
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1. [Initializations] Using Algorithm 4.3.1, compute the SNF (A,DA) of the ray
class group Clm(K), and let HC be the HNF matrix defining the congruence
subgroup C on the generators A. Using an SNF algorithm, compute unimod-
ular matrices U1 and V1 such that U1HCV1 = diag(c1, . . . , cs) is a diagonal
matrix in SNF, possibly with ones on the diagonal, and let r be the largest
index i such that ci > 1. Finally, let U be the matrix obtained by keeping
the first r columns of U−1

1 (thus, the ith column Ui of U expresses the ith
generator ci of Clm(K)/C on the generators A of Clm(K)).

2. [Split the Galois group] For each i ≤ r and each pvp‖ci, do as follows.
Let Ui,p be the matrix obtained from U by replacing the ith column Ui by
pvpUi mod ci. Compute the HNF Hi,p of (HC |Ui,p), which corresponds to a
congruence subgroup (m, C′

i,p) modulo m. Then, using Algorithm 4.4.2, com-
pute the conductor mi,p of (m, C′

i,p) and the congruence subgroup (mi,p, Ci,p)
equivalent to (m, C′

i,p), output the (mi,p, Ci,p), and terminate the algorithm.

Proof. Write A =
(
a1, . . . , am

)
. Using the remark following Algorithm

4.1.7, we see that the computation done in step 1 gives

Clm(K)/C =
⊕

1≤i≤r
(Z/ciZ)ci ,

where ci is given on A by the ith column Ui of the matrix U . Since

(Z/ciZ) =
⊕

pvp‖ci

(Z/pvpZ)c
ci/p

vp

i ,

we see that if we set ci,p = c
ci/p

vp

i , then ci,p is given on A by (ci/p
vp)Ui.

Thus, as a subgroup of Clm, the subgroup generated by C and by all the cj,q
except ci,p is defined by the HNF of the concatenation of the matrix HC with
the column vectors Uj for j 6= i, as well as the column vectors (ci/q

vq)Ui
for q 6= p. But the GCD of the ci/q

vq for q 6= p is clearly equal to pvp ,
hence the subgroup generated by the column vectors (ci/q

vq)Ui for q 6= p is
equal to the subgroup generated by the single vector pvpUi. Thus, the HNF
matrices Hi,p computed in step 2 correspond to the desired subgroups given
in Proposition 5.1.1, proving the algorithm’s validity. We perform additional
conductor computations at the end, since in most class field computations
it is simpler to start with a congruence subgroup of known conductor, and
since these conductor computations are in any case much faster than the ray
class field computations themselves. ⊓⊔

Remarks

(1) Thanks to this algorithm, we see that we can always reduce to the case
where the desired ray class field extension L/K is cyclic of prime power
degree pr, so that the corresponding congruence subgroup (m, C) has
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conductor m with Clm(K)/C cyclic of prime power order. We will make
this assumption when using Kummer theory, but not necessarily when
using other methods.

(2) It is easy to modify the above algorithm if we want a coarser splitting: for
example, if we want to split only according to the ci, instead of the Ui,p,
for each i we use the single matrix Ui,0 obtained from U by removing the
ith column (see Exercise 2).

5.1.2 The Four Methods

From now on, we have a base field K, a congruence subgroup (m, C) of
conductor m such that Clm(K)/C is a cyclic group of order n = ℓr for
some prime number ℓ. Our goal is to use Kummer theory to compute a
defining polynomial for the Abelian extension L/K corresponding to (m, C)
by Takagi’s theorem. We refer to Section 10.2 for detailed proofs of the results
that we will use.

To be able to use Kummer theory, the base field K must contain ζn, a
primitive nth root of unity. Thus, we will proceed in two steps. We begin
(if necessary) by adjoining ζn to K; in other words, we set Kz = K(ζn), we
“lift” the problem to Kz, and as a first step we must construct a suitable
extension Lz/Kz. As a second step, we must come back down from Lz/Kz

to the desired extension L/K.
For both steps, there are essentially two methods. Let L/K be a cyclic

extension of degree n = ℓr for some prime ℓ corresponding to a congruence
subgroup (m, C) of conductor m, and assume that ζn ∈ K. Then by definition
L/K is a Kummer extension. The main theorem of Kummer theory (Theorem
10.2.5) tells us that L = K(θ) with θn = α for some α ∈ ZK . To apply class
field theory to this situation, we have two possibilities.

A first possibility is to use information on the ramification of prime ideals
in L/K and the relative discriminant d(L/K). Indeed, using Theorems 3.5.3
and 3.5.11, we can easily compute such information from the congruence
subgroup (m, C). To be able to find a suitable α, we need to compute similar
information if the field L is given as L = K(θ) as above, using only the
base field K, the degree n = ℓr, and the element α ∈ ZK . This is quite
a bit harder and in fact can be done in practice only for r = 1, that is,
for cyclic extensions of prime degree. This is exactly the content of Hecke’s
theorem (Theorem 10.2.9). Although any cyclic extension of prime power
degree can be considered as a tower of cyclic extensions of prime degree, the
need to compute in number fields of much larger degree makes this method
unfeasible if ℓr > 10, say.

A second method, introduced by C. Fieker (see [Fie]), is to use directly
the properties of the Artin map to construct the needed extension L/K. Of
course, the Artin map contains the ramification and discriminant informa-
tion, but it is in fact richer both in theory and in algorithmic practice. In-
deed, Fieker’s method has several advantages compared to the method using
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Hecke’s theorem. The first and most important one is that it is not limited
to extensions of prime degree, and the second is that it is not difficult to
describe and to implement.

For performing the second step (coming down from the extension Lz/Kz

to the extension L/K), there are also two methods. One is the use of so-called
Lagrange resolvents, and the other one, also due to C. Fieker, is once again
the explicit use of the Artin map. Since both steps are mostly independent,
the methods may be mixed if desired.

The main disadvantage of Fieker’s methods is the necessity to introduce
large moduli and the corresponding ray class groups (but fortunately not
explicitly the corresponding ray class fields). Thus, although his method for
the first step is usually superior, in some cases and also for the second step
the other methods can be better; hence it is interesting to study all the
methods. In addition, this study introduces some interesting new concepts
such as ℓ-virtual units and the ℓ-Selmer group of a number field.

5.2 Kummer Theory Using Hecke’s Theorem When
ζℓ ∈ K

Let ℓ be a prime number, and let K be a number field such that ζℓ ∈ K.
Hecke’s theorem (see Section 10.2.3) gives us complete information on the
ramification and relative discriminant for cyclic extensions of K of degree ℓ.
In this section, we will show how Hecke’s theorem allows us to find explicitly
the Abelian extension L/K corresponding to a given congruence subgroup
(m, C) by Takagi’s existence theorem and gives us a complete algorithm for
this as long as the degree of L/K is equal to ℓ (see, in particular, Algorithm
5.2.14).

5.2.1 Characterization of Cyclic Extensions of Conductor m and
Degree ℓ

Let m be a modulus, and let C be a congruence subgroup modulo m such
that

hm,C =
∣∣Clm(K)/C

∣∣ = |Im/C| = ℓ ,

so that the Abelian extension L/K corresponding to (m, C) by class field
theory is cyclic of degree ℓ.

Definition 5.2.1. For a prime ideal p dividing ℓ, denote by z(p, ℓ) the quan-
tity

z(p, ℓ) = ℓ
e(p/ℓ)

ℓ− 1
+ 1

(see Theorem 10.2.9). We divide the prime ideals p of K into six sets, as
follows.



228 5. Computing Defining Polynomials Using Kummer Theory

(1) The set Sm,ℓ,1 (resp., Sm,ℓ,2; resp., Sm,ℓ,3) is the set of all prime ideals p

of K dividing both m and ℓ and such that vp(m) = z(p, ℓ) (resp., vp(m) <
z(p, ℓ); resp., vp(m) > z(p, ℓ)).

(2) The set Sℓ (resp., Sm) is the set of all prime ideals p of K dividing ℓ and
not m (resp., m and not ℓ).

(3) The set S∅ is the set of all prime ideals p of K not dividing m or ℓ.

The main result, which is an easy consequence of Hecke’s theorem, is as
follows.

Theorem 5.2.2. With the above notation, the field L = K( ℓ
√
α) with α ∈

K∗ rK∗ℓ is a cyclic extension of K of conductor equal to m and degree ℓ if
and only if the following ten conditions hold.

(1) Sm,ℓ,3 = ∅.
(2) If p ∈ Sm,ℓ,2, then vp(m) 6≡ 1 (mod ℓ) and, in particular, vp(m) ≥ 2.
(3) If p ∈ Sm, then vp(m) = 1.
(4) If p ∈ Sm,ℓ,1, then ℓ ∤ vp(α).
(5) If p ∈ Sm,ℓ,2, then ℓ | vp(α) and the largest k such that the congruence

α ≡ xℓ (mod pvp(α)+k)

has a solution must be equal to z(p, ℓ)− vp(m).
(6) If p ∈ Sℓ, then ℓ | vp(α) and the congruence

α ≡ xℓ (mod pvp(α)+z(p,ℓ)−1)

has a solution.
(7) If p ∈ Sm, then ℓ ∤ vp(α).
(8) If p ∈ S∅, then ℓ | vp(α).
(9) If σ ∈ m∞, then σ(α) < 0.

(10) If σ is a real embedding that is not in m∞, then σ(α) > 0.

Remarks

(1) The first three conditions are only on the modulus m, while the others
are on α.

(2) The last two conditions are used only if ℓ = 2, since otherwise the condi-
tion ζℓ ∈ K implies that K is totally complex.

Proof. Assume first that L/K is of conductor equal to m. Then by Corol-
lary 3.5.12 (1), we know that d(L/K) = mℓ−1

0 , where as usual m0 is the finite
part of m. By Theorem 10.2.9, we thus have the following.

(1) If ℓ ∤ vp(α), then vp(m) = z(p, ℓ).
(2) If p ∤ ℓ and ℓ | vp(α), then vp(m) = 0.



5.2 Kummer Theory Using Hecke’s Theorem When ζℓ ∈ K 229

(3) If p | ℓ, p | m, and ℓ | vp(α), then vp(m) = 0 if a ≥ z(p, ℓ)− 1, vp(m) =
z(p, ℓ)− a if a < z(p, ℓ), where a is the largest value of k for which the
congruence

xℓ ≡ α (mod pk+vp(α))

has a solution.

By Theorem 10.2.9, we also know that a ≥ 1 and ℓ ∤ a. Since we want
all the places of K dividing m, and only those, to ramify, this implies im-
mediately all the necessary conditions on α. It also implies that Sm,ℓ,3 = ∅.
Finally, the two other conditions (2) and (3) on the modulus m are immediate
consequences of Corollary 3.5.12 (2).

Conversely, let m and α be such that the conditions of the theorem are
satisfied. Let d′ be the relative discriminant ideal of L/K, where L = K( ℓ

√
α).

Theorem 10.2.9 allows us to compute d′ as d′ = P1P2P3, where

P1 =
∏

p∈Sm,ℓ,1

p(ℓ−1)z(p,ℓ) =
∏

p∈Sm,ℓ,1

p(ℓ−1)vp(m) ,

P2 =
∏

p∈Sm,ℓ,2, vp(m)≥2

p(ℓ−1)(z(p,ℓ)−(z(p,ℓ)−vp(m))) =
∏

p∈Sm,ℓ,2, vp(m)≥2

p(ℓ−1)vp(m) ,

P3 =
∏

p∈Sm

pℓ−1 .

The restriction vp(m) ≥ 2 in the product P2 comes from the fact that, if
vp(m) = 1, then by Theorem 10.2.9, p is unramified.

After simplifications, we obtain d′ = mℓ−1
0 /P4P5 with

P4 =
∏

p∈Sm

p(ℓ−1)(vp(m)−1) and P5 =
∏

p∈Sm,ℓ,2, vp(m)=1

pℓ−1 .

Conditions (2) and (3) on the modulus imply that P5 = ZK , P4 = ZK ,
respectively; hence d′ = mℓ−1

0 . Since, by Corollary 3.5.12 (1), we also have
d′ = fℓ−1

0 , where f is the conductor, we deduce that m0 = f0. Finally, the last
conditions on the signatures imply that the ramified real places are exactly
those in m∞, so we have m∞ = f∞, hence m = f as desired. ⊓⊔

5.2.2 Virtual Units and the ℓ-Selmer Group

To use this theorem in practice, we must introduce some notation and defi-
nitions. Let

Cl(K) =
⊕

1≤i≤gc

(Z/diZ)ai

be the SNF of the class group of K, where the ai are ideals of K. If rc is the
largest index such that ℓ | di, then we clearly have
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Cl(K)/Cl(K)ℓ =
⊕

1≤i≤rc

(Z/ℓZ)ai ,

hence rc is the ℓ-rank of the group Cl(K). It follows that if I is an ideal of
K, we can write I =

∏
1≤i≤rc

ai
xi

for 0 ≤ xi < ℓ, where denotes the class

in Cl(K)/Cl(K)ℓ. Lifting to Cl(K), then to the ideals of K themselves, it
follows that any ideal can be written in the form

I = βqℓ
∏

1≤i≤rc

axi

i with 0 ≤ xi < ℓ ,

and the xi are unique.
Note that, thanks to Corollary 1.3.9, we could assume that the represen-

tatives ai of the ideal classes ai are chosen in such a way as to be coprime
with anything in sight, here coprime to ℓ and m. However, this would be in-
efficient for algorithmic purposes, especially since we will see that we do not
need this hypothesis, so we do not assume that the ai are necessarily coprime
with ℓ and m.

We define elements αi, βp of K∗ and integers pi,p for 1 ≤ i ≤ rc and
p ∈ S = Sm ∪ Sm,ℓ,1 by the following formulas:

adi

i = αiZK for 1 ≤ i ≤ rc ,
p = βpq

ℓ
p

∏

1≤i≤rc

a
pi,p

i for p ∈ S .

We will see in the next section how to compute such elements, but for now
simply note their existence. We may, of course, assume if desired that 0 ≤
pi,p < ℓ for all i.

Proposition 5.2.3. Let γ ∈ K∗. The following two properties are equiva-
lent.

(1) There exists an ideal q such that γZK = qℓ.
(2) The element γ belongs to the group generated by the units, the αi defined

above for 1 ≤ i ≤ rc, and the ℓth powers of elements of K∗.

Proof. Since for i ≤ h, we have αiZK = (a
di/ℓ
i )ℓ, it is clear that if γ belongs

to the group mentioned in the proposition, then γZK is the ℓth power of an
ideal. Conversely, assume that γZK = qℓ. Then, if q = β

∏
1≤i≤gc

axi

i , we

have γZK = βℓ
∏

1≤i≤gc
aℓxi

i , hence di | ℓxi for all i, so di | xi for i > rc,
while (di/ℓ) | xi for i ≤ rc. It follows that

γZK = βℓ
∏

1≤i≤rc

αni

i

∏

rc<i≤gc

αniℓ
i

with ni = xi/di for i > rc and ni = xi/(di/ℓ) for i ≤ rc, thus proving the
proposition. ⊓⊔
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Note that we have set αiZK = adi

i also for i > rc, but these αi do not
occur in any of the definitions, only in proofs or in algorithms. In particular,
they are not virtual units in the sense of the following definition. ⊓⊔

Definition 5.2.4. (1) An element γ ∈ K∗ satisfying one of the two equiv-
alent conditions of the above proposition will be called an ℓ-virtual unit,
or more simply a virtual unit if there is no risk of confusion.

(2) The set of virtual units forms a multiplicative group, which we will denote
by Vℓ(K).

(3) The quotient group Vℓ(K)/K∗ℓ will be called the ℓ-Selmer group of the
number field K and denoted Sℓ(K).

Proposition 5.2.5. Let ru = r1 + r2 − 1 be the rank of the torsion-free part
of U(K). Recall that we denote by rc the ℓ-rank of Cl(K). We denote by
(εj)1≤j≤ru a system of fundamental units, and by ε0 a generator of the group
of roots of unity in K of order w(K).

(1) The quotient group U(K)/U(K)ℓ is a Z/ℓZ-vector space of dimension
ru + 1, a basis consisting of the classes of the εj for 0 ≤ j ≤ ru.

(2) The quotient group Vℓ(K)/K∗ℓ is a Z/ℓZ-vector space of dimension rv =
rc + ru + 1, a basis consisting of the classes of the εj for 0 ≤ j ≤ ru and
of the αi for 1 ≤ i ≤ rc.

Proof. Since Vℓ(K) is generated by the αi, the εj, andK∗ℓ, we must simply

find the dependencies between the αi and εj in Vℓ(K)/K∗ℓ as a Z/ℓZ-vector
space. Hence assume that

∏

0≤j≤ru

ε
xj

j

∏

1≤i≤rc

αni

i = γℓ

for some γ ∈ K∗. By definition of αi, this implies

∏

1≤i≤rc

adini

i = γℓZK ;

hence bℓ = γℓZK = (γZK)ℓ with

b =
∏

1≤i≤rc

a
(di/ℓ)ni

i .

Thus, b = γZK is a principal ideal; hence di | (di/ℓ)ni for 1 ≤ i ≤ rc or,
equivalently, ni ≡ 0 (mod ℓ), so the virtual units αi do not enter into our
dependency. Thus, it is enough to prove (1).
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So assume that ∏

0≤j≤ru

ε
xj

j = εℓ

for some ε ∈ K∗. Since ε is a root of the monic polynomial Xℓ− εℓ = 0 with
coefficients in ZK , it follows that it is an algebraic integer (see, for example,
[Coh0, Corollary 4.1.5]), and since ε ∈ K∗, we have ε ∈ ZK . Furthermore,
the absolute norm of ε is in Z, and its ℓth power is equal to ±1, from which
it follows that N (ε) = ±1, hence ε is a unit of K. For future reference, we
isolate this as a lemma.

Lemma 5.2.6. We have U(K) ∩K∗ℓ = U(K)ℓ.

Thus, if ε =
∏

0≤j≤ru
ε
yj

j , we have xj = ℓyj for j ≥ 1, while x0 ≡ ℓy0
(mod w(K)). Thus, for j ≥ 1, xj ≡ 0 (mod ℓ) so the fundamental units εj do
not enter into our dependency. Furthermore, since ζℓ ∈ K, we have ℓ | w(K),
so we also have x0 ≡ 0 (mod ℓ), proving the proposition. ⊓⊔

Remark. In the case where ζℓ /∈ K which is not considered here, we have
ℓ ∤ w(K). Hence a primitive w(K)th root of unity is an ℓ-power, so the rank
of U(K)/U(K)ℓ is only equal to ru, and that of Vℓ(K)/K∗ℓ is equal to rc+ru.

Definition 5.2.7. We will write vi = αi for 1 ≤ i ≤ rc, and vi+rc = εi−1

for 1 ≤ i ≤ ru + 1. Thus, the vi form a Z/ℓZ-basis for the ℓ-Selmer group
Vℓ(K)/K∗ℓ.

Proposition 5.2.8. We have the following exact sequence:

1 −→ µℓ(K) −→ U(K)
[ℓ]−→ U(K) −→ Vℓ(K)

K∗ℓ

φ−→ Cl(K)
[ℓ]−→ Cl(K) −→ Cl(K)

Cl(K)ℓ
−→ 1 .

Here, µℓ(K) is the group of ℓth roots of unity in K, [ℓ] denotes the map that
raises to the ℓth power (in Cl(K) or U(K)), and φ is the map that sends the
class of a virtual unit v to the ideal class of the ideal q such that vZK = qℓ.

In particular, we have the following short exact sequence:

1 −→ U(K)

U(K)ℓ
−→ Vℓ(K)

K∗ℓ
φ−→ Cl(K)[ℓ] −→ 1 ,

where Cl(K)[ℓ] denotes the subgroup of Cl(K) of ideal classes killed by ℓ.

Proof. The proof is straightforward and is left to the reader (Exer-
cise 3). Note also that this proposition shows once again that the ℓ-rank
of Vℓ(K)/K∗ℓ is equal to the sum of the ℓ-ranks of U(K)/U(K)ℓ and of
Cl(K)/Cl(K)ℓ. ⊓⊔
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Remark. We have a very similar situation in the case of elliptic curves
over some fixed number field, say Q. The group of units U(K) is analogous to
the Mordell–Weil group E(Q), the rank ru + 1 of U(K)/U(K)ℓ is analogous
to the rank of E(Q)/ℓE(Q), and the rank rc of the ℓ-part of the class group
is analogous to the rank of the ℓ-part of the Tate–Shafarevitch group of the
curve. I refer to [Sil2] for these notions. Thus, it is perfectly reasonable to call
Vℓ(K)/K∗ℓ the ℓ-Selmer group of the number field K as we have done above.
The above exact sequences are analogs of the corresponding exact sequences
for ℓ-Selmer groups of elliptic curves.

5.2.3 Construction of Cyclic Extensions of Prime Degree
and Conductor m

The following theorem is the basis of our explicit Kummer algorithms when
ζℓ ∈ K.

Theorem 5.2.9. Keep the above notation, and in particular recall that we
write z(p, ℓ) = ℓe(p/ℓ)/(ℓ− 1) + 1 and S = Sm ∪ Sm,ℓ,1.

Let L/K be a cyclic extension of K of degree ℓ and of conductor equal
to m. Then m satisfies conditions (1), (2), and (3) of Theorem 5.2.2, and up
to Kummer-equivalence, we can choose L = K( ℓ

√
α) with α of the following

form:

α =
∏

p∈S
β
xp

p

rc+ru+1∏

i=1

vni

i ,

with the following additional conditions.

(1) For all p ∈ S, we have 1 ≤ xp ≤ ℓ− 1; for all i, we have 0 ≤ ni ≤ ℓ− 1.
(2) For p ∈ Sm,ℓ,2, the largest k such that the congruence

xℓ ≡ α (mod pk+vp(α))

has a solution must be equal to z(p, ℓ)− vp(m).
(3) If S is not empty, we may fix any one (but only one) of the xp equal to

1.
(4) For each p ∈ Sℓ, the congruence

xℓ ≡ α (mod pz(p,ℓ)−1+vp(α))

has a solution.
(5) For each i ≤ rc, we must have

∑

p∈S
xppi,p ≡ 0 (mod ℓ) .

(6) For each σ ∈ m∞, σ(α) < 0, while for each real embedding σ /∈ m∞, we
have σ(α) > 0.
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Conversely, if m satisfies conditions (1), (2), and (3) of Theorem 5.2.2, if
the above conditions are satisfied, and if α 6= 1, then L = K( ℓ

√
α) is a cyclic

extension of degree ℓ and of conductor m.

Proof. Since by Theorem 5.2.2, we have Sm,ℓ,3 = ∅, we can write

αZK =
∏

p∈S
pxp

∏

p∈Sm,ℓ,2

pxp

∏

p∈Sℓ

pxp

∏

p∈S∅

pxp .

By Theorem 5.2.2, when p ∈ Sm,ℓ,2, p ∈ Sℓ, or p ∈ S∅, we must have
ℓ | vp(α) = xp. By the approximation theorem, we can find γ ∈ K∗ such
that vp(γ) = −xp/ℓ for p ∈ Sm,ℓ,2 and p ∈ Sℓ, vp(γ) = −⌊xp/ℓ⌋ for p ∈
S = Sm ∪ Sm,ℓ,1, and no special conditions for p ∈ S∅. Since α is Kummer-
equivalent to αγℓ, we may thus replace α by αγℓ, hence for this new α we
will have xp = 0 for p ∈ Sm,ℓ,2 and p ∈ Sℓ, and also 1 ≤ xp ≤ ℓ− 1 for p ∈ S
(since by Theorem 5.2.2 we must have ℓ ∤ vp(α) for p ∈ S). To summarize,
up to Kummer-equivalence, we have

αZK = qℓ
∏

p∈S
pxp ,

where q is an ideal coprime to m and ℓ.
Replacing the prime ideals p ∈ S by their expressions in Cl(K)/Cl(K)ℓ,

we obtain
αZK = qℓ1

∏

p∈S
β
xp

p

∏

1≤i≤rc

a
yi

i ,

with
yi =

∑

p∈S
xppi,p

and some other ideal q1 (this time not necessarily coprime to m and ℓ).
In the quotient group Cl(K)/Cl(K)ℓ, we thus have

∏

1≤i≤rc

ai
yi

= 1 ,

and since the ai form a Z/ℓZ-basis, we have ℓ | yi for each i such that
1 ≤ i ≤ rc. Thus, we have shown that

αZK = qℓ2

∏

p∈S
β
xp

p

for some ideal q2.
Since qℓ2 is both a principal ideal and the ℓth power of an ideal, by Propo-

sition 5.2.3 it is of the form vZK for v ∈ Vℓ(K), showing that α is of the form
given in the theorem.
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We have seen that 1 ≤ xp ≤ ℓ− 1 and that for 1 ≤ i ≤ rc, we must have

yi =
∑

p∈S
xppi,p ≡ 0 (mod ℓ) .

Up to Kummer-equivalence, we may of course also choose 0 ≤ ni ≤ ℓ− 1.
Finally, in the condition of Kummer-equivalence, we are allowed another

degree of freedom in addition to multiplying by an ℓth power: we may also
raise α to some power coprime to ℓ. If S is nonempty, this can be used to
fix one (and only one) of the xp equal to 1, since we know that they are not
divisible by ℓ.

The other conditions of the corollary follow immediately from Theorem
5.2.2, and hence we have proved that all the conditions of the corollary are
necessary.

Let us prove the converse. Assume that all the conditions are satisfied.
Since by definition,

p = βpq
ℓ
p

∏

1≤i≤rc

a
pi,p

i ,

it follows that for any prime ideal q, we have

vq(βp) ≡ δp,q −
∑

1≤i≤rc

pi,pvp(ai) (mod ℓ) ,

where δp,q is the Kronecker symbol. In addition, for 1 ≤ i ≤ rc, we have
vq(αi) = divq(ai) ≡ 0 (mod ℓ). Thus, for any prime ideal q we have

vq(α) ≡
∑

p∈S
xpvq(βp) ≡

∑

p∈S
xpδp,q −

∑

1≤i≤rc

vp(ai)
∑

p∈S
xppi,p (mod ℓ) ;

hence by condition (5), we have vq(α) ≡ 0 (mod ℓ) if q /∈ S, while vq(α) ≡
xq 6≡ 0 (mod ℓ) if q ∈ S by condition (1). This and the other conditions imply
that all the conditions of Theorem 5.2.2 are satisfied. To finish the proof, we
must show that α /∈ K∗ℓ. Indeed, if α is an ℓth power, then S = ∅ (otherwise
xp ≡ 0 (mod ℓ)); hence α is a virtual unit that is equal to an ℓth power of
an element. It follows from Proposition 5.2.5 that ni = 0 for all i, hence that
α = 1, contrary to the assumption of the theorem. ⊓⊔

The conditions of the theorem already restrict α to a finite set of cardi-
nality at most equal to (ℓ − 1)|S|ℓrv . If α belongs to this finite set, we will
know that Lα = K( ℓ

√
α) is a cyclic extension of degree ℓ, conductor m, hence

relative discriminant d(L/K), and correct signature. Of course, there may be
several fields Lα satisfying all these conditions. To terminate, we compute
the norm group for each of the possible α in our finite set, and exactly one
will be equal to (m, C). The α we find are in one-to-one correspondence with
congruence subgroups (m, C) such that m is the conductor of (m, C).
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5.2.4 Algorithmic Kummer Theory When ζℓ ∈ K Using Hecke

In this section, we simply put in formal algorithmic form the results of the
preceding sections. We assume as above that K is a number field and that ℓ
is a prime number such that ζℓ ∈ K.

We keep the notation of the preceding section. In particular, if

Cl(K) =
⊕

1≤i≤gc

(Z/diZ)ai

is an SNF for the class group Cl(K), we set adi

i = αiZK , and rc denotes the
largest index such that ℓ | di, in other words the ℓ-rank of Cl(K).

The elements αi that are needed to use Theorem 5.2.9 are found by di-
rectly using the principal ideal algorithm ([Coh0, Algorithm 6.5.10]). For the
integers pi,p and the elements βp, we use the following general algorithm.

Algorithm 5.2.10 (Decomposition of an Ideal in Cl(K)/Cl(K)ℓ). Keep the
above notation and let b be an ideal of K. This algorithm computes β ∈ K∗ and
integers bi such that there exists an ideal q (which is not computed) such that

b = βqℓ
∏

1≤i≤rc

abi

i .

1. [Use principal ideal algorithm] Using [Coh0, Algorithm 6.5.10], compute α and
integers bi such that b = α

∏
1≤i≤gc

abi

i .

2. [Compute αi for i > rc] Using the same algorithm, for each i such that
rc < i ≤ gc, compute αi ∈ K such that adi

i = αiZK .

3. [Compute β] For each i such that rc < i ≤ gc (equivalently, such that ℓ ∤ di),
using Euclid’s extended algorithm, compute an integer ui such that uidi ≡ 1
(mod ℓ), set

β ← α
∏

rc<i≤gc

αbiui mod ℓ
i ,

output β and the bi for i ≤ rc, and terminate the algorithm.

Proof. Note that for i > rc we have (di, ℓ) = 1; hence by Euclid’s extended
algorithm, we can find ui and vi such that uidi + viℓ = 1. It follows that for
i > rc, we have

abi

i = αuibi

i qℓi with qi = avibi

i ,

which shows the algorithm’s validity. ⊓⊔

Remark. Since we will in practice apply this algorithm for many ideals
b, we compute the αi and ui once and for all. Please recall once again that
the αi for i > rc are not ℓ-virtual units.

When we apply this algorithm to b = p, we obtain an element βp = β,
exponents pi,p = bi, and an ideal qp = q. Since the ideals qp play no practical
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role (although we must keep them for the theoretical analysis), while the βp

are essential, it is useful to choose βp as simple as possible. Indeed, we have
some freedom in choosing βp. By definition, we may replace βp by any β′

p

such that β′
p/βp is the ℓth power of an ideal and not only of an element

(since this simply changes the ideal qp); in other words, we may multiply βp

by any virtual unit if desired. This can be done in several ways, which are
rather technical, so we will not give any details here, but simply note that in
practice this reduction should be attempted.

To be able to give an algorithm corresponding to Theorem 5.2.9, we must
explain how to check whether or not a congruence of the form

xℓ ≡ α (mod pk+vp(α))

has a solution, where it is known that ℓ | vp(α). For this, it is useful to gen-
eralize the notion of discrete logarithm in (ZK/m)∗ to elements not coprime
to m.

Definition 5.2.11. Let m = m0m∞ be a modulus and let m0 =
∏

p pkp be the
factorization of m0 into prime ideals. For each p | m0, let πp be an element
of p r p2 not belonging to q for any prime ideal q | m0 different from p, and
let

(ZK/m)∗ =
⊕

1≤i≤s
(Z/ciZ)gi

be the SNF of (ZK/m)∗. If α ∈ K∗, we say that ((vp), (a1, . . . , as)) is a
discrete logarithm for α with respect to the generators gi and the uniformizers
πp if

α = β
∏

p

π
vp

p

∏

1≤i≤s
gai

i

with β ≡ 1 (mod ∗m).

Remarks

(1) A discrete logarithm always exists. Indeed, we must take vp = vp(α)
for all p | m. Then α/

∏
p π

vp

p is coprime to m; hence its usual discrete
logarithm in (ZK/m)∗ is well-defined.

(2) It is also clear that if ((v′p), (a′1, . . . , a
′
s)) is another discrete logarithm,

then v′p = vp = vp(α); hence for all i we have a′i ≡ ai (mod ci).

(3) If m = pk, we evidently have

α ≡ πvp

p

∏

1≤i≤s
gai

i (mod pk+vp(α)) .
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The following proposition easily answers our congruence problem.

Proposition 5.2.12. Let p be a prime ideal, let k ≥ 1 be an integer, and let
(ZK/p

k)∗ =
⊕

1≤i≤s(Z/ciZ)gi as above. Let t be the largest index i such that
ℓ | ci. If α ∈ K∗, the congruence

xℓ ≡ α (mod ∗pk+vp(α))

has a solution if and only if

(vp, (a1, . . . , at)) ≡ 0 (mod ℓ) ,

where (vp, (a1, . . . , as)) is the discrete logarithm of α as defined above.

Proof. Write α = βπ
vp

p

∏
1≤i≤s g

ai

i and x = γπwp
∏

1≤i≤s g
xi

i as above.

Since k ≥ 1, xℓ ≡ α (mod pk+vp) implies that vp = wℓ, hence that vp ≡ 0
(mod ℓ). In addition, since β ≡ γ ≡ 1 (mod ∗pk), we must have ai ≡ ℓxi
(mod ci) for all i. For i ≤ t, the existence of xi is equivalent to ℓ | ai, while
for i > t, xi always exists since ci is coprime to ℓ, proving the proposition. ⊓⊔

This leads us to introduce the following notation.

Definition 5.2.13. Let m be a modulus, let (ZK/m)∗ =
⊕

1≤i≤s(Z/ciZ)gi
be in SNF, let α ∈ K∗, and let ((vp), (a1, . . . , as)) be the discrete logarithm
of α with respect to the generators gi and the uniformizers πp, as defined
above. If t is the largest index (possibly 0) such that ℓ | ci (so t is the ℓ-rank
of (ZK/m)∗), then we set Lm(α) = (a1, . . . , at) and call it the short discrete
logarithm of α.

Thus, if we know that ℓ | vp(α), the above proposition tells us that the
congruence xℓ ≡ α (mod pk+vp(α)) has a solution if and only if Lpk(α) ≡ 0
(mod ℓ).

Remarks

(1) To compute the short discrete logarithm, we use Algorithm 4.2.24, or
Algorithm 4.2.18 if m is the power of a prime ideal. An important special
case, however, is case (4) of Theorem 5.2.9. We frequently have e(p, ℓ) =
ℓ − 1, hence z(p, ℓ) − 1 = ℓ, and so we may apply Proposition 4.2.19
instead of the general algorithm.

(2) It is important to use the short discrete logarithm in order to find suit-
able elements satisfying our congruence conditions (see steps 6 to 8 of
Algorithm 5.2.14 below). If, however, we only need to test whether a con-
gruence xℓ ≡ α (mod pk+vp(α)) has a solution for a given α, it is probably
faster to use the methods explained in Section 10.2.4.

We can now give the complete algorithm for computing explicitly the
Abelian extension L/K using Hecke’s theorem when ζℓ ∈ K.
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Algorithm 5.2.14 (Kummer Extensions of Prime Degree When ζℓ ∈ K
Using Hecke). Let K be a number field and ℓ be a prime number such that
ζℓ ∈ K. We assume that the groups Cl(K) and U(K) have been explicitly
computed, as well as the αi for 1 ≤ i ≤ rc (using the above notation). As above,
let (vi)1≤i≤rc+ru+1 be a generating set for the group of virtual units Vℓ(K)
(modulo ℓth powers) generated by U(K) and the αi. Let m be an arbitrary
modulus of K. This algorithm outputs defining polynomials for all the Abelian
extensions L/K of degree ℓ and of conductor equal to m.

1. [Factor m and ℓ] Using Algorithm 2.3.22 (in the absolute case), find the prime
ideal factorization of the finite part of the modulus m0 =

∏
p|m0

pvp(m0), and

using [Coh0, Algorithm 6.2.9], compute the prime ideal factorization of ℓZK .

2. [Compute sets of prime ideals] Compute the finite sets Sm, Sℓ, and Sm,ℓ,i for
i = 1, 2, 3 according to Definition 5.2.1.

3. [Test conditions on m] If Sm,ℓ,3 6= ∅, or if there exists p ∈ Sm,ℓ,2 such that
vp(m) ≡ 1 (mod ℓ), or if there exists p ∈ Sm such that vp(m) ≥ 2, there are
no suitable Abelian extensions L/K, so terminate the algorithm.

4. [Compute βp and pi,p] Using Algorithm 5.2.10, for each p ∈ S = Sm∪Sm,ℓ,1,
compute βp ∈ K∗ and integers pi,p such that for some ideal qp we have
p = βpq

ℓ
p

∏
1≤i≤rc

a
pi,p

i .

5. [Introduce notation] (This is a notational step, not really anything to be
done.) To ease notation, set rv ← rc + ru + 1, and for 1 ≤ j ≤ rv let vj
be virtual units such that the

(
vj
)
1≤j≤rv

form a Z/ℓZ-basis of Vℓ(K)/K∗ℓ

as in Definition 5.2.7. For 1 ≤ j ≤ s, let pj be the prime ideals in S, set
vj+rv ← βpj for 1 ≤ j ≤ s, and set rw ← s+ rv (this will be the number of
columns of a matrix that we will construct).
On the other hand, let (mi)1≤i≤m be the following moduli (in any order):
pz(p,ℓ)−vp(m) for p ∈ Sm,ℓ,2, pz(p,ℓ)−1 for p ∈ Sℓ; and in the case ℓ = 2, m′

∞,
complement of m∞ in the set of real places. Finally, set R← m+ rc, where
m is the number of moduli just computed (this will be the number of blocks
of rows).

6. [Compute discrete logarithms] Using Algorithms 4.2.17 and 4.2.18, compute
the SNF of (ZK/mi)

∗ as well as Lmi(vj) and Lmi(βpj′
) for all i such that

1 ≤ i ≤ m, for all j such that 1 ≤ j ≤ rv, and for all j′ such that 1 ≤ j′ ≤ s.
7. [Create big matrix] Construct a matrix M as follows. Let Mj be the jth col-

umn of M . Then Mj is obtained by concatenating the Lmi(vj) for 1 ≤ i ≤ m
(considered as column vectors), together with the zero vector with rc com-
ponents if j ≤ rv, or with the rc-component column vector (pi,pj−rv

)1≤i≤rc

if rv < j ≤ rw. Finally, denote by M the matrix M reduced modulo ℓ,
considered as a matrix with entries in Z/ℓZ.

8. [Compute kernel] Using [Coh0, Algorithm 2.3.1], compute the kernel K of the
matrix M as a Z/ℓZ-vector space. If this kernel is reduced to {0}, there are
no suitable Abelian extensions L/K, so terminate the algorithm. Otherwise,
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let dK ← dim(K) be the dimension of this kernel, and denote by (Kj)1≤j≤dK
a Z/ℓZ-basis of K, where the Kj are considered as rw-component column
vectors. Finally, set c← dK.

9. [Compute more discrete logarithms] Let (m′
i)1≤i≤m′ be the following moduli

(in any order): pz(p,ℓ)−vp(m)+1 for p ∈ Sm,ℓ,2; and in the case ℓ = 2, m∞. As
in step 6, compute the SNF of (ZK/m

′
i)

∗ as well as Lm′
i
(vj) and Lm′

i
(βpj′

)
for 1 ≤ i ≤ m′, 1 ≤ j ≤ rv, and 1 ≤ j′ ≤ s. For 1 ≤ i ≤ m′, let M ′

i be the
matrix with rw columns, each column containing Lm′

i
(vj) and Lm′

i
(βpj′

) as
above. Do not put the matrices M ′

i together by rows as above.

10. [Initialize backtracking] (In what follows, c ≥ 1 and y will be a row vector
with c− 1 components.) Set y ← (0, . . . , 0) (vector with c− 1 components).

11. [Compute trial vector] Let X ← Kc +
∑

1≤j<c yjKj . Apply Subalgorithm
5.2.15 below to see if X corresponds to a suitable Abelian extension L/K. If
it does, set α =

∏
1≤j≤rw

v
xj

j (where X = (x1, . . . , xrw)t), and output the

defining polynomial Xℓ − α = 0 (do not terminate the algorithm).

12. [Backtracking I] Set i← c.

13. [Backtracking II] Set i ← i − 1. If i > 0, go to step 14. Otherwise, set
c← c− 1. If c > 0, go to step 10; otherwise, terminate the algorithm.

14. [Backtracking III] Set yi ← yi + 1, and if i < c− 1, set yi+1 ← 0. If yi ≥ ℓ,
go to step 13; otherwise, go to step 11.

Subalgorithm 5.2.15 (Is X Suitable?). Given a vector X = (x1, . . . , xrw )t

found in step 11 of Algorithm 5.2.14, this subalgorithm determines whether X
corresponds to a suitable Abelian extension L/K. We use all the quantities
computed in the main algorithm.

1. [Test conditions on xp] If any of the xi for rv < i ≤ rw is equal to zero
modulo ℓ, X is not suitable, so terminate the subalgorithm.

2. [Test m′
i] For 1 ≤ i ≤ m′, compute Yi ← M ′

iX . If for any i we have Yi ≡ 0
(mod ℓ), then X is not suitable. Otherwise (in other words, if for all i ≤ m′

we have Yi 6≡ 0 (mod ℓ)), X is suitable. Terminate the subalgorithm.

Proof. Although the algorithm looks complicated, it is very little else than
the exact algorithmic translation of Theorem 5.2.9. Thus, we simply make a
few comments. We first want the modulus to satisfy conditions (1), (2), and
(3) of Theorem 5.2.2. This is ensured by step 3. If

α =
∏

1≤j≤rv

v
nj

j

∏

p∈S
β
xp

p ,

we want a number of congruences and noncongruences to be satisfied, as well
as conditions on the xp. If we set X = (n1, . . . , nrv , xp1 , . . . , xps)

t, then it is
easily seen that X ∈ Ker

(
M
)

is equivalent to the congruences that α must
satisfy, together with the conditions vp(α) ≡ 0 (mod ℓ) for p ∈ S, and so to
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condition (5) of Theorem 5.2.9. Thus, at the end of step 8, all the elements
X of the kernel K correspond to elements α satisfying the congruences.

We must now add some negative conditions: the noncongruences satis-
fied for prime ideals p ∈ Sm,ℓ,2, for σ ∈ m∞, and the conditions xp 6≡ 0
(mod ℓ) for p ∈ S. Instead of leading to the intersection of subspaces as be-
fore, this corresponds to the intersection of complements of subspaces. This
is no longer linear algebra, and there does not seem to be any better method
than complete enumeration, which at this stage should be rather short.

This is achieved by a standard backtracking procedure (steps 10 to 14),
and the negative conditions for each trial vector are tested in Subalgorithm
5.2.15. Note that condition (3) of Theorem 5.2.9 (the possibility of setting
some xp = 1 if S 6= ∅) was included only to make the search faster by deho-
mogenizing the solution to the congruences, which is allowed up to Kummer-
equivalence. In the above algorithm we proceeded differently (and more ef-
ficiently if S = ∅): if X =

∑
1≤i≤c yiKi, we ask that yi = 1 for the largest

index i such that yi 6= 0 (see also remark (3) below).
In Subalgorithm 5.2.15, we must also ensure that α /∈ K∗ℓ. By Theorem

5.2.9, it is sufficient to ensure that α 6= 1, and this is indeed excluded by our
backtracking procedure. ⊓⊔

Remarks

(1) By Proposition 3.3.12, we know that m must be a modulus for the con-
gruence subgroup Pm, hence we can begin by checking that hm/p < hm

for all places p dividing m, since if this not the case, there are no suitable
extensions L. Computing hm and all the hm/p may, however, be costly,
so it is not certain that this is worthwhile.

(2) Instead of putting all the discrete logarithm data into a big matrix, we
could also consider computing the product of all the prime ideal powers
modulo which congruences have to be taken, and compute a single dis-
crete logarithm. This would almost certainly be slower than the method
given above.

(3) The algorithm given in [Coh0, Algorithm 2.3.1] gives a basis of the kernel
in column echelon form. If S 6= ∅, the last coordinate of the vector X is
one of the xp and hence must be nonzero, so in step 13, when i gets down
to zero it is not necessary to continue the backtracking with c ← c − 1,
since all subsequent vectors X will be excluded by the subalgorithm.
We could have included this remark explicitly in the algorithm, but its
validity would then have been dependent on the algorithm chosen for
computing the kernel in step 8.

We thus have finished our description of algorithmic Kummer theory when
ζℓ ∈ K using Hecke’s theorem.
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5.3 Kummer Theory Using Hecke When ζℓ 6∈ K

In this section, we no longer assume that ζℓ ∈ K (in fact, we explicitly
assume that ζℓ /∈ K), and we want to give an algorithmic description of
cyclic extensions L/K of degree ℓ and given conductor m.

Our first problem is simply to be able to describe them, in other words,
to give explicit defining polynomials for cyclic extensions of degree ℓ of K. If
ζℓ ∈ K, Kummer theory tells us that any such extension is of the formK( ℓ

√
α)

for some α, but here the situation is less simple. Even after this problem is
solved, we need to control the ramification of prime ideals, and this is difficult
to do directly.

Thus, the only method used in practice is to adjoin to K a primitive ℓth
root of unity ζℓ, thus obtaining a larger field Kz = K(ζℓ). We then apply
Kummer theory to the field Kz, obtaining a cyclic extension Lz of Kz, of
degree ℓ and having suitable properties, and we finally must go back down
from Lz to the desired extension L. We will see in detail how this is done.
Before doing this, however, we recall some basic facts about idempotents.

5.3.1 Eigenspace Decomposition for the Action of τ

We first need a well-known result in Galois theory, which we state as follows
(recall that since we are in characteristic 0, the notions of normal and Galois
coincide).

Proposition 5.3.1. Let L be a number field, let L1 and L2 be two exten-
sions of L included in a fixed algebraic closure L of L, and let L1L2 be the
compositum of L1 and L2 in L.

(1) If L1/L and L2/L are normal extensions, then L1L2/L is also a normal
extension.

(2) If L1/L and L2/L are Abelian extensions, then L1L2/L is also an Abelian
extension.

(3) Assume only that L1/L is a normal extension with Galois group G1. Then
L1L2/L2 is a normal extension whose Galois group H1 can be canonically
identified with a subgroup of G1. Furthermore, H1 is isomorphic to G1 if
and only if L1 ∩ L2 = L.

Proof. Let N be the normal closure of L1L2 (or any field containing N
and normal over L), and let G = Gal(N/L) be the Galois group of N/L.
For i = 1, 2, let Gi = Gal(N/Li) so that Gi is a normal subgroup of G with
Gal(Li/L) ≃ G/Gi. By Galois theory, subfields of N containing both L1 and
L2 are in one-to-one correspondence with subgroups of G contained in G1∩G2,
hence Gal(N/L1L2) = G1∩G2. Since G1∩G2 is the intersection of two normal
subgroups, it is also a normal subgroup, hence L1L2/L is normal with Galois
group isomorphic to G/G1 ∩ G2, proving (1).
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For (2), note that L1/L is Abelian if and only if xyx−1y−1 = 1 in G/G1

for all x, y in G, hence if and only if [G,G] ⊂ G1, where [G,G] is the commu-
tator subgroup of G (in other words, L1 is a subfield of the maximal Abelian
extension of L included in N). Thus, if L1/L and L2/L are both Abelian, we
have [G,G] ⊂ G1 ∩ G2, so Gal(L1L2/L) is Abelian, proving (2).

For (3), since G1 is a normal subgroup of G, G1 ∩G2 is a normal subgroup
of G2, so

H1 ≃
G2

G1 ∩ G2
≃ G1 + G2

G1
⊂ GG1

≃ G1 ,

showing the result. In addition, we have the isomorphism H1 ≃ G1 if and
only if G1 + G2 = G, hence if and only if L1 ∩ L2 = L, as claimed.

More directly, let σ ∈ H1 and let τ = σ−1. If s (resp., t) is the restriction
of σ (resp., τ) to L1, then s◦ t = t◦ s = Id, hence s and t are automorphisms
of L1. Since σ and τ fix L2 pointwise, s and t fix L pointwise, so s ∈ G1, and
thus this defines a canonical map from H1 to G1. If s = Id, then σ is the
identity on L1 and on L2 by assumption, so σ is the identity on L1L2, hence
σ = Id, showing that the map is injective, so H1 can indeed be considered
as a subgroup of G1. If, in addition, L1 and L2 are linearly disjoint over L,
then σ can be defined (uniquely) from the knowledge of s and t, so our map
is also surjective, and the converse clearly also holds. ⊓⊔

We now come back to our specific situation. Let ℓ be a prime number, let
K be a number field such that ζℓ /∈ K (hence, in particular, ℓ > 2), and set
Kz = K(ζℓ). In the rest of this chapter we choose once and for all a primitive
root g0 modulo ℓ.

Proposition 5.3.2. The extension Kz/K = K(ζℓ)/K is a cyclic extension
of degree d = (ℓ − 1)/m for some divisor m of ℓ − 1 such that m < ℓ − 1.
The Galois group Gal(Kz/K) is generated by the automorphism τ of order d
defined by τ(ζℓ) = ζgℓ and τ(x) = x for x ∈ K, where g = gm0 .

Proof. We apply Proposition 5.3.1 (3) to the case L = Q, L1 = Q(ζℓ), L2 =
K, hence L1L2 = K(ζℓ) = Kz. Thus Kz/K is normal, and its Galois group
can be identified with a subgroup of Gal(Q(ζℓ)/Q) ≃ (Z/ℓZ)∗. Since this is a
cyclic group of order ℓ−1, Gal(Kz/K) is a cyclic group of order dividing ℓ−1,
hence of order (ℓ− 1)/m for some m < ℓ− 1, since we have assumed ζℓ /∈ K.
Since (Z/ℓZ)∗ has a unique subgroup of given order (ℓ− 1)/m, generated by
g = gm0 , the proposition follows. ⊓⊔

We will denote by G the Galois group of Kz/K, so that G = 〈τ〉 is a
cyclic group generated by τ of order d = (ℓ− 1)/m. The diagram of fields is
as follows:
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Lz
d

||
||

||
||

〈σ〉ℓL

〈σ〉 ℓ Kz

d

G=〈τ〉
||

||
||

||

K

Let W be an Fℓ-vector space (not necessarily finite dimensional) on which
the group G operates. With our applications in mind, the Abelian group law
of W will be written multiplicatively.

Then τ ∈ G acts as an endomorphism t of W , of order dividing d. Since
d | (ℓ− 1) hence is coprime to ℓ, Xd − 1 is a squarefree polynomial in Fℓ[X ],
hence t is diagonalizable. Furthermore, the eigenvalues of t (in Fℓ) are among
the roots of Xd− 1 = 0, hence are among the elements of F∗

ℓ which are roots
of this polynomial, and these are the powers of g = gm0 . Therefore, we can
write W =

⊕
0≤k<dWk, where Wk is the eigenspace corresponding to the

eigenvalue gk of τ acting on W .
For 0 ≤ k < d, set

ek =
1

d

∑

0≤a<d
g−kaτa = −m

∑

0≤a<d
g−kaτa ∈ Fℓ[G] .

Lemma 5.3.3. The ek for 0 ≤ k < d form a complete set of orthogonal
idempotents for the action of G. In other words:

(1) if k1 6= k2, then ek1ek2 = 0;
(2) e2k = ek;
(3) we have

∑
0≤k<d ek = 1;

(4) we have τek = gkek.

Proof. The proof is a trivial direct verification: we have

ek1ek2 = d2
∑

a,b

g−(k1a+k2b)τa+b

= d2
∑

A

τA
∑

a

g−(k1a+k2(A−a))

= d2
∑

A

τAg−k2A
∑

a

ga(k2−k1) ,

and the inner sum is a geometric series that vanishes if k2 6= k1 and is equal
to d if k2 = k1, showing (1) and (2). Statement (3) also follows immediately
by summing a geometric series. Finally,
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τek = −m
∑

a

g−kaτa+1 = −m
∑

a

g−k(a−1)τa = gkek ,

proving (4). ⊓⊔

Recall that it is common usage, and very useful, to use exponential no-
tation for the action of group rings, so that if x ∈ W and e =

∑
σ∈G aσσ,

then
xe =

∏

σ∈G
σ(x)aσ .

Corollary 5.3.4. With the above notation, the eigenspace Wk is equal to
ekW = {xek/ x ∈ W}.

Proof. We have

τ(xek ) = xτek = xg
kek = xek g

k

.

Thus, xek ∈ Wk; hence ekW ⊂Wk. It follows that

⊕

0≤k<d
ekW ⊂

⊕

0≤k<d
Wk = W .

Since the ek form a complete set of orthogonal idempotents, we have W =⊕
0≤k<d ekW (since x =

∏
0≤k<d x

ek), and so we must have the equality
ekW = Wk for all k, proving the corollary. ⊓⊔

We will use these results mainly for W = K∗
z/K

∗
z
ℓ, W = U(Kz)/U(Kz)

ℓ,
W = Vℓ(Kz)/K

∗
z
ℓ, and W = Cl(Kz)/Cl(Kz)

ℓ. All these groups are Fℓ-
vector spaces that are stable by τ , and hence by G. Indeed, this is clear for
K∗
z , the units, and the class group, while for the virtual units it follows from

the characterization of virtual units given in Proposition 5.2.3 as elements
generating the ℓth power of an ideal .

The basic theorem we will use is the following.

Theorem 5.3.5. Let K be a number field, and let L be a cyclic extension of
K of degree ℓ. Assume that K does not contain ζℓ, and let Kz = K(ζℓ) and
Lz = L(ζℓ). Let g0 be a primitive root modulo ℓ, let d = [Kz : K] = (ℓ−1)/m,
and g = gm0 as above. Finally, let W = K∗

z/K
∗
z
ℓ.

(1) Any α such that Lz = Kz( ℓ
√
α) belongs to the eigenspace e1W = W1 of

W (and such α exist by Kummer theory).
(2) If Lz = Kz(θ) with θ = ℓ

√
α as in (1), then L = K(η) with

η = TrLz/L(θ) =
∑

0≤a<d
τa(θ) ,

where τ is any extension to Lz of the K-automorphism τ of Kz.
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(3) A defining polynomial for L/K is given by the polynomial

P (X) =
∏

0≤j<ℓ

(
X −

∑

0≤a<d
ζjg

a

ℓ τa(θ)

)
∈ K[X ] .

(4) We have

θ =
1

ℓ

∑

0≤j<ℓ
ζ−jℓ σj(η) .

(5) Conversely, if we are given a cyclic extension L of K of degree ℓ by
L = K(η) and if we define θ by the above formula, then α = θℓ ∈ K(ζℓ)
and α ∈W1.

Proof. The extensions Kz/K and L/K are cyclic and have coprime
degrees, hence by Proposition 5.3.1 Lz/K is an Abelian extension and
Gal(Lz/L) ≃ Gal(Kz/K) = 〈τ〉, and Gal(Lz/Kz) ≃ Gal(L/K) = 〈σ〉 for
some σ of order ℓ. For any K-automorphism s of L and K-automorphism t
of Kz, there exists a unique K-automorphism of Lz that extends both s and
t, and it is defined in a natural way.

By a natural abuse of notation, we will denote by τ the unique K-
automorphism of Lz that extends the K-automorphism τ of Kz and is the
identity on L, and similarly we will denote by σ the unique K-automorphism
of Lz that extends the K-automorphism σ of L and is the identity on Kz.

This being noted, let us prove the theorem. Since Lz is a cyclic extension
of Kz of degree ℓ, by Kummer theory (Corollary 10.2.7 in this case) we know
that there exists α ∈ K∗

z not in K∗
z
ℓ such that Lz = Kz(θ) with θ = ℓ

√
α.

Since τ is an automorphism of Lz, we have τ(θ) ∈ Lz and τ−1(θ) ∈ Lz, from
which it follows that Lz = Kz(τ(θ)). Since τ(θ)ℓ = τ(α), Corollary 10.2.7 (2)
tells us that there exists j coprime to ℓ (hence of the form ga0) and γ ∈ Kz

such that
τ(α) = αjγℓ = αg

a
0 γℓ .

I first claim that a is a multiple of m (or, equivalently, ga0 is a power of g).
Indeed, if we compute τd(α) = α, we obtain

α = τd(α) = αg
da
0 δℓ

for some other δ ∈ K∗
z . Thus αg

da
0 −1 is the ℓth power of an element. If gda0 −1

is coprime to ℓ, then we can write 1 = uℓ + v(gda0 − 1) for some u and v,
and raising α to the power both sides, we see that α is an ℓth power, which
is absurd. Thus gda0 ≡ 1 (mod ℓ) or, equivalently, since g0 is a primitive ℓth
root of unity, m | a, as claimed.

We thus have proved that τ(α) = αg
k

γℓ for some integer k, so that α ∈
Wk, the subspace of W = K∗

z/K
∗
z
ℓ corresponding to the eigenvalue gk. Note

that to prove this we have only used the fact that Lz/K is a normal extension.
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We now use the fact that it is an Abelian extension to show that, in fact,
k = 1.

Indeed, since τ(α) = αg
k

γℓ, we have τ(θ)ℓ = θℓg
k

γℓ; hence τ(θ) = θg
k

γ′

for some other γ′ ∈ Kz since ζℓ ∈ Kz. On the other hand, θ is a root of the
irreducible polynomial Xℓ − α ∈ Kz[X ], hence σ(θ) = ζrℓ θ for some r, and
r is necessarily coprime to ℓ, otherwise σ would be equal to the identity. In
fact, if desired, by changing the generator σ, we may assume that r = 1.

Since τ(ζℓ) = ζgℓ , we obtain

τ(σ(θ)) = ζgrℓ θ
gk

γ′

while
σ(τ(θ)) = ζg

kr
ℓ θg

k

γ′ .

Thus, since σ and τ commute, we obtain (gk−g)r ≡ 0 (mod ℓ), hence gk ≡ g
(mod ℓ) since r is coprime to ℓ, and hence k ≡ 1 (mod m) since g0 is a
primitive root modulo ℓ, proving (1).

For (2), we clearly have

η = TrLz/L(θ) =
∑

0≤a<d
τa(θ) ∈ L .

Since L/K is of prime degree ℓ, to show that L = K(η), we must simply show
that η /∈ K. Assume the contrary. We then have σk(η) = η for all k. Since τ
and σ commute, we obtain the system of equations

∑

0≤a<d
ζkg

a

ℓ τa(θ) = η for 0 ≤ k ≤ ℓ− 1 .

If we restrict to the first d equations, we have a system of d equations in
the d unknowns τa(θ) whose determinant is the Vandermonde determinant

corresponding to the variables ζg
a

ℓ for 0 ≤ a < d. Since g = gm0 and g0 is a
primitive root modulo ℓ, these variables are distinct, hence the determinant
is nonzero. Since ζℓ ∈ Kz and η ∈ K by assumption, it follows that for all a,
τa(θ) ∈ Kz and in particular θ ∈ Kz, so α ∈ Kℓ

z, which is absurd, proving
(2).

For (3), note that the minimal polynomial of η inK[X ] is given by P (X) =∏
0≤j<ℓ(X − σj(η)). As already mentioned, we may choose σ so that σ(θ) =

ζℓθ. It follows that

σj(η) = σj
(∑

a

τa(θ)

)
=
∑

a

τa(ζjℓ θ) =
∑

a

ζjg
a

ℓ τa(θ) ,

as claimed.
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For (4), a direct computation using the commutativity of σ and τ gives

∑

j

ζ−jℓ σj(η) =
∑

j

ζ−jℓ
∑

a

σj(τa(θ)) =
∑

j

ζ−jℓ
∑

a

τa(σj(θ))

=
∑

j

ζ−jℓ
∑

a

τa(ζjℓ θ) =
∑

j

ζ−jℓ
∑

a

ζjg
a

ℓ τa(θ)

=
∑

a

τa(θ)
∑

j

ζ
j(ga−1)
ℓ .

The inner sum vanishes unless ga − 1 ≡ 0 (mod ℓ), hence unless a = 0, so∑
j ζ

−j
ℓ σj(η) = ℓθ, as claimed.

For (5), we have

σ(θ) =
1

ℓ

∑

j

ζ
−(j−1)
ℓ σj(η) = ζℓθ .

It follows that α = θℓ is invariant by σ, hence by Galois theory it belongs
to Kz. Similarly, we see that β1 = τ(θ)/θg is invariant by σ, hence belongs
to Kz. Thus, τ(α)/αg = βℓ1 ∈ K∗

z
ℓ, so α ∈ W1, finishing the proof of the

theorem. ⊓⊔

Remark. The generating element θ of Lz, constructed either via Kz and
Kummer theory or directly using (4), is called the Lagrange resolvent of the
extension L/K.

5.3.2 Lift in Characteristic 0

To perform actual algorithmic computations, we must look explicitly at the
situation in characteristic 0 and not in characteristic ℓ; in other words, we
must consider Z[G]-modules and not Fℓ[G]-modules.

Consider first the generator g = gm0 of the subgroup of orderm of (Z/ℓZ)∗.
In the preceding section, we could consider at will g to be an element of Z or
an element of Z/ℓZ. From now on, we specifically ask that g be considered as
an element of Z. In fact, to simplify many of the computations, we will ask
in addition that g > 0. As we will see in the next proposition, we also need
the technical condition that gd 6≡ 1 (mod ℓ2). This is easily achieved, since if
gd ≡ 1 (mod ℓ2), then

(g + ℓ)d ≡ 1 + dℓgd−1 6≡ 1 (mod ℓ2) ,

so we simply replace g by g+ ℓ. When d = 1 or, equivalently, when g = g0 we
are simply asking that g0 is a primitive root modulo ℓ2. Note that we cannot
start from a primitive root modulo ℓ2 and define g as gm0 mod ℓ, since we
reduce modulo ℓ and not modulo ℓ2.
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Next, recall that the idempotent e1 is given by e1 = −m∑0≤a<d g
−aτa ∈

Fℓ[G]. Set

λ0 =
∑

0≤a<d
gd−1−aτa .

If λ is any element in Z[G] such that λ ≡ λ0 (mod ℓ), then since g and m
are coprime to ℓ, we have λ ≡ ce1 (mod ℓ) for some c ∈ F∗

ℓ . Hence if W is
an Fℓ-vector space, we have e1W = λW . We will use λ instead of e1 in our
statements, and in the next section we will discuss how to choose it efficiently.
For now, the choice is not important.

Let α ∈ K∗
z . Assume that, considered as an element of K∗

z/K
∗
z
ℓ, we know

that α ∈ W1, the g1-eigenspace of W for the action of τ . These are exactly
the α that we need to construct our extensions Lz/Kz. On the level of K∗

z

itself, this means that τ(α) = αgγℓ for some γ ∈ K∗
z .

Since W1 = e1W = λW , we know that α = βλδℓ for some β ∈ K∗
z . We

want to compute β explicitly, and for this we prove the following proposition.

Proposition 5.3.6. Let α ∈ K∗
z be such that τ(α) = αgγℓ for some γ ∈ K∗

z .
Then α = βλδℓ, where

β = γ−aζkℓ with a =

(
gd − 1

ℓ

)−1

(mod ℓ)

for some integer k and some δ ∈ K∗
z .

Conversely, let β be given such that α = βλ, and let λ = λ0 + νℓ for
ν ∈ Z[G] with λ0 as above. Then τ(α) = αgγℓ with

γ = β−(gd−1)/ℓ+(τ−g)ν .

Proof. It is easy to prove by induction on a that for any a ≥ 0,

τa(α) = αg
a

γℓ(g
a−τa)/(g−τ) .

Applying this formula to a = d, we obtain

α = αg
d

γλ0ℓ

with λ0 as above. Thus,

α(gd−1)/ℓ = γ−λ0ζuℓ = γ−λεℓζuℓ

for some integer u and some ε ∈ K∗
z .

We now use for the first and only time the technical condition gd 6≡ 1
(mod ℓ2) imposed above on the generator g. This implies that (gd− 1)/ℓ 6≡ 0
(mod ℓ), so we can find integers a and b such that a(gd − 1)/ℓ + bℓ = 1. It
follows that
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α = αa(g
d−1)/ℓαbℓ = γ−aλδℓζauℓ

for some δ ∈ K∗
z .

Finally, note that ζλℓ = ζdg
d−1

ℓ , so that ζ−gmλℓ = ζℓ. We thus obtain

α = (γ−aζ−gmauℓ )λδℓ ,

proving the first part of the proposition.

For the converse, we have

τ(α)

αg
= ατ−g = β(τ−g)λ = β(τ−g)(λ0+ℓν) .

Since (τ − g)λ0 = 1− gd, we have τ(α)/αg = γℓ with γ = β−(gd−1)/ℓ+(τ−g)ν ,
as claimed. ⊓⊔

Corollary 5.3.7. Keep the notation of Theorem 5.3.5 and Proposition 5.3.6.
Set µ = −(gd − 1)/ℓ+ (τ − g)ν. Then if α = βλ, we can take τ(θ) = θgβµ.

Proof. We have θℓ = α. With any initial choice of τ , we have τ(θ)ℓ =
τ(α) = αgγℓ with γ = βµ. Thus, τ(θ) = θgβµζkℓ for some integer k. If we set

τ ′ = σ−g−1kτ , then τ ′ also extends τ , and we have

τ ′(θ) = θgζ−gg
−1k

ℓ ζkℓ β
µ = θgβµ ,

so the result follows. Of course, the fixed field of Lz by τ ′ is still equal to L
since L is normal over K. ⊓⊔

Let us now discuss the choice of λ. Theoretically, it has no importance,
but algorithmically, the situation is different. Since we will take α = βλ, we
must choose λ as simple as possible. A reasonable choice is to ask that the
coefficients of τa in λ are all between 0 and ℓ− 1. In other words, if we set

ra = ga mod ℓ = ga − ℓ
⌊
ga

ℓ

⌋
,

it is reasonable to set
λ =

∑

0≤a<d
rd−1−aτ

a .

It is an easy exercise (Exercise 5) to show that this definition is independent
of the choice of the primitive root g (recall that τ depends also on g). With
this choice, we have the following.
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Lemma 5.3.8. Keep all the above notation, and choose

λ =
∑

0≤a<d
rd−1−aτ

a .

Then τb(θ) = θrbβµb with

µb = −
∑

0≤a<d

⌊rbrd−1−a
ℓ

⌋
τa .

Proof. This follows from a direct computation. Note that ra is periodic
of period d for a ≥ 0, hence it is reasonable to extend it by periodicity to all
integral a. By the above corollary, we have τ(θ) = θgβµ, with

µ = −g
d − 1

ℓ
+ (τ − g)λ− λ0

ℓ
= −

∑

0≤a<d

grd−1−a − rd−a
ℓ

τa .

By induction, we immediately obtain

τb(θ) = θg
b

β(gb−τb)/(g−τ)µ = θrbβµb

with

µb =
gb − rb
ℓ

λ+
gb − τb
g − τ µ .

Since

τkµ = −
∑

a

grd−1−a+k − rd−a+k
ℓ

τa ,

the series
∑

0≤k≤b−1 g
b−1−kτkµ telescopes and we obtain

gb − τb
g − τ µ =

∑

0≤k≤b−1

gb−1−kτkµ = −
∑

a

gbrd−1−a − rd−1−a+b
ℓ

τa .

It follows that

µb = −
∑

a

rbrd−1−a − rd−1−a+b
ℓ

τa = −
∑

a

⌊rbrd−1−a
ℓ

⌋
τa ,

as claimed. ⊓⊔

We can now give a relatively explicit form of the polynomial P (X) given
in Theorem 5.3.5.

Proposition 5.3.9. Keep the notation of Theorem 5.3.5. For 2 ≤ k ≤ ℓ, set

t(b1, . . . , bk−1) =
1

ℓ

∑

0≤a<d
τa
(
rd−1−a − ℓ+

∑

1≤i≤k−1

rd−1−a+bi

)
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and define γk by the formula

γk =
∑

b1≤···≤bk−1

rb1
+···+rbk−1

+1≡0 (mod ℓ)

(k − 1)!∏
mj !

βt(b1,...,bk−1) ,

where the mj denote the multiplicities of the bi. Set e = NKz/K(β) and
Sk = eℓTrKz/K(γk). If we define Sk by the usual Newton recursion

kSk =
∑

1≤i≤k
(−1)i+1SiSk−i ,

a defining polynomial P (X) for the L/K is given by

P (X) =
∑

0≤k≤ℓ
(−1)kSkX

ℓ−k .

Proof. By Theorem 5.3.5 and Lemma 5.3.8, the kth power sum of the
roots of the polynomial P (X) is given by

Sk =
∑

0≤j<ℓ

(
∑

0≤b<d
ζjg

b

ℓ θrbβµb

)k

=
∑

0≤j<ℓ

(
∑

b1,...,bk

ζ
j(gb

1+···gbk )
ℓ θrb1

+···+rbkβµb1
+···+µbk

)

= ℓ
∑

rb1
+···+rbk

≡0 (mod ℓ)

βe(b1,...,bk) ,

where

e(b1, . . . , bk) =
∑

0≤a<d
τa

(
∑

1≤i≤k

rbird−1−a
ℓ

−
∑

1≤i≤k

⌊rbird−1−a
ℓ

⌋)

=
1

ℓ

∑

0≤a<d
τa

(
∑

1≤i≤k
rd−1−a+bi

)
.

It follows in particular from this formula that

τe(b1, . . . , bk) = e(b1 + 1, . . . , bk + 1) ,

hence that

Sk = ℓTrKz/K

(
∑

rb1
+···+rbk−1

+r0≡0 (mod ℓ)

βe(b1,...,bk−1,0)

)
,

so that
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Sk = ℓTrKz/K

(
∑

rb1
+···+rbk−1

+1≡0 (mod ℓ)

βt
′(b1,...,bk−1)

)

with

t′(b1, . . . , bk−1) =
1

ℓ

∑

0≤a<d
τa

(
rd−1−a +

∑

1≤i≤k−1

rd−1−a+bi

)
.

To finish the proof, we simply notice that each coefficient of τ is strictly
positive, hence we can factor out the norm NKz/K(β) = β

P

0≤a<d τ
a

, and fur-
thermore the summands are symmetrical in the bi, so it is enough to sum for
b1 ≤ · · · ≤ bk−1, except that we must compensate by the multinomial coef-
ficient that counts the number of (k − 1)-tuples (b1, . . . , bk−1) corresponding
to a given nondecreasing sequence of bi. ⊓⊔

Remark. We have chosen rb in the interval 0 ≤ rb < ℓ and not, for
instance, in the interval −ℓ/2 < rb < ℓ/2, so that the coefficients of τa in
t(b1, . . . , bk−1) are nonnegative. If we had done otherwise, we would have
obtained relative and absolute defining polynomials with nonintegral coeffi-
cients.

Examples.
Let us look at the simplest cases of Theorem 5.3.5 and Proposition 5.3.9.

(1) If ℓ = 3 and d = 2, we take g = 2 and we have α = β2+τ , τ(θ) = θ2/β,
η = θ + θ2/β, and a computation gives

P (X) = X3 − 3eX − eTrKz/K(β)

with e = β1+τ = NKz/K(β). This is exactly the formula of [Coh0, Lemma
6.4.5] for cyclic cubic fields, but this time for cyclic cubic extensions of
any base field.

(2) If ℓ = 5 and d = 4, we take g = 2, and we have α = β3+4τ+2τ2+τ3

,

τ(θ) = θ2/β1+τ , τ2(θ) = θ4/β2+3τ+τ2

, τ3(θ) = θ3/β1+2τ+τ2

,

η = θ + θ2/β1+τ + θ3/β1+2τ+τ2

+ θ4/β2+3τ+τ2

,

and a computation gives

P (X) = X5 − 10eX3 − 5eTrKz/K(β1+τ )X2

+ 5e(e− TrKz/K(β1+2τ+τ2

))X − eTrKz/K(β2+3τ+τ2

)

with
e = β1+τ+τ2+τ3

= NKz/K(β) .
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(3) If ℓ = 5 and d = 2, we still take g0 = 2, hence g = g2
0 = 4, and we have

α = β4+τ , τ(θ) = θ4/β3, η = θ + θ4/β3, and a computation gives

P (X) = X5 − 5eX3 + 5e2X − eTrKz/K(β3)

with e = β1+τ = NKz/K(β).

With the help of a computer algebra package, the reader can calculate
the formulas for larger values of ℓ (see Exercises 6 and 7).

Before we give the theorems and algorithms that will enable us to compute
cyclic extensions of a number field K when ζℓ /∈ K, we must explain in detail
the action of τ on the different objects that we need, in other words the
units, the virtual units, and the class group. To simplify notation, in the
next subsections only, by abuse of notation, we simply write K instead of
Kz = K(ζℓ).

5.3.3 Action of τ on Units

As usual, let ε0 be a generator of the group of torsion units, and let
(ε1, . . . , εru) be a system of fundamental units. If ε is a unit, then τ(ε) is
also a unit, which we want to express on the εi. We have already implicitly
mentioned this problem several times, including in [Coh0], but the algorithm
is worth writing out explicitly.

Algorithm 5.3.10 (Discrete Logarithm in the Unit Group). Let µ(K) be
the group of roots of unity of K, let w(K) = |µ(K)|, let ε0 be a generator of
µ(K) (a primitive w(K)th root of unity), and let (ε1, . . . , εru) be a system of
fundamental units of K. If ε is a unit of K, this algorithm computes the discrete
logarithm of ε with respect to the εi, in other words, exponents xi such that
ε =

∏
0≤i≤ru

εxi

i . We let σi for 1 ≤ i ≤ r1 + 2r2 be the embeddings of K into
C ordered in the usual way.

1. [Compute real logarithmic embeddings] Compute the ru × ru matrix A =
(ni log |σi(εj)|)1≤i,j≤ru of the real logarithmic embeddings of the fundamental
units, where as usual ni = 1 if σi is a real embedding, and ni = 2 otherwise.
We omit one of the σi so as to have a square matrix of determinant equal (up
to sign) to the regulator R(K).

2. [Solve system] Similarly, compute the column vectorB = (ni log |σi(ε)|)1≤i≤ru

of the real logarithmic embeddings of ε, omitting the same embedding as in
step 1. Using Gaussian elimination over R, let Y be a solution of the lin-
ear system AY = B (since det(A) = ±R(K), this solution Y exists and is
unique).

3. [Check correctness] If the entries of Y are not close to integers (say, further
away than 10−5), increase the accuracy of the computations and start again
in step 1 (or output an error message saying that ε is not a unit). Otherwise,
if Y = (y1, . . . , yru)t for 1 ≤ i ≤ ru, set xi ← ⌊yi⌉, and compute exactly (as
an algebraic number) η ← ε/

∏
1≤i≤ru

εxi

i .
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4. [Compute x0] Let a ← w(K) log(η)/(2iπ), b ← w(K) log(ε0)/(2iπ). If a is
not close to an integer, increase the accuracy of the computations and start
again in step 1 (or output an error message saying that ε is not a unit).
Otherwise, set a← ⌊a⌉, b← ⌊b⌉, x0 ← ab−1 mod w(K).

5. [Terminate] If η is not equal to εx0
0 , increase the accuracy of the computations

and start again in step 1. Otherwise, output (x0, x1, . . . , xru) and terminate
the algorithm.

Remark. This algorithm’s validity is clear. Note that in step 4 we do not
check that b is close to an integer since ε0 must be a generator of the roots
of unity of K.

Using this algorithm, we can thus construct an (ru + 1)× (ru + 1) matrix
Tu = (ti,j) such that

τ(εj) =
∏

0≤i≤ru

ε
ti,j

i

for 0 ≤ j ≤ ru.
Let E = (ε0, ε1, . . . , εru). We thus have τ(E) = ETu. The subspace

e1U(K)/U(K)ℓ, which is of interest to us, is the Fℓ-vector space of classes
of units ε such that ετ−g ∈ U(K)ℓ or, equivalently, by Lemma 5.2.6, such
that ετ−g ∈ K∗ℓ. Thus, if ε = EX for some integer column vector X , we
want E(Tu − gIru+1)X ≡ 0 (mod ℓ), and since the classes of elements of
E form a basis of U(K)/U(K)ℓ by Proposition 5.2.5, this is equivalent to
X ∈ Ker

(
Tu − gIru+1

)
, where denotes reduction modulo ℓ. Thus, using

ordinary Gaussian pivoting in the field Fℓ, we compute a basis of this kernel,
and we obtain a basis of e1U(K)/U(K)ℓ.

5.3.4 Action of τ on Virtual Units

We must now solve the same problems in the larger groups Vℓ(K) and
Vℓ(K)/K∗ℓ. Let (α1, . . . , αrc , ε0, . . . , εru) be as above. If v is a virtual unit,
then τ(v) generates the ℓth power of an ideal, hence it is also a virtual unit,
and we want to express it on the αi, εj, and ℓth powers of elements. For this,
we use the following algorithm.

Algorithm 5.3.11 (Discrete Logarithm in the ℓ-Selmer Group). As above,
let Cl(K) =

⊕
1≤i≤gc

(Z/diZ)ai and αiZK = adi

i , and let v ∈ Vℓ(K) be a
virtual unit. This algorithm computes the discrete logarithm of v with respect to
the αi for 1 ≤ i ≤ rc and εj for 0 ≤ j ≤ ru, in other words, exponents yi and
xj such that

v = γℓ
∏

1≤i≤rc

αyi

i

∏

0≤j≤ru

ε
xj

j

for some γ ∈ K∗ℓ.

1. [Factor vZK ] Using Algorithm 2.3.22, factor the ideal vZK into a product of
prime ideal powers as vZK =

∏
p pap . If any one of the ap is not divisible by
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ℓ, output an error message saying that v is not a virtual unit, and terminate
the algorithm.

2. [Compute ideal] Using ideal multiplication and powering algorithms (see Sec-
tion 2.3.4), compute q←∏

p pap/ℓ.

3. [Use principal ideal algorithm] Using [Coh0, Algorithm 6.5.10], compute β ∈
K∗ and integers qi such that q = β

∏
1≤i≤gc

a
qi

i .

4. [Compute γ and yi] For 1 ≤ i ≤ rc, set yi ← qi/(di/ℓ), and set

γ ← β
∏

rc<i≤gc

α
qi/di

i and ε← v/(γℓ
∏

1≤i≤rc

αyi

i ) .

5. [Terminate] (Here ε is a unit.) Using Algorithm 5.3.10, compute the discrete
logarithm (x0, . . . , xru) of ε. Output the xj , yi, γ, and terminate the algo-
rithm.

Proof. Left to the reader (Exercise 8). ⊓⊔

Using this algorithm, we can thus construct an rv × rv matrix Tv = (ti,j)
such that

τ(vj) = βℓj
∏

1≤i≤rv

v
ti,j

i

for some βj ∈ K∗, where we use the notation vi introduced in Definition 5.2.7
for the αi and εj (recall that rv = rc + ru + 1 is the ℓ-rank of the ℓ-Selmer
group).

If Ev = (v1, . . . , vrv ), we have τ(Ev) ≡ ETv (mod ℓ) (more precisely
modulo ℓth powers of elements of K∗). Thus, if v = EvX is a virtual unit,
v ∈ e1Vℓ(K)/K∗ℓ if and only if Ev(Tv − gIrv)X ≡ 0 (mod ℓ), and since the
classes of elements of Ev form a basis of Vℓ(K)/K∗ℓ by Proposition 5.2.5,
as in the case of units we conclude that the kernel of Tv − gIrv gives us an
Fℓ-basis of e1Vℓ(K)/K∗ℓ.

5.3.5 Action of τ on the Class Group

We must solve a similar problem as above, but now in the class group Cl(K).
The situation is more complicated in this case since the class group is already
a set of equivalence classes. More precisely, if Cl(K) =

⊕
1≤i≤gc

(Z/diZ)ai,
the principal ideal algorithm ([Coh0, Algorithm 6.5.10]) allows us to write

τ(aj) = βj
∏

1≤i≤gc

a
ti,j

i

for certain integers ti,j and certain elements βj ∈ K∗. The presence of these
elements βj creates unnecessary complications, so we want to get rid of them.
For this, we use the following proposition.
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Proposition 5.3.12. Let Cl(K) =
⊕

1≤i≤gc
(Z/diZ)ai be the SNF of the

class group Cl(K), and as usual let rc be the largest index i such that ℓ | di.
There exist representatives bi of the ideal classes ai such that for all j such
that 1 ≤ j ≤ rc, we have

τ(bj) = qℓj

∏

1≤i≤rc

b
ti,j

i

for some ideal qj and some integers ti,j.

As mentioned above, the main point of this proposition is to make the
elements βj disappear. On the other hand, the occurrence of the ideal qℓj is
perfectly natural since we work implicitly modulo ℓth powers of ideal classes.

Proof. For the (arbitrarily chosen) representatives ai of the ideal classes
ai, we can write

τ(aj) = βjq
ℓ
j

∏

1≤i≤rc

a
ti,j

i

for some elements βj ∈ K∗, ideals qj , and integers ti,j . If we set bi = γiai,
we have

τ(bj) =
τ(γj)∏

1≤i≤rc
γ
ti,j

i

βjq
ℓ
j

∏

1≤i≤rc

b
ti,j

i .

To satisfy the conditions of the proposition, we must show the existence (and
compute explicitly) elements γi such that

τ(γj)∏
1≤i≤rc

γ
ti,j

i

=
wj
βj

for some virtual unit wj , since by definition of virtual units, we have wjZK =
qℓ for some ideal q.

Let T = (ti,j)1≤i,j≤rc be the matrix of the ti,j , let B = (β1, . . . , βrc)
(resp., C = (γ1, . . . , γrc)) be the row vector of the βi (resp., of the γi). Recall
that we have set [Kz : K] = d = (ℓ − 1)/m. I claim that the elements γi
defined by

C = d · B
( ∑

1≤a<d
aτaT d−a−1

)

satisfy our requirements (we use the notation BτaT d−a−1 to denote the row
vector τa(B)T d−a−1).

Indeed,

(τ − T )
∑

1≤a<d
aτaT d−a−1 =

∑

2≤a≤d
(a− 1)τaT d−a −

∑

1≤a<d
aτaT d−a

= −
∑

0≤a<d
τaT d−a + T d − Irc + dIrc ;
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hence, if we set U =
∑

0≤a<d τ
aT d−1−a, we have

τ(C) − CT = d ·B(−UT + T d − Irc + dIrc) .

On the other hand, if we let A = (a1, . . . , arc) be the row vector of the
ideals ai, the formula for τ(aj) given above can be written as τ(A) ≡ AT +B
(mod ℓ), from which it easily follows by induction that

τa(A) ≡ AT a +B
τa − T a
τ − T (mod ℓ) .

Applying this to a = d, we obtain A ≡ AT d+BU (mod ℓ). By the uniqueness
of the representation on the ai, it follows that T d ≡ Irc (mod ℓ) and BU ≡ 0
(mod ℓ), hence the elements of BU are both elements of K∗ and ℓth powers
of ideals, so they are virtual units.

Since dm ≡ −1 (mod ℓ), we have τ(C)−CT ≡W −B (mod ℓ) for some
vector W = (wj)1≤j≤rc of virtual units, as was to be proved. ⊓⊔

Important Remark. The implicit operation used between elements to
define the γi is always multiplication, no additions are involved here. In par-
ticular, the initial multiplication by m is in fact raising to the mth power,
and multiplication by the powers of the matrix T are combinations of multi-
plications and powerings, not of additions and multiplications.

It is of course very easy to compute the discrete logarithm (more precisely,
to solve the principal ideal problem) on the bi. If a is any ideal of K, we
use Algorithm 5.2.10 to compute an element α and integers xi such that
a = αqℓ

∏
1≤i≤rc

axi

i for some ideal q. It follows that

a =
α∏

1≤i≤rc
γxi

i

qℓ
∏

1≤i≤rc

bxi

i

is the desired decomposition of a.
Thus, let Tc = T = (ti,j) be the rc×rc matrix defined above, which in par-

ticular satisfies T dc ≡ Irc (mod ℓ). If B = (b1, . . . , brc), we have τ(B) ≡ BT
(mod ℓ). As in the preceding cases, to obtain an Fℓ-basis of e1Cl(K)/Cl(K)ℓ,
we simply compute a matrix P whose columns give an Fℓ-basis of the kernel
of the matrix Tc − gIrc . If δ is the dimension of this kernel, the desired basis
is then

(c1, . . . , cδ) = C = BP .

We will also need the following technical but important proposition.

Proposition 5.3.13. Let P (resp., Q) be a matrix whose columns give an
Fℓ-basis of the kernel of Tc − gIrc (resp., of T tc − gIrc , where as usual T t

denotes the transposed matrix of T ). Let R = (QtP )−1. Then

Bλ ≡ dg−1C(RQt) (mod ℓ) .
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Remark. Since in general P is not a square matrix, we cannot write
RQt = P−1(Qt)−1Qt = P−1.

Proof. Since λ(τ − g) ≡ 0 (mod ℓ), for any ideal a we know that the class
of aλ belongs to e1Cl(K)/Cl(K)ℓ; hence it is expressible on the ideals ci.

Since τ(B) ≡ BT (mod ℓ), we have

Bλ ≡ B
∑

0≤a<d
gd−1−aT a (mod ℓ) .

Since T d ≡ Irc (mod ℓ) and d is a divisor of ℓ− 1, the matrix T is diagonal-
izable in Fℓ. In other words, we can write M−1TM ≡ D (mod ℓ) for some
invertible matrix M and diagonal matrix D. Since the eigenvalues of T are
powers of g, we can write D in block diagonal form:

D = diag(g0Iδ0 , g
1Iδ1 , . . . , g

d−1Iδd−1
) ,

where δk is the dimension of the eigenspace corresponding to the eigenvalue
gk, in other words, the dimension of Wk = ekCl(K)/Cl(K)ℓ. Correspond-
ingly, we can write M = (M0, . . . ,Md−1) and (M−1)t = (M ′

0, . . . ,M
′
d−1),

where Mk and M ′
k are h× δk matrices.

We of course have δ1 = δ, and we can choose M1 = P . Thus,

∑

0≤a<d
gd−1−aT a ≡M diag

(( ∑

0≤a<d
gd−1−agkaIδk

))
M−1

≡M diag(0, dg−1Iδ, 0, . . . , 0)M−1

≡ dg−1(0,M1, 0, . . . , 0)(M ′
0, . . . ,M

′
d−1)

t

≡ dg−1M1(M
′
1)
t (mod ℓ) .

Since we have chosen M1 = P , we thus have

Bλ ≡ dg−1BM1(M
′
1)
t ≡ dg−1C(M ′

1)
t (mod ℓ) .

As the columns of both Q and of M ′
1 give a basis of the kernel of T tc − gIrc ,

there exists an invertible matrix Rt such that M ′
1 = QRt or, equivalently,

(M ′
1)
t = RQt. On the other hand, the identityM−1M = Irc gives (M ′

i)
tMj =

δi,jIδj , where δi,j is the Kronecker symbol (no confusion should occur with
δj). In particular, (M ′

1)
tM1 = Iδ, and so we obtain RQtM1 = Iδ so R =

(QtM1)
−1 = (QtP )−1. It follows that (M ′

1)
t = RQt with R = (QtP )−1 so

Bλ ≡ dg−1CRQt (mod ℓ) ,

as claimed. Note that for j 6= 1, 0 = (M ′
1)
tMj = RQtMj , hence QtMj = 0

since R is invertible. ⊓⊔
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Corollary 5.3.14. Let

p = βqℓ
∏

1≤i≤rc

bxi

i

be the decomposition of some ideal p on the bi, and let X be the column vector
of the xi. Then

pλ = βλqℓ1
∏

1≤i≤δ
c
yi

i ,

where, if Y is the column vector of the yi we have Y = dg−1RQtX.

Proof. In matrix terms, we have p ≡ β + BX (mod ℓ). Thus, by Proposi-
tion 5.3.13 we have

pλ ≡ βλ + BλX ≡ βλ + dg−1C(RQtX) (mod ℓ) ,

proving the corollary. ⊓⊔

5.3.6 Algorithmic Kummer Theory When ζℓ 6∈ K Using Hecke

Thanks to the results of the preceding sections, we can compute relative
defining polynomials for cyclic extensions of prime degree ℓ, even when ζℓ /∈
K. We now describe in detail the choice of α (or, equivalently, of β) in Kz,
and then give the complete algorithm.

Let (m, C) be a congruence subgroup of the base field K. We want to give
an explicit defining polynomial for the (isomorphism class of) Abelian ex-
tension(s) L/K corresponding to (m, C) by class field theory. By Proposition
3.5.5, the extension Lz/Kz considered above corresponds to the congruence
subgroup (mZKz ,N−1

Kz/K
(C)) of Kz. Unfortunately, even if m is the conduc-

tor of L/K, mZKz will not necessarily be the conductor of Lz/Kz. Thus,
before proceeding, we use Algorithm 4.4.2 to compute the conductor f of the
congruence subgroup (mZKz ,N−1

Kz/K
(C)) of Kz, which will be a divisor of

mZKz . In addition, mZKz is evidently invariant by τ (or, equivalently, by
Gal(Kz/K)), but it is easily shown that f is also invariant by τ . Thus, the
six sets Sf,ℓ,i, Sf, Sℓ and S∅ are invariant by τ , and we can thus consider
a system of representatives for the action of τ . Until further notice (more
precisely, until we start going down to L), we work in the field Kz and not
in the field K.

We keep all the notation of the preceding sections, in particular that
concerning the action of τ . Thus, we write

Cl(Kz) =
⊕

1≤i≤gc

(Z/diZ)ai ,

rc is the largest index such that ℓ | di, αiZKz = adi

i , the class modulo K∗
z
ℓ of

(ε0, . . . , εru , α1, . . . , αrc) is an Fℓ-basis of the ℓ-Selmer group of Kz, bi = γiai
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are the representatives of the ideal classes ai defined above, and finally the
class of C = (c1, . . . , cδ) is a basis of e1Cl(Kz)/Cl(Kz)

ℓ as obtained above.
Recall that S = Sf ∪ Sf,ℓ,1. We will denote by S/〈τ〉 a system of repre-

sentatives of S for the action of τ , and similarly for the other sets of prime
ideals.

Theorem 5.2.9 generalizes as follows.

Theorem 5.3.15. Keep the notation of the preceding section. In particular,
K is a number field and ℓ is a prime number such that ζℓ /∈ K.

Let L/K be a cyclic extension of degree ℓ corresponding to the congruence
subgroup (m, C), let Kz = K(ζℓ) and Lz = L(ζℓ), and let f = f(Lz/Kz) be
the conductor of the extension Lz/Kz (or, equivalently, of the congruence
subgroup (mZKz ,N−1

Kz/K
(C)) of Kz).

Let W1 = e1Vℓ(Kz)/K
∗
z
ℓ be the g1-eigenspace of the ℓ-Selmer group of Kz

for the action of τ , let dv be its dimension, and let
(
wi
)
1≤i≤dv

be an Fℓ-basis

of W1 computed as explained in Section 5.3.4.
For each prime ideal p ∈ S/〈τ〉, write

p = βpq
ℓ
p

∏

1≤i≤rc

b
pi,p

i .

Then f satisfies the following conditions:

(1) Sf,ℓ,3 = ∅;
(2) if p ∈ Sf,ℓ,2/〈τ〉, then vp(f) 6≡ 1 (mod ℓ);
(3) if p ∈ Sf/〈τ〉, then vp(f) = 1.

In addition, up to Kummer-equivalence, we can take α = βλ with β of the
following form:

β =
∏

1≤i≤dv

wni

i

∏

p∈S/〈τ〉
β
xp

p ,

with the following additional conditions.

(1) For all p ∈ S/〈τ〉, we have 1 ≤ xp ≤ ℓ − 1, and for all i, we have
0 ≤ ni ≤ ℓ− 1.

(2) For p ∈ Sf,ℓ,2/〈τ〉, the largest k such that the congruence

xℓ ≡ α (mod pk+vp(α))

has a solution must be equal to z(p, ℓ)− vp(f).
(3) If S is not empty, we may fix any one (but only one) of the xp equal to

1.
(4) For all p ∈ Sℓ/〈τ〉, the congruence

xℓ ≡ α (mod pz(p,ℓ)−1+vp(α))

has a solution.
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(5) For all p ∈ S/〈τ〉, let Xp be the column vector of the pi,p for 1 ≤ i ≤ rc.
We have

Qt
∑

p∈S/〈τ〉
xpXp ≡ 0 (mod ℓ) ,

where Q is as in Proposition 5.3.13.

Conversely, if all the above conditions are satisfied, if α 6= 1, and if the
norm group Tm(L/K) is equal to C, then L = K(TrLz/L( ℓ

√
α)) is a cyclic

extension of degree ℓ corresponding to the congruence subgroup (m, C).

Proof. It follows from Theorem 5.3.5 and Proposition 5.3.6 that, up to
Kummer-equivalence, we can take α such that α is in the g1-eigenspace W1

for the action of τ on K∗
z/K

∗
z
ℓ.

On the other hand, following the same proof as for Theorem 5.2.9, we
find that, up to Kummer-equivalence, we can take

αZKz = qℓ
∏

p∈S
pxp ,

where q is an ideal coprime to f and ℓ and 1 ≤ xp ≤ ℓ − 1. The condition
α ∈W1 means that τ(α)/αg is an ℓth power in K∗

z . Since f is stable by τ , we
have

τ(α)ZKz = τ(q)ℓ
∏

p∈S
τ(p)xp = qℓ1

∏

p∈S
pxτ−1(p)

for some ideal q1. Since q and q1 are coprime to the ideals in S, it follows
that

xτ−1(p) ≡ gxp (mod ℓ)

or, equivalently,
xp ≡ gxτ(p) (mod ℓ) .

This immediately implies the following lemma.

Lemma 5.3.16. Let p ∈ S = Sf∪Sf,ℓ,1, and assume that there exists a cyclic
extension L/K such that the corresponding extension Lz/Kz is of degree ℓ
and conductor f. Then the ideals τ j(p) for 0 ≤ j < d are distinct; in other
words, the prime ideal of K below p is totally split in Kz.

Proof. Let j be some index such that τ j(p) = p. Applying the recursion
for xp, we obtain

xp ≡ gjxτ j(p) = gjxp (mod ℓ) ,

and since p ∈ S, we have xp 6≡ 0 (mod ℓ), so gj ≡ 1 (mod ℓ) and j is a
multiple of d, as claimed. ⊓⊔
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Resuming the proof of the theorem, we thus have

αZKz = qℓ
∏

p∈S
pxp = qℓ1

∏

p∈S/〈τ〉
(pλ)gxp .

Replacing pλ by the expression given by Corollary 5.3.14, we obtain

αZKz = qℓ2

∏

p∈S/〈τ〉
β
λgxp

p

∏

1≤i≤δ
czi

i ,

where, if Z is the column vector of the zi, we have

Z = dRQt
∑

p∈S/〈τ〉
xpXp .

Since the ci form an Fℓ-basis of e1Cl(Kz)/Cl(Kz)
ℓ, it follows that we

must have Z ≡ 0 (mod ℓ), and since d and R are invertible modulo ℓ, this
gives the condition Qt

∑
p∈S/〈τ〉 xpXp ≡ 0 (mod ℓ) of the theorem.

Hence, replacing gxp by xp (which is legitimate since it will still be nonzero
modulo ℓ), we obtain

αZKz = qℓ3

∏

p∈S/〈τ〉
β
λxp

p .

Thus qℓ3 is the ℓth power of an ideal and is also a principal ideal; hence by
Proposition 5.2.3, it is of the form v0ZK for some virtual unit v0 ∈ Vℓ(K).
Hence, for some other virtual unit v we obtain

α = v
∏

p∈S/〈τ〉
β
λxp

p .

Since up to ℓth powers both α and the βλp belong to the g1-eigenspace
under the action of τ , it follows that v does also. Thus, up to ℓth powers,
since e1 is an idempotent and λ is proportional to e1 modulo ℓ, we have
v = wλ = (we1 )

λ
, and we have obtained that, up to Kummer-equivalence,

α = βλ with

β = we1
∏

p∈S/〈τ〉
β
xp

p ,

proving that α is of the given form.
The conditions satisfied by f and α are of course the same as in Theorem

5.2.9.

Conversely, assume that the conditions of the theorem are satisfied. Since
g is coprime to ℓ, the solubility of a congruence of the type xℓ ≡ αg (mod I)
for some ideal I is equivalent to the solubility of the congruence xℓ ≡ α
(mod I). Since our six sets of primes are stable under τ , it follows from
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τ(α) = αgγℓ for some γ ∈ Kz that the congruence conditions are stable
by τ . Thus, it is enough to check the congruence conditions for a system of
representatives of the prime ideals modulo the action of τ , which is precisely
what the theorem states. We conclude by Theorem 5.2.9 that Kz( ℓ

√
α)/Kz is

a cyclic extension of degree ℓ and conductor equal to f. By Theorem 5.3.5,
L = K(TrLz/L( ℓ

√
α)) is a cyclic extension of degree ℓ corresponding to the

congruence subgroup m. Finally, we must simply check that the norm group
Tm(L/K) is equal to C. ⊓⊔

Before giving the final algorithm, we must explain how to compute the
invariants of the field Kz and, in particular, all the necessary tools for doing
class field theory. It is essential to have a representation of Kz/K that is as
simple as possible. There are at least three distinct methods for achieving
this goal. The first one is blindly to use Algorithm 2.1.8, which tries elements
of the form θ1 +kζℓ, combined with Theorem 2.1.14 for factoring the discrim-
inant of the resulting polynomial. Once an initial polynomial is computed,
it is absolutely necessary to use a reduction procedure such as the Polred
algorithm or improvements based on a Fincke–Pohst enumeration.

A second method for computing Kz is to use Algorithm 2.1.9, which tries
elements of the form ζℓ(θ1 + k), combined with the analog of Theorem 2.1.14
proved in Exercise 9 of Chapter 2. This almost always gives much simpler
polynomials, and in addition we can usually take k = 0 (see Exercise 15).
Even so, before starting the class group computations on Kz, we must still
apply variants of the Polred algorithm.

A third method for computing Kz is to consider it as a relative extension
Kz/K and do all the computations using relative algorithms. This is certainly
the best of all methods. Indeed, the computation of an integral pseudo-basis
becomes very simple since the discriminant of the polynomial defining Kz/K
is a power of ℓ. It follows that essentially no factoring needs to be done. Once
we have obtained an integral pseudo-basis, we may, if desired, compute an
absolute pseudo-basis, as explained in Section 2.5.2. Once this computation
is done, we do not need to factor any large numbers, but we still need to com-
pute several invariants of Kz, by using either relative or absolute algorithms.
For the class and unit group computations, we may use the relative methods
briefly described in Chapter 7. However, for the ray class group computa-
tions, we need to write and implement specific algorithms using the relative
representation. While not difficult, this requires quite a lot of work. Thus we
suggest using the relative methods to compute the integral pseudo-basis and
possibly also the class and unit group, then convert to the absolute represen-
tation and compute the necessary ray class groups using this representation.
For simplicity of exposition, in the sequel we will describe the computation of
the invariants of Kz using the second method, but a serious implementation
should use the third method instead.



5.3 Kummer Theory Using Hecke When ζℓ 6∈ K 265

We are now ready to give the complete algorithm for computing a defining
polynomial for a cyclic extension of prime degree and given conductor using
Kummer theory. Contrary to Algorithm 5.2.14, which computed all the cyclic
extensions of degree ℓ and given conductor, because of the bad behavior of the
conductor at primes dividing ℓ when we adjoin ζℓ, it is necessary to restrict
to one congruence subgroup at a time.

Algorithm 5.3.17 (Kummer Extensions of Prime Degree When ζℓ /∈ K
Using Hecke). Let K = Q(θ1) be a number field and ℓ be a prime number such
that ζℓ /∈ K. Let (m, C) be a congruence subgroup of K such that hm,C =
|Im/C| =

∣∣Clm(K)/C
∣∣ = ℓ. This algorithm outputs a defining polynomial for

the Abelian extension L/K of degree ℓ (which is unique up to isomorphism)
corresponding to the congruence subgroup (m, C) by Takagi’s theorem.

1. [Adjoin ζℓ] Using Algorithm 2.1.9, compute the compositum Kz of K with
Q(ζℓ) given by the defining polynomial xℓ−1 + · · · + x + 1 = 0 (there may
be several factors in the compositum, but they all define isomorphic number
fields so any one can be taken). The algorithm outputs an integer k, an
irreducible monic polynomial R(X) ∈ Z[X ] having θ = ζℓ(θ1 + k) as a
root such that Kz = Q(θ), and polynomials A1(X) and A2(X) such that
θ1 = A1(θ) and ζℓ = A2(θ).

2. [Compute the action of τ on θ] Let d← [Kz : K], m ← (ℓ − 1)/d. Using a
naive algorithm, compute a primitive root g0 modulo ℓ and set g ← gm0 mod
ℓ. If gd ≡ 1 (mod ℓ2), set g ← g + ℓ. Finally, compute the polynomial
U(X)← XA2(X)g−1 mod R(X) (we will have U(θ) = τ(θ)).

3. [Compute data for Kz] Using the standard algorithms for the absolute case
given in [Coh0], compute an integral basis, the unit group U(Kz) with gener-
ators (ε0, . . . , εru), the class group in SNF as Cl(Kz) =

⊕
1≤i≤gc

(Z/diZ)ai,
the ℓ-rank rc of the class group (maximum of the i such that ℓ | di), and the
αi such that αiZKz = adi

i for 1 ≤ i ≤ gc (only the αi for 1 ≤ i ≤ rc will be
virtual units, but we need the others in Algorithm 5.2.10). As usual, we let vi
be the virtual units (α1, . . . , αrc , ε0, . . . , εru). If we use absolute algorithms,
it will be necessary to factor the discriminant of the polynomial R(X), which
can be done if necessary by using the analog of Theorem 2.1.14 proved in
Exercise 9 of Chapter 2.

4. [Adjust representatives ai] Using the polynomial U obtained in step 2, com-
pute τ(aj) for 1 ≤ j ≤ rc, and by using Algorithm 5.2.10, compute elements
βj and integers ti,j such that

τ(aj) = βjq
ℓ
j

∏

1≤i≤rc

a
ti,j

i .

Let Tc = (ti,j), let B = (βj), and define C = (γj) modulo ℓth powers by

C ← d

(
∑

1≤a<d
aτa(B)T d−a−1

c

)
,
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where the action of τ is once again given by the polynomial U , and the
implicit operations are multiplicative (see the remark following the proof of
Proposition 5.3.12). We could now set bi = γiai for 1 ≤ i ≤ rc, but we do
not need the ideals bi explicitly.

5. [Compute e1Vℓ(Kz)/K
∗
z
ℓ] Using the polynomial U obtained in step 2, com-

pute the τ(vj) for 1 ≤ j ≤ rv = rc+ru+1, and express them in terms of the
vi using Algorithm 5.3.11. If Tv = (ti,j) is the matrix giving the τ(vj) in terms
of the vi, using [Coh0, Algorithm 2.3.1], compute an Fℓ-basis P = (pi,j) of
the kernel of the Fℓ-matrix Tv − gIrv . Let dv be the dimension of this ker-
nel, and for 1 ≤ j ≤ dv set wj ←

∏
1≤i≤rv

v
pi,j

i so that
(
wj
)
1≤j≤dv

is an

Fℓ-basis of e1Vℓ(Kz)/K
∗
z
ℓ.

6. [Compute data for e1Cl(Kz)/Cl(Kz)
ℓ] In a similar manner, compute a matrix

Q whose columns give an Fℓ-basis of the kernel of the matrix T tc − gIrc , where
Tc is the matrix computed in step 4. Let dc be the dimension of this kernel.

7. [Compute conductor of L/K] Using Algorithm 4.4.2, replace (m, C) by the
conductor of the class of (m, C).

8. [Lift congruence subgroup] If m is coprime to ℓ, set f ← mZKz . Otherwise,
proceed as follows. Set m′ ← mZKz and compute the SNF of Clm′(Kz).
Using Algorithm 4.1.11, compute C′ ← N−1

Kz/K
(C). Finally, using Algorithm

4.4.2, compute the conductor f of the congruence subgroup (m′, C′).

9. [Factor f and ℓ] (From now on, the algorithm will be very similar to Algorithm
5.2.14.) Using Algorithm 2.3.22 (in the absolute case), find the prime ideal
factorization of f, say f =

∏
p|f pvp(f), and using [Coh0, Algorithm 6.2.9],

compute the prime ideal factorization of ℓZKz .

10. [Compute sets of prime ideals] Compute the finite sets Sf/〈τ〉, Sℓ/〈τ〉, and
Sf,ℓ,i/〈τ〉 for i = 1, 2, 3 according to Definition 5.2.1 (in other words, compute
the sets and keep only one representative modulo the action of τ).

11. [Test conditions on f] If Sf,ℓ,3/〈τ〉 6= ∅, or if there exists p ∈ Sf,ℓ,2/〈τ〉 such
that vp(f) ≡ 1 (mod ℓ), or if there exists p ∈ Sf/〈τ〉 such that vp(f) ≥ 2,
there is an error (the extension L/K must exist), so terminate the algorithm
(see Remark (1) below).

12. [Compute βp and pi,p] Using Algorithm 5.2.10, for each p ∈ S/〈τ〉 = Sf/〈τ〉∪
Sf,ℓ,1/〈τ〉, compute β ∈ K∗

z and integers pi,p such that for some ideal q we
have p = βqℓ

∏
1≤i≤rc

a
pi,p

i . Then set βp ← β/
∏

1≤i≤rc
γ
pi,p

i and

αp ←
∏

0≤a<d
(τa(βp))

gd−1−a mod ℓ
.

13. [Introduce notation] (This is mainly a notational step.) For 1 ≤ j ≤ s, let
pj be the prime ideals in S/〈τ〉, set wj+dv ← βpj for 1 ≤ j ≤ s, and set
dw ← s + dv (this will be the number of columns of a matrix that we will
construct). On the other hand, let (mi)1≤i≤t be the following moduli (in any
order): pz(p,ℓ)−vp(f) for p ∈ Sf,ℓ,2/〈τ〉 and pz(p,ℓ)−1 for p ∈ Sℓ/〈τ〉.
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14. [Compute discrete logarithms] Using Algorithms 4.2.17 and 4.2.18, compute
the SNF of (ZKz/mi)

∗ as well as Lmi(wj) and Lmi(αpj′
) for all i such that

1 ≤ i ≤ t, for all j such that 1 ≤ j ≤ dv, and for all j′ such that 1 ≤ j′ ≤ s.
15. [Create big matrix] Construct a matrix M with dw columns as follows. Let Mj

be the jth column of M . Let g−1 be an inverse of g modulo ℓ. If 1 ≤ j ≤ dv,
Mj is obtained by concatenating the (dg−1)Lmi(wj) for 1 ≤ i ≤ t (consid-
ered as column vectors), together with the zero vector with dc components. If
dv < j ≤ dw, Mj is obtained by concatenating the Lmi(αpj−dv

) for 1 ≤ i ≤ t
together with the dc-component column vector QtPj−dv , where Pj−dv de-
notes the rc-component column vector of the pi,pj−dv

for 1 ≤ i ≤ rc. Finally,

denote by M the matrix M reduced modulo ℓ, considered as a matrix with
entries in Fℓ.

16. [Compute kernel] Using [Coh0, Algorithm 2.3.1], compute the kernel K of
the matrix M as an Fℓ-vector space. If this kernel is reduced to {0}, there
is an error, so terminate the algorithm. Otherwise, let dK ← dim(K) be the
dimension of this kernel, and denote by (Kj)1≤j≤dK a Fℓ-basis of K, where
the Kj are considered as dw-component column vectors. Finally, set c← dK.

17. [Compute more discrete logarithms] Let (m′
i)1≤i≤t′ be the moduli pzp with

zp = z(p, ℓ)−vp(f)+1, for all p ∈ Sf,ℓ,2/〈τ〉. As in step 14, compute the SNF
of (ZKz/m

′
i)

∗ as well as Lm′
i
(wj) and Lm′

i
(αpj′

) for 1 ≤ i ≤ t′, 1 ≤ j ≤ dv,
and 1 ≤ j′ ≤ s. For 1 ≤ i ≤ t′, let M ′

i be the matrix with dw columns,
each column containing (dg−1)Lm′

i
(wj) for 1 ≤ j ≤ dv, or Lm′

i
(αpj−dv

) if
dv < j ≤ dw. Do not put the matrices M ′

i together by rows as above.

18. [Initialize backtracking] (In what follows, c ≥ 1 and y will be a row vector
with c− 1 components.) Set y ← (0, . . . , 0) (vector with c− 1 components).

19. [Compute trial vector] Let X ← Kc +
∑

1≤j<c yjKj . Apply Subalgorithm
5.3.18 below to see if X corresponds to a suitable Abelian extension L/K.
If it does, output the defining polynomial given by the subalgorithm and
terminate the algorithm.

20. [Backtracking I] Set i← c.

21. [Backtracking II] Set i ← i − 1. If i > 0, go to step 22. Otherwise, set
c← c− 1. If c > 0, go to step 18; otherwise, there is an error, so terminate
the algorithm.

22. [Backtracking III] Set yi ← yi + 1, and if i < c− 1, set yi+1 ← 0. If yi ≥ ℓ,
go to step 21; otherwise, go to step 19.

Subalgorithm 5.3.18 (Is X Suitable?). Given a vector X = (x1, . . . , xdw )t

found in step 19 of Algorithm 5.3.17, this subalgorithm determines whether X
corresponds to a suitable Abelian extension L/K. If it does, it computes a defin-
ing polynomial for L/K. We use all the quantities computed in the main algo-
rithm.
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1. [Test conditions on xp] If X is equal to zero modulo ℓ or if any of the xi for
dv < i ≤ dw is equal to zero modulo ℓ, X is not suitable, so terminate the
subalgorithm.

2. [Test m′
i] For 1 ≤ i ≤ t′, compute Yi ← M ′

iX . If for any i, Yi ≡ 0 (mod ℓ),
X is not suitable, so terminate the subalgorithm.

3. [Compute defining polynomial] (Here, for all i ≤ t′ we have Yi 6≡ 0 (mod ℓ).)
Compute β ←∏

1≤i≤dw
wxi

i , then try to reduce β as much as possible by mul-
tiplying by ℓth powers of elements. Finally, using Theorem 5.3.5 and Proposi-
tion 5.3.9, compute the defining polynomial Pβ of the number field Lβ corre-
sponding to β.

4. [Compute norm group] Using Algorithm 4.4.3, compute the norm group
Tm(Lβ/K) corresponding to the given initial modulus m. If this is not equal
to the initial congruence subgroup C, X is not suitable; otherwise, output the
defining polynomial found in step 3 and terminate the subalgorithm.

Remarks

(1) Step 11 is included for completeness (and takes no time), but it is not
necessary since by Takagi’s theorem we know that the extension L/K
exists, hence the conductor f of Lz/Kz will satisfy the conditions of step
11.

(2) In Algorithm 5.2.14 we looked for all extensions of degree ℓ corresponding
to a given modulus, and we could find none, one, or several. In the present
algorithm, we look at a specific congruence subgroup (m, C) such that
hm,C = ℓ; hence by Takagi’s existence theorem, we know that, up to
isomorphism, there exists one and only one suitable Abelian extension
L/K. Thus, if in steps 11, 16, or 21 the given conditions are not satisfied,
this means that there is an error somewhere, either in the author’s write-
up of the above (admittedly extremely technical) algorithm or in the
implementation.

(3) Steps 1 to 6 depend only on K and ℓ and not on the congruence subgroup
(m, C), and so should be done once and for all if several congruence
subgroups are considered with the same base field K and degree ℓ.

(4) Since we explicitly assume that ζℓ /∈ K, the case ℓ = 2 cannot occur;
hence we do not have to deal with Archimedean conditions at the level
of Kz which is totally complex.

(5) The case α = 1 (or more generally α ∈ K∗
z
ℓ) can only occur if no con-

gruence conditions are tested, hence only if S = Sf,ℓ,2 = ∅, which is
equivalent to f = ZKz .

(6) It is absolutely essential to try to reduce β in step 2 of Subalgorithm
5.3.18, otherwise the size of the coefficients of the defining polynomial
will be too large. We are, of course, allowed to multiply β by any ℓth
power of an element of Kz without changing the field L. Hence, one
method is to multiply by ℓth power of units (which have been computed
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anyway in step 3 of Algorithm 5.3.17) and do this recursively until it is
no longer possible to reduce β. Of course, one needs a way to measure
the “size” of β, but in the present problem any naive measure such as
the T2 norm or the L2 norm of the coefficients of β in an integral basis
of Kz is sufficient.

(7) In step 8 of the algorithm, we compute the conductor f of the exten-
sion Lz/Kz. This is essential in order to be able to apply the necessary
and sufficient conditions given by Theorem 5.3.15. Computing f is trivial
when m is coprime to ℓ. On the other hand, if m is not coprime to ℓ, the
conductor may be a strict divisor of mZKz , although its prime to ℓ-part
is the same as that of mZKz . Thus, there are two solutions to this prob-
lem. The first one, which we have chosen, is to compute the conductor
of the congruence subgroup (mZKz ,N−1

Kz/K
(C)). However, this involves

computing ray class groups in the large field Kz, and could be extremely
costly. Another possible solution, which should seriously be considered, is
to lose the necessity of the conditions of Theorem 5.3.15 and reformulate
the theorem for a modulus m that is a multiple of the conductor but not
necessarily equal to it.

(8) In the case ℓ = 3 (which is not difficult anyway), there is quite a differ-
ent method for computing the defining polynomial of L/K from that of
Lz/Kz instead of using Lagrange resolvents, Theorem 5.3.5, and Propo-
sition 5.3.9. We can simply look for some α satisfying the ramification
conditions but not necessarily the Galois conditions, and then use resul-
tants (see step 10 of Algorithm 9.2.7).

Once we have the desired defining polynomial, we want to reduce it as
much as possible and also to reduce the corresponding absolute polynomial.
Some reduction has been done during the algorithm, but usually this is far
from sufficient. As explained in Chapter 2, to go further, there are several
possibilities. All of them are absolute or relative variants of polynomial re-
duction algorithms and hence involve computing an integral pseudo-basis of
ZL. If done rashly, this may involve factoring large discriminants. The best
method is certainly as follows. We first compute an integral pseudo-basis of
ZLz/ZKz , which is easy since it is a Kummer extension. Then using the inte-
gral pseudo-basis of ZKz/ZK we can easily compute an integral pseudo-basis
of ZLz/ZK , and finally using Exercise 35 of Chapter 2, we can compute an in-
tegral pseudo-basis of ZL/ZK . After that, we can either use a relative version
of the polynomial reduction algorithm (see Section 2.4.2), which improves the
defining polynomial somewhat, or use an algorithm such as Algorithm 2.4.12
combined with the explicit knowledge of the integral pseudo-basis of ZL/ZK ,
and this usually gives good results.
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5.4 Explicit Use of the Artin Map in Kummer Theory
When ζn ∈ K

The contents of this section as well as the next one are for the most part
inspired by work of C. Fieker (see [Fie]), whom I gratefully thank for detailed
comments.

As mentioned in Section 5.1.2, there are two other methods for construct-
ing the desired Kummer extension L/K which use the explicit computation of
the Artin map. As we shall see, these methods are preferable to the methods
using Hecke’s theorem since they do not require extensions of prime degree
and since the corresponding algorithms are simpler.

We recall that, using Algorithm 5.1.2, we are reduced to the following
situation. We have a base field K, a congruence subgroup (m, C) of K of
conductor m such that Clm(K)/C is a cyclic group of order n = ℓr for some
prime number ℓ. The fact that m is the conductor is not essential for Fieker’s
method, but it speeds up the algorithm. As with Hecke’s theorem, there are
two distinct stages. In the first stage, we assume that ζn ∈ K, so that we
can use Kummer theory. In the second stage, we will as before adjoin ζn to
K, determine the corresponding Kummer extension Lz/Kz, and then explain
the method for coming down to the desired extension L/K corresponding to
(m, C) under the Takagi map.

5.4.1 Action of the Artin Map on Kummer Extensions

In this section, we consider a Kummer extension N/K which is assumed to
be cyclic of exponent dividing n, and we assume known a suitable modulus
mN in the sense of Definition 3.4.2.

Recall that the Artin map is the unique map from the ideals of K co-
prime to mN to the Galois group Gal(N/K), defined by multiplicativity on
ideals, and such that for an unramified prime ideal p we have Art(p) = σp,
where σp is the Frobenius automorphism at p characterized by σp(x) ≡ xN (p)

(mod pZN ) for all x ∈ ZN . Since mN is suitable, the Artin map is surjective,
and its kernel is equal to the congruence subgroup D modulo mN defining
the extension N/K through the Takagi correspondence.

We want to determine the Artin map explicitly. More precisely, since
ζn ∈ K, we know by Kummer theory that N = K(θ) for some θ such that
θn = α ∈ ZK . If a is an ideal of K coprime to mN , then Art(a) ∈ Gal(N/K)
is a K-automorphism of N , which we want to determine explicitly. Since the
action of an automorphism is entirely determined by the image of θ, we must
simply compute Art(a)(θ). By multiplicativity, it is sufficient to determine
σp(θ) for a Frobenius automorphism σp associated to an unramified prime
ideal p. This is given by the following proposition, which we state for general
cyclic Kummer extensions, not necessarily of prime power degree.
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Proposition 5.4.1. Let n > 1 be an arbitrary integer (not necessarily a
prime power), let K be a number field such that ζn ∈ K, let N = K(θ) with
θn = α ∈ ZK of degree n, and let p be a prime ideal of K not dividing α
and n (in particular, unramified in N/K). Finally, let g be a generator of the
multiplicative group (ZK/p)∗.

(1) There exists an integer q ≥ 1 such that N (p) = qn+ 1.
(2) In the group (ZK/p)∗, there exist integers y and z with (z, n) = 1 such

that ζn = gqz and α = gy.
(3) We have

σp(θ) = ζyz
−1

n θ ,

where z−1 denotes an inverse of z modulo n.

Proof. Since σp(θ) is a conjugate of θ, we must have σp(θ) = ζ
sp
n θ for some

integer sp.
Let N (p) = qn + t with 0 ≤ t < n be the Euclidean division of N (p) by

n. We obtain

σp(θ) ≡ θN (p) = (θn)qθt = αqθt (mod pZN ) ,

hence
ζsp
n θ ≡ αqθt (mod pZN ) .

Now

disc(1, θ, . . . , θn−1) = disc(Xn − α) = (−1)(n−1)(n−2)/2nnαn−1 ,

and since we have assumed that p ∤ α and p ∤ n, we have disc(1, θ, . . . , θn−1) 6≡
0 (mod pZN ), so the classes of 1, θ, . . . , θn−1 are ZK/p-linearly independent
in ZN/pZN . It follows that t = 1 and that ζ

sp
n ≡ αq (mod pZN ). Since ζn

and α belong to ZK and pZN ∩ ZK = p, we therefore have the congruence

ζsp
n ≡ αq (mod p)

in ZK .
Since t = 1, the group (ZK/p)∗ is of order qn. If g is a generator, we have

α = gy for some y since p ∤ α. On the other hand, ζn is of order dividing n,
hence we have ζn = gqz for some integer z. I claim that ζn is of order exactly
n. Indeed, the discriminant of the set of elements ζan for (a, n) = 1 is equal to
the discriminant of the cyclotomic polynomial Φn(X), which is only divisible
by primes dividing n (see Exercise 9) hence not divisible by p by assumption,
proving my claim. Thus we have (z, n) = 1, and the congruence for ζ

sp
n that

we have obtained gives
gqzsp = gqy ,

and since g is of order exactly qn it follows that qzsp ≡ qy (mod qn), hence
sp ≡ yz−1 (mod n), finishing the proof of the proposition. ⊓⊔
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Note that if p is an unramified prime ideal in the extension N/K, it is
always possible to choose α such that p ∤ α, so the (essential) restriction of
the proposition is not restrictive in practice (see Exercise 10).

We can therefore give the following algorithm for the explicit action of
the Artin map on Kummer extensions.

Algorithm 5.4.2 (Action of the Artin Map on Kummer Extensions). Let
N/K be a cyclic Kummer extension of degree n, where ζn ∈ K and N given as
N = K(θ) with θn = α ∈ ZK . Let a be an ideal of K coprime to α and n. This
algorithm computes the element Art(a)(θ) by means of an element e defined
modulo n such that ArtN/K(a)(θ) = ζenθ (so that ArtN/K(a)(P (θ)) = P (ζenθ)
if P ∈ K[X ]).

1. [Factor a] Factor a into a product of prime ideals as a =
∏

1≤i≤k pvi

i , and set
j ← 0, e← 0.

2. [Compute (ZK/p)∗] Set j ← j+1. If j > k, output e mod n and terminate the
algorithm. Otherwise, set p← pj , compute N (p), a generator g of (ZK/p)∗,
and set q ← (N (p)− 1)/n.

3. [Compute discrete logarithms] Use a discrete logarithm algorithm in (ZK/p)∗

to compute y and z1 such that α = gy and ζn = gz1, and set z ← z1/q (this
must be an integer coprime to n).

4. [Compute sp] Set s← yz−1 (mod n) and e← e+ s, and go to step 2.

Remark. This algorithm may be slow for two reasons. The first is that
the computation of discrete logarithms in (ZK/p)∗ may take time if the norm
of p is large, so we must avoid this if possible. The second, perhaps more
subtle, reason is that the factorization of the ideal a may be very costly, if
not impossible. Thus we must also try to avoid this, and we shall see that in
practice this is no problem.

5.4.2 Reduction to α ∈ US(K)/US(K)n for a Suitable S

Keeping all our notation, our goal is to find α ∈ ZK such that L = K(θ) with
θn = α is the class field corresponding to the congruence subgroup (m, C) of
conductor m. We begin with the following lemma, which is a generalization
of the easy part of Hecke’s Theorem 10.2.9.

Lemma 5.4.3. Let L = K(θ) with θn = α ∈ K and n = ℓr be a Kummer
extension as above. If p is a prime ideal of K that satisfies ℓr ∤ vp(α), then p

is ramified in L/K. In other words, if p is unramified, then ℓr | vp(α).

Proof. Multiplying α by a suitable ℓrth power, we may assume that α ∈
ZK . Indeed, this does not change the field L and does not change the condition
ℓr ∤ vp(α).

Let vp(α) = ℓaw with ℓ ∤ w. By assumption, we have a < r, and we can
find nonnegative integers x and y such that−xℓr−a+yw = 1. If π ∈ p−1rp−2,
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then β = πxℓ
r

αy satisfies vp(β) = −xℓr + ywℓa = ℓa, it is such that β ∈ ZK ,
and by Corollary 10.2.7, its nth root defines the same field as θ since ℓ ∤ y.
Thus, we may assume that α ∈ ZK and that w = 1, so that vp(α) = ℓa for
a < r.

The ideal P = pZL + θZL is not necessarily a prime ideal, but since
α ∈ ZK it is an integral ideal of ZL. Using Proposition 2.3.15 we know that

Pℓr = pℓ
r

ZL + αZL = (pℓ
r

+ αZK)ZL .

Since p is a prime ideal of K, vq(p
ℓr + αZK) = 0 if q 6= p while

vp(pℓ
r

+ αZK) = min(ℓr, ℓa) = ℓa ,

hence pℓ
r

+ αZK = pℓ
a

so that Pℓr = (pZL)ℓ
a

. It follows that Pℓr−a

= pZL,
and since a < r this shows that p is ramified in L/K with ramification
exponent equal to ℓb for some b such that r− a ≤ b ≤ r, proving the lemma.

⊓⊔

The following proposition is a generalization of part of Theorem 5.2.9.

Proposition 5.4.4. Let Cl(K) =
⊕

i(Z/diZ)ai be the SNF of the ordinary
class group of K. Let S be the set of prime ideals of K dividing m and the ai.
We may choose α ∈ ZK such that L = K(θ) with θn = α with α an S-unit;
in other words, α divisible only by prime ideals of S (see Definition 7.4.1).

Proof. Since L/K is a cyclic Kummer extension of degree n, we know that
there exists α ∈ K such that L = K(θ) with θn = α. We do not assume for
the moment that α ∈ ZK . We are going to modify α so that it satisfies the
required properties. We prove the result by induction on the number k of
prime ideals occurring in the prime decomposition of α and not belonging to
S. If k = 0, we are done. Otherwise let k ≥ 1, assume the proposition proved
up to k − 1, let α have exactly k prime ideals not in S in its prime ideal
decomposition, and let p be such an ideal. Then p ∤ m so p is unramified,
hence by the above lemma we know that n | vp(α). Let a = pvp(α)/n. By
definition of the ai we can write a = β

∏
i a
xi

i for some β ∈ K. Thus,

αβ−nZK = αp−vp(α)
∏

i

anxi

i ,

so γ = αβ−n also defines the extension L/K and has exactly k−1 prime ideals
not belonging to S in its prime ideal decomposition, proving our induction
hypothesis.

We have thus shown that α ∈ K exists with the desired properties. Finally,
let us prove that we can choose such an α belonging to ZK . Indeed, we can
write in a unique way αZK = a/b with a and b coprime integral ideals.
Since α is an S-unit, a and b are divisible only by prime ideals of S. If
h(K) = |Cl(K)| is the class number of K, then bh(K) = γZK is a principal
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ideal. It is clear that αγn also defines L/K, is still an S-unit, and is in ZK ,
proving the proposition. ⊓⊔

Thus, to find α we need to search only among S-units. I refer to Chapter
7 for definitions, results, and algorithms on S-units. In particular, we denote
by US(K) the multiplicative group of S-units, and we recall that US(K) is
a finitely generated Abelian group of rank equal to r1 + r2 − 1 + |S| with
cyclic torsion subgroup equal to µ(K). Because of the freedom given to us
by Kummer theory (specifically Corollary 10.2.7), we may assume that α
belongs to a fixed system of representatives of US(K)/US(K)n. Since ζn ∈ K,
w(K) = |µ(K)| is divisible by n; hence it follows that US(K)/US(K)n is a free
Z/nZ-module of rank r1 + r2 + |S|. As in the method using Hecke’s theorem,
we thus have only a finite number of possibilities for α (at most nr1+r2+|S|).
Obviously, we will not systematically explore all these possibilities. To the
contrary, however, we will see that it is not too difficult to reduce the search
to a much smaller number of cases, as we have done using Hecke’s theorem.
It is clear, however, that we should try to have |S| as small as possible. Let
us see how to achieve this.

First, |S| must contain the primes dividing m. Thus, to have a minimal
number of such primes, it is often a good idea to replace m by the conductor of
the congruence subgroup (m, C). Once this is done, the prime ideals dividing
m are exactly the primes that ramify in the extension L/K, and from the
proof of the proposition we see that these are necessary, so we cannot hope
for a smaller set.

In addition, S must contain the prime ideals dividing the ai, whose classes
are the generators of the ordinary class group Cl(K) of K. Here we do not
have any freedom in the number of such ideals, but we do have great freedom
in the choice of the generators. Indeed, the subgroup (Z/diZ)ai of Cl(K) is

also equal to (Z/diZ)βa
j
i for any β ∈ K and any j coprime to di, so we may

replace ai by any ideal of the form βaji with (j, di) = 1. More generally, we
may replace the set of ai by any set of ideals that generate the class group,
since for our purposes we do not really need the Smith normal form.

In addition, since we already have the primes dividing m in S, we need
only to take a set of ideals whose classes generate Cl(K)/ < Sm >, where Sm

is the set of (all) prime ideals dividing m.
According to a weak form of Tchebotarev’s density theorem (see, for ex-

ample, [Lan3]), in any ideal class there exists an infinite number of prime
ideals, hence if desired we may choose the ai to be prime ideals, but this is
not always a good idea.

5.4.3 Construction of the Extension L/K by Kummer Theory

Let u = r1 + r2 + |S|, and let (ε1, . . . , εu) be S-units whose classes modulo
US(K)n form a Z/nZ-basis of US(K)/US(K)n. According to Proposition
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5.4.4, the desired α can be taken of the form

α =
∏

1≤j≤u
ε
xj

j

with 0 ≤ xj < n.
Consider the large field N = K(θ1, . . . , θu), where θnj = εj, as well as the

subfields Nj = K(θj). These fields are Kummer extensions of K. We will not
need to work algorithmically in these fields, but it is necessary to introduce
them in order to justify the final algorithm. We note that N is an Abelian
extension of K equal to the compositum of the Nj , and by Proposition 5.4.4
the desired field extension L/K is a subextension of N/K. We will determine
L/K explicitly as a subextension of N/K.

Since the classes of the εj form a Z/nZ-basis of US(K)/US(K)n, it follows
from Kummer theory (Theorem 10.2.5) that Gal(N/K) ≃ (Z/nZ)u and that
Gal(Nj/K) ≃ Z/nZ. More precisely, we can give an element σ ∈ Gal(N/K)
by specifying the images of the θj by σ, hence by setting

σ(θj) = ζsσ,j
n θj ,

and all the possible σ correspond to all the possible choices of sσ,j modulo n.

Proposition 5.4.5. Let a be an integral ideal of K coprime to the prime
ideals of S, and let σa = ArtN/K(a) ∈ Gal(N/K) be the automorphism cor-
responding to a by the Artin map in Gal(N/K). Then σa is determined by
σa(θj) = ζ

sa,j
n θj with

sa,j =
∑

p

yp,jvp(a)z−1
p ,

where if for each prime ideal p we denote by gp a generator of (ZK/p)∗, we
set in this last group

ζn = g
zp(N (p)−1)/n
p

and
θj = g

yp,j

p .

Proof. By Proposition 3.5.6, the computation of σa(θj) can be done in
the subextension Nj/K. Proposition 5.4.1 then tells us that σa(θj) = ζ

sa,j
n θj

with
sa,j =

∑

p

yp,jvp(a)z−1
p ,

where yp,j and zp are as in the proposition. ⊓⊔

To be able to use class field theory, we must determine a modulus mN that
is suitable for the extension N/K in the sense of Definition 3.4.2. Although
it would be possible to determine the exact conductor of N/K, it is much
easier to give such a modulus with essentially no computation, by using the
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following theorem due to H. Hasse (see [Has], p. 232), which we state for a
general Kummer extension, not necessarily a cyclic extension of prime power
degree (see Exercise 6 of Chapter 10 for the proof of a slightly weaker result).

Theorem 5.4.6. Let N/K be a Kummer extension of exponent n. Denote
by R the set of prime ideals of K that are ramified in N/K and do not divide
n, together with the infinite places of K ramified in N/K. Then the conductor
of N/K divides

mN =
∏

p∈R
p
∏

p|n
pcp ,

with

cp =

(
vℓ(n) +

1

ℓ− 1

)
e(p/ℓ) + 1 ,

where ℓ is the prime number below p.

The following lemma explicitly gives our desired Kummer extension L/K
as a subextension of N/K.

Lemma 5.4.7. Let D be the kernel of the canonical surjection s from
ClmN (K) to Clm(K)/C. Then

ClmN (K)n ⊂ Ker(ArtN/K) ⊂ D ,

and if we set

H = ArtN/K
(
D
)

= ArtN/K
(
D/ClmN (K)n

)
,

then L = NH.

Proof. Note that by abuse of notation, we denote also by ArtN/K the
Artin map at the level of ideals or of ideal classes.

The Artin map ArtN/K is a surjective homomorphism from the ideals of
K coprime to mN onto Gal(N/K) with kernel containing PmN , hence also
from ClmN (K) onto Gal(N/K), which is isomorphic to (Z/nZ)u. Let us first
show the two inclusions. By class field theory, we have

ClmN (K)/Ker(ArtN/K) ≃ Gal(N/K) ≃ (Z/nZ)u .

It follows that ClmN (K)/Ker(ArtN/K) is of exponent n, hence ClmN (K)n ⊂
Ker(ArtN/K).

For the second inclusion, we note that since m is the conductor of L/K
we have m | mN . Thus D is equal to the kernel of ArtL/K viewed as a map
from ClmN (K) to Gal(L/K). By Proposition 3.5.6 it follows that

Ker(ArtN/K) ⊂ Ker(ArtL/K) = D ,

proving the second inclusion. Furthermore, this also proves that
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Gal(N/L) = ArtN/K
(
D/Ker(ArtN/K)

)
,

so L = NH, where, with an evident abuse of notation, we can write indiffer-
ently

H = ArtN/K
(
D/Ker(ArtN/K)

)
= ArtN/K

(
D
)

= ArtN/K
(
D/ClmN (K)n

)
,

finishing the proof of the lemma. ⊓⊔

Remarks

(1) For future reference, note that we do not use any special properties of N
in this lemma, only the fact that N/K is an Abelian extension containing
the extension L/K, and that mN is a suitable modulus.

(2) It is costly to determine Ker(ArtN/K), and this is why we prefer to define

H simply as the image by ArtN/K of D/ClmN (K)n, which is already a
small group of exponent dividing n.

5.4.4 Picking the Correct α

The field L is now determined as the fixed field of the large field N by the
subgroup H of Gal(N/K). Since the map f is explicitly known, its kernel
D can be explicitly computed (using, for example, Algorithm 4.1.11), and
computing D/ClmN (K)n is also a very simple matter. Thus, in principle the
problem is solved. Giving the answer as L = NH for a large field N and an
explicit group H is, however, not satisfactory; we must really find a defining
polynomial for L/K, in other words an α ∈ ZK such that L = K(θ) with
θn = α.

Using the work done in the preceding sections, we know that we can write

α =
∏

1≤j≤u
ε
xj

j ,

where the classes of the εj form a Z/nZ-basis of US(K)/US(K)n, and the xj
are defined modulo n. We must now find necessary and sufficient conditions
on the xj so that L = K(θ) = NH with the notation of Lemma 5.4.7. Since
D/ClmN (K)n is of exponent dividing n, we can explicitly compute

D/ClmN (K)n =
∑

1≤i≤d
(Z/fiZ)fi ,

where the fi are divisors of n (of the form ℓk with k ≤ r if n = ℓr, ℓ prime,
as we generally assume). Thus L is the fixed field of N by the ArtN/K(fi) for
1 ≤ i ≤ d.

Proposition 5.4.5 explicitly gives us the action of ArtN/K(fi) on θj as

ArtN/K(fi)(θj) = ζsi,j
n θj
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for an explicitly computed si,j . Thus, for

θ =
∏

1≤j≤u
θ
xj

j ,

we have
ArtN/K(fi)(θ) = ζri

n θ with ri =
∑

1≤j≤u
si,jxj .

Since K(θ) is stable by σ ∈ Gal(N/K) if and only if θ is stable, it follows
that K(θ) is stable by the group H if and only if the following system of d
linear congruences in the u unknowns xj is satisfied:

∑

1≤j≤u
si,jxj ≡ 0 (mod n) for 1 ≤ i ≤ d .

Since by class field theory we know that the extension L/K exists and is
unique, this system must have a solution. In addition, since L/K is a cyclic
extension, by Kummer theory all subextensions of K(θ)/K are of the form
K(θj) for some integer j.

It follows that if (xj) is a solution corresponding to the desired extension
L/K, then any solution to our system of congruences is of the form (λxj)
modulo n for some integer λ not necessarily prime to n. Thus the group of
solutions to our system must be cyclic of order n and the desired extension
L/K corresponds to any generator of this group. The solution to our system
of congruences is found using Algorithm 4.1.22.

5.4.5 Algorithmic Kummer Theory When ζn ∈ K Using Artin

We are now ready to give a detailed algorithm for the construction of the
class field L/K corresponding to a congruence subgroup (m, C) of conductor
m, cyclic of degree n = ℓr, when ζn ∈ K (use Algorithm 5.1.2 if necessary to
reduce to this case).

Algorithm 5.4.8 (Kummer Extension When ζn ∈ K Using Artin). Let
(m, C) be a congruence subgroup of a number field K such that Clm(K)/C
is cyclic of order n = ℓr with ℓ prime and such that m is the conductor of
(m, C). Assume that ζn ∈ K. This algorithm outputs a defining polynomial for
the Abelian extension L/K corresponding to (m, C) under the Takagi correspon-
dence. We assume computed the class group Cl(K) =

⊕
i(Z/ciZ)ci, the unit

group U(K), the ray class group Clm(K) =
⊕

i(Z/biZ)bi, and the subgroup C
as an HNF matrix H on the generators bi.

1. [Factor m and ℓ] Using Algorithm 2.3.22 (in the absolute case), find the prime
ideals dividing the finite part m0 of m, and using [Coh0, Algorithm 6.2.9],
compute the prime ideal factorization of ℓZK .
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2. [Compute the set S] Compute a set S0 of prime ideals whose classes generate
Cl(K). For this, either search in the ideal class of each ci for a prime ideal
(which will exist), or factor ci into prime ideals using Algorithm 2.3.22 and
take all the prime ideal factors, or range through small prime ideals until they
generate the class group. Then let S be the union of S0 with the prime ideals
divisors of m0 and of ℓZK found in step 1.

3. [Compute US(K)] Set u← r1 +r2 + |S|, where (r1, r2) is the signature of K.
Using Algorithm 7.4.8, compute a generating set (ηi)1≤i≤u of US(K) (with
the notation of Algorithm 7.4.8, we may take ηi = εi−1 for 1 ≤ i ≤ r1 + r2
and ηr1+r2+i = γi for 1 ≤ i ≤ |S|).

4. [Compute mN ] Let mN be the modulus of K whose infinite part is that of m

and whose finite part is given by

mN,0 ←
∏

p∈S,p∤ℓ

p
∏

p|ℓ
p(r+1/(ℓ−1))e(p/ℓ)+1

(recall that n = ℓr).

5. [Compute ClmN (K)/ClmN (K)n] Using Algorithm 4.3.1, compute the SNF of
ClmN (K) as ClmN (K) =

⊕
i(Z/eiZ)ei. Let s be the largest index (0 if none

exist) such that (n, ei) > 1, and set ei ← (n, ei) for 1 ≤ i ≤ s. Finally, set
E =

(
e1, . . . , es

)
, DE = diag(e1, . . . , es), so that

ClmN (K)/ClmN (K)n = (E,DE) =
⊕

1≤i≤s
(Z/eiZ)ei .

6. [Compute D/ClmN (K)n] Using Algorithm 4.1.11, or more precisely Ex-
ercise 3 of Chapter 4, compute the kernel of the canonical surjection s
from ClmN (K)/ClmN (K)n to Clm(K)/C (which is well-defined by Lemma
5.4.7) as a left HNF divisor HE of DE. Then let (F,DF ) be the SNF of
D/ClmN (K)n obtained by applying Algorithm 4.1.3 to the system of gener-
ators and relations (EHE , H

−1
E DE).

7. [Write linear system of congruences] Let F =
(
f1, . . . , fd

)
. For 1 ≤ i ≤ d

and 1 ≤ j ≤ u, using Algorithm 5.4.2 on the extensions Nj/K = K(θj)/K,
compute integers si,j defined modulo n such that

ArtNj/K(fi)(θj) = ζsi,j
n θj .

8. [Solve system] Using Algorithm 4.1.22 and the remark following it, compute
the SNF of the group of solutions of the system

∑
1≤j≤u si,jxj ≡ 0 (mod n)

for 1 ≤ i ≤ d. If this group is not cyclic of order n, there is a bug in the
author’s write-up of the algorithm or in its implementation. Otherwise, let
X = (x1, . . . , xu)

t be a generator.

9. [Terminate] Set α ← ∏
1≤j≤u η

xj

j , and try to reduce α by multiplying it by

nth powers of the ηj or by replacing (x1, . . . , xu)
t by λ(x1, . . . , xu)

t modulo
n for λ coprime to n. For future use, output the modulus mN , output the
defining polynomial Xn − α = 0, and terminate the algorithm.
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Remark. In practice it will be very costly to compute si,j since the ideals
fi have been obtained after a series of HNF or SNF transforms. Thus it is
preferable to keep explicitly the HNF and SNF transformation matrices and
to compute the image of the Artin map on the much simpler ideals ei. In
addition, for the same reason it may be useful to look for representatives
of the class of ei that are simpler, in particular, that are prime ideals. The
details are left to the reader.

5.5 Explicit Use of the Artin Map When ζn 6∈ K

We now consider the general case where we search for the class field L/K
corresponding to a congruence subgroup (m, C) such that Clm(K)/C is cyclic
of order n = ℓr, and where we do not assume that ζn ∈ K.

As already explained, we proceed in three steps. In the first step, we
construct the extension Kz = K(ζn) and compute all its necessary invariants
such as its class group, unit group, and so on. This will often be a very
costly part of the computation and is the main drawback of Kummer theory
(unfortunately, no other completely general method is known).

In a second step we apply Algorithm 5.4.8 (using the Artin map), or for
that matter Algorithm 5.2.14 when n is prime (using Hecke’s theorem) to
find a suitable extension Lz/Kz corresponding to the congruence subgroup
(mZKz ,N−1

Kz/K
(C)) of Kz. Note that if we use Hecke’s theorem, we must

find the conductor of this congruence subgroup, while when using the Artin
map, this is not necessary. In any case, at the end of this step we have found
α ∈ Kz such that Lz = Kz( n

√
α).

In a final step, we must construct the extension L/K, by going down from
the extension Lz/Kz. We have already seen how to do this using Lagrange
resolvents. In this section, we will see another method based once again on
the use of the Artin map.

5.5.1 The Extension Kz/K

Let Kz = K(ζn). The following proposition generalizes Proposition 5.3.2.

Proposition 5.5.1. There exists a subgroup Gn of (Z/nZ)∗ such that the
extension Kz/K is Abelian with Galois group Gz given by Gz = {τa/ a ∈
Gn}, where τa is the K-automorphism of Kz sending ζn to ζan. In particular,
[Kz : K] divides φ(n). Conversely, if a /∈ Gn, there does not exist a K-
automorphism τa of Kz such that τa(ζn) = ζan.

Proof. By Proposition 5.3.1, we deduce as for Proposition 5.3.2 thatKz/K
is Abelian with Galois group isomorphic to a subgroup of Gal(Q(ζn)/Q),
hence to a subgroup of (Z/nZ)∗, where a ∈ (Z/nZ)∗ corresponds to τa ∈
Gal(Q(ζn)/Q) by τa(ζn) = ζan. For the converse, we can either note that all
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the K-automorphisms of Kz are accounted for by the τa for a ∈ Gn or, more
positively, notice that Gn is the set of a ∈ (Z/nZ)∗ such that ζan is a root
of f(X) = 0, where f(X) is the minimal polynomial of ζn in K[X ] (see also
Exercise 11). ⊓⊔

Once the extension Kz/K is understood, we must compute a number of
invariants of Kz. As in Algorithm 5.3.17 (see the discussion just before that
algorithm), to perform these computations in Kz, we use either Algorithm
2.1.9 combined with the analog of Theorem 2.1.14 proved in Exercise 9 of
Chapter 2, or the relative methods explained just before Algorithm 5.3.17.
Once again, for simplicity of exposition, we will assume that we use the first
method, but a serious implementation should use the second method.

5.5.2 The Extensions Lz/Kz and Lz/K

• Description of Gal(Lz/Kz) and Gal(Lz/K)

Once Kz is constructed, we must lift the class field problem from K to Kz.
We have Lz = L(ζn) = KzL, and as above we know, thanks to Proposition
3.5.5, that the congruence subgroup (mZKz ,N−1

Kz/K
(C)) of Kz corresponds

to Lz/Kz under the Takagi correspondence, where mZKz is not necessarily its
conductor. Note that an added benefit of Fieker’s method described above
compared to Hecke’s is that we do not need to compute the conductor of
Lz/Kz, since this would probably waste more time than would be gained by
having a smaller modulus.

By Proposition 5.3.1 applied to the extensions L/K and Kz/K, we know
that Gal(Lz/Kz) = Gal(LKz/Kz) can be identified with a subgroup of
Gal(L/K). Since by assumption this group is cyclic of order n, it follows
that Gal(Lz/Kz) is cyclic of order dividing n. Furthermore, the same propo-
sition tells us that Lz/K is an Abelian extension. From this, we can easily
prove the following generalization of (part of) Theorem 5.3.5.

Proposition 5.5.2. Let K be a number field, Kz = K(ζn), let

Gz = Gal(Kz/K) = {τa/ a ∈ Gn}

for some subgroup Gn of (Z/nZ)∗ as in Proposition 5.5.1, let L/K be a cyclic
extension of degree n, and let Lz = LKz = L(ζn). Then Lz/Kz is a cyclic
extension of degree m dividing n, and if we write Lz = Kz(θ) with θ = m

√
α

for some α ∈ Kz, the extension Lz/K is Abelian if and only if for each
a ∈ Gn there exists γa ∈ Kz such that

τa(α) = γma α
a .

If this condition is satisfied, we can choose an extension of τa to Lz (again
denoted by τa) such that τa(θ) = γaθ

a, and we have
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Gal(Lz/K) = {σjτa/ 0 ≤ j < m, a ∈ Gn} ,

where σ is the Kz-automorphism of Lz such that σ(θ) = ζmθ.

Proof. We have already seen that Lz/Kz is a cyclic extension of degree m
dividing n. Assume that the extension Lz/K is Abelian. Since the extension
Lz/K is normal we must have τa(θ) ∈ Lz for any extension of τa to Lz, which
we denote again by τa by abuse of notation. Thus Kz(τa(θ)) ⊂ Lz = Kz(θ).
Applying this to τ−1

a = τa−1 , we obtain Kz(τ
−1
a (θ)) ⊂ Kz(θ), hence Kz(θ) ⊂

Kz(τa(θ)), which finally shows that we have the equality Kz(τa(θ)) = Kz(θ).
Since τa(θ)

m = τa(θ
m) = τa(α), it follows from the uniqueness theorem of

Kummer theory (Corollary 10.2.7 in our case) that there exist γa ∈ Kz and
b coprime to m such that τa(α) = γma α

b, hence we can choose τa(θ) = γaθ
b

(all the other extensions τ of τa to Lz are obtained from this one by setting
τ(θ) = ζsmγaθ

b for 0 ≤ s < m).
We now use the fact that Lz/K is not only normal but Abelian. Let σ

be the generator of the cyclic group Gal(Lz/Kz), which sends θ to ζmθ and

leaves Kz fixed (note that ζm = ζ
n/m
n ∈ Kz). Then

σ(τa(θ)) = σ(γaθ
b) = γaζ

b
mθ

b ,

while
τa(σ(θ)) = τa(ζmθ) = ζamγaθ

b .

Comparing, we obtain b ≡ a mod m; in other words, b = a since b is only
defined modulo m anyway. This shows that τa(α) = γma α

a as claimed.
Conversely, if this condition is satisfied, then for all a ∈ Gn, τa and

σ commute on the generating elements θ and ζn of Lz/K; hence Lz/K is
Abelian. The last statement is clear. ⊓⊔

Corollary 5.5.3. Keep the hypotheses and notation of the proposition, and
assume that Lz = Kz(θ) is an Abelian extension of K, with θm = α. Let p

be a prime ideal of K not dividing n or α, and denote as usual by σp the
Frobenius automorphism associated to p in the extension Lz/K. Then

σp(θ) = ζup
m γN (p)θ

N (p) ,

where up is the unique integer modulo m (which exists) such that

ζup
m γN (p) ≡ 1 (mod pZKz) .

Proof. Since the extension Kz/K is ramified only at prime ideals dividing
n and Lz/Kz is ramified only at prime ideals dividing n and α, it follows
that p is unramified in Lz/K; hence σp is well-defined.

We have σp(ζm) ≡ ζ
N (p)
m (mod pZKz), and since p ∤ n we have in fact

the equality σp(ζm) = ζ
N (p)
m . It follows that σp|Kz = τN (p), hence by the

proposition σp(α) = γmN (p)α
N (p), so
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σp(θ) = ζumγN (p)θ
N (p)

for some u. We conclude by using the congruence σp(θ) ≡ θN(p) (mod pZLz)
and the fact that p ∤ α. ⊓⊔

• Computation of the γa

It will be essential to compute the γa explicitly for a ∈ Gn. Since Gn is a
subgroup of (Z/nZ)∗ and n = ℓr, it follows that Gn is cyclic if ℓ > 2 and is
generated by at most two elements if ℓ = 2. By Exercise 12, to compute all
the γa it is sufficient to compute γa for the generator(s) of Gn, hence at most
two computations.

To compute such a γa, we can proceed as follows. Let β ← τa(α)/αm ∈
Kz. Then the roots in Kz of the equation Xm − β = 0 are the numbers
ζjmγa, and any one is suitable for our purposes. Thus, we have a polynomial
of degree m with coefficients in Kz which is known to be a product of m
distinct linear factors, and we want to find one of them. We may of course
use a general factoring algorithm over number fields, but in this special case
it is more efficient to write a special-purpose algorithm to solve this problem.
The details are left to the reader (Exercise 13).

• Finding a Suitable Modulus for Lz/K

Recall from Definition 3.4.2 that a modulus mL is suitable for the extension
Lz/K if mL is a multiple of the conductor of Lz/K or, equivalently, if Lz/K is
a subextension of the ray class field K(mL). Since we know that the modulus
mN is suitable for the extension Lz/Kz and since Lz/K is Abelian, it follows
from Proposition 3.5.6 that NKz/K(mN ) is suitable for the extension Lz/K.

On the other hand, by definition m is suitable for L/K, and nZK is
suitable for Kz/K, hence lcm(m, nZK) is suitable for LKz/K = Lz/K.

Thus, we can take as suitable modulus for Lz/K the modulus

mL = gcd(lcm(m, nZK),NKz/K(mN )) .

Note that this will in general be simpler than NKz/K(mN) since the prime
ideals generating the class group are not necessary.

5.5.3 Going Down to the Extension L/K

Once mL is chosen, we use Lemma 5.4.7 applied to the Abelian extension
Lz/K. Thus, we have L = LH

z with

H = ArtLz/K

(
D
)

= ArtLz/K

(
D/ClmL(K)n

)
,

whereD is the kernel of the canonical surjection from ClmL(K) to Clm(K)/C.
As in the case ζn ∈ K, but in a different context, we must make this more
explicit.
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When the extension L/K is cyclic of prime degree ℓ, we have seen in
Theorem 5.3.5 that we can come down from Lz to L by taking L = K(α)
with α = TrLz/L(θ). In our more general case where L/K is cyclic of prime
power order, this is not necessarily true. We have, however, the following easy
lemma.

Lemma 5.5.4. Assume that η is such that Lz = K(η), and let

Pη(X) =

d∑

i=0

(−1)itiX
d−i

be the characteristic polynomial of η in L[X ] with d = [Lz : L]. Then L =
K(ti) for at least one value of i (note that K(ti) ⊂ L for all i).

Proof. Since L/K is cyclic of prime power degree ℓr, there exists a maximal
nontrivial subextension L1/K of degree ℓr−1. So assume the conclusion of the
lemma is false. Then ti ∈ L1 for all i, so that [Lz : L1] ≤ d, which is absurd
since [Lz : L1] = dℓ. ⊓⊔

Remarks

(1) To apply this lemma we need η such that Lz = K(η). Since Lz =
K(ζn, θ), the primitive element theorem tells us that we can choose
η = θ + qζn for some small integer q. Note that here it is useless to
consider also η = θζn + qζn = (θ + q)ζn since θ and θζn are both nth
roots of α = θn ∈ Kz, so they play exactly the same role.

(2) In practice, we can hope that TrLz/L(η) = t1 already satisfies L = K(t1),
so we try it first, and then we try the other coefficients until a suitable
one is found.

To obtain the conjugates of η over L, we must apply the elements of
Gal(Lz/L), which by the remark made at the beginning of this section are
simply the elements of the subgroup H of ClmL(K)/ClmL(K)n given above.
The explicit action of the Artin map on η, in other words on ζn and on θ, is
given by Corollary 5.5.3.

5.5.4 Algorithmic Kummer Theory When ζn 6∈ K Using Artin

We are now ready to describe the complete algorithm for computing the ray
class field associated to a congruence subgroup (m, C) using the Artin map.
As in the rest of this chapter, we assume that we have done the preliminary
reduction to the case where Clm(K)/C is cyclic of prime power degree n = ℓr

by using Algorithm 5.1.2.

Algorithm 5.5.5 (Kummer Extension When ζn /∈ K Using Artin). Let K =
Q(αK) be a number field and let (m, C) be a congruence subgroup of K such
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that Clm(K)/C is cyclic of order n = ℓr for some prime ℓ. This algorithm
outputs a defining polynomial for the Abelian extension L/K corresponding to
the congruence subgroup (m, C) under the Takagi correspondence. We denote by
TK(X) the minimal monic polynomial of αK in Q[X ], assumed to be in Z[X ].

1. [Adjoin ζn] Using Algorithm 2.1.9, compute a compositum Kz of K with
Q(ζn) given by the defining polynomial Φn(X) = 0, where

Φn(X) =
Xn − 1

Xn/ℓ − 1
= Xℓr−1(ℓ−1) +Xℓr−1(ℓ−2) + · · ·+ 1

is the nth cyclotomic polynomial (there may be several factors in the com-
positum, but they all define isomorphic number fields so any one can be
taken). The algorithm outputs an integer k, an irreducible monic polynomial
R(X) ∈ Z[X ] having αz = ζn(αK+k) as a root such that Kz = Q(αz), and
polynomials A1(X) and A2(X) such that αK = A1(αz) and ζn = A2(αz).

2. [Compute the action of the τa on αz ] For each a ∈ (Z/nZ)∗, compute
Ua(X)← XA2(X)a−1 mod R(X) (we will have Ua(αz) = τa(αz)).

3. [Compute the groupGn] Set dz ← deg(R(X))/ deg(TK(X)). By simple enu-
meration, compute the set Gn of a ∈ (Z/nZ)∗ such that R(X) | R(Ua(X))
(we must have |Gn| = [Kz : K] = dz).

4. [Compute data for Kz] Using the standard algorithms for the absolute case
given in [Coh0], or the algorithm for the relative case described in Section
7.3.3, compute an integral basis, the unit group U(Kz), and the class group
Cl(Kz) (see Remark (1) below).

5. [Lift congruence subgroup] Set mz ← mZKz , and compute the SNF of
Clmz(Kz). Using Algorithm 4.1.11, compute Cz ← N−1

Kz/K
(C) as a sub-

group of Clmz(Kz) given by an HNF matrix HCz . Set mz ← det(HCz) (this
will be the degree of the desired extension Lz/Kz, hence of the form ℓrz with
rz ≤ r).

6. [Apply Kummer] Apply Algorithm 5.4.8 to the congruence subgroup (mz, Cz)
of Kz (we already know that Clmz(Kz)/Cz is cyclic of prime power order).
Let mN be the modulus of Kz and Xmz − α be the defining polynomial for
Lz/Kz output by this algorithm. Set θ ← mz

√
α.

7. [Compute suitable modulus for Lz/K] Compute

mL ← gcd(lcm(m, nZK),NKz/K(mN ))

as a modulus of K (see Remark (2) below).

8. [Compute ClmL(K)/ClmL(K)n] Using Algorithm 4.3.1, compute the SNF
of ClmL(K) as ClmL(K) =

⊕
i(Z/eiZ)ei. Let s be the largest index (0 if

none exist) such that (n, ei) > 1, and set ei ← (n, ei) for 1 ≤ i ≤ s. Finally,
set E =

(
e1, . . . , es

)
, DE = diag(e1, . . . , es), so that

ClmL(K)/ClmL(K)n = (E,DE) =
⊕

1≤i≤s
(Z/eiZ)ei .
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9. [Compute D/ClmL(K)n] Using Algorithm 4.1.11, or more precisely Ex-
ercise 3 of Chapter 4, compute the kernel of the canonical surjection s
from ClmL(K)/ClmL(K)n to Clm(K)/C (which is well-defined by Lemma
5.4.7) as a left HNF divisor HE of DE . Then let (F,DF ) be the SNF of
D/ClmN (K)n obtained by applying Algorithm 4.1.3 to the system of gener-
ators and relations (EHE , H

−1
E DE).

10. [Compute the γa] Using the method explained above and the action of τa
on αz computed in step 2, compute γa ← m

√
τa(α)/αa for the (at most

two) generators of Gn, and using the cocycle condition given in Exercise 12
compute the γa for all a ∈ Gn.

11. [Compute a suitable η] For q = 0, ±1, and so on, set η ← θ + qζn until the
elements γaθ

aζajm + qζan are distinct for 0 ≤ j < m and a ∈ Gn (we now
have Lz = K(η)).

12. [Compute Pη(X)] Compute

Pη(X)←
∏

a∈D/ClmL
(K)n

(X −ArtLz/K(a)(η)) ∈ Lz[X ] ,

where ArtLz/K(a)(η) is computed as explained above, using the action of
the τa on αz computed in step 2 and Corollary 5.5.3 (see Exercise 14). Write

Pη(X) =
∑d

i=0(−1)itiX
d−i with ti ∈ Lz represented as explained in Remark

(4) below, and set j ← 0.

13. [Loop on coefficients] Set j ← j + 1. If j > d, there is a bug in the imple-
mentation or in the algorithm, and terminate. Otherwise set t← tj .

14. [Compute minimal polynomial] Using the explicit description of Gal(Lz/K)
given by Proposition 5.5.2, compute all the conjugates of t in Lz. If there are
not exactly n distinct conjugates, go to step 13. Otherwise, let t(j) be the n
distinct conjugates of t and set mt(X) ← ∏

j(X − t(j)), which will be the
minimal polynomial of t over K (see Remark (5) below for an alternate and
often better way to compute mt(X)).

15. [Compute ZL] Compute an integral pseudo-basis of ZLz/ZKz (which is easy
since this is a Kummer extension); then using the integral pseudo-basis of
ZKz/ZK , compute an integral pseudo-basis of ZLz/ZK ; finally, using Exer-
cise 35 of Chapter 2, compute an integral pseudo-basis of ZL/ZK .

16. [Terminate] Using a relative polynomial reduction algorithm such as Algo-
rithm 2.4.12 and the integral pseudo-basis of ZL computed in the preceding
step, replace the polynomial mt(X) by a polynomial that is as reduced as
possible, output mt(X) as a defining polynomial for L/K and terminate the
algorithm.

Remarks

(1) Note that it is easy to compute the integral basis of Kz using the rela-
tive round 2 algorithm (Algorithm 2.4.9) since the defining polynomial
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of Kz/K is a divisor of Φn(X), hence its discriminant is divisible only by
prime ideals above ℓ. It would, in general, be much more difficult to com-
pute this integral basis using absolute algorithms since the factorization
of the discriminant of the absolute defining polynomial could be difficult.

(2) Recall that the GCD of two moduli is obtained by adding the finite
parts and intersecting the infinite parts, while the LCM of two moduli
is obtained by intersecting the finite parts and making the union of the
infinite parts.

(3) Steps 8 and 9 are identical (with a different modulus) to steps 5 and 6 of
Algorithm 5.4.8.

(4) After step 11, we know that Lz = K(η) for η = θ + qζn. It is, however,
much more convenient to keep the representation Lz = K(θ, ζn), in other
words to consider the elements of Lz as polynomials in the two variables
θ and ζn, since the action of the Galois group of Lz/K is much simpler
to write in this representation. In effect, we do not need η to represent
the field Lz/K by a primitive element, but only to write an explicit
characteristic polynomial Pη(X).

(5) As already mentioned, in step 12, instead of computing the complete
polynomial Pη(X), it is in general faster to simply compute its coefficient
t1 using

t1 ← TrLz/L(η) =
∑

a∈D/ClmL
(K)n

ArtLz/K(a)(η) ,

and to test in step 14 if it is suitable to generate the extension L/K.
Only in the case where it is not suitable (which happens very rarely in
practice), we compute the complete polynomial Pη(X).

(6) In step 14, an alternate way to compute mt(X) is the following. For
0 ≤ j ≤ n compute tj in Lz (expressed as polynomials in ζn and θ as ex-
plained in remark (4)). Then solve the linear system tn =

∑
0≤j≤n−1 xjt

j ,
which is a system of [Lz : K] equations in n unknowns with coefficients
in K to find the polynomial mt(X). We may of course apply the stan-
dard Gaussian pivoting methods to solve this system, but considering the
size and the complexity of the coefficients, it is preferable in an actual
implementation to use modular techniques to solve the system.

(7) In step 16, we could directly try to reduce the polynomial mt(X) using
Algorithm 2.4.12. The direct computation of the relative integral pseudo-
basis of ZL/ZK could involve expensive discriminant factorization, hence
it is more efficient to proceed as explained in the algorithm. We have
already mentioned this in the Hecke case.

5.5.5 Comparison of the Methods

We have now described in great detail several methods for computing class
fields. It is necessary to give some practical advice on which methods to use.
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For evident compatibility reasons, if the necessary roots of unity are in the
base field K, we set Kz = K and Lz = L.

(1) A common point to all the methods is the necessity and usefulness to
reduce the problem to several problems involving the computation of
class fields which are cyclic of prime power order n = ℓr. This is easily
done using Algorithm 5.1.2. We assume this reduction made.

(2) If r > 1, in other words if n is not a prime number, then we must use
the method using the Artin map for the construction of the extension
Lz/Kz. Indeed, Hecke’s theorem is not directly applicable in that case,
and it would be necessary to construct the extension as a tower of r cyclic
extensions of order ℓ. This is clearly not practical if r > 1, except perhaps
in very small cases such as n = 4 = 22 (see Exercise 18).

(3) If r = 1, in other words if n = ℓ is prime, then both the method using
the Artin map and the method using Hecke’s theorem may be considered.
The comparison between the two methods depends probably on the effi-
ciency of the implementation of the underlying algorithms for computing
more basic objects such as class groups or the structure of (ZK/m)∗ for
the necessary moduli m. In addition, in both methods special-purpose
algorithms can be written to speed up the necessary tasks without us-
ing general methods. Thus, for a serious and efficient implementation, I
advise to implement both methods and to compare, doing some detailed
profiling of both programs, to see where most of the time is spent.

(4) To go down from Lz to L (when the necessary roots of unity did not be-
long to the base field), we again have two methods. Although we have not
explained the method using Lagrange resolvents in the case of nonprime
degree, the theory can be generalized, at least when Gn is cyclic, which
is always the case when ℓ > 2 or when n = 4 (see Exercise 17 for this last
case). As can already be seen from the expressions given in Section 5.3.2,
the formulas become quite complicated, although they need not be writ-
ten explicitly but computed when necessary. Thus as practical advice, to
go down from Lz to L, I suggest using Lagrange resolvents for n = 3, 4,
5, and 7, and the method using the Artin map for larger values of n.

5.6 Two Detailed Examples

To illustrate the above results, we give two examples coming from the numer-
ical results given in Section 12.2.2. The first example is that of a quadratic
extension, for which it is not necessary to adjoin roots of unity. The second
example is that of a cubic extension. For both these examples, we will use
Hecke’s theorem, but we advise the reader to perform similar computations
using the Artin map and then compare (Exercise 19).

Warning. The quantities that we will compute (for example, a system of
fundamental units) depend on the precise implementation, hence the results
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that you will obtain will almost certainly be different from those presented
here. Only the final reduced polynomial should essentially be the same.

5.6.1 Example 1

In the first example, we take K = Q(z) as base field, where z is a root of the
polynomial X6−X5+2X3−2X2+1. In this field, the prime number 41 splits
as the product of three prime ideals of degree 1 and one prime ideal of degree
3. One of the prime ideals of degree 1 is equal to P41 = 41ZK + (z + 4)ZK .
The number field K has two real places ∞1 and ∞2. We take as modulus
m = P41∞1∞2 and C = Pm as congruence subgroup. Using Algorithm 4.3.1,
we find that the ray class group is of order 2, that m is the conductor, hence
that there exists a quadratic extension L of K ramified only at primes above
m, hence totally complex and ramified only at the finite prime P41. Corollary
3.5.12 tells us that its relative discriminant ideal is equal to P41 itself, and
we now want a defining polynomial for L/K.

Since L/K is quadratic, we have ζℓ = −1 ∈ K, hence L = K
(√
α
)

for
some α ∈ ZK . We use Algorithm 5.2.14. Since 41 is prime to ℓ = 2, we have
Sm,ℓ,i = ∅ for i = 1, 2, and 3. The set Sm has the unique element P41, and
the set Sℓ has the unique element 2ZK , since it is easily checked that 2 is
inert in K. Thus, the tests in steps 2 and 3 of the algorithm are satisfied.

To continue, we need the virtual units vj . Using the general class group
and unit group algorithms, we find that the class group is trivial and that we
can choose as generators of the unit group ε0 = −1, ε1 = z, ε2 = z3 + 1, and
ε3 = z4 − z3 + z2 + z − 1.

Using the principal ideal algorithm in K ([Coh0, Algorithm 6.5.10]), we
compute that P41 = βpZK with βp = z5 + 2z2 − 2z; hence according to step
5, we set vi = εi−1 for 1 ≤ i ≤ 4 and v5 = βp.

Finally, since Sm,ℓ,2 = m′
∞ = ∅, the only modulus to consider in step 5 is

m1 = (2ZK)z(2ZK ,2)−1 = 4ZK since z(2ZK , 2) = 2e(2ZK/2) + 1 = 3.
Applying Algorithm 4.2.21, we find that

(ZK/4ZK)∗ ≃ (Z/126Z)× (Z/2Z)5

with generators, for example, equal to z, 1 − 2z2, 1 − 2z, 1 − 2z4, 1 − 2z5,
and −1 (your own generators may, of course, be different).

Using Algorithm 4.2.24, we find that the matrix M of discrete logarithms
of the vj for 1 ≤ j ≤ 5 is equal to

M =





0 1 97 11 68
0 0 1 0 1
0 0 1 0 1
0 0 0 0 0
0 0 1 1 0
1 0 1 1 0




,
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By Gaussian elimination in F2, we find that the column vector K1 =
(0, 0, 1, 1, 1)t is a generator of the kernel modulo 2. Thus, if we set

α = ε2ε3βp = −z5 − z4 + z3 − 3z2 ,

the ramification conditions at all the finite primes are satisfied. Since the
dimension of our kernel is equal to 1, it is not necessary to do any backtracking
or to compute more discrete logarithms. We simply check that the real places
are ramified, in other words that σ(α) < 0 for both real places σ (if this was
not the case, there would be no Abelian extension of conductor m and degree
2).

Thus L can be defined over K by the relative defining polynomial

X2 − (−z5 − z4 + z3 − 3z2) = 0 .

To get the absolute defining polynomial of L over Q, we use Algorithm 2.1.11,
and we obtain

X12 + 10X10 + 41X8 + 121X6 + 196X4 + 147X2 + 41

as the defining polynomial for our number field L.
Using polynomial reduction techniques (see [Coh0, Section 4.4], [Coh-Dia]

or Algorithm 2.4.12), we obtain the final reduced polynomial

X12−2X11+2X10−X9+2X8−5X7+8X6−7X5+4X4−3X3+4X2−3X+1

given in Chapter 12.

5.6.2 Example 2

As a second example, we take K = Q(z) as base field, where z is a root of
the polynomial X6 − 2X5 + 3X4 +X2 + 3X + 1. This is a totally complex
number field in which 2 is inert, and we choose m = 2ZK and C = Pm.

Using Algorithm 4.3.1, we find that the ray class group is of order 3,
that m is the conductor, hence that there exists a cubic extension L of K
ramified only at m. Since m is the conductor and ℓ = 3 is prime, its relative
discriminant ideal is equal to m2 = 4ZK . We now want a defining polynomial
for L/K. Since ζ3 /∈ K, we must begin by adjoining ζ3 to K. Set Kz = K(ζ3)
and Lz = L(ζ3).

Thanks to Algorithm 2.1.8, we know that we can choose k = −1, in other
words that y1 = ζ3 − z is a primitive element of Kz, and this algorithm also
gives us a polynomial P1(X) and a polynomial A1(X) such that z = A1(y1)
(as explained above, it would be preferable at this stage to use Algorithm
2.1.9, but for such a small example it does not make much difference).

As indicated after Algorithm 2.1.8, we then use a polynomial reduction
algorithm that outputs the reduced polynomial
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X12−2X11+X10−6X9+8X8+7X7+5X6−20X5−2X4+3X3+8X2+3X+1

(with root y, say) and a polynomial B(X) such that y = B(y1). Using Algo-
rithm 2.1.12, we can compute a polynomial B−1(X) such that y1 = B−1(y).
Replacing this value of y1, we obtain z = A1(B

−1(y)) and ζ3 = z + B−1(y)
as polynomials in y. It is now easy to determine the action of τ on y. We
have τ(ζ3) = ζ2

3 = −1− ζ3, hence z+B−1(τ(y)) = −1− z−B−1(y); in other
words,

B−1(τ(y)) = −1− 2z −B−1(y) = −1− 2A1(B
−1(y))−B−1(y) .

It follows finally that

τ(y) = B(−1− 2A1(B
−1(y))−B−1(y))

gives the action of τ on y. We did not use the method given in step 2 of
Algorithm 5.3.17 as written, since it is easier to compute −1− ζ3 than ζ2

3 (of
course, the result is the same).

I do not explicitly give the formulas for most of the polynomials since they
are rather complicated. As a correctness check, we verify that τ(τ(y)) = y.

Continuing to loosely follow Algorithm 5.3.17, we compute the class group
and units ofKz. We find that the class group is trivial, and we find a generator
ε0 of the torsion units as well as a system of fundamental units εi for 1 ≤ i ≤
6.

Using the action of τ computed above, we find that

Tv =





−1 2 0 −2 0 0
0 1 0 1 0 0
0 0 1 0 1 1
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




,

and hence the kernel of Tv − 2I2 modulo 3 is an F3-vector space of dimension
4 generated by the vectors (1, 0, 0, 0, 0, 0)t, (0, 1, 0, 1, 0, 0)t, (0, 0, 1, 0, 1, 0)t,
and (0, 0, 1, 0, 0, 1)t. Thus, we let w1 = ε0, w2 = ε2ε4, w3 = ε3ε5, w4 = ε3ε6,
and the classes of the wi form an F3-basis of e1V3(Kz)/K

∗
z
3.

Since m = 2ZK is prime to 3, the conductor f of Lz/Kz is equal to 2Kz.
In ZKz , we find that f splits into a product of two prime ideals p2 and p′2
of degree 6 that are exchanged by τ , while ℓ = 3 splits as 3ZKz = p2

3p
′
3
2
,

where p3 and p′3 are prime ideals of degree 3 which are fixed by τ . Since f

is coprime to ℓ, we have Sf,ℓ,i = ∅ for i = 1, 2, 3, while Sf/〈τ〉 = p2 and
Sℓ/〈τ〉 = {p3, p

′
3}.

Hence, the conditions involving the conductor alone (step 11 of Algorithm
5.3.17) are trivially satisfied.

Theorem 5.3.15 tells us that there exists β of a precise form such that
Lz = Kz( 3

√
α) with α = β2τ(β). Since Kz has class number equal to 1, using
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[Coh0, Algorithm 6.5.10], we compute βp such that p2 = βpZKz . This βp is
defined only up to units, and already at this stage it is important to reduce
it by multiplying it with suitable units.

We now set up the matrix M as explained in step 15 of the algorithm.

The only congruences to be satisfied are modulo m1 = p
z(p3,3)−1
3 = p3

3 and

m2 = p′3
z(p′

3,3)−1
= p′3

3
. Thus, we compute

(ZK/p
3
3)

∗ ≃ (ZK/p
′
3
3
)∗ ≃ (Z/78Z)× (Z/3Z)5 ,

and we find

M =





13 25 35 61 70
0 2 1 0 0
0 0 2 2 0
2 2 2 0 2
1 1 1 0 1
0 1 1 2 0
65 11 10 75 28
1 1 1 2 2
0 1 2 1 2
1 2 0 0 1
2 2 1 0 1
2 2 0 2 1





.

As already mentioned, the precise numerical values depend on the chosen
generators, so this matrix varies with the implementation.

We then compute the kernel of M considered as a matrix with entries
in F3, and we find that this kernel is one-dimensional, generated by K1 =
(1,−1,−1, 1, 1)t. Since Sf,ℓ,2 = ∅, there are no extra discrete logarithms to
compute. Since the fifth component (in other words, the exponent xp) of K1

is nonzero, X = K1 is the unique suitable solution. Hence, up to Kummer-
equivalence, we can take β = βpw1w4/(w2w3).

If we directly use the value of β obtained in this way, we will obtain a
polynomial with large coefficients. At this stage, as indicated in step 3 of
Subalgorithm 5.3.18, it is essential to reduce β as much as possible.

Using the case ℓ = 3 of Theorem 5.3.5 and Proposition 5.3.9 given above,
we know that the defining polynomial of L/K is given by X3 − 3eX − eu,
with e = βτ(β) and u = β + τ(β). These elements are known to be in K
and not only in Kz; hence if we use the expression z = A1(B

−1(y)), ordinary
linear algebra allows us to express them as polynomials in z instead of y, so
we finally obtain the desired defining polynomial.

Using Algorithm 2.1.11, we can now easily compute an absolute defining
polynomial for L/Q. The polynomial we will obtain will, however, have rather
large coefficients (typically 15 decimal digits) and a very large discriminant
(typically 2000 decimal digits). Of course, we want to reduce this polynomial.
For this, we use Algorithm 2.4.12, which in the present situation works very
well. We finally find the polynomial
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X18 −X17 + 3X16 + 2X15 −X14 + 11X13 + 3X12 + 3X11 + 28X10

− 18X9 + 47X8− 27X7 + 45X6− 23X5 + 27X4− 11X3 + 9X2− 2X + 1 .

As already remarked, the explicit values for the elements involved in this
computation depend on the implementation, so the reader will certainly have
different values than ours. Only the final reduced polynomial should be sim-
ilar.

5.7 Exercises for Chapter 5

1. If d =
Q

1≤i≤k di with the di pairwise coprime, show that, as claimed in the
text, we have

(Z/dZ)g =
M

1≤i≤k

(Z/diZ)gd/di .

2. As suggested in the text, write an algorithm similar to Algorithm 5.1.2 but one
that uses only the SNF splitting of the ray class group instead of the p-Sylow
splitting.

3. Prove the validity of the exact sequence involving the ℓ-Selmer group given in
the text.

4. Let K be a number field of signature (r1, r2), let L/K be a quadratic extension,
denote by τ the nontrivial K-automorphism of L, and as usual denote by U(K)
and U(L) the unit groups of K and L, respectively.

a) Assume that η ∈ U(L) is such that there exist a ∈ K and x ∈ L such that
η = ax3. Show that there exist ε ∈ U(K) and y ∈ L such that η = εy3.

b) Denote by (U(L)/U(L)3)[τ − 2] the kernel of the map η 7→ τ (η)η−2 from
U(L)/U(L)3 to itself. Assume that L is totally complex. Show that the
dimension of (U(L)/U(L)3)[τ − 2] as an F3-vector space is equal to r2 +1.

5. Show that, as claimed in the text, the definition λ =
P

0≤a<d rd−1−aτ
a does

not depend on the choice of the primitive root g.

6. With the notation of Section 5.3.2, let ℓ be an odd prime number and assume
that d = [Kz : K] = 2, so that m = (ℓ−1)/2. Generalizing some of the formulas
given in the text, show that if e = β1+τ = NKz/K(β), then

P (X) =

(ℓ−1)/2
X

k=0

(−1)k ℓ

ℓ− k

 

ℓ− k

k

!

ekXℓ−2k − eTrKz/K

“

βℓ−2
”

.

7. Using a computer algebra package, find formulas analogous to those given at
the end of Section 5.3.2, for ℓ = 7 and d = 2, d = 3, and d = 6, and for ℓ = 11
and d = 2, d = 5, and d = 10 (some of the formulas are completely unwieldy,
but this is just an exercise to help the reader understand the use of Theorem
5.3.5 and Proposition 5.3.9).

8. Prove the validity of Algorithm 5.3.11.
9. Let ℓ be a prime number, and let Φℓr (X) be the ℓrth cyclotomic polynomial.

a) Show that

disc(Φℓr (X)) = (−1)(ℓ−1)/2ℓℓ
r−1(rℓ−r−1) .
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b) More generally, show that disc(Φn(X)) is a divisor of nn, hence is divisible
only by primes dividing n.

c) More precisely, show that if n > 2, then

disc(Φn(X)) = (−1)φ(n)/2 nφ(n)

Q

p|n p
φ(n)/(p−1)

.

10. Let ℓ be a prime, n = ℓr, L/K a cyclic Kummer extension of degree n with
ζn ∈ K, so that L = K(θ) for some θ such that θn = α ∈ ZK . Let p be a prime
ideal of K unramified in the extension L/K.

a) Show that vp(α) ≡ 0 (mod n).
b) Deduce from this that it is possible to modify α so that vp(α) = 0.

11. Let Φn(X) be the nth cyclotomic polynomial and K a number field. Show that
the factorization of Φn(X) in K[X] is of the form Φn(X) =

Q

1≤i≤d fi(X),

where the polynomials fi all have the same degree. If we denote by f1(X) the
minimal polynomial of ζn in K[X], and Gn is the set of a ∈ (Z/nZ)∗ such that
ζa

n is a root of f1(X) as in Proposition 5.5.1, show that the roots of fi(X) are
the ζa

n for a belonging to a fixed coset of (Z/nZ)∗ modulo Gn.

12. With the notation of the proof of Proposition 5.5.2, show that the γa must
satisfy the cocycle condition γab = τa(γb)γ

b
a.

13. Let Kz = K(ζn), where n = ℓr is a prime power, and let m | n as in Proposition
5.5.2. Finally, let β ∈ ZKz be an element known to be an mth power in ZKz .
Write a special-purpose algorithm (in other words, without use general factoring
algorithms over number fields) that computes one root of the equationXm−β =
0 in Kz. C. Fieker suggests the following method: first choose a suitable prime
ideal p, and factor Xm −β modulo p. Then use a Hensel–Newton method to lift
this factorization modulo pk for a sufficiently large k. Finally, reconstruct the
factors in Kz by using the integral LLL algorithm ([Coh0, Algorithm 2.6.7]) on
a suitable lattice.

14.

a) Write an algorithm for computing the integer up given by Corollary 5.5.3.
b) Deduce from this an algorithm for computing the quantities ArtLz/K(a)(η)

that are used in step 10 of Algorithm 5.5.5.

15. Let K = Q(θ1) be a number field. Show that a necessary and sufficient condition
for ζnθ1 to be a primitive element of Kz = K(ζn) is that the ratio of two
conjugates of θ1 should never be an nth root of unity. Give an example where
ζn /∈ K but where this condition is not satisfied.

16. Let K = Q(θ) be the number field defined by a root of the polynomial T (X) =
X4 − X − 1. Compute the reduced absolute polynomial of the ray class field
over K corresponding to the modulus m = (θ+5)ZK∞1∞2, where ∞1 and ∞2

are the two real places of K (note that (θ+ 5)ZK = P17P37 using the notation
of the text).

17. Using the techniques of this chapter, write the general defining polynomial for
a cyclic quartic extension of a number field. More precisely, in the style of the
examples given for Theorem 5.3.5 and Proposition 5.3.9, show that if α = θ4,
we can take α = β3+τ , τ (θ) = θ3/β2, η = θ+ θ3/β2, and P (X) = X4 − 4eX2 +
e(4e− u2) with e = β1+τ = NKz/K(β) and u = β + τ (β) = TrKz/K(β).

18. Write a complete algorithm to compute the ray class field corresponding to
a congruence subgroup (m, C) using Hecke’s theorem (and not the Artin map)
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when Clm(K)/C is a cyclic group of order 4 (use the preceding exercise to come
down to L).

19. Compute defining polynomials for Examples 1 and 2 given in the text, but
by using the Artin map instead of Hecke’s theorem; in other words, by using
Algorithms 5.4.8 and 5.5.5. Compare the efficiency of the computations.
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6. Computing Defining Polynomials Using
Analytic Methods

In the preceding chapter we saw how to construct Abelian extensions of a
number fieldK corresponding to a given congruence subgroup (m, C) by using
Kummer theory. The main advantage of this method is that it is completely
general (and hence is the only method used for the proofs of the existence
results in class field theory), but its main drawback is the necessity of working
over a larger field Kz = K(ζn).

The aim of the present chapter is to describe quite different methods
based on analytic techniques that construct the desired extension L/K if we
accept certain restrictions on the base field. When applicable, these methods
are much more efficient than the methods using Kummer theory, at least
when the necessary roots of unity are not in the base field.

One such method is the use of Stark units and Stark’s conjecture, which
can be used only if the base field satisfies certain conditions, which include, in
particular, all totally real base fields. The other method is the use of complex
multiplication techniques, and it is even more restrictive since it applies only
when the base field is an imaginary quadratic field. In this case, however, it
is much more efficient than the other methods.

The possibility of using analytic techniques for obtaining purely algebraic
constructions is certainly one of the fascinating aspects of this part of number
theory. Of course, it is nothing new and is already illustrated in the theory of
cyclotomic fields by the use of the exponential function. One of the dreams of
many number theorists, starting with Kronecker and illustrated by Hilbert’s
twelfth problem, is to generalize this to arbitrary number fields. We are far
from reaching this goal (if it can be reached at all), but the techniques pre-
sented in this chapter represent a step in this direction. Generalizing complex
multiplication, one can also consider the use of values of Siegel modular func-
tions, but this has not been systematized or put into algorithmic form yet
(see [Shim] for complete information on this subject).

6.1 The Use of Stark Units and Stark’s Conjecture

One of the most remarkable methods for obtaining defining polynomials for
Hilbert and ray class fields is the use of an important conjecture due to
Harold Stark. Even though we will be using conjectural statements, the final
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defining polynomial that we obtain can easily be checked to be correct by
showing that it defines an Abelian extension having the correct conductor
and congruence subgroup using Algorithm 4.4.6.

The basic reference concerning Stark’s conjecture is Tate’s book [Tat].
For the material presented below I refer to Xavier Roblot’s thesis [Rob1] as
well as the papers [Rob2], [Rob3] and [Coh-Rob], and I am indebted to him
for the explanation of many technical details.

6.1.1 Stark’s Conjecture

To state the conjecture (in fact, a special case of it) we need several analytic
definitions.

Let L/K be a finite Abelian extension of number fields of conductor f,
let S be a finite set of places of K containing the places at infinity and all
the places of K that ramify in L (in other words, that divide f), and set
G = Gal(L/K). An S-unit of L is an element of L whose valuation is equal
to 0 at all prime ideals of L that are not above an element of S (see Definition
7.4.1).

Recall that we denote by Art the Artin reciprocity map from If to G. If
σ ∈ Gal(L/K), we define the partial Dedekind zeta function by

ζK,S(s, σ) =
∑

(a,S)=1, Art(a)=σ

N (a)−s ,

where, as indicated, the sum is over all integral ideals of K coprime to S
whose image by Art is equal to σ.

A special case of Stark’s conjecture is the following.

Conjecture 6.1.1. Let K be a totally real number field, let L/K be a finite
Abelian extension of K with Galois group G, and let S be as above. Assume
that there exists a unique real embedding τ of K which is unramified in L/K,
so that all the extensions of τ to L are real. Then there exists an S-unit ε ∈ L
with the following properties.

(1) For all real embeddings σ of L extending τ , we have

σ(ε) = e−2ζ′K,S(0,σ) .

(2) For all embeddings σ of L into C which do not extend τ (hence which are
nonreal), we have

|σ(ε)| = 1 .

(3) The extension L
(√
ε
)
/K is Abelian.

From now on, we assume that this conjecture is true.
Stark’s conjecture gives us numerical values for all the conjugates σ(ε)

for σ above τ , hence for the image by τ of the characteristic polynomial of ε.
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We can hope to recover this characteristic polynomial exactly by a suitable
algorithm. Hence, if ε generates L/K, this conjecture can allow us to build
explicitly the extension L/K.

Before doing this, several problems need to be solved, but the most im-
portant is certainly the restriction on the existence of a unique unramified
real embedding. To solve this, we use the following proposition.

Proposition 6.1.2. Let K be a totally real number field distinct from Q,
and let L/K be a finite Abelian extension, where L is also a totally real
field. Assume that N is a quadratic extension of L satisfying the following
conditions.

(1) N/K is Abelian.
(2) There exists a unique real embedding τ of K which is unramified in N/K.
(3) Any prime ideal of L that is above a prime ideal of K ramified in L/K

is inert or ramified in N/L.

Let S be the set of infinite places of K together with the places ramified
in N/K, and let ε ∈ N be an S-unit given by Stark’s Conjecture 6.1.1 for
the extension N/K. Then ε is in fact a unit and

N = K(ε) = Q(ε) and L = K(ε+ ε−1) = Q(ε+ ε−1) .

See [Rob1] for the proof. Note that it is not known whether such an
extension N always exists. However, this is not a problem for computational
purposes since we can always reduce to cases where N is known to exist (see
Section 6.2.1).

6.1.2 Computation of ζ′

K,S(0, σ)

Let N be as in Proposition 6.1.2, and let f be the conductor of the Abelian
extension N/K. To be able to use Stark’s Conjecture 6.1.1, the main algo-
rithmic problem is the computation of ζ′K,S(0, σ) for σ ∈ G = Gal(N/K).
For this, we introduce the Hecke L-functions defined as follows. Let χ be a
character from G to C∗. By the Artin reciprocity map from Clf(K) to G, χ
can also be viewed as a character on Clf(K), hence on If(K). We define

LS(s, χ) =
∏

p∤f

(1− χ(p)N (p)−s)−1 =
∑

(a,S)=1

χ(a)N (a)−s .

(Note that p ∤ f is equivalent to p /∈ S and (a, S) = 1 is equivalent to
a ∈ If(K).)

These are Abelian L-functions, hence when the character χ is nontrivial,
they can be analytically continued in the whole complex plane to holomor-
phic functions having a functional equation. By the orthogonality formula for
characters, if Ĝ denotes the group of characters of G, we clearly have
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ζK,S(s, σ) =
1

[N : K]

∑

χ∈Ĝ

χ(σ)LS(s, χ) .

Thus, to compute ζ′K,S(0, σ) it is enough to compute L′
S(0, χ) for all charac-

ters χ.
Let τ be the generator of the subgroup Gal(N/L) of G. Since Gal(N/L),

hence τ , is of order 2, we have χ(τ) = ±1. We will say that χ is an even
character if χ(τ) = 1 and is an odd character if χ(τ) = −1. It is easy to show
that if χ is an even character we have LS(0, χ) = L′

S(0, χ) = 0, while if χ is
an odd character we have LS(0, χ) = 0 but not necessarily L′

S(0, χ) = 0 (see
Exercise 1; in fact in our situation, we will always have L′

S(0, χ) 6= 0). Thus,
we may assume that χ is odd.

The character χ may not be primitive (see Section 3.3.3), in which case
although the L-function that we have defined is the one that must be com-
puted, it is not the one with nice properties. Let f(χ) be the conductor of χ
(see Definition 3.3.15), so that f(χ) is a divisor of f. Then χ is induced from
a character of Clf(χ)(K) (which we still denote by χ by abuse of notation).
We define

L(s, χ) =
∏

p∤f(χ)

(1 − χ(p)N (p)−s)−1 =
∑

(a,f(χ))=1

χ(a)N (a)−s .

It is clear that L and LS differ only by a finite number of Euler factors and,
more precisely, that

LS(s, χ) = L(s, χ)
∏

p|f,p∤f(χ)

(1 − χ(p)N (p)−s) .

Set m = [K : Q], C(χ) = (π−md(K)N (f(χ)))1/2, and

Λ(s, χ) = C(χ)sΓ

(
s+ 1

2

)m−1

Γ
(s

2

)
L(s, χ) .

We then have the functional equation (see, for example, [Mart1]):

Λ(1− s, χ) = W (χ)Λ(s, χ) ,

where W (χ) is a complex number of modulus equal to 1 (called the Artin root
number; see [Mart1] for a definition) whose computation will be described in
Section 6.2.3. Note that the form of the factors at infinity in the definition of
Λ comes from assumption (2) of Proposition 6.1.2 and the fact that χ is an
odd character.

From this, it is easy to obtain the following result.

Lemma 6.1.3. Let χ be an odd character of G as above, and set A(χ) =∏
p|f,p∤f(χ)(1− χ(p)). Then
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L′
S(0, χ) = A(χ)L′(0, χ) =

A(χ)W (χ)

2

Λ(1, χ)

π(m−1)/2
.

It remains to compute the value Λ(1, χ). For this, we use the following
formula due to A. F. Lavrik and E. Friedman (see [Lav], [Fri], and Section
10.3).

Theorem 6.1.4. For x > 0, s ∈ C, and δ > max(Re(s), 0), set

fm(s, x) =
1

2iπ

∫ δ+i∞

δ−i∞
xz
Γ ((z + 1)/2)m−1Γ (z/2)

z − s dz .

Then, if L(s, χ) =
∑

n≥1 an(χ)n−s, we have

Λ(1, χ) =
∑

n≥1

(
an(χ)fm

(
1,
C(χ)

n

)
+W (χ)an(χ)fm

(
0,
C(χ)

n

))
.

In other words,

W (χ)Λ(1, χ) =
∑

n≥1

(
an(χ)fm

(
0,
C(χ)

n

)
+W (χ)an(χ)fm

(
1,
C(χ)

n

))
.

The computation of fm(s, x) and the use of the above series for computing
Λ(1, χ) is explained in detail in [Tol] and summarized in [Rob1], and we refer
to both as well as to Section 10.3. We will now restrict to an important special
case where this computation is much easier: the case of real quadratic fields.

6.1.3 Real Class Fields of Real Quadratic Fields

In this section, we assume that K is a real quadratic field, and we let (m, C)
be a congruence subgroup modulo m, where m is assumed to be an integral
ideal of K; in other words, we assume that m∞ = ∅. Let L be the (totally
real) ray class field of K defined by (m, C), where without loss of generality
we may assume that m is the conductor of L/K. The field L will be called a
real ray class field of K. We want to compute a defining polynomial for L/K
using Stark’s conjecture.

The main simplification is that the function f2(s, x) occurring in Theorem
6.1.4 can be expressed quite simply.

Proposition 6.1.5. For x > 0 and s ∈ C, we have

f2(s, x) = 2
√
π(x/2)s

∫ ∞

2/x

ts−1e−t dt .

In particular,
f2(1, x) = x

√
πe−2/x
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and

f2(0, x) = 2
√
π

∫ ∞

2/x

e−t

t
dt = 2

√
πE1

(
2

x

)
,

where E1(x) is the exponential integral function.

Proof. By the duplication formula for the gamma function we have

(x
2

)−s
f2(s, x) = 2

√
π

1

2iπ

∫ δ+i∞

δ−i∞

(x
2

)z−s Γ (z)

z − s dz .

Replacing x by 2/x and differentiating with respect to x, we obtain

d

dx

(
xsf2

(
s,

2

x

))
= −2

√
π

1

2iπ

∫ δ+i∞

δ−i∞
x−(z−s+1)Γ (z) dz .

On the other hand, by the formula giving the inverse Mellin transform, from
Γ (z) =

∫∞
0
xz−1e−x dx we deduce that

1

2iπ

∫ δ+i∞

δ−i∞
x−zΓ (z) dz = e−x ,

from which it follows that

d

dx

(
xsf2

(
s,

2

x

))
= −2

√
πxs−1e−x ,

hence that

xsf2

(
s,

2

x

)
= C + 2

√
π

∫ ∞

x

ts−1e−t dt

for some constant C possibly depending on s but not on x. Coming back to
the definition, we see that

xsf2

(
s,

2

x

)
=

2z

2iπ

∫ δ+i∞

δ−i∞
x−(z−s)Γ (z/2)Γ ((z + 1)/2)

z − s dz ,

and since δ > Re(s), an easy analytic argument using the fact that the gamma
function is bounded in vertical strips shows that the integral tends to 0 when
x tends to infinity. It follows that the constant C is equal to 0, giving the first
formula of the proposition. The other formulas are immediate consequences.

⊓⊔

The function E1(x) can be computed as explained in [Coh0, Proposition
5.6.12]. However, for our applications to the computation of L(1, χ), it is
much more efficient to use the method explained in Exercise 2 (see also [Coh-
Rob]). This is due to the fact that we need many values of the form E1(cn)
for some constant c and consecutive integral values of n. This is also true
for the computation of L′(E, 1) for an elliptic curve of odd rank (see [Coh0,
Proposition 7.5.9] and Exercise 24 of Chapter 10).
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The second simplification is in the computation of the coefficients an(χ).

Proposition 6.1.6. Let χ be a character of G and let n ≥ 1 be an integer.
Set χ(p) = 0 if p divides the conductor of χ. Then a1(χ) = 1, and for n > 1,
if n = pm1

1 . . . pmk

k is the prime factorization of n, then

an(χ) = apm1
1

(χ) . . . apmk
k

(χ) ,

where the coefficients apm(χ) are given by one of the following formulas:

(1) if p is inert, apm(χ) = 0 if m is odd and apm(χ) = χ(p)m/2 if m is even;
(2) if pZK = p2 is ramified, apm(χ) = χ(p)m;
(3) if pZK = pp′ splits, apm(χ) = (m+1)χ(p)m if χ(p) = χ(p′) and otherwise

apm(χ) =
χ(p)m+1 − χ(p′)m+1

χ(p)− χ(p′)
.

Proof. The first assertion is a translation of the fact that the map n 7→
an(χ) is multiplicative. The formulas for n = pm are clear when p is inert or
ramified and are easily proved by induction when p is split. ⊓⊔

We will see in the next section how to find the characters χ and how to
use them. Using a sieving procedure, we will then simultaneously compute
the coefficients an(χ) for all characters χ.

6.2 Algorithms for Real Class Fields of Real Quadratic
Fields

We can now explain in detail the construction of the class field L over the
real quadratic field K. Although the principle is completely explained above,
many technical details and algorithms have to be given before obtaining a
complete implementation, and it is the purpose of this section to give them.
Thus, this section can be skipped by readers not interested in the technical
aspects of the algorithmic implementation of the ideas explained above.

Thus, let K = Q
(√
D
)

be a real quadratic field of discriminant D and let
C be a congruence subgroup of conductor m, where m is an integral ideal of
K, assumed to be the conductor of (m, C). We want to compute the real ray
class field L corresponding to (m, C).

6.2.1 Finding a Suitable Extension N/K

Let Γ = Gal(L/K) be the Galois group of L/K (isomorphic to Clm(K)/C).
If Γ is not cyclic, we can build L/K as the compositum of cyclic exten-
sions Li/K corresponding to the cyclic components of Γ (see step 1 of Algo-
rithm 6.2.6 below). Thus, we may reduce to the case where Γ is cyclic (this
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is, of course, a completely general reduction that is valid in all class field
constructions and not only here). We therefore assume from now on that
Γ = Gal(L/K) is cyclic.

In this case, it easy to prove that N always exists and furthermore that
one can construct such an extension by setting N = L

(√
α
)
, where α is a

suitable element of the base field K (more generally, the existence of N is
guaranteed under much weaker conditions; see [Rob1] for details).

There are two methods for constructing N . The first one is to choose at
random elements α ∈ K of small norm until an α is found of negative norm.
Indeed, if N (α) < 0, we clearly have τ1(α) < 0 and τ2(α) > 0 by suitably
ordering the embeddings τ1 and τ2. As we shall see later, it is essential to
choose α such that the conductor of the extension K

(√
α
)

has the smallest
possible norm. Since the norm of this conductor is closely linked to the norm
of α, if we choose α of small norm, we can hope for a small conductor. In
particular, if the fundamental unit of K has norm −1, we may choose α
equal to this fundamental unit. However, if an extension constructed by this
method is easily seen to satisfy conditions (1) and (2) of Proposition 6.1.2,
it will still be necessary to check condition (3) (see below).

The second method, which is, in general, preferable, is as follows. Using
Algorithm 2.3.23, compute the list of all integral ideals ofK of norm less than
or equal to a given bound B. For each such ideal a, set f0 = ma and compute
the ray class number modulo f = f0τ1. If this class number is an even multiple
of the ray class number hm,C(K), compute the kernel K of the natural map
from Clf(K) to Clm(K)/C. For every subgroup D of K of index 2, check
whether τ1 divides the conductor of (f, D). If this is the case, the fixed field
by D of the ray class field of conductor f is a quadratic extension of L that
satisfies conditions (1) and (2) of Proposition 6.1.2. We then use the method
described below to check condition (3). If the bound B is not sufficient to
find N , we increase it and continue. Note that an extension N computed by
this method is not necessarily of the form N = L

(√
α
)

with α ∈ K, hence
in general this method gives better results than the first method, and we are
certain to obtain a modulus of smallest norm. The disadvantage is that the
ray class group computations may take some time.

In any case we need to be able to test whether or not a given quadratic
extension N/L also satisfies condition (3) of Proposition 6.1.2. Hence, for
each prime ideal p dividing m (in other words, ramified in L/K), we must
compute the number gp of prime ideals in L above p, and the number Gp of
prime ideals in N above p. Condition (3) is satisfied if and only if Gp = gp for
each such prime ideal. These numbers are easily computed using Theorem
3.5.3.

We now give a formal write-up of the second method.

Subalgorithm 6.2.1 (Compute Splitting of a Prime Ideal). Let N/K be an
Abelian extension defined by (f, D), where D is a congruence subgroup of K of
conductor f. Let p be a prime ideal of K. This algorithm computes the number
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of prime ideals in N above p. We assume that the ray class group Clf(K) is
given by its SNF (A,DA) with A =

(
a1, . . . , ar

)
and the subgroup D by an

HNF matrix H .

1. [Get prime to p-part] Set v ← vp(f) and set n← p−vf. Using Algorithm 4.3.1,
compute the SNF (B,DB) of the ray class group Cln(K).

2. [Compute DPn/Pn] Using Algorithm 4.3.2, compute the matrix M whose
columns are given by the discrete logarithms of the ideals ai on the generators
B of the ray class group Cln(K). LetM2 be the HNF of the matrix (MH |DB).

3. [Compute Gp] Apply Algorithm 4.1.3 to the system of generators and re-
lations (B,M2), thus obtaining the SNF (Q,DQ) of the quotient group
Cln(K)/DPn. Let f be the order of the ideal class of p in this group, output
det(M2)/f , and terminate the algorithm.

Subalgorithm 6.2.2 (Find Suitable (f, D)). Let K be a real quadratic field.
Denote by τ1 one of the embeddings of K in R. This algorithm computes a small
modulus f = f0τ1 (where f0 is a multiple of m) and a congruence subgroup D
modulo f such that f is the conductor of (f, D) and the corresponding field N
satisfies the properties of Proposition 6.1.2.

1. [Initialize] Set h ← hm,C(K), B ← 50, b ← 1 (we will look at all ideals of
norm between b + 1 and B). Let p1, . . . , pt be the prime ideals dividing m.
Using Subalgorithm 6.2.1, for 1 ≤ i ≤ t compute the number gi of ideals
above pi in the Abelian extension defined by the congruence subgroup (m, C).

2. [Compute ideal list] Using Algorithm 2.3.23, compute the list L of integral
ideals of absolute norm less than or equal to B (where Ln contains the list of
ideals of norm equal to n), and set n← b.

3. [Next ideal norm] Set n← n+ 1. If n > B, set b← B, set B ← 2B, and go
to step 2. Otherwise, set I ← Ln, let k be the number of elements of I, and
set j ← 0 (j will be a pointer to the list I).

4. [Next ideal] Set j ← j + 1. If j > k, go to step 3. Otherwise, let c be the
jth element of I, set f0 ← mc, and set f ← f0τ1. Using Algorithm 4.3.1,
compute the SNF (B,DB) of the ray class group Clf(K) and let DB =
diag(b1, . . . , bs).

5. [Ideal possibly suitable?] If the ray class number (the product of the bi) is not
a multiple of 2h, go to step 4.

6. [Compute kernel] Using Algorithm 4.1.11, compute the HNF matrix H corre-
sponding to the kernel of the natural map from Clf(K) to Clm(K)/C. Let
S be the SNF of H−1DB and U and V be unimodular matrices such that
UH−1DBV = S (we can discard the matrix V ). Finally, let R be the largest
index i such that 2 | Si,i, and set r ← 0.

7. [Next row] Set r ← r + 1. If r > R, go to step 4. Otherwise, set c← −1.
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8. [Next subgroup] Set c ← c + 1. If c ≥ 2R−r, go to step 7. Otherwise, let
HQ = (hi,j) be the s×s upper-triangular matrix built as follows. The diagonal
entries hi,i are all equal to 1 except for hr,r, which is equal to 2. The off-
diagonal entries hi,j are all equal to 0 except perhaps those where i = r and
j > r, for which hi,j is equal to 1 if and only if bit number j − r − 1 of c is
equal to 1.

9. [Is subgroup suitable?] Let HD be the HNF of the matrix (HU−1HQ|DB).
Using Algorithm 4.4.2, test if the conductor of the subgroup of Clf(K) cor-
responding to the matrix HD is indeed equal to f. If this is not the case, then
go to step 8. Otherwise, using Subalgorithm 6.2.1, for 1 ≤ i ≤ t compute
the number Gi of ideals above pi in the field corresponding to (f, HD). If for
all i, gi = Gi, output the conductor f and the congruence subgroup D of If
(represented by the matrix HD), and terminate the algorithm. Otherwise, go
to step 8.

Proof. We want to find (f, D) such that the corresponding extension N/K
satisfies the properties of Proposition 6.1.2 and such that f has minimum
norm. The field N must be a quadratic extension of L, so by class field
theory this means that the congruence subgroup modulo f corresponding to
the extension N/K must have index 2 in the congruence subgroup modulo f

corresponding to the extension L/K. But this group is also the kernel of the
canonical surjection from Clf(K) to Clm(K)/C that is computed in step 6
of the algorithm.

Steps 7 and 8 are the exact algorithmic translation of Proposition 4.1.19
and give a systematic list of congruence subgroups of index 2 using the binary
bits of c. They are, in fact, a summary of Algorithm 4.1.20 for ℓ = 2.

Finally, step 9 checks whether or not f is the conductor and if condition (3)
is also satisfied. If f is indeed the conductor, then τ1 is ramified in N/L and,
since we have taken the moduli in order of increasing norm, this condition
is also sufficient for f to be minimal, since otherwise we would have found a
suitable f earlier. ⊓⊔

6.2.2 Computing the Character Values

We now assume that a suitable extension N/K of conductor f corresponding
to a congruence subgroup (f, D) has been chosen.

Let χ be a character of G = Gal(N/K) and let τ be the unique nontrivial
element of Gal(N/L). Recall that χ is odd if χ(τ) = −1; otherwise χ is
even. Even characters are the characters of G induced by the characters of
Gal(L/K). On the contrary, it is easy to show that odd characters are exactly
the characters whose conductor has a nontrivial infinite part. Since L′

S(0, χ) =
0 for an even character, we will only be concerned by odd characters.

Let Clf(K) =
⊕

1≤i≤g(Z/eiZ)hi be the HNF of Clf(K), and let HD

be the HNF matrix representing D as a subgroup of Clf(K) (as obtained,
for example, in Subalgorithm 6.2.2). Let (Q,DQ) denote the SNF of the
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quotient group Clf(K)/D computed using Algorithm 4.1.7 (thus (Q,DQ)
is a presentation of the group G). Recall from Section 4.4.3 that if Q =
(g1, . . . , gk) and DQ = diag(d1, . . . , dk), then a character χ of G is defined by
a vector (a1, . . . , ak), where ai ∈ Z/diZ, through the formula

χ
( ∏

1≤i≤k
gxi

i

)
= ζ

P

i(d1/di)aixi ,

where ζ = exp(2iπ/d1).
Thus, we can compute all the characters of G by using the above rep-

resentation, and we use Algorithm 4.4.7 to compute the conductor of these
characters and hence to check which are odd characters.

Let χ be an odd character of G of conductor f(χ) and let a be a fractional
ideal of K coprime to f(χ). We must be able to compute χ(a) even for a

coprime to f(χ) but not necessarily to f. For this, we can multiply a by an
element of Pf(χ) (which does not change the value of χ(a)) so that it becomes
coprime to f. That this is possible follows from Lemma 3.3.1 and can be made
algorithmic if desired.

An equivalent and usually preferable method is to compute exponents xi
such that χ(a) = χ(g), where g is the element of G defined by g =

∏k
i=1 g

xi

i .
For this, we proceed as follows. First we compute the canonical surjection
from Clf(χ)(K) to Clf(K)/D given by a matrix M , then we use Algorithm

4.3.2 to compute exponents yi such that a =
∏

1≤i≤g h
yi

i in Clf(χ)(K). The
exponents xi are then given by the first k entries of the column vector MY ,
where Y is the column vector of the yi.

6.2.3 Computation of W (χ)

The Artin root number W (χ) is a mathematical quantity that arises in many
fields of algebraic number theory, hence it is worthwhile to give an algorithm
to compute it in a more general situation. In this section, we will assume only
that χ is an Abelian character defined over some ray class group Clf(K) of a
number field K, where f is the conductor of χ. We will essentially follow the
method given in [Dum-Tan] with a slightly different computational approach.

We will say that an algebraic number θ ∈ K is f∞-positive if σ(θ) > 0 for
all σ ∈ f∞. The following result, due to Landau, gives an explicit formula for
W (χ).

Proposition 6.2.3. Let D denote the different of K/Q. Choose an f∞-
positive element λ ∈ Df0 such that the integral ideal g = λD−1f−1

0 is coprime
to f0, and choose an f∞-positive element µ ∈ g such that the integral ideal
h = µg−1 is coprime to f0. Define the following Gauss sum:

G(χ) = χ(h)
∑

β

χ(β)e2iπTr(βµ/λ) ,
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where Tr denotes the absolute trace of K/Q and β runs through a complete
residue system of (ZK/f0)

∗ chosen to be f∞-positive elements. Then

W (χ) =
(−i)|f∞|G(χ)√N f0

.

This yields the following algorithm.

Algorithm 6.2.4 (Computation of W (χ)). Let χ be a character of conduc-
tor f. This algorithm computes the Artin root number W (χ) attached to this
character.
1. [Compute λ] Using Proposition 1.3.8, compute an element λ′ ∈ Df0 such that
vp(λ

′) = vp(Df0) for all prime ideals p dividing f0. Then, using Algorithm
4.2.20, compute an f∞-positive element λ such that λ ≡ λ′ (mod f0), and set
g← λD−1f−1

0 .

2. [Compute µ] Using Algorithm 1.3.2, compute two elements µ′ ∈ g and ν ∈ f0
such that µ′ + ν = 1 (note that g and f0 are coprime by construction). Then,
using Algorithm 4.2.20, compute an f∞-positive element µ such that µ ≡ µ′

(mod f0), and set h← µg−1.

3. [Initialize (ZK/f0)
∗] Let (A,DA) be the SNF of the group (ZK/f0)

∗ as com-
puted by Algorithm 4.2.21. Write A = (α1, . . . , αr), DA = diag(a1, . . . , ar),
and let m denote the cardinality of (ZK/f0)

∗ (hence m is the product of the
ai). Set G← 0 and c← 0.

4. [Compute Gauss sum] Set d ← c and β′ ← 1. For i = 1, . . . , i = r (in this
order), set e ← d mod ai, β

′ ← β′αei (reduced modulo f0 using Algorithm
1.4.13), and d ← (d − e)/ai. Then using Algorithm 4.2.20, compute an f∞-
positive element β such that β ≡ β′ (mod f0). Set G← G+χ(β)e2iπ Tr(βµ/λ)

and c← c+ 1. If c < m, go to step 4.

5. [Output result] Set W ← (−i)|f∞|χ(h)G/
√N f0. Output W and terminate

the algorithm.

Remark. It is possible to improve this algorithm in several ways. First, we
can compute at the beginning the complex values χ(αi) and use the multi-
plicativity of χ to obtain the value of χ(β) in step 4. Another improvement
would be to choose the generators αi to be f∞-positive, since this would avoid
correcting the sign of β′. On the other hand, the powers αei in step 4 must
also be reduced modulo f0 using Algorithm 1.4.13 since we are only interested
in the class modulo f0. But when we do so, we will generally not obtain an
f∞-positive element, so these last two improvements are incompatible. Nu-
merical experiments show, however, that the latter improvement is far more
important than the former. Thus, it is preferable not to choose f∞-positive
generators αi but to reduce all the powering operations modulo f0 and to
adjust the sign of the result only at the end.
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6.2.4 Recognizing an Element of ZK

Let ε be the unit given by Stark’s conjecture, let α = ε + ε−1 ∈ L, and let
P (X) =

∑
0≤i≤h βiX

i be the characteristic and minimal polynomial of α over
K. Stark’s conjecture gives us two items of information on the coefficients
βi ∈ ZK . The first one is a good numerical approximation to τ2(βi). The
second one is an upper bound for |τ1(βi)|. Indeed, for all σ above τ1 we know
that |σ(ε)| = 1; hence |σ(α)| ≤ 2, so

|τ1(βi)| ≤
(
h

i

)
2i .

Thus we have the following problem to solve: find γ ∈ ZK knowing a good
numerical approximation β to τ2(γ), say |τ2(γ)− β| ≤ ε for some small ε > 0,
and an upper bound of the form |τ1(γ)| ≤ B.

To solve this problem, there are essentially two methods. The first one,
which we can call the naive method although it gives reasonably good results,
is to perform an exhaustive search in the following way: let (1, ω) be a Z-
basis of ZK and let ωi = τi(ω) for i = 1 and 2. If γ = a + bω, then we
want |a+ bω2 − β| ≤ ε and |a+ bω1| ≤ B. Combining these two conditions
easily gives an upper bound for b, and for each b the first inequality gives
at most one possible value of a which is tested. The details are left to the
reader (Exercise 3). This method has the advantage of being simple, but it
needs O(B/(ω2−ω1)) steps. Hence it becomes impractical when h, hence B,
is large.

A second method is to use the LLL algorithm in a well-targeted manner.
Consider the lattice Λ = Z3, and the positive definite quadratic form q defined
on this lattice by

q(x, y, z) =

(
B

ε

)2

(x+ yω2 − βz)2 + (x+ yω1)
2 +B2z2 .

We have the following proposition.

Proposition 6.2.5. Keep the above notation. If γ = a + bω ∈ ZK satisfies
|τ2(γ) − β| ≤ ε and |τ1(γ)| ≤ B, then q(a, b, 1) ≤ 3B2. Conversely, assume
in addition that ε < 1/(3(B + 1)(

√
D + 1)). Then if q(x, y, z) ≤ 3B2 and

(x, y, z) 6= (0, 0, 0), we have z = ±1 and γ = z(x + yω) is a solution to the
slightly weaker problem |τ2(γ)− β| ≤ ε

√
3 and |τ1(γ)| ≤ B

√
3.

Proof. The first statement is clear. Conversely, assume that q(x, y, z) ≤
3B2 and that (x, y, z) 6= (0, 0, 0). It is clear that |z| ≤ 1, and Exercise 4 (which
is an excellent exercise on the properties of continued fractions) shows that
if we assume the given inequality for ε, then z 6= 0, so z = ±1 and the rest
of the proposition follows. ⊓⊔
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Thanks to this proposition, we see that we must find the nonzero solu-
tions to q(x, y, z) ≤ 3B2. This can be done using the Fincke–Pohst algorithm
([Coh0, Algorithm 2.7.7]). Among the solutions found, we could, if desired,
keep only those satisfying our two inequalities. Note, however, that using ε or
ε
√

3 is in practice equivalent and, moreover, that it would be very surprising
if such a good approximation could be obtained with B < |x+ yω1| ≤ B

√
3,

since the chosen bound B is in fact very pessimistic, so finding nonzero solu-
tions to q(x, y, z) ≤ 3B2 can in practice be considered to be almost equivalent
to our initial problem.

We leave the details of this algorithm to the reader (Exercise 5).

6.2.5 Sketch of the Complete Algorithm

We end this chapter by giving an overview of the complete algorithm used
to compute a real ray class field of a real quadratic field.

Algorithm 6.2.6 (Computation of a Real Ray Class Field Using Stark
Units). Let K be a real quadratic field and let (m, C) be a congruence sub-
group of conductor m, where m is an integral ideal of K. Let L denote the class
field corresponding to (m, C). This algorithm computes a defining polynomial for
the field extension L/K by using Stark’s conjecture.

1. [Split the Galois group] Using Algorithm 5.1.2, compute s congruence sub-
groups (mj , Cj) such that the compositum of the Abelian extensions Lj/K
corresponding to these congruence subgroups is equal to the desired extension
L/K and such that Lj/K is cyclic (see Remark (2) below).

2. [Compute class field] For 1 ≤ j ≤ s, compute the field Lj using Subalgorithm
6.2.7 and set L to be the compositum of all the fields Lj .

3. [Check the result] Using Algorithm 4.4.5, compute the norm group of L and
check whether it is equal to C. If yes, output L and a message saying that
L is the class field corresponding to (m, C) under GRH (recall that Algorithm
4.4.5 assumes GRH); otherwise, output a message saying that the algorithm
fails. Terminate the algorithm.

Subalgorithm 6.2.7 (Compute the Cyclic Field L/K). This algorithm com-
putes the real ray class field L over the real quadratic field K assuming that L/K
is cyclic (note that this algorithm usually works even if L/K is not cyclic; this
is just a sufficient hypothesis to make sure that the field N exists; see Section
6.2.1).

1. [Find N ] Using Algorithm 6.2.2, find (f, D) such that f is the conductor of the
congruence subgroup D and the corresponding field N satisfies the properties
of Proposition 6.1.2.

2. [Compute L′
S(0, χ)] Set G← Clf(K)/D and let S be the set of prime ideals

dividing f. Using the results of Section 6.2.2, compute the odd characters
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χi. For each such character, compute the Artin root number W (χi) using
Algorithm 6.2.4, and use the results of Section 6.1.3 to obtain accurate values
of L′

S(0, χi).

3. [Compute approximation to P (X)] Let σj be a system of representatives of
G/〈τ〉. Using the methods described in the preceding sections, for each j
compute

ζ′S(0, σj)←
1

[N : K]

∑

i

χi(σj)L
′
S(0, χi) ,

then set εj ← e−2ζ′S(0,σj) and αj ← εj + ε−1
j . Finally, set P (X)←∏

j(X −
αj).

4. [Round to algebraic and terminate] Write P (X) =
∑

0≤i≤h βiX
i, where the

βi are real approximations to algebraic integers. For each i, use the algorithm
mentioned in Exercise 3 or in Exercise 5 to compute γi ∈ ZK such that
τ2(γi) closely approximates βi and such that τ1(γi) is not too large (see
Section 6.2.4 above). If that algorithm fails for some i, the accuracy used
in the present algorithm was not sufficient, so terminate the algorithm with
an error message, or start it again using a higher accuracy. Otherwise, set
P (X)←∑

0≤i≤h γiX
i, output P (X), and terminate the subalgorithm.

Remarks

(1) Assuming that Stark’s conjecture and the GRH are both correct, failure
of Algorithm 6.2.6 can happen only if the computations (essentially that
of the ζ′K,S(0, σj)) have not been done with sufficient accuracy. In that
case we must start again with a higher accuracy.

(2) Contrary to the case of Kummer theory, where it is essential to split the
construction of L into a number of much simpler constructions, this is
not so useful here and, in fact, is usually a bad idea. Indeed, practice
shows that the algorithm is fastest with no splitting at all, omitting
step 1 entirely. The reason we do split at least into cyclic extensions
(not necessarily of prime power degree) is that otherwise the existence
of a suitable quadratic extension N/L is not guaranteed. Thus, a good
strategy is to directly apply Subalgorithm 6.2.7 and, if Algorithm 6.2.2
does not succeed in finding a suitable N in a reasonable amount of time,
to split the problem into smaller (for example, cyclic) subproblems.

6.2.6 The Special Case of Hilbert Class Fields

In the special case of Hilbert class fields, we can modify the defining polyno-
mial P (X) so that in fact P (X) ∈ Z[X ]. We begin with the following theorem
(see [Cor-Ros]).

Theorem 6.2.8. Let K be a number field such that K/Q is a cyclic ex-
tension, and let L = K(1) be its Hilbert class field. There exists a number
field LK (called a splitting field for L) such that K ∩ LK = Q and such that
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L = KLK. In other words, there exists a relative defining polynomial for the
Hilbert class field that belongs to Q[X ].

In particular, to give the Hilbert class field of a quadratic field, it is enough
to give the field extension LK/Q. Note that this theorem is trivially false if
K/Q is noncyclic (see Exercise 6).

In the case of imaginary quadratic fields, complex multiplication methods
such as the standard use of the j-function or Schertz’s improved functions
(see Theorem 6.3.7 below) directly give the field extension LK/Q, since the
defining polynomial of K(1)/K belongs to Z[X ].

In the real quadratic case, however, Algorithm 6.2.6 really gives a defining
polynomial P2(X) ∈ K[X ] and not in Z[X ] in general.

To find a defining polynomial in Z[X ], we use the following simple-minded
yet efficient algorithm.

Algorithm 6.2.9 (Computation of P (X) ∈ Z[X ] for Hilbert Class Fields).
Given an irreducible polynomial P2(X) ∈ K[X ] defining the Hilbert class field
K(1) of a real quadratic field K of discriminant D, this algorithm computes a
polynomial P (X) ∈ Z[X ] that is irreducible in K[X ], a root of which also defines
K(1)/K.

1. [Compute absolute defining polynomial] Using Algorithm 2.1.11, compute an
absolute defining polynomial Q(X) for K(1)/Q, set h← deg(Q)/2 = [K(1) :
K] = |Cl(K)|, and set d(L)← Dh.

2. [First use Polred] Using a polynomial reduction algorithm ([Coh0, Algorithm
4.4.11]) on the polynomial Q, find a list L1 of polynomials defining some
subfields of K(1)/Q, and set j ← 0 (j will be a pointer to the list L1).

3. [Next element of L1] Set j ← j + 1. If j > |L1|, go to step 5. Otherwise, let
P (X) be the jth polynomial in the list L1.

4. [Test if suitable] Using Subalgorithm 6.2.10 below, test if the polynomial P (X)
is suitable. If it is, output P (X) and terminate the algorithm. Otherwise go
to step 3.

5. [Find subfields] Using [Klu], find a list L2 of polynomials defining all the
subfields of K(1) of degree h (see below), and set j ← 0 (j will be a pointer
to the list L2).

6. [Next element of L2] Set j ← j + 1. If j > |L2|, output an error message
saying that there is a bug in the algorithm and terminate. Otherwise, let P (X)
be the jth polynomial in the list L2.

7. [Test if suitable] Using Subalgorithm 6.2.10 below, test if the polynomial P (X)
is suitable. If it is, output P (X) and terminate the algorithm. Otherwise, go
to step 6.

Subalgorithm 6.2.10 (Test if P (X) is Suitable). Given a monic polynomial
P (X) ∈ Z[X ] irreducible in Z[X ], this subalgorithm tests whether P defines a
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number field LK over Q such that LK ∩K = Q and KLK = K(1). We use all
the quantities computed in the main algorithm.

1. [Easy case I] If deg(P ) 6= h, P is not suitable and terminate.

2. [Easy case II] If h is odd, P (X) is suitable and terminate. Otherwise, compute
the discriminant d(LK) of the number field defined by P (X). If d(L) 6=
d(LK)2, P (X) is suitable and terminate.

3. [Harder case] (Here P (X) is of degree h and d(LK)2 = dL.) Using [Coh0,
Algorithm 3.6.4], check if P (X) is irreducible inK[X ]. If it is, P (X) is suitable;
otherwise, P (X) is not suitable. Terminate the subalgorithm.

Proof. (1). Main algorithm. We must find a subfield LK of L = K(1) such
that LK∩Q = Q and KLK = L; hence, in particular, [LK : Q] = [L : K] = h.
The Polred algorithm is a fast algorithm that gives h subfields of L (including
the trivial subfields Q and L), hence we may hope to find the desired subfield
LK among those given by Polred. This is the reason for which we begin by
using it.

If none of the number fields thus found is suitable, we have to use a
more systematic procedure. One such procedure is to generate more subfields
than h in the Polred algorithm (see Exercise 7), but this may be very costly.
Another probably preferable procedure is to use an algorithm for finding
subfields of given degree. We have not given any such algorithm in this book
or in [Coh0] since it is quite technical, so I refer to [Klu] or to [Klu-Poh] for
a detailed description.

(2). Subalgorithm. As above, call LK the number field defined by a root
of P (X) (note that the polynomials given by Polred and by the subfield
algorithm are all irreducible over Q, but not necessarily over K). Clearly a
necessary condition for P (X) to be suitable is that deg(P ) = h. On the other
hand, it is clear that if deg(P ) = h, then P (X) is suitable if and only if
K 6⊂ LK . If h is odd, this is trivially the case. If h is even and K ⊂ LK , then
L/LK is a subextension of L/K, hence is unramified (since L = K(1)), so
d(L) = d(LK)2. Hence if this condition is not satisfied, P (X) is suitable.

Finally, if none of these simple criteria suffices to determine whether or
not P (X) is suitable, we factor P (X) in K[X ], and clearly K 6⊂ LK if and
only if P (X) is irreducible in K[X ]. ⊓⊔

6.3 The Use of Complex Multiplication

Warning. Due to an unfortunate oversight, it is necessary to exchange ω1

and ω2 almost everywhere in Chapter 7 of the first three printings of [Coh0].
For details, see the errata sheet at the URL

ftp://megrez.math.u-bordeaux.fr/pub/cohenbook/errata4.tex

All references to Chapter 7 assume that these corrections have been made.
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6.3.1 Introduction

I follow here quite closely a number of papers written by R. Schertz ([Sch1],
[Sch2], [Sch3], [Sch4], [Sch5]), and I thank the Kant group for code and ref-
erences.

The basic principle of complex multiplication is as follows. Let f be a
function defined on the upper half-plane H and which is modular for some
congruence subgroup of PSL2(Z) (see [Lan2] for definitions). Then, up to
suitable normalizations, if τ is a quadratic number in H, we can expect f(τ)
to be an algebraic number with interesting arithmetic properties. This is of
course very vague, but it will be made completely precise for the examples
that we will need for Hilbert and ray class group computations.

Let K be an imaginary quadratic field of discriminant D < 0, and let
(m, C) be a congruence subgroup of K. As in the rest of this chapter, we
want to give an explicit defining polynomial for the Abelian extension L of
K corresponding to this congruence subgroup by Takagi’s theorem, but this
time by using algebraic values of modular forms and functions on elements
of K.

Denote by s the canonical surjection from Clm(K) to Cl(K), and recall
that we write C = C/Pm. Denote by Z the kernel of the restriction of the
map s to C, and by T the kernel of the natural map from Clm(K)/C to
Cl(K)/s

(
C
)
. We clearly have the following commutative diagram of exact

sequences.

1 1 1
y

y
y

1 −−−−→ Z −−−−→ C −−−−→ s
(
C
)
−−−−→ 1

y
y

y

1 −−−−→ (ZK/m)∗

Im(U(K))
−−−−→ Clm(K) −−−−→ Cl(K) −−−−→ 1

y
y

y

1 −−−−→ T −−−−→ Clm(K)

C
−−−−→ Cl(K)

s
(
C
) −−−−→ 1

y
y

y

1 1 1

We will proceed in two almost independent steps. We will first construct

the unramified Abelian extension K(1)s(C) of K (hence a subextension of the
Hilbert class field K(1) of K) corresponding to the subgroup s

(
C
)

of Cl(K).

We will then construct the desired extension L as an extension of K(1)s(C)
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such that Gal(L/K(1)s(C)) ≃ T by the Artin reciprocity map. Thus, the
above commutative diagram corresponds to the following diagram of field
extensions.

K(m)

C

wwwwwwwww
(ZK/m)∗/Im(U(K))

JJJJJJJJJ

L

Clm(K)/C

T FFF
FFF

FFF
K(1)

s(C)uuuuuuuuu

Cl(K)

K(1)s(C)

Cl(K)/s(C)

K

For ease of exposition, however, we will construct K(m) as an extension
of K(1), ignoring the congruence subgroup C, and take it into account only
at the very end. In an actual implementation, this should be done differently
as explained above.

6.3.2 Construction of Unramified Abelian Extensions

In [Coh0, Section 7.6], and in particular in Algorithm 7.6.1, we saw how to
use values of the modular function j(τ) to construct the Hilbert class field
of K. A similar construction leads to a construction of subextensions K(1)C ,
where C is a congruence subgroup modulo ZK . Note that from now on, for
simplicity of notation we write K(1)C instead of K(1)Art(C).

The fundamental first step is to know precisely the action of the Galois
group of K(1)/K on the values of j(τ). Recall that by [Coh0, Theorem 5.2.4],
we can identify quadratic numbers τ modulo the additive action of Z with
equivalence classes of fractional ideals modulo the multiplicative action of Q∗,
or with equivalence classes of positive definite quadratic forms of discriminant
D modulo the action of Γ∞. Since j(τ) is Z-periodic, it is thus permissible to
write j(a) for an ideal a. Indeed, if (ω1, ω2) is a Z-basis of a oriented in such
a way that Im(ω1/ω2) > 0, then by definition j(a) = j(ω1/ω2), and since j is
a modular invariant, this is independent of the choice of basis. In addition,
since for any α ∈ K∗, (αω1, αω2) is an oriented basis of αa, j(a) clearly only
depends on the ideal class of a.

The following proposition, known in a more general setting as Shimura’s
reciprocity law, gives the action of the Galois group of K(1)/K on the values
of j.

Proposition 6.3.1. Let a and c be fractional ideals of K, and let Art(c) be
the element of Gal(K(1)/K) corresponding to the ideal c by the Artin reci-
procity map (since K(1)/K is unramified, there are no ramification conditions
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on c). Then j(a) ∈ ZK(1) (in particular, it is an algebraic integer) and

j(a)Art(c) = j(ac−1) .

Since we know that K(1) = K(j(ZK)), it follows from this proposition
that

α = TrK(1)/K(1)C (j(ZK)) =
∑

c∈C

j(c−1) ∈ K(1)C .

It can be shown (see [Sch3]) that α does not belong to any subfield of K(1)C ,
in other words, that for any b /∈ C we have

∑

c∈C
j(b−1c−1) 6=

∑

c∈C
j(c−1) .

It follows that K(1)C = K(α), hence the problem of the construction of
K(1)C is in principle solved.

As already remarked in [Coh0, Section 7.6] for the case of K(1) itself, the
coefficients of the polynomial obtained in this way are huge and the result
is not satisfactory. To improve on this, one approach already mentioned in
[Coh0] is to use the Weber functions instead of the j-function. More generally,
we can use any reasonable modular function.

Let f be a function defined on the upper half-plane H which transforms
under γ =

(
a b
c d

)
∈ PSL2(Z) by

f(γ(τ)) = f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) ,

where k is called the weight of f , assumed to be integral.
If a is a fractional ideal and (ω1, ω2) is a Z-basis of a ordered so that

Im(ω1/ω2) > 0, we will set by abuse of notation

f(a) =

(
2iπ

ω2

)k
f

(
ω1

ω2

)
.

It is immediately checked that f(a) is independent of the chosen (oriented)
basis, hence its definition makes sense. In particular, for the function f(τ) =
j(τ) we have k = 0, so we recover the definition of j(a) that we have given.

We will use this definition mainly for products of the Dedekind η-function
η(τ). Recall that η(τ) is defined by

η(τ) = e2iπτ/24
∏

n≥1

(1− qn) ,

where, as usual, q = e2iπτ . By abuse of notation, we will write e2iπτ/24 =
q1/24, but it is understood that it is this specific 24th root.



6.3 The Use of Complex Multiplication 317

We have the identity

η(τ) = q1/24



1 +
∑

n≥1

(−1)n
(
qn(3n−1)/2 + qn(3n+1)/2

)


 ,

which gives a fast way to compute η(τ) since the exponents of q in the sum
are quadratic in n (see Corollary 6.3.16 below for a proof). In addition, the
function η(τ) is almost modular of weight 1/2. More precisely, since PSL2(Z)
is generated by τ 7→ τ + 1 and τ 7→ −1/τ , the following formulas suffice to
characterize the transformation formula:

η(τ + 1) = e2iπ/24η(τ), η

(−1

τ

)
=
(τ
i

)1/2

η(τ) ,

where we must choose the determination of the square root having positive
real part. The exact transformation formula for γ =

(
a b
c d

)
∈ PSL2(Z) is as

follows (see Exercise 14). Normalize the representative of PSL2(Z) in SL2(Z)
so that c ≥ 0, and in addition d > 0 if c = 0. Write c = 2vg with g odd, where
we set g = 1 and v = 0 for c = 0. We then have η(γ(τ)) = vη(γ)(cτ+d)1/2η(τ)
(again with the principal part of the square root), where the multiplier system
vη(γ) is given by

vη(γ) =

(
a

g

)
exp

(
2iπ

24

(
ab+ cd(1− a2)− ac+ 3(a− 1)g +

3v(a2 − 1)

2

))
.

The standard reduction algorithm ([Coh0, Algorithm 7.4.2]) gives the
following algorithm for computing η(τ).

Algorithm 6.3.2 (Computation of η(τ)). Given τ in the upper half-plane H,
this algorithm computes the value of η(τ).

1. [Initializations] Set ζ ← exp(2iπ/24), p← 1.

2. [Reduce real part] Set n← ⌊Re(τ)⌉. If n 6= 0, set τ ← τ − n and p← pζn.

3. [Inverse?] Set m ← τ τ̄ . If m ≤ 0.999, set (in this order) p ← p
√
i/τ (with

Re
(√

i/τ
)
> 0), τ ← −τ̄/m, and go to step 2.

4. [Start computation of η] Set q1 ← exp(2iπτ/24), q ← q241 , s ← 1, qs ← 1,
and qn ← 1.

5. [Main loop] Set t← −qq2nqs, qn ← qnq, qs ← qnt, and s← s+ t+ qs.

6. [Finished?] If qs is less than the desired relative accuracy, output pq1s and
terminate the algorithm. Otherwise, go to step 5.

Proof. The proof of this algorithm’s validity follows from the transforma-
tion formula and the power series expansion of η. The variable p contains
the accumulated products coming from the transformation formula, and in
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the nth loop, qn contains qn, qt contains (−1)nqn(3n−1)/2, and qs contains
(−1)nqn(3n+1)/2. The details are left to the reader (Exercise 8). ⊓⊔

Remarks

(1) It would be slightly nicer to have p contain the square of the accumulated
products coming from the transformation formula, since this would avoid
computing all square roots except one at the end. This is not possible,
however, without explicitly using the complete transformation formula,
since it is essential to multiply by the principal part of the square root
at each step, and it is not true that

√
xy =

√
x
√
y, where

√
x denotes the

principal part of the square root of x. For simplicity, we have preferred
to give the algorithm in this form.

(2) In the reduction process (step 3), we have written m ≤ 0.999 instead of
m < 1 to avoid roundoff errors. Indeed, this practically does not influence
the speed of convergence of the series computed in step 5, and it avoids
infinite loops that may occur, because with roundoff errors we may well
simultaneously have |τ | < 1 and |−1/τ | < 1.

Since η(τ) possesses a multiplier system vη under PSL2(Z) transforma-
tions, it is not possible to define η(a) for an ideal a without imposing some
restrictions. On the other hand, multiplicative combinations of η often lead
to a trivial multiplier system, hence the value at an ideal a makes sense.

For example, the function ∆(τ) = η(τ)24 is modular of weight 12, and
hence ∆(a) makes sense as we have defined it above:

∆(a) =

(
2iπ

ω2

)12

η24

(
ω1

ω2

)
,

where (ω1, ω2) is any oriented Z-basis of a.
More subtle, but more important for our applications, is the following

example. Let p and q be two integers coprime to 6 but not necessarily prime,
and set

gp,q(τ) =
η(τ/p)η(τ/q)

η(τ/pq)η(τ)
.

The following proposition is an immediate consequence of the complete
transformation formula for the η-function under PSL2(Z) given above.

Proposition 6.3.3. Let Γ 0(pq) be the group of matrices γ =
(
a b
c d

)
∈

PSL2(Z) such that pq | b.
(1) For any γ ∈ Γ 0(pq), we have gp,q(γ(τ)) = vg(γ)gp,q(τ), where the multi-

plier system vg is given by

vg(γ) = exp

(
−2iπ

24
(p− 1)(q − 1)

(
cd(1− a2)− ac+ 3(a− 1) + a

b

pq

))

(using the same normalization for γ as above).
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(2) If e is an integer such that 24 | e(p − 1)(q − 1), the function gep,q(τ) is
invariant under Γ 0(pq).

Proof. Left to the reader (Exercise 9). ⊓⊔

If a is an ideal coprime to 6pq and (ω1, ω2) an ordered Z-basis of a,
we can define gp,q,e(a) = gp,q(ω1/ω2)

e as long as we impose on ω1 and ω2

a normalization condition that compels the basis transformations to be in
Γ 0(pq). We will now see how to do this.

Recall that an ideal p is primitive if p is an integral ideal and if there does
not exist a natural integer n ≥ 2 such that p/n is also integral. Recall also
that if p is a primitive ideal, then p has a canonical HNF basis, which can be
written

p = pZ⊕ −u+
√
D

2
Z ,

with p = N (p) the absolute norm of p.
The following easy proposition will be crucial for us in the sequel.

Proposition 6.3.4. Let p and q be two primitive ideals of respective norms
p and q such that the product pq is also primitive. If

pq = pqZ⊕ −w +
√
D

2
Z ,

then p = pZ⊕ ((−w +
√
D)/2)Z and q = qZ⊕ ((−w +

√
D)/2)Z.

Proof. Since pq ⊂ p, we have w ≡ u (mod 2p) and similarly for q, proving
the proposition. ⊓⊔

Corollary 6.3.5. Let a, p, q be three primitive ideals such that apq is a
primitive ideal. Let a = N (a), p = N (p), q = N (q), and assume that e is a
positive integer such that 24 | e(p− 1)(q − 1).

(1) There exists an oriented basis (ω1, ω2) of a such that (ω1, pω2) is a basis
of ap, (ω1, qω2) is a basis of aq, and (ω1, pqω2) is a basis of apq.

(2) The quantity gp,q,e(ω1/ω2) is independent of the choice of oriented basis
satisfying (1).

Proof. For (1), we write apq = apqZ⊕ ((−w +
√
D)/2)Z. It follows from

the proposition that ω1 = (−w +
√
D)/2 and ω2 = a is a suitable basis.

For (2), we note that (ω′
1, ω

′
2) is another suitable basis of a if and only if

there exists γ =
(
a b
c d

)
∈ PSL2(Z) such that aω1 + bω2 ∈ apq and pq(cω1 +

dω2) ∈ apq. This is equivalent to the single condition

bω2 ∈ apq = ω1Z⊕ pqω2Z ,

hence to pq | b, so γ ∈ Γ 0(pq). Therefore, gp,q,e(ω
′
1/ω

′
2) = gp,q,e(ω1/ω2) since

gp,q,e is invariant under Γ 0(pq), as was to be proved. ⊓⊔
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This leads to the following definition.

Definition and Proposition 6.3.6. Let a be any fractional ideal of K, and
let p, q, and e be as above.

(1) There exists α ∈ K such that αa and αapq are primitive ideals.
(2) If (ω1, ω2) is a basis of αa satisfying the hypotheses of the corollary, the

quantity gp,q,e(ω1/ω2) is independent of ω1, ω2, and α and will be denoted
gp,q,e(a).

Proof. By Corollary 1.2.11, there exists α such that αa is an integral ideal
coprime to pq, and of course we may assume that it is primitive. In particular,
αapq is primitive, proving (1).

The corollary implies that gp,q,e(ω1, ω2) is independent of the chosen basis
(ω1, ω2). On the other hand, if α′ is such that α′a is a primitive ideal such
that (α′a)pq is primitive, then (ω′

1, ω
′
2) = (α′/α)(ω1, ω2) is a basis of α′a,

which clearly also satisfies the hypothesis of the corollary, and obviously
gp,q,e(ω

′
1/ω

′
2) = gp,q,e(ω1/ω2), proving (2). ⊓⊔

Remark. One can give more general (and a little more complicated)
statements than those above, valid with the condition p and q coprime to 6
only, and not necessarily 24 | e(p−1)(q−1). We will not need this generality,
and we refer to [Sch1], [Sch2] for details.

It can be proved that Proposition 6.3.1 is also valid for the quantities
gp,q,e(a), in other words that these are algebraic integers (they are, in fact,
even units), and that for any ideal c we have

gp,q,e(a)Art(c) = gp,q,e(ac−1) .

The main theorem proven by Schertz using a clever but quite simple idea
is that, under suitable hypotheses on p, q, and e, the function gp,q,e(a) can
replace the function j(a) in the construction of the Hilbert class field.

Theorem 6.3.7 (Schertz). Let (ai)1≤i≤h(K) be a system of representatives

of the ideal classes of K = Q
(√
D
)
, chosen to be primitive. Let p and q be

ideals of K of norm p and q, respectively. Assume that

(1) the ideals p and q are primitive ideals that are nonprincipal;
(2) if both classes of p and q are of order 2 in the class group, these classes

are equal;
(3) for all i, pqai is a primitive ideal;
(4) e is a positive integer chosen such that 24 | e(p− 1)(q − 1).

Set

Pp,q,e(X) =
∏

1≤i≤h(K)

(X−gp,q,e(ai)) =
∏

1≤i≤h(K)

(
X −

(
η(τi/p)η(τi/q)

η(τi/pq)η(τi)

)e)
,
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where aipq = ai(pqZ + τiZ).
Then Pp,q,e(X) ∈ Z[X ], it is irreducible in Z[X ] and in K[X ], its constant

term is equal to ±1, and the field obtained by adjoining to K a root of Pp,q,e

is the Hilbert class field K(1) of K.

We refer to [Sch1] for the proof. The statement (and the proof) given by
Schertz is slightly incorrect because of the omission of condition (2) above
on classes of order 2. An example is K = Q

(√
−30

)
, which has class group

isomorphic to (Z/2Z)2, with p an ideal above 11, q an ideal above 37, and
e = 1. The polynomial Pp,q,e found in this case is the square of an irreducible
polynomial in Z[X ]. However, it is easy to correct the statement and proof as
above, as was remarked by the author and Schertz himself (see [Sch4]). ⊓⊔

Remark. Using the complete determination of imaginary quadratic fields
of class number 2, one can prove that the exponent e can always be chosen
equal to 1 except in the following cases:
• for D = −20, −52, and −148, where e = 2 is possible;
• for D = −15, −24, −51, −123, and −267, where e = 3 is possible.
These are exactly the discriminants D < 0 for which h(D) = 2 and D ≡ 4

(mod 8) or D ≡ 0 (mod 3), respectively.

If C is a subgroup of Cl(K), it is easily shown that one of the symmetric
functions from K(1) to K(1)C of gp,q,e(ai) (for any i) generates the field
K(1)C . In practice, the trace defined by

TrK(1)/K(1)C (gp,q,e(ai)) =
∑

c∈C

gp,q,e(aic
−1)

always works (no counterexample has been found), but I do not know if this
can be proven. In the algorithm given below, we will assume that this is the
case. If not, the necessary modifications are immediate and left to the reader.

We can now easily transform [Coh0, Algorithm 7.6.1], which computes
the minimal polynomial of the j-function, into an algorithm that computes
the minimal polynomial of the function gp,q,e. Contrary to that algorithm,
however, it is necessary to precompute all the reduced forms before choosing
p and q since we must have aipq primitive. Another possibility would be to
choose p and q first and then multiply any reduced form by suitable elements
to make it coprime to pq. This is probably more expensive. The algorithm is
thus as follows.

Algorithm 6.3.8 (Unramified Abelian Extensions Using CM). Given an
imaginary quadratic field K = Q

(√
D
)

and a subgroup C of the class group
Cl(K) of cardinality equal to m, this algorithm returns a polynomial P ∈ Z[X ],
irreducible in K[X ], such that the extension of K defined by P is the fixed field
by C of the Hilbert class field of K.
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1. [Compute reduced forms] If D ≥ −11, set P (X)← X and terminate. Other-
wise, using Subalgorithm 6.3.9 below, compute the list L of reduced forms of
discriminant D, as well as the auxiliary numbers h and z.

2. [Partition L] Partition L as a disjoint union of cosets

L =
⋃

1≤j≤h/m
Lj

under the multiplicative action of the group C. If h/m = 1, output P (X)← X
and terminate the algorithm.

3. [Find p and q] Using Subalgorithm 6.3.10 below, find two suitable ideals p and
q of norms p and q, respectively, and a positive exponent e. Let pqZ⊕ ((−u+√
D)/2)Z be the HNF of the ideal pq.

4. [Initialize loop on cosets] Set j ← 0, P (X)← 1.

5. [Loop on cosets] Set j ← j + 1. If j > h/m, round the coefficients of P (X)
to the nearest integer, output P (X), and terminate the algorithm.

6. [Initialize loop on forms] Set i← 0, s← 0.

7. [Loop on forms] Set i← i+1. If i > m, set P (X)← (X−s)P (X) and go to
step 5. Otherwise, let (a, b) be the ith element of Lj . By the Chinese remainder
theorem, find w such that w ≡ −b (mod 2a) and w ≡ u (mod 2pq), and set
α← (−w +

√
D)/2a.

8. [Compute gp,q,e(α)] Using Algorithm 6.3.2, compute

gp,q,e(α)←
(
η(α/p)η(α/q)

η(α/pq)η(α)

)e
,

set s← s+ gp,q,e(α), and go to step 7.

Remarks

(1) Contrary to the case of the j-function, where one can use j(a−1) = j(a),
one cannot cut the work in half by computing only the values of gp,q,e(a)

for b ≥ 0, since in general it is not true that gp,q,e(a
−1) = gp,q,e(a) (see

Exercise 10).
(2) The accuracy to which the computations must be made is not completely

clear a priori. Since the coefficients of the polynomial Pp,q,e(X) will be
much smaller than those of the minimal polynomial of j, this should not
be too much of a problem. To be perfectly rigorous, however, once P (X) is
obtained (and after checking that the rounding process is reasonable, for
example, when the coefficients are at most 10−5, say, from integers), we
should check that P (X) does indeed define the desired extension. For this,
since we know a complex approximation to the roots of P (X), it is easy
to prove rigorously that we have an Abelian extension. Furthermore, the
computation of the relative discriminant of this extension will show that



6.3 The Use of Complex Multiplication 323

it is unramified. Finally, we check that the Galois group of K(1)/K(1)C

is isomorphic to C under the Artin reciprocity map. In practice, these
verifications are usually not necessary, and the closeness of the rounding
process suffices to guarantee correctness.

(3) The size of the coefficients of the polynomial Pp,q,e(X) computed by the
algorithm is very much dependent on the size of e (since this governs
the number of η-products in the function g), and not on the size of p
and q since it is primarily the ideal class of the corresponding ideals p

and q which matter. However, there is a great variability in the size of
the coefficients that one obtains. Since the class group is finite and since
g24

p,q,1 depends only on the ideal class of p and q, the number of possible
polynomials Pp,q,e(X) as p, q, and e vary (with D fixed) is finite. Thus,
if we want small polynomials and if we are willing to waste some time, it
is worthwhile to apply the algorithm for several suitable pairs (p, q) and
to take the best polynomial that one obtains.
Let us give an example with D = −199. The “best” polynomial in some
sense is the polynomial

P (X) = x9 − x8 − 3x6 + 3x3 + 3x2 + 5x+ 1 ,

which is obtained, for example, for p = 31 and q = 53 (and an infinity of
other pairs), while the “worst” polynomial is the polynomial

P (X) = x9−10x8+43x7−106x6+172x5−189x4+135x3−58x2+14x−1 ,

obtained for p = 29 and q = 157. I believe that in this case, for e = 1 only
40 different polynomials Pp,q,1 are possible, for e = 2 only 20 different
polynomials Pp,q,2 are possible, for e = 3 only 40 different polynomials
Pp,q,3 are possible, and finally for e = 6 only 20 different polynomials
Pp,q,6 are possible.

The following is a simple algorithm for making a list of reduced forms,
essentially identical to [Coh0, Algorithm 5.3.5], which is needed in step 1 of
the main algorithm.

Subalgorithm 6.3.9 (List of Reduced Forms). Given an imaginary quadratic
field K =

√
D, this subalgorithm computes the list L of reduced forms of dis-

criminant D, the number h of such forms, and the product z of all the norms a
of the ideals corresponding to the reduced forms.

1. [Initialize] Set L ← ∅, b← D mod 2, b2 ← b, h← 0, and z ← 1.

2. [Initialize a] Set t← (b2 −D)/4 and a← max(b, 1).

3. [Test] If a ∤ t, go to step 4. Otherwise, set z ← az; if a = b or a2 = t or b = 0,
set L ← L ∪ {(a, b)} and h ← h + 1; else set L ← L ∪ {(a, b), (a,−b)} and
h← h+ 2.

4. [Loop on a] Set a← a+ 1. If a2 ≤ t, go to step 3.

5. [Loop on b] Set b← b+2 and b2 ← b2. If 3b2 ≤ |D|, go to step 2. Otherwise,
output the list L, the numbers h, z, and terminate the subalgorithm.
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To find the ideals p and q, we can use the following subalgorithm.

Subalgorithm 6.3.10 (Find Suitable p and q). Given D and the integer z
as computed by the main algorithm, this subalgorithm finds two primitive non-
principal ideals p and q of norms p and q, respectively, and a positive exponent
e such that pq is primitive, p and q are in the same ideal class if the classes of
p and q are of order 2 in the class group, and such that (p, z) = (q, z) = 1,
24 | e(p− 1)(q − 1) and e is as small as possible.

1. [Make list of primes and forms] Set P ← ∅ and F ← ∅. For each prime
ℓ such that 5 ≤ ℓ ≤ 500, do as follows. If ℓ ∤ z and

(
D
ℓ

)
= 1, compute a

square root u of D modulo 4ℓ, and let (a, b, c) be the reduced quadratic form
obtained by reducing the form (ℓ, u, (u2 −D)/(4ℓ)) using [Coh0, Algorithm
5.4.2]. Finally, if a > 1, set P ← P ∪ {ℓ} and F ← F ∪ (a, b, c). The
forms in F will be indexed by the prime numbers of P , and the form (a, b, c)
corresponding to ℓ will be denoted by Fℓ.

2. [Find p] If in the list of primes P there exists an ℓ ≡ 1 (mod 3), let p be the
smallest such ℓ; otherwise, let p be the smallest element of P .

3. [Check order 2] Let (a, b, c) ← Fp. If (a, b, c) is of order 2, that is, if b = 0
or |b| = a or a = c, then if p ≡ 3 (mod 4) go to step 4a; otherwise, go to
step 4b. If (a, b, c) is not of order 2, then if p ≡ 3 (mod 4), go to step 4c;
otherwise, go to step 4d.

4a. [p is of order 2 and p ≡ 3 (mod 4)] If in the list of primes P there exists
an ℓ such that ℓ ≡ 1 (mod 4), and Fℓ either is not of order 2 or is equal to
(a, b, c), then let q be the smallest such ℓ; otherwise, let q be the smallest
element ℓ ∈ P such that Fℓ is not of order 2 or is equal to (a, b, c). Go to
step 5.

4b. [p is of order 2 and p ≡ 1 (mod 4)] Let q be the smallest ℓ ∈ P such that
Fℓ is not of order 2 or is equal to (a, b, c). Go to step 5.

4c. [p is not of order 2 and p ≡ 3 (mod 4)] If in the list of primes P there exists
an ℓ such that ℓ ≡ 1 (mod 4), let q be the smallest such ℓ; otherwise, let q
be the smallest element ℓ ∈ P . Go to step 5.

4d. [p is not of order 2 and p ≡ 1 (mod 4)] Let q be the smallest element ℓ ∈ P .

5. [Terminate] Set e ← 24/ gcd((p − 1)(q − 1), 24), output e, a prime ideal
factor p of p and q of q (the same if p = q), and terminate the subalgorithm.

Remarks

(1) The condition a > 1 on the reduced form (a, b, c) used in step 1 of the
subalgorithm is exactly the condition that the prime ideals above ℓ are
nonprincipal.

(2) For simplicity we use only prime ideals p and q. They are automatically
primitive, and if p 6= q or if p = q and p = q, the ideal pq is also primitive.

(3) The bound 500 is arbitrary but should be more than sufficient, since the
probability that a given ℓ not dividing z satisfies the conditions is greater
or equal to 1/4 (more precisely, it is equal to (h− 1)/(2h)).
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(4) As already mentioned, the integer e output by the subalgorithm will be
equal to 1 except for eight discriminants for which it will be at most equal
to 3.

6.3.3 Quasi-Elliptic Functions

Our next goal will be to compute ray class fields of imaginary quadratic fields.
For this purpose, we will need to use classical meromorphic functions, which
are closely related to elliptic functions, whose properties we recall here. For
more details on this beautiful and very classical theory, the reader is strongly
urged to consult any standard textbook on elliptic functions such as [Lan1].

Let L be a complex lattice and let (ω1, ω2) be an oriented Z-basis of L. To
ease notation, we will set L∗ = Lr{0} (we will never use the dual lattice of L
in this chapter, so there is no risk of confusion). Recall that an elliptic function
f is a meromorphic function on the complex plane such that f(z+ω) = f(z)
for all ω ∈ L; in other words, it is a meromorphic doubly periodic function. A
prototypical example of such a function is the Weierstrass ℘-function ℘(z, L)
defined by the usual formula

℘(z, L) =
1

z2
+
∑

ω∈L∗

(
1

(z − ω)2
− 1

ω2

)
.

Note that for aesthetic reasons, we prefer to use z−ω instead of z+ω in the
sum.

The field of elliptic functions is the field C(℘, ℘′), and ℘ and ℘′ are linked
by the algebraic differential equation

℘′(z, L)2 = 4℘(z, L)3 − g2(L)℘(z, L)− g3(L) ,

with

g2(L) = 60
∑

ω∈L∗

1

ω4
, g3(L) = 140

∑

ω∈L∗

1

ω6
.

Proposition 6.3.11. Let L be a complex lattice.

(1) There exists a unique meromorphic function ζ(z, L), called the Weier-
strass ζ-function, such that ζ′(z, L) = −℘(z, L) and such that ζ(z, L) is
an odd function.

(2) We have the following expansion, valid for all z /∈ L:

ζ(z, L) =
1

z
+
∑

ω∈L∗

(
1

(z − ω)
+

1

ω
+

z

ω2

)
=

1

z
+ z2

∑

ω∈L∗

(
1

ω2(z − ω)

)
.

(3) There exist complex constants η1 and η2, called the quasi-periods of ζ
associated to the periods ω1 and ω2, such that for any integers m and n
we have

ζ(z +mω1 + nω2, L) = ζ(z, L) +mη1 + nη2 ,

and in particular we have ηi = 2ζ(ωi/2, L) for i = 1 and i = 2.
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(4) Set τ = ω1/ω2, q = exp(2iπτ), u = exp(2iπz/ω2), and

E2(τ) = 1− 24
∑

n≥1

nqn

1− qn = 1− 24
∑

n≥1

qn

(1− qn)2 = 1− 24
∑

n≥1

σ(n)qn ,

where σ(n) = σ1(n) is the sum of the positive divisors of n. Then

ζ(z, L) = −2iπ

ω2

(
2iπ

ω2

E2(τ)

12
z+

1

2

1 + u

1− u +
∑

n≥1

qn
(

u

1− qnu +
1

qn − u

))
.

(5) The quasi-periods are given by the formulas

η1 =
π2

3ω2
τE2(τ) −

2iπ

ω2
and η2 =

π2

3ω2
E2(τ) ,

and, in particular, ω1η2 − ω2η1 = 2iπ.

Proof. Since the proofs are easy, we leave some details to the reader (Ex-
ercise 12).

It is clear that the series defining ζ(z, L) converges uniformly on any com-
pact subset not containing points of L (this is the case as soon as the general
term goes to zero faster than 1/ |ω|α for any α > 2). Thus the series defines a
meromorphic function on C with poles at points of L, and by differentiating
termwise it is clear that ζ(z, L)′ = −℘(z, L). In addition,

−ζ(−z, L) = z−1 + z2
∑

ω∈L∗

(ω2(z + ω))−1 = z−1 + z2
∑

ω∈L∗

(ω2(z − ω))−1 ,

so ζ(z, L) is an odd function, thus proving (1) and (2), since clearly the
property of being odd makes ζ unique among all antiderivatives of −℘.

(3). Let ω ∈ L, and set f(z) = ζ(z + ω,L)− ζ(z, L). Since the derivative
of ζ is an elliptic function, it follows that f ′(z) = 0, hence that f(z) is
constant, since C r L is connected. Thus we can set for i = 1, and i = 2,
ηi = ζ(z + ωi, L)− ζ(z, L), so in particular ηi = ζ(ωi/2, L)− ζ(−ωi/2, L) =
2ζ(ωi/2, L) since ζ(z, L) is odd, and (3) follows by induction on m and n.

(4). Setting u = e2iπz/ω2 and slightly modifying [Coh0, Proposition 7.4.4]
(including the exchange of ω1 and ω2 already mentioned), we know that

℘(z, L) =

(
2iπ

ω2

)2
(
E2(τ)

12
+

∞∑

n=−∞

qnu

(1− qnu)2

)
.

Integrating termwise with respect to z, and taking care to take suitable in-
tegration constants, we obtain the given formula for ζ(z, L), proving (4).

(5). Since u is unchanged when z is changed into z + ω2, it is clear that

η2 = ζ(z + ω2, L)− ζ(z, L) = − (2iπ)2

ω2

E2(τ)

12
=

π2

3ω2
E2(τ) .
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When z is changed into z + ω1, u is changed into qu and it is easy to see
that the series for ζ(z + ω1, L) − ζ(z, L) almost cancel and give the result
of the proposition. More elegantly, by integrating the function ζ(z, L) along
a fundamental parallelogram not crossing L and using the residue theorem,
we immediately find the relation ω1η2 − ω2η1 = 2iπ, giving the formula for
η1. ⊓⊔

Formula (4) gives a fast way to compute ζ(z, L), after reduction to the
fundamental domain, in a manner analogous to the other algorithms for com-
puting functions of this sort, such as Algorithm 6.3.2 or [Coh0, Algorithm
7.4.5]. Since we will not need this algorithm, we leave the details to the reader
(Exercise 13). On the other hand, we will need to compute the quasi-periods
η1 and η2. To be able to reduce to the fundamental domain, we need to know
the behavior of E2(τ) under the action of PSL2(Z). This is given by the
following corollary.

Corollary 6.3.12. For any
(
a b
c d

)
∈ PSL2(Z) and τ ∈ H, we have

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

12c(cτ + d)

2iπ
.

Proof. Set ω′
1 = aω1 + bω2, ω

′
2 = cω1 + dω2, and τ ′ = ω′

1/ω
′
2. By assump-

tion, (ω′
1, ω

′
2) is still an oriented basis of L, so Proposition 6.3.11 applied to

this basis gives in particular

ζ(z + ω′
2, L) = ζ(z, L) +

π2

3ω′
2

E2(τ
′) = ζ(z, L) +

π2

3ω2(cτ + d)
E2

(
aτ + b

cτ + d

)
.

On the other hand, the same proposition applied to the basis (ω1, ω2) gives

ζ(z + ω′
2, L) = ζ(z, L) + cη1 + dη2 = ζ(z, L) +

π2

3ω2
(cτ + d)E2(τ) − c

2iπ

ω2
,

which gives the corollary by identification. ⊓⊔

From this, it is immediate to obtain an efficient algorithm for computing
the quasi-periods.

Algorithm 6.3.13 (Computation of Quasi-Periods). Given an oriented basis
(ω1, ω2) generating a complex lattice, this algorithm computes the quasi-periods
η1 and η2 associated to ω1 and ω2.

1. [Reduce to fundamental domain] Set τ ← ω1/ω2. Using the reduction algo-
rithm [Coh0, Algorithm 7.4.2] on τ , compute a matrix A =

(
a b
c d

)
and τ ′ = Aτ

such that τ ′ is in the standard fundamental domain for SL2(Z).

2. [Compute series] Set q ← exp(2iπτ ′) and compute to the desired accuracy the
sum of the series E ← 1− 24

∑
n≥1 nq

n/(1− qn) (because of the preliminary
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reductions, we will have |q| ≤ exp(−π
√

3) < 1/230, so this series will converge
very rapidly).

3. [Compute corrected value] Set u← 1/(cτ + d) and E ← u2E + 6iuc/π (this
is now the value of E2(τ)).

4. [Terminate] Set η2 ← π2E/(3ω2), set η1 ← τη2 − 2iπ/ω2, output η1 and η2,
and terminate the subalgorithm.

The most interesting quasi-elliptic function, the Weierstrass σ-function,
is obtained essentially by integrating one more time as follows.

Proposition 6.3.14. Let L be a complex lattice.

(1) There exists a unique holomorphic function σ(z, L), called the Weierstrass
σ-function, such that σ′(z, L)/σ(z, L) = ζ(z, L) and limz→0 σ(z, L)/z =
1.

(2) The function σ(z, L) is an odd function having simple zeros exactly at all
points of L. More precisely, we have the expansion

σ(z, L) = z
∏

ω∈L∗

(
1− z

ω

)
e

z
ω + z2

2ω2 .

(3) For any integers m and n we have

σ(z +mω1 + nω2, L) = ±eηω(z+ω/2)σ(z, L) ,

where ω = mω1 + nω2, ηω = mη1 + nη2, and the ± sign is equal to 1 if
m and n are both even, and to −1 otherwise.

(4) We have the expansion

σ(z, L) =
ω2

2iπ
eη2z

2/(2ω2)(u1/2 − u−1/2)
∏

n≥1

(1 − qnu)(1− qn/u)
(1 − qn)2 ,

where u±1/2 is interpreted as exp(±iπz/ω2).

Proof. Once again, we leave some details to the reader (Exercise 15). The

general term of the given product expansion tends to 1 as |ω|−3
, hence the

product converges uniformly on any compact subset of C and so defines a
holomorphic function. By definition, its logarithmic derivative is equal to
ζ(z, L), and we have limz→0 σ(z, L)/z = 1, a condition that also ensures
uniqueness of σ(z, L). Since L is symmetrical with respect to the origin,
σ(z, L) is an odd function, proving (1) and (2).

For (3), set fω(z) = σ(z+ω,L)/σ(z, L). By definition and by Proposition
6.3.11, we have f ′

ω(z)/fω(z) = ζ(z + ω,L) − ζ(z, L) = ηω. It follows that
fω(z) = Cωe

ηωz for a suitable constant Cω depending on ω.
Assume first that m and n are not both even, in other words that z0 =

−ω/2 /∈ L. Since σ is an odd function and z0 is not a zero of σ, we have
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fω(z0) = −1, which gives Cω = −e−ηωz0 , so that fω(z) = −eηω(z+ω/2). This
proves (3) when ω /∈ 2L. If ω ∈ 2L, we can, for example, write ω = ω−ω1+ω1

and use what we have just proved for ω−ω1 and ω1, which do not belong to
2L, giving the final result of (3).

For (4), a short computation using Proposition 6.3.11 (4) gives

σ(z, L) = Ceη2z
2/(2ω2)(u1/2 − u−1/2)

∏

n≥1

(1− qnu)(1− qn/u)

for some constant C. To determine C, we use limz→0 σ(z, L)/z = 1, which
gives C(2iπ/ω2)

∏
n≥1(1− qn)2 = 1, finishing the proof of the proposition.

⊓⊔

As for the ζ-function, (4) allows us to compute σ(z, L) efficiently after suit-
able reductions to the fundamental domain (see Exercise 15). The σ-function
is, however, connected to other types of functions, the theta functions, and
this connection gives an even more efficient way to compute σ(z, L). The
result is the Jacobi triple-product identity as follows.

Proposition 6.3.15 (Jacobi Triple-Product Identity). We have the id-
entity

∏

n≥1

(1− qnu)
(

1− qn

u

)
(1− qn) =

∑

k≥0

(−1)k
u2k+1 − 1

uk(u− 1)
q

k(k+1)
2 ,

both formally and as an identity between complex numbers when |q| < 1 and
u 6= 0.

Proof. There are many proofs of this famous identity. The following one
is perhaps the simplest. We first do computation on polynomials. If we set

PN (u, q) = (1− u)
N∏

n=1

(1− qnu)
(

1− qn

u

)
,

we can write
PN (u, q) =

∑

−N≤k≤N+1

ak,N (q)uk

for some polynomials ak,N (q). We have

PN (qu, q) = (1− qu)
N∏

n=1

(1− qn+1u)

N∏

n=1

(
1− qn−1

u

)

= −1− u
u

N+1∏

n=1

(1− qnu)
N−1∏

n=1

(
1− qn

u

)
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so that PN (qu, q)/PN (u, q) = (1− qN+1u)/(qN − u), or in other words (u −
qN )PN (qu, q) = (qN+1u− 1)PN (u, q). Identifying the coefficients of uk+1 for
−N ≤ k ≤ N gives ak+1,N (q)/ak,N (q) = −qk(1− qN+1−k)/(1− qN+k+1). On
the other hand, it is clear on the definition that a−N,N(q) =

∏
1≤n≤N (−qn) =

(−1)NqN(N+1)/2. Thus by induction we obtain

ak,N (q) = (−1)kqk(k−1)/2

∏
N+2−k≤n≤2N+1(1− qn)∏

1≤n≤N+k(1− qn)
.

After simple transformations, this formula is equivalent to the finite identity

(1 − u)
N∏

n=1

(1 − qnu)
(

1− qn

u

)
=

N+1∑

k=−N
(−1)kukqk(k−1)/2

k+N∏

n=1

1− q2N+2−n

1− qn .

Considering u and q as formal variables, as N → ∞, k being fixed, we
have

ak,N (q)→ (−1)k
qk(k−1)/2

∏
n≥1(1− qn)

,

thus giving the Jacobi identity as a formal identity between power series
after grouping the terms corresponding to k and 1− k. The identity between
complex numbers follows from this and immediate convergence arguments.

⊓⊔

Corollary 6.3.16.

η(τ) = q1/24



1 +
∑

k≥1

(−1)k(qk(3k−1)/2 + qk(3k+1)/2)



 .

Proof. This follows from the Jacobi identity by replacing (u, q) by (q, q3)
and rearranging terms. The details are left to the reader (Exercise 16). Note
that this is the identity we used in Algorithm 6.3.2. ⊓⊔

Corollary 6.3.17.

η3(τ) = q1/8
∑

k≥0

(−1)k(2k + 1)qk(k+1)/2 .

Proof. This follows from the Jacobi identity by making u→ 1. ⊓⊔

Corollary 6.3.18. With the same notation as above, we have the formula

σ(z, L) =
ω2

2iπ
eη2z

2/(2ω2)

∑
k≥0(−1)k(uk+1/2 − u−(k+1/2))qk(k+1)/2

q−1/8η(τ)3
.
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Proof. Clear from Proposition 6.3.14 (4). ⊓⊔

Remarks

(1) Although not apparent in the above formula or in the q-product expan-
sion of Proposition 6.3.14 (4), the value of σ(z, L) really depends only on
z and on the lattice L, and not on the particular oriented basis (ω1, ω2)
of L. This follows from the definition of the σ-function.

(2) The expression qk(k+1)/2/q−1/8 can be written more nicely as q(k+1/2)2/2,
but this is of no use for numerical computation.

(3) Corollary 6.3.18 is exactly the formula used in [Coh0, Algorithm 7.5.7]
for computing the height contribution at infinity of a rational point on
an elliptic curve.

Using Corollary 6.3.18 and reductions done using Proposition 6.3.14, we
can now write an efficient algorithm for computing the σ-function.

Algorithm 6.3.19 (Computation of σ(z, L)). Given an oriented basis (ω1, ω2)
of a complex lattice L and a complex number z, this algorithm computes the
value of the Weierstrass σ-function σ(z, L) at z.

1. [Reduce to fundamental domain] Using the reduction algorithm [Coh0, Algo-
rithm 7.4.2] on τ = ω1/ω2, compute a matrix A =

(
a b
c d

)
and τ ′ = Aτ such

that τ ′ is in the standard fundamental domain for SL2(Z). Then set (in this
order) ω2 ← cω1 + dω2, τ ← τ ′, ω1 ← τω2, and z2 ← z/ω2.

2. [Reduce z] Set (in this order) m ← ⌊Im(z2)/Im(τ)⌉, z2 ← z2 − mτ , n ←
⌊Re(z2)⌉, z2 ← z2 − n, and z ← z2ω2.

3. [Compute corrections] Using Algorithm 6.3.13, compute the quasi-periods η1
and η2 associated to (ω1, ω2). Set s ← (mη1 + nη2)(z + (mω1 + nω2)/2),
and if m or n is odd, set s← s+ iπ.

4. [Initialize] Set y ← (ω2/(2iπ)) exp(s+ z2zη2/2), q8 ← exp(2iπτ/8), q ← q88 ,
and v ← exp(iπz2).

5. [Compute series] Compute to the desired accuracy the sum of the series

S ←
∑

k≥0

(−1)k(v2k+1 − v−2k−1)qk(k+1)/2 .

6. [Terminate] Using Algorithm 6.3.2, compute e← η(τ), output q8yS/e
3 as the

value of σ(z, L), and terminate the algorithm.

Remarks

(1) We have not written in detail the computation of the series used in the
above algorithms, as we did in Algorithm 6.3.2, but this is of course easily
done. Note that, because of the preliminary reductions, in the series S
of step 5 we have |q| ≤ exp(−π

√
3) < 1/230 and exp(−π/2) ≤ v ≤

exp(π/2), so the series converges rapidly (see Exercise 19).
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(2) To compute e3 = η(τ)3, we can either use Algorithm 6.3.2 as stated or use
Corollary 6.3.17 together with the same reductions to the fundamental
domain done in Algorithm 6.3.2.

(3) As already mentioned, the above algorithm is superior to the algorithm
using the product expansion of Proposition 6.3.14 for multi-precision
computations, and these are almost always necessary for ray class field
computations.

(4) For our applications, we will not exactly need the σ-function itself, but a
ratio of two values of the σ-function for the same lattice and for different
values of z. It is then worthwhile to write a specific algorithm for this
purpose, since it avoids some unnecessary computations.

(5) For certain values of the arguments the result may be large and overflow
the possibilities of the implementation. Indeed, the quantities computed
in the algorithm are of reasonable size, except perhaps the exponential
computed in step 4 of the algorithm. Thus, instead of computing σ(z, L)
itself or a ratio of such, it is usually safer to compute the logarithm of
such a ratio.

Elliptic and quasi-elliptic functions possess an amazing number of proper-
ties that were intensively studied at the end of the 19th century, and numer-
ous thick treatises are devoted to the subject. We simply note the following
formula.

Proposition 6.3.20. Let L be a complex lattice and a /∈ L. Then

℘(z, L)− ℘(a, L) = −σ(z − a, L)σ(z + a, L)

σ(a, L)2σ(z, L)2
.

Proof. Using Proposition 6.3.14, it is easy to check that the ratio of the
left- and right-hand sides is an elliptic function with no zero or poles, hence
it is constant by Liouville’s theorem. Making z → 0 and using the expansions
of ℘ and σ around 0 gives the result. ⊓⊔

The function we will use for the construction of ramified Abelian exten-
sions comes from a modification of the σ-function constructed as follows.
Since ω1 and ω2 are R-linearly independent, for any z ∈ C there exist real
numbers x1 and x2 such that z = x1ω1 + x2ω2, in other words (x1, x2) are
the coordinates of z on the basis (ω1, ω2). We then set z∗(L) = x1η1 + x2η2,
where the ηi are as usual the quasi-periods associated to the basis (ω1, ω2).
Since the quasi-periods behave linearly in terms of the ωi, it is clear that
z∗(L) does not depend on the basis (ω1, ω2) but only on z and on the lattice
L, whence the notation.

We will set
φ∗(z, L) = e−zz

∗(L)/2σ(z, L) .
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Proposition 6.3.21. Let ω = mω1 + nω2 ∈ L with m and n in Z, and let
z = x1ω1 + x2ω2 with x1 and x2 in R, as above. Then

φ∗(z + ω,L) = s(ω)e2iπ(nx1−mx2)φ∗(z, L) ,

where s(ω) = +1 if ω/2 ∈ L, s(ω) = −1 otherwise. In addition, the function
φ∗ is bounded on C.

Proof. The proof of the transformation formula follows immediately from
the corresponding formula for the σ-function seen above. It follows in partic-
ular that |φ∗(z + ω,L)| = |φ∗(z, L)|, and since φ∗ is a continuous (although
nonholomorphic) function, φ∗(z, L) is bounded in any compact set, hence in
any fundamental parallelogram of the form (a, a+ω2, a+ω1 +ω2, a+ω1). It
follows that it is bounded on all of C. In fact, it is not difficult to give explicit
bounds if desired, using the fact that we can reduce to Im(ω1/ω2) ≥

√
3/2

and to z/ω2 = x+ iy with |x| ≤ 1/2 and |y| ≤ 1/2 (Exercise 21). ⊓⊔

Since φ∗(z, L) is bounded (in fact, by a rather small constant; see Exer-
cise 21), we can compute its values without having to worry about overflow
problems, by first computing the logarithm of σ(z, L), subtracting zz∗(L)/2,
and only then computing the exponential, which is sure not to overflow.

6.3.4 Construction of Ramified Abelian Extensions Using
Complex Multiplication

With the tools of the preceding section, we can now study the problem of
constructing ray class fields of imaginary quadratic fields using complex mul-
tiplication.

In the unramified case, we had the simple result K(1) = K(j(ZK)), which
unfortunately is difficult to use in practice because of very large coefficients,
and so we introduced the more subtle functions gp,q,e to overcome this prob-
lem. In the ramified case, the situation is quite similar.

Set

w(z, L) =






−2735 g2(L)g3(L)

∆(L)
℘(z, L) if D 6= −3,−4 ,

2834 g2(L)2

∆(L)
℘(z, L)2 if D = −4 ,

−2936 g3(L)

∆(L)
℘(z, L)3 if D = −3 .

Note that the function w is “of weight 0”, similarly to the functions j and
gp,q,e. These functions were introduced by Weber.

The following theorem is the analog of the corresponding theorem for the
j-function.
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Theorem 6.3.22. Let K be an imaginary quadratic field, let K(1) be the
Hilbert class field of K, and let f be a conductor of K. Let α ∈ K∗ be such
that αf is an integral ideal coprime to f (which exists by Corollary 1.2.11).
Then

(1) The ray class field K(f) of conductor f is given by

K(f) = K(1)(w(α,ZK )) ,

where w is the function defined above.
(2) If c is an integral ideal of K coprime to f, then for any ideal b we have

w(α, b)Art(c) = w(α, bc−1) ,

where Art(c) is the element of Gal(K(f)/K) corresponding to c ∈ Clf(K)
by the Artin reciprocity map.

As in the unramified case, this shows that the problem of constructing
K(f) (and in a similar way its subfields if we have a congruence subgroup
C) is solved in principle. Once again the coefficients will be very large, so
this construction cannot be used except in very small cases. Thus, we need
to find other elliptic or quasi-elliptic functions that give smaller coefficients.
The main problem is the presence of the modular function g2g3/∆ of weight
−2, which leads to large coefficients. A first idea, introduced by Schertz in
[Sch2], is to replace it by the function η−4, a sixth root of 1/∆, which is also
of weight −2. It can be expected that the coefficients that will be obtained
are much smaller (more precisely, with 4 times fewer decimal digits), and this
is indeed the case. We leave to the reader the detailed study of this method
(see Exercise 22).

More recently, R. Schertz has introduced an even better method for com-
puting ramified Abelian extensions using complex multiplication (see [Sch4]).
The main advantage of this method is that the coefficients of the resulting
polynomials are considerably smaller than those obtained using the above-
mentioned method (approximately 3 times fewer decimal digits than Schertz’s
preceding method; hence, in all, 12 times fewer compared to the method using
directly Theorem 6.3.22). A small disadvantage is that in the form we give, it
relies on the validity of an unproved technical conjecture, although the result
itself can be checked a posteriori without assuming any conjecture. At the
expense of a more complicated (but not slower) algorithm, it is possible to
completely suppress the assumption of this conjecture (see Exercise 25), but
for simplicity of exposition we will assume this conjecture here.

The main idea is to remove the normalizing factor involving ∆(L) in
w(z, L) by using quotients of values the Weierstrass σ-function instead of the
℘-function.

Thus, letK be an imaginary quadratic field of discriminantD, and let f be
an integral ideal of K. We assume that f is the conductor of (f, Pf) (otherwise
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use Algorithm 4.4.2 to reduce to this case). We want to compute the ray
class field of conductor f. From this construction it will be easy to extract the
necessary information to construct the ray class field corresponding to all the
congruence subgroups (f, C) if desired, exactly as we did in Algorithm 6.3.8,
and we leave the details to the reader (Exercise 23). The theorem of Schertz
that will allow us to construct ramified Abelian extensions is the following
(we state only the special case of the theorem that we will need; see [Sch4]
and [Sch5] for the complete version).

Theorem 6.3.23. Let K be an imaginary quadratic field, let f be a conductor
of K, let f be the positive generator of f ∩ Z, let e be a positive integer, and
let λ ∈ ZK r {0} satisfying the following conditions.

(1) e(NK/Q(λ)− 1) ≡ 0 (mod 2f).
(2) The class of the ideal λZK is not of order 1 or 3 in Clf(K).

For any primitive ideal c coprime to f , set

θλ,c =

(
φ∗(λ, fc−1)

φ∗(1, fc−1)

)e
,

where φ∗ is the function defined in the preceding section. Then

K(f) = K(1)(θλ,ZK ) ,

and for any integral ideal c coprime to f we have

ArtK(f)/K(c)(θλ,ZK ) = θλ,c .

Remark. Note that we really ask that c be coprime to f and not only to
the ideal f.

Schertz conjectures that this theorem is still valid if we only assume that
the class of λZK is not of order 1 in the ray class group, and we will make this
conjecture in the sequel. Note that if by any chance it was false, the defining
polynomial we would find at the end of Algorithm 6.3.27 below either would
not have coefficients in ZK or would not define K(f)/K(1), and all this can
easily be checked (see also Exercise 25). On the other hand, this theorem is
definitely not always true if λZK is of order 1 (see Exercise 24).

The main problem with this theorem is to find a suitable pair (e, λ) sat-
isfying the given conditions. To take an example, if K = Q

(√
−163

)
and

f =
√
−163ZK , the least possible value of e is 163, which will produce ex-

tremely large coefficients. To avoid this problem, we use the following theo-
rem, which is essential for an algorithmic use of the theorem.

Theorem 6.3.24. Let K be an imaginary quadratic field of discriminant D,
let h be its class number, and let f be a conductor of K different from ZK
(see Proposition 3.3.20 for all the possible conductors). Denote as usual by
ζm a primitive mth root of unity, and for any prime number ℓ dividing D,
denote by pℓ the unique ramified prime ideal above ℓ.
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(1) If D = −3 and f is in the following list, we give a relative defining
polynomial P (X) ∈ K[X ].
a) If f = fZK with f = 4, f = 5, or f = 7, then P (X) = Φf (X), the

f th cyclotomic polynomial.
b) If f = 3p3 = p3

3, then P (X) = X3 + ζ3.
(2) If D = −4 and f is in the following list, we give a relative defining

polynomial P (X) ∈ K[X ].
a) If f = fZK with f = 3 or f = 5, then P (X) = Φf (X).
b) If f = 4ZK = p4

2, then P (X) = X2 + ζ4.
(3) If the pair (f, D) is in the following list, then the ray class field K(f)

is the compositum of the Hilbert class field K(1) with the cyclotomic
extension K(ζm), where m is given as follows (for completeness, we also
give h(f) = [K(f) : K] = |Clf(K)|).
a) If f = 2ZK and D ≡ 8 (mod 16), then m = 4 and h(f) = 2h.
b) If f = 3ZK and D ≡ 1 (mod 3), then m = 3 and h(f) = 2h.
c) If f = 4ZK and D ≡ 1 (mod 8), then m = 4 and h(f) = 2h.
d) If f = 6ZK and D ≡ −8 (mod 48), then m = 12 and h(f) = 4h.
e) If f = pℓ and ℓ | D with ℓ > 3, then m = ℓ and h(f) = ((ℓ− 1)/2)h.
f) If f = 2pℓ and ℓ | D with ℓ > 3 and D ≡ 8 (mod 16), then m = 4ℓ

and h(f) = (ℓ− 1)h.
(4) In all other cases, there exists λ ∈ ZK r {0} such that NK/Q(λ) ≡ 1

(mod 2f) and λZK not of order 1 in Clf(K), where as above f is the
positive generator of f ∩ Z.

Proof. The special cases D = −3, f = p3
3 and D = −4, f = 4ZK are easily

treated directly, so we exclude these cases. We first prove a lemma.

Lemma 6.3.25. For any integer m, denote by f(m) the conductor of the
Abelian extension K(ζm)/K.

(1) We have f(m) | mZK .
(2) If K = Q

(√
D
)

with D ≡ 8 (mod 16), then f(4) = 2ZK ; while if D ≡ 12
mod 16, then f(4) = ZK .

Proof. (1) is nothing else but Proposition 3.5.5. For (2), we can, for exam-
ple, use Hecke’s Theorem 10.2.9 from which we borrow the notation. Indeed,
since [K(i) : K] = 2, we have f(4) = d(K(i)/K). Denote by p the unique
prime ideal above 2, so that z(p, 2) = 5. It is easily checked by an explicit
calculation that the congruence x2 ≡ −1 (mod 4ZK) is not soluble if D ≡ 8
(mod 16) and that it is soluble if D ≡ 12 (mod 16), while of course x2 ≡ −1
(mod 2ZK) is always soluble. Since the largest value of a < z(p, 2) that oc-
curs in Hecke’s theorem is odd, we deduce that a = 3 if D ≡ 8 (mod 16) and
a ≥ 4 if D ≡ 12 (mod 16), proving the lemma. ⊓⊔

Resuming the proof of the theorem, recall that by Proposition 3.3.21, if
p | f is above a prime number p that does not divide h(f), then vp(f) = 1.
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It is easily checked that the lemma together with this property imply that
in all the cases mentioned in (1), (2), and (3) we have K(ζm) ⊂ K(f). Since
trivially K(1) ⊂ K(f), it follows that K(f) contains the compositum of K(1)
and K(ζm). To finish the proof, it is thus sufficient to determine the degree
of this compositum or, equivalently, to compute the intersection of K(1) and
K(ζm). For D = −3 and D = −4 we have K(1) = K, so the result is trivial.
In cases a), c), and d) of (3), p2 is ramified in K(ζm) (we have proved this in
the lemma for D ≡ 8 (mod 16), and the other case is treated similarly), and
in cases b) and d), p3 is ramified in K(ζm) by a similar reasoning. Thus, in
the first four cases of (3) we have K(1) ∩ K(ζm) = K. On the other hand,
in those cases it is easily checked that [K(ζm) : K] = [Q(ζm) : Q] = φ(m)
and that h(f) = φ(m)h (using, for example, Proposition 3.2.3) so the result
follows. For the last two cases, we must distinguish two possibilities.
• If D = −ℓ, then ℓ ≡ 3 (mod 4) so K ⊂ Q(ζℓ), hence K(ζℓ) = Q(ζℓ) and

[K(ζℓ) : K] = (ℓ− 1)/2. If Pℓ denotes the unique prime ideal of K(ζℓ) above
pℓ (or above ℓ), we have

ℓ− 1 = e(Pℓ/ℓ) = e(Pℓ/pℓ)e(pℓ/ℓ) = 2e(Pℓ/pℓ) ,

hence e(Pℓ/pℓ) = (ℓ−1)/2 = [K(ζℓ) : K] so pℓ is totally ramified in K(ζℓ)/K,
from which it immediately follows that K(1) ∩K(ζℓ) = K.
• If ℓ | D but D 6= −ℓ, then I claim that the extension K

(√
ℓ∗
)
/K

is a subextension of K(ζℓ)/K that is unramified, where ℓ∗ = (−1)(ℓ−1)/2ℓ.
Indeed, the fact that it is a subextension is an elementary result on cyclotomic
fields (it follows, for example, from the explicit evaluation of Gauss sums;
see [Coh0, Exercise 16 of Chapter 1]). Thus the conductor of the extension
K
(√
ℓ∗
)
/K divides ℓ. On the other hand, we have K

(√
ℓ∗
)

= K
(√

D/ℓ∗
)
, so

the conductor also divides 4D/ℓ∗. But since ℓ 6= 2, ℓ and 4D/ℓ are coprime,
the conductor is equal to ZK , and so the extension is unramified, as claimed.

On the other hand, it is easily checked that the extension K(ζℓ)/K
(√
ℓ∗
)

is totally ramified, from which we deduce that K(1) ∩K(ζℓ) = K
(√
ℓ∗
)

and
no larger, proving e), and f) is treated similarly or follows from a) and e).
This finishes the proof of (3).

(4). The proof of (4) is rather tedious, but simple. We first prove a lemma.

Lemma 6.3.26. Let f be an integer such that f ∤ 12.

(1) If D is any integer, there exists t such that (t2 −D, 2f) = 1 and f ∤ 2t.
(2) If D ≡ 0 (mod 4) or D ≡ 5 (mod 8) (in particular, if D is the discrimi-

nant of a quadratic field not congruent to 1 modulo 8), there exists t such
that t ≡ D (mod 2), ((t2 −D)/4, 2f) = 1, and f ∤ t.

Proof. Let Ef be the set of t such that 0 ≤ t < 2f and (t2 −D, 2f) = 1.
This condition means that t 6≡ D (mod 2) and that for each prime p > 2
dividing f , t must not be congruent to the square roots of D modulo p if
they exist. It follows that



338 6. Computing Defining Polynomials Using Analytic Methods

|Ef | = f
∏

p|f, p>2



1−
1 +

(
D
p

)

p



 .

If we write f =
∏
p|f p

vp , we thus have

|Ef | ≥ 2v2
∏

p|f, p>2

pvp−1(p− 2) .

On the other hand, let Ff be the set of t such that 0 ≤ t < 2f and f | 2t.
Clearly, |Ff | = 2 if f is odd and |Ff | = 4 if f is even.

If there exists a prime p ≥ 5 such that p | f , then |Ef | ≥ 3 · 2v2 , hence
|Ef | > 2 if v2 = 0 and |Ef | > 4 if v2 ≥ 1; hence |Ef r Ff | > 0. A similar
reasoning shows that the same conclusion still holds if v3 ≥ 2 or if v2 ≥ 3.
Thus the only f for which (1) may be false are numbers of the form f = 2v23v3

with 0 ≤ v2 ≤ 2 and 0 ≤ v3 ≤ 1; in other words, the divisors of 12. It is easy
to check that the conclusion of (1) (and of (2)) is false if f is a divisor of 12.

(2) is proved in a similar manner. Here we denote by Ef the set of t such
that 0 ≤ t < 4f , t ≡ D (mod 2), and ((t2 −D)/4, 2f) = 1 and by Ff the set
of t such that 0 ≤ t < 4f and f | t, in other words Ff = {0, f, 2f, 3f}. We
have

|Ef | = c2f
∏

p|f, p>2



1−
1 +

(
D
p

)

p



 ,

with c2 = 2 if D ≡ 5 (mod 8), c2 = 1 if D ≡ 0 (mod 4), and c2 = 0 if D ≡ 1
(mod 8). On the other hand, by looking only at congruences modulo powers
of 2 we can easily compute an upper bound for Ef∩Ff and in particular prove
that |Ef ∩ Ff | ≤ 2 unless we have D ≡ 12 (mod 16) and f ≡ 0 (mod 4), in
which case we can only say that |Ef ∩ Ff | ≤ 4.

Thus
|Ef r Ff | ≥ c2 · 2v2

∏

p|f p>2

pvp−1(p− 2)− a ,

where a = 2 if we are not in the special case D ≡ 12 (mod 16) and f ≡ 0
(mod 4), and a = 4 otherwise. As in (1), if there exists a prime p ≥ 5 dividing
f or if v3 ≥ 2 or if v2 ≥ 3, we find that |Ef r Ff | > 0 if D 6≡ 1 (mod 8), since
the case a = 4 can happen only if v2 ≥ 2, proving (2). ⊓⊔

Let us now prove statement (4) of Theorem 6.3.24. We assume that D <
−4, leaving the cases D = −3 and D = −4 to the reader (Exercise 27). Let f

be an arbitrary conductor of K, and let f be the positive generator of f. Let

α be an element of ZK coprime to 2f . If we choose λ = α/α = α
2
/NK/Q(α)

modulo 2f , it is clear that NK/Q(λ) = λλ ≡ 1 (mod 2f), so such a λ satisfies
the first condition of (4). Since D < −4, the condition that the class of λZK
is not of order 1 in the ray class group means that λ 6≡ ±1 (mod f) or,
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equivalently, since α is coprime to f, that f ∤ α± α. If α = (a+ b
√
D)/2 with

a ≡ bD (mod 2), this condition means that f ∤ a and that f ∤ b
√
D.

Assume first that f ∤ 12, f ∤
√
D, and D 6≡ 1 (mod 8). Then Lemma

6.3.26 (2) tells us that there exists an integer t such that t ≡ D (mod 2),
((t2 − D)/4, 2f) = 1 and f ∤ t, and this means that α = (t +

√
D)/2 is

coprime to 2f , and since f ∤ t and f ∤
√
D, λ = α/α modulo 2f is a suitable

value.
Assume still that f ∤ 12 and f ∤

√
D, but that D ≡ 1 (mod 8). Then 2 is

split, hence by Proposition 3.3.18 we also have f ∤ 2
√
D, so Lemma 6.3.26 (1)

tells us that there exists an integer t such that (t2−D, 2f) = 1 and f ∤ 2t, and
this means that α = t+

√
D is coprime to 2f , and since f ∤ 2t and f ∤ 2

√
D,

λ = α/α modulo 2f is a suitable value.
If f = 12 and D ≡ 0 (mod 4), we can take t = 1 if D ≡ 0 or 8 (mod 12)

and t = 3 if D ≡ 4 (mod 12), and we have again (t2−D, 2f) = 1 and (f/2) ∤ t,
hence λ = α/α modulo 2f is suitable with α = t +

√
D as above. On the

other hand, if f = 12 and D ≡ 1 (mod 4), we can choose α = 4 + 3
√
D and

clearly NK/Q(α) = 16 − 9D is coprime to 24 and (f/2) ∤ 8, so λ = α/α is
suitable.

We have thus proved that there exists a suitable value of λ satisfying the
conditions of Theorem 6.3.24 (4) whenever f is not equal to 1, 2, 3, 4, or 6,
and f ∤

√
D. We must now treat these remaining cases.

Proposition 3.3.20 tells us that the only possible conductors f with f | 12,
1 < f < 12, are f = 2ZK and f = 6ZK when D 6≡ 1 (mod 8), f = 3ZK , and
f = 4ZK . In each of these cases it is easy to find a suitable λ when the given
congruence conditions on D are satisfied. Specifically:

(1) If f = 2, D 6≡ 1 (mod 8) and D 6≡ 8 (mod 16), we take λ = (t+
√
D)/2,

where t = 3, 0, or 1 when D ≡ 5, 12, or 13 modulo 16.
(2) If f = 3 and D 6≡ 1 (mod 3), we take λ = t +

√
D, where t = 1, 3, 2, or

0 when D ≡ 0, 2, 3, or 5 modulo 6.
(3) If f = 4 and D 6≡ 1 (mod 8), we take λ = 1 +

√
D if D ≡ 8 (mod 16),

and λ = (t +
√
D)/2, where t = 3, 4, 7, 5, 0, or 1 when D ≡ 5, 12, 13,

21, 28, or 29 modulo 32.
(4) If f = 6, D 6≡ 1 (mod 8), D 6≡ 8 (mod 16) and D 6≡ 1 (mod 3), we take

λ = (t +
√
D)/2, where t = 3, 8, 11, 9, 0, or 1 when D ≡ 5, 12, 21, 29,

44, or 45 modulo 48.

Finally, assume that f ∤ 12 and that f |
√
D, which implies that f | D

when D ≡ 1 mod 4 and f | (D/2) when D ≡ 0 (mod 4). In particular,
f is squarefree except perhaps for a factor 4 when D ≡ 8 (mod 16). Since
f ∤ 12 and is almost squarefree, f is divisible by some prime ℓ ≥ 5. By
the Chinese remainder theorem we can find an integer x such that x ≡ 1
(mod ℓ) and x ≡ −1 (mod 2f/ℓ). Since ℓ and 2f/ℓ are coprime, we have
NK/Q(x) = x2 ≡ 1 (mod 2f). Furthermore, x ≡ −1 (mod f) is equivalent to
x ≡ −1 (mod f), which implies x ≡ −1 (mod ℓ), and this is impossible since
ℓ > 2. On the other hand, x ≡ 1 (mod f) is equivalent to x ≡ 1 (mod f),
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hence to −1 ≡ 1 (mod f/ℓ), and this is possible if and only if f | 2ℓ, in
other words, since f ∤ 12, if and only if f = ℓ or f = 2ℓ. Since ℓ | D, ℓ is
ramified, so f = ℓ and f |

√
D imply that f = pℓ, which is case e) of (3). If

f = 2ℓ, then since f |
√
D, D must be even, hence 2 is ramified, and f = pa2pℓ

with 1 ≤ a ≤ 2, and a = 1 is not possible because of Proposition 3.3.18, so
f = p2

2pℓ = 2pℓ. Thus, if f is not equal to pℓ or 2pℓ with ℓ | D, ℓ ≥ 5, we can
take λ = x.

Finally, consider the case f = 2pℓ, which implies D ≡ 0 (mod 4) as we
have just seen. The condition D ≡ 8 (mod 16) is case f) of (3), so assume
that D ≡ 12 (mod 16). Choose x so that x ≡ 1 (mod ℓ) but x ≡ 0 (mod 4).
One easily checks that λ = x+

√
D/2 is suitable, and this finishes the proof

of (4) and of Theorem 6.3.24. ⊓⊔

Remarks

(1) The compositum of K(1) with K(ζm) should be computed using Algo-
rithm 2.1.9 and not with Algorithm 2.1.8, since the coefficients obtained
are much smaller.

(2) As seen in the proof, in the first four cases of (3), K(1) and K(ζm) are
linearly disjoint over K, so it is not necessary to perform a factoring step
over K to obtain the compositum (step 6 of Algorithm 2.1.9). In the two
remaining cases, the intersection of K(1) and K(ζm) is equal to K

(√
ℓ∗
)

(which is equal to K if and only if D = −ℓ). As in the proof, we distin-
guish two different cases. If D = −ℓ, the proof shows that the cyclotomic
polynomial Φm(X) splits in K[X ] into a product of two conjugate irre-
ducible factors of degree φ(m)/2 (in other words, of degree (ℓ − 1)/2 if
m = ℓ and of degree ℓ−1 if m = 4ℓ), and so we compute the compositum
using one of these factors as the defining polynomial for K(ζm)/K. On
the other hand, if D 6= −ℓ, then Φm(X) is irreducible in K[X ]. To com-
pute the compositum, we may use two different methods. We can directly
use Algorithm 2.1.9, and in step 6 we will find that the polynomial R(X)
(with the notation of that algorithm) splits in K[X ] into a product of
two irreducible polynomials of degree φ(m)h/2, and either one defines the
desired defining polynomial. Since h may be large, this method involves
factoring large-degree polynomials over K, however. An alternative and
better method is to use our knowledge of the intersection L = K

(√
ℓ∗
)

of K(1) and K(ζm). We can compute a relative defining polynomial for
K(1) and for K(ζm) over L by factoring in L[X ] the corresponding poly-
nomials. We then compute the compositum over L of the corresponding
extensions, which will be linearly disjoint over L, and go back down to a
relative defining polynomial over K by using Algorithm 2.1.11.

(3) As mentioned above, in [Sch4] and [Sch5] Schertz gives a more precise
version of Theorem 6.3.23. Unfortunately, the exceptions treated in The-
orem 6.3.24 remain exactly the same, hence the simpler version of his
theorem is sufficient for algorithmic purposes. Note also that thanks to
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Theorem 6.3.24, in the case where we will apply Theorem 6.3.23 we will
take e = 1 so the coefficients will be as small as possible.

Thanks to this theorem, which complements Schertz’s Theorem 6.3.23,
we can now write an algorithm for computing ray class fields of imaginary
quadratic fields. For simplicity, we will assume with Schertz that his theorem
is still true if we remove the restriction that the class of λZK is not of order 3
in the class group (we still assume that it is not of order 1, however; otherwise,
the result is definitely not true in general). If by any chance this technical
conjecture was false, the defining polynomial we would find at the end of
Algorithm 6.3.27 below either would not have coefficients in ZK or would not
define K(f)/K(1), and this can easily be checked. In addition, if we do not
want to depend on this assumption, it it is easily seen that it suffices to add
a finite number of special cases in Theorem 6.3.24 (see Exercise 25).

Algorithm 6.3.27 (Ray Class Field Using σ(z, L)). Given an imaginary
quadratic field K = Q

(√
D
)

of discriminant D and a conductor f, this algo-
rithm returns an irreducible polynomial P ∈ K[X ] such that the extension of
K defined by a root of P is the full ray class field of K of conductor f. We let
(1, ω) be an integral basis of K and f be the positive generator of f ∩ Z.

1. [Compute K(1)] Using Algorithm 6.3.8, compute a defining polynomial
P1(X) for the Hilbert class field K(1) of K. If f = ZK , output P1 and
terminate the algorithm.

2. [Special cases] If the pair (D, f) is in one of the special cases of Theorem
6.3.24 (1), (2), or (3), compute P (X) either directly or as a compositum of
P1(X) with a suitable cyclotomic polynomial using the remarks made after
the theorem, and terminate the algorithm.

3. [Choose λ] For a = 0, . . . , 2f − 1 and b = 0, . . . , 2f − 1, set λ← aω + b. If
NK/Q(λ) = λλ is congruent to 1 modulo 2f , test whether λ− ε ∈ f for one
of the 2 (if D < −4), 4 (if D = −4), or 6 (if D = −3) units ε of K. As soon
as this is not the case, go to step 4 (by Theorem 6.3.24, such a λ will exist).

4. [Compute Clf(K)] Using Subalgorithm 6.3.28 below, compute a list R of
primitive ideals coprime to f whose classes give the ray class group Clf(K),
and set n← |Clf(K)| = |R|.

5. [Initialize P2(X)] Set P2(X)← 1 and j ← 0 (j will be a pointer to the list
R).

6. [Loop in Clf(K)] Set j ← j + 1. If j > n, go to step 9. Otherwise, let c be
the jth element of R.

7. [Compute lattice basis of fc−1] Let (ω1, ω2) be an oriented Z-basis of the
ideal fc−1 (for example, the HNF basis in reverse order to have the correct
orientation, but any basis will do).

8. [Compute φ∗ values] Using Algorithm 6.3.19 and the improvements suggested
afterwards, compute s ← φ∗(λ, L)/φ∗(1, L), where L is the complex lattice
with basis (ω1, ω2), set P2(X)← (X − s)P2(X), and go to step 6.
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9. [Round to algebraic] Write P2(X) =
∑

0≤i≤n βiX
i, where the βi are complex

approximations to algebraic integers. For each i, use Subalgorithm 6.3.29 be-
low to compute γi ∈ ZK , which closely approximate the βi. If that algorithm
fails for some i, the accuracy used was not sufficient. In that case, double the
accuracy and go to step 5. Otherwise, set P2(X)←∑

0≤i≤n γiX
i ∈ ZK [X ].

10. [Terminate] Using [Coh0, Algorithm 3.6.4], check if P2(X) is irreducible in
K[X ]. If it is, output P2(X) as a defining polynomial forK(f)/K. Otherwise,
using Algorithm 2.1.8, compute the compositum of the extensions defined
by P1(X) and P2(X), output the polynomial P (X) ∈ K[X ] defining this
extension as a defining polynomial for K(f)/K, and terminate the algorithm.

Remark. In step 3, we use a naive enumerative method to find a suitable
value of λ. This is perfectly reasonable if f is rather small but may become
slow if f is large, although the proof of Theorem 6.3.24 shows that many
suitable λ will exist so the number of trials should be substantially lower
than 4f2. An improvement on this naive method would be to use the proof
of Theorem 6.3.24, which implies that in most cases we can take λ = (t +√
D)/(t−

√
D) for a suitable value of t and even gives a recipe for computing

t. As in the proof, this involves looking at quite a number of special cases, so
the details are left to the industrious reader (Exercise 28).

In step 4, we need to compute a list of primitive ideals coprime to N (f)
(or, equivalently, to f) whose classes enumerate the ray class group. There are
at least two methods for doing this. The first one is to compute some integral
ideals coprime to f which enumerate the ray class group (this is easily done
from the SNF), and then multiply these ideals by some α ≡ 1 (mod f) so as
to make them primitive and coprime to f . Experiment shows that the ideals
obtained in this manner are usually very large, so this method should not be
used.

The second method is simply to compute the discrete logarithms in
Clf(K) of the primitive ideals of K coprime to f by increasing norm un-
til all possible values have been obtained. Although this may take some time
if f and D are large, we must keep in mind that we perform this computation
in order to compute a ray class field defining polynomial , hence that it is
unreasonable to do this computation explicitly if f and D are too large. We
thus use the following algorithm.

Subalgorithm 6.3.28 (Primitive Representatives of Ray Class Group). Let
K be an imaginary quadratic field, let f be a conductor of K, let f be the positive
generator of f ∩ Z, and let

Clf(K) =
⊕

1≤i≤r
(Z/diZ)ai

be the SNF of the ray class group modulo f. This algorithm computes a list R
of ideals c that are primitive and coprime to f and whose classes form exactly
the ray class group Clf(K) (so that, in particular, |R| = |Clf(K)|).
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1. [Initialize] Set R ← ∅, n ← |Clf(K)|, B ← 10n, b ← 0, L ← (0, . . . , 0)
(vector with n components initialized to 0), and l← 0.

2. [Compute ideal list] Using Algorithm 2.3.23, compute the list L of ideals of K
of norm less than or equal to B (where Lj contains the list of ideals of norm
equal to j), and set j ← b.

3. [Loop on ideal norms] Set j ← j + 1. If j > B, set B ← 2B, set b ← B,
and go to step 2. Otherwise, if gcd(f, j) > 1, go to step 3, and if not, set
S ← Lj , s← |S|, and k ← 0 (k will be a pointer to the list S).

4. [Loop on elements of S] Set k ← k + 1. If k > s, go to step 3. Otherwise,
let c be the kth element of S, given in HNF. If the bottom-right entry of the
HNF of c is not equal to 1 (in other words, if c is not a primitive ideal), go to
step 4.

5. [Compute discrete logarithm] (Here c is a primitive ideal coprime to f .) Using
Algorithm 4.3.2, compute the discrete logarithm X = (x1, . . . , xr)

t of the
ideal c in the ray class group Clf(K), with 0 ≤ xi < di.

6. [Compute index and loop] Set

m← 1 + xr + dr(xr−1 + dr−1(· · ·x2 + d2x1)) .

If the mth entry of the vector L is not equal to 0, go to step 4.

7. [Increase list R] Set the mth entry of L equal to 1, set R← R∪{c}, and set
l ← l + 1. If l < n, go to step 4; otherwise, output the list R and terminate
the subalgorithm.

Remark. There are still other methods for performing the above task.
One is to take only prime ideals above prime numbers not dividing f . A
better method is to compute a special list of ideals which directly computes
primitive ideals coprime to f , and to compute discrete logarithms on the
fly by computing only the discrete logarithms of the prime ideal factors. We
leave the details to the reader (Exercise 26). Since the time for performing
this computation is rather small compared to the time for computing the
values of the function φ∗ in Algorithm 6.3.27, it is probably not worthwhile
to take the trouble of doing this.

Finally, we use the following simple algorithm for detecting whether a
complex number is close to an element of ZK . Evidently this algorithm is
much simpler than the corresponding algorithms in the real quadratic case
given in Exercises 3 and 5.

Subalgorithm 6.3.29 (Is β ∈ ZK?). Let K be an imaginary quadratic field
of discriminant D, and let β be given by a complex numerical approximation
β = x+ iy. This algorithm says whether or not it is plausible that β ∈ ZK ; if it
is, it outputs (a, b) ∈ Z2 such that β = (a+ b

√
D)/2.

1. [Compute a and b] Set a0 ← 2x, a← ⌊a0⌉, b0 ← 2y/
√
|D|, and b← ⌊b0⌉.
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2. [Check and terminate] If |a− a0| > 10−5 or |b− b0| > 10−5 or a− bD is odd,
output a message saying that β /∈ ZK . Otherwise, output (a, b) and terminate
the subalgorithm.

6.4 Exercises for Chapter 6

1. In the situation of Section 6.1.2, show that we always have LS(0, χ) = 0 and
that if χ is an even character we also have L′

S(0, χ) = 0.

2. In the computation of Hilbert class fields of real quadratic fields, we need to
compute φ(n) = E1(cn) for a fixed constant c and n = 1, . . . , n = nmax, where
nmax is a bound depending on the necessary accuracy.

a) Let uk(n) be the value of the kth derivative of φ(x) at x = n. Show that
for fixed n, uk(n) satisfies the following second-order linear recurrence
relation:

nuk(n) = (cn+ k)uk−1(n) − cuk−2(n) .

b) Using Taylor’s formula, deduce a method for computing φ(n − a) and
φ′(n− a) from φ(n) and φ′(n) for any reasonably small a.

c) Write an algorithm for simultaneously computing all the values φ(n) for
1 ≤ n ≤ nmax by starting at nmax using the formula given in [Coh0,
Proposition 5.6.12] and working backwards at variable speed. (When n is
small, it will again be necessary to use [Coh0, Proposition 5.6.12].)

3. Let K be a real quadratic field, call τ1 and τ2 the two real embeddings of K,
and let γ ∈ ZK . Assume given a good approximation β of τ2(γ) (such that
|τ2(γ) − β| < ε, say), and an upper bound B on |τ1(γ)|. As suggested in the
text, write a naive algorithm that finds all possible γ (and that gives an error
message if ε is not sufficiently small).

4. Complete the proof of Proposition 6.2.5 by showing that if ε < 1/(3(B+1)(
√
D+

1)) we necessarily have z = 0. It will be important to use the following results
on continued fractions.

a) If |α− p/q| ≤ 1/(2q2), then p/q is a convergent to the continued fraction
expansion of α.

b) If pn/qn is the nth convergent to the continued fraction expansion of α
and an is the nth partial quotient, then |α− pn/qn| ≥ 1/((an + 2)q2n).

c) The largest partial quotient occurring in the continued fraction expansion

of ω = (δ +
√
D)/2 with δ = D mod 2 is equal to D.

5. Same exercise as Exercise 3, but using the Fincke–Pohst algorithm on the
quadratic form

q(x, y, z) =

„

B

ε

«2

(x+ yω2 − βz)2 + (x+ yω1)
2 +B2z2

together with Proposition 6.2.5.

6. By taking for K suitable noncyclic complex cubic fields, show that when K/Q
is not a cyclic extension, the conclusion of Theorem 6.2.8 can be true or false
depending on K. In the specific case of cubic extensions, try to find a necessary
and sufficient condition for the theorem’s validity (I do not know the answer
to this question, but apparently the conclusion of the theorem is, for example,
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always false if the class number of K is equal to 2, and always true if it is equal
to 3).

7. Modify the Polred algorithm ([Coh0, Algorithm 4.4.11]) so that it outputs as
many polynomials as desired, and not exactly the degree of the polynomial to
be reduced (you can, for example, use the Fincke–Pohst algorithm).

8. Fill in the details of the proof of Algorithm 6.3.2.

9. Using the transformation formula for the η-function, prove the transformation
formula for gp,q(τ ) given in Proposition 6.3.3.

10. Show that
gp,q,e(a

−1) = gp̄,q̄,e(a)

and that this is not always equal to gp,q,e(a).

11. Let K be an imaginary quadratic field of discriminant D, let p a prime such that
“

D
p

”

6= −1, and let p be a prime ideal of K above p. Denote as usual by K(1)

the Hilbert class field of K. Finally, let π ∈ K(1) be such that pZK(1) = πZK(1)

(which must exist by Furtwängler’s capitulation theorem). By using quotients
of values of η(z) at suitable points, show how one can compute π analytically
without using the solution to the principal ideal problem in K(1) (see [Sch1]
for help).

12. Fill in the details of the proof of Proposition 6.3.11. In particular, prove the
formula for the Weierstrass ℘ function used in the proof of (3) directly from the
definition of ℘.

13. Using Proposition 6.3.11 to reduce to the fundamental domain, as well as Al-
gorithm 6.3.13, write an algorithm for computing the Weierstrass ζ-function
ζ(z, L).

14. Let η(τ ) = q1/24Q

n≥1(1 − qn) be the Dedekind eta function.

a) Show that η′(τ )/η(τ ) = 2iπE2(τ )/24.
b) Deduce from Corollary 6.3.12 that for any γ = ( a b

c d ) ∈ PSL2(Z), there
exists a constant v(γ) ∈ C∗ such that η((aτ + b)/(cτ + d)) = v(γ)(cτ +

d)1/2η(τ ).

c) Show that η(−1/τ ) = (τ/i)1/2η(τ ), where the square root is taken with
positive real part.

d) More generally, show that v(γ) is a 24th root of unity and prove the formula
for v(γ) given before Algorithm 6.3.2 (this is long and tedious).

15. Fill in the details of the proof of Proposition 6.3.14, and using it, write an
algorithm for computing σ(z, L) by first reducing to the fundamental domain.

16. Give the details of the proof of Corollary 6.3.16.

17. By computing the product of two versions of the Jacobi triple-product identity
(Proposition 6.3.15) and using the power series expansion of the eta function
(Corollary 6.3.16), prove the Jacobi quintuple-product identity

Y

n≥1

(1 − qnu)

„

1 − qn

u

«

(1 − qn)(1 − q2n−1u2)

„

1 − q2n−1

u2

«

=
X

k≥0

„

1 − k

3

«

q
k(k+1)

6
uk+1/2 − u−k−1/2

u1/2 − u−1/2
,
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where

„

1 − k

3

«

is the Legendre symbol equal to 1, 0, or −1 if k is congruent

to 0, 1, or 2 modulo 3.

18. Show that
Y

n≥1, 4∤n

(1 − qn)8 + 8q = q

„

η8(τ )

η8(4τ )
+ 8

«

is an even function of q (you may need some knowledge of modular forms to
solve this exercise).

19. Give a good upper limit for the number of terms to be used in the series occurring
in step 5 of Algorithm 6.3.19 for a given accuracy, depending only on Im(τ ) and
on |Im(z2)|.

20. Modify Algorithm 6.3.19 so that it computes directly the ratio σ(z, L)/σ(z′, L)
for two complex numbers z and z′.

21. Give an explicit upper bound for |φ∗(z, L)| on C, which should even be inde-
pendent of L.

22. Read [Sch1], [Sch2], and [Sch3], and write and implement the corresponding
algorithm for computing ray class fields of imaginary quadratic fields using the
Weierstrass ℘-function.

23. Modify Algorithm 6.3.27 so that it computes the ray class field corresponding
to a congruence subgroup (f, C), in a way similar to Algorithm 6.3.8.

24. Give an example of an imaginary quadratic field K of discriminant D < −4,
of a conductor f, and of a λ ∈ ZK r Z such that NK/Q(λ) ≡ 1 (mod 2f) but
K(f) 6= K(1)(θλ,ZK ), where as usual we set f ∩ Z = fZ.

25. Modify Theorem 6.3.24 so that its special cases also deal with λZK of order
3 in the ray class group, and modify Algorithm 6.3.27 accordingly. (Hint: the
special cases for D < −4 are f = 2ZK when D ≡ 5 (mod 8) or D ≡ 8 (mod 16);

f = 4ZK when D ≡ 1 (mod 4); f = pa
3p′

3
b

for 3ZK = p3p
′
3 with (a, b) = (2, 0),

(1, 1), (0, 2), (2, 1), (1, 2) and (2, 2) when D ≡ 1 (mod 3); f = p2
3 and f = p3

3

when D ≡ 0 (mod 3); f = 5ZK when
`

D
5

´

= −1; f = pa
7p′

7
b

for 7ZK = p7p
′
7 with

(a, b) = (1, 0), (0, 1) and (1, 1) when
`

D
7

´

= 1; f = pℓ if ℓ | D and ℓ > 3; f = 2f′

if f′ is a conductor prime to 2 belonging to the above list and D ≡ 5 (mod 8) or
D ≡ 8 (mod 16); plus 18 conductors if D = −3 and 8 conductors if D = −4.)

26. Write an algorithm analogous to Algorithm 2.3.23, modified in two ways. First,
it should directly compute only primitive ideals prime to f (in other words
it should not compute all ideals first and then remove unsuitable ideals), and
second it should compute the discrete logarithms of all the ideals by adding the
discrete logarithms of the prime ideal factors along the way.

27. Complete the proof of Theorem 6.3.24 (4) for D = −3 and D = −4.

28. Write a detailed algorithm that uses the proof of Theorem 6.3.24 instead of a
naive enumeration method to find a λ suitable for step 3 of Algorithm 6.3.27.
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In Chapter 3 we studied variants of class and unit groups, the ray class
groups Clm(K), as well as the associated unit groups Um(K) of units multi-
plicatively congruent to 1 modulo m. The fundamental application of these
notions through the deep theorems of class field theory is the construction of
Abelian extensions.

In this chapter we will study other variations of class and unit groups. We
will first study the generalization to the relative case of class groups, units,
regulators, and related quantities. As in the preceding chapters dealing with
relative information, the interest of this is twofold. On the one hand, a relative
structure is almost always richer than an absolute one, and the absolute one
can usually be deduced quite simply from the relative one. On the other
hand, it generally gives much more efficient methods of computation. For
example, the subexponential methods for class group and unit computations
described in [Coh0, Chapter 6] become extremely costly for degrees larger
than 20, say, even for moderate discriminants. If the field being considered
is given as a relative extension, however (and for fields of large degree this is
usually the case), we can use the methods described in this chapter to reach
larger degrees.

The other variant of class and unit groups we will study are the S-class
and unit groups. These have already been implicitly or explicitly used in the
preceding chapters, for example, in the construction of Kummer extensions.
As an application, we give results and algorithms for solving relative norm
equations in many cases, mainly due to D. Simon.

Of course, all these variants may be combined, and we leave to the reader
the study of these even more general groups.

7.1 Relative Class Groups

As usual, let K be a number field, which we take as base field, and let L be a
relative extension of K. There are two maps that can be used to link objects
attached to the field K with similar objects attached to the field L. One is
the injection iL/K from K to L, and the second is the norm map NL/K from
L to K. Note that if [K : L] = n, we have NL/K ◦iL/K = [n]K , where for
any integer m and Abelian group G, [m]G denotes the map that raises to the
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mth power in G. We will thus have at least two different notions of relative
objects, one obtained through the use of the map iL/K , the other through
the use of the map NL/K .

In this section, we want to define relative class groups. As mentioned
above, there are (at least) two ways to do this.

7.1.1 Relative Class Group for iL/K

We begin by the following definition.

Definition 7.1.1. (1) A nonzero ideal I of L will be called pseudo-principal
if there exist α ∈ L and an ideal a of K such that I = αaZL. In a
language that we have already used, I is pseudo-principal if it is generated
by a single pseudo-element.

(2) Let P∗ be the group of pseudo-principal ideals, and let I be the group of
fractional ideals of L. The relative pseudo-class group is defined by

Cli(L/K) = I/P∗ ,

and we will call hi(L/K) = |Cli(L/K)| the relative pseudo-class number.

It is clear that P∗ is a multiplicative subgroup of I containing the group
P of fractional principal ideals of L, and hence Cli(L/K) is a quotient of
Cl(L), and in particular is finite. Note also that if h(K) = 1, then P∗ = P ,
and hence Cli(L/K) = Cl(L). This can be made more precise as follows.

By abuse of notation, we will again denote by iL/K the natural map from

Cl(K) to Cl(L) defined by iL/K
(
a
)

= aZL for an ideal a of K. It is clear
that this is well-defined and is a group homomorphism from Cl(K) to Cl(L).
Note that, contrary to the map iL/K defined on elements , it is not necessarily
injective (see Exercise 1). It is then clear that

Cli(L/K) = Cl(L)/iL/K(Cl(K)) = Coker(iL/K) .

Definition 7.1.2. Let iL/K be the natural map from Cl(K) to Cl(L) as
above. We will say that an ideal a of K capitulates in L if iL/K(a) = aZL
is a principal ideal of ZL. The group Cli,L(K) = Ker(iL/K) of ideal classes
of K which capitulate in L will be called the capitulating subgroup of Cl(K)
with respect to the extension L/K. Since the field L is usually understood, we
will simply write Cli(K) instead of Cli,L(K).

Note for future reference the following exact sequence, which is the exact
translation of the definitions:

1 −→ Cli(K) −→ Cl(K)
iL/K−→ Cl(L) −→ Cli(L/K) −→ 1 . (1)

Important example. Let L be the Hilbert class field ofK (see Definition
3.5.4). Then a well-known theorem of Furtwängler tells us that every ideal
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of K capitulates in L, so that Cli(K) = Cl(K) in that case. Of course, this
does not imply that Cl(L) is trivial. In fact, a theorem of Golod–Shafarevitch
says that there exist infinite class field towers , where each field in the tower
is the Hilbert class field of the preceding one and, in particular, no field
in the tower can have a trivial class group. By Theorem 2.5.1, in such a
tower, the root discriminant stays constant, and in the totally complex case,
the smallest known root discriminant is due to J. Martinet with the field
K = Q(cos(2π/11),

√
−46) as base field, with root discriminant equal to

92.368 . . . . For recent progress on this subject, where the root discriminant
has been improved to 82.100 . . . by using towers of tamely ramified extensions
instead of unramified extensions, see [Haj-Mai].

7.1.2 Relative Class Group for N L/K

We now come to the second notion of relative class group.
Let NL/K be the norm map from fractional ideals of L to fractional ideals

of K, which can also be considered as a group homomorphism from Cl(L)
to Cl(K). Once again, this map is in general neither surjective nor injective
(see Exercise 2).

Definition 7.1.3. The relative norm-class group is the subgroup of Cl(L)
defined by

ClN (L/K) = Ker(NL/K) ,

and hN(L/K) = |ClN (L/K)| will be called the relative norm-class number.

Note that while the group Cli(L/K) was a quotient group of Cl(L), the
group ClN (L/K) is a subgroup of Cl(L). Therefore, it is also finite and equal
to Cl(L) when h(K) = 1.

In a dual manner to the capitulating subgroup, we set the following defi-
nition.

Definition 7.1.4. Let NL/K be the norm map from Cl(L) to Cl(K). The
group

ClN,L(K) = Coker(NL/K) = Cl(K)/NL/K(Cl(L))

will be called the norm-default quotient of Cl(K) in the extension L/K and
will simply be denoted ClN (K) when L is understood.

As above, note for future reference the following exact sequence, which is
the exact translation of the definitions:

1 −→ ClN (L/K) −→ Cl(L)
NL/K−→ Cl(K) −→ ClN (K) −→ 1 . (2)

A natural question to ask is whether the two notions of relative class
group are related, apart from the fact that they are, respectively, a quotient
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and subgroup of the absolute class group. This is essentially answered by
Theorem 7.1.5 below and by the counterexamples following its proof.

Let n = [L : K]. As for elements, we have

NL/K

(
iL/K

(
a
))

= NL/K

(
aZL

)
= a

n
,

hence NL/K ◦iL/K = [n]Cl(K). Furthermore, we have a natural map ψN,i
from ClN (L/K) to Cli(L/K) which sends an ideal class I of L belonging
to Ker(NL/K) to the class of I modulo iL/K(Cl(K)). Finally, we have an-

other map ψi,N from Cli(L/K) to ClN (L/K) which sends an element Ī of

Cli(L/K) = Cl(L)/iL/K(Cl(K)) to Ih(K) in ClN (L/K), where h(K) is the
class number of K. Indeed, we have

NL/K(Ih(K)) = NL/K(I)h(K) ,

which is a principal ideal of K, so Ih(K) ∈ Ker(NL/K). Furthermore, if

we replace I by αaI for α ∈ L and a an ideal of K, Ih(K) is multiplied by
αh(K)ah(K), which is a principal ideal of L since ah(K) is a principal ideal ofK;
hence the map ψi,N is well-defined and is evidently a group homomorphism.

By definition, we have ψi,N ◦ ψN,i = [h(K)]ClN (L/K) and ψN,i ◦ ψi,N =
[h(K)]Cli(L/K).

We have the following simple but important result.

Theorem 7.1.5. Let L/K be a relative extension of degree n, and let h(K)
be the class number of K.

(1) If (n, h(K)) = 1 (for example, if K has class number 1 ), the natural map
ψN,i from ClN (L/K) to Cli(L/K) defined above is an isomorphism, and
ClN (K) = Cli(K) = {1}.

(2) More generally, let p be a prime number, and for any group G, denote
by Gp its p-Sylow subgroup. Then, if p ∤ (n, h(K)), the map ψN,i induces
an isomorphism between ClN (L/K)p and Cli(L/K)p.

(3) Assume that p ∤ h(K). Then

ClN (L/K)p
ψN,i≃ Cli(L/K)p ≃ Cl(L)p and

ClN (K)p = Cli(K)p = {1} .

(4) Assume that p ∤ n. Then

ClN (L/K)p
ψN,i≃ Cli(L/K)p ,

NL/K(Cl(L))p ≃ NL/K(Cl(L)p) ≃ (Cl(K)/Cli(K))p ≃ Cl(K)p , and

ClN (K)p = Cli(K)p = {1} .

(5) The exponents of the finite Abelian groups Cli(K) and ClN (K) both di-
vide (n, h(K)).
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Another way of stating part (2) of this theorem is to say that the only
primes for which the two class groups can differ are the primes dividing
(n, h(K)).

Proof. It is clear that statements (3) and (4) imply statement (2), which

implies statement (1). Furthermore, the formulas NL/K

(
iL/K

(
a
))

= a
n

and

a
h(K)

= 1 in Cl(K) immediately imply (5). Thus we need only to prove (3)
and (4). Recall from Proposition 4.1.17 that in the category of finite Abelian
groups, taking p-Sylow subgroups is an exact functor. Applying this to the
two exact sequences (1) and (2), which define the two notions of class groups,
we obtain the following two exact sequences:

1 −→ Cli(K)p −→ Cl(K)p
iL/K,p−→ Cl(L)p −→ Cli(L/K)p −→ 1

and

1 −→ ClN (L/K)p −→ Cl(L)p
NL/K,p−→ Cl(K)p −→ ClN (K)p −→ 1 . (3)

Assume first that p is a prime such that p ∤ h(K), in other words that
Cl(K)p = {1}. The two exact sequences above imply immediately that
Cli(K)p = ClN (K)p = {1} and that Cli(L/K)p ≃ Cl(L)p ≃ ClN (L/K),
proving (3).

Assume now that p is a prime such that p ∤ n. As already mentioned,
NL/K ◦iL/K = [n]Cl(K); hence by restriction, this gives the map [n]Cl(K)p

from Cl(K)p to itself. Since Cl(K)p is a p-group, it follows that the map
[n]Cl(K)p

is a bijection of Cl(K)p onto itself (its inverse is the map [n′]Cl(K)p

for any integer n′ such that nn′ ≡ 1 (mod |Cl(K)p|)). Therefore, with evident
notation the map iL/K,p is injective, and the map NL/K,p is surjective, so
Cli(K)p = ClN (K)p = {1}, as claimed. By the exactness of p for finite
Abelian groups, it also follows that

NL/K(Cl(L))p ≃ NL/K(Cl(L)p) ≃ (Cl(K)/Cli(K))p ≃ Cl(K)p .

The careful reader will note that the first two groups above are not the same,
although they are isomorphic in this case.

We now show that ψN,i is a bijection on the p-parts. Assume first that I
is an ideal of L such that ψN,i

(
I
)

= 1Cli(L/K) and that the class of I is in
ClN (L/K)p. This means that there exists an ideal a of K and α ∈ L∗ such
that I = aαZL. Thus NL/K(I) = anNL/K(α). On the other hand, since
the class of I is in ClN (L/K), we have NL/K(I) = βZK for some β ∈ K∗.
Thus an is a principal ideal of K, and in particular anZL is a principal ideal
of L. However, since I ∈ ClN (L/K)p, I

p is a principal ideal of L so apZL
is a principal ideal of L; since (n, p) = 1, it follows that aZL, hence also
I = aαZL, is a principal ideal of L, thus proving that ψN,i is injective.

To prove that ψN,i is surjective, it is now sufficient to prove that the
groups ClN (L/K)p and Cli(L/K)p have the same cardinality. This follows
immediately from the exact sequences (3), which give
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|Cli(L/K)p| = |Cl(L)p| / |Cl(K)p| = |ClN (L/K)p| ,

thus finishing the proof of the theorem. ⊓⊔

Remarks

(1) It is easy to give examples for which Cli(L/K) and ClN (L/K) differ. The
following example is due to D. Simon. Take K = Q(y) with y2 + 30 =
0 and L = K

(√
y
)
. Then one can show that Cl(K) ≃ Z/2Z × Z/2Z,

Cl(L) ≃ Z/4Z × Z/2Z, Cli(L/K) ≃ Z/2Z × Z/2Z, and ClN (L/K) ≃
Z/2Z.

(2) The theory of the map iL/K , and in particular of capitulation, is not
well understood apart from the beautiful theorem of Furtwängler already
mentioned and more recent generalizations (see [Suz]). To the contrary,
the theory of the map NL/K is quite well understood, and is essentially
class field theory.

(3) In algorithmic practice, however, as we shall see in Section 7.3.3, the
natural group that is computed is the group Cli(L/K) and the associated
unit group Ui(L/K) that we will define below in Definition 7.2.2, and not
the group ClN (L/K), which can of course also be computed if desired,
but less naturally.

7.2 Relative Units and Regulators

Since we know that units are intimately linked to class groups, we will now
study the notion of relative units and relative regulators. As before, there are
two such notions, one linked to the map iL/K , the other to the map NL/K .

7.2.1 Relative Units and Regulators for iL/K

Recall that the absolute unit group U(K) could be defined by the following
exact sequence:

1 −→ U(K) −→ K∗ φ−→ P −→ 1 ,

where φ(α) = αZK . Hence, we will define the first notion of relative units in
a similar way. Let P∗ be the group of pseudo-principal ideals in the sense of
Definition 7.1.1. We first must generalize the map φ. For this, we introduce
the following definition.

Definition and Proposition 7.2.1. Let L/K be a relative extension of
number fields, and denote by I(K) the group of fractional ideals of K. The
extended multiplicative group L∗K is the quotient group of I(K)×L∗ by the
equivalence relation defined by
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(a, α) R (b, β) ⇐⇒ ∃γ ∈ K∗, b = aγ and β =
α

γ

or, equivalently, by

(a, α) R (b, β) ⇐⇒ αa = βb ,

where αa and βb are considered as sub-ZK-modules of L.

Proof. We must show that the two definitions of the equivalence relation
R are the same. Indeed, it is clear that b = aγ and β = α/γ implies αa = βb.
Conversely, assume that this is true. Then ab−1 = (β/α)ZK , hence β/α ∈
ab−1 ⊂ K, so we can take γ = α/β. ⊓⊔

Remark. In the case where h(K) = 1, and in particular in the absolute
caseK = Q, it is clear that in every equivalence class, there is a representative
of the form (ZK , α), where α is defined modulo units of K, hence L∗K ≃
L∗/U(K). More generally, as a set (but of course not as a group), L∗K can
be considered as the union of h(K) copies of L∗/U(K).

We can now define in a natural way the map φ from L∗K to P∗ by setting

φ
(
(a, α)

)
= αaZL .

By definition of the equivalence relation R, this map is well-defined and is a
group homomorphism. Guided by the absolute case, we will define the group
of relative pseudo-units as the kernel of φ.

Definition 7.2.2. We say that an element (a, α) of L∗K is a relative pseudo-
unit in L/K if αaZL = ZL. The set of relative pseudo-units in L/K is a
multiplicative group denoted by Ui(L/K).

Proposition 7.2.3. (1) We have the following exact sequence

1 −→ U(K)
iL/K−→ U(L)

j−→ Ui(L/K)
π−→ Cli(K) −→ 1 , (4) ,

where j(α) = (ZK , α) and π
(
(a, α)

)
= a in Cli(K).

(2) The group Ui(L/K) is a finitely generated Abelian group of rank r(L) −
r(K), where r(N) denotes the unit rank of a number field N .

Proof. (1). If α ∈ U(L), then αZL = ZL, so αZKZL = ZL. Hence j(α) ∈
Ui(L/K) is well-defined and is a group homomorphism. If (a, α) = (b, β)
in Ui(L/K), there exists γ ∈ K∗ such that b = γa and β = α/γ, and
furthermore αaZL = ZL. It follows that a and b are in the same ideal class in
Cl(K) and that the class of a is in the capitulating class group, so the map
π is well-defined and is a group homomorphism.

Let us show exactness. Exactness at U(K) follows from the fact that iL/K
is injective on elements (recall that it was not injective on ideal classes). The
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kernel of j is the set of α ∈ U(L) such that (ZK , α) is the unit element of the
group Ui(L/K), which is the class of (ZK , 1). By definition of the equivalence
relation, this means that there exists u ∈ K∗ such that ZK = uZK and
α = u · 1, in other words that α = u is a unit of ZK , so the kernel of i is the
group U(K), thus showing exactness at U(L).

The kernel of π is the set of (a, α) such that a is a principal ideal in ZK ,
hence such that there exists γ ∈ K∗ with a = γZK , and also αaZL = ZL.
Hence, (a, α) = (ZK , αγ), and ZL = αaZL = αγZL, so αγ ∈ U(L) and the
kernel of π is thus equal to j(U(L)), proving exactness at Ui(L/K).

Finally, we must show that π is surjective. But if a is an ideal class in
Cli(K), there exists α ∈ L∗ such that aZL = αZL, and it is clear that
(a, 1/α) ∈ Ui(L/K) and satisfies π

(
(a, 1/α)

)
= a, thus finishing the proof of

(1).

(2). From (1), we deduce that the following short exact sequence is exact:

1 −→ U(L)/iL/K(U(K)) −→ Ui(L/K)
π−→ Cli(K) −→ 1 . (5)

Since Cli(K) is a finite Abelian group and iL/K is injective, it follows that
the rank of Ui(L/K) is equal to r(L)− r(K), as claimed. ⊓⊔

Corollary 7.2.4. Assume that (n, h(K)) = 1. Then the group Ui(L/K) is
isomorphic to the quotient group U(L)/iL/K(U(K)).

Proof. By Theorem 7.1.5 (1), when (n, h(K)) = 1 we have Cli(K) = {1},
and so the corollary follows immediately from Proposition 7.2.3. ⊓⊔

Corollary 7.2.5. There exists a six-term exact sequence

1 −→ U(K)
iL/K−→ U(L)

j−→ Ui(L/K)

−→ Cl(K)
iL/K−→ Cl(L) −→ Cli(L/K) −→ 1 . (6)

Proof. This is a trivial consequence of exact sequences (1) and (4). ⊓⊔

This six-term exact sequence is reminiscent of exact sequences occurring
in homology/cohomology theories. This is certainly not a coincidence, since
one can interpret the class group Cl(K) as the torsion part of the algebraic
K-groupK0(ZK) and the unit group U(K) as the algebraicK-groupK1(ZK)
(see [Ros]).

Determining theoretically the torsion subgroup of Ui(L/K) is much more
difficult for several reasons, not the least of which being that in general the
exact sequence (4) is not split. Before stating a result in this direction, we
need the following generalization of [Coh0, Theorem 2.4.12].
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Proposition 7.2.6. Let A be an m×n integer matrix of rank n, hence with
m ≥ n. There exist two unimodular matrices U and V of size n × n and
m×m, respectively, such that

B = VAU =





d1 0 . . . 0

0 d2
. . .

...
...

. . .
. . . 0

0 . . . 0 dn
0 . . . . . . 0
...

...
...

...
0 . . . . . . 0





with di−1 | di for i > 1.

Proof. As usual, denote by At the transpose of A, which is an n×m matrix
of rank n. By the theorem on the HNF ([Coh0, Theorem 2.4.4]), there exists
a unimodular m ×m matrix V1 and an n × n matrix H in HNF such that
AtV1 = (0|H). Calling V2 the matrix obtained by putting the first m − n
columns of V1 after the last n columns, the matrix V2 is still unimodular

and AtV2 = (H |0), hence V t2A =
(
Ht

0

)
. Let V3 and U be n× n unimodular

matrices such that V3H
tU = D = diag(di) is in SNF. If we set

V =

(
V3 0
0 Im−n

)
V t2 ,

then VAU =
(
D
0

)
= B satisfies the conditions of the proposition. Note of

course that the above proof gives an algorithm to compute U , V , and B. ⊓⊔

We can now give some indication on the structure of U(L)/iL/K(U(K)).
To simplify notation, we identify K with a subfield of L; in other words, we
omit the map iL/K .

Proposition 7.2.7. There exists a generator ζ of the group of roots of unity
of L of order w(L), a system of fundamental units (ηi)1≤i≤r(L) of L, an
integer w(L/K), and integers di and ei for 1 ≤ i ≤ r(K) such that:

(1) w(L/K) = w(L)/w(K) and ζw(L/K) is a generator of the group of roots
of unity of K;

(2) (ζeiηdi

i )1≤i≤r(K) is a system of fundamental units of K;
(3) for each i > 1, we have di | di−1.

Proof. Let ζ (resp., ζ′) be a generator of the group of roots of unity of
L (resp., K), let (η′i)1≤i≤r(L) (resp., (ε′i)1≤i≤r(K)) be an arbitrary system of
fundamental units of L (resp., K). Since we identify K with a subfield of L,
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there exists an integral (r(L) + 1) × r(K) matrix A = (ai,j) such that for
every j with 1 ≤ j ≤ r(K) we have

ε′j =
∏

0≤i≤r(L)

η′i
ai,j ,

where we set η′0 = ζ to simplify notation.

Write A =
(
A0

A1

)
, where A0 is a 1 × r(K) matrix and A1 is an r(L) ×

r(K) matrix. By Proposition 7.2.6 applied to the matrix A1, we can find
unimodular matrices U and V1 such that B1 = V1A1U =

(
D
0

)
, where D =

diag(d1, . . . , dn) and di−1 | di for i > 1. If we set

V =

(
1 0
0 V1

)
,

then

B = VAU =




A0U
D
0



 .

Since
[ε′1, . . . , ε

′
r(K)] = [ζ, . . . , η′r(L)]A ,

we have
[ε1, . . . , εr(K)] = [ζ, η1, . . . , ηr(L)]B ,

where
[ε1, . . . , εr(K)] = [ε′1, . . . , ε

′
r(K)]U

and
[ζ, η1, . . . , ηr(L)] = [ζ, η′1, . . . , η

′
r(L)]V

−1 .

Since the matrix U is unimodular, (ε1, . . . , εr(K)) is a system of fundamental
units of K, and similarly since V1 is unimodular, (η1, . . . , ηr(L)) is a system
of fundamental units of L.

Note finally that ζ′ = ζm for some integer m, and it is clear that ζw(L/K)

with w(L/K) = (m,w(L)) is also a generator of the group of roots of unity of
K and that w(L/K) | w(L) (see Exercise 4). Since this group is of orderw(K),
we have w(L/K) = w(L)/w(K), thus finishing the proof of the proposition
if we write A0U = (e1, . . . , er(K)). ⊓⊔

Remark. It could be hoped that one can take ei = 0 for all i, thus giving
the cleaner formulas εi = ηdi

i for 1 ≤ i ≤ r(K). This is not possible in general
(see Exercise 5).

Corollary 7.2.8. Keep the notation of the above proposition, denote as usual
by µ(L) the group of roots of unity of L, and set w(L/K) = w(L)/w(K).
Then:
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(1)
U(L)

µ(L) · iL/K(U(K))
=

⊕

1≤i≤r(K)

(Z/diZ)ηi ⊕
⊕

r(K)<i≤r(L)

Zηi ,

where η denotes the class of η modulo µ(L) · iL/K(U(K)).
(2) The integers di are unique, in other words they do not depend on the

particular choice made for the ηi satisfying Proposition 7.2.7.
(3) For all i we have di | n = [L : K].
(4) We have n ≡ w(K) (mod w(L/K)) and in particular (w(L/K), w(K)) |

n.
(5) We can choose the ei in any fixed residue set modulo (w(L/K), di), for

example, such that −(w(L/K), di)/2 < ei ≤ (w(L/K), di)/2.

Proof. Statement (1) follows immediately from Proposition 7.2.7. Note
that because of the presence of the integers ei, we cannot give such a clean
formula for U(L)/iL/K(U(K)).

By (1), diag(di) is the Smith normal form of the torsion submodule of
U(L)/(µ(L) · iL/K(U(K))). Hence the uniqueness of the di follows from the
uniqueness of the SNF, proving (2).

By definition of di and ei, we have εi = ζeiηdi

i , where the (εi) form a
system of fundamental units of K. Taking the norm from L to K, we obtain

εni = ζkei NL/K(ηi)
di

for some integer k such that NL/K(ζ) = ζk ∈ K. Since the εi form a system

of fundamental units and ζw(L/K) generates µ(K), there exist integers xj
such that

NL/K(ηi) = ζx0w(L/K)
∏

j

ε
xj

j .

Since the εj are independent, if we replace in the formula for εni , we obtain
xj = 0 for j 6= i and j 6= 0, dixi = n, and kei+dix0w(L/K) ≡ 0 (mod w(L)).
In particular, we see that di | n, proving (3).

Since NL/K(ζ) is a root of unity of K, there exists an integer m such

that NL/K(ζ) = ζw(L/K)m. On the other hand, since ζw(L/K) ∈ K, we have

NL/K(ζw(L/K)) = ζw(L/K)n, hence

ζw(L/K)(w(L/K)m−n) = 1

so w(L) | w(L/K)(w(L/K)m− n) or, equivalently, w(K) | w(L/K)m− n. It
follows in particular that (w(K), w(L/K)) | n, proving (4).

For any integers ui and vi we can write

εiζ
uiw(L/K) = ζei+uiw(L/K)−vidi(ηiζ

vi)di .
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Since the (εiζ
uiw(L/K)) (resp., the (ηiζ

vi)) still form a fundamental system of
units of K (resp., of L) with the same di, it follows that we can freely replace
ei by ei + uiw(L/K) − vidi or, equivalently, by ei + k(w(L/K), di) for any
integer k, and in particular we can choose ei to be in any fixed residue set
modulo (w(L/K), di), proving (5). ⊓⊔

Remark. We still have much additional freedom for modifying the ei. It
is not clear, however, if there is some canonical choice of the ei analogous to
a Hermite normal form. Since we do not know of such a choice, please note
that contrary to the di, the ei are not invariants of the extension L/K since
they depend on the specific choices of generating units in K and L.

We can now define the notion of relative regulator for the map iL/K .

Definition 7.2.9. Let L/K be a relative extension of number fields.

(1) We define Ui,L(K) (abbreviated to Ui(K)) to be the kernel of the map
iL/K from U(K) to U(L).

(2) We define the relative regulator Ri(L/K) associated to the map iL/K by
the formula

Ri(L/K) =
1

|Ui(K)|
R(L)

R(K)
.

Evidently we have Ui(K) = {1} hence Ri(L/K) = R(L)/R(K), but in-
troducing this makes the definition similar to the one that we give for NL/K

(Definition 7.2.12).

7.2.2 Relative Units and Regulators for N L/K

The second notion of relative unit is of course linked with the norm.

Definition 7.2.10. (1) We say that a pair
(
a, α

)
is a relative norm-unit if

a ∈ ClN (K) and if α ∈ U(L) is such that NL/K(α) ∈ µ(K) is a root of
unity of K. The group of relative norm-units is denoted UN(L/K).

(2) We define UN,L(K) (usually abbreviated as UN (K)) to be the cokernel of
the map NL/K from U(L) to U(K)/µ(K); in other words,

UN (K) =
U(K)

NL/K(U(L)) · µ(K)
.

We will identify the group UN,0(L/K) of units α whose relative norm is
a root of unity of K with pairs

(
ZK , α

)
. By abuse of notation, if NL/K(α)

is a root of unity, we will also call α a relative norm-unit, and UN(L/K) =
ClN (K)× UN,0(L/K).
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Proposition 7.2.11. (1) We have the following exact sequences:

1 −→ ClN (K) −→ UN(L/K) −→ U(L)
NL/K−→ U(K)

µ(K)
−→ UN (K) −→ 1

(7)
and

1 −→ ClN (L/K) −→ Cl(L)
NL/K−→ Cl(K)

−→ UN (L/K) −→ U(L)
NL/K−→ U(K)

µ(K)
−→ UN(K) −→ 1 .

(2) The group UN(K) is finite and its exponent divides n = [L : K].
(3) The rank of UN (L/K) is equal to r(L) − r(K).

Proof. Note that the map from ClN (K) to UN (L/K) is the map sending
a to

(
a, 1
)
, and the map from UN(L/K) to U(L) is the map sending

(
a, α

)

to α, so the exact sequences of (1) immediately follow from the definitions.
For (2), we note that as a quotient of U(K), UN (K) is a finitely generated
Abelian group, and if u ∈ U(K) we have NL/K(iL/K(u)) = un, hence un ∈
NL/K(U(L)), so the exponent of UN (K) divides n, and in particular since
it is finitely generated, it is finite. (3) follows from the finiteness of ClN (K),
µ(K), UN (K), and the exact sequence (7). ⊓⊔

Remarks

(1) It would have been more natural to give a direct definition of UN (L/K)
in a manner similar to what we have done for Ui(L/K), and obtain this
proposition as a consequence and not simply as the definition. I do not
see how to do this.

(2) Note that the group UN(K) is not necessarily trivial; in other words,
there may exist units of K that are not equal to norms of units of L even
up to roots of unity (see Exercise 6).

(3) Similarly to the relative pseudo-units, this can also be considered as an
exact sequence of K-groups, in a certain sense dual to the preceding one.
The nontriviality of UN (K) means that it is reasonable to continue the
sequence with something like

U(L)
NL/K−→ U(K)

µ(K)
−→ K2(ZL/ZK) −→ K2(ZL) −→ K2(ZK)

and define the relative K-group K2(ZL/ZK) accordingly. We will not
pursue this further; see [Ros] for details.

Definition 7.2.12. The relative regulator RN (L/K) associated to the map
NL/K is defined by the formula

RN (L/K) =
1

|UN(K)|
R(L)

R(K)
.
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Since the group UN (K) is in general nontrivial, RN (L/K) is not always
equal to Ri(L/K) = R(L)/R(K).

Example. I thank D. Simon for this example. Let K = Q(y), where y is
a root of y2 − y − 26 = 0, and let L be the extension of K generated by a
root of x2 − x− 184 = 0. Then one can show that
• Cl(K) ≃ C2, Cl(L) ≃ C6×C2, Cli(L/K) ≃ C6×C2, ClN (L/K) ≃ C6,

Cli(K) ≃ C2, ClN (K) = {1}.
• We have µ(K) = µ(L) = {±1}, and if u1 is a fundamental unit of

K (in fact, u1 = 8y + 37), one can prove that there exist units u2 and u3

of L such that (u1, u2, u3) is a system of fundamental units of L satisfying
NL/K(u2) = NL/K(u3) = 1. It follows in particular that U(L)/iL/K(U(K))
is a free Abelian group generated by the classes of u2 and u3.
• One can also show that UN (K) is a group of order 2 generated by the

class of u1 (hence is nontrivial), that Ui(L/K) is a free Abelian group of rank
2 generated by the classes of p2α and u3, where p2 is one of the ideals of
K above 2 (which is not principal) and α is such that p2ZL = (1/α)ZL (so
p2 capitulates in L/K), and that UN(L/K) ≃ U(L)/U(K) is a free Abelian
group of rank 2 generated by the classes of u2 and of u3, hence is not equal
to Ui(L/K).

7.3 Algorithms for Computing Relative Class and Unit
Groups

Let L/K be an extension of number fields. Using the methods of [Coh0,
Chapter 6], we can assume that we can solve all the usual problems in K,
and in particular that we know its class and unit group and a principal ideal
algorithm.

In this section, we give algorithms for computing the relative class
groups Cli(L/K), Cli(K), ClN (L/K), ClN (K) and the relative unit groups
Ui(L/K), UN (L/K), and UN (K) (recall that Ui(K) = {1}). There are two
ways to do this. One is to compute directly the absolute groups Cl(L) and
U(L) using the methods of [Coh0, Chapter 6]. This may be expensive, since
the absolute degree [L : Q] = [L : K][K : Q] can be large. The other method
is to use only relative techniques, and this is of course in the spirit of this
book and in general much more efficient. We present both methods.

7.3.1 Using Absolute Algorithms

If the absolute degree of L is not too large, we can use the methods of [Coh0,
Chapter 6] to compute Cl(L) and U(L) and to generate data so that we can
have a principal ideal algorithm in L. Using the exact sequence techniques
studied in Section 4.1, it is not difficult to compute the relative class and unit
groups. Let us see in detail how to proceed. For the sake of completeness,
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we will write the formal algorithms. These algorithms are quite technical,
however, and otherwise quite easy to reconstruct, so the reader is advised to
skip the algorithms (but not the comments) of this section at first.

• Thanks to the exact sequence (1), computing Cli(L/K) and Cli(K)
amounts to computing the cokernel and the kernel of the map iL/K considered
as a map from Cl(K) to Cl(L). This is done immediately by applying the
algorithms of Section 4.1. Note that the map iL/K is computed explicitly
by using the method explained in Section 2.5.3. This gives the following
algorithm.

Algorithm 7.3.1 (Computation of Cli(L/K) and of Cli(K)). Let (ωi, ai)
be an integral pseudo-basis, let Cl(K) = (B,DB) and Cl(L) = (C,DC) be
the SNF of the absolute class groups Cl(K) and Cl(L), where B = (bi) and
C = (Ii). This algorithm computes the SNF of Cli(L/K) and the HNF left
divisor of DB defining Cli(K).

1. [Compute absolute bases] For each j and k, compute a Z-basis (βi,j,k)i of
the ideal ajbk and set αi,j,k ← ωjβi,j,k (the (αi,j,k)i,j now form a Z-basis of
bkZL).

2. [Use principal ideal algorithm in Cl(L)] Using the principal ideal algorithm in
Cl(L) ([Coh0, Algorithm 6.5.10]), compute a matrix P = (pi,k) such that

bkZL =
∏
i Ii

pi,k
in Cl(L).

3. [Compute Cli(L/K)] Apply Algorithm 4.1.3 to the system of generators
and relations

((
Ii
)
, (P |DC)

)
, output the corresponding SNF as the SNF of

Cli(L/K) and if desired the auxiliary matrix Ua so as to be able to solve the
discrete logarithm problem in Cli(L/K).

4. [Compute U1] Apply an HNF algorithm to the matrix (P |DC), and let
U =

(
U1 U2

U3 U4

)
be a unimodular matrix and H an HNF matrix such that

(P |DC)U = (0|H). We can discard the matrices U2, U3, U4, and H (note
that this computation can be done during the SNF computation in step 3).

5. [Compute Cli(K)] Let HB be the HNF matrix of the matrix (U1|DB). Output
HB as the HNF left divisor of DB representing Cli(K) and terminate the
algorithm.

• Similarly, thanks to the exact sequence (2), computing ClN (L/K) and
ClN (K) amounts to computing the kernel and cokernel of the map NL/K

considered as a map from Cl(L) to Cl(K), which is done once again by
using the algorithms of Section 4.1. Note that the map NL/K is computed
explicitly by using Algorithm 2.5.2. The corresponding algorithm, which is
almost identical to Algorithm 7.3.1, is as follows.

Algorithm 7.3.2 (Computation of ClN (L/K) and of ClN (K)). Let (ωi, ai)
be an integral pseudo-basis, let Cl(K) = (B,DB) and Cl(L) = (C,DC) be the
SNF of the absolute class groups Cl(K) and Cl(L), where B = (bi) and C =
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(Ii). This algorithm computes the HNF left divisor of DB defining ClN (L/K)
and the SNF of ClN (K).

1. [Compute relative norms] For each j, use Algorithm 2.5.2 to compute nj ←
NL/K(Ij).

2. [Use principal ideal algorithm in Cl(K)] Using the principal ideal algorithm in
Cl(K) ([Coh0, Algorithm 6.5.10]), compute a matrix P = (pi,k) such that

nj =
∏
i bi

pi,j
in Cl(K).

3. [Compute ClN (K)] Apply Algorithm 4.1.3 to the system of generators and re-
lations

((
nj
)
, (P |DB)

)
, output the corresponding SNF as the SNF of ClN (K)

and if desired the auxiliary matrix Ua so as to be able to solve the discrete
logarithm problem in ClN (K).

4. [Compute U1] Apply an HNF algorithm to the matrix (P |DB), and let
U =

(
U1 U2

U3 U4

)
be a unimodular matrix and H an HNF matrix such that

(P |DB)U = (0|H). We can discard the matrices U2, U3, U4, and H (note
that this computation can be done during the SNF computation in step 3).

5. [Compute ClN (L/K)] Let HC be the HNF matrix of the matrix (U1|DC).
Output HC as the HNF left divisor of DC representing ClN (L/K) and ter-
minate the algorithm.

• Computing U(L)/iL/K(U(K)) is done using Algorithm 4.1.7 modified
to take into account finitely generated but infinite Abelian groups. Note that
to compute explicitly the map iL/K on elements, one simply needs to express
a primitive element of K in terms of a primitive element of L, which is done
using Algorithm 2.1.11, and discrete logarithms in U(L) are computed using
Algorithm 5.3.10. In the following algorithm on units, we will denote by rK
(resp., rL) the rank of the group of units ofK (resp., L) and by rL/K the rank
of the relative unit groups, so that rL/K = rL − rK . The formal algorithm
for U(L)/iL/K(U(K)) is as follows.

Algorithm 7.3.3 (Computation of U(L)/iL/K(U(K))). Let K = Q(α), let
L = K(θ), and let A ∈ K[X ] such that α = A(θ), found by using Algorithm
2.1.11. On the other hand, let ζK (resp., ζL) be a generator of µ(K) (resp.,
µ(L)), let (εi)1≤i≤rK (resp., (ηi)1≤i≤rL) be a system of fundamental units of
K (resp., L), where ζK and the εi are given as polynomials in α, and ζL and the
ηi as polynomials in θ. This algorithm computes the group U(L)/iL/K(U(K))
in the form

U(L)/iL/K(U(K)) =
⊕

0≤i≤rK

(Z/diZ)η′i ⊕
⊕

rK<i≤rL

Zη′i .

1. [Compute matrix P ] Using the polynomialA, compute the images in L by iL/K
of ζK and the εi, and using Algorithm 5.3.10, compute the (rL+1)×(rK+1)
matrix P such that

iL/K([ζK , ε1, . . . , εrK ]) = [ζL, η1, . . . , ηrL ]P .
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2. [Compute SNF] Using the algorithm described in the proof of Proposition
7.2.6, compute unimodular matrices U and V such that V PU =

(
D
0

)
.

3. [Terminate] Let D = diag(d0, d1, . . . , drK ), and set

[η′0, . . . , η
′
rL+1]← [ζL, η1, . . . , ηrL ]V −1

in the usual multiplicative sense. Output the di and η′i (classes modulo
iL/K(U(K))), and terminate the algorithm.

The determination of U(L)/(µ(L) · iL/K(U(K))) is done in a very similar
manner.

Algorithm 7.3.4 (Computation of U(L)/(µ(L) · iL/K(U(K)))). Let K =
Q(α), let L = K(θ), and let A ∈ K[X ] such that α = A(θ), found by using
Algorithm 2.1.11. On the other hand, let ζK (resp., ζL) be a generator of µ(K)
(resp., µ(L)), let (εi)1≤i≤rK (resp., (ηi)1≤i≤rL) be a system of fundamental
units of K (resp., L), where ζK and the εi are given as polynomials in α,
and ζL and the ηi as polynomials in θ. This algorithm computes the group
U(L)/(µ(L) · iL/K(U(K))) in the form

U(L)/(µ(L) · iL/K(U(K))) =
⊕

1≤i≤rK

(Z/diZ)η′i ⊕
⊕

rK<i≤rL

Zη′i .

1. [Compute matrix P ] Using the polynomial A, compute the images in L by
iL/K of the εi, and using Algorithm 5.3.10, compute the (rL+1)×rK matrix
P such that

iL/K([ε1, . . . , εrK ]) = [ζL, η1, . . . , ηrL ]P .

2. [Compute SNF] Let M be the matrix obtained from P by discarding the first
row. Using the algorithm described in the proof of Proposition 7.2.6, compute
unimodular matrices U and V such that VMU =

(
D
0

)
.

3. [Terminate] Let D = diag(d1, . . . , drK ), and set

[η′1, . . . , η
′
rL

]← [η1, . . . , ηrL ]V −1

in the usual multiplicative sense. Output the di and η′i (classes modulo µ(L) ·
iL/K(U(K))), and terminate the algorithm.

This algorithm can easily be extended so that it also computes the integers
ei occurring in Proposition 7.2.7 (Exercise 7).

• Since we now know how to compute U(L)/iL/K(U(K)) and Cli(K),
we can use Algorithm 4.1.8 applied to the exact sequence (5) to compute
Ui(L/K). Formally, this gives the following.

Algorithm 7.3.5 (Computation of Ui(L/K)). Given the groups Cl(K) =
(B,DB), Cl(L) = ((Ii), DC), U(K), and U(L), and an integral pseudo-basis
(ωi, ai) of L, this algorithm computes the group Ui(L/K) in the form
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Ui(L/K) =
⊕

i

(Z/uiZ)γici ⊕
⊕

1≤i≤rL/K

Z δiZK .

1. [Compute Cli(K)] Using Algorithm 7.3.1, compute Cli(K) as a left HNF
divisor HB of DB, and applying Algorithm 4.1.3 to the system of generators
and relations (BHB, H

−1
B DB), compute the SNF of Cli(K) as Cli(K) =⊕

i(Z/ciZ)c′i. Let DCl be the diagonal matrix of the ci.

2. [Compute U(L)/iL/K(U(K))] Using Algorithm 7.3.3, compute

U(L)/iL/K(U(K)) =
⊕

0≤i≤rK

(Z/diZ)η′i ⊕
⊕

rK<i≤rL

Zη′i ,

and keep the unimodular matrix V obtained during the algorithm. Let DU be
the diagonal matrix of the di for 0 ≤ i ≤ rK .

3. [Compute c′kZL] For each j and k, compute a Z-basis (βi,j,k)i of the ideal
ajc

′
k and set αi,j,k ← ωjβi,j,k (the (αi,j,k)i,j now form a Z-basis of c′kZL).

4. [Use principal ideal algorithm in Cl(L)] Using the principal ideal algorithm
in Cl(L) ([Coh0, Algorithm 6.5.10]), compute elements γ′k ∈ L such that
c′kZL = (1/γ′k)ZL.

5. [Use principal ideal algorithm in Cl(K)] Using the same algorithm, compute
elements βk ∈ K such that c′k

ck = βkZK .

6. [Compute discrete logarithms in U(L)/iL/K(U(K))] (Here, we have γ′k
ckβk ∈

U(L) for all k). Using Algorithm 5.3.10, compute a matrix P such that the
columns of P express the γ′k

ck on ζL and the ηi.

7. [Terminate] Let M be the matrix formed by the first rK+1 rows of the matrix
V P . Apply Algorithm 4.1.3 to the system of generators (η′0, . . . , η

′
rK
, γ′1c

′
1, . . . )

and relations
(
DU −M
0 DCl

)
, let (γici) be the system of generators, and diag(ui)

the SNF thus obtained. For 1 ≤ i ≤ rL/K , set δi ← η′i−rK
. Output the ui,

the classes of γici and of the δiZK , and terminate the algorithm.

• Computing UN(L/K) is done by applying Algorithm 4.1.13 to the ex-
act sequence (7), or more simply by applying Algorithm 4.1.11 to compute
UN,0(L/K), and using that UN(L/K) = ClN (K) × UN,0(L/K). Formally,
this gives the following.

Algorithm 7.3.6 (Computation of UN (L/K)). Given the groups Cl(K),
Cl(L), U(K), and U(L), this algorithm computes the groups UN,0(L/K) and
UN (L/K) in the form

UN,0(L/K) = (Z/w(L)Z)ζ ⊕
⊕

1≤i≤rL/K

Zη′i

and
UN (L/K) =

⊕

i

(Z/c′iZ)
(
bi, ζ

bi
)
⊕

⊕

1≤i≤rL/K

Z
(
ZK , η

′
i

)
.
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1. [Compute matrix P ] If (ηi)1≤i≤rL is a system of fundamental units of U(L)
(not including a generator of µ(L)), using Algorithm 5.3.10, for each i com-
pute the discrete logarithms of NL/K(ηi) on a system of fundamental units
of U(K) together with a generator of µ(K), and let P be the rK × rL ma-
trix whose columns are these discrete logarithms where the component on the
generator of µ(K) is omitted.

2. [Compute integral kernel] Apply an HNF algorithm to the matrix P , and
let U = (U1|U2) be a unimodular matrix and H an HNF matrix such that
P (U1|U2) = (0|H). We can discard the matrices U2 and H .

3. [Compute UN,0(L/K)] Let

[η′1, . . . , η
′
rL/K

]← [η1, . . . , ηrL ]U1

(of course multiplicatively), let ζ be a generator of µ(L), and output

UN,0(L/K)← (Z/w(L)Z)ζ ⊕
⊕

1≤i≤rL/K

Zη′i .

4. [Compute ClN (K)] Using Algorithm 7.3.2, compute an SNF for the group
ClN (K) = Cl(K)/NL/K(Cl(L)) as ClN (K) =

⊕
1≤j≤k(Z/cjZ)cj .

5. [Terminate] Set G ←
((

cj , 1
)
j
,
(
ZK , ζ

))
and M ← diag(c1, . . . , ck, w(L)).

Apply Algorithm 4.1.3 to the system of generators and relations (G,M), thus
obtaining

⊕
1≤i≤k+1(Z/c

′
iZ)
(
bi, ζ

bi
)
, output

UN(L/K) =
⊕

i

(Z/c′iZ)
(
bi, ζ

bi
)
⊕

⊕

1≤i≤rL/K

Z
(
ZK , η

′
i

)
,

and terminate the algorithm.

Finally, to compute UN (K), we compute NL/K(U(L)) as a subgroup of
U(K) using Algorithm 4.1.10, then µ(K) · NL/K(U(L)) by using Algorithm
4.1.14, and finally UN(K) = U(K)/(µ(K) · NL/K(U(L))) by using Algo-
rithm 4.1.7. We leave to the reader the write-up of the corresponding formal
algorithm (Exercise 8).

The proofs of the validity of all the above algorithms are easy but technical
and are left to the reader (see Exercises 9 and 10).

7.3.2 Relative Ideal Reduction

The main ingredient necessary for class and unit group algorithms is the
possibility to reduce an ideal. Whatever this means, starting with an ideal
I, we must be able to compute an ideal J that is in the same ideal class as
I (hence of the form I/α in the absolute case or of the form I/(αa) with a

an ideal of the base field K in the relative case) and that in some sense is
“small”, which for us means that it must have a reasonably good chance of
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having nonzero valuation only at small prime ideals. We have already given
such a definition (although not very pleasing) in the relative quadratic case
(Definition 2.6.11).

Instead of giving formal definitions, which probably will be superseded by
further research, I prefer to give a generic driver algorithm and an instance
that achieves the above-mentioned result.

Algorithm 7.3.7 (Reduction of an Ideal (Driver Algorithm)). Given an ideal
I of L by a pseudo-matrix (H, cj) on some relative integral basis (ωi, q

−1
i ), this

algorithm outputs a pseudo-element aα (as usual, with a ideal of K and α ∈ L∗)
and the ideal J = I/(aα) such that J is a primitive ideal (necessarily equivalent
to I in Cli(L/K)) that should be reasonably “small” for our purposes.

1. [Initialize] Set a← ZK , J ← I, α← 1, n←∏
1≤i≤nNK/Q(qi), and m← 0.

2. [Reduce to primitive] If J = ((hi,j), cj), set b ← ⊕1≤i≤jhi,jcjqi, J ← b−1J
(in other words for all j, set cj ← b−1cj), and a← ab.

3. [Compute norm of J ] Compute d← n
(∏

j NK/Q(cj)
)
.

4. [Finished?] If m > 0 and d ≥ m, output aα and J , and terminate the algo-
rithm. Otherwise, set m← d.

5. [Reduce] Using a subalgorithm such as the one given below, choose some
element β ∈ L∗, set α ← αβ and J ← J/β (see remark below), and go to
step 2.

Proof. By Proposition 2.3.5, the ideal b computed in step 2 is the con-
tent of the ideal J , hence b−1J is a primitive ideal. By Proposition 2.3.1, the
number d computed in step 3 is equal to the absolute norm of the ideal J .
The number m initially contains 0 to indicate that no ideal norms have yet
been computed, but afterwards is a strictly decreasing sequence of positive
integers (the successive norms of the ideals J), hence the algorithm termi-
nates. Furthermore, we clearly have throughout the algorithm the equality
J = I/(aα), proving the algorithm’s validity. ⊓⊔

Remark. The computation of J ← J/β in step 5 is performed as follows.
Let (γj , cj) be the pseudo-basis of J corresponding to the pseudo-matrix
((hi,j), cj). Then (γj/β, cj) is a pseudo-basis of J/β which is in general not in
relative HNF. To apply step 2 it is necessary to have an HNF pseudo-matrix
on the relative pseudo-basis; hence we compute the matrix H ′ of the (γj/β)
on the ωi, and we apply a relative HNF algorithm (for example, Algorithm
1.6.2) to the pseudo-matrix (H ′, cj).

Evidently, the most important and difficult thing that remains to be done
is to explain the choice of β ∈ L∗ in step 5. A naive method is as follows.

Subalgorithm 7.3.8 (Naive Relative Ideal Reduction). Given a primitive
ideal J by a relative HNF ((hi,j , cj)) on an integral pseudo-basis (ωi, q

−1
i ), this

algorithm computes a β ∈ L∗ suitable for step 5 of Algorithm 7.3.7.
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1. [Find small HNF matrix for J ] Using Algorithm 2.3.3, compute a small HNF
pseudo-matrix ((h′i,j), c

′
j) for the ideal J .

2. [Reduce] Let β ← ω2 + h′1,2ω1 be the element of L∗ corresponding to the
second column of the matrix (h′i,j), output β, and terminate the subalgorithm.

Remarks

(1) This choice of β is quite arbitrary, but it is the simplest. We could also
modify the subalgorithm by taking for β each of the successive columns of
the matrix (h′i,j) and seeing which gives an ideal of smallest norm once it
is reduced to a primitive ideal in step 2 of the main algorithm. This would
be much slower, and it is not clear that it would bring much improvement.
This idea could, however, be usefully applied upon termination of the
main algorithm to see if some further reduction can be achieved by using
the other columns.

(2) This algorithm is an exact generalization of the algorithm indicated in
the quadratic case after Definition 2.6.11. Indeed, the LLL-reduction step
(step 1 of the subalgorithm) is the same, and it is easy to check that the
stopping condition d ≥ m of step 4 of the main algorithm is the same as
the condition N (a) ≤ N (c) given in Definition 2.6.11.

The above subalgorithm is based on a relative HNF representation of the
ideal J . It would clearly be preferable to use a relative LLL representation so
that we could generalize [Coh0, Section 6.5.1]. Attempts in this direction have
been made (see, for example, [Fie-Poh]) but are not sufficient in practice.

7.3.3 Using Relative Algorithms

The main inefficiency of the absolute methods described in Section 7.3.1 is
the necessity to compute the absolute invariants Cl(L) and U(L) directly.

In the present section, we show how it is possible to compute the rela-
tive invariants directly. This is, of course, one of the main motivations for
introducing these relative invariants in the first place.

We will proceed as follows. We will first compute the invariants Cli(L/K),
Cli(K), Ui(L/K) attached to the map iL/K . Indeed, as we will see, this is
the natural setting for relative algorithms, while this is not the case for the
invariants attached to the map NL/K .

Once we know the invariants attached to iL/K , we use Algorithm 4.1.9 on
the exact sequence (1) to compute Cl(L) and Algorithm 4.1.13 on the exact
sequence (4) to compute U(L). We can then compute the groups attached to
NL/K as explained in the preceding section.

We briefly sketch the complete algorithm, without writing it formally.
Most details are very close to the absolute case, and we refer to [Coh0, Chap-
ter 6] for this. The main work is to write an implementation of relative prime
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ideal decomposition (Algorithm 2.4.13), of the algorithms to compute valua-
tions (Algorithms 2.3.13 and 2.3.14), of a pseudo–two-element representation
of an ideal (Algorithm 2.3.8), and of ideal multiplication and powering (as
explained in Section 2.3.4). The rest of the implementation can be copied al-
most verbatim from the absolute case. A preliminary version of this algorithm
for the relative quadratic case can be found in [Co-Di-Ol5].

Let L/K be a given extension.
A) As a first initialization step, compute everything that will be needed

about the base field K, including its class and unit groups as well as data for
using the principal ideal algorithm in K.

B) Compute basic data about the relative extension L/K, in particular a
pseudo-integral basis and the data allowing to go back and forth from ideals
of K to L.

C) After choosing a suitable constant A, compute the prime ideals P of
L of absolute norm less than A which are not above inert primes of K, rep-
resented with five elements as explained after Algorithm 2.4.13. This will be
the factor base, and the five-element representation will be used to compute
P-adic valuations of ideals of L using Algorithm 2.3.13. At the same time,
store the corresponding trivial relations including the pseudo-elements.

D) Choose small values s, l1, and l2 (for example, s = 3, l1 = −8, l2 = 8).
Extract from the factor base the s unramified prime ideals Pj of smallest
norm, and compute in relative HNF the ideals Pm

j for 1 ≤ j ≤ s and l1 ≤
m < l2.

E) For 1 ≤ j ≤ s, choose random exponents mj such that l1 ≤ mj < l2,
and compute a reduced ideal F equivalent to

∏
1≤j≤s P

mj

j . Using P-adic
valuations, try to factor F on our factor base. If it does factor, store the
resulting relation in the format explained above: a column vector of integer
exponents, together with a pseudo-element generating a principal ideal.

F) If one believes that one has enough relations, simultaneously com-
pute the Hermite normal form of the relation matrix and the corresponding
pseudo-elements. As in the absolute case, the pseudo-elements that corre-
spond to zero columns will be relative units for iL/K , in other words, pseudo-
elements αa such that αaZL = ZL.

G) Compute a tentative relative class group (the Smith normal form of our
relation matrix) and class number (its determinant). From this and knowledge
of the class group of the base field K, one easily deduces a tentative absolute
class number. Similarly, using the principal ideal algorithm in the base field,
from the relative units that we have obtained we can obtain a set of absolute
units of L and compute a tentative absolute regulator.

H) As in the absolute case, since we have assumed GRH, we check that
a suitable partial Euler product coming from the absolute Dedekind zeta
function of L is sufficiently close (up to a factor of 2) to the tentative product
of the class number by the regulator. If it is not, compute more relations and
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go back to step F (equivalently, we can compute a partial Euler product
coming from the quotient ζL(s)/ζK(s)).

I) Otherwise, we have computed the relative class group and regulator
under some reasonable hypotheses. By definition, the ideals occurring in the
pseudo-elements that have been kept for computing the relative units will
generate the capitulation subgroup Cli(K), which we thus compute at the
same time. As in the absolute case, we can also compute a fundamental
system of units if desired.

A word about the correctness of the result. As in the absolute case, we
need to assume GRH in two essential places: first in the numerical verification
of the product h(L)R(L), to ensure fast convergence of the Euler product;
second, we also need our factor base to generate the class group, by taking as
constant A the value 12 log(|d(L)|)2 and using a theorem of E. Bach. As in
the absolute case, however, we choose a much lower constant A, and then we
must “be honest”, that is, we must check that all the prime ideals of norm
between A and Bach’s bound are generated in the relative class group by the
prime ideals of norm less than A. This can easily be done by generating more
random relations involving the specific prime that is considered.

Finally, note that, as in the absolute case, if we keep the full HNF of
the reduction matrix and the corresponding pseudo-elements (and not only
the class group and the relative units), it is easy to obtain a principal ideal
algorithm in L (more precisely, a pseudo-principal ideal algorithm).

7.3.4 An Example

The following example was given to us by C. Fieker. It shows some of the
limitations of the absolute method, hence the usefulness of relative methods.
Let L = Q(ζ9,

√
−4201), where ζ9 is a primitive ninth root of unity. Com-

pute its class group, regulator, units, and so forth. For completeness, note
that Q(ζ9) has class number equal to 1 while Q

(√
−4201

)
has class group

isomorphic to C36. The field L enters naturally if you want to apply Kummer
theory to the construction of the Hilbert class field of Q

(√
−4201

)
(which

can in this specific case of an imaginary quadratic field be constructed very
simply by using complex multiplication; see Section 6.3).

The field L is a totally complex number field of degree 12 over Q, with root
discriminant approximately 673.6, so neither the degree nor the discriminant
is too large compared to what can be presently attacked. However, if you
feed it to the best existing programs (such as Kant and Pari), even a week of
CPU time on a good workstation does not seem to produce enough relations
in the class group. This is due mainly to the fact that L has many subfields.
Thus, when we search, for example, for elements of small norm, they tend
to be in the smaller subfields, and so the relations they generate are highly
dependent.

We choose K = Q(ζ9). Since K has class number 1, the relative and
absolute class groups coincide, and the pseudo-elements are simply elements.
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As parameters in the algorithm described above, we chose (almost arbitrarily)
A = 600, s = 5, l1 = −8, l2 = 8. To be completely honest, at least modulo
GRH, we must check that the ideals up to Bach’s bound (here 73291) are
generated by the small ones.

In approximately one hour of CPU time on a workstation, we find that the
class group is isomorphic to C377244×C6 (note that 377244 = 22 · 33 · 7 · 499)
and the absolute regulator is approximately equal to 3338795.5921522.... We
also explicitly find the generators of the class group and the fundamental
units themselves, as well as the information necessary to use a principal ideal
algorithm in L.

As already mentioned, this example shows once again that the basic the-
oretical notions useful in a relative computational context are the notions
linked to the map iL/K : in other words, the relative class group Cli(L/K),
the unit group Ui(L/K), the capitulation subgroup Cli(K), and the notion
of pseudo-element.

The main weakness of the algorithm, which is completely independent
of the rest, is that we have not been able to develop a reasonable theory
of relative reduction of ideals. The example that we have just given shows,
however, that even a very naive definition of reduction such as the one used
here suffices to give highly nontrivial results.

Philosophical Remark. To conclude these sections on relative class and
unit groups, I would like to make a remark concerning the definitions that
have been introduced. Most of these definitions do not occur in the existing
literature, except the definitions (with different notation) of the capitulating
group Cli(K) and of the relative regulator RN (L/K) with respect to the
norm (see [Ber-Mar]). The algorithms sketched above show that the relative
groups Cli(L/K), Ui(L/K), and Cli(K) arise very naturally from the rel-
ative algorithms, hence they are aesthetically and mathematically pleasing.
The definitions of ClN (L/K) and ClN (K) also seem quite natural, although
they do not occur naturally in the relative algorithms. This is confirmed by
Theorem 7.1.5, which shows that the class group notions relative to iL/K and
NL/K are closely related, more precisely are identical outside primes dividing
(n, h(K)).

As stated above, the group Ui(L/K) is natural, and this is confirmed
by the exact sequence (4) or the longer six-term exact sequence (6). On the
other hand, I must admit that the definitions of UN (L/K) and of UN (K)
are not satisfactory: they are artificially defined in such a way that the exact
sequence (7) exists, and the artificialness of this is confirmed by the fact that
natural maps between Ui(L/K) and UN(L/K) do not seem to exist. Perhaps
this is in the nature of things, but it is also possible that there is a better
definition of these groups.
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7.4 Inverting Prime Ideals

In this section, we would like to consider what happens in the very common
situation where we “invert” certain prime ideals, leading to the notions of S-
integers, S-units, S-class groups, and so forth, and to give the corresponding
algorithms.

7.4.1 Definitions and Results

Recall from Definition 1.2.6 that a place of K is an equivalence class of
nontrivial field norms and can be represented either by a prime ideal p of ZK
or by one of the r1 + r2 embeddings σi of K into C (since σr1+r2+i = σr1+i,
we do not need to consider the σi for i > r1 + r2).

In the rest of this chapter, the letter S will stand for a finite set of places
of K containing the Archimedean places. The elements of S will be identified
with prime ideals p and embeddings σ as above.

Definition 7.4.1. Let S be a finite set of places of a number field K.

(1) We say that an element x ∈ K is an S-integer if vp(x) ≥ 0 (or, equiv-
alently, |x|p ≤ 1) for all vp /∈ S. The ring of S-integers in K is denoted
ZK,S.

(2) We say that an element x ∈ K is an S-unit if vp(x) = 0 (or, equivalently,
|x|p = 1) for all vp /∈ S. The group of S-units of K is denoted US(K).

It is easily checked that ZK,S is a ring such that ZK ⊂ ZK,S ⊂ K, and
US(K) is a group such that U(K) ⊂ US(K) ⊂ K∗.

Proposition 7.4.2. Let K and S be defined as above.

(1) The maps I 7→ I ∩ZK and a 7→ aZK,S are inverse bijections from the set
of integral ideals of ZK,S to the set of integral ideals of ZK coprime to
all the prime ideals belonging to S. These maps preserve strict inclusion
and prime and maximal ideals.

(2) The ring ZK,S is a Dedekind domain.

Proof. (1). Let a = I ∩ ZK . It is clear that a is an Abelian group, stable
under multiplication by ZK , hence is an ideal of ZK . Assume by contradiction
that a is not coprime to the prime ideals of S, and let p ∈ S be a prime ideal
dividing a, so that a = pb with b ⊂ ZK . Since p ∈ S, we have pZK,S ⊂ ZK,S
and p−1ZK,S ⊂ ZK,S , so that ZK,S = pZK,S . On the other hand, we have
pb ⊂ I, hence pbZK,S ⊂ I, so bZK,S ⊂ I, and hence b ⊂ I. Since b ⊂ ZK ,
we deduce that b ⊂ a = pb, which is absurd since p is an invertible ideal not
equal to ZK . Therefore, a is an ideal of ZK coprime to all the prime ideals
belonging to S.

We clearly have aZK,S ⊂ IZK,S ⊂ I. To show the reverse inclusion, let
x ∈ I. We have 0 ∈ aZK,S , so we assume x 6= 0. By definition of ZK,S , we
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have x
∏

p∈S p−vp(x) ⊂ ZK . Since x ∈ I and I is an ideal of ZK,S , it follows

that x
∏

p∈S p−vp(x) ⊂ I, so that x
∏

p∈S p−vp(x) ⊂ a, or in other words

x ∈
(∏

p∈S
pvp(x)

)
a .

By definition of ZK,S , if p ∈ S we have pk ⊂ ZK,S for any k ∈ Z. It follows
that x ∈ aZK,S , so I ⊂ aZK,S , and so (I ∩ ZK)ZK,S = I.

Conversely, let a be an ideal of ZK coprime to all the prime ideals be-
longing to S. Set b = (aZK,S) ∩ ZK . Applying what we have just proved
to I = aZK,S , we deduce that bZK,S = aZK,S and that b is an ideal of
ZK coprime to all the prime elements of S. Assume by contradiction that
a 6= b. Then, there exists a prime ideal p, necessarily not in S, such that
vp(a) 6= vp(b). Assume, for example, that vp(a) > vp(b) = v. Write b = pvb′,
with p ∤ b′, and a = pv+1a′ for some integral ideal a′. Hence we obtain
b′ZK,S = pa′ZK,S ⊂ pZK,S , and intersecting with ZK , we obtain

b′ ⊂ (b′ZK,S) ∩ ZK ⊂ (pZK,S) ∩ ZK . (8)

Note that (pZK,S) ∩ ZK = ZK implies p−1 ⊂ ZK,S , hence p ∈ S, contrary
to our hypothesis. Since p is a maximal ideal and (pZK,S) ∩ ZK contains p,
we must therefore have (pZK,S) = p. Equation (8) thus gives b′ ⊂ p, in other
words p | b′, which is a contradiction. Therefore, b = a, and our maps are
indeed inverse maps, as claimed. Since they are bijective, they preserve strict
inclusion and maximal ideals. Finally, this also implies that if P is a nonzero
prime ideal of ZK,S , then P ∩ ZK is a nonzero ideal of ZK different from
ZK , which clearly satisfies the definition of a prime ideal. Conversely, if p

is a nonzero prime ideal of ZK not in S, then p is a maximal ideal, hence
P = pZK,S is also maximal, finishing the proof of (1).

For (2), we note that ZK,S ⊂ K is an integral domain. By (1), any strictly
increasing sequence of ideals of ZK,S gives rise to a strictly increasing se-
quence of ideals of ZK , hence is finite, so ZK,S is a Noetherian ring. If P is a
nonzero prime ideal of ZK,S , P∩ZK is a nonzero prime ideal of ZK , hence is
maximal. Thus, by (1), P is a maximal ideal of ZK,S , so every nonzero prime
ideal of ZK,S is maximal.

Finally, let x ∈ K be a root of a monic equation

xn + an−1x
n−1 + · · ·+ a0 = 0

with ai ∈ ZK,S . We may assume x 6= 0. Let p /∈ S. If v = vp(x) < 0, then
vp(an−1x

n−1 + · · ·+ a0) ≥ (n− 1)v while vp(x
n) = vn, which is absurd since

v < 0. Hence for every p /∈ S, vp(x) ≥ 0; in other words, x ∈ ZK,S , so ZK,S
is integrally closed and hence is a Dedekind domain, as claimed. ⊓⊔

Since ZK,S is a Dedekind domain, in addition to its ideals and prime
ideals completely described in terms of those of ZK , we can define its class
group ClS(K) in the usual way.
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Definition 7.4.3. Let S be a finite set of prime ideals of K.

(1) If a is an ideal of K, we say that a is S-integral if vp(a) ≥ 0 for all prime
ideals p /∈ S.

(2) We define ClS(K) to be the class group of the Dedekind domain ZK,S ; in
other words, by Proposition 7.4.2, the quotient of the group of S-integral
ideals by the subgroup of S-integral principal ideals of K.

Proposition 7.4.4. We have a canonical isomorphism

ClS(K) ≃ Cl(K)/ < pi >pi∈S ,

where < pi > denotes the subgroup of Cl(K) generated by ideal classes of the
prime ideals in S.

Proof. Let I be an ideal class in ClS(K), and define f
(
I
)

= I ∩ ZK in

Cl(K)/ < pi >. The map f is well-defined and is a group homomorphism.
Assume that f

(
I
)

= 1. This means that I ∩ZK = α
∏
i p
xi

i for some α ∈ K∗.
Multiplying by ZK,S and using Proposition 7.4.2 and pZK,S = ZK,S for
p ∈ S, we obtain I = αZK,S , so I is trivial, hence f is injective. Finally, if a

is some ideal class in Cl(K)/ < pi >, by Corollary 1.2.11 we can choose as
representative an integral ideal a coprime to the product of all prime ideals
of S, and then by Proposition 7.4.2, we have f

(
aZK,S

)
= a, so f is surjective.

⊓⊔

Corollary 7.4.5. There exists S1 such that for any S ⊃ S1, the ring ZK,S
is a principal ideal domain.

Proof. Let
(
ai
)

be generators of Cl(K), and let S1 be a set containing all
Archimedean places and all prime ideals p such that vp(ai) 6= 0 for some i.
This set is finite, and the proposition implies that if S ⊃ S1 then ClS(K) is
trivial, so that ZK,S is a principal ideal domain. ⊓⊔

7.4.2 Algorithms for the S-Class Group and S-Unit Group

Using Section 4.1.3, Proposition 7.4.4 allows us to give an algorithm to com-
pute ClS(K).

Algorithm 7.4.6 (S-Class Group). Let Cl(K) = (B,DB) be the SNF of the
class group of K, where B =

(
bi
)

and the bi are ideals of K. This algorithm

computes the SNF (C,DC) of ClS(K), where C =
(
ci
)

and the ci are ideals of
ZK,S .

1. [Compute discrete logarithms] Using the principal ideal algorithm ([Coh0, Al-
gorithm 6.5.10]), compute the matrix P whose columns are the discrete log-
arithms of p with respect to B, for each p ∈ S.
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2. [Terminate] Apply Algorithm 4.1.3 to the system of generators and relations
(B, (P |DB)), thus obtaining an SNF (C′, DC). Let C′ =

(
c′i
)

for ideals c′i of
K. Using Algorithm 1.3.14, compute ideals c′′i in the same ideal class as c′i
which are coprime to all the prime ideals belonging to S. Set ci ← c′′i ZK,S
and C ←

(
ci
)
, output (C,DC), and terminate the algorithm.

We leave to the reader the proof that this is the algorithmic translation
of Proposition 7.4.4.

Similarly, we can deal with the group US(K) of S-units. The result is as
follows. We let s be the number of prime ideals in S.

Proposition 7.4.7. Let Cl(K) = (B,DB) with B =
(
bi
)

be the SNF of
Cl(K), where bi are ideals and DB = diag(bi). Let

U(K) = (Z/w(K)Z)ε0 ⊕
⊕

1≤i≤r
Zεi

be the unit group of K in SNF. Let βi ∈ K be such that bbi

i = (1/βi)ZK . For
each prime ideal pj ∈ S, write

pj = αj
∏

i

b
pi,j

i

with αj ∈ K∗ and pi,j ∈ Z, and let P = (pi,j). Finally, let U =
(
U1 U2

U3 U4

)
be

the unimodular matrix such that (P |DB)U = (0|H), where H is the HNF of
(P |DB). If

[γ1, . . . , γs] = [α1, . . . , αs, β1, . . . , βm]
(
U1

U3

)

in the usual multiplicative sense used in Chapter 4, then

US(K) = (Z/w(K)Z)ε0 ⊕
⊕

1≤i≤r
Zεi ⊕

⊕

1≤i≤s
Zγi .

In particular, the torsion subgroup of US(K) is equal to that of U(K), and
the rank of US(K) is equal to r + s = r1 + r2 − 1 + |S0|, where S0 denotes
the set of prime ideals belonging to S (this can also be written |S| − 1, since
there are r1 + r2 Archimedean places in S).

Proof. Let S0 be the row vector of the prime ideals belonging to S and
let B′ = [b1, . . . , bm] be the row vector of the ideals bi. We use again matrix
notation as we did in Chapter 4. I first claim that

S0U1 = [γ1ZK , . . . , γmZK ] .

Indeed, by definition, we have

B′(P |DB) = ((α−1
j pj)|(β−1

j ZK)) .
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Hence, multiplying on the right by
(
U1

U3

)
, we obtain

[ZK , . . . ,ZK ] = ((α−1
j )|(β−1

j ))
(
U1

U3

)
· S0U1 = (γ−1

j )S0U1 ,

proving my claim.
Now,

α ∈ US(K) ⇐⇒ ∀p /∈ S, vp(α) = 0 ⇐⇒ ∃X ∈ ZS0 , αZK = S0X .

Taking ideal classes, we see that S0X = 1 in Cl(K). But, by definition,

S0X = 1 ⇐⇒ BPX = 1 ⇐⇒ ∃Y ∈ Zm, PX = DBY

⇐⇒
(
X
−Y

)
∈ Ker(P |DB) ,

where of course Ker denotes the integer kernel. If U =
(
U1 U2

U3 U4

)
is the unimod-

ular matrix such that (P |DB)U = (0|H), where H is the HNF of (P |DB),
we have seen several times (see, for example, Section 4.1.6) that the integer

kernel is generated by the columns of
(
U1

U3

)
, hence S0X = 1 ⇐⇒ X = U1Z

for some vector Z ∈ ZS0 .
Coming back to α, using S0U1 = (γiZK), we see that

α ∈ US(K) ⇐⇒ ∃Z ∈ ZS0 , αZK = S0U1Z ⇐⇒ αZK =
∏

i

γzi

i

for some integers zi. Thus α/
∏
i γ

zi

i is a unit; hence US(K) is generated by
the γi and the εi.

The relations between these generators are as follows. Assume that
∏
i γ

zi

i

is a unit, with Z = (zi), and set X = U1Z. Then

S0X = S0U1Z =
∏

i

γzi

i ZK = ZK .

This means that
∏

pi∈S pxi

i = ZK , and since the pi are distinct prime ideals,
this implies that xi = 0 for all i, in other words, that X = 0. However, by
Lemma 4.1.12, U1 has a nonzero determinant, hence Z = 0, and so there are
no extra relations among the γi. ⊓⊔

Although this completely and explicitly answers the problem of computing
US(K), it is still not completely satisfactory from a practical point of view
since the new generators γi can have very large coefficients and not even be
algebraic integers. As usual, the problem of reducing the size of generators
is not completely straightforward and can be done using variants of the LLL
algorithm. However, it is easy to see that one can choose the γi to be algebraic
integers as follows.
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Let V be a unimodular matrix such that U1V is in Hermite normal form.
In particular, the entries of U1V are nonnegative. Define

[γ′1, . . . , γ
′
s] = [γ1, . . . , γs]V .

Since V is unimodular, the γ′i generate (multiplicatively) the same lattice as
the γi, so we can use them instead as generators of US(K). Furthermore, they
are algebraic integers. In fact, since U1V has nonnegative entries, S0U1V =
[a1, . . . , as] is a vector of integral ideals, but

S0U1V = [γ1ZK , . . . , γsZK ]V = [γ′1ZK , . . . , γ
′
sZK ] ,

so γ′iZK = ai; hence γ′i is indeed an algebraic integer, as claimed.
We are thus led to the following algorithm for computing US(K).

Algorithm 7.4.8 (S-Unit Group). Let Cl(K) = (B,DB) be the SNF of the
class group of K, where B =

(
bi
)

and the bi are ideals of K. This algorithm
computes algebraic integers γi for 1 ≤ i ≤ s such that

US(K) = U(K)⊕
⊕

1≤i≤s
Zγi .

We let pj be the prime ideals of S.

1. [Compute discrete logarithms] Using the principal ideal algorithm ([Coh0, Al-
gorithm 6.5.10]), compute the matrix P whose columns are the discrete loga-
rithms of p with respect to B, for each p ∈ S (this step is, of course, identical
to step 1 of Algorithm 7.4.6).

2. [Compute big HNF] Using one of the algorithms for HNF computations, com-
pute the unimodular matrix U =

(
U1 U2

U3 U4

)
such that (P |DB)U = (0|H) with

H in HNF.

3. [Compute γiZK ] Compute the HNFW of the matrix U1, and set [a1, . . . , as]←
[p1, . . . , ps]W .

4. [Find generators] (Here the aj are principal ideals.) Using the principal ideal
algorithm again, for each j, find γj such that aj = γjZK . Output the γj and
terminate the algorithm.

Remark. Note that, although not really necessary, in this algorithm we
use the principal ideal algorithm twice. Indeed, in step 1 we could keep the
extra information given by the principal ideal algorithm, in other words, the
αj of Proposition 7.4.7. However, since the pj are not principal ideals in
general, these αj are usually large, and the subsequent operations may make
them even larger. Hence, it is usually advisable to find the generators at the
very end, when the computations are finished and we know that we have
principal ideals, as we have done in step 4 of the algorithm.

We can reduce even more the size of the γi by replacing γi by γi/ε for a
suitable unit ε, which still gives generators of US(K). To do this, we multiply
γi recursively by very small powers of a generating set of the unit group as
long as the size of γi (measured in any reasonable way) decreases.
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7.5 Solving Norm Equations

7.5.1 Introduction

In this section, we explain how the notions of S-units and S-integers can be
used to solve absolute or relative norm equations. We closely follow a paper
of D. Simon [Sim1], whom we heartily thank for the present section.

Let L/K be an extension of number fields, and let a ∈ K∗. We would
like to know if there exists x ∈ L such that a = NL/K(x); additionally, we
want to give an algorithm for finding such an x if it exists. In addition, if
a ∈ ZK , we may want to additionally require that x ∈ ZL. In this section we
give solutions to all these problems.

We begin by noticing that some nontrivial phenomena may occur. Con-
sider the following example. Let K = Q and L = Q

(√
34
)
. Since the funda-

mental unit of L is 35 + 6
√

34, which is of norm +1, the norm of a unit of
L is always equal to +1, so the equation NL/K(x) = −1 is not soluble with
x ∈ U(L), hence also with x ∈ ZL. On the other hand, we check that, for
example,

NL/K

(
5 +
√

34

3

)
= NL/K

(
3 +
√

34

5

)
= NL/K

(
27 + 5

√
34

11

)
= −1 ,

hence the equation NL/K(x) = −1 does have solutions (in fact, an infinite
number of nonassociate solutions) if we do not restrict to x ∈ U(L) or to
x ∈ ZL. The primes occurring in the denominator of the solutions happen to
be split primes in L such that the prime ideals above them are not principal,
in other words generate the class group, which is here of order 2. As we
will see, this is indeed the general behavior, at least when L/K is a Galois
extension.

We make the following abuse of notation. In the rest of this chapter, since
Archimedean places are not used, if S is a finite set of prime ideals of a
number field we will write ZK,S , US(K), . . . instead of ZK,S′ , US′(K), . . . ,
where S′ is the union of S with all Archimedean places. In addition, we make
the following very useful convention. If S is a finite set of prime ideals of the
base field K, and if T is the set of prime ideals of L above the prime ideals of
S, we will still write ZL,S, US(L), and ClS(L) instead of ZL,T , UT (L), and
ClT (L) to avoid explicitly introducing the set T .

Recall that the exponent of an Abelian groupA is the least positive integer
m such that gm is the unit element of A for all g ∈ A. Note the following
trivial result.

Proposition 7.5.1. The exponent of the quotient group

(NL/K(L∗) ∩ US(K))/NL/K(US(L))

divides [L : K].
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Proof. Indeed, if a ∈ US(K) ⊂ K∗, then

a[L:K] = NL/K(a) ∈ NL/K(US(L)) .

⊓⊔

Definition 7.5.2. We will say that a finite set S0 of prime ideals is suitable
for the extension L/K if for all finite S ⊃ S0 we have

NL/K(L∗) ∩ US(K) = NL/K(US(L)) ;

in other words, if every S-unit of K that is the norm of an element of L is
in fact the norm of an S-unit of L.

The following proposition is immediate.

Proposition 7.5.3. Assume that S0 is suitable for the extension L/K, let
a ∈ K∗, and call Sa the set of prime ideals p of K such that vp(a) 6= 0. Then
the equation NL/K(x) = a is soluble with x ∈ L if and only if it is soluble
with x ∈ UL,S0∪Sa .

Proof. Indeed, if S = S0 ∪ Sa, then a ∈ US(K) by definition, and since
S0 is suitable and S ⊃ S0, if the equation NL/K(x) = a is soluble, we have
a ∈ NL/K(US(L)). ⊓⊔

Thus, once a suitable S0 has been found, this proposition allows us to solve
norm equations by looking only in the group UL,S for a certain S, which is
much easier to control.

7.5.2 The Galois Case

We start with the Galois case, which is much simpler than the general case.

Theorem 7.5.4. Let L/K be a Galois extension, and let S0 be a set of prime
ideals of K such that Cli(L/K) can be generated by the classes of ideals
divisible only by prime ideals of L above the ideals of S0. Then S0 is suitable
for the extension L/K in the sense of Definition 7.5.2: in other words, for
all S ⊃ S0, we have NL/K(US(L)) = NL/K(L∗) ∩ US(K). In addition, we
also have NL/K(ZL,S) = NL/K(L∗) ∩ ZK,S .

Thanks to Proposition 7.5.3, this theorem will allow us to solve norm
equations in the Galois case.

We first need a lemma.

Lemma 7.5.5. Let L/K be a Galois extension of number fields, let S be a
finite set of prime ideals of K, and let I and J be S-integral ideals of L such
that NL/K(I) = aNL/K(J) for some S-integral ideal a of K. Assume that
for 1 ≤ i ≤ k there exist prime ideals Pi of L such that

∏
1≤i≤k Pi | J as

ideals of ZL,S. Then for each i ≤ k there exists σi ∈ Gal(L/K) such that∏
1≤i≤k σi(Pi) | I as ideals of ZL,S.
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Proof. We prove the lemma by induction on k, the case k = 0 being trivial.
Assume first k = 1, and let P be a prime ideal dividing J . Since NL/K(P)
divides NL/K(J), it also divides NL/K(I) since a is S-integral. Since the
extension is Galois, by the remark made at the end of Section 2.2.5, we have
for any ideal I, NL/K(I) =

∏
1≤i≤n σi(I); hence, in particular, there exists

σ ∈ Gal(L/K) such that P | σ(I), and hence σ−1(P) | I, as claimed.
Assume now that the lemma is true for some k ≥ 1, and assume that∏

1≤i≤k+1 Pi divides J . In particular, the product of the first k primes divides
J ; hence by our induction hypothesis there exist σi ∈ Gal(L/K) such that∏

1≤i≤k σi(Pi) divides I. It follows that

NL/K

(
I/

∏

1≤i≤k
σi(Pi)

)
= aNL/K

(
J/

∏

1≤i≤k
Pi

)
.

We conclude by applying the case k = 1 proved above. ⊓⊔

Proof of Theorem 7.5.4. The inclusions NL/K(US(L)) ⊂ NL/K(L∗) ∩
US(K) and NL/K(ZL,S) ⊂ NL/K(L∗) ∩ ZK,S are trivial. Conversely, let
a ∈ NL/K(L∗) ∩ ZK,S , and let x, y in L be such that NL/K(x/y) = a. We
may, of course, assume that x and y are in ZK,S (in fact, in ZK if desired).
By definition, we have NL/K(x) = aNL/K(y). Let yZL =

∏
Pi be the prime

ideal factorization of the principal ideal yZL, with repeated prime ideals Pi

if necessary. By Lemma 7.5.5 there exist conjugates σi(Pi) of Pi and an
S-integral ideal J such that

xZL = J
∏

i

σi(Pi) .

By the hypothesis of the theorem, the prime ideals of L above those of S0

generate the relative class group Cli(L/K). It follows that each of the ideals
Pi can be written in the form

Pi = αiaiIi

with αi ∈ L∗, ai ideal of K, and Ii a product of prime ideals of L above prime
ideals in S. Therefore,

yZL =
∏

i

αi
∏

i

(aiZL)
∏

i

Ii .

Since the ai are fixed by Gal(L/K), and since a product of prime ideals
above those of S is transformed into another such product by Gal(L/K), it
also follows that

xZL = J
∏

i

σi(αi)
∏

i

(aiZL)
∏

i

I ′i .
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Set

u =
x

y

∏
i αi∏

i σi(αi)
.

It is clear that NL/K(u) = NL/K(x/y) = a. On the other hand, the above
formulas for xZL and yZL show that

uZL = J
∏

i

(I ′i/Ii) .

Since Ii and I ′i are products of prime ideals above those of S, it follows
that I ′i/Ii is an S-integral ideal. Hence, since J is also an S-integral ideal,
u ∈ ZL,S , proving the second equality of the theorem.

If, in addition, we have a ∈ US(K), then necessarily u ∈ US(L). Indeed, if
P is a prime ideal of L above a prime ideal p of S such that vP(u) > 0, then
p | NL/K(P) | NL/K(u) = a, which is absurd, thus proving the first equality
of the theorem. ⊓⊔

It is not difficult to prove more precise statements than Theorem 7.5.4.
In particular, we have the following result.

Proposition 7.5.6. Let L/K be a Galois extension, and let r be an inte-
ger such that Gal(L/K) can be generated by r elements. In addition, for
any finite set S of prime ideals of K, denote by Cli,S(L/K) the quotient of
Cli(L/K) by the group generated by the classes of ideals divisible only by
prime ideals of L above the ideals of S. Then for all S the quotient group
(NL/K(L∗)∩US(K))/NL/K(US(L)) is a subquotient (in other words, a quo-
tient of a subgroup) of Cli,S(L/K)r.

I refer to [Sim1] for the proof.

Corollary 7.5.7. Let L/K be a Galois extension, and let S0 be a set of prime
ideals such that |Cli,S0(L/K)| is coprime to [L : K]. Then S0 is suitable for
the extension L/K.

Proof. This follows immediately from the above proposition and Proposi-
tion 7.5.1. This corollary is a slight strengthening of part of Theorem 7.5.4,
which asserts only that S0 is suitable if |Cli,S0(L/K)| = 1. ⊓⊔

Remark. If L/K is not only Galois but also cyclic, then C. Chevalley’s
“ambiguous class number formula” gives explicitly for all S the quotient
(NL/K(L∗)∩US(K))/NL/K(US(L)) in terms of ambiguous class groups, see
[Che] and [Sim1].

7.5.3 The Non-Galois Case

In the non-Galois case, the situation is much more complicated because we
will need to look at many different class groups of large degree fields. The
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method is useful when the degree of the Galois closure is not too large, but
it becomes impractical if it is too large.

Let L/K be a Galois extension, and let N/K be its Galois closure in some
algebraic closure K of K (recall that if L = K(α), then N can be taken as
the field generated over K by all the conjugates of α). Write G = Gal(N/K),
H = Gal(N/L) ⊂ G, and n = [L : K].

We begin with the following.

Proposition 7.5.8. Let S be a finite set of primes of K. The exponent of
(NL/K(L∗)∩US(K))/NL/K(US(L)) divides the GCD (n, |H |·|Cli,S(N/K)|).

Proof. By Proposition 7.5.1, we already know that this exponent divides
n. Set h = |Cli,S(N/K)|, and let a ∈ NL/K(L∗) ∩ US(K), so that we may
write a = NL/K(x) for some x ∈ L∗. We have

a|H| = NL/K

(
x|H|

)
= NL/K(NN/L(x)) = NN/K(x) ;

hence a|H| ∈ NN/K(N∗) ∩ UK,S. Applying Proposition 7.5.6 to the Galois
extension N/K, we deduce in particular that the exponent of the quotient
group (NN/K(N∗) ∩ UK,S)/NN/K(UN,S) divides h; hence there exists s ∈
UN,S such that

ah|H| = NN/K(s) = NL/K(NN/L(s)) ,

so ah|H| ∈ NL/K(US(L)), as claimed. ⊓⊔

Corollary 7.5.9. Keep the above notation, and let S0 be a finite set of
primes of K. Assume that n = [L : K] is coprime to |H | = |Gal(N/L)|
and to |Cli,S0(N/K)|. Then S0 is suitable for L/K.

Although not general, this corollary is already sufficiently powerful in
many cases. Note first that it covers the Galois case in the more precise form
of Corollary 7.5.7 (here |H | = 1 and N = L). But if n = [L : K] is prime,
then [N : K] divides n!, hence |H | divides (n − 1)! and thus is coprime to
n, so the condition of the corollary in this case is simply n ∤ |Cli,S0(N/K)|.
In fact, in relative degree n ≤ 5, the only cases where this corollary cannot
be used are the cases where G ≃ D4 (n = 4, |H | = 2) and G ≃ S4 (n = 4,
|H | = 6).

Note that (unfortunately) it is easy to give examples where it is essential
to use the relative class group of N and not only of L.

The general result that we need in the non-Galois case, due to D. Simon,
is the following.

Theorem 7.5.10. Keep the above notation, and let S0 be a finite set of
primes of K containing all the prime ideals of K ramified in L/K. Assume
that |Cli,S0(N/K)| is coprime to n and that for all cyclic subgroups C of
G = Gal(N/K) of prime power order pa with p | (n, |H |),

∣∣Cli,S0(N
C/K)

∣∣ is
coprime to (n, |H |). Then S0 is suitable for L/K.
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We refer to [Sim1] for the (quite technical) proof. Please note the condition
that S0 must contain all the ramified prime ideals, which did not occur in
the previous results. It is not difficult to give examples showing that this
condition (or a similar one) is necessary (see [Sim1]). Note also that, at least
in the known proof, it is necessary to consider the cyclic subgroups of G, and
not only of H .

In the special case of D4 and S4 extensions, which are not covered by
Corollary 7.5.9, the above theorem can be refined to give the following results.

Proposition 7.5.11. Assume that n = [L : K] = 4 and that G =
Gal(N/K) ≃ D4. Assume that S0 contains all the ramified primes in L/K
and that Cli,S0(N/K) and Cli,S0(L/K) have odd order. Then S0 is suitable
for L/K.

Proposition 7.5.12. Assume that n = [L : K] = 4 and that G =
Gal(N/K) ≃ S4. Call C any one of the three subgroups of H = Gal(N/L)
of order 2. Assume that S0 contains all the ramified primes in L/K and
that Cli,S0(N/K) and Cli,S0(N

C/K) have odd order. Then S0 is suitable for
L/K.

The interested reader can find many more results of this type as well as
examples and counterexamples in [Sim1].

7.5.4 Algorithmic Solution of Relative Norm Equations

We now have all the theoretical and practical tools necessary to give algo-
rithms for solving relative norm equations. We first write the two simple
algorithms for determining the necessary set S0.

Subalgorithm 7.5.13 (Compute S0 for Galois Extensions). Given a Galois
extension L/K, this auxiliary algorithm computes the set S0 necessary for solving
norm equations.

1. [Compute Cli(L/K)] Using Algorithm 7.3.1 or the methods of Section 7.3.3,
compute the relative class group Cli(L/K), and let Ii be generators of the
[L : K]-part of Cli(L/K) (in other words, the part of Cli(L/K) involving
only primes dividing [L : K]).

2. [Modify and terminate] If desired, multiply the ideals Ii by pseudo-elements of
L so that they become prime ideals. Output the set S0 of prime ideals of K
below a prime ideal of L dividing one of the Ii and terminate the subalgorithm.

Subalgorithm 7.5.14 (Compute S0 for Non-Galois Extensions). Given a
non-Galois extension L/K of degree n, this auxiliary algorithm computes the set
S0 necessary for solving norm equations.
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1. [Compute Galois closure] If L = K(α), let αi be the conjugates of α in K,
and set N ← K(α1, . . . , αn). Using an algorithm for Galois group computa-
tion (see below), compute the Galois group G = Gal(N/K), as well as the
subgroup H = Gal(N/L) fixing L.

2. [Compute subgroup list] Compute the list C of all cyclic subgroups of G of
prime power order pa for p | (n, |H |) up to conjugacy.

3. [Compute relative class groups] Using Algorithm 7.3.1 or the methods of Sec-
tion 7.3.3, compute the n-part of the relative class group Cli(N/K) and the
(n, |H |)-part of the relative class groups Cli(N

C/K) for all C ∈ C.
4. [Compute initial S0] If desired, multiply the generators of the relative class

groups obtained in step 3 by pseudo-elements of L so that they become prime
ideals. Let S0 be the set of prime ideals of K below a prime ideal of L dividing
one of the generators of all the class groups found.

5. [Add ramified primes and terminate] For each prime ideal p of K ramified in
L/K, set S0 ← S0 ∪ {p}, output S0, and terminate the subalgorithm.

Remarks

(1) Note that this subalgorithm can be used only in very small cases (say,
|G| ≤ 24) because of the difficulty of computing Cli(N/K) when |G| =
[N : K] is large. This is in marked contrast to the Galois case.

(2) To compute the Galois group G, it is easy to adapt the methods given in
[Coh0, Section 6.3] to the relative case (Exercise 12). Since [Coh0] treats
only degrees up to 7, we refer to [Eic-Oli] and [Gei] for degrees up to 12.
Note that here the degree refers to the degree of L/K and not, of course,
to the degree of N/K.

We can now write the main algorithm for solving norm equations, whose
proof is immediate from the results of the preceding sections.

Algorithm 7.5.15 (Solving Relative Norm Equations). Let L/K be an ex-
tension of number fields and a ∈ K∗. This algorithm finds an x ∈ L∗ such that
a = NL/K(x), or outputs a message saying that x does not exist.

1. [Compute S0] Using either Algorithm 7.5.13 if L/K is Galois or Algorithm
7.5.14 if L/K is non-Galois, compute a suitable set S0 of prime ideals of K.

2. [Compute S] Set S ← S0. Using Algorithm 2.3.22, factor the ideal aZK into
a power product of prime ideals, and for every p | a, set S ← S ∪ {p}.

3. [Compute S-units] Using Algorithm 7.4.8, compute S-units ε0, . . . , εs of K
and S-units η0, . . . , ηt of L such that

US(K) = (Z/w(K)Z)ε0 ⊕
⊕

1≤i≤s
Zεi

and
US(L) = (Z/w(L)Z)η0 ⊕

⊕

1≤j≤t
Zηj .
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4. [Compute discrete logarithms] Using a discrete logarithm algorithm in US(K)
(Exercise 13), compute exponents yi and pi,j such that

a =
∏

0≤i≤s
εyi

i and NL/K(ηj) =
∏

0≤i≤s
ε
pi,j

i .

5. [Solve system] Using Algorithm 4.1.23, look if there exists a solutionX = (xj)
to the mixed system of linear equations and congruences

∑
0≤j≤t pi,jxj = yi

for 1 ≤ i ≤ s and
∑

0≤j≤t p0,jxj ≡ y0 (mod w(K)). If such a solution does
not exist, our norm equation has no solution, so terminate the algorithm.

6. [Terminate] Output x←∏
0≤j≤t η

xj

j as a solution of our norm equation and
terminate the algorithm.

Remarks

(1) Since the norm of a root of unity is again a root of unity, we will clearly
have pi,0 = 0 for i > 0.

(2) It is easy to modify the algorithm so that it gives the complete solution
of the norm equation (Exercise 14).

Consider finally the case of norm equations where we look specifically
for integral solutions, in other words we assume a ∈ ZK and we look for
x ∈ ZL such that NL/K(x) = a. We could in fact just as easily treat the
case a ∈ ZK,S and x ∈ ZL,S , but since the initial problem is by far the most
common, we leave the general case to the reader (Exercise 15).

Although it looks very similar to the preceding problem, the solution is
much simpler and we do not need the results of the preceding sections. Indeed,
let aZK =

∏
i p
vi

i be the prime ideal decomposition of aZK , and let P be a
prime ideal of L dividing the solution x ∈ ZL that we are looking for. Then
NL/K(P) | aZK , so if p is the ideal of K below P and f = f(P/p) is the

residual degree of P, we have pf | a; hence since p is a prime ideal, p is one
of the pi. Thus, we may write

xZL =
∏

i

∏

Pi,j |pi

P
xi,j

i,j

for nonnegative integers xi,j .
There are two necessary conditions that must be satisfied by the xi,j .

First we must have NL/K(xZL) = aZK ; hence for all i we must have

∑

j

fi,jxi,j = vi ,

where we have set fi,j = f(Pi,j/pi).
The second condition is that

∏
i

∏
Pi,j |pi

P
xi,j

i,j must be a principal ideal.
As usual this can be transformed into a linear system by introducing the SNF
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of the class group Cl(L) =
⊕

k(Z/dkZ)Ik for some ideals Ik of L. We can
write for all (i, j) Pi,j = αi,j

∏
k I

ai,j,k

k for some αi,j ∈ L; hence we obtain
the additional linear congruences for all k

∑

i,j

ai,j,kxi,j ≡ 0 (mod dk) .

This mixed system of linear equations and congruences can be solved
using Algorithm 4.1.23. Note that we must only keep solutions of our system
such that the xi,j are all nonnegative. In particular, there are only a finite
number of such solutions, since it is clear that 0 ≤ xi,j ≤ vi/fi,j .

Conversely, if we have a solution (xi,j) to this system with xi,j ≥ 0 for
all (i, j), we know that

∏
i

∏
Pi,j |pi

P
xi,j

i,j must be a principal ideal yZL,
say, where y ∈ ZL can be found using the principal ideal algorithm in
L, and we also know that NL/K(yZL) = NL/K(y)ZK = aZK , hence
a = εNL/K(y) for some unit ε ∈ ZK . For a given solution (xi,j), we may
only modify y by multiplying it by an ordinary unit η ∈ U(L), hence we
must solve the norm equation NL/K(η) = ε. But once again this can be
transformed into a linear system: let U(K) = (Z/w(K)Z)ε0 ⊕

⊕
1≤i≤r Zεi

and U(L) = (Z/w(L)Z)η0 ⊕
⊕

1≤i≤R Zηi. Using a discrete logarithm algo-
rithm in U(K) (Algorithm 5.3.10), we compute exponents ui,j such that

NL/K(ηj) =
∏
i ε
ui,j

i and exponents bi such that ε =
∏
i ε
bi

i . Then if
η =

∏
j η

xj

j , we must have
∑

j ui,jxj = bi for 1 ≤ i ≤ r and
∑
j u0,jxj ≡ b0

(mod w(K)).
To summarize, we can find all solutions to NL/K(x) = a with a ∈ ZK and

x ∈ ZL as follows. We first find the finite number of nonnegative solutions xi,j
to the mixed linear system given above. For each such solution, we compute
ε and bi, and we find the (possibly infinite) solutions to NL/K(η) = ε by
solving the mixed linear system that we have just described. Writing all this
formally gives the following algorithm, in which we output only one solution.

Algorithm 7.5.16 (Solving Relative Integral Norm Equations). Let L/K be
an extension of number fields and a ∈ ZK , a 6= 0. This algorithm either finds
an x ∈ ZL such that a = NL/K(x) or outputs a message saying that x does

not exist. We assume computed the SNF (B,DB) of Cl(L) with B =
(
Ik
)

and DB = diag(dk), the unit groups U(K) = (εi) and U(L) = (ηj) as above,
and the necessary information to solve all the corresponding discrete logarithm
problems.

1. [Factor a] Using Algorithm 2.3.22, factor the ideal aZK into a power product
of prime ideals as aZK =

∏
i p
vi

i .

2. [Compute Pi,j and fi,j ] Using Algorithm 2.4.13, for each pi | a compute the
prime ideals Pi,j of L above pi, and let fi,j ← f(Pi,j/pi) be their residual
degrees.

3. [Use principal ideal algorithm] Using the principal ideal algorithm in L,
for each pair (i, j) as above compute integers ai,j,k such that Pi,j =
αi,j

∏
k I

ai,j,k

k for some αi,j ∈ L, that may be discarded.
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4. [Compute discrete logarithms in U(K)] Using Algorithm 5.3.10, compute
integers ui,j such that NL/K(ηj) =

∏
i ε
ui,j

i .

5. [Solve mixed linear system] Using Algorithm 4.1.23, solve the mixed linear
system in the unknowns xi,j :

∑
j fi,jxi,j = vi for all i and

∑
i,j ai,j,kxi,j ≡ 0

(mod dk) for all k. The solution will be of the form X0 + HZ for a (not
necessarily square) HNF matrix H and Z any integral column vector.

6. [Find nonnegative solutions] By looking at the rows from bottom up and
using the fact that H is in HNF, find necessary and sufficient inequalities on
the entries of Z so that X0 +HZ has only nonnegative entries, let X be the
finite list of such vectors X = X0 +HZ, and let s← 0 (s will be a pointer
on the list X ).

7. [Compute ideal product] Set s ← s + 1. If s > |X |, output a message
saying that our norm equation has no solution, so terminate the algorithm.
Otherwise, let X = (xi,j) be the sth element of X , and let I ←∏

i,j P
xi,j

i,j .

8. [Find generator] Using the principal ideal algorithm in L, compute y ∈ ZL
(which must exist) such that I = yZL, and set ε← a/NL/K(y).

9. [Solve unit system] Using Algorithm 5.3.10, compute integers bi such that
ε =

∏
i ε
bi

i . Then using Algorithm 4.1.23, compute a solution to the mixed
linear system

∑
j ui,jxj = bi for i ≥ 1 and

∑
j u0,jxj ≡ b0 (mod w(K)). If

this system has no solution, go to step 7.

10. [Terminate] Output x ← y
∏
j η

xj

j as a solution to our norm equation and
terminate the algorithm.

It is of course easy to modify this algorithm so that it gives the complete
solution to the norm equation. We must simply modify step 10 so that if a
solution is found we go back to step 7, and modify step 9 so that all solutions
of the mixed system are found, and not only one. We leave the details to the
reader (Exercise 16).

7.6 Exercises for Chapter 7

1. Let L be a relative extension of K. Show that the map iL/K from Cl(K) to

Cl(L) is not always surjective (take K = Q and L = Q
`√−23

´

) and not always

injective (take K = Q
`√

−23
´

and L = K(θ), where θ is a root of the cubic

polynomial X3 −X − 1 = 0, which is the Hilbert class field of K).

2. Let L be a relative extension of K. By considering the same examples as in
Exercise 1, show that the map NL/K from Cl(L) to Cl(K) is not always injective
nor surjective.

3. (E. Friedman) Denote by HK and HL the Hilbert class fields of K and L,
respectively. Continuing the previous exercise, show the following assertions.

a) The group ClN(L/K) is isomorphic to Gal(HL/LHK) via the Artin reci-
procity map Art. In particular, the map NL/K from Cl(L) to Cl(K) is
injective if and only if LHK = HL.
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b) The map NL/K from Cl(L) to Cl(K) is injective if and only if [L ∩HK :
K] = |Cl(L)| / |Cl(K)|.

c) The group ClN,L(K) is isomorphic to Gal(HK/K)/Gal(HK/L ∩HK) via
the Artin reciprocity map Art. In particular, the map NL/K from Cl(L)
to Cl(K) is surjective if and only if L ∩HK = K.

4. With the notation of the proof of Proposition 7.2.7, show that ζ(m,w(L)) is a
generator of the group of roots of unity of K.

5. Give an example of an extension L/K of number fields for which the integers ei

defined in Proposition 7.2.7 cannot be taken equal to zero (take, for example,

K = Q
`

√
21
´

and L = K(θ), where θ is a root of the polynomial X4 + u2 = 0
and u is the fundamental unit of K).

6. Let L be a relative extension of K. Show that the norm map from U(L) to

U(K)/µ(K) is not always surjective (take, for example, K = Q
`

√
2
´

and L =

K
`√−1

´

).

7. Extend Algorithm 7.3.4 so that it also computes the integers ei occurring in
Proposition 7.2.7.

8. Write a formal algorithm for the computation of UN (K) using the method
explained in the text at the end of Section 7.3.1.

9. Prove the validity of all the algorithms of Section 7.3.1.

10. At the end of Algorithm 7.3.6, show that if we set by convention c0 = 0 and
ck+1 = 1, then we have c′i = ci(w(L), ci−1)/(w(L), ci) for 1 ≤ i ≤ k + 1. Find a
similar formula for the bi.

11. By giving an explicit example, show that Theorem 7.5.4 is false if we replace
Cli(L/K) by ClN (L/K) (this is again another example showing the superiority
of iL/K over NL/K in relative class and unit group definitions).

12. Generalize the algorithms for Galois group computation given in [Coh0, Section
6.3] so that they are also valid in the relative case. (This can constitute a small
research project.)

13. Write an algorithm that solves the principal ideal problem in S-class groups
(given by Algorithm 7.4.6) and the discrete logarithm problem in the S-unit
group (given by Algorithm 7.4.8).

14. Modify Algorithm 7.5.15 so that it outputs in a reasonable manner the complete
set of solutions in L∗ of the norm equation NL/K(x) = a.

15. Generalize Algorithm 7.5.16 to the case where a ∈ ZK,S and x ∈ ZL,S for some
finite set S of prime ideals of K.

16. Modify Algorithm 7.5.16 so that it outputs in a reasonable manner the complete
set of solutions in ZL of the norm equation NL/K(x) = a.
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8. Cubic Number Fields

In [Coh0, Chapter 5], we studied quadratic fields in great detail. The goal of
the present chapter is to do the same for cubic fields. We have already studied
them in some detail in [Coh0, Chapter 6], but in the present chapter we will
deal with deeper subjects and also show how to generate tables of cubic fields
almost as efficiently as tables of quadratic fields. The spirit of this chapter is
slightly different from that of the preceding chapters, which essentially deal
with relative extensions, but the results are sufficiently important to be in-
cluded in a textbook. Had they been known when [Coh0] was first published,
they would, of course, have been included there.

The initial results of this chapter are due to H. Hasse, but the main results
are due to H. Davenport and H. Heilbronn ([Dav-Hei1], [Dav-Hei2]). These
have been completed and transformed into efficient algorithms by K. Belabas
(see [Bel1], [Bel3]), and I thank him for useful conversations on this subject.

The reader is warned that many of the proofs given in this chapter are
essentially elementary but rather tedious, in that they consist in a study of a
sometimes large number of special cases. Thus, we strongly advise the reader
to skip the proofs and read only the results and algorithms, at least at first.

8.1 General Binary Forms

Before specializing to the cubic case, we consider the general case of binary
forms of degree n. Let K be a field (usually Q, R, or C).

A binary form of degree n with coefficients in K is a homogeneous poly-
nomial in two variables of degree n with coefficients in K, in other words an
expression of the form

F (x, y) =

n∑

i=0

aix
n−iyi

with ai ∈ K. We will write F = (a0, a1, . . . , an) as an abbreviation for the
above notation. In particular, F = (a, b, c) is the binary quadratic form
F (x, y) = ax2 + bxy + cy2, and F = (a, b, c, d) is the binary cubic form
F (x, y) = ax3 + bx2y + cxy2 + dy3.

We will write Φn(K) (or simply Φn if the field K is understood) for the
K-vector space of binary forms of degree n with coefficients in K.
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The roots of F in the algebraic closure K of K are the solutions (x :
y) ∈ P1

(
K
)

of F (x, y) = 0. If aj = 0 for 0 ≤ j < m and am 6= 0, the point
at infinity (1 : 0) is a root of order exactly m (if m = 0 or, equivalently, if
a0 6= 0, it is of course not a root), and the other roots are the roots in K of
the polynomial F (x, 1) of degree n −m. In particular, if K is algebraically
closed, F always has exactly n roots in K, counted with multiplicity. Note
that the point at infinity is rational over any base field, algebraically closed
or not.

Denote by (αi : βi) ∈ P1

(
K
)

(with 1 ≤ i ≤ n) the roots of F in K. It is

easily seen that we can choose representatives in P1

(
K
)

so that we have

F (x, y) =
∏

1≤i≤n
(βix− αiy) .

Of course, the choice of representative is not unique: for each i we can change
(αi, βi) into (λiαi, λiβi) as long as

∏
1≤i≤n λi = 1. We will always assume

that the representatives of the roots are chosen in this manner.

We define the discriminant of the form F by the following formula:

disc(F ) =
∏

1≤i<j≤n
(αiβj − αjβi)2 .

This makes sense since if we change (αi, βi) into (λiαi, λiβi) with
∏

1≤i≤n λi =
1, the product is multiplied by

∏

1≤i<j≤n
(λiλj)

2 =
( ∏

1≤i≤n
λi

)2n−2

= 1 .

By Galois theory, it is easy to see that disc(F ) ∈ K. In fact, if F (x, 1)
is a polynomial of degree exactly equal to n (that is, if a0 6= 0), then we
immediately check that disc(F ) = disc(F (x, 1)) with the usual meaning of
discriminant.

In degrees up to 3 we have the following formulas:

disc(ax+ by) = 1 ;

disc(ax2 + bxy + cy2) = b2 − 4ac ;

disc(ax3 + bx2y + cxy2 + dy3) = b2c2 − 27a2d2 + 18abcd− 4ac3 − 4b3d .

If F is a form of degree n and γ = (A B
C D ) is a 2× 2 matrix with entries in

K, we define the action of γ on F by

F ◦ γ(x, y) = F (Ax +By,Cx+Dy) .

Proposition 8.1.1. Let γ = (A B
C D ). Then

disc(F ◦ γ) = (AD −BC)n(n−1) disc(F ) .
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Proof. Let (αi : βi) be the roots of F chosen as above so that

F (X,Y ) =
∏

1≤i≤n
(βix− αiy) .

Then

F ◦ γ(X,Y ) =
∏

1≤i≤n
(βi(Ax+By)− αi(Cx +Dy)) =

∏

1≤i≤n
(β′
ix− α′

iy) ,

with (
α′
i

β′
i

)
=

(
D −B
−C A

)(
αi
βi

)
.

Hence,

disc(F ◦ γ) =
∏

1≤i<j≤n
(α′
iβ

′
j − α′

jβ
′
i)

2

=
∏

1≤i<j≤n
((AD −BC)(αiβj − αjβi))2

= (AD −BC)n(n−1) disc(F ) .

⊓⊔

This proposition implies that the discriminant is invariant under the ac-
tion of GL2(Z). More precisely, since it is a polynomial of degree 2n − 2 in
the variables of the form, and since the exponent of (AD−BC) in the trans-
formation formula is n(n− 1), we say that it is an invariant of degree 2n− 2
and weight n(n− 1).

More generally, we can give the following definition.

Definition 8.1.2. (1) A map f from Φn to K is called an invariant of degree
d and weight w if it is a homogeneous polynomial map of degree d in the
coefficients of the forms such that for all γ = (A B

C D ) ∈ GL2(K) and for
all F ∈ Φn we have

f(F ◦ γ) = (AD −BC)wf(F ) .

(2) More generally, a map f from Φn to Φm is called a covariant of degree
d and weight w if it is a homogeneous polynomial map of degree d in the
coefficients of the forms such that for all γ as above and for all F ∈ Φn
we have

f(F ◦ γ) = (AD −BC)wf(F ) ◦ γ .

Thus, an invariant is the special case m = 0 of a covariant. A trivial
but important covariant for m = n, degree 1, and weight 0 is the identity
map, which we will denote by I. By Proposition 8.1.1, the discriminant is an
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invariant of weight n(n − 1), and it is not difficult to see that its degree is
equal to 2n− 2 (see Exercise 1).

Apparently, there are three numbers associated to a covariant on Φn: its
degree d, its weight w, and the degree m of the image forms. In fact, it is not
difficult to show that these numbers are linked by the simple relation

w =
nd−m

2
,

where the 2 in the denominator comes from the fact that we deal with bi-
nary forms (see Exercise 2). Since a product of covariants is clearly again a
covariant, and since the degree, weight, and m are additive, we will consider
the algebra of covariants of Φn as a bigraded algebra, the bidegree being the
pair (d,m). We can recover the weight from the above relation.

More generally, the following proposition allows us to construct new co-
variants from old (the case h = 0 corresponds to the product of covariants). I
thank J. Cremona for having pointed out to me the existence of such a result.

Proposition 8.1.3. Let f1 and f2 be two covariants on Φn of degree d1,
d2, weight w1, w2, and with values in Φm1 and Φm2 , respectively. For any
nonnegative integer h and F ∈ Φn, set

φh(f1, f2)(F ) =

h∑

j=0

(−1)j
(
h

j

)
∂h

∂Xh−j∂Y j
f1(F )

∂h

∂Xj∂Y h−j
f2(F ) .

Then φh(f1, f2) is a covariant on Φn of degree d1 + d2, weight w1 + w2 + h,
with values in Φm1+m2−2h.

Proof. To simplify notation, write ∂X for ∂/∂X and ∂Y for ∂/∂Y . The
only operators that occur are ∂X and ∂Y , which commute, and the multipli-
cation operator, which does not commute with ∂X or ∂Y . Let γ = (A B

C D ) ∈
GL2(K) and set G = φh(f1, f2)(F ◦ γ). Then

G =

h∑

j=0

(−1)j
(
h

j

)
(A∂X + C∂Y )h−j(B∂X +D∂Y )jf1(F ◦ γ)

· (A∂X + C∂Y )j(B∂X +D∂Y )h−jf2(F ◦ γ)
= (AD −BC)w1+w2

(
−(B∂X +D∂Y )f1(F ) ◦ γ(A∂X + C∂Y )f2(F )

+ (A∂X + C∂Y )f1(F )(B∂X +D∂Y )f2(F ) ◦ γ
)h

= (AD −BC)w1+w2+h (∂Xf1(F )∂Y f2(F )− ∂Y f1(F )∂Xf2(F ))
h ◦ γ

= (AD −BC)w1+w2+hφh(f1, f2)(F ) ◦ γ .

In addition, it is clear that each term of φh(f1, f2)(F ) is in Φm1+m2−2h and is
of degree d1 + d2 in the coefficients of the form, proving the proposition. ⊓⊔
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It can be proved (see [Gor]) that this proposition allows us to construct
all the covariants. For our purposes, we simply isolate two special cases.

Corollary 8.1.4. (1) The function defined by

H(F ) = φ2(I, I)(F )/2 =
∂2F

∂X2

∂2F

∂Y 2
−
(

∂2F

∂X∂Y

)2

(called the Hessian) is a covariant of degree 2, weight 2, with values in
Φ2n−4.

(2) If f1 and f2 are two covariants on Φn of degree d1, d2, weight w1, w2,
and with values in Φm1 and Φm2 , respectively, the function defined by

φ1(f1, f2)(F ) =
∂f1(F )

∂X

∂f2(F )

∂Y
− ∂f1(F )

∂Y

∂f2(F )

∂X

(called the Jacobian of the covariants f1 and f2) is a covariant of degree
d1 + d2, weight w1 + w2 + 1, with values in Φm1+m2−2.

(3) In particular,

J(F ) = φ1(I,H) =
∂F

∂X

∂H(F )

∂Y
− ∂F

∂Y

∂H(F )

∂X

is a covariant of degree 3, weight 3, with values in Φ3n−6, which we can
call the Jacobian covariant of F .

Let us specialize to forms of degree n ≤ 3.
In degree 1, we have already seen that the discriminant is equal to 1, and

it is trivial to show that the covariants are all constant multiples of Ik, which
is of degree k, weight 0, and with values in Φk. Thus, the bigraded algebra
of covariants is equal to K[I], where I is of bidegree (1, 1).

In degree 2, we already have the covariants I and the discriminant disc. For
example, the Hessian H(F ) is equal to − disc(F ). It is also easily proved that
I and disc generate all covariants. More precisely, the space of covariants with
values in Φ2k and of weight 2ℓ is one-dimensional and generated by Ik discℓ,
and the degree is necessarily equal to k+2ℓ. There are no nonzero covariants
with values with Φm for m odd or of odd weight. In other words, the bigraded
algebra of covariants is equal to K[I, disc], where I is of bidegree (1, 2) and
disc of bidegree (2, 0).

In degree 3, as in degree 2, we already have the covariants I and the
discriminant disc. However, Corollary 8.1.4 allows us to construct some new
covariants. First we have the Hessian H(F ), given explicitly by the formula

H(ax3 + bx2y + cxy2 + dy3) = −4(Px2 +Qxy +Ry2)

with
P = b2 − 3ac, Q = bc− 9ad, R = c2 − 3bd .
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(To remove this factor 4, we will in fact set HF = −H(F )/4 and call it by
abuse of language the Hessian of F , but for the moment we keep the above
normalization.)

This is a covariant of degree 2, weight 2, with values in Φ2.
The function J(F ) = φ1(I,H) is a covariant of degree 3, weight 3, with

values in Φ3, so that J(F ) is another cubic form. We will simply call it the
cubic covariant of F . It is given by

J(F ) = −4(a′x3 + b′x2y + c′xy2 + d′y3)

with

a′ = −27a2d+ 9abc− 2b3 , b′ = −27abd+ 18ac2 − 3b2c ,

c′ = 27acd− 18b2d+ 3bc2 , d′ = 27ad2 − 9bcd+ 2c3 .

Direct computation shows that disc(J(F )) = 2836 disc(F )3, H(J(F )) =
2433 disc(F )H(F ), and J(J(F )) = −2836 disc(F )2F .

Thus, we do not obtain any new covariants, and it can indeed be shown
that all the covariants are generated by I, disc, H , and J . Slightly more
subtle is the fact that there exists a syzygy, which is by definition a relation
between these covariants. This relation is given by

J2 +H3 + 2433I2 disc = 0 .

One can show that this is the only relation. Thus, the bigraded algebra of
covariants is equal to

K[I,H, J,disc]/(J2 +H3 + 2433I2 disc) ,

where I is of bidegree (1, 3), H is of bidegree (2, 2), J is of bidegree (3, 3),
and disc is of bidegree (4, 0). Thus, it is no longer a free polynomial algebra
over K.

We now restrict to the case of integral binary forms, in other words to
binary forms F (x, y) =

∑n
i=0 aix

n−iyi with ai ∈ Z for all i. Since n(n − 1)
is even, Proposition 8.1.1 tells us that the action of GL2(Z) preserves the
discriminant of F . This would also be the case for any covariant or invariant
of even weight.

We will say that the form F is irreducible if F (x, y) is irreducible as
a polynomial in Q[x, y]. Equivalently, F is irreducible if a0 6= 0 and the
polynomial F (x, 1) is irreducible in Q[x] (or Z[x]).

We will say that an integral form F is primitive if the GCD of all its
coefficients is equal to 1.

Proposition 8.1.5. Let F be an integral form and γ ∈ GL2(Z). Then F ◦ γ
is irreducible if and only if F is irreducible, and F ◦γ is primitive if and only
F is primitive.

Proof. This immediately follows from the fact that the action of GL2(Z)
is reversible, that is, F = (F ◦ γ) ◦ γ−1. ⊓⊔
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8.2 Binary Cubic Forms and Cubic Number Fields

The aim of this section is to generalize to the cubic case the well-known cor-
respondence between binary quadratic forms and quadratic number fields.
These results are due to Davenport and Heilbronn (see [Dav-Hei1] and [Dav-
Hei2]). Before stating and proving the main theorem, we need a few prelim-
inary results. We let Φ be the set of classes under GL2(Z) of primitive irre-
ducible binary cubic forms. This makes sense, thanks to Proposition 8.1.5.
Note that we consider classes under GL2(Z), and not under SL2(Z) as in the
quadratic case.

Let K be a cubic number field and (1, α, β) an integral basis of ZK with
first element equal to 1. Denote by d(K) the discriminant of the number field
K, and let Kg be a normal closure of K, which is equal to K itself if K
is a cyclic cubic field and otherwise is a number field of degree 6 over Q. If
x ∈ K, denote by x1 = x, x2, and x3 the conjugates of x in Kg, and let
disc(x) be the discriminant of the (monic) characteristic polynomial of x, so
that disc(x) = ((x1 − x2)(x1 − x3)(x2 − x3))

2.
Note that if x ∈ K and x = x′/d with x′ ∈ ZK and d ∈ Z, then disc(x) =

disc(x′)/d6 = d(K)f2/d6, where f = [ZK : Z[x′]], so that for every x ∈ K we
have

√
disc(x)/d(K) ∈ Q.

Proposition 8.2.1. Let B = (1, α, β) be an integral basis of a cubic number
field K as above. For x and y elements of Q, set

FB(x, y) =

∏
1≤i<j≤3((βi − βj)x− (αi − αj)y)∑

1≤i<j≤3(−1)i−j(αiβj − αjβi)
.

(1) For x and y in Q, we have

FB(x, y) = ±
√

disc(βx − αy)
d(K)

= ±NK/Q ((β − β′)x − (α− α′)y)
√
d(K)

.

(2) The function FB is the restriction to Q×Q of a binary cubic form (again
denoted by FB)with rational coefficients.

(3) disc(FB) = d(K).
(4) The form FB is an integral, primitive, irreducible cubic form.
(5) The class of FB in Φ is independent of the integral basis (1, α, β) that we

have chosen, so we will denote this class by FK .
(6) Let the number field K be defined by a root θ of the polynomial x3 +px2 +

qx + r with p, q, r in Z, such that there exists an integral basis of the
form (1, θ, (θ2 + tθ + u)/f) with t, u, f in Z and f = [ZK : Z[θ]] (this is
always possible). If we choose α = θ and β = (θ2 + tθ + u)/f , we have
explicitly

FB(x, y) = ((t3 − 2t2p+ t(q + p2) + r − pq)/f2)x3

+ ((−3t2 + 4tp− (p2 + q))/f)x2y + (3t− 2p)xy2 − fy3 .
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Proof. (1) follows directly from the definitions, after noting that d(K) is
the square of the determinant of the matrix




1 α1 β1

1 α2 β2

1 α3 β3



 .

If we take one of the expressions on the right-hand side of the equalities in
(1) as the definition of FB, there is a sign ambiguity. However, this will not
matter in the sequel since FB(−x,−y) = −FB(x, y) so that FB and −FB are
SL2(Z)-equivalent.

(2). The definition of FB shows that FB is the restriction to Q × Q of a
cubic form with coefficients in Kg. Furthermore, Galois theory shows that
the coefficients of FB(x, y) are invariant under the Galois group of Kg over
Q, so that in fact FB is a rational cubic form. Note that the rationality of
FB(x, y) when x and y are rational also follows from the remark made before
the proposition.

(3). The roots of
√
d(K)FB (with any choice for the square root) are by

assumption the (αi − αj : βi − βj) for 1 ≤ i < j ≤ 3, and this respects the
convention for the choice of roots made at the beginning. Hence one checks
that

disc(
√
d(K)FB) = (((α1 − α2)(β2 − β3)− (α2 − α3)(β1 − β2))

· ((α2 − α3)(β3 − β1)− (α3 − α1)(β2 − β3))

· ((α3 − α1)(β1 − β2)− (α1 − α2)(β3 − β1)))
2

= d(K)3 ,

so that disc(FB) = d(K), since by the explicit formula for disc(FB) we have
disc(λFB) = λ4 disc(FB).

(4). This is the longest part of the proof. Let FB = (a, b, c, d) with a, b, c,
d in Q by (2). First, we note that if x and y are in Z, then γ = βx−αy is in
ZK ; hence by the remark made above, FB(x, y) = f , where f = [ZK : Z[γ]],
so FB(x, y) ∈ Z. Applying this to (x, y) = (1, 0) and (x, y) = (0, 1), we
deduce that a ∈ Z and d ∈ Z. Then applying this to (x, y) = (1, 1) and
(x, y) = (1,−1), we deduce that b+ c ∈ Z and b− c ∈ Z. It follows that b and
c belong to 1

2Z with b ≡ c (mod 1). By (3), we know that disc(FB) = d(K)
is an integer. By the explicit formula for disc(FB) and using the fact that b
and c belong to 1

2Z, we obtain 2 disc(FB) ≡ 2b2c2 ∈ Z. Since b ≡ c (mod 1),
we cannot have b ≡ c ≡ 1

2 (mod 1); hence b ≡ c ≡ 0 (mod 1), proving that
FB is integral.

Recall that by (1), if x and y are in Z, we have FB(x, y) = ±f(βx− αy),
where for γ ∈ ZK , f(γ) = [ZK : Z[γ]]. Let δ be the GCD of the coefficients of
FB. Thus, for each x, y in Z we have δ | f(βx−αy). But since f(γ+n) = f(γ)
for any n ∈ Z and since (1, α, β) is an integral basis (and not only a triplet
of elements of ZK), it follows that for any γ ∈ ZK we have δ | f(γ).
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This means by definition that δ is an inessential discriminantal divisor.
According to a theorem of Dedekind, for a cubic field this implies either that
δ = 1 or else that δ = 2 and 2 is totally split in K (see Exercises 4 and 5).
Assume the latter. We thus have FB = 2G for an integral cubic form G, and
disc(G) = disc(FB)/16 = d(K)/16 by (3). However, since 2 is totally split in
K, it is in particular unramified, hence 2 ∤ d(K), which is absurd since this
implies that the integral cubic form G has a nonintegral discriminant. Thus
we have δ = 1, and hence FB is primitive.

Finally, let us show that FB is irreducible. Since we are in the cubic case,
this means that FB(x, y) has no linear factor in Q[x, y]. Assume the contrary.
By definition of FB, we may assume that such a linear factor is proportional
to ((β1 − β2)x− (α1 − α2)y). It follows that there exist integers r and s not
both zero such that s(α1 − α2) = r(β1 − β2), so that sα1 − rβ1 = sα2 − rβ2.
Taking conjugates, we see that we have sα1−rβ1 = sα2−rβ2 = sα3−rβ3, so
that the conjugates of sα−rβ are equal. Hence by Galois theory, sα−rβ ∈ Q,
and since r and s are not both zero, this is in contradiction to (1, α, β) being
an integral basis. It follows that FB is irreducible.

(5). Let B′ = (1, α′, β′) be another integral basis. This means that there
exist integers A, B, C, D, E, F such that

(
α′

β′

)
=

(
A B
C D

)(
α
β

)
+

(
E
F

)

with AD − BC = ±1, since (α′ − E, β′ − F ) and (α, β) must generate the
same lattice. It follows that

disc(β′x− α′y) = disc((Cα +Dβ + F )x− (Aα +Bβ + E)y)

= disc((Cα +Dβ)x − (Aα+Bβ)y)

= disc(β(Dx −By)− α(−Cx+Ay)) ,

where the second equality follows from disc(x + n) = disc(x) for all x ∈ K
and n ∈ Q. Since AD −BC = ±1, it follows from (1) that FB′ = ±FB ◦ γ−1

with γ = (A B
C D ), so FB′ and FB are equivalent.

(6). This follows from a straightforward but tedious computation. ⊓⊔

Conversely, given an integral, primitive, irreducible binary cubic form F ,
we can define a number field KF associated to F by KF = Q(θ), where θ is
any root of F (x, 1). Since F is irreducible, θ is an algebraic number of degree
exactly equal to 3, so KF is a cubic field. Choosing another root of F gives
an isomorphic (in fact, conjugate) field KF ; hence the isomorphism class of
KF is well-defined. Finally, if F and G are equivalent under GL2(Z), KF and
KG are again clearly conjugate.

It follows that if we let C be the set of isomorphism classes of cubic number
fields, we have defined maps φCΦ : K 7→ FK from C to Φ and φΦC : F 7→ K
from Φ to C.
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Proposition 8.2.2. We have φΦC ◦φCΦ = 1; hence φCΦ is injective and φΦC
is surjective.

Proof. Let K be a cubic field and let (1, α, β) be an integral basis. We
have (for example) KFK = Q((α2 − α3)/(β2 − β3)) ⊂ Kg. If K is a cyclic
cubic field, then KFK = K. Otherwise, Kg is a number field of degree 6,
with Galois group isomorphic to S3, and (α2 − α3)/(β2 − β3) is fixed by the
transposition (23) of order 2, hence belongs to a cubic subfield, and so KFK

is isomorphic to K. In fact, by choosing the numbering such that α = α1

and β = β1, KFK is even equal to K, not only conjugate to it. Note also
that we cannot have (α2 − α3)/(β2 − β3) ∈ Q, because FK would then be
reducible. ⊓⊔

Let I ⊂ Φ be the image of φCΦ. It follows from this proposition that φCΦ
and the restriction of φΦC to I are inverse discriminant-preserving bijections
between C and I, and this is the Davenport–Heilbronn correspondence that
we are looking for. There now remains to determine the image I.

Before doing so, we will show that the form FK determines the simple
invariants of a cubic number field.

Proposition 8.2.3. Let K be a cubic field, FK = (a, b, c, d) the associated
cubic form, and θ a root of FK such that K = Q(θ) (we have seen above that
such a θ exists). Then we have the following results.

(1) d(K) = disc(FK).
(2) (1, aθ, aθ2 + bθ) is an integral basis of ZK .
(3) A prime p ∈ Z decomposes in K as F decomposes in Fp[X,Y ]. More

precisely, if

FK(X,Y ) ≡
∏

1≤i≤g
Ti
ei

(X,Y ) (mod p)

is a decomposition of F into irreducible homogeneous factors in Fp[X,Y ],
then we have

pZK =
∏

1≤i≤g
pei

i ,

where the pi are distinct prime ideals of ZK given as follows. Call Ti any
lift of Ti in Z[X,Y ], and set di = deg

(
Ti
)
.

a) If p ∤ a, then
pi = pZK + Ti(θ, 1)ZK .

b) If p | a but p ∤ d, then

pi = pZK +
Ti(θ, 1)

θdi
ZK .

c) If p | a, p | d, then if p 6= 2 or if p = 2 and F (X,Y ) 6≡ X2Y +XY 2

(mod 2), there exists e ∈ Z such that e 6≡ 0 and e 6≡ −b/c (mod p)
(any e 6≡ 0 (mod p) if p | c), and then
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pi = pZK +
Ti(θ, 1)

(1 − eθ)di
ZK .

d) Finally, if p = 2 and F (X,Y ) ≡ X2Y +XY 2 (mod 2), we can take

p1 = 2ZK + aθZK , p2 = 2ZK + (aθ2 + bθ + 1)ZK ,

and p3 = 2ZK + (aθ2 + (a+ b)θ)ZK .

Proof. Statement (1) has been proved in the preceding section.
(2). θ is a root of aθ3 + bθ2 + cθ + d = 0. It follows from [Coh0, Exercise

15 of Chapter 4], and easily checked directly, that O = {x + yaθ + z(aθ2 +
bθ), x, y, z ∈ Z} is an order in K; in other words, it is an algebra and a
Z-module of finite type and in particular is a suborder of the maximal order
ZK . If θi denotes the three roots of FK(x, 1), an easy computation shows that

disc(O) = a4
∏

1≤i<j≤3

(θi − θj)2 = disc(FK) = disc(ZK) ;

hence O = ZK .
(3). Assume first that p ∤ a. Set

f(X) = a2FK

(
X

a
, 1

)
= X3 + bX2 + acX + a2d .

Then f is a monic irreducible polynomial over Q with a root aθ ∈ K.
We have Z[aθ] ⊂ ZK and

disc(Z[aθ]) = a6
∏

1≤i<j≤3

(θi − θj)2 = a2 disc(ZK) ;

hence [ZK : Z[aθ]] = a (this also follows directly from (2)). Since p ∤ a =
[ZK : Z[aθ]], it follows, for example, from [Coh0, Theorem 4.8.13] that pZK =∏

1≤i≤g pei

i for pi = pZK + Ui(aθ)ZK , where f ≡ ∏1≤i≤g Ui
ei

(mod p) is an
irreducible decomposition of f in Fp[X ].

But then

FK(X,Y ) = Y 3FK

(
X

Y
, 1

)
=
Y 3

a2
f

(
aX

Y

)

≡
∏

1≤i≤g
εi

(
Y diUi

(
aX

Y

))ei

(mod p)

for some εi ∈ F∗
p, and so Ti(X,Y ) = εiY

diUi(aX/Y ) and Ti(θ, 1) = εiUi(aθ).
Finally, we note that, for ε 6≡ 0 (mod p), we have

pZK + αZK = pZK + εαZK ,

and the case p ∤ a follows.
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Assume now that p | a. If we can find a matrix M = (A B
C D ) ∈ GL2(Z)

such that G = FK ◦M = (a′, b′, c′, d′) is such that p ∤ a′, we can apply the
preceding case, since K is also generated by a root of G.

One easily checks that if p | a but p ∤ d we can take M = ( 0 1
1 0 ), and if

p | a, p | d but either p 6= 2 or p = 2 and FK(X,Y ) 6≡ X2Y +XY 2 (mod 2),
then there exists e ∈ Z such that e 6≡ 0 and e 6≡ −b/c (mod p) (any e 6≡ 0
(mod p) if p | c), and we then take M = ( 1 0

e 1 ). This immediately gives the
formulas of the proposition.

Finally, if p = 2 and FK(X,Y ) ≡ X2Y + XY 2 (mod 2), then 2 divides
the coefficient of x3 of any form equivalent to FK , and from the definition
of FK this means that 2 divides the index of any α ∈ ZK ; in other words, 2
is an inessential discriminantal divisor. We then know that 2 is totally split,
hence 2 still factors as FK ≡ XY (X + Y ) modulo 2. To find the factors
explicitly, we must split the étale algebra A = ZK/2ZK . Since A ≃ (Z/2Z)3,
all its elements are idempotents. If we set e1 = 1, e2 = aθ, and e3 = aθ2 + bθ
considered as elements of A (they are in ZK ; see above), we check that
e2e3 = a2θ3 + abθ2 = −acθ − ad = aθ = e2 in A since c is odd and a and d
are even. It follows that e2, e1 + e3, and e2 + e3 are orthogonal idempotents
of sum 1, thus giving the desired splitting of A, hence of pZK . ⊓⊔

8.3 Algorithmic Characterization of the Set U

We will now introduce a set U of cubic forms and study some of its properties.
In the next section, we will prove that U is the image I of the Davenport–
Heilbronn correspondence.

We first need some notation. For a prime p, we let Vp be the set of F ∈ Φ
such that p2 ∤ disc(F ) if p 6= 2, or disc(F ) ≡ 1 (mod 4) or disc(F ) ≡ 8 or 12
(mod 16) if p = 2. If other words, if disc(F ) = dkf

2 with dk a fundamental
discriminant, F ∈ Vp if and only if p ∤ f .

In particular, F ∈ ⋂p Vp if and only if disc(F ) is a fundamental discrimi-
nant.

Furthermore, let Up be the set of F ∈ Φ such that either F ∈ Vp, or else

F (x, y) ≡ λ(δx− γy)3 (mod p)

for some λ ∈ F∗
p and x, y in Fp not both zero, and in addition F (γ, δ) 6≡ 0

(mod p2).
We will summarize the condition F (x, y) ≡ λ(δx−γy)3 (mod p) for some

λ ∈ F∗
p by saying that F has three identical roots in Fp, and we will write

(F, p) = (13).
Finally, we set U =

⋂
p Up. The Davenport–Heilbronn theorem states that

U = I, the image of the map φCΦ that we are looking for. Before proving this
theorem, we must study in detail the set U .

For this, we will use the Hessian of a form F , introduced in Corollary
8.1.4, which we divide by −4 to avoid useless constants.
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Definition 8.3.1. Let F = (a, b, c, d) be a cubic form. We define the Hessian
of F and numbers P , Q, and R by the formula

HF (x, y) = −1

4

∣∣∣∣∣

∂2F
∂x∂x

∂2F
∂x∂y

∂2F
∂y∂x

∂2F
∂y∂y

∣∣∣∣∣ = Px2 +Qxy +Ry2 .

We have P = b2 − 3ac, Q = bc− 9ad, and R = c2 − 3bd.

Proposition 8.3.2. Let F = (a, b, c, d) be a cubic form and HF = (P,Q,R)
its Hessian.

(1) For any M ∈ GL2(C) we have HF◦M = det(M)2HF ◦M . In particular,
if M ∈ GL2(Z), we have HF◦M = HF ◦M .

(2) disc(HF ) = −3 disc(F ).
(3) F (Q,−2P ) = (2bP − 3aQ) disc(F ).
(4) 3dP − cQ+ bR = 3aR− bQ+ cP = 0.

Formula (1) simply states that the Hessian is a covariant of weight 2,
which we have already proved (Corollary 8.1.4). The other formulas are easily
proved by a direct computation. ⊓⊔

We are now ready to give an algorithmic description of the set U . We
need two propositions.

Proposition 8.3.3. Let F = (a, b, c, d) be a primitive form, and let HF =
(P,Q,R) be its Hessian. Recall that we write (F, p) = (13) if F has a triple
root in Fp. Then we have the following results.

(1) p | disc(F ) if and only if F has at least a double root in Fp, and if this is
the case, all the roots of F are in fact in Fp itself.

(2) (F, p) = (13) if and only if p| gcd(P,Q,R).
(3) If (F, p) = (13) and p 6= 3, then F ∈ Up if and only if p3 ∤ disc(F ).
(4) If (F, 3) = (13) and F ∈ U3, then 36 ∤ disc(F ).
(5) If (F, 3) = (13) then we have the following:

a) if 3 | a, then F ∈ U3 ⇐⇒ 9 ∤ a and 3 ∤ d;
b) if 3 ∤ a but 3 | d, then F ∈ U3 ⇐⇒ 9 ∤ d;
c) if 3 ∤ a and 3 ∤ d, then there exists ε = ±1 such that 3 | (a− εd), and

then F ∈ U3 ⇐⇒ 9 ∤ ((a+ c)− ε(b+ d)).

Proof. (1). Assume that p | disc(F ). We know that any nonzero polynomial
in one variable over Fp can be written as

∏
i≥1A

i
i, where Ai ∈ Fp[X ] are

pairwise coprime and squarefree polynomials, and essentially in a unique
manner (up to multiplication of each Ai by suitable constants). This result
can be homogenized and transformed into an identical one for homogeneous
polynomials in two variables.

Since F is primitive, it is nonzero modulo p. Since p | disc(F ), by defi-
nition of the discriminant this means that F has at least a double root in
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P1

(
Fp
)
. In other words, in the decomposition above there exists i > 1 such

that Ai is not equal to a constant. Since F is of degree 3, this means that
F = A3

3 or else F = A1A
2
2 with A1, A2, and A3 of degree 1. It follows in

particular that all the roots of F modulo p are in Fp itself.
(2). We have just seen that if p | disc(F ) then all the roots of F are in Fp

and there is at least a double root. Hence write

F (x, y) ≡ (δx− γy)2(βx− αy) (mod p) .

Then we find that

H(x, y) ≡ (δx− γy)2(αδ − βγ)2 (mod p) .

Since F is primitive, γ and δ cannot both be zero modulo p; hence

H(x, y) ≡ 0 (mod p) ⇐⇒ αδ − βγ ≡ 0 (mod p) ⇐⇒ (F, p) = (13) .

On the other hand, if p ∤ disc(F ), then we cannot have p | gcd(P,Q,R)
since otherwise p2 | disc(HF ) = −3 disc(F ), and so p | disc(F ), which is
absurd.

(3). From now on we assume that (F, p) = (13). Replacing F by an equiv-
alent form G, we may assume that the triple root of G modulo p is at (0 : 1),
so that G = (A,B,C,D) ≡ (A, 0, 0, 0) (mod p) for some A ∈ Z. This implies
that disc(G) ≡ −27A2D2 (mod p3). Since G is primitive, we have p ∤ A.

Assume first that p 6= 3. We thus have

p3 | disc(G) ⇐⇒ p2 | D ⇐⇒ p2 | G(0, 1) ⇐⇒ G /∈ Up
by definition of Up (note that p3 | disc(G) implies that G /∈ Vp when p 6= 3;
see Exercise 6).

We could also have written F (x, y) = λ(δx−γy)3+pF1(x, y) for an integral
form F1, from which we obtain disc(F ) ≡ −27λ2F 2

1 (γ, δ)p2 (mod p3), which
immediately implies the result.

(4). Assume now that p = 3 and that F ∈ U3 or, equivalently, that
9 ∤ D. Then disc(G) ≡ −4AC3 (mod 34), hence 32 | C, so disc(G) ≡ −4B3D
(mod 35), hence 32 | B, so finally disc(G) ≡ −27A2D2 6≡ 0 (mod 36).

(5). Assume that p = 3 and that (F, 3) = (13). Since F (x, y) ≡ λ(δx−γy)3
(mod 3), we see that 3 | b and 3 | c. It follows that

F (−d, a) ≡ −ad3 + da3 ≡ −ad+ da ≡ 0 (mod 3) ,

and since F is primitive we cannot have 3 | a and 3 | d, so (−d : a) is a root
of F modulo 3, hence the root of F modulo 3. Therefore, F ∈ U3 if and only
if F (−d, a) 6≡ 0 (mod 9). Since b and c are divisible by 3, the value of F (x, y)
modulo 9 depends only on x and y modulo 3, so

F (−d, a) ≡ ad(−d2 + bd− ca+ a2) (mod 9) ,

and the result follows by separately considering the three cases of (5). ⊓⊔
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Corollary 8.3.4. Let F = (a, b, c, d) be a primitive form, and let HF =
(P,Q,R) be its Hessian. Then F /∈ U2 if and only if disc(F ) ≡ 0 (mod 16)
or disc(F ) ≡ 4 (mod 16) and P or R is odd.

Proof. The proof is trivial and is left to the reader (Exercise 7). ⊓⊔

Proposition 8.3.5. Let F be a primitive form, and write disc(F ) = dkf
2

with dk a fundamental discriminant. Then p | f if and only if either (F, p) =
(13) or

F (x, y) ≡ (δx − γy)2(βx − αy) (mod p) and F (γ, δ) ≡ 0 (mod p2) .

Proof. Assume first that p | f . Then p | disc(F ) and so we can write

F (x, y) = (δx− γy)2(βx − αy) + pF1(x, y)

with F1 integral.
Assume p 6= 2. A computation shows that

disc(F ) ≡ 4p(αδ − βγ)3F1(γ, δ) (mod p2) .

Since p | f , we have p2 | disc(F ). Hence, if p 6= 2, either p | (αδ − βγ) — in
other words, (F, p) = (13) — or p | F1(γ, δ) — in other words, F (γ, δ) ≡ 0
(mod p2).

Assume now that p = 2. If F1 = (a1, b1, c1, d1), a computation shows that

disc(F ) ≡ 8(αδ−βγ)3F1(γ, δ)+4((a1α+b1β)γ2+(c1α+d1β)δ2)2 (mod 16) .

Since 2 | f , disc(F ) = dkf
2 ≡ 0 or 4 (mod 16). Since the square of an integer

is congruent to 0 or 1 modulo 4, it follows that

8(αδ − βγ)3F1(γ, δ) ≡ −4, 0, or 4 (mod 16) ;

in other words, (αδ−βγ)3F1(γ, δ) ≡ 0 (mod 2). So once again, either (F, 2) =
(13) or 2 | F1(γ, δ), as before.

Conversely, assume that either (F, p) = (13) or F (γ, δ) ≡ 0 (mod p2). If
(F, p) = (13), then since F is primitive, by Proposition 8.3.3 (2), we have
p | gcd(P,Q,R).

Assume first that p > 3. Then p2 | disc(HF ) = −3 disc(F ), hence p2 |
disc(F ), and so p | f .

Assume now that p = 2. Then HF = 2H ′ for some other quadratic form
H ′, thus disc(HF )/4 ≡ 0 or 1 (mod 4), so the same is true for disc(F ) =
disc(HF )/(−3), and hence 2 | f .

Finally, assume that p = 3. From the explicit formulas, p | gcd(P,Q,R)
is equivalent to 3 | b and 3 | c, from which it follows by the formula for the
discriminant that 27 | disc(F ) and, in particular, that 3 | f .
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Assume now that F (x, y) ≡ (δx−γy)2(βx−αy) (mod p) and F (γ, δ) ≡ 0
(mod p2). We may assume that αδ − βγ 6≡ 0 (mod p); otherwise, we are in
the case (F, p) = (13) that we just considered.

By the same reasoning as before, writing F (x, y) = (δx−γy)2(βx−αy)+
pF1(x, y), we have

disc(F ) ≡ 4p(αδ − βγ)3F1(γ, δ) (mod p2) .

Therefore, F (γ, δ) ≡ 0 (mod p2) is equivalent to F1(γ, δ) ≡ 0 (mod p), which
implies disc(F ) ≡ 0 (mod p2); hence, if p > 2, we have p | f .

For p = 2 and F1 = (a1, b1, c1, d1), we have as before

disc(F ) ≡ 8(αδ−βγ)3F1(γ, δ)+4((a1α+b1β)γ2+(c1α+d1β)δ2)2 (mod 16) ,

and since F1(γ, δ) ≡ 0 (mod 2), we deduce that

disc(F )

4
≡ ((a1α+ b1β)γ2 + (c1α+ d1β)δ2)2 (mod 4) ,

and hence 2 | f , thus finishing the proof of the proposition. ⊓⊔

Corollary 8.3.6. Let F be a primitive cubic form and p be a prime. Then
F /∈ Up if and only if F has at least a double root (γ : δ) modulo p, and
F (γ, δ) ≡ 0 (mod p2).

Proof. If F /∈ Up, then in particular F /∈ Vp, hence p | f , and so by Proposi-
tion 8.3.5, either F (γ, δ) ≡ 0 (mod p2) if F has a double root, or (F, p) = (13),
but then by definition of Up, we again have F (γ, δ) ≡ 0 (mod p2). Conversely,
if F has at least a double root (γ : δ) modulo p, and F (γ, δ) ≡ 0 (mod p2),
then if it is a triple root, by definition F /∈ Up. If it is only a double root, by
Proposition 8.3.5 we have p | f , so F /∈ Vp, and hence F /∈ Up. When (γ, δ)
is at least a double root modulo p, it is easily checked that the condition
F (γ, δ) ≡ 0 (mod p2) depends only on γ and δ modulo p. ⊓⊔

8.4 The Davenport–Heilbronn Theorem

We first need the following well-known results about cubic fields (note also
the generalization given in Theorem 9.2.6) whose proofs are given in Section
10.1.5.

Proposition 8.4.1. Let K be a cubic number field of discriminant d(K),
and write d(K) = dkf

2, where dk is a fundamental discriminant (including
1). Then

(1) p | f if and only if p is totally ramified; in other words, if and only if
pZK = p3,
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(2) p | (dk, f) implies p = 3,
(3) p2 | f implies p = 3.

We can now state and prove the Davenport–Heilbronn theorem.

Theorem 8.4.2. We have I = Im(φCΦ) = U . In other words, the maps φCΦ
and φΦC are discriminant-preserving inverse bijections between isomorphism
classes of cubic fields and binary cubic forms belonging to U .

Proof. Let K be a cubic number field, and let FK be the image of K
by φCΦ. We will first show that FK ∈ U . As in Proposition 8.4.1, we write
disc(FK) = d(K) = dkf

2 with dk a fundamental discriminant.
Let p be a prime. If p ∤ f , then FK ∈ Vp ⊂ Up, so FK ∈ Up. Hence we

now assume that p | f .
By Proposition 8.4.1 (1), it follows that p is totally ramified. By Propo-

sition 8.2.3, this means that FK splits as the cube of a linear form, so that
(FK , p) = (13). We consider three cases:
• p > 3. In this case, it follows from Proposition 8.4.1 (2) and (3) that

p3 ∤ d(K) and hence that FK ∈ Up by Proposition 8.3.3 (3).
• p = 2. Since 2 | f , we have 2 ∤ dk by Proposition 8.4.1 (2). Therefore,

by Proposition 8.4.1 (3) we deduce that 23 ∤ d(K), hence FK ∈ U2, as before.
• p = 3. This is the only difficult case. Since 3 is totally ramified, write

3ZK = p3 for a prime ideal p of degree 1, and let γ ∈ p r p2. According to
Lemma 10.1.2, Z[γ] is a 3-maximal order in ZK . In particular, v3(d(K)) =
v3(disc(γ)). On the other hand, we clearly have

disc(γ2) = disc(γ)((γ + γ′)(γ + γ′′)(γ′ + γ′′))2 = disc(γ)N 2(Tr(γ)− γ) ,

where γ, γ′, and γ′′ are the conjugates of γ. Since p is totally ramified,
Tr(γ) ∈ p ∩ Z = 3Z, and since N (p) = 3,

N (Tr(γ)− γ) ≡ −N (γ) ≡ ±3 (mod 9) ;

hence it follows that

f(γ2) =

(
disc(γ2)

d(K)

)1/2

≡ ±3 (mod 9) .

Let (1, α, β) be the integral basis used to define the form FK . Thus γ2 =
βu−αv+w for some u, v, andw in Z, and by definition we have FK(u, v) ≡ ±3
(mod 9). We have the following lemma.

Lemma 8.4.3. Assume that F is a primitive cubic form and p a prime such
that (F, p) = (13). Then F ∈ Up if and only if there exists (u, v) ∈ Z2 such
that F (u, v) = ep with p ∤ e.
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Assuming this lemma for a moment, we see that since FK(x, y) represents
an integer congruent to ±3 modulo 9, we have FK ∈ U3, thus finishing the
proof that F ∈ U .

Let us prove the lemma. By lifting the condition (F, p) = (13) to Z, we
can write

F (x, y) = λ(δx − γy)3 + pG(x, y) ,

with λ, γ, δ in Z and G an integral cubic form. Then F ∈ Up if and only
if p ∤ G(γ, δ). Thus if F ∈ Up, we have F (γ, δ) = ep with e = G(γ, δ) 6≡ 0
(mod p).

Conversely, assume that there exists (u, v) ∈ Z2 such that F (u, v) = ep
with p ∤ e. Then F (u, v) ≡ 0 (mod p), hence λ(δu−γv) ≡ 0 (mod p). Since F
is primitive, p ∤ λ and hence δu−γv ≡ 0 (mod p). Again, since F is primitive,
γ and δ cannot both be divisible by p, from which it follows that there exists
µ such that γ ≡ µu (mod p) and δ ≡ µv (mod p). Also, since p ∤ e, we
have p ∤ µ. But then ep = F (u, v) ≡ pG(u, v) (mod p3), hence G(u, v) ≡ e
(mod p2), and so G(γ, δ) ≡ µ3G(u, v) ≡ µ3e 6≡ 0 (mod p), so F ∈ Up, proving
the lemma. ⊓⊔

To finish the proof of Davenport–Heilbronn’s Theorem 8.4.2, we must now
prove that if F ∈ U , there exists a cubic field K such that F is equivalent to
FK . For this, we introduce a definition.

Definition 8.4.4. We will say that two cubic forms F1 and F2 are rationally
equivalent if there exists M ∈ GL2(Q) such that F1 ◦M = µF2 for some
µ ∈ Q∗.

We first show the following lemma.

Lemma 8.4.5. Let F be any form in Φ (in other words, primitive and irre-
ducible). Then there exists a number field K such that F is rationally equiv-
alent to FK .

Proof. In some algebraic closure of Q, write F = a(x − λy)(x − λ′y)(x −
λ′′y). Since F is irreducible, λ is a cubic irrationality, and we will take K =
Q(λ). Write FK = aK(x−νy)(x−ν′y)(x−ν′′y) so that ν ∈ K (we saw above
that this is always possible). Since K is a Q-vector space of dimension 3, there
exist four integers k, l, m, and n not all zero such that l+kλ−nν−mλν = 0.
Taking conjugates, we obtain the same equality with ′ and ′′. Using λ =
(νn− l)/(k − νm), we obtain

FK(kx+ ly,mx+ ny) = ρ(x− λy)(x − λ′y)(x− λ′′y) = (ρ/a)F

with ρ = aK N (k − νm) ∈ Q. Furthermore, the determinant kn − lm is
nonzero since otherwise either λ or ν would be in Q. Thus, FK is rationally
equivalent to F . ⊓⊔
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Finally, we have the following lemma.

Lemma 8.4.6. Let F1 and F2 be two forms belonging to U . If the forms F1

and F2 are rationally equivalent, they are equivalent.

Since FK belongs to U , it follows from Lemmas 8.4.5 and 8.4.6 that any
form in U is equivalent to FK for a certain K, and this finishes the proof of
Davenport–Heilbronn’s Theorem 8.4.2.

Proof. Assume that F1 ◦M = µF2 for some M ∈ GL2(Q) and µ ∈ Q∗.
Since we want to show that F1 and F2 are equivalent, we can replace them by
equivalent forms. In other words, without changing the equivalence classes of
F1 and F2, we may replace M by any matrix of the form UMV with U and
V in GL2(Z). The elementary divisor theorem (or the existence of the Smith
normal form) tells us that we can choose U and V so that

UMV =

(
αm 0
0 α

)
(α ∈ Q∗, m ∈ Z>0) .

Replacing µ by α3µ, we may assume that α = 1. To summarize, by replacing
F1 and F2 by equivalent forms and modifying µ and M , we may assume that
M = (m 0

0 1 ) with m ∈ Z>0.
If m = 1, then F1 = µF2, and since F1 and F2 are in U they are primitive.

Thus, µ = ±1, so F1 and F2 are equivalent.
Otherwise, there exists a prime p such that p | m. Write m = pkm0 and

µ = plµ0 with m0 and µ0 having zero p-adic valuation. Since p | m, we have
k ≥ 1. Writing Fi = (ai, bi, ci, di) for i = 1 and 2, we see that the equality
F1(p

km0x, y) = plµ0F2(x, y) is equivalent to





a1 = τap
l−3ka2 ,

b1 = τbp
l−2kb2 ,

c1 = τcp
l−kc2 ,

d1 = τdp
ld2 ,

where the τx are rational numbers having zero p-adic valuation.
Assume that l − k > 0, hence that l > k ≥ 1. Then p | c1 and p2 | d1. If,

on the other hand, l− k ≤ 0, then l ≤ k so that p | b2 and p2 | a2. Replacing
(F1(x, y), F2(x, y)) by (F2(y, x), F1(y, x)), we again obtain p | c1 and p2 | d1.

The formula for the discriminant implies p2 | disc(F1). If p > 2, this
immediately implies F1 /∈ Vp. If p = 2, the formula for the discriminant
shows that disc(F1)/4 ≡ b21(c1/2)2 (mod 4) and this is congruent to 0 or 1
modulo 4, so F1 /∈ V2.

Since F1 ∈ Up, we must have (F1, p) = (13), and F1(x, y) ≡ λ(δx − γy)3
(mod p) with F1(γ, δ) 6≡ 0 (mod p2). Since p ∤ λ, p | d1 means that p | γ;
hence p | b1 ≡ −3λδ2γ (mod p). But then, since p | γ, F1(γ, δ) ≡ 0 (mod p2),
which is a contradiction. This finishes the proof of Lemma 8.4.6 and hence
of Davenport–Heilbronn’s Theorem 8.4.2. ⊓⊔
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As a consequence of this theorem and of the results of the previous section,
we now have an efficient algorithm to test whether a cubic form corresponds
to the image of a cubic field by the Davenport–Heilbronn map as follows.

Algorithm 8.4.7 (Cubic Form Test, Version 1). Let F = (a, b, c, d) be a
cubic form. This algorithm outputs true or false according to whether or not
F corresponds to the image of a cubic field by the Davenport–Heilbronn map.

1. [Check irreducible] If F is not irreducible, return false.

2. [Check primitive] If F is not primitive, return false.

3. [Compute Hessian] Let P ← b2 − 3ac, Q ← bc − 9ad, and R ← c2 − 3bd.
Let HF ← (P,Q,R) be the Hessian of F , and set fH ← gcd(P,Q,R) and
D ← 4PR−Q2 (so D = 3 disc(F )).

4. [Check conditions at 2 and 3] Using Proposition 8.3.3 or Corollary 8.3.6, check
that F ∈ U2 and F ∈ U3. If this is not the case, return false.

5. [Check fH almost squarefree] If p2 | fH for some p > 3, return false.

6. [Check fH and D/f2
H almost coprime] Set t← D/f2

H . Remove all powers of
2 and 3 from t (in fact, at most 23 and 32), and again let t be the result. If
gcd(t, fH) > 1, return false.

7. [Check D/f2
H almost squarefree] If t is squarefree, return true; otherwise,

return false.

In the comments to this algorithm, “almost” means outside the primes 2
and 3.

Proof. Steps 1, 2, 3, and 4 are clear since FK is irreducible, is primitive,
and belongs to Up for all p.

If p2 | fH , then p4 | D = 3 disc(F ). If p | fH and p | D/f2
H , we have

p3 | D. It follows in both cases that if p > 3, we have p3 | disc(F ), so F /∈ Up
by Proposition 8.3.3, thus proving steps 5 and 6.

Assume that for every prime p > 3, we have p2 ∤ fH and p ∤ gcd(t, fH)
(which is the situation at the beginning of step 7). Then t is not squarefree if
and only if there exists p > 3 such that p2 | t and hence p ∤ fH . By Proposition
8.3.3, we cannot have (F, p) = (13). On the other hand, since p > 3, we have
p2 | disc(F ), so F /∈ Vp, and hence F /∈ Up. Thus t is squarefree if and only
if for all p > 3 we have F ∈ Up, proving the algorithm’s validity. ⊓⊔

Remarks

(1) Step 1 will in practice not be necessary since we will always use this
algorithm with reduced forms (see later), which are irreducible.

(2) Although step 2 seems to be necessary, this is in fact not the case since
nonprimitive forms will be excluded in the subsequent steps. Indeed, let
p be a prime dividing all the coefficients of F . Then clearly p2 | fH . If
p > 3, step 4 will return false. Assume now that p = 2 or p = 3. Then
F /∈ Vp and F has at least a double root modulo p. If F has only a double
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and not a triple root, then F /∈ Up. However, if F has a triple root, so
that (F, p) = (13), then F (x, y) = λ(δx − γy)3 with λ ∈ F∗

p and hence
p | gcd(δ3, γ3). Thus, γ and δ are equal to zero modulo p, and hence
F /∈ Up.

(3) Even though it may seem useful to include the unnecessary step 2, it can
be shown that on average it slows down the algorithm, so thanks to the
preceding remark, in the final form we will suppress it.

(4) It may seem surprising that the slowest part of the algorithm is by far
the squarefreeness test in steps 5 and 7. We will see later how to speed
this up in practice.

We end this section by giving the following proposition.

Proposition 8.4.8. Let K be a cubic number field, and as before write
d(K) = dkf

2, where dk is a fundamental discriminant. Let FK be the cu-
bic form associated to K by the Davenport–Heilbronn map, and let HK =
(P,Q,R) be its Hessian. Finally, set fH = gcd(P,Q,R). Then

(1) fH = f or fH = 3f and apart from powers of 3, f and fH are squarefree,
(2) if fH = 3f , then 3 | f ,
(3) if 3‖f , then fH = 3f ,
(4) in particular, f | fH, f and fH have the same prime divisors, and we

can have (v3(f), v3(fH)) only equal to (0, 0), (1, 2), (2, 2), and (2, 3).

Proof. By Proposition 8.3.3 (2), we have p | fH if and only if (F, p) = (13),
and by Proposition 8.2.3 (3) this is true if and only if p is totally ramified,
hence by Proposition 8.4.1 (1), if and only if p | f . Hence f and fH have the
same prime divisors. Let p be such a prime divisor. By Davenport–Heilbronn’s
theorem, FK ∈ U . Hence by Proposition 8.3.3 (3) we have p3 ∤ d(K) if p 6= 3,
so if p 6= 3, we have p2 ∤ f and p ∤ dk, and so up to powers of 3, f is squarefree.
Since f2

H | 3d(K) = dkf
2, we have vp(f

2
H) ≤ 2, and thus up to powers of 3,

fH is also squarefree.
Assume now that p = 3 and that p divides f (hence also fH). By Propo-

sition 8.3.3 (3) we have v3(f) ≤ 2 and since f2
H | 3d(K), we have v3(fH) ≤ 3.

Furthermore, if v3(f) = 1, we have v3(f
2
H) ≤ 34, and so v3(fH) ≤ 2. Finally,

since 3 | (P,Q,R), using the explicit formulas in terms of the coefficients of
the form FK we see that 3 | b and 3 | c, which implies 9 | (P,Q,R), hence
v3(fH) ≥ 2. This proves all the assertions of the proposition. ⊓⊔

8.5 Real Cubic Fields

We would now like to single out a unique representative of a cubic form
F ∈ U , which we will call “reduced”. For this purpose, as in the quadratic
case, we must distinguish according to the signature of the corresponding
cubic field. In this section, we assume that the field K = KF is totally real
or, equivalently, that d(K) = disc(F ) > 0.
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The Hessian HF satisfies disc(HF ) = −3 disc(F ) < 0, hence is a (positive
or negative) definite quadratic form for which the notion of reduction is well-
defined. We will essentially define F to be reduced when HF is, but for this
we must make a few technical modifications to the usual definitions.

Definition 8.5.1. Let H = (P,Q,R) be a quadratic form with real coeffi-
cients. We will say that H is reduced if |Q| ≤ P ≤ R and R > 0 (to exclude
the trivial case of the zero form).

Note that this is not quite the same as the usual definition, which would
be |Q| ≤ P ≤ R with Q ≥ 0 when one of the inequalities is an equality. The
reason for the modification to the usual definition is that we must work with
forms modulo GL2(Z) and not only SL2(Z).

As usual, if H = (P,Q,R), we will set H−1 = (P,−Q,R), and we will
denote by Aut(H) the set of elements M ∈ GL2(Z) stabilizing H . Finally we
set σ =

(
1 0
0 −1

)
.

The following lemma shows that the above definition works.

Lemma 8.5.2. Let H = (P,Q,R) and H ′ = (P ′, Q′, R′) be two reduced,
definite, integral, binary quadratic forms such that there exists M ∈ GL2(Z)
with H ′ = H ◦M . Then, either H ′ = H and M ∈ Aut(H), or H ′ = H−1 and
M ∈ Aut(H)σ. Furthermore, the only elements of Aut(H) are ±I2, except
in the following special cases that can occur simultaneously:

if P = R, add ±
(

0 1
1 0

)
;

if Q = 0, add ±
(

1 0
0 −1

)
;

if P = R and Q = 0, add ±
(

0 1
−1 0

)
;

if P = εQ, add ±
(

1 ε
0 −1

)
;

if P = εQ = R, add ±
(
−1 0
ε 1

)
, ±
(

0 −1
1 ε

)
, ±
(
ε 1
−1 0

)
,

where in the last two cases ε = ±1.

Proof. Since H and H ′ are equivalent, they have the same discriminant
and represent the same integers. To say that H is reduced implies that P
is the minimum of H on Z2 − {(0, 0)} and that R is the second minimum;
hence P = P ′ and R = R′. Equality of discriminants implies Q = ±Q′. Hence
H ′ = H or H ′ = H−1 = H ◦ σ, so we need only to compute Aut(H).

Let T = ( 1 1
0 1 ) and S =

(
0 −1
1 0

)
be the usual generators of the modular

group PSL2(Z), and let F be the usual compact fundamental domain for the
modular group in the upper half-plane H.
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Let M =
(
a b
c d

)
be an automorphism of H = (P,Q,R).

If M ∈ SL2(Z), then it fixes τ ∈ F . Thus, by the usual theory, it is either
±I, ±S (if H = (P, 0, P )), ±ST or ±(ST )2 (if H = (P, P, P )), ±TS or
±(TS)2 (if H = (P,−P, P )).

If M /∈ SL2(Z), then M swaps the two complex roots τ and τ̄ of H(x, 1),
so that

aτ + b = cτ τ̄ + dτ̄ .

Taking imaginary parts, we get a = −d, and taking real parts and using
τ + τ̄ = −Q/P and τ τ̄ = R/P , we obtain bP = aQ + cR. Finally, the
determinant condition gives a2 + bc = 1. One easily checks that the three
conditions a = −d, a2 + bc = 1, and bP = aQ + cR are necessary and
sufficient conditions for M to be an automorphism of H .

Thus, H(a, c) = Pa2 + Qac + Rc2 = Pa2 + Pbc = P , and H(a, c) ≥
(P − Q + R)min(a2, c2), and since H is reduced we have |Q| ≤ P ≤ R. We
thus obtain the following.
• If ac 6= 0, then a2 = c2 = 1 and P = |Q| = R, so b = 0, d = −a = ±1.

If P = εQ with ε = ±1, we have a = −εc.
• If a = 0, then bc = 1 and Rc2 = P , so R = P and c = ±1, and hence

b = c and d = 0.
• If c = 0, then a2 = 1 and bP = aQ. This implies that either b = 0 and

Q = 0, or b = εa and P = εQ with ε = ±1.
This finishes the proof of the lemma. Note that it follows from this result

that the group G of automorphisms of H is always isomorphic to a group
of the form Z/2Z × Z/mZ, with m = 1, m = 2 (when Q = 0 or P = R or
P = εQ are the only equalities), m = 4 (when P = R and Q = 0), or m = 6
(when P = εQ = R). ⊓⊔

We can now give the definition of a reduced cubic form in the case of a
positive discriminant.

Definition 8.5.3. Let F = (a, b, c, d) be an integral binary cubic form of
positive discriminant. We will say that F is reduced if its Hessian HF is
reduced in the above sense and if, in addition:

(1) a > 0, b ≥ 0, and d < 0 if b = 0;
(2) if P = Q, then b < |3a− b|;
(3) if P = R, then a ≤ |d| and b < |c| if |d| = a.

Note that there is no extra condition for Q = 0 or for P = −Q.
With this definition, we have the following.

Proposition 8.5.4. (1) Two equivalent, reduced, real cubic forms are equal.
(2) A reduced real cubic form belonging to U is irreducible.
(3) Any irreducible real cubic form is equivalent to a unique reduced form.
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Proof. (1). Let F and F ′ be two reduced cubic forms and M ∈ GL2(Z)
such that F ′ = F ◦ M . Then HF ′ = HF ◦ M and since HF and HF ′ are
reduced, it follows from Lemma 8.5.2 that HF ′ = HF or HF ′ = H−1

F , so M
belongs either to Aut(H) or to Aut(H)σ. To simplify notation, we will write

N = ±
(
a bη
c dη

)
∈ Aut(H)

and

M = ±
(
a bη
c dη

)
,

where η = 1 if M = N , or η = −1 if M = Nσ.
We also write HF = (P,Q,R) and HF ′ = (P ′, Q′, R′), so that P ′ = P ,

R′ = R, and Q′ = ηQ.
We have only a finite number of possibilities (exactly 16) to test for N .

Let F = (a, b, c, d).

First, if N = ±I, hence M = ±
(

1 0
0 η

)
, we have F ′ = ±(a, bη, c, dη) and

therefore the conditions a > 0 on F and F ′ imply the + sign, and the con-
ditions b ≥ 0 and d < 0 if b = 0 on F and F ′ imply η = 1, so M = I and
F = F ′.

If P = R and M = ±
(

0 η
1 0

)
, we have F ′ = ±(d, cη, b, aη); hence the

conditions a ≤ |d| on F and F ′ imply a = |d|, so the additional conditions
b < |c| on F and F ′ give a contradiction.

In the two special cases corresponding to Q = 0, we have M = ±
(

1 0
0 −η

)

or M = ∓
(

0 −η
1 0

)
, which have been considered above.

If P = εQ and M = ±
( 1 εη

0 −η
)
, we have F ′ = ±(a, η(3aε− b), 3a− 2bε+

c, η(aε−b+cε−d)); hence the conditions a > 0 on F and F ′ imply the + sign.
Assume first that ε = 1. We have 3a− b > 0 since otherwise, the condition
b < |3a− b| on F implies a < 0, which is a contradiction. Condition b ≥ 0
on F ′ implies that η = sign(3a − b) = 1, hence P ′ = Q′, so the condition
b < |3a− b| on F ′ implies 0 ≤ 3a− b < b, again a contradiction.

Assume now that ε = −1. Then condition b ≥ 0 on F ′ implies that
η = −1, hence P ′ = Q′, so the condition b < |3a− b| on F ′ implies that
3a+ b < |−b| = b, another contradiction.

Finally, assume that P = εQ = R and that N is one of the six matrices
given by Lemma 8.5.2. Then an easy computation shows that F is of the
form F = (a, b, εb− 3a,−εa). If ε = 1, the reducedness of F is equivalent to
a > 0, b ≥ 0, b < |3a− b|; while if ε = −1, the reducedness of F is equivalent
to a > 0 and b > 0.

For the six matrices N of Lemma 8.5.2, we have F ′ = ±(a, η(3εa −
b),−εb,−εηa), F ′ = ±(−εa,−εηb, 3εa− b, aη), and F ′ = ±(−εa,−εηb, 3εa−
b, aη), respectively.

For the first two, we are in a special case of the case P = εQ considered
above, so we obtain a contradiction.
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The last four, together with the conditions a > 0 on F and F ′, imply
that ±1 = −ε, hence that F ′ = (a, ηb, εb − 3a,−εηa). If η = −1, then
the conditions b ≥ 0 on F and F ′ imply that b = 0, in which case the
conditions d < 0 on F and F ′ give a contradiction. Thus η = 1, so F ′ =
F , and the matrices

(
0 ε
−ε −1

)
and

(−1 −ε
ε 0

)
together with the identity form

the automorphism group of F . Thus in this case, and only in this case, the
automorphism group of F is nontrivial and is cyclic of order 3 generated by
one of the above two matrices. This finishes the proof of (1).

(2). Let F = (a, b, c, d) ∈ U be a reduced real cubic form. We will suc-
cessively replace F by equivalent forms, which we will still denote (a, b, c, d)
by abuse of notation, until we can conclude. Note that all forms equivalent
to F still belong to U . Set ∆ = disc(F ). Assume by contradiction that F
is reducible. Then by transforming F by a suitable element of GL2(Z), we
may assume that a = 0 and hence b > 0 since ∆ 6= 0. Changing (x, y) into
(x−ky, y) for a suitable k, we may assume that |c| ≤ b, and finally by chang-
ing (x, y) into (−x, y) if necessary, we may assume that 0 ≤ c ≤ b. We thus
have∆ = b2c2−4b3d and (P,Q,R) = (b2, bc, c2−3bd). Let us show that b = 1.
First, let p be an odd prime dividing b. Since b2 | ∆, we have F /∈ Vp, but
since F ∈ Up, by definition this means that (F, p) = (13) plus an additional
condition. In particular, by Proposition 8.3.3 (2) we have p | gcd(P,Q,R);
hence p | (c2 − 3bd), so p | c, and hence p3 | ∆, which leads to a contra-
diction unless p = 3 by Proposition 8.3.3 (3). But if p = 3, we have 3 | a
and 9 | a since a = 0, so Proposition 8.3.3 (5) implies that F /∈ Up, again a
contradiction.

Assume now that 2 | b. We then have ∆ ≡ b2c2 (mod 16), hence (∆/4) ≡
((b/2)c)2 ≡ 0 or 1 (mod 4), and so F /∈ V2. Since F ∈ U2, we have (F, 2) =
(13). We conclude as before by Proposition 8.3.3 (2) that 2 | (c2 − bd); hence
2 | c, so 16 | ∆, in contradiction with 8 ∤ ∆ which comes from Proposition
8.3.3 (3).

We have thus shown that b = 1, and hence c = 0 or c = 1. Thus, if we call
G the final cubic form that we have obtained, we have F = G◦M for a certain
M ∈ GL2(Z), and G = (0, 1, c, d) with c = 0 or 1, hence HG = (1, 0,−3d) or
HG = (1, 1, 1− 3d). Since ∆ = c2 − 4d > 0, we must have d < 0. Thus, these
two quadratic forms are reduced and are thus equal to HF or to HF ◦σ. Since
HF is a covariant, we have HF = HG ◦M . It follows that M or Mσ belongs
to Aut(HG). However, an examination of the special cases of Lemma 8.5.2
shows that the elements of Aut(HG) and Aut(HG)σ fix a up to sign. Since
the final a that we have obtained is equal to 0, we deduce that the initial a
is also equal to 0, which is forbidden for a reduced cubic form.

(3). The uniqueness statement follows from (1). Let F = (a, b, c, d) be
an irreducible real cubic form and HF its Hessian. By the usual theory of
reduction of quadratic forms, we can find M ∈ GL2(Z) such that HF ◦M is
reduced; hence by changing F into F◦M , we may assume thatHF = (P,Q,R)
is reduced.
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For the special cases of Definition 8.5.3, we must now check that the use
of the 16 matrices of Lemma 8.5.2 will lead to a reduced form, assuming that
F is irreducible. For the sake of completeness, we give the details.

First note that a 6= 0 and d 6= 0, since otherwise F would be reducible.
Hence, using −I2, we may assume that a > 0; using σ, we may assume that
b ≥ 0. Furthermore, if b = 0, using σ we may assume that d < 0. Using these
matrices, we have either fixed HF or changed it into HF ◦ σ = H−1

F , which
is also reduced.

Assume P = Q and b ≥ |3a− b|. In this case, by Lemma 8.5.2 the matrix(
1 1
0 −1

)
belongs to Aut(HF ) and transforms F into F ′ = (a, 3a− b, 3a− 2b+

c, a− b+ c− d).
Assume first that b < 3a. Since b ≥ |3a− b| = 3a− b, we have b ≥ 3a/2,

so 0 < 3a − b ≤ |3a− (3a− b)| = b. An easy computation shows that if
b = 3a/2, then F = (2c− 4d, 3c− 6d, c, d) is divisible by 2x+ y, and hence is
reducible. Thus b > 3a/2, so 3a− b < |3a− (3a− b)|, as desired.

Assume now that b = 3a. Thus F ′ = (a, 0, c′, d′) for certain values of c′

and d′. Using σ if necessary (which will change Q into −Q, for which there
is no extra reducedness condition), we may assume that d′ < 0; hence F ′ is
reduced.

Finally, if b > 3a, we have F ′′ = F ′◦σ = (a, b−3a, c′′, d′′) and P ′′ = −Q′′,
so F ′′ is reduced.

Consider now the case P = R and a > |d| or a = |d| and b ≥ c. Let
s = sign(d) (recall that d 6= 0 since F is irreducible) and t = sign(c) if
c 6= 0, otherwise t = − sign(a). By Lemma 8.5.2, the matrix ( 0 t

s 0 ) belongs
to Aut(HF ) or to Aut(HF )σ and transforms F into F ′ = (a′, b′, c′, d′) =
(|d| , |c| , sb, ta), and a′ > 0, b′ ≥ 0, and d′ < 0 if b′ = 0. In addition, we have
a′ < |d′| or a′ = |d′| and b′ ≤ |c′|. If b = |c|, however, we cannot have c = 0;
otherwise, b = 0, hence P = R = 0, so disc(F ) = 0, and an easy computation
shows that (still with t = sign(c)) F = (a, b, tb, ta) is divisible by x+ ty and
thus is reducible. Thus, b > |c|, hence b′ < |c′|, as desired, finishing the proof
of the proposition. ⊓⊔

To be able to produce all reduced binary cubic forms of discriminant
bounded by X , we must be able to give bounds on the coefficients of a
reduced form. Such a result is as follows.

Proposition 8.5.5. Let F = (a, b, c, d) be a reduced form such that 0 <
disc(F ) ≤ X. We have the following inequalities.

(1)

1 ≤ a ≤ 2

3
√

3
X1/4 .
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(2) If a ≤ X1/4/3, we have

0 ≤ b ≤ 3a

2
+

√√
X − 27a2

4
,

while if X1/4/3 < a ≤ 2X1/4/(3
√

3), we have

3a

2
−
√√

X − 27a2

4
≤ b ≤ 3a

2
+

√√
X − 27a2

4
.

(3) If a > X1/4/3 or a ≤ X1/4/3 and b ≥ −3a/2+
√√

X − 27a2/4, we have

b2 −
√
X

3a
≤ c ≤ b− 3a ,

while if a ≤ X1/4/3 and b ≤ −3a/2 +
√√

X − 27a2/4, we have

b2 − P2

3a
≤ c ≤ b− 3a ,

where P2 is the unique positive solution of the equation

4P 3
2 − (3a+ 2b)2P 2

2 − 27a2X = 0 .

Proof. Let H = (P,Q,R) be the Hessian of F , and set ∆ = disc(F ) so
that 4PR−Q2 = 3∆. Since F is reduced, we have

3X ≥ 3∆ ≥ 4PR− P 2 ≥ 3P 2 .

However, it is easily checked that

Pb2 − 3Qab+ 9Ra2 − P 2 = 0 .

This is a quadratic equation in b, which therefore must have a nonnegative
discriminant. As its discriminant is equal to

9a2(Q2 − 4PR) + 4P 3 = 4P 3 − 27a2∆ ,

we thus have

a2 ≤ 4P 3

27∆
≤ 4P

27
≤ 4
√
X

27
,

proving the inequality for a.

For b and c, we note that P = b2 − 3ac ≤
√
∆ ≤

√
X; hence the lower

bound c ≥ (b2−
√
X)/(3a) is clear. Furthermore, the inequality Q ≤ P gives

bc− 9ad ≤ b2 − 3ac, hence 9ad ≥ (b + 3a)c− b2. The inequality P ≤ R thus
gives
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b2 − 3ac ≤ c2 − 3bd ≤ c2 − b

3a
((b + 3a)c− b2) ,

or in other words the quadratic inequality

c2 + c

(
3a− b2

3a
− b
)

+
b3

3a
− b2 ≥ 0 .

The roots of the polynomial in c are b2/(3a) and b − 3a, and since b − 3a ≤
b2/(3a) (the corresponding quadratic equation having a negative discrimi-
nant), we have c ≤ b − 3a or c ≥ b2/(3a). The latter is impossible, how-
ever, since it would imply that P ≤ 0. Thus c ≤ b − 3a, proving the
inequalities (b2 −

√
X)/(3a) ≤ c ≤ b − 3a. In particular, it implies that

b2 − 3ab + 9a2 −
√
X ≤ 0, hence b lies between the roots of this quadratic

equation; in other words,

3a

2
−
√√

X − 27a2

4
≤ b ≤ 3a

2
+

√√
X − 27a2

4
,

as claimed. It is immediately checked that this lower bound for b is sharper
than the trivial lower bound b ≥ 0 if and only if a > X1/4/3.

The upper bounds for a and b are sharp, since they are reached for P =
Q = R.

To finish the proof of the proposition, we must prove the other lower
bound for c. By Proposition 8.3.2, we have 3aR − bQ + cP = 0. Since R =
(3∆+Q2)/(4P ), this gives

9a∆+ 3aQ2 − 4bPQ+ 4cP 2 = 0 ,

and solving this quadratic equation in Q gives

Q =
2bP + ε

√
4P 3 − 27a2∆

3a

for some ε = ±1. From the inequalities |Q| ≤ P ≤ R = (3∆+Q2)/(4P ), we
obtain

√
4P 2 − 3∆ ≤ |Q| ≤ P . Hence

3a
√

4P 2 − 3∆ ≤
∣∣∣2bP + ε

√
4P 3 − 27a2∆

∣∣∣ ≤ 3aP ,

where it is understood that the lower inequality holds only when 4P 2−3∆ ≥
0.

To simplify the algorithm, we will take into account only the upper in-
equality. Taking into account the lower inequality (for 4P 2 − 3∆ ≥ 0) would
give an additional restriction on c, but the gain would be marginal compared
to the expense of computing the precise necessary bounds.

We thus obtain

−P (3a+ 2b) ≤ ε
√

4P 3 − 27a2∆ ≤ P (3a− 2b) ,
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and an easy calculation shows that this is equivalent to

4P 3 − P 2(3a− 2εb)2 − 27a2∆ ≤ 0 .

Since −P 2(3a+2b)2 ≤ −P 2(3a− 2b)2, the existence of ε = ±1 satisfying the
above inequality is equivalent to the single inequality for ε = −1 — that is,
to 4P 3 − P 2(3a+ 2b)2 − 27a2∆ ≤ 0, which of course implies 4P 3 − P 2(3a+
2b)2 − 27a2X ≤ 0.

The cubic function f(P ) = 4P 3−P 2(3a+2b)2−27a2X satisfies f(0) < 0,
f ′(0) = 0, f ′′(0) < 0 and tends to ±∞ when P tends to ±∞. It follows that
f has a unique real root P2 that is larger than the nonzero root (3a+ 2b)2/6
of f ′ and, in particular, is positive. Thus we must have P ≤ P2, hence c =
(b2 − P )/(3a) ≥ (b2 − P2)/(3a). Furthermore, it is easily checked that this
inequality for c is sharper than the simpler inequality c ≥ (b2 −

√
X)/(3a) if

and only if a ≤ X1/4/3 and b ≤ −3a/2+
√√

X − 27a2/4, finishing the proof

of the proposition. ⊓⊔

With the inequalities of Proposition 8.5.5, it is not difficult to show that
the number of quadruples (a, b, c, d) that will have to be checked is linear in
X . In an actual implementation, we will first loop on a, then on b, then on
c, and finally on d, satisfying the inequalities coming from |Q| ≤ P ≤ R and
from disc(F ) ≤ X ; in other words, the inequalities

|bc− 9ad| ≤ b2 − 3ac ≤ c2 − 3bd

and
(−27a2)d2 + 2(9abc− 2b3)d+ (b2c2 − 4ac3 −X) ≤ 0 .

The total number of triplets (a, b, c) satisfying the inequalities of the
proposition is O(X3/4). For some of these triplets the loop on d will be
empty, and for the others we will have to examine approximately the number
H+

3 (X) of reduced real binary cubic forms of discriminant up to X (only
approximately, because special cases have to be considered, but they add a
negligible number of forms). Hence the total number of cases to be exam-
ined will be H+

3 (X) + O(X3/4). We have the following important theorem
concerning this quantity.

Theorem 8.5.6. Let H+
3 (X) (resp., N+

3 (X)) be the number of equivalent
real cubic forms (resp., of isomorphism classes of real cubic fields) of dis-
criminant less than or equal to X. Then as X →∞, we have

H+
3 (X) =

π2

72
X + C+ ·X5/6 +O(X2/3+ǫ) ∼ 0.137 . . . X ,

N+
3 (X) =

1

12ζ(3)
X +O

(
Xe−c

√
logX log logX

)
∼ 0.0693 . . . X

for a known constant C+ and any c < 1/
√

24.
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Remarks

(1) The precise form for the remainder term for H+
3 (X) is due to T. Shintani

(see [Shin]), improving on Davenport’s original result. The remainder
term for N+

3 (X) was proved by K. Belabas in [Bel2].
(2) For fascinating new developments in the theory of L-functions associated

to binary cubic forms initiated by Shintani’s work, see [Nak1].
(3) It has been conjectured by several authors (see [Rob], [Wri2]), that

N+
3 (X) = X/(12ζ(3)) + C+

NX
5/6 + o(X5/6) for an explicit constant C+

N

(and similarly in the complex case, see Theorem 8.6.5 below). This is
excellent agreement with the tables computed at the end of this chapter
by K. Belabas.

It follows that the total number of steps in our algorithm will be linear
in X and, in fact, approximatebly 0.137/.0693 ∼ 1.977 times more than the
number of fields that we have to find; hence there will be very little waste.

We could still try to gain a little by avoiding the O(X3/4) empty loops
that we have mentioned. For this, we would need to find the exact range of
values of c, given a and b. The result involves several cases and algebraic
equations of degree even larger than 3, and this would probably slow down
the final algorithm.

We can also easily characterize subclasses of real cubic fields. For example,
we have the following.

Proposition 8.5.7. Let K be a totally real cubic number field, FK the unique
reduced form associated to K, and HK its Hessian. Then

(1) K is cyclic (that is, d(K) = f2) if and only if HK = fH(1,±1, 1).
(2) d(K) = 5f2 if and only if HK = fH(1,±1, 4) or HK = fH(2,±1, 2).
(3) d(K) = 8f2 if and only if HK = fH(1, 0, 6) or HK = fH(2, 0, 3).
(4) d(K) = 12f2 if and only if HK = fH(1, 0, 9), HK = fH(2,±2, 5), or

HK = fH(1, 0, 1).
(5) Let ∆ > 0 be a fundamental discriminant. Then d(K) = ∆f2 if and only

if HK is a multiple of a primitive, reduced, positive definite, quadratic
form of discriminant −3∆ (case fH = f) or −∆/3 (case fH = 3f and
3 | f).

Proof. Using Proposition 8.4.8, proving this is just a matter of listing
reduced quadratic forms. We leave it to the reader (see Exercise 8). ⊓⊔

8.6 Complex Cubic Fields

We now consider the case where disc(F ) < 0, hence when F corresponds to a
complex cubic field. In this case the Hessian is an indefinite quadratic form,
and in general there will be many reduced quadratic forms equivalent to it.
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Instead of using the Hessian, we will use an old idea due to Matthews and
Berwick. If disc(F ) < 0, then F has a unique real root θ, and θ /∈ Q if F is
irreducible, so if we factor F in R[X,Y ] as

F (x, y) = (x − θy)(Ax2 +Bxy + Cy2) ,

the quadratic form HF = (A,B,C) will be definite (that is, B2 − 4AC < 0)
but with real nonrational coefficients. We are going to show that the form
(A,B,C) has many of the properties of the Hessian. An even better idea due
to G. Julia and J. Cremona is presented in Exercise 9; see [Cre].

An easy computation gives

disc(F ) = (B2 − 4AC)(Aθ2 +Bθ + C)2 .

By changing (x, y) to (−x,−y), which changes F into −F , we may assume
that A ≥ 0. If F = (a, b, c, d), we have

A = a, B = aθ + b, C = aθ2 + bθ + c ,

hence
a = A, b = B − θA, c = C − θB, and d = −θC .

If M =
(
a b
c d

)
∈ GL2(Z), a simple computation shows that

HF◦M = |a− θc| ·HF ◦M ,

where the absolute value sign comes from the choice A ≥ 0.

Definition 8.6.1. Let F = (a, b, c, d) be an integral, binary, complex cubic
form, and let (A,B,C) be defined as above. We say that F is reduced if
0 < |B| < A < C and if, in addition, a > 0, b ≥ 0, d 6= 0, and d > 0 if b = 0.

Note that when F is irreducible, θ is irrational; hence the special cases
B = 0, A = |B|, or A = C that occurred in the real case cannot occur here.
Another nice fact is that we do not need to compute the irrational numbers
A, B, and C at all:

Lemma 8.6.2. Let F = (a, b, c, d) be a complex cubic form. Then F is re-
duced if and only if

d2 − a2 + ac− bd > 0 ,

−(a− b)2 − ac < ad− bc < (a+ b)2 + ac ,

a > 0, b ≥ 0, d 6= 0, and d > 0 if b = 0 .

Proof. The condition B < A is equivalent to aθ + b < a and hence to
θ < (a− b)/a since a > 0. Since F has only one real root (and again a > 0),
this is equivalent to F (a − b, a) > 0, which gives −(a − d)2 − ac < ad − bc.
Similarly, the condition −B < A is equivalent to −aθ − b < a, hence to
θ > −(a+ b)/a, so F (−(a + b), a) < 0, which gives ad − bc < (a + b)2 + ac.
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Finally, the condition A < C is equivalent to aθ2 + bθ+ (c− a) > 0, and this
is equivalent to R(F1, G) > 0, where R is the resultant, F1(X) = F (X, 1)
and G(X) = aX2 + bX + (c − a). An immediate computation shows that
R(F1, G) = a3(d2− a2 + ac− bd), and this gives the last unproved condition.

⊓⊔

For this notion to be useful, we must have the analog of Proposition 8.5.4.

Proposition 8.6.3. (1) Two equivalent, irreducible, reduced, complex cubic
forms are equal.

(2) A reduced complex cubic form belonging to U is irreducible.
(3) Any irreducible complex cubic form is equivalent to a unique reduced

form.

Proof. (1). Let F ′ = F ◦ M , where F and F ′ are reduced and M ∈
GL2(Z). Then by the formula proved above, there exists λ > 0 such that
HF ′ = λHF ◦M . As before, we deduce from the inequalities |B| < A < C
and |B′| < A′ < C′ that HF ′ = λHF and hence that M is an automorphism
of HF . The proof then terminates as in the real case, except that there are
no special cases to consider since the forms are irreducible.

(2). As in the real case, a complex reducible form F belonging to U must
be equivalent to G = y(x2 + δy2) or to G = y(x2 + xy + δy2) with δ ≥ 1. If
F = (x − θy)(Ax2 + Bxy + Cy2) and F = G ◦M with M ∈ GL2(Z), then
HF = λHG ◦M for some λ > 0. Hence the reduced form HF is equivalent to
a multiple of HG with HG = (1, 0, δ) or HG = (1, 1, δ), respectively, which are
also reduced, and it is therefore equal to that multiple or its inverse. Hence
we have either B = 0 or B = ±A for the form F , which are both excluded
from the definition of a reduced form in the complex case.

(3). We can reduce first HF by an element of GL2(Z) so that it satisfies
0 < |B| < A < C, the strict inequalities being guaranteed by the irreducibility
of F . We must have d 6= 0 as F would otherwise be reducible, and since A = a,
we have a > 0. Changing (x, y) into (x,−y) if necessary (which changes B
into −B and leaves A and C unchanged), we may also assume that b ≥ 0.
Finally, if b = 0, again changing (x, y) into (x,−y) if necessary, we may
assume d > 0 since d 6= 0. ⊓⊔

We have bounds on the coefficients of a reduced complex cubic form as
follows.

Proposition 8.6.4. Let F = (a, b, c, d) be a reduced form such that −X ≤
disc(F ) < 0. We have the following inequalities:

(1)

1 ≤ a ≤ 2X1/4

33/4
;



8.6 Complex Cubic Fields 421

(2)

0 ≤ b ≤ 3a

2
+

√(
X

3

)1/2

− 3a2

4
;

(3)

1− b ≤ c ≤
(
X

4a

)1/3

+ U(a, b) ,

where U(a, b) = b2/(3a) if b ≤ 3a/2, while U(a, b) = b−3a/4 if b > 3a/2.

Proof. Set ∆ = |disc(F )| and 3D = 4AC − B2. The inequalities |B| <
A < C imply as usual A2 < D or, equivalently, a2 < D. In addition, by a
computation made above, we have ∆ = 3D(Aθ2 + Bθ + C). Solving this as
a quadratic equation in θ, we obtain

2aθ = −B ±

√

4a

(
∆

3D

)1/2

− 3D .

Since the expression under the square root is nonnegative, we obtain 16a2∆ ≥
27D3 ≥ 27a6, proving (1) since ∆ ≤ X .

From the expression for 2aθ, we also obtain

b = B − aθ =
3B

2
±

√

a

(
∆

3D

)1/2

− 3D

4
.

Since the expression under the square root is a decreasing function of D and
since D ≥ a2 and |B| ≤ A = a, we obtain

b ≤ 3a

2
+

√(
∆

3

)1/2

− 3a2

4
,

proving the inequality for b.
We have c = C − θB > A − |θ|A = a − |aθ|. But |aθ| = |b+ aθ − b| ≤

b+ |B| ≤ b+A = a+ b; hence c > −b so c ≥ 1− b, as claimed, since b and c
are integers.

For the upper bound, we check that

4ac = −3B2 + 4bB + 3D .

This is a quadratic inB whose derivative is positive forB < 2b/3 and negative
for B > 2b/3. Since we must have −a < B < a, it follows that the maximum
of this quadratic is attained for B = 2b/3 when 2b/3 ≤ a and for B = a when
2b/3 > a. The upper bound for c follows immediately. ⊓⊔

In the actual implementation we will proceed essentially as in the real
case. The analog of Theorem 8.5.6 is as follows.
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Theorem 8.6.5. Let H−
3 (X) (resp., N−

3 (X)) be the number of equivalent
complex cubic forms (resp., of isomorphism classes of complex cubic fields) of
discriminant greater than or equal to −X. Then as X →∞, we have

H−
3 (X) =

π2

24
X + C− ·X5/6 +O(X2/3+ǫ) ∼ 0.411 . . . X ,

N−
3 (X) =

1

4ζ(3)
X +O

(
Xe−c

√
logX log logX

)
∼ 0.208 . . . X

for a known constant C− and any c < 1/
√

24.

Once again, we see that the algorithm will be linear in X , and the number
of loops will be approximately 1.977 times the number of cubic fields found
(see also the remarks following Theorem 8.5.6).

8.7 Implementation and Results

8.7.1 The Algorithms

We are now ready to give the complete algorithms for computing tables of
cubic fields.

First, we give the final version of the algorithm for testing whether or not
a form belongs to the image of the Davenport–Heilbronn map, which slightly
improves on Algorithm 8.4.7 using the reducedness condition.

Algorithm 8.7.1 (Cubic Form Test). Given F = (a, b, c, d) a reduced cubic
form, HF = (P,Q,R) its Hessian, and D = Q2 − 4PR = −3 disc(F ) the
discriminant of HF , this algorithm outputs true or false according to whether
or not F corresponds to the image of a cubic field by the Davenport–Heilbronn
map.

1. [Special case] If there exists a prime p such that p2 | a and p | b, return false.

2. [Check condition at 2] If 16 | D or if D ≡ 4 (mod 16) and P or R is odd,
return false.

3. [Compute fH ] Set fH ← gcd(P,Q,R).

4. [Check conditions at 3] If 27 | D and if either 3 ∤ fH or the conditions of
Proposition 8.3.3 (5) are not satisfied, return false.

5. [Check fH almost squarefree] If p2 | fH for some p > 3, return false.

6. [Check fH and D/f2
H almost coprime] Set t ← D/f2

H , t ← t/ gcd(t, 72) (so
that t is now prime to 6). If gcd(t, fH) > 1, return false.

7. [Check D/f2
H almost squarefree] If t is squarefree, return true; otherwise,

return false.
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Proof. First, let us show the validity of step 1. If 4 | a and 2 | b, then
disc(F ) ≡ b2c2 (mod 16). Hence either b/2 or c is even and then 16 | disc(F ),
or b/2 and c are odd and then disc(F ) ≡ 4 (mod 16) and R = c2−3bd is odd,
so in any case F /∈ U2. If 9 | a and 3 | b, then 9 | disc(F ), so we have F = (13)
and 9 | a implies that F /∈ U3 by Proposition 8.3.3. Finally, if p2 | a and p | b
with p > 3, then p2 | disc(F ), hence F /∈ Vp so p | fH , and in particular p | c;
hence p4 | disc(F ), so F /∈ Up by Proposition 8.3.3, proving our claim.

Since F is reduced, Propositions 8.5.4 and 8.6.3 show that F is irreducible,
hence step 1 of Algorithm 8.4.7 is satisfied.

I claim that if the above algorithm returns true, then F is also primitive.
Indeed, let p be a divisor of all the coefficients of F . Then p2 | fH . If p > 3,
then step 5 will have returned false. If p = 2, we will have 16 | disc(F ) so
step 2 will have returned false. Finally, if p = 3, then 27 | D = −3 disc(F )
and 3 | a, 3 | d, hence step 4 will have returned false.

As the other steps are the same as in Algorithm 8.4.7, this proves the
algorithm’s validity. ⊓⊔

Remark. In this algorithm, we must check that fH and t are squarefree.
Since this may be done on billions of forms, it becomes too lengthy to do
this squarefreeness test in a naive way. To avoid this, one should use sieve
methods. The details are left to the reader (Exercise 10), who can also refer
to [Bel1] and [Bel3].

From the above algorithm and the definition of reduced forms, it is easy
to write algorithms for making tables of cubic fields.

Algorithm 8.7.2 (Real Cubic Field Table). Given a positive number X , this
algorithm outputs the reduced defining polynomial of all real cubic fields of
discriminant less than or equal to X , as well as their total number.

1. [Initialize loop on a] Set x←
√
X , n← 0, Ua ← ⌊2

√
x/27⌋,Ma ← ⌊

√
x/3⌋,

and a← 0.

2. [Loop on a, terminate?] Set a← a+1. If a > Ua, output the total number n
and terminate the algorithm. Otherwise, let fa be the product of the primes
whose square divides a.

3. [Initialize loop on b] Set Ub ← ⌊3a/2+
√
x− 27a2/4⌋. If a ≤Ma, set Lb ← 0

and Mb ← Ub−3a; otherwise, set Lb ← 3a−Ub (we do not need Mb in this
case). Finally, set b← Lb − 1.

4. [Loop on b] Set b ← b + 1. If b > Ub, go to step 2. If gcd(fa, b) > 1, go to
step 4.

5. [Initialize loop on c] Set Uc ← b−3a. If a > Ma or a ≤Ma and b > Mb, set
Lc ← ⌈(b2−x)/(3a)⌉. Otherwise, compute an upper bound y for the unique
positive solution of the equation 4P 3

2 − (3a+ 2b)2P 2
2 − 27a2X = 0 and set

Lc ← ⌈(b2 − y)/(3a)⌉. Finally, set c← Lc − 1.

6. [Loop on c] Set c← c+ 1. If c > Uc, go to step 4.
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7. [Initialize loop on d] Set Ld ← ⌈(bc+3ac−b2)/(9a)⌉. If b = 0, set Ud ← −1;
otherwise, set Ud ← min(⌊(c2 + 3ac− b2)/(3b)⌋, ⌊(b2 − 3ac+ bc)/(9a)⌋).

8. [Initialize loop on d (continued)] Set S ← 4(b2−3ac)3−27a2X . If S ≤ 0, set
Ed ← [Ld, Ud]. Otherwise, set s←

√
S, d1 ← ⌊(9abc−2b3−s)/(27a2)⌋+1,

d2 ← ⌈(9abc − 2b3 + s)/(27a2)⌉ − 1, and Ed ← [Ld, Ud] ∩ ∁[d1, d2] (now
Ed is either empty, an interval, or a union of two intervals). Finally, set
d← min(Ed)− 1.

9. [Loop on d] If no elements of Ed are strictly larger than d, go to step 6.
Otherwise, replace d by the smallest element of Ed strictly larger than d.

10. [Compute Hessian] Set F ← (a, b, c, d), P ← b2 − 3ac, Q ← bc − 9ad,
R ← c2 − 3bd, HF ← (P,Q,R), and D ← Q2 − 4PR. If |D| > 3X , go to
step 9.

11. [Check special cases] (Here, we know that |Q| ≤ P ≤ R and 0 < disc(F ) ≤
X .) If P = Q and b ≥ |3a− b|, go to step 9. If P = R and a > |d| or a = |d|
and b ≥ |c|, go to step 9.

12. [Check form belongs to U ] (Here F = (a, b, c, d) is reduced.) Using Algorithm
8.7.1 on the form F (omitting step 1, which has already been performed),
check whether F belongs to the image of the Davenport–Heilbronn map. If
the answer is true, output the reduced polynomial F (x, 1) = ax3 + bx2 +
cx+ d and set n← n+ 1. In any case, go to step 9.

Proof. This algorithm’s validity is an immediate consequence of Proposi-
tion 8.5.5 together with the inequalities for d coming from |Q| ≤ P ≤ R and
disc(F ) ≤ X . Note that in step 8, we compute d1 and d2 to avoid missing
any field, but at the price of having a few extra fields that are then rejected
by the test |D| ≤ 3X made in step 10. ⊓⊔

The algorithm in the complex case, which follows, is a little more compli-
cated because of the inequalities for d.

Algorithm 8.7.3 (Complex Cubic Field Table). Given a positive number X ,
this algorithm outputs the reduced defining polynomial of all complex cubic fields
of discriminant less than or equal to X in absolute value, as well as their total
number.

1. [Initialize loop on a] Set x←
√
X/3, n← 0, Ua ← ⌊2

√
x/3⌋, and a← 0.

2. [Loop on a, terminate?] Set a← a+1. If a > Ua, output the total number n
and terminate the algorithm. Otherwise, let fa be the product of the primes
whose square divides a.

3. [Initialize loop on b] Set Ub ← ⌊3a/2+
√
x− 3a2/4⌋. If fa = 1, set b← −1;

otherwise, set b← 0.

4. [Loop on b] Set b ← b + 1. If b > Ub, go to step 2. If gcd(fa, b) > 1, go to
step 4.
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5. [Initialize loop on c] Set Lc ← 1 − b. If 3a ≥ 2b, set Uc ← ⌊b2/(3a) +
3
√
X/(4a)⌋; otherwise, set Uc ← ⌊b − 3a/4 + 3

√
X/(4a)⌋. Finally, set c ←

Lc − 1.

6. [Loop on c] Set c← c+ 1. If c > Uc, go to step 4.

7. [Initialize loop on d] Set s ←
√

4(b2 − 3ac)3 + 27a2X (this will be a real
number),

Ld ← max

(
1 +

⌊
(b− a)(a− b+ c)

a

⌋
,

⌈
9abc− 2b3 − s

27a2

⌉)
,

Ud ← min

(
−1 +

⌈
(a+ b)(a+ b+ c)

a

⌉
,

⌊
9abc− 2b3 + s

27a2

⌋)
,

and if b = 0, set Ld ← max(Ld, 1).

8. [Initialize loop on d (continued)] Let P ← b2 − 3ac. If P < 0, set Ed ←
[Ld, Ud]. Otherwise, set s←

√
4P 3, d1 ← ⌈(9abc− 2b3 − s)/(27a2)⌉, d2 ←

⌊(9abc− 2b3 + s)/(27a2)⌋, and Ed ← [Ld, Ud]∩ ∁[d1, d2]. (Now Ed is either
empty, an interval, or a union of two intervals.)

9. [Initialize loop on d (continued again)] Let S ← b2 + 4a2− 4ac. If S < 0, go
to step 10. Otherwise, set s←

√
S, d3 ← ⌈(b−s)/2⌉, d4 ← ⌊(b+s)/2⌋, and

Ed ← Ed ∩ ∁[d3, d4]. (Now Ed is a union of at most four intervals.) Finally,
set d← min(Ed)− 1.

10. [Loop on d] If no elements of Ed are strictly larger than d, go to step 6.
Otherwise, replace d by the smallest element of Ed strictly larger than d.

11. [Compute Hessian] Set F ← (a, b, c, d), P ← b2 − 3ac, Q ← bc − 9ad,
R ← c2 − 3bd, HF ← (P,Q,R), and D ← Q2 − 4PR. If D > 3X , go to
step 10.

12. [Check form belongs to U ] (Here F = (a, b, c, d) is reduced and −X ≤
disc(F ) ≤ 0.) Using Algorithm 8.7.1 on the form F (omitting step 1, which
has already been performed), check whether F belongs to the image of the
Davenport–Heilbronn map. If the answer is true, output the reduced poly-
nomial F (x, 1) = ax3 + bx2 + cx+ d and set n← n+ 1. In any case, go to
step 10.

8.7.2 Results

The following tables give for 1 ≤ n ≤ 11 the total number N+
3 (X) and

N−
3 (X) of real and complex cubic fields of discriminant up to X = 10n in

absolute value, as well as the maximal value a for the first coefficient of the
cubic form in the interval considered. This value is always within 1 of the
largest possible value given by Propositions 8.5.5 and 8.6.4.
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X Number of fields a X Number of fields a
101 0 0 101 0 0
102 2 1 102 7 1
103 27 2 103 127 3
104 382 3 104 1520 7
105 4,804 6 105 17,041 14
106 54,600 12 106 182,417 26
107 592,922 21 107 1,905,514 49
108 6,248,290 38 108 19,609,185 86
109 64,659,361 68 109 199,884,780 155
1010 661,448,081 121 1010 2,024,660,098 276
1011 6,715,824,025 216 1011 20,422,230,540 492

Real cubic fields Complex cubic fields

It should be remarked that, thanks to the notion of reducedness, our al-
gorithm gives for every cubic field a canonical defining polynomial (which we
can call reduced) and which, in addition, has all the nice properties described
in Section 8.4. In particular, the integral basis and decomposition of primes
is immediate. One consequence is that when the cubic number field does not
have a power basis, the polynomial we will find will not be monic. If a power
basis exists, however, the reduced polynomial produced by our algorithm is
not necessarily monic. See Exercises 11, 12, and 13 for some examples.

8.8 Exercises for Chapter 8

1. Let F be a binary form of degree n with coefficients (ai) and roots (αi : βi)
normalized as explained in the text. Show that changing ai into λai is equivalent
to changing αi into λ1/nαi and βi into λ1/nβi, and deduce from this that the
discriminant is a homogeneous polynomial of degree 2n− 2 in the variables of
the form F .

2. Let f be a covariant of degree d, weight w, with image in Φm. Using differential
equations, show that, as stated in the text, we have w = (nd−m)/2.

3. Let K be a quartic number field with Galois group isomorphic to the dihedral
group D4, and let B = (1, α, β, γ) be an integral basis of K.

a) Define a ternary form FB(x, y, z) of degree 6 in a manner analogous to
Proposition 8.2.1.

b) Show that there exists a ternary quadratic form FB,2(x, y, z) and a ternary
quartic form FB,4(x, y, z) such that FB(x, y, z) = FB,2(x, y, z)FB,4(x, y, z).

c) Prove some results analogous to those of Proposition 8.2.1 for the forms
FB,2 and FB,4.

4. Let K be a cubic field such that δ is an inessential discriminantal divisor. Show
that δ ≤ 2 and that δ = 2 is possible if and only if 2 is totally split in K.

5. More generally, let L/K be an extension of number fields, let p be a prime
ideal of K, let q = NK/Q(p), and for any integer f denote by r(f) the number
of prime ideals P of L above p such that f(P/p) = f . Show that p is an
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inessential discriminantal divisor (in other words, that p divides d(θ)/d(L/K)
for any θ ∈ ZL such that L = K(θ)) if and only if there exists f such that

r(f) >
1

f

X

d|f

µ(d)qf/d .

Deduce from this that if NK/Q(p) ≥ [L : K], then p is not an inessential
discriminantal divisor (see [Has2] for hints on this exercise).

6. With the notation of the proof of Proposition 8.3.3, show that p3 | disc(G)
implies that G /∈ Vp when p 6= 3.

7. Prove Corollary 8.3.4.

8. Fill in the details of the proof of Proposition 8.5.7.

9. (J. Cremona) Let F = (a, b, c, d) be an irreducible binary cubic form correspond-
ing to a complex cubic field, in other words, such that disc(F ) < 0. Let θ be

the unique real root of F (x, 1) = 0, and let β and β be the two other complex
conjugate roots of F (x, 1) = 0. Consider the binary quadratic form

JF (X,Y ) = a2 `2(θ − β)(θ − β)(X − βY )(X − βY ) − (β − β)2(X − θY )2
´

.

a) Compute the coefficients hi of the form JF (X,Y ) = h0X
2 +h1XY +h2Y

2

in terms of a, b, c, d, and θ.
b) If M ∈ GL2(Z), compute JF◦M in terms of JF ◦M .
c) Compute the discriminant of JF (X,Y ) in terms of disc(F ), and deduce

that JF (X,Y ) is a positive definite quadratic form.
d) Define F to be Julia-reduced if a > 0 and JF is a reduced, positive definite,

binary quadratic form. Give an algorithm for Julia-reducing a cubic form
(using θ explicitly), and show that in any class of cubic forms there exists
a unique Julia-reduced cubic form.

e) Assume that F = (a, b, c, d) is Julia-reduced, and let X be such that −X ≤
disc(F ) < 0. Show that a ≤ (2/3)3/2X1/4 and that |P | =

˛

˛b2 − 3ac
˛

˛ ≤
21/3X1/2.

Deduce from these results an algorithm analogous to Algorithm 8.7.3 to enu-
merate complex cubic fields (because of the better bound on a, this algorithm
will be faster, but probably only slightly).

10. Modify Algorithm 8.7.1 by precomputing tables and using a sieve, so that the
squarefreeness tests of fH and t become as fast as possible (see [Bel1]).

11. Let K = Q(α) be the cyclic cubic field of discriminant 961 given by a root α of
the monic polynomial X3 +X2 − 10X − 8.

a) Show that (1, α, (α2 + α)/2) is an integral basis of K.
b) Prove that ZK does not have a power basis (1.θ, θ2).
c) Using the algorithm given in the text, show that the reduced polynomial

for the field K is the nonmonic polynomial 2X3 +X2 − 5X − 2.

12. Let K = Q(α) be the noncyclic cubic field of discriminant 1304 given by a root
α of the monic polynomial X3 −X2 − 11X − 1.

a) Show that (1, α, (α2 + 1)/2) is an integral basis of K.
b) Prove that ZK does not have a power basis (1.θ, θ2).
c) Using the algorithm given in the text, show that the reduced polynomial

for the field K is the nonmonic polynomial 2X3 + 3X2 − 4X − 2.
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13. Let K = Q(α) be the noncyclic cubic field of discriminant 2228 given by a root
α of the monic polynomial X3 − 14X − 18.

a) Show that (1, α, α2) is an integral basis of K, so that K has a power basis.
b) Using the algorithm given in the text, show that the reduced polynomial

for the field K is, however, the nonmonic polynomial 2X3 +2X2 −6X−1.



9. Number Field Table Constructions

9.1 Introduction

In this chapter, we will describe in detail the known methods for computing
tables of number fields with small discriminant. We can try to pursue two
different goals.

One goal is to find a systematic list of all number fields up to isomor-
phism, for a given degree, signature, and possibly also Galois group or other
properties, up to some bound. Even then, the ordering of the fields is not
completely canonical. We usually choose the fields ordered by increasing ab-
solute value of their discriminant. It is, however, quite possible to consider
completely different orderings, for instance, by specifying a very small num-
ber of ramified primes. We do not consider these types of orderings in this
book.

A complementary goal, which is the one we try to reach if the first one
is too difficult, is to find some number fields with the desired properties and
not too large discriminant.

We will also consider the corresponding problems in the relative case, at
least for small relative degrees.

The methods used for computing these tables or these fields are quite
diverse and differ enormously in their efficiency. Historically, the first methods
used were based on the geometry of numbers, essentially on Hunter’s theorem
(see [Coh0, Theorem 6.4.2]), and more recently on Martinet’s theorem (see
Theorem 9.3.2 below), which is a relative version of Hunter’s theorem. These
methods have the advantage of being completely systematic. Their enormous
disadvantage is that one literally has to pick needles out of a haystack: to find
one or two fields, it may be necessary to look at billions (109) of polynomials.
For example, the number fields of smallest discriminant are not known in
degree 10 or above, even assuming the GRH, which usually helps, and in
degree 9 only the totally real case is known, assuming the GRH (see [Let]).

The other methods used are usually less systematic but substantially
faster. One such method is the class field method, which we have already
described in detail in Chapter 5. In this chapter, we give several applications
of this method. Another method, used by D. Simon in [Sim2], for example,
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is to look for polynomials having small discriminant by quite elementary but
clever methods. We will study several of these methods.

Finally, recall that constructing a table of (absolute) quadratic fields is
essentially trivial since it amounts to checking the squarefreeness of an in-
teger, but note also that thanks to the work of K. Belabas, constructing a
table of (absolute) cubic fields is almost as easy. We refer to Chapter 8 for
complete details on this.

9.2 Using Class Field Theory

9.2.1 Finding Small Discriminants

If at first we are not too ambitious and only want to find examples of number
fields with small discriminant, but not necessarily the smallest or a complete
table, using class field theory, we can compute Abelian extensions correspond-
ing to congruence subgroups (m, C) and hence make tables of (hopefully in-
teresting) number fields.

To begin with, we need tables of base fields K. For this, the only two
large databases are available either from M. Pohst’s Kant group in Berlin or
from the author’s Pari group in Bordeaux (see Appendix B).

These tables contain nearly a million number fields of degree up to 7,
together with their invariants such as discriminant, integral basis, class group,
unit group, and regulator.

For a given base field K in this list, we would like to compute a list
of moduli m, the ray class group Clm(K) using Algorithm 4.3.1, a list of
congruence subgroups (m, C) using the algorithms explained in Section 4.1.10,
the discriminant and signature of the corresponding number fields L using
the results of Section 3.5.2, and finally a defining polynomial for the fields L
that we find interesting using one of the methods presented in Chapter 5 or
Chapter 6.

We will almost always want number fields having relatively small root
discriminant, and perhaps satisfying some additional conditions. Recall that
by definition, the root discriminant of a number field L is

|d(L)|1/[L:Q]
,

where as usual d(L) is the absolute discriminant of L. A well-known the-
orem of Minkowski implies that there exists a constant c(R1, R2) (with
c(R1, R2) > 1 if (R1, R2) 6= (1, 0)) depending only on the signature (R1, R2)
of the number field, such that the root discriminant of any number field of
signature (R1, R2) is at least equal to c(R1, R2). The computation of the
best value of this constant has been considerably improved by the use of an-
alytic techniques introduced by H. Stark, A. Odlyzko, J.-P. Serre, G. Poitou,
F. Diaz y Diaz, and others. The best known bounds (which we will simply
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call the Odlyzko bounds) are obtained by assuming the generalized Riemann
hypothesis (GRH), and so we will do this.

The GRH bounds have been carefully recomputed for all signatures and
degrees up to 100 and are available by anonymous ftp (see Appendix B). An
excerpt from this table is given in Appendix C.

Assume that we want to make a table of Abelian extensions of our base
fields with degree at most equal (or exactly equal) to some integer N , with
given signature (R1, R2), with root discriminant at most equal to some bound
b(R1, R2), and possibly with some extra conditions, such as a specific Galois
group. We can proceed as follows.

(1) If the degree of L is specified to be a given number N , we may of course
restrict to base fields K whose degree is a divisor of N . If we only ask
that the degree of L is at most equal to N , we restrict to base fields
whose degree is at most equal to N/2 (otherwise, we would have at most
the trivial extension L = K).

(2) We can always restrict to congruence subgroups (m, C) such that m is the
conductor of the congruence subgroup, hence of the corresponding exten-
sion L/K. In particular, if we want a given signature (R1, R2), Proposi-
tion 3.5.8 tells us exactly how many real places must divide the modulus
m; in other words, it gives us k = |m∞|. This leaves us with

(
r1
k

)
choices

for m∞ (where r1 is the number of real places of K), which must all be
looked at, unless K/Q is Galois, since in that case all the infinite places of
K play the same role, so only the number of such places counts, leaving
only one possible choice.

(3) One of the most important restrictions is that we want the root discrim-
inant to be at most b(R1, R2). This allows us to bound both the base
field K and the norm of the modulus m (as always, assumed to be the
conductor), thanks to the following lemma.

Lemma 9.2.1. Let L/K be an Abelian extension of number fields of
conductor m, let nL = [L : Q] and nK = [K : Q], and assume that the

root discriminant satisfies |d(L)|1/nL ≤ B for some number B. Then

N (m)d(K)2 ≤ B2nK .

In particular, the number of possible base fields K and moduli m is finite.

Proof. By Theorem 3.5.11, we have

|d(L)|1/hm,C = |d(K)| N (m)
∏

p|mN (p)
P

1≤k≤vp(m) hm/pk,C
/hm,C

.

Since m is assumed to be the conductor, we have hm/pk,C < hm,C for
k ≥ 1, and in particular hm/pk,C ≤ hm,C/2 since it is a divisor. From this
and the above formula giving d(L), we obtain
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N (m)1/2 |d(K)| ≤ |d(L)|1/hm,C = |d(L)|nK/nL ≤ BnK ,

from which the result follows. ⊓⊔

The result of this lemma is usually very pessimistic, but the simple fact
of having a bound on possible pairs (K,m) is important. Furthermore,
the result does not depend on hm,C so, in particular, not on the group
C. For a given degree of [L : K], the bound can often be considerably
improved (see Exercise 1).

(4) Assume that we have now chosen the base field K and the modulus m

subject to the above restrictions. There now remains the task of enumer-
ating congruence subgroups C modulo m or, equivalently, subgroups C of
Clm. In principle, this can be done using Birkhoff’s Theorem 4.1.18 (or a
more naive method if Clm does not have too many cyclic components, or
if we are looking only for subgroups of prime index), but in general the
number of subgroups is exponentially large (recall, for example, that if p
is prime, the number of subgroups of index p of the elementary p-group
Crp is equal to (pr−1)/(p−1)). Thus, we need some methods to weed out
undesirable subgroups. First, we must consider only subgroups of suffi-
ciently small index. More precisely, if we want number fields L of absolute
degree at most equal to N , then we must have [Clm : C] = hm,C ≤ N/nK .
Second, we must consider only subgroups C such that m is the conductor
of (m, C). In particular, in view of Proposition 3.3.12, we may restrict to
moduli m such that the conductor of (m, Pm) is equal to m — in other
words, such that hm/v < hm for all v dividing m. We may of course use
the full force of that proposition, however, and assert that if the conduc-
tor of (m, C2) is not equal to m, then the conductor of (m, C1) will not
be equal to m for C2 ⊂ C1; hence it is not necessary to consider such
subgroups.

(5) There is a final easy restriction useful for weeding out unnecessary con-
gruence subgroups. Assume that (m, C1) and (m, C2) are two congruence
subgroups modulo the same modulus m and that C2 ⊂ C1. For i = 1 and
i = 2, denote by Li the field extension corresponding to these congruence
subgroups, and set ni = [Li : Q]. Then L2 is an extension of L1, hence

|d(L2)| = |d(L1)|[L2:L1]NL1/Q(d(L2/L1)) ≥ |d(L1)|[L2:L1] ;

in other words,

|d(L2)|1/n2 ≥ |d(L1)|1/n1 .

This gives a nontrivial lower bound for the root discriminant of the field
L2, which may eliminate a priori the subgroup C2 of C1 if this lower
bound is larger than the desired bound for the root discriminant of L2.

We can then ask if it is plausible to find all the Abelian extensions of the
number fields of degree less than or equal to 7 which are in our tables, sat-
isfying some limitations on the degree and discriminant (for example, degree



9.2 Using Class Field Theory 433

up to 100 and root discriminant up to 1.2 times the GRH bound). While not
absolutely impossible, this seems like a huge amount of computation. Thus,
instead of doing a complete search, we can limit the size of N (m) to a much
lower bound than the one given by Lemma 9.2.1, and we can also limit the
number of congruence subgroups, for instance by always choosing C = Pm.

In any case, this produces large tables of number fields, and we also obtain
in this way number fields with root discriminant very close to the GRH bound
(see Appendix C and in particular Section 12.2). Note that this method was
already used by J. Martinet in 1980 (see [Mart2]) using a pocket calculator,
and it is remarkable that many of his records still hold (of course, it may be
that they are best possible).

9.2.2 Relative Quadratic Extensions

Let K be a fixed base field of signature (r1, r2) and degree r1 +2r2. We would
like to make a table of quadratic extensions L/K of signature (R1, R2) such
that the norm of the relative discriminant d(L/K) is less than or equal to
a given bound B, up to K-isomorphism. (Note that even though two such
quadratic extensions will not be K-isomorphic, they may be Q-isomorphic;
see Exercise 2.) Using the formula relating absolute and relative discriminants
(Theorem 2.5.1), this is equivalent to asking that |d(L)| ≤ d(K)2B. Note also
that (R1, R2) must satisfy the necessary and sufficient conditions R1 +2R2 =
2(r1 + 2r2), R1 ≤ 2r1 given by Corollary 2.2.7 (the condition 2 | R1 is
superfluous here).

One method is to imitate what is done in the absolute caseK = Q. In that
case L = Q

(√
D
)

and D can be chosen either squarefree or, perhaps more
canonically, equal to the discriminant of the number field we are looking for.
Making a table of such number fields then essentially amounts to making a
table of squarefree integers, which is easily done.

In the general case, we may still write L = K
(√
D
)

with D ∈ K∗ rK∗2,
but this time the choice of D is not so clear. By Kummer theory (which in
this case is trivial), we know that L1 = K

(√
D1

)
and L2 = K

(√
D2

)
will be

K-isomorphic if and only if D2/D1 ∈ K∗2. We must then solve two problems.
First, find a reasonable representative of the classes of K∗/K∗2 (for K = Q,
we took either the squarefree numbers or the fundamental discriminants);
and second, compute the discriminant ideal of K

(√
D
)
.

For the first task, we may use the following lemma.

Lemma 9.2.2. As usual, denote by V2(K) the group of 2-virtual units of K
(see Definition 5.2.4), and let Is be the group of squarefree integral ideals of
K whose ideal class is a square. Then

(1) The map φ, which sends the class modulo V2(K) of an element α ∈ K∗ to
the squarefree part of the ideal αZK , is an isomorphism from K∗/V2(K)
to Is.
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(2) There is a natural exact sequence

1 −→ V2(K)

K∗2 −→
K∗

K∗2 −→ Is −→ 1 .

Note that the group operation on Is is defined by taking the squarefree
part of the ideal product.

Proof. (1). We first show that the map φ is well-defined. Indeed, we can
write in a unique way αZK = aq2 with a integral and squarefree, and the
ideal class of a is equal to that of q−2, so is a square, so φ(α) ∈ Is. In
addition, if α′ = αβ with β ∈ V2(K) is equivalent to α modulo V2(K), then
since β is a virtual unit there exists an ideal b such that βZK = b2, so that
α′ZK = a(qb)2, hence a is also equal to the image of α′.

In addition, φ is injective since φ(α) = φ(α′) implies that α/α′ = (q/q′)2

for some ideals q and q′, which means exactly that α/α′ ∈ V2(K).
Finally, φ is surjective since if a ∈ Is then a = αb2 for some ideal b, so

αZK = aq2 with q = b−1, finishing the proof of (1).
(2) follows from (1) and the natural exact sequence

1 −→ V2(K)

K∗2 −→
K∗

K∗2 −→
K∗

V2(K)
−→ 1 .

⊓⊔

It follows from this lemma that we can specify elements of K∗/K∗2 as
follows. Let (v1, . . . , vrc+ru+1) be a fundamental system of 2-virtual units as
in Definition 5.2.7. Then we choose an ideal a ∈ Is, we take any ideal q such
that aq2 = α0ZK is a principal ideal, and the 2rc+ru+1 elements of K∗/K∗2

corresponding to a are the classes of elements of the form α0

∏
i v
xi

i with
xi = 0 or 1.

In addition, if q is chosen to be an integral ideal and if αZK = aq2 and
L = K

(√
α
)
, it follows from Hecke’s Theorem 10.2.9 (and it is easy to prove

directly) that we have d(L/K) = ab2, where b is an integral ideal dividing 2.
In particular, N (a) ≤ N (d(L/K)). This suggests the following algorithm for
computing quadratic extensions.

Algorithm 9.2.3 (List of Relative Quadratic Extensions Using Squarefree
Ideals). Given a number field K of signature (r1, r2), a signature (R1, R2) such
that R1 + 2R2 = 2(r1 + 2r2) and R1 ≤ 2r1, and a bound B, this algorithm
determines all relative quadratic extensions L/K up to K-isomorphism such
that NK/Q(d(L/K)) ≤ B (or, equivalently, |d(L)| ≤ d(K)2B) and such that
the signature of L is (R1, R2). We assume that Cl(K) = (A,DA) and U(K)
have been computed as well as the necessary data for using the principal ideal
algorithm in K.

1. [Initial computations in K] Let DA = diag(a1, . . . , as) and A =
(
a1, . . . , as

)

with ai+1 | ai for i ≤ s−1, let (ε1, . . . , εru) be a system of fundamental units
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and let ε0 be a generator of the roots of unity in K. Furthermore, let rc be
the 2-rank of the class group, in other words, the largest index i (possibly 0)
such that ai is even. Using the principal ideal algorithm in K, compute vi such
that aai

i = viZK for 1 ≤ i ≤ rc, and set rv ← rc + ru + 1 and vi ← εi−rc−1

for rc + 1 ≤ i ≤ rv. Finally, for all i ≤ rv, let Si be the r1-component vector
of signatures of vi expressed as elements of F2.

2. [Compute Selmer group] Construct two lists V and S as follows. For j =
0, . . . , 2rv − 1, let j =

∑
1≤i≤rv

xi2
i−1 be the binary decomposition of j

and set Vj ←
∏
xi=1 vi and Sj ←

∑
xi=1 Si (V will contain representatives

of all elements of the Selmer group V2(K)/K∗2, and S the corresponding
signatures).

3. [Compute ideal list] Using Algorithm 2.3.24, compute the list L of all square-
free ideals a of norm less than or equal to B, and let k ← 0 (k will be a
pointer on the list L).

4. [Next a] Set k ← k + 1. If k > |L|, terminate the algorithm. Otherwise, let a

be the kth element of the list L. If a = ZK , set α0 = 1 and j ← 0, let S be
the r1-component vector with entries equal to 0 ∈ F2, and go to step 8.

5. [Is a a square?] Using the principal ideal algorithm in K, compute β ∈ K and
exponents xi such that 0 ≤ xi < ai and

a = β
∏

1≤i≤s
axi

i .

If for some i ≤ rc the exponent xi is odd, go to step 4. Otherwise, for each i
such that rc < i ≤ s and xi is odd, set xi ← xi − ai.

6. [Compute q] Compute

q0 ←
∏

1≤i≤s, xi 6=0

a
(ai−xi)/2
i .

Using Algorithm 4.3.4 with m = ZK , let q be an almost-reduced integral ideal
in the same ideal class as q0.

7. [Compute α0] Using the principal ideal algorithm, compute an α0 such that
aq2 = α0ZK , let S be the r1-component vector with entries in F2 of the
signatures of α0, and set j ← −1.

8. [Loop through virtual units] Set j ← j+1. If j ≥ 2rv , go to step 4. Otherwise,
set T ← S + Sj . If the number of 0s among the entries of T is not equal to
R1/2, go to step 8.

9. [Extension suitable?] Set α← α0Vj . Using Algorithm 2.4.9 or Hecke’s Theo-
rem 10.2.9, compute the ideal discriminant d of the relative quadratic extension
of K defined by the polynomial X2−α. If NK/Q(d) ≤ B, output the relative

extension K
(√
α
)
/K. Go to step 8.

The proof of this algorithm’s validity is left to the reader (Exercise 3).
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Remarks

(1) It is not difficult to generalize this algorithm to the construction of cyclic
extensions of K of degree ℓ for a prime number ℓ, when one assumes
that ζℓ ∈ K (in other words, for the case of a Kummer extension); see
Exercise 4.

(2) As already mentioned, we have N (a) ≤ N (d(L/K)) ≤ 4nN (a). To be
sure to have all possible quadratic extensions, we must therefore use all
squarefree ideals of norm up to B. Since 4n can become quite large,
there is therefore a considerable amount of waste in the above algorithm,
since ideals a such that N (a) is much larger than B/4n will contribute a
very small number of extensions. This is the price to pay for simplicity.
The algorithm presented below does not have this disadvantage, but the
computations are considerably longer.

A different way of computing quadratic extensions of a base field K is
to use class field theory. Since quadratic extensions of number fields are nec-
essarily Abelian, we can simply make a table of possible conductors m and
congruence subgroups C. Recall that in this very simple case, if m is the
conductor of the quadratic extension L/K, then its finite part is equal to the
relative discriminant ideal (see Corollary 3.5.12). In addition, the congruence
subgroup C defines a quadratic extension of K if and only if it is of index 2
in Im(K). Thus, we can use the following algorithm.

Algorithm 9.2.4 (List of Relative Quadratic Extensions). Given a num-
ber field K of signature (r1, r2), a signature (R1, R2) such that R1 + 2R2 =
2(r1 +2r2) and R1 ≤ 2r1, and a bound B, this algorithm determines all relative
quadratic extensions L/K up to K-isomorphism such that NK/Q(d(L/K)) ≤ B
(or, equivalently, |d(L)| ≤ d(K)2B) and such that the signature of L is (R1, R2).

1. [Compute ideal list] Using Algorithm 2.3.25 with ℓ = 2, compute the list L0

of all ideals m0 of norm less than or equal to B which are conductors at 2 —
in other words, such that for all prime ideals p dividing m0, vp(m0) = 1 if p ∤ 2
while 2 ≤ vp(m0) ≤ 2e(p/2)+1 if p | 2 — and set k← R2−2r2 = r1−R1/2.

2. [Compute moduli] Let L be the list of all moduli of the form m ← m0m∞,
where m0 ∈ L0 and m∞ ranges through either all the

(
r1
k

)
subsets of the real

places of K of cardinality equal to k if K/Q is not Galois, or a single fixed
such subset if K/Q is Galois, and set i← 0 (i will be a pointer to the list L).

3. [Check if m is a conductor] Set i← i+ 1. If i > |L|, terminate the algorithm.
Otherwise, let m be the ith element of the list L. Using Algorithm 4.4.2,
check whether m is the conductor of (m, Pm). If it is not, or if we find in that
algorithm that hm is odd, go to step 3.

4. [Compute congruence subgroups] Using Algorithm 4.3.1, compute the SNF
(A,DA) of Clm(K). Then using Algorithm 4.1.20 with ℓ = 2, compute the
list C of the left HNF divisors ofDA corresponding to all congruence subgroups
C of Im(K) of index 2, and set j ← 0 (j will be a pointer to the list C).
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5. [Check if m is the conductor of (m, C)] Set j ← j + 1. If j > |C|, go to
step 3. Otherwise, let C be the congruence subgroup corresponding to the
jth element of C. Using once again Algorithm 4.4.2, check whether m is the
conductor of (m, C). If it is not, go to step 5.

6. [Compute defining polynomial] (We now know that (m, C) is the conductor of
a suitable quadratic extension of K.) Using Algorithm 5.4.8 for n = 2, output
the defining polynomial for the quadratic extension L/K corresponding to
(m, C) and go to step 5.

Proof. The proof of this algorithm’s validity is straightforward once one
notices that the conditions on m0 in step 1 are consequences of Corollary
3.5.12 and of Hecke’s theorem (more precisely, of Theorem 5.2.2). ⊓⊔

Remark. Steps 4, 5, and 6 may be replaced by the following single step.

4’. [Find list of polynomials] Using Algorithm 5.2.14 with ℓ = 2, output the
relative defining polynomials of all the quadratic extensions of K of conductor
m, and go to step 3.

The reason for this is that, contrary to Algorithm 5.4.8, which specifically
finds the defining polynomial corresponding to a given congruence subgroup
(m, C), Algorithm 5.2.14 essentially uses only the information about m and
the fact that hm,C = 2, and so it gives all the polynomials at once. Both
methods should be implemented in order to compare their relative efficiency,
but it is quite clear that the modification explained here will be superior if
there are many quadratic extensions having a given conductor.

The two algorithms presented above are reasonable methods to compute
a list of relative quadratic extensions. In the author’s and collaborators’ im-
plementations, the first algorithm using squarefree ideals is usually faster.
In addition, it enables us to give an asymptotic estimate for the number of
relative quadratic extensions (see Exercise 6). On the other hand, the class
field method does lead to a formula for the number of such extensions (see
Exercise 5), but since ray class numbers are involved in this formula, it does
not seem easy to deduce from it the result of Exercise 6.

9.2.3 Relative Cubic Extensions

Let K be a fixed base field of signature (r1, r2) and degree r1 +2r2. Similarly
to the quadratic case, we would like to make a table of cubic extensions L/K
of signature (R1, R2) such that the norm of the relative discriminant d(L/K)
is less than or equal to a given bound B, up to K-isomorphism. Using the
formula relating absolute and relative discriminants (Theorem 2.5.1), this is

equivalent to asking that |d(L)| ≤ |d(K)|3B. Note also that (R1, R2) must
satisfy the necessary and sufficient conditions R1 + 2R2 = 3(r1 + 2r2) and
r1 ≤ R1 ≤ 3r1 given by Corollary 2.2.7.
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We explored in detail in Chapter 8 how to compute extensive tables of
cubic extensions of Q. Considering [Dat-Wri], it is quite plausible that these
methods can be generalized to the relative case as well, but to the author’s
knowledge this has not been done.

We would first like to make a table of cyclic cubic extensions. Since 3 is
odd, Corollary 2.2.6 tells us that the real places are unramified — in other
words, that we have R1 = 3r1 and R2 = 3r2 — and Corollary 3.5.12 tells
us that d(L/K) = m2, where m is the conductor the extension. As in the
quadratic case, we have two different methods. The first method is the analog
of the use of squarefree ideals and is left as an excellent exercise for the reader
(Exercise 7). The second method uses class field theory and gives the following
algorithm, which is very close to Algorithm 9.2.4.

Algorithm 9.2.5 (List of Relative Cyclic Cubic Extensions). Given a number
field K of signature (r1, r2) and a bound B, this algorithm determines all relative
cyclic cubic extensions L/K up to K-isomorphism such that NK/Q(d(L/K)) ≤
B (or, equivalently, |d(L)| ≤ |d(K)|3B). The signature of L will necessarily be
equal to (3r1, 3r2).

1. [Compute ideal list] Using Algorithm 2.3.25 with ℓ = 3, compute the list L of
all ideals m of norm less than or equal to B1/2 which are conductors at 3 —
in other words, such that for all prime ideals p dividing m, vp(m) = 1 if p ∤ 3
while 2 ≤ vp(m) ≤ ⌊3e(p/3)/2⌋ + 1 if p | 3 — and set i ← 0 (i will be a
pointer to the list L).

2. [Check if m is a conductor] Set i← i+ 1. If i > |L|, terminate the algorithm.
Otherwise, let m be the ith element of the list L. Using Algorithm 4.4.2,
check whether m is the conductor of (m, Pm). If it is not, or if we find in that
algorithm that hm is not divisible by 3, go to step 2.

3. [Compute congruence subgroups] Using Algorithm 4.3.1, compute the SNF
(B,DB) of Clm(K). Then using Algorithm 4.1.20 with ℓ = 3, compute the
list C of the left HNF divisors ofDB corresponding to all congruence subgroups
C of Im(K) of index 3, and set j ← 0 (j will be a pointer to the list C).

4. [Check if m is the conductor of (m, C)] Set j ← j + 1. If j > |C|, go to
step 2. Otherwise, let C be the congruence subgroup corresponding to the
jth element of C. Once again using Algorithm 4.4.2, check whether m is the
conductor of (m, C). If it is not, go to step 4.

5. [Compute defining polynomial] (We now know that (m, C) is the conductor
of a suitable cyclic cubic extension of K.) Using Algorithm 5.5.5 for n = 3
or Algorithm 5.3.17, output the defining polynomial for the cubic extension
L/K corresponding to (m, C) and go to step 4.

Remarks

(1) In the relative quadratic case, we used the upper bound vp(m) ≤
2e(p/2)+1 coming from Hecke’s Theorem 10.2.9, which assumed ζℓ ∈ K.
Here in step 1, we use the more general bound
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vp(m) ≤
⌊
ℓe(p/ℓ)

ℓ− 1

⌋
+ 1

already stated in Proposition 3.3.22 (see Corollary 10.1.24).
(2) Since L/K is unramified at infinity, contrary to Algorithm 9.2.4 we do

not have to worry about infinite places.
(3) Since Algorithm 5.3.17 requires the specific knowledge of the congruence

subgroup C to compute the exact conductor of the extension Lz/Kz,
contrary to Algorithm 9.2.4 it is in general not possible to replace steps
3, 4, and 5 by a unique step. When m is prime to 3, however, and also in
many other cases, this is possible. We leave the details to the reader.

(4) If ζ3 /∈ K, the computation of the defining polynomials in step 5 will be
more expensive since it will involve first extending the extension L/K
to the extension Lz/Kz with Kz = K(ζ3). In this case, it is evidently
important to precompute all the necessary information about the fieldKz

so as not to recompute it each time. On the other hand, if the defining
polynomial is not desired but only the relative discriminant (which is
equal to m2) is desired, this is, of course, not necessary.

Once the cyclic cubic extensions have been listed, we want to list the
noncyclic (or, equivalently, the non-Galois) extensions. Even in this case, we
can use class field theory thanks to the following theorem kindly communi-
cated to us by J. Martinet. The proof involves a refinement of the Hasse–Arf
theorem (see [Ser]). I refer to Section 10.1.5 for the prime degree case and to
an unpublished manuscript of J. Martinet for the general case.

Theorem 9.2.6. Let K be a number field, L an extension of K of degree
n, and let L2 be the Galois closure of L/K in some algebraic closure of K.
Assume that Gal(L2/K) is isomorphic to the dihedral group Dn, and that
n ≥ 3 with n odd. Finally, let K2 be the unique quadratic subextension of
L2/K, and let (m, C) be the conductor of the Abelian extension L2/K2 (see
the diagram below). Then for each d | n there exists an integral ideal ad of K
(not only of K2) such that the following holds.

(1) The conductor m of L2/K2 is obtained by extending an to K2, in other
words, m0 = anZK2 and m∞ = ∅.

(2) More generally, the conductor of the unique subextension L2,d/K2 of de-
gree d of L2/K2 is obtained by extending ad to K2. In particular, a1 = ZK
and d1 | d2 | n implies that ad1 | ad2 .

(3) If τ is a generator of Gal(K2/K) and if we set

Clm(K2)/C = 〈I〉
for some ideal I of K2, then τ

(
I
)

= I−1.
(4) The relative discriminant ideal d(L/K) is given by

d(L/K) = d(K2/K)(n−1)/2
∏

d|n
a
φ(d)
d .
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(5) Let (r1, r2) be the signature of K and (r′1, r
′
2) the signature of K2. Then

the signature of L2 is equal to (nr′1, nr
′
2) and the signature of L is equal

to (r1 + ((n− 1)/2)r′1, r2 + ((n− 1)/2)r′2).
(6) Let p be a prime ideal of K. Then we have the following properties:

a) p | an if and only if p is totally ramified in L/K;
b) p | (ad, d(K2/K)) implies p | d;
c) p2 | ad implies p | d.

L2

2

〈τ〉
||

||
||

||

n〈σ〉L

n K2

2

〈τ〉
||

||
||

||

K

See Section 10.1.5 for a proof of this theorem in the case n prime.

Remarks

(1) The point of this theorem is not only that it gives exactly the relative
discriminant ideal of L/K, but also that one can obtain L as a subfield
of an Abelian extension of K2 of conductor coming from K and not only
from K2. Ordinary results of Galois theory would tell us only that the
conductor of L2/K2 must be stable under Gal(K2/K), but not necessarily
that it comes from a modulus of K.

(2) A similar but slightly more complicated statement is true when n is
even. In particular, in that case, if K ′

2 denotes the unique quadratic
subextension of L/K, we have

d(L/K) = d(K2/K)(n−2)/2d(K ′
2/K)

∏

d|n, d>2

a
φ(d)
d .

(3) If we assume in addition that n is an odd prime number, the formula for
the discriminant simplifies to

d(L/K) = d(K2/K)(n−1)/2an−1 ,

where a is the ideal of K such that aZK2 is the conductor of L2/K2.
(4) If n = 3, statement (6) is the exact generalization to the relative case of

Proposition 8.4.1.
(5) The corresponding statement in the more general case of metacyclic

groups (where the condition τ2 = 1 is replaced by τk = 1 for some
k > 2) is false.
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Using this theorem with n = 3 and the fact that a noncyclic cubic exten-
sion has Galois group isomorphic to D3, it is easy to write an algorithm for
computing relative noncyclic cubic extensions as follows.

Algorithm 9.2.7 (List of Relative Noncyclic Cubic Extensions). Given a
number field K of signature (r1, r2), a signature (R1, R2) such that R1 +2R2 =
3(r1 + 2r2) and r1 ≤ R1 ≤ 3r1, and a bound B, this algorithm determines
all non-Galois relative cubic extensions L/K up to K-isomorphism such that

NK/Q(d(L/K)) ≤ B (or, equivalently, |d(L)| ≤ |d(K)|3B) and such that the
signature of L is (R1, R2).

1. [Compute ideal list] Using a simple modification of Algorithm 2.3.25, compute
the list L0 of all ideals a of K of norm less than or equal to B1/2 which are
conductors at 3, except that we allow vp(a) = 1 for p | 3 (see Exercise 8).

2. [Compute list of quadratic extensions] Using either Algorithm 9.2.3 or 9.2.4,
compute the list Q of quadratic extensions K2/K up to K-isomorphism of
signature (R1 − r1, R2 − r2) such that N (d(K2/K)) ≤ B, and set i← 0 (i
will be a pointer to the list Q).

3. [Compute quadratic extension] Set i ← i + 1. If i > |Q|, terminate the
algorithm. Otherwise, let K2 be the ith element of Q. Compute the necessary
data to work in K2, such as integral basis, class and unit group, and compute
the action of the generator τ of Gal(K2/K) on a K-basis of K2/K. Finally,
let d← d(K2/K) be the relative discriminant of K2/K.

4. [Compute ideal sublist] Let L1 be the sublist of the ideals a ∈ L0 such that

N (a) ≤ (B/N (d(K2/K)))1/2 = |d(K)| (B/ |d(K2)|)1/2

and such that if p ∤ 3 and p | a, then p ∤ d; if p | 3 and vp(a) = 1, then p | d;
and finally if p | 3 and vp(a) = 3e(p/3)/2 + 1, then p ∤ d. Using Algorithm
2.5.4, compute the list L2 of ideals m0 of K2 of the form m0 = aZK2 with
a ∈ L1, and set j ← 0 (j will be a pointer to the list L2).

5. [Check if m is a conductor] Set j ← j+1. If j > |L2|, terminate the algorithm.
Otherwise, let m be the modulus whose finite part m0 is the jth element of
the list L2 and with m∞ = ∅. Using Algorithm 4.4.2, check whether m is
the conductor of (m, Pm). If it is not, or if we find in that algorithm that hm

is not divisible by 3, go to step 5.

6. [Compute congruence subgroups] Using Algorithm 4.3.1, compute the SNF
(A,DA) of Clm(K2). Then using Algorithm 4.1.20 with ℓ = 3, compute
the list C of the left HNF divisors of DA corresponding to all congruence
subgroups C of Im(K2) of index 3, and set c← 0 (c will be a pointer to the
list C).

7. [Check if m is the conductor of (m, C)] Set c ← c + 1. If c > |C|, go to
step 5. Otherwise, let C be the congruence subgroup corresponding to the
cth element of C. Once again using Algorithm 4.4.2, check whether m is the
conductor of (m, C). If it is not, go to step 7.
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8. [Check condition on τ ] Let HC be the left HNF divisor of DA corresponding
to C, let k be the index of the unique row whose diagonal entry is equal to 3,
and let I be the kth generator of Clm(K2) — in other words, the kth element
of A. Using the explicit action of τ , compute J ← τ(I), and compute the
discrete logarithm Z of J in Clm(K2). If the kth component Zk of Z is not
congruent to 2 modulo 3, go to step 7.

9. [Compute defining polynomial for L2/K2] (We now know that (m, C) is
the conductor of a suitable cyclic cubic extension of K2.) Using Algorithm
5.4.8 for n = 3, or Algorithm 5.2.14 when ζ3 ∈ K2, or Algorithm 5.5.5 for
n = 3, or Algorithm 5.3.17 when ζ3 /∈ K2, compute a defining polynomial
P (X) ∈ K2[X ] for the cubic extension L2/K2 corresponding to (m, C).

10. [Compute defining polynomial for L/K] Let Pc ← P τ (X) be the polynomial
obtained by applying τ to all the coefficients of P ∈ K2[X ], and set Q(X)←
RY (Pc(Y ), P (X − Y )), where as usual RY denotes the resultant in the
variable Y . Then Q(X) ∈ K[X ]. Factor Q(X) in K[X ], output one of the
irreducible factors ofQ(X) of degree 3 inK[X ] (it will have one) as a defining
polynomial for L/K, and go to step 7.

Proof. Thanks to Theorem 9.2.6, we know that the conductor of the
cyclic cubic extension L2/K2 is of the form aZK2 with a an ideal of K
and that d(L/K) = d(K2/K)a2, so that N (d(L/K)) ≤ B is equivalent to
N (a) ≤ (B/N (d(K2/K)))1/2. In addition, by Propositions 3.3.21 and 3.3.22,
for every prime ideal P of K2 dividing aZK2 we must have vP(aZK2) = 1 if
P ∤ 3, while 2 ≤ vP(aZK2) ≤ ⌊3e(P/3)/2⌋+ 1 if P | 3. In terms of the ideal
p below P in K, this implies the following when p | a.

(1) If p ∤ 3 and p is ramified in K2/K as pZK2 = P2, then vP(aZK2) =
2vp(a) ≥ 2, which is impossible.

(2) If p ∤ 3 and p is unramified in K2/K, then we must have vp(a) = 1.
(3) If p | 3 and p is ramified in K2/K as pZK2 = P2, then the condition on

vP(a) given above is equivalent to the condition 1 ≤ vp(a) ≤ 3e(p/3)/2+
1/2.

(4) Finally, if p | 3 and p is unramified in K2/K, then we must have 2 ≤
vp(a) ≤ ⌊3e(p/3)/2⌋+ 1.

These conditions explain the list computed in step 1 as well as the addi-
tional conditions given in step 4 once K2 has been chosen.

In step 8, the ideal class I is clearly a generator of the group Clm(K2)/C
of order 3. We will have Zk ≡ ±1 (mod 3), and the condition Zk ≡ −1 ≡ 2
(mod 3) is equivalent to the condition τ

(
I
)

= I−1 of Theorem 9.2.6.
Finally, in step 10, the roots of Q(X) are of the form θ + τ(θ′), where θ

and θ′ denote roots of P (X) in L2. Denote by θ1 some fixed root of P (X) in
L2, and set θ2 = σ(θ1) and θ3 = σ(θ2). If we set
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Q1(X) = (X − (θ1 + τ(θ1)))(X − (θ2 + τ(θ3)))(X − (θ3 + τ(θ2))) ,

Q2(X) = (X − (θ2 + τ(θ2)))(X − (θ1 + τ(θ3)))(X − (θ3 + τ(θ1))) , and

Q3(X) = (X − (θ3 + τ(θ3)))(X − (θ1 + τ(θ2)))(X − (θ2 + τ(θ1))) ,

then Q(X) = Q1(X)Q2(X)Q3(X), the Qi(X) are clearly stable by τ , and
they are also stable by σ by definition of the θi, since τστ−1 = σ−1. It
follows by Galois theory that Qi(X) ∈ K[X ] for i = 1, 2, and 3, so Q(X) =
Q1(X)Q2(X)Q3(X) is a (possibly partial) factorization of Q(X) in K[X ].

I claim that at least two of the Qi(X) are irreducible in K[X ]. Indeed,
assume by contradiction that two of them are reducible, say Q1(X) and
Q2(X). Then Q1(X) will have a factor of degree 1 in K[X ]. But since the
three roots of Q1(X) differ only by application of σ, if one of them is in K,
then they will all be equal. In other words, if Q1(X) is reducible, then in fact
Q1(X) = (X − α1)

3, where

α1 = θ1 + τ(θ1) = θ2 + τ(θ3) = θ3 + τ(θ2) ∈ K .

Similarly, if Q2(X) is reducible, then in fact Q2(X) = (X − α2)
3 with

α2 = θ2 + τ(θ2) = θ1 + τ(θ3) = θ3 + τ(θ1) ∈ K .

Subtracting, we deduce that

α1 − α2 = β = θ1 − θ3 = θ2 − θ1 = θ3 − θ2 ∈ K ,

and adding these three expressions for β we obtain 3β = 0, so θ3 = θ2, which
is absurd. This shows that at least two of the Qi(X) are irreducible in K[X ].

Assume, for example, that Q1(X) is irreducible in K[X ]. Then α1 =
θ1 + τ(θ1) is a root of Q1(X), it does not belong to K, and it is stable by τ ,
hence it belongs to L. Since [L : K] = 3 is prime, we deduce that L = K(α1)
and that Q1(X) is a defining polynomial for L/K, finishing the proof of the
algorithm. ⊓⊔

Remarks

(1) I thank F. Diaz y Diaz for the resultant method explained in step 10.
(2) If ζ3 ∈ K2, the computation of the Kummer extension in step 9 will be

cheap. On the other hand, if ζ3 /∈ K2, we will need to extend K2 by
adjoining ζ3, work on the extension field, and come back down. There
seems to be no way to avoid working in K2(ζ3) so as to be able to apply
Kummer theory. On the other hand, to obtain a defining polynomial for
L/K, it is not necessary first to obtain a defining polynomial for L2/K2

and then go down to L/K, since it is possible to perform both steps at
once (see Exercise 9).

(3) As usual, if the explicit polynomials are not needed but only the relative
discriminant ideals are, we can replace the computations performed in
steps 9 and 10 by the simple computation of d(L/K)← da2.
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(4) As in the quadratic case, we can modify the preceding algorithm so that
it uses squarefree ideals (more precisely, Exercise 7) instead of class field
theory in the construction of the extensions L2/K2 (see Exercise 10).

9.2.4 Finding the Smallest Discriminants Using Class Field
Theory

Finding the smallest possible discriminants for a given signature using class
field theory is not possible unless one adds some extra conditions, such as con-
ditions on the Galois group. Indeed, if the extra conditions do not exclude
primitive fields, then class field theory can only find those as Abelian exten-
sions of Q, hence as subfields of cyclotomic fields by the Kronecker–Weber
theorem, and these can all easily be found if the signature and bounds are
given and are usually not the smallest possible, except in very small degrees.

Consider the first few degrees.
In degree 4, the imprimitive fields are the fields with Galois group iso-

morphic to subgroups of D4, in other words to C4, C2 × C2, and D4, and
of course they all contain a quadratic subfield. Thus, although the Abelian
number fields with Galois group C4 and C2 × C2 can be obtained easily as
extensions of Q, we may also deal with the three Galois groups at the same
time by considering relative quadratic extensions. Since a quadratic exten-
sion is necessarily Abelian, the desired number fields can be obtained as class
fields from quadratic base fields (see also Section 9.4.5).

Similar ideas apply in degree 6. We use the permutation group notation
given, for example, in [Coh0]. A sextic field contains a cubic subfield (of
which it will necessarily an Abelian extension) if and only if its Galois group
is isomorphic to a transitive subgroup of S4 ×C2; in other words, to C6, S3,
D6, A4, S

+
4 , S−

4 , A4×C2, and S4×C2. Thus, complete tables of number fields
having those specific Galois groups can be made by using class field theory
together with tables of cubic fields, easily made by using the algorithms of
Chapter 8.

We can also compute tables of sextic fields with Galois group isomorphic
to G18 since these (in addition to C6 and S3) are the sextic fields that are
Abelian extensions of a quadratic subfield.

Using Algorithm 9.2.7, we can also compute tables of sextic fields with
Galois group isomorphic to the transitive subgroups of G72 not already con-
sidered; in other words, to G+

36, G
−
36, and G72, since these are the sextic fields

that are non-Galois extensions of a quadratic subfield.

In degree 8, we can treat in the same way octic fields that contain a
quartic subfield, which correspond to a large list of Galois groups. We refer
to [Co-Di-Ol3] and [Co-Di-Ol6] for details. On the other hand, imprimitive
octic fields that contain a quadratic subfield but no quartic subfield cannot
be treated by class field theory. (The only nontrivial case would be when the
relative Galois group is is isomorphic to D4, for which there exists a theorem
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analogous to Theorem 9.2.6, but unfortunately in this case the octic field
contains a quartic subfield since a quartic D4 extension contains a quadratic
subextension.)

Apart from the general methods coming from the geometry of numbers
(in this case Martinet’s Theorem 9.3.2 for the relative case below), the only
known method, which is in fact a vast generalization of class field theory to
GL2, is based on the use of Galois representations of GL2 (see, for example,
[Cas-Jeh]).

These ideas can of course be pushed to larger degrees if desired.

9.3 Using the Geometry of Numbers

The books [Con-Slo] and [Mart5] are the essential modern references for the
study of this subject for its own sake. On the other hand, for the construction
of complete tables of number fields using the geometry of numbers, we refer
to [Mart3] and [Poh] for a modern description of the general methods, to
[For1] for totally complex quartic fields, to [Buc-For] for totally real quartic
fields, to [Bu-Fo-Po] for quartic fields of mixed signature, to [Diaz] for totally
real quintic fields, to [Sc-Po-Di] for nontotally real quintic fields, to [Be-Ma-
Ol] for sextic fields with a quadratic subfield, to [Oli1] for sextic fields with
a cubic subfield, to [Oli2] for primitive sextic fields, and to [Let] for septic
fields.

9.3.1 The General Procedure

For the reader’s convenience, we recall here Hunter’s theorem (see, for exam-
ple, [Coh0, Theorem 6.4.2]). Let γn denote Hermite’s constant in dimension
n, whose first few values are given by γ1 = 1, γ2

2 = 4/3, γ3
3 = 2, γ4

4 = 4,
γ5
5 = 8, γ6

6 = 64/3, γ7
7 = 64, and γ8

8 = 256.

Theorem 9.3.1. Let K be a number field of degree n over Q and discrim-
inant d(K). There exists α ∈ ZK r Z that satisfies the following additional
properties.

(1) If α(j) denotes the conjugates of α in C, then

∑

1≤j≤n

∣∣α(j)
∣∣2 ≤ (TrK/Q(α))2

n
+ γn−1

( |d(K)|
n

)1/(n−1)

,

where γn−1 is Hermite’s constant in dimension n− 1.
(2) 0 ≤ TrK/Q(α) ≤ n/2.

There also exists a relative version of this theorem, due to J. Martinet,
as follows.
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Theorem 9.3.2. Let K be a number field of degree m and let L/K be a
relative extension of number fields of relative degree n = [L : K], so that L is
of absolute degree nm. There exists α ∈ ZL r ZK that satisfies the following
additional properties.

(1) If α(j) denotes the conjugates of α in C and t(h) denotes the conjugates
of some t ∈ K in C, then

∑

1≤j≤nm

∣∣α(j)
∣∣2 ≤

∑

1≤h≤m

∣∣∣TrL/K(α)(h)
∣∣∣
2

n
+ γm(n−1)

( |d(L)|
nm |d(K)|

)1/(m(n−1))

.

(2) Such an α can be chosen arbitrarily modulo addition of an arbitrary ele-
ment of ZK and also modulo multiplication by an arbitrary root of unity
belonging to K.

We include this relative version not only because it is in the spirit of this
book, for the sake of it, but also because it is essential even in the absolute
case. Indeed, the element guaranteed to exist by Hunter’s theorem is not
necessarily primitive (unless n is a prime number), hence the number field
search is split into two distinct parts. Given a discriminant bound and a
signature, we first search for polynomials of degree n whose roots satisfy
Hunter’s conditions and keep only those that are irreducible and satisfy the
discriminant and signature conditions. In doing so, we may miss defining
polynomials for number fields K such that the element α guaranteed to exist
by Hunter’s theorem does not generate K but rather a subfield of K. In
particular, all primitive fields (that is, number fields having no nontrivial
subfields) will be obtained, but also many imprimitive fields as well (those
for which K = Q(α)).

In a second part, we search for imprimitive fields using Martinet’s theo-
rem. We are helped by the first part because Hunter’s inequality gives upper
bounds for the discriminants of the possible subfields (see the degree 4 ex-
amples below).

Another important result, also due to J. Martinet, is the following. (I
thank F. Diaz y Diaz for having brought this theorem to my attention.)

Theorem 9.3.3. Let K be a number field of degree n, let α ∈ K be given by
Hunter’s Theorem 9.3.1, let k = Q(α) and m = [k : Q], so that m | n and
m > 1. Then

|d(k)| ≤
(

2γn−1(|d(K)| /n)1/(n−1)

n− n/m

)m(m−1)/2

.

Remarks

(1) Since we also have the bound |d(k)| ≤ |d(K)|m/n coming from Theorem
2.5.1, Martinet’s bound is useful only for m = 2 and also for m = 3 if
|d(K)| is not too large (see Exercise 11).
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(2) It is essential to note that in this theorem α is an element given by
Hunter’s theorem, and not any element of a subfield of K; otherwise, the
result is trivially false (see Exercise 13).

We proceed as follows. Assume that we want to find all number fields
of signature (r1, r2) and absolute value of discriminant less than or equal
to some bound B. Let α be the element guaranteed to exist by Hunter’s
theorem, and let

Xn − a1X
n−1 + · · ·+ (−1)nan =

n∏

j=1

(
X − α(j)

)

be its characteristic polynomial. Hunter’s theorem implies that we can take

0 ≤ a1 ≤ n/2 and
∑

1≤j≤n
∣∣α(j)

∣∣2 ≤ t2 for some bound

t2 =
a2
1

n
+ γn−1

(
B

n

)1/(n−1)

≤ n

4
+ γn−1

(
B

n

)1/(n−1)

depending only on n and B.
The coefficient ak is the kth elementary symmetric function of the α(j).

Using this inequality very crudely, we can say that
∣∣α(j)

∣∣ ≤ t
1/2
2 for all j,

hence that

|ak| ≤
(
n

k

)
t
k/2
2 .

If we use the arithmetic–geometric mean inequality on the numbers∣∣α(j)
∣∣2, we obtain

|an|2/n =
(∏∣∣α(j)

∣∣2
)1/n

≤ 1

n

∑∣∣α(j)
∣∣2 ≤ t2

n
,

so that |an| ≤ t
n/2
2 /nn/2, which is much better than the bound |an| ≤ t

n/2
2

obtained above.
It will also be extremely useful to use the power sums sk =

∑
1≤j≤n α

(j)k,
which are linked to the coefficients ak through Newton’s formulas

kak =

k∑

j=1

(−1)j−1ak−jsj ,

where we have set a0 = 1 (we will see this in more detail in Section 9.3.2
below).

The sk are integers, and s1, . . . , sk determine the aj uniquely for j ≤ k.

We will see in Lemma 9.3.6 that |sk| ≤ t
k/2
2 (the bound on

∣∣α(j)
∣∣ only gives

|sk| ≤ ntk/22 ). It follows that there are at most 2t
k/2
2 +1 possible values for sk.

In fact, Newton’s formulas imply that sk ≡
∑k−1
j=1 (−1)k−j+1ak−jsj (mod k),
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so that given s1, . . . , sk−1, the congruence class of sk modulo k is determined.

Thus, given sj for j < k, there are approximately (2/k)t
k/2
2 possible values

for sk, hence for ak. Since 0 ≤ a1 = s1 ≤ n/2 and |an| ≤ t
n/2
2 /nn/2, it

follows that the total number of polynomials to be considered will be at most
approximately equal to

2n−2

n(n−2)/2(n− 1)!
t
(n−1)(n+2)/4
2 .

Most of the inequalities above can and should be improved in the specific
cases considered. We must also use the information coming from the signature
(r1, r2) of the desired number fields. This gives precious additional inequalities
that considerably restrict the domain in which we must look for suitable
polynomials.

A remark should be made, however. Whatever clever inequalities are used
(some very specific to small degrees), as far as the author is aware, nobody
knows how to decrease the dependence on t2: the search region still stays of

the order of t
(n−1)(n+2)/4
2 or, equivalently, of the order of B(n+2)/4, which is

the reason for which it becomes prohibitively expensive even for small degrees
such as 10. Recall also that according to the Odlyzko bounds, or simply by
Minkowski’s theorem, the smallest discriminant in degree n independently of
the signature grows at least like Cn for some C; hence the search region is
always at least of the order of Cn(n+2)/4.

The above reasoning applied also to the imprimitive case gives, in fact,
an upper bound for the number of number fields of bounded discriminant.

Proposition 9.3.4. The number of nonisomorphic number fields of fixed de-
gree n and discriminant in absolute value bounded by B is at most equal to
c ·B(n+2)/4 for some constant c depending only on n.

This proposition is sharp for n = 2, but not for n = 3 since we know from
the Davenport–Heilbronn theory that the number of cubic fields is bounded
by c ·B (see Theorems 8.5.6 and 8.6.5). For n = 4, it gives the bound c ·B3/2,
which is almost certainly not sharp.

In fact, J. Martinet, the author (and certainly other people) have formu-
lated the following strong conjectures.

Conjecture 9.3.5. Let n ≥ 2 be an integer.

(1) The number of nonisomorphic number fields of degree n and absolute
value of discriminant less than or equal to B is asymptotic to cn ·B when
B →∞ for some positive constant cn depending on n.

(2) The number of nonisomorphic number fields of all possible degrees n and
absolute value of discriminant less than or equal to B is asymptotic to
c · B when B →∞ for some absolute positive constant c.
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(3) Conjecture (1) should also be true if one fixes a signature (r1, r2) such
that r1 + 2r2 = n, or more generally if one fixes a specific decomposition
type of a finite number of prime numbers.

Very little is known about these conjectures. If G is a transitive subgroup
of Sn, denote by Nn(G,X) the number of isomorphism classes of number
fields whose discriminant is in absolute value less than or equal to X and
whose Galois closure has Galois group isomorphic toG, all signatures together
(similar results exist when the signatures are also given). Then it is known
that

N2(C2, X) ∼ 6

π2
X ,

N3(C3, X) ∼ 11
√

3

36π

∏

p≡1 (mod 6)

(
1− 2

p(p+ 1)

)
X1/2 ,

N3(S3, X) ∼ 1

3ζ(3)
X ,

N4(C4, X) ∼ 3

π2

((
1 +

√
2

24

) ∏

p≡1 (mod 4)

(
1 +

2

p3/2 + p1/2

)
− 1

)
X1/2 ,

N4(C2 × C2, X) ∼ 23

960

∏

p

((
1 +

3

p

)(
1− 1

p

)3
)
X1/2 log2X ,

N4(D4, X) ∼ 3

π2

(
∑

D

2(sign(D)−1)/2

D2

L
((
D
·
)
, 1
)

L
((
D
·
)
, 2
)
)
X ,

c1X
1/2 ≤ N4(A4, X) ≤ c2X log4X ,

c3X ≤ N4(S4, X) ≤ c4X3/2 ,

for positive constants ci.
In the above, the sum in the expression for N4(D4, X) is over all funda-

mental discriminants (not including 1), and L
((
D
·
)
, s
)

is the usual Dirichlet

L-function for the quadratic character
(
D
n

)
.

The result for C2 is elementary (see, for example, [Coh0, Exercise 1 of
Chapter 5]). For C3 it follows from the explicit description of cyclic cubic
fields given, for example, in [Coh0, Theorem 6.4.6] (see Exercise 12). For
S3 it is exactly the result of Davenport and Heilbronn (Theorems 8.5.6 and
8.6.5). The results for C4, C2×C2, and A4 and the lower bound for S4 follow
from [Bai] with several errors corrected. This paper also gives the weaker
result c · X ≤ N4(D4, X) ≤ c′ · X . The stronger result given for D4 follows
from forthcoming work of the author and collaborators (see Exercise 6 for an
indication). Finally, the upper bound for S4 is a special case of Proposition
9.3.4. Note that [Bai], which uses class field theory, gives a slightly weaker
upper bound.
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Thus, in degree 4 it is known that number fields with Galois groups C2×C2

and C4 have density 0, which is probably also the case for A4, although it has
not been proved. On the other hand, assuming the above conjecture, number
fields with Galois group D4 have positive density. The great difficulty comes
from the fields with Galois group S4 for which the upper bound c4X

3/2 stated
above is certainly far from the truth. Work is in progress on this subject by
the author and collaborators, and by D. Wright and A. Yukie (see [Wri1]
and [Wri-Yuk] for advances in this direction), and it seems that a proof of
asymptotic equalities for A4 and S4 is within reach.

Resuming our discussion of the use of the geometry of numbers, the
method, when reasonably applicable, works as follows.

Using Hunter’s theorem, first look for number fields of signature (r1, r2)
and absolute discriminant bounded by B which are of the form K = Q(α)
for Hunter’s element α, by making a careful analysis of the best inequalities
that can be obtained from the a priori knowledge of the signature, of B, of
the coefficient a1, and usually also of an. This can consist of very complicated
sets of inequalities depending perhaps on auxiliary conditions, but every bit is
good to take since the time spent in analyzing these inequalities is completely
negligible compared to the time spent in looking for the polynomials. This is
a case-by-case study for each of the possible small signatures.

Second, explore as cleverly as possible the complete range of polynomi-
als whose coefficients satisfy the inequalities. For each of these polynomials,
check whether it is irreducible and if the discriminant of the corresponding
number field is less than B in absolute value (this will rarely be the case). For
each polynomial obtained in this way, apply a strong polynomial reduction
algorithm such as [Coh0, Algorithm 4.4.12]. If the polynomial thus obtained
is new, keep it. As a last step, check whether or not the number fields defined
by the polynomials obtained are isomorphic. Thanks to the strong polynomial
reduction that has been performed, this will very rarely be the case.

Finally, do the same for imprimitive fields that are not of the form K =
Q(α) by using Martinet’s Theorems 9.3.2 and 9.3.3 (this will be a much faster
search for a given absolute degree), and perform an isomorphism check with
the fields already obtained by using Hunter’s theorem.

Note that it is not necessary to check whether the fields obtained by using
Hunter’s theorem are indeed primitive. It can easily be done by computing the
Galois group, but in any case if a nonprimitive field is encountered, then either
it is rejected because the characteristic polynomial of α is not irreducible (it
will even be a power of a polynomial) or it is kept because α is a primitive
element, and then the isomorphism check done at the very end will ensure
that we do not keep it twice.

In the next three subsections, we give useful inequalities of the sort stated
above in the use of Hunter’s theorem. We give the results and proofs for
degree 4, and refer to the literature for the results in larger degree. Note that
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Lagrange multipliers (which we explain below) can be used in degree 4 but
are really useful only in degrees 5 or more.

9.3.2 General Inequalities

Let K be a number field of degree n and signature (r1, r2), let α be the
element given by Hunter’s theorem, and let

P (X) = Xn − a1X
n−1 + a2X

n−2 − · · ·+ (−1)nan

be the characteristic polynomial of α, so that ak is the kth elementary sym-
metric function of α in K. Note that since we do not necessarily assume that
K = Q(α), the polynomial is not necessarily the minimal polynomial of α,
but only a power of it in general; hence P (X) is equal to the power of a
nonlinear, irreducible polynomial (since α /∈ Z) and, in particular, an 6= 0.

We set a0 = 1, we denote for simplicity by αj the conjugates of α, ordered
in the usual way so that αj ∈ R for 1 ≤ j ≤ r1 and αj+r2 = αj for r1+1 ≤ j ≤
r1 + r2, and finally we set sk =

∑
1≤j≤n α

k
j . Recall that Newton’s formulas

give the induction

kak =

k∑

j=1

(−1)j−1ak−jsj .

Let us see what general inequalities can be obtained from Hunter’s theo-
rem without making any assumption on the signature of K.

Hunter’s theorem tells us that 0 ≤ a1 ≤ n/2 and that

T2 =
∑
|αj |2 ≤ t2 =

a2
1

n
+ γn−1

(
B

n

)1/(n−1)

.

Using the arithmetic–geometric mean inequality as above, we deduce that

|an| ≤ T n/22 /nn/2 ≤ tn/22 /nn/2.
For the other coefficients, using Newton’s formulas we see that we must

give bounds for sk. We already have s1 = a1, so 0 ≤ s1 ≤ n/2.
For s2, we can write

|s2| =
∣∣∣
∑

j

α2
j

∣∣∣ ≤
∑

j

|αj |2 ≤ t2 ,

so that −t2 ≤ s2 ≤ t2.
This can be slightly improved as follows. Write αj = xj + iyj (real and

imaginary parts). Then since a1, a2, and s2 are real, we have a1 =
∑

j xj ,

t2 =
∑

j x
2
j+
∑
j y

2
j , and s2 =

∑
j x

2
j−
∑
j y

2
j . It follows by Cauchy–Schwarz’s

inequality that

s2 + t2 = 2
∑

j

x2
j ≥

2

n

(∑

j

xj

)2

=
2

n
a2
1 ,
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so we obtain the more refined inequality (2/n)a2
1 − t2 ≤ s2 ≤ t2, which is

equivalent to the inequality

a2
1 − t2

2
≤ a2 ≤

((n− 2)/n)a2
1 + t2

2
.

For k ≥ 3, we write

|sk| =
∣∣∣
∑

j

αkj

∣∣∣ ≤
∑

j

|αj |k ,

so if we set Tk =
∑

j |αj |
k, we have −Tk ≤ sk ≤ Tk, giving the bounds

∑
1≤j≤k−1(−1)j−1ak−jsj − Tk

k
≤ ak ≤

∑
1≤j≤k−1(−1)j−1ak−jsj + Tk

k
.

We thus compute inductively bounds for a3, . . . , an−1 (note that once the ai
have been fixed for i ≤ j, the value of sj is also fixed). It remains to compute
bounds for Tk.

A simple method consists in using the following lemma.

Lemma 9.3.6. (1) If the xj for 1 ≤ j ≤ n are nonnegative real numbers
and k is a real number such that k ≥ 1, then

∑

1≤j≤n
xkj ≤

( ∑

1≤j≤n
xj

)k
.

(2) If the xj for 1 ≤ j ≤ n are nonnegative real numbers and k is a real
number such that k ≥ 2, then

∑

1≤j≤n
xkj ≤

( ∑

1≤j≤n
x2
j

)k/2
.

Proof. For (1), we could say that for all p ≥ 1, the Lp norm is less than
or equal to the L1 norm. For a simpler proof, let us show the statement by
induction on n. It is trivially true for n ≤ 1. Set

f(xn) =

( ∑

1≤j≤n
xj

)k
−
∑

1≤j≤n
xkj .

Then

f ′(xn) = k

(( ∑

1≤j≤n
xj

)k−1

− xk−1
n

)
,

and since k ≥ 1 this is nonnegative. It follows that f(xn) is a nondecreasing
function of xn, hence that f(xn) ≥ f(0) ≥ 0 by our induction hypothesis,
proving (1).
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(2) follows trivially by applying (1) to x2
j and k/2. ⊓⊔

This lemma implies the inequalities

|sk| ≤ Tk ≤ T k/22 ≤ tk/22 .

For example, with k = 3 we obtain

−a3
1 + 3a1a2 − t3/22

3
≤ a3 ≤

−a3
1 + 3a1a2 + t

3/2
2

3
.

In addition to this, there are two special cases where we can significantly
reduce the domain of exploration.

(1) If a1 = 0, changing x into −x changes the sign of all the coefficients of
degree having a different parity than n, so we may assume, for example,
that a3 ≥ 0.

(2) Slightly less trivial is that if n is even and a1 = n/2, changing x into
1− x does not change a1 and a2, and a3 is changed into

a′3 = (n− 2)a2 −
n(n− 1)(n− 2)

12
− a3 .

Therefore, we may assume that a3 is greater than or equal to, or less than
or equal to (n−2)a2/2−n(n−1)(n−2)/24, whichever is preferable. It is
not difficult to show that we should choose a3 ≥ (n−2)a2/2−n(n−1)(n−
2)/24 if a2 ≤ n(3n− 2)/24, and a3 ≤ (n − 2)a2/2 − n(n − 1)(n − 2)/24
if a2 ≥ n(3n− 2)/24, so that the difference between the upper and lower
bounds for a3 is as small as possible (see Exercise 14).

Finally, see Exercise 15 for still other inequalities.

9.3.3 The Totally Real Case

In the totally real case (r2 = 0), we have stronger results. First, note that
s2 = T2 by definition; hence in all the bounds involving T2, where in the
general case we replace T2 by an upper bound t2, here we should replace

T2 by s2. For example, we use the inequality |sk| ≤ s
k/2
2 instead of the

much weaker inequality |sk| ≤ tk/22 , where t2 is the bound given by Hunter’s
theorem.

Second, we have the following easy result.

Proposition 9.3.7. If r2 = 0, then we have the following inequalities:

(1) |an| < s
n/2
2 /nn/2;

(2) s2 ≥ n+ 1 or, equivalently, a2 ≤ (a2
1 − 1− n)/2;

(3) for k even, sk > n |an|k/n.



454 9. Number Field Table Constructions

Proof. Since T2 = s2, the above remark and the arithmetic–geometric

mean inequality used above gives the bound |an| < s
n/2
2 /nn/2, the inequal-

ity being strict since the arithmetic–geometric mean inequality becomes an
equality only if all components are equal, which is not possible in the totally
real case. Since |an| ≥ 1, this same inequality can also be used backwards to
say that s2 ≥ n+ 1 or, equivalently, that a2 ≤ (a2

1− 1−n)/2. Similarly for k
even, the arithmetic–geometric mean inequality gives the stated inequality.

⊓⊔

Remark. It follows from deeper work of C.-L. Siegel (see [Sie]) that in
fact s2 ≥ 3n/2 for n ≥ 2 or, equivalently, a2 ≤ a2

1/2− 3n/4 for n ≥ 2. Later
work by C. Smyth (see [Smy2]) has improved this result to s2 ≥ 1.7719n
with a small number of exceptions. In addition, in [Smy1] it is shown that
s2 ≥ 2n − 1 for n ≤ 7, while this is not true for n ≥ 8. It has in fact been
proved by C. Smyth (see [Smy3]) that there exists a constant c < 2 such that
s2 ≥ c · n cannot be true for sufficiently large n.

A consequence of the above results is the inequality a2 ≤ a2
1/2− n+ 1/2

valid for n ≤ 7.
In fact, it is easy to prove that s2 ≥ ((n − 1)/2) disc(P )2/(n(n−1)) (see

Exercise 18), so that s2 →∞ when |disc(P )| → ∞ for fixed degree n. Thus,
to check that s2 ≥ 2n−1 for a given small n, it is enough to look at the finite
number of totally real number fields K of degree n up to isomorphism, such
that d(K) ≤ ((4n− 2)/(n− 1))n(n−1)/2, and all the possible polynomials P .
Unfortunately, this is totally impractical for n ≥ 5 and even quite difficult for
n = 4 (see Exercise 19). A much better and more realistic method to obtain
optimal lower bounds for s2 is given in [Smy1].

Third, in the totally real case we also have slightly subtler inequalities
coming from Newton’s formulas.

Proposition 9.3.8. If r2 = 0, then for 1 ≤ k ≤ n− 1 we have the inequality

ak−1ak+1 ≤
k(n− k)

(k + 1)(n− k + 1)
a2
k .

Proof. Write as usual P (X) =
∏
j(X−xj) with the xj real by assumption,

and let x be a real number different from the xj . Then

P ′(x)
P (x)

=
∑

j

1

x− xj
;

hence
P (x)P ′′(x)− P ′(x)2

P (x)2
= −

∑

j

1

(x− xj)2
.
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By Cauchy–Schwarz’s inequality we have

(∑

j

1

x− xj

)2

≤ n
∑

j

1

(x− xj)2
;

hence
P (x)P ′′(x) − P ′(x)2

P (x)2
≤ − 1

n

(
P ′(x)

P (x)

)2

,

from which it follows that

P (x)P ′′(x) ≤ n− 1

n
P ′(x)

2
.

Now since P (X) is totally real, it follows that all the derivatives of P (X) are
also totally real (there must always be a root of P ′(X) between two roots
of P (X)), hence we may apply this result to the (n − k + 1)st derivative of
P (x). Using the formula P (n−k)(0) = (−1)n−k(n− k)!ak and simplifying, we
obtain the inequality of the proposition. ⊓⊔

See Exercise 16 for a way to obtain slightly stronger inequalities of this
type.

Finally, in the totally real case we can also obtain other useful inequalities
by using the positive definiteness of a canonical quadratic form (see Exercise
17).

9.3.4 The Use of Lagrange Multipliers

It is possible to improve the above inequalities for sk with k ≥ 3 to a consid-
erable extent by using an idea due to M. Pohst (see [Poh]). There is, however,
a price to pay, in that the computations of the bounds obtained by Pohst’s
method are not as easy as the ones above (we must usually solve several
polynomial equations). This is why we have insisted in giving many simple
tricks, although most are superseded by the inequalities obtained by Pohst’s
method. In actual practice, it is essential to use first the simple inequalities
of the preceding sections to restrict as much as possible the number of poly-
nomials to be studied before using the more sophisticated bounds obtained
in this section.

We have given bounds for a1, a2, and an, and these bounds can be con-
sidered as quite reasonable. Pohst’s idea consists of computing a bound
for sk by considering a1, s2 = a2

1 − 2a2, t2, and an as given and us-
ing the theory of Lagrange multipliers as follows. Recall that the αj are
ordered in a way compatible with the signature, so we set xj = αj for
1 ≤ j ≤ r1, xj = Re(αj) = Re(αj+r2) for r1 < j ≤ r1 + r2, and
xj = Im(αj−r2) = −Im(αj) for r1 + r2 < j ≤ r1 + 2r2 = n. Then, set-
ting x = (x1, . . . , xn), we clearly have
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g1(x) =
∑

1≤j≤r1
xj + 2

∑

r1<j≤r1+r2

xj − a1 = 0 ,

g2(x) =
∑

1≤j≤r1
x2
j + 2

∑

r1<j≤r1+r2

(x2
j − x2

j+r2)− s2 = 0 ,

g3(x) =
∏

1≤j≤r1
xj

∏

r1<j≤r1+r2

(x2
j + x2

j+r2)− an = 0 ,

g4(x) =
∑

1≤j≤r1
x2
j + 2

∑

r1<j≤r1+r2

(x2
j + x2

j+r2)− t2 ≤ 0 .

On the other hand, we want to find bounds for sk, hence for the functions

fk(x) =
∑

1≤j≤r1
xkj + 2

∑

r1<j≤r1+r2

Re
(
(xj + ixj+r2)

k
)
.

Here we assume k integral, but not necessarily positive.
Following Pohst, let G be the set of vectors x ∈ Rn satisfying gk(x) = 0

for 1 ≤ k ≤ 3 and g4(x) ≤ 0, let G3 be the set of vectors x ∈ Rn satisfying
only gk(x) = 0 for 1 ≤ k ≤ 3, and finally let G4 be the set of vectors
x ∈ Rn satisfying gk(x) = 0 for 1 ≤ k ≤ 4. We thus have G4 ⊂ G ⊂ G3.
In addition, because of the function g4, it is clear that G and G4 are closed
and bounded and hence are compact subsets of Rn. This is not true for G3 in
general, unless r2 = 0 (in other words, in the totally real case), in which case
everything simplifies anyway since the equality g2(x) = 0 implies g4(x) ≤ 0;
hence G = G3 in that case.

Since an 6= 0, we have xi 6= 0 for i ≤ r1 and (xi, xi+r2) 6= (0, 0) for
r1 < i ≤ r1 + r2. Since G is compact and fk is continuous on G (even for
k < 0 by what we have just said), it follows that fk has a global maximum
Bk and a global minimum bk on G, and hence the desired inequality for sk
will be bk ≤ sk ≤ Bk.

Let x ∈ Rn be a global extremum of fk. Then either x ∈ G4, and then x
is a local extremum of fk in G4, or x ∈ G3 but x /∈ G4 — in other words,
x ∈ G3 and g4(x) < 0, so that g4 does not enter into the local conditions for
x — hence x is a local extremum of fk in G3. To summarize, the procedure
for finding the global extrema of fk in G is as follows.

(1) Find the local extrema x of fk in G3, and keep those such that g4(x) < 0.
(2) Find the local extrema x of fk in G4.
(3) Find the global minimum and maximum of fk in G by respectively finding

the minimum and maximum values of fk among the finite number of
vectors x found in (1) and (2).

Finding local extrema is easily done in principle using Lagrange multipli-
ers. For any C1 function f from Rn to R and x ∈ Rn, define f ′(x) to be the
vector of Rn formed by all the partial derivatives of f at x; in other words,



9.3 Using the Geometry of Numbers 457

f ′(x) =

(
∂f

∂xj
(x)

)

1≤j≤n
.

The result is as follows (see any multivariable calculus textbook).

Proposition 9.3.9. Let g1, . . . , gm and f be C1 functions in Rn, let A be the
subset of Rn defined by the equations gk(x) = 0 for 1 ≤ k ≤ m, and let x be a
local extremum of the function f on A. Then the vectors f ′(x) and g′k(x) for
1 ≤ k ≤ m are linearly dependent; in other words, there exist λk ∈ R and λ0 ∈
R not all equal to zero such that if we set g(x) = λ0f(x)+

∑
1≤k≤m λkgk(x),

then
∂g

∂xj
(x) = 0 for all j with 1 ≤ j ≤ n.

Thus, we may apply this proposition to A = G3 and A = G4, but not to G
itself since there is an inequality in the definition of G, and this is the reason
for which we have had to introduce the auxiliary sets G3 and G4. Note also
that, as in the one variable case, the condition is necessary but not sufficient
for x to be an extremum (consider f(x) = x3 at x = 0).

Let us study the consequences of this proposition for our specific problem.
Since we want to obtain inequalities for sk with 3 ≤ k ≤ n− 1 (and also for
k = −1), we may assume that n ≥ 4.

Consider first the extrema of fk in G3. Let J(x) be the Jacobian matrix
of the gk at x for 1 ≤ k ≤ 3; in other words, the n × 3 matrix J(x) =
(Jj,k(x))1≤j≤n, 1≤k≤3 with

Jj,k(x) =
∂gk
∂xj

(x) .

If x is a local extremum of fk, then the above proposition says that if M(x)
is the n × 4 matrix obtained by concatenating J(x) with f ′

k(x), then M(x)
must have rank at most 3, that is, all the 4 × 4 subdeterminants of M(x)
are equal to 0. This gives one or several equations for the xj , which one then
solves numerically. Note that the condition that M(x) has rank at most equal
to 3 is necessary for x to be a local extremum, but it is not sufficient since
the matrix J(x) may have rank at most equal to 2. This is of no importance,
however, since it will only add an unnecessary finite number of points at
which to compute the value of fk.

Finding the extrema of fk in G4 is similar. The matrix M(x) is now an
n × 5 matrix that must have rank at most 4. If n ≥ 5, this leads to one or
several equations for the xj , which one solves numerically. For n = 4, however,
the situation is different since for r2 > 0, G4 is reduced to a finite number of
points, so we simply evaluate fk on these points to find the extrema in this
case (we give the explicit results below).

We may also use Pohst’s method in a weaker form, which already gives
good results as follows.
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Proposition 9.3.10. Let t2 as above be any upper bound for T2 (in particu-

lar, we may take t2 = s2 in the totally real case), and let r = t2/ |an|2/n ≥ n
by the arithmetic–geometric mean inequality.

(1) For 1 ≤ m ≤ n− 1, the equation

mXm−n + (n−m)Xm = r

has either one or two positive roots. Call zm the smallest such root.
(2) For any k ∈ Z, set

tk = |an|k/n max
1≤m≤n−1

(
mzk(m−n)/2

m + (n−m)zkm/2m

)
.

Then we have the inequality |sk| ≤ Tk ≤ tk.

Proof. Let xj = |αj |, so that |sk| ≤ Tk =
∑

j x
k
j . In Proposition 9.3.9,

we take f(x) =
∑

j x
k
j , g1(x) =

∑
j x

2
j − T2, and g2(x) =

∏
j xj − |an|,

restricted to xj ≥ 0 for all j. First note that the xj cannot all be equal.
Indeed, the arithmetic–geometric mean inequality applied to the xkj shows

that f(x) ≥ n
(∏

j xj
)k/n

= n |an|k/n with equality if and only if all the xj
are equal, hence equality of the xj corresponds to a minimum of f(x) and so
can be excluded.

Note further that the set A defined by g1(x) = g2(x) = 0 and xj ≥ 0 is
compact. It follows from Proposition 9.3.9 that if x is a local maximum of f
in A, then either all the xj are equal, which as we have seen is excluded, or
there exist real numbers λ and µ such that xk−1

j = λxj + µ/xj for all j or,

equivalently, R(xj) = 0 with R(X) = Xk−λX2−µ for k ≥ 0, or R(1/xj) = 0
with R(X) = X2−k−µX2−λ for k < 0. Assume k ≥ 0, the case k < 0 being
similar. Then all the xj are positive real roots of R(X) = 0. By Exercise 20,
we know that R(X) has at most two such roots. On the other hand, R(X) = 0
has at least one such root. Indeed, f has at least one extremum x in A, and
for such an extremum we have xj 6= 0 for all j, hence x is in the interior
of A, and in particular is a local extremum, whose components must satisfy
R(X) = 0.

It follows that the xj can take at most two distinct values, hence exactly
two since the xj are not all equal. So assume x1 = x2 = · · · = xm = x and
xm+1 = · · · = xn = y, where we may assume that 1 ≤ m ≤ n/2. Thus,
0 = g1(x) = mx2 + (n−m)y2 − T2 and 0 = g2(x) = xmyn−m − |an|.

Set
Rm,k(X) = mXk(m−n)/2 + (n−m)Xkm/2 .

Since m ≥ 1, we can solve for y and deduce that Rm,2(z) − T2/ |an|2/n = 0,

with z = y |an|−1/n
.
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We have the following lemma.

Lemma 9.3.11. Let Rm,k(x) be the above function with 1 ≤ m ≤ n− 1.

(1) For x > 0, the function Rm,k(x) has a unique minimum at 1, it decreases
for x < 1, and it increases for x > 1.

(2) For any t2 ≥ T2, the function Rm,2(x)− t2/ |an|2/n has exactly two (pos-
sibly equal) roots zm and z′m, which satisfy zm ≤ 1 ≤ z′m.

(3) We have z′m = 1/zn−m and Rm,k(z
′
m) = Rn−m,k(zn−m).

(4) The root zm = zm(t2) is a decreasing function of t2, and Rm,k(zm) is an
increasing function of t2.

Assuming this lemma for the moment, we see from Proposition 9.3.9 that

Tk = f(x) ≤ |an|k/2 max
1≤m≤n/2

(max(Rm,k(zm(T2)), Rm,k(z
′
m(T2))))

= |an|k/2 max
1≤m≤n−1

Rm,k(zm(T2)) ≤ |an|k/2 max
1≤m≤n−1

Rm,k(zm(t2)) ,

using the symmetry relation and the fact that Rm,k(zm(t2)) is a nondecreas-
ing function of t2, proving the proposition.

The proof of the lemma is straightforward. We have

R′
m,k(x) =

km(n−m)

2

(
xkm/2−1 − xk(m−n)/2−1

)
,

so R′
m,k(x) = 0 if and only if x = 1, and it is negative for x < 1 and positive

for x > 1, proving (1).

Since r = t2/ |an|2/n ≥ n by the inequality for |an|, it follows that the
minimum of Rm,2(x) − r for x > 0, attained at x = 1, is equal to n− r ≤ 0,
hence there exist exactly two (possibly equal) roots zm and z′m of Rm,2(x)−
r = 0 such that zm ≤ 1 ≤ z′m, proving (2).

For (3), we immediately check the symmetry relation Rn−m,k(x) =
Rm,k(1/x) (which must exist since we may changem into n−m if we exchange
x and y).

As the roots of Rn−m(x) are zn−m and z′n−m and the function 1/x is de-
creasing, it follows that we have zn−m = 1/z′m. Using the symmetry relation
we get Rm,k(z

′
m) = Rn−m,k(zn−m), proving (3).

For (4) we use the implicit function theorem, which tells us that

dzm(t2)

dt2
=

1

R′
m,2(zm(t2))

.

Now R′
m,2(x) = m(n − m)xm−1(1 − x−n), and since zm(t2) ≤ 1, we have

R′
m,2(zm(t2)) < 0, so dzm(t2)/dt2 < 0, hence zm(t2) is a decreasing function

of t2.
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Finally, since Rm,k(x) is a decreasing function of x for x < 1, it follows
that Rm,k(zm(t2)) is an increasing function of t2, finishing the proof of the
lemma and of the proposition. ⊓⊔

Remarks

(1) This proposition has the advantage of being simpler than the general
method of Lagrange multipliers. The results obtained in this way are
weaker, since we have omitted the condition

∑
j xj = a1, but they are

not that much weaker in general (see, for example, Exercise 21).
(2) The equation of the proposition can also be written as the polynomial

equation (n−m)Xn − rXn−m +m = 0.
(3) See Exercise 22 for an efficient practical method to compute zm.

9.4 Construction of Tables of Quartic Fields

In the next subsections, we first consider quartic fields K for which the ele-
ment α given by Hunter’s theorem is such that K = Q(α), which includes in
particular all primitive quartic fields, but not only those. Note that a quartic
number field K is primitive if and only if the Galois group of its Galois clo-
sure is isomorphic to A4 or to S4, the cases being distinguished by whether
or not the discriminant is a square (see Exercise 23).

We will consider the imprimitive case in Section 9.4.5.

9.4.1 Easy Inequalities for All Signatures

Let P (X) = X4− a1X
3 + a2X

2− a3X + a4 be the characteristic polynomial
of the element α given by Hunter’s theorem. Since γ3 = 21/3, we have

∑∣∣α(j)
∣∣2 ≤ t2 =

a2
1

4
+

(
B

2

)1/3

.

Hence the general inequalities in the quartic case are

0 ≤ a1 ≤ 2 ,

a2
1 − t2

2
≤ a2 ≤

a2
1/2 + t2

2
,

−a3
1 + 3a1a2 − t3/22

3
≤ a3 ≤

−a3
1 + 3a1a2 + t

3/2
2

3
,

− t
2
2

16
≤ a4 ≤

t22
16

.

In addition, if a1 = 0, we may assume a3 ≥ 0; hence in that case we have the

simple inequality 0 ≤ a3 ≤ t3/22 /3.
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Furthermore, if a1 = 2, then if a2 ≤ 1 we may assume a3 ≥ a2 − 1, while
if a2 ≥ 2 we may assume a3 ≤ a2 − 1.

Remark. If we take into account only the above inequalities, we find that
the number of polynomials to consider is asymptotic to (B/2)3/2/6 when
B → ∞. In each specific signature, however, this bound is improved by at
least a factor of 2 (see Exercise 24).

In the quartic case, we also have inequalities coming from the cubic re-
solvent polynomial (see [Coh0, Exercise 1 of Chapter 4], where the result is
stated incorrectly; see the errata sheets). The (corrected) result is the follow-
ing.

Proposition 9.4.1. Let P (X) = X4−a1X
3+a2X

2−a3X+a4 be a squarefree
monic polynomial with real coefficients. Set A(P ) = 3a2

1 − 8a2 and

B(P ) = a2
2 − a2

1a2 +
3

16
a4
1 + a1a3 − 4a4 .

(1) P has signature (0, 2) if and only if disc(P ) > 0 and A(P ) ≤ 0 or B(P ) ≤
0.

(2) P has signature (2, 1) if and only if disc(P ) < 0.
(3) P has signature (4, 0) if and only if disc(P ) > 0, A(P ) > 0, and B(P ) >

0.

We can thus use three different tools: first, the general inequalities stated
above; second, the inequalities specific to a given signature coming from the
above proposition; third, the inequalities (also specific to a given signature)
coming from Pohst’s idea of using Lagrange multipliers. It should be noted
that solving the equations involved in the Lagrange multiplier method is
relatively costly, although much less than the gain obtained on the bounds
for sk. This shows, however, that these refined inequalities should be used
only for large searches. In particular, in degree 4 they become really useful
only if the search bound B is over 106 or so. On the other hand, for larger
degrees, they become useful (and even essential) much more rapidly.

Note that in Pohst’s method we have mentioned the possibility of finding
extrema of s−1 = an−1/an. This is indeed useful in larger degrees, but it
does not bring any improvement in the quartic case since s−1 is in that case
a function of a1, a2, s3, and a4.

We now consider the different signatures separately.

9.4.2 Signature (0, 2): The Totally Complex Case

If K has signature (0, 2) — in other words, if K is totally complex — then
a4 = α1α1α2α2 > 0, so a4 ≥ 1. In addition, thanks to Proposition 9.4.1,
we can say that disc(P ) > 0 and that either a2 ≥ a1 (since a2 ≥ 3a2

1/8 is
equivalent to a2 ≥ a1 for 0 ≤ a1 ≤ 2) or that B(P ) ≤ 0.
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Pohst’s method gives the following result for bounding s3.

Proposition 9.4.2. Assume that P (X) has signature (0, 2), keep the nota-
tion of Section 9.3.4, and let x = (x1, x2, x3, x4) be a local extremum on G3

or G4 of the function

s3(x) = 2(x3
1 + x3

2)− 6(x1x
2
3 + x2x

2
4) .

(1) If x ∈ G3 rG4, then either x1 = x2, x3 = 0, or x4 = 0.
a) The case x1 = x2 is possible only if the relation a2

1(8a2−3a2
1) = 64a4

holds, in which case we have either a1 = 1 and a2 ≥ 9 or a1 = 2 and
a2 ≥ 4, and s3(x) = 5a3

1/8− 3a1a2/2.
b) If x3 = 0, then x2

4 =
(
−s2 + (s22 + 16a4)

1/2
)
/2, x1 and x2 are the

two real roots of the equation

8X2 − 4a1X + 2a2 − (s22 + 16a4)
1/2 = 0 ,

and s3(x) = 2(x3
1 + x3

2)− 6x2x
2
4.

c) The case x4 = 0 is identical to the case x3 = 0 with the indices 1 and
2 exchanged and 3 and 4 exchanged. In particular, for x ∈ G3 rG4

only two values of s3(x) have to be computed in addition to the given
value in a).

(2) If x ∈ G4, then for some choice of signs ε1 and ε2, if we set d1 =
a2
1 + 2t2 − 4a2 and d2 = t22 − 16a4 (which are both nonnegative), then
x1 = (a1 + ε1

√
d1)/4, x2 = (a1 − ε1

√
d1)/4,

x2
3 =

t2 − s2 + 2ε2
√
d2 − ε1a1

√
d1

8
,

x2
4 =

t2 − s2 − 2ε2
√
d2 + ε1a1

√
d1

8
,

and the two extremal values of s3(x) on G4 are

s3(x) =
a1(3t2 + 4a2

1 − 12a2) + 3ε
√
d1d2

4

with ε = −ε1ε2 = ±1.

Proof. With the notation of Section 9.3.4, we have g1(x) = 2(x1+x2)−a1,
g2(x) = 2(x2

1 + x2
2 − x2

3 − x2
4)− s2, g3(x) = (x2

1 + x2
2)(x

2
3 + x2

4)− a4, g4(x) =
2(x2

1 + x2
2 + x2

3 + x2
4)− t2, and s3(x) = 2(x3

1 + x3
2)− 6(x1x

2
3 + x2x

2
4).

For (1), assume that x ∈ G3 rG4 is a local extremum of s3(x). Then by
Proposition 9.3.9, the 4 × 4 matrix whose columns are g′1(x), g′2(x), g′3(x),
and s′3(x) must have rank at most equal to 3; in other words, its determinant
D must be equal to 0. A computation shows that

D = −192x3x4(x1 − x2)
2(x2

1 + x2
2 + x2

3 + x2
4) .
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Thus D = 0 if and only if x1 = x2 or x3 = 0 or x4 = 0.
Assume first that x1 = x2. Replacing this in the equations for G3 and in

s3(x), a computation shows that we obtain the relation a2
1(8a2−3a2

1) = 64a4,
and s3(x) = 5a3

1/8−3a1a2/2, proving a). In the other two cases we can solve
for x1, x2, x3, and x4, replace in s3(x) and obtain the desired result.

For (2), assume that x ∈ G4 (we do not even need to assume that it
is a local extremum of s3(x)). This gives a system of four equations in four
unknowns, which we can easily solve and once again obtain the desired result.

⊓⊔

9.4.3 Signature (2, 1): The Mixed Case

If K has signature (2, 1), Proposition 9.4.1 gives the additional inequality
disc(P ) < 0, but no other. In particular, note that there is a misprint in
[Bu-Fo-Po] (a4 = n ≥ 0 with their notation is incorrect), as can be seen, for
example, from the field defined by the polynomial X4 −X3 −X2 + 4X − 1
(see Exercise 25). The table given in the paper is correct, however.

Pohst’s method gives the following result for bounding s3.

Proposition 9.4.3. Assume that P (X) has signature (2, 1), keep the nota-
tion of Section 9.3.4, set

Q(X) = 3X4 − 2a1X
3 + a2X

2 − a4 = XP ′(X)− P (X) ,

S(X) = 12X3 − 9a1X
2 + 6a2X + a3

1 − 3a1a2 ,

and let x = (x1, x2, x3, x4) be a local extremum on G3 or G4 of the function

s3(x) = x3
1 + x3

2 + 2x3
3 − 6x3x

2
4 .

(1) If x ∈ G3 rG4, then either x1 = x2 or x4 = 0.
a) If x1 = x2, then x1 is a real root of Q(X) = 0, x3 = a1/2− x1, x4 =

(x2
1 + x2

3 − s2/2)1/2, and s3(x) = S(x1). In addition, the condition
g4(x) < 0 is equivalent to 4x2

1 − 2a1x1 + a2 = x2
1 + a4/x

2
1 < t2/2.

b) If x4 = 0, then x3 is a real root of Q(X) = 0, x1 and x2 are the two
real roots of

X2 − (a1 − 2x3)X + 3x2
3 − 2a1x3 + a2 = 0 ,

and we have s3(x) = S(x3) and g4(x) = s2 < t2.
c) In both cases s3(x) is the value of the polynomial S(X) at a real root

of Q(X) = 0.
(2) If x ∈ G4, then x3 must be a real root of

48X4 − 32a1X
3 + 8(t2 − 2s2 + a2

1)X
2

− 8a1(t2 − s2)X − (t2 − s2)(t2 + s2 − 2a2
1)− 16a4 = 0 ,
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x4 = (t2 − s2)1/2/2, x1 and x2 are the two real roots of

4X2 − 4(a1 − 2x3)X + 12x2
3 − 8a1x3 + 2a2

1 − t2 − s2 = 0 ,

and s3(x) = S(x3)− 3(t2 − s2)(x3 − a1/4).

Proof. With the notation of Section 9.3.4, we have g1(x) = x1 + x2 +
2x3 − a1, g2(x) = x2

1 + x2
2 + 2x2

3 − 2x2
4 − s2, g3(x) = x1x2(x

2
3 + x2

4) − a4,
g4(x) = x2

1 + x2
2 + 2x2

3 + 2x2
4 − t2, and s3(x) = x3

1 + x3
2 + 2x3

3 − 6x3x
2
4.

For (1), assume that x ∈ G3 rG4 is a local extremum of s3(x). Then by
Proposition 9.3.9, the 4 × 4 matrix whose columns are g′1(x), g′2(x), g′3(x),
and s′3(x) must have rank at most equal to 3; in other words, its determinant
D must be equal to 0. A computation (using the fact that g3(x) = 0) shows
that

D = 24x4(x1 − x2)((x1 − x3)
2 + x2

4)((x2 − x3)
2 + x2

4) .

Thus D = 0 if and only if x1 = x2 or x4 = 0 (note that if one of the last two
factors is equal to 0, we also have x4 = 0), and in both cases we can solve
for x1, x2, x3, and x4, replace the resulting values in s3(x), and obtain the
desired result.

For (2), assume that x ∈ G4 (once again we do not even need to assume
that it is a local extremum of s3(x)). This gives a system of four equations in
four unknowns, which we can easily solve and once again obtain the desired
result. ⊓⊔

The above proposition shows that to compute the extrema of s3 it is
sufficient to compute its value on at most eight points.

9.4.4 Signature (4, 0): The Totally Real Case

If K has signature (4, 0), in other words if K is totally real, then thanks to
Proposition 9.4.1, we can say that a2 ≤ a1−1 (since a2 < 3a2

1/8 is equivalent
to a2 ≤ a1 − 1); hence the inequality for a2 is improved to

a2
1 − t2

2
≤ a2 ≤ a1 − 1 .

In addition, we can also say that disc(P ) > 0 and B(P ) > 0.
In this case we can also apply Proposition 9.3.7, which gives the stronger

inequalities a2 ≤ (a2
1 − 5)/2, equivalent to a2 ≤ a1 − 3 for 0 ≤ a1 ≤ 2,

|a4| < (a2
1 − 2a2)

2/16 (which is usually considerably better than |a4| ≤
t22/16). Proposition 9.3.8 gives a2

3 ≥ (8/3)a2a4 and a1a3 ≤ (4/9)a2
2, and

using Exercise 16, this can be improved to a2
3 ≥ (8/3)a2a4 + 4 |a4| and

a1a3 ≤ (4/9)a2
2−(a2

3/6)1/3, which further restrict the range of possible values
of a3, given a1, a2, and a4.

If we apply Smyth’s result s2 ≥ 2n − 1 for n ≤ 7 mentioned above, we
obtain the improvement a2 ≤ a1 − 4.
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Pohst’s method gives the following result for bounding s3. Recall that
in the totally real case we have G = G3 and G4 = G3 if t2 = s2, G4 = ∅
otherwise, so we want to study extrema on G3.

Proposition 9.4.4. Assume that P (X) has signature (4, 0), keep the nota-
tion of Section 9.3.4, set

Q(X) = 3X4 − 2a1X
3 + a2X

2 − a4 = XP ′(X)− P (X) ,

S(X) = 12X3 − 9a1X
2 + 6a2X + a3

1 − 3a1a2 ,

and let x = (x1, x2, x3, x4) be a local extremum on G3 of the function

s3(x) = x3
1 + x3

2 + x3
3 + x3

4 .

Then at least two of the xi are equal. If, for example, x3 = x4, then x3 = x4

is a real root of S(X) = 0, x1 and x2 are the two real roots of

X2 − (a1 − 2x3)X + 3x2
3 − 2a1x3 + a2 = 0 ,

and s3(x) = S(x3).

Proof. This signature is much simpler than the other two. Indeed, we
have g1(x) = x1 + x2 + x3 + x4 − a1, g2(x) = x2

1 + x2
2 + x2

3 + x2
4 − s2,

g3(x) = x1x2x3x4 − a4, and s3(x) = x3
1 + x3

2 + x3
3 + x3

4. If follows that the
4 × 4 matrix that we must consider according to Proposition 9.3.9 is, up to
trivial factors, a Vandermonde matrix in the xi, so its determinant vanishes
if and only if two of the xi are equal. Replacing and solving for the xi and
s3(x) gives the proposition. ⊓⊔

9.4.5 Imprimitive Degree 4 Fields

These are quartic fields L whose Galois group is isomorphic to C2 × C2,
C4, or D4. If K denotes one of the quadratic subfields of L (there is only
one in the case C4 and D4), then L/K is a quadratic extension, and we
know how to construct all such extensions (see Algorithms 9.2.3 and 9.2.4).

Furthermore, Theorem 2.5.1 tells us that |d(K)| ≤ |d(L)|1/[L:K]
so in our

case that |d(K)| ≤ |d(L)|1/2. Finally, if L is of signature (R1, R2) and K
of signature (r1, r2), we must have r2 ≤ ⌊R2/2⌋. The procedure is thus as
follows.

(1) To obtain imprimitive quartic fields of signature (0, 2) and discriminant
less than or equal to B, we first make the list of all real and imaginary
quadratic fields K of discriminant in absolute value less than or equal to
B1/2. For each such field, we use Algorithm 9.2.3 with (R1, R2) = (0, 2) to
compute all quadratic extensions whose relative discriminant is in norm
less than or equal to B/d(K)2. Finally, we remove isomorphic fields,
which may only occur when the Galois group is isomorphic to C2 × C2.
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(2) To obtain imprimitive quartic fields of signature (2, 1), which are nec-
essarily with Galois group isomorphic to D4 (see Exercise 26), we first
make a list of all real quadratic fields of discriminant less than or equal
to B1/2 and then proceed as above, asking for (R1, R2) = (2, 1).

(3) Finally, to obtain imprimitive quartic fields of signature (4, 0), we first
make a list of all real quadratic fields of discriminant less than or equal
to B1/2 and then proceed as above, asking for (R1, R2) = (4, 0).

The above procedure assumes that we want to make a table of imprim-
itive quartic fields for their own sake. However, frequently the search for
imprimitive fields is done after a search using Hunter’s theorem, in which all
primitive and some imprimitive fields are discovered. In that case, the dis-

criminant bound |d(K)| ≤ |d(L)|1/2 can be considerably improved as follows.
Let α be the element given by Hunter’s theorem, assumed not to gen-

erate K over Q. Since α ∈ ZK r Z, α is an algebraic integer belonging to
a quadratic number subfield k of K. If we denote the conjugate of α in k
by β, it follows that (α − β)2/d(k) is a perfect integer square. On the other
hand, the conjugates of α in K are α, α, β, and β, hence a1/2 = α + β and
s2/2 = α2 + β2, from which it follows that

(α − β)2 = −(α+ β)2 + 2(α2 + β2) = s2 −
a2
1

4
.

The inequality
∣∣s2 − a2

1/4
∣∣ ≤ t2−a2

1/4, which we have proved in Section 9.3.2,
thus shows that |d(k)| ≤ t2−a2

1/4. In particular, using Hunter’s bound on T2,
we obtain the upper bound |d(k)| ≤ (B/2)1/3 which is much stronger than
the trivial upper bound |d(k)| ≤ B1/2.

Note that this is exactly what Martinet’s Theorem 9.3.3 tells us, but we
have given the easy proof in our case.

9.5 Miscellaneous Methods (in Brief)

There are a number of other nonsystematic methods for constructing num-
ber fields with small discriminant. As is the case with the class field theory
methods (in which case the lists are not systematic unless the Galois group is
also specified), these methods cannot find a systematic list of number fields
with discriminant up to a given bound, but can try only to find examples of
number fields with small discriminant.

The author knows of the following methods, in addition to the ones de-
scribed in the rest of this chapter:

(1) the search for Euclidean number fields of reasonable degree (less than
12, say) using the notion of cliques of exceptional units invented by
H. W. Lenstra. We refer to [Leu] and [Leu-Nik] for details on the most
recent results on this subject;
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(2) elementary searches for polynomials of small discriminant using various
techniques. This is, for example, the subject of recent work by D. Simon
(see [Sim2], [Sim3]);

(3) the search for number fields having prescribed ramification at small
primes.

I will briefly describe the first two methods. For the third method, I refer
to the survey paper [Har] and to the web page of J. Jones mentioned in
Appendix B.

9.5.1 Euclidean Number Fields

Let K be a number field. Recall that a unit ε ∈ U(K) is said to be exceptional
if 1 − ε is also a unit, and a family ε1, . . . , εk of units is called a clique of
exceptional units if ε1 = 1 and εi − εj is a unit for all i 6= j. It can be
shown that the number of exceptional units is finite, but more importantly
for our purposes, conjecturally a field with many exceptional units relative
to its degree should have a small discriminant. In addition, if there exists
a sufficiently large clique, then K can be shown to be Euclidean for the
field norm (see the above-mentioned papers of Leutbecher et al. for precise
statements and details).

First H. W. Lenstra and then others such as A. Leutbecher have developed
powerful methods for constructing number fields having many exceptional
units, in order to construct Euclidean fields. In the process, most of the
number fields that they find have a small discriminant, even those which
may not be Euclidean.

The method is limited to small degrees, say less than or equal to 16,
but is very useful. For example, [Leu-Nik] have found in this way the totally
complex number field of degree 10 of smallest known discriminant (it was
also found later using the class field method).

A final remark about Euclidean number fields. Proving that a field is Eu-
clidean or not (for the ordinary field norm) is usually not easy, and more and
more extensive tables of known Euclidean fields have been made (see [Cav-
Lem], [Lem], [Que]). The subject has now lost most of its appeal because,
contrary to what many people thought until rather recently, it is highly prob-
able that almost all number fields having a unit rank at least equal to 3 (and
perhaps even 2) are norm-Euclidean, and in particular have class number
1. This conjecture was first formulated by H. W. Lenstra, and seems very
plausible.

9.5.2 Small Polynomial Discriminants

Other methods for finding number fields of small discriminant are based on
the search for small polynomial discriminants. Some of these methods are
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closely related to the methods used to construct exceptional units, and most
are due to D. Simon (see [Sim2], [Sim3]).

A priori, it seems a bad idea to look for polynomials with small discrim-
inant, since in general the discriminant of the corresponding number field is
much smaller. For example, the number fields with smallest known discrimi-
nants such as those given in Appendix C usually have a defining polynomial
whose discriminant is much larger than the corresponding field discriminant
(see Exercise 28).

In fact, J.-P. Serre has raised the following interesting question. One
knows that there exist families of number fields of arbitrary large degree with
bounded root discriminant: this is an immediate consequence of the existence
of infinite class field towers due to Golod–Shafarevitch already mentioned in
Section 3.1.

Is the same true for polynomials (say irreducible and monic)? In other
words, does there exist a family of polynomials Pn with dn = deg(Pn)→∞
and |disc(Pn)|1/dn ≤ B for some constant B?

It is difficult to determine whether this question should have a positive or
negative answer (this is the reason for which Serre calls it a “question” and
not a conjecture).

In any case, the big advantage of looking at small polynomial discrimi-
nants is that we have much better control on them than on field discriminants,
and indeed the work of Simon has produced a large number of improvements
on the smallest known number field discriminants. I refer to his paper and
his thesis for details.

9.6 Exercises for Chapter 9

1. Assume that the relative degree [L : K] is odd. Improve the bound given by
Lemma 9.2.1.

2. Give an example of a number field K and two relative extensions L1/K and
L2/K that are not K-isomorphic but that are Q-isomorphic.

3. Prove that Algorithm 9.2.3 is valid.

4. Let ℓ be an odd prime and let K be a number field such that ζℓ ∈ K.

a) Let a be an integral ideal of K. Show that a can be written in a unique way
as a =

Q

1≤i≤ℓ ai
i with ai squarefree and pairwise coprime for 1 ≤ i ≤ ℓ−1.

b) Let α and α′ in K∗, and set αZK = a and α′ZK = a′. Write the ℓ-Kummer-
equivalence relation (see Definition 10.2.8) in terms of the ideals ai and a′

i

defined in (1) and an equivalence relation on ℓ-virtual units.
c) Deduce from this a modification of Algorithm 9.2.3 which computes the

list of cyclic extensions of relative degree ℓ of K assuming that ζℓ ∈ K.

5. Let K be a number field of signature (r1, r2), and denote by rk2(G) the 2-rank
of a finite Abelian group G. Show that the number N2r1 ,2r2(B) of quadratic ex-
tensions L/K up to isomorphism with N (d(L/K)) ≤ B and signature (2r1, 2r2)
is given by
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X

N (a)≤B

µ(a)S

„

B

N (a)

«

with S(x) =
X

N(m)≤x

“

2rk2(Clm(K)) − 1
”

,

where µ is the usual Möbius function on ideals already used in Section 3.5.2
and Clm(K) is the ray class group of K corresponding to the modulus m. Give
an analogous formula for an arbitrary signature (R1, R2) such that R1 +2R2 =
2(r1 + 2r2) and R1 ≤ 2r1.

6. The following exercise summarizes some results contained in forthcoming work
of the author and collaborators. Let K be a number field of signature (r1, r2).
Denote by κ the residue of ζK(s) at s = 1, so that

κ =
2r1(2π)r2h(K)R(K)

w(K)
p

|d(K)|

with usual notation.

a) Using Lemma 9.2.2 and Hecke’s Theorem 10.2.9, show that when x → ∞
the number of K-isomorphism classes of quadratic extensions L/K with
NK/Q(d(L/K)) ≤ x is asymptotic to QK · x with

QK =
κ

2r2ζK(2)
.

(This question is difficult and uses results from the analytic theory of
number fields.)

b) Let R1 denote an even integer such that 0 ≤ R1 ≤ 2r1. Show that
the number of K-isomorphism classes of quadratic extensions L/K with
NK/Q(d(L/K)) ≤ x and R1 real embeddings is asymptotic to

`

r1
R1/2

´

2r1
QK · x ,

where QK is as above.
c) Assuming a reasonable regularity hypothesis, deduce from this that the

number of quartic fields L/Q up to isomorphism with Galois group iso-
morphic to D4 and absolute discriminant bounded by x is asymptotic to
C · x for some explicit constant C (it is possible to remove the regularity
hypothesis).

d) Express C as an explicit infinite sum if we restrict to totally complex
quartic fields with Galois group isomorphic to D4 and which contain an
imaginary quadratic subfield.

7. Let K be a number field, ζ = ζ3 a primitive cube root of unity, Kz = K(ζ), and
τ the generator of Gal(Kz/K), and assume that ζ /∈ K (otherwise, see Exercise
4). Let V3(Kz) be the group of 3-virtual units of Kz (see Section 5.3.4), and set
Kz,τ = {γ ∈ K∗

z/ γ
2τ (γ) ∈ K3

z} and Vz,τ = {γ ∈ K∗
z/ γ

2τ (γ) ∈ V3(Kz)}.
a) Show that β2τ (β) is 3-Kummer-equivalent to β′2τ (β′) (see Definition

10.2.8) if and only if β/β′ ∈ Kz,τ or ββ′ ∈ Kz,τ .
b) Let β ∈ K∗

z . Show that there exist unique ideals a = a(β) and c = c(β) of
Kz such that

βZKz = a
c2

τ (c)

with a a primitive squarefree integral ideal not divisible by inert or ramified
primes of Kz/K.
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c) Show that a(1/β) = τ (a(β)) and c(1/β) = (c(β)a(β)τ (a(β)))−1.
d) Show that the map β 7→ a(β) induces a bijection from K∗

z/Vz,τ to the set
Iτ of integral ideals a that are primitive, squarefree, not divisible by inert
or ramified primes, and such that there exists an ideal c with ac2/τ (c) a
principal ideal.

e) Let S3(Kz) = V3(Kz)/K
∗
z
3 be the 3-Selmer group of Kz (see Definition

5.2.4) considered as an F3-vector space, and denote by S3(Kz)[τ − 2] the
kernel of the map x 7→ τ (x)/x2 from S3(Kz) to itself. Show that the map
γ 7→ γ2τ (γ) induces a bijection from Vz,τ/Kz,τ to S3(Kz)[τ − 2].

f) Prove an analog of Lemma 9.2.2 for this case, and deduce from this and
the example ℓ = 3 of Proposition 5.3.9 an analog of Algorithm 9.2.3 for
computing the list of relative cyclic cubic extensions of K.

8. Write the simple modification of Algorithm 2.3.25 required in step 1 of Algorithm
9.2.7 giving the list of ideals a of K of norm less than or equal to B, such that
if p | a, then vp(a) = 1 if p ∤ ℓ, while 1 ≤ vp(a) ≤ ⌊ℓe(p/ℓ)/(ℓ− 1)⌋ + 1 if p | ℓ.

9. In the situation of steps 9 and 10 of Algorithm 9.2.7, assuming that ζ3 /∈ K2,
give an algorithm that directly computes a defining polynomial for L/K from
a defining polynomial for N(ζ3)/K2(ζ3), without explicitly using a defining
polynomial for N/K2.

10. Write an algorithm analogous to Algorithm 9.2.7 for computing noncyclic cubic
extensions of K which uses Exercise 7 instead of class field theory for the con-
struction of the extension L2/K2 (with the notation of that exercise, show that
it suffices to keep the ideals a of Iτ such that aτ (a) comes from an ideal of K).

11. Let K be a number field of degree 6, and let α ∈ ZK r Z satisfy the conditions
of Hunter’s theorem.

a) Assume that k = Q(α) is a quadratic subfield of K. Show directly that

|d(K)| ≤ 2

3

„

4 |d(L)|
3

«1/5

,

which is much better than the trivial bound |d(K)| ≤ |d(L)|1/3.
b) Assume that k = Q(α) is a cubic subfield of K. Show directly that

|d(K)| ≤ 13

16

„

4 |d(L)|
3

«3/5

.

(Martinet’s Theorem 9.3.3 shows that the constant 13/16 can be improved
to 1/8.) What is the upper bound on |d(L)| for which this is better than

the bound |d(K)| ≤ |d(L)|1/2? What if the constant 13/16 is replaced by
1/8?.

12. Knowing that for each integer e of the form p1 . . . pt or 9p1 . . . pt−1 with the pi

distinct prime numbers congruent to 1 modulo 6 there exist up to isomorphism
2t−1 cyclic cubic fields of discriminant e2 (see [Coh0, Theorem 6.4.6]), prove
the formula for N3(C3,X) given in the text.

13. Give an example of a quartic field K and a quadratic subfield k of K such that
the inequality of Theorem 9.3.3 is not satisfied.

14. With the notation of Section 9.3.2, set A± = a2 − n(3n − 2)/24 ± t
3/2
2 /3,

X = a3 − (n− 2)a2/2 + n(n− 1)(n− 2)/24, and assume that a1 = n/2.

a) Using the bounds for a2, show that we always have A+ ≥ 0.
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b) Show thatA+−max(A, 0) ≤ min(A+, 0)−A = −A if and only if A++A− ≤
0.

c) Show that A− ≤ X ≤ A+.
d) Deduce from this that, as stated in the text, when a1 = n/2 we should

choose X ≥ 0 if a2 ≤ n(3n− 2)/24, and X ≤ 0 if a2 ≥ n(3n− 2)/24.

15. As usual, let P (x) = xn−a1x
n−1 + · · ·+(−1)nan, let αi be the complex roots of

P , and let T2 =
P

i |αi|2. Generalizing the inequality |an| ≤ (T2/n)n/2 proved
in the text, show that for any real number k we have

P (k) ≤
„

T2 − 2ka1 + k2n

n

«n/2

.

16.

a) Let (yi)1≤i≤n be a family of n real numbers. Refining Cauchy–Schwarz’s
inequality, prove Lagrange’s identity

n
X

1≤i≤n

y2
i −

„

X

1≤i≤n

yi

«2

=
X

1≤i<j≤n

(yi − yj)
2 .

b) Let P (X) =
Q

1≤i≤n(X − xi) be a monic polynomial with real nonzero

roots xi. Using a) and the arithmetic–geometric mean inequality, show
that

n
X

1≤i≤n

1

x2
i

−
„

X

1≤i≤n

1

xi

«2

≥ n(n− 1)

2

|disc(P )|2/(n(n−1))

|P (0)|4/n
.

c) Deduce from b) the following strengthening of Proposition 9.3.8. For 1 ≤
k ≤ n− 1,

ak−1ak+1 ≤ k(n− k)

(k + 1)(n− k + 1)
a2

k

− k(n− k)(n− k + 1)

2(n− k + 1)!
4

k+1

|ak+1|2−
4

k+1

˛

˛

˛

disc(P (n−k−1))
˛

˛

˛

2
k(k+1)

.

d) In the special case n = 4 and P ∈ Z[X] monic, squarefree with real roots,
deduce the inequalities

a1a3 ≤ 4

9
a2
2 −

„

a2
3

6

«1/3

and

a2a4 ≤ 3

8
a2
3 −

3

2
|a4| |disc(P )|1/6 ≤ 3

8
a2
3 −

3

2
|a4| .

17. Let P be a monic polynomial of degree n and let M = (mi,j) be the n × n
symmetric matrix such that mi,j = si+j−2, the sum of the (i+ j − 2)th powers
of the roots of P . Show the following.

a) The determinant of M is equal to disc(P ).
b) The polynomial P is totally real if and only if the quadratic form defined

by M is positive definite.
c) The polynomial P is totally real if and only if for every k ≤ n the k × k

upper-left minor extracted from M is positive.
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d) The polynomial P is totally real if and only if any principal k × k minor
(in other words, using the same rows and columns) extracted from M is
positive.

This gives additional inequalities in the totally real case which may sometimes
be useful.

18. Let P (X) = Xn − a1X
n−1 + a2X

n−2 + · · · + (−1)nan be a monic polynomial
with only real roots. Using the arithmetic–geometric mean inequality, show that

0 ≤ disc(P ) ≤
„

(n− 1)a2
1 − 2na2

n(n− 1)/2

«n(n−1)/2

;

hence that s2 ≥ a2
1/n + ((n− 1)/2) disc(P )2/(n(n−1)). Deduce from this that if

s2 < 2n− 1 (which is possible only when n ≥ 8), then disc(P ) ≤ 4n(n−1)/2.

19. Continuing the above exercise, assume that n = 3.

a) Show that s2 ≥ 5, except perhaps if disc(P ) = 49.
b) If disc(P ) = 49 and s2 ≤ 4, show that a1 = 0 and a2 = −2 and deduce a

contradiction.
c) Find all the monic irreducible polynomials P (X) ∈ Z[X] of degree 3 such

that s2 = 5.
d) Try to do the same exercise in degree 4, where the optimal inequality is

s2 ≥ 7. (The reader is referred to [Smy1] for a better method and stronger
results.)

20. Let R(X) = Xk + aXm + b be a monic trinomial, with k and m real numbers,
not necessarily integers. Show that R(X) = 0 has at most two nonnegative real
roots.

21. Let P (X) = X4 − a1X
3 + a2X

2 − a3X + a4 be a quartic polynomial with only
real roots. The arithmetic–geometric mean inequality shows that |a4| ≤ s22/16.
Using the method of Lagrange multipliers, show that if we fix not only s2 = T2

but also a1, we obtain the slightly stronger inequality |a4| ≤ (s2 − a2
1/2)

2 (since
we may assume that 0 ≤ a1 ≤ 2, this improvement is very slight and indicates
that Proposition 9.3.10, which is a weak form of the general method of Lagrange
multipliers, is not that much weaker after all).

22. As in the text, let Rm,2(X) = mXm−n+(n−m)Xm with 1 ≤ m ≤ n−1, let r < n
be given, and let zm be the unique root of Rm,2(X) − r = 0 with 0 < zm < 1.

Show that if we set x0 = (m/r)1/(n−m) and xi+1 = xi−(Rm,2(xi)−r)/R′
m,2(xi)

by the usual Newton iteration, then xi is an increasing sequence, for all i we
have xi < zm, and xi converges quadratically to zm.

23. Show that a quartic field K is primitive if and only if the Galois group G of its
Galois closure is isomorphic to A4 or to D4. More precisely, show that if G is
isomorphic to C4 or to D4, then K has a unique quadratic subfield, while if G
is isomorphic to C2 × C2, then K has three quadratic subfields.

24.

a) Show that, as claimed in the text, if we take into account only the sim-
ple general inequalities in the quartic case, the number of polynomials to
consider is asymptotic to B3/2/(12

√
2) when B → ∞.

b) For each of the three possible signatures (r1, r2) in the quartic case, give
the corresponding asymptotic number of polynomials to consider if, in
addition to the general inequalities, we consider only the specific simple
inequalities for that signature (not using Pohst’s method), without using
the discriminant inequality.
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c) Try to do the same if we also use the bounds for s3 coming from Pohst’s
method and the discriminant inequality.

25. Let K be the quartic number field of signature (2, 1) defined by a root of the
irreducible polynomial X4−X3−X2+4X−1. Show that there exist exactly six
elements α ∈ ZK r Z such that

P

j |αj |2 ≤ 1 + (d/2)1/3, that among these six
elements only three are such that 0 ≤ a1 ≤ 2, and that for these three elements
we have a4 < 0, so that contrary to what is stated in [Bu-Fo-Po], we cannot
assume a4 > 0.

26. Show that an imprimitive quartic field of signature (2, 1) has Galois group
necessarily isomorphic to D4.

27. Using the results of Section 9.3.4, state and prove inequalities analogous to those
obtained in the quartic case for degree 5 fields. Look at [Diaz] and [Sc-Po-Di] if
you need help.

28. Using your favorite package, for each of the polynomials defining the smallest
known discriminant of totally complex fields K of degree up to 36 given in
Appendix C, compute the index [ZK : Z[θ]] for θ a root of the polynomial, in
other words, the square root of the ratio of the polynomial discriminant to the
field discriminant.
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10. Appendix A: Theoretical Results

In this appendix, we regroup and prove a number of results that we need.

10.1 Ramification Groups and Applications

In most of this section we follow Serre ([Ser]) quite closely. Since we have not
used any local arguments in this book, only global proofs are given, which
make the proofs slightly more cumbersome.

10.1.1 A Variant of Nakayama’s Lemma

We first need some technical results about modules over Dedekind domains,
linked to Nakayama’s lemma.

Let R be a Dedekind domain, M a finitely generated, torsion-free R-
module of rank n, and N a submodule of M of finite index (or, equivalently,
having the same rank). Let

a = Ann(M,N) = {x ∈ R/ xM ⊂ N} ,

and let b be the index-ideal of N in M .
By the elementary divisor theorem (Theorem 1.2.30), we can write

M/N =
⊕

i(R/di)gi with di | di−1 for i ≥ 2. By definition, we have b =
∏
i di,

and clearly we have a = d1. In particular, it follows that a | b | an, so a and
b have the same prime ideal divisors.

The following lemma is a variant of a special case of Nakayama’s lemma.

Lemma 10.1.1. Let R be a Dedekind domain, M a finitely generated,
torsion-free R-module, N a submodule of M of finite index, and a =
Ann(M,N) and b = [M : N ] be as above. Finally, let p be a (nonzero) prime
ideal of R. The following conditions are equivalent:

(1) p ∤ a;
(2) p ∤ b;
(3) pM +N = M ;
(4) the injection from N to M induces an isomorphism from N/pN to

M/pM ;
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(5) pM ∩N = pN .
If, in addition, N is free with basis (ωi), these conditions are also equiv-
alent to:

(6) the classes modulo pM of the ωi form an R/p-basis of M/pM .

Proof. Since a | b | an, as already stated a and b have the same prime
ideal divisors, so the equivalence of (1) and (2) is trivial.

(2) =⇒ (3) By (2), we have b+p = R, hence multiplying by M and using
bM ⊂ aM ⊂ N , we obtain M ⊂ pM +N . The other inclusion being obvious,
this proves (3).

(3) =⇒ (4). The natural map i from N/pN to M/pM induced by the
injection from N to M is well-defined. By (3), it is surjective. On the other
hand, both M/pM and N/pN are R/p-vector spaces of the same dimension
n; hence the map i is an isomorphism.

(4) =⇒ (5). This simply expresses the fact that the kernel of i is trivial.
(5) =⇒ (1). Assume by contradiction that p | a, in other words that a ⊂ p.

This implies that aM ⊂ pM . On the other hand, by definition of a we have
aM ⊂ N , so aM ⊂ pM ∩N = pN by (5). It follows that ap−1M ⊂ N , hence
that ap−1 ⊂ a, a contradiction, thus proving (1). We have thus proved that
conditions (1) to (5) are equivalent.

Assume now that N is free and that (ωi) is a basis of N .
(3)⇐⇒ (6). It is clear that M = N + pM is equivalent to the statement

that the classes modulo pM of the ωi generate M/pM . Since this is an R/p-
vector space of dimension n, and since there are n generating elements ωi,
this proves the equivalence of (3) and (6) and hence the lemma. ⊓⊔

We will mainly use this lemma with R = ZK , the ring of integers of a
number field K, and M = ZL and N = ZK [θ] for a field extension L = K(θ).
Condition (2) of the lemma then simply states that ZK [θ] is a p-maximal
order.

Lemma 10.1.2. Let L/K be a finite extension of number fields of degree n,
and let p be a prime ideal of K that is totally ramified in L, so that pZL = Pn.
Let π ∈ P r P2. Then ZK [π] is a p-maximal order of ZL.

Proof. Since P is totally ramified, ZL/P
k is a ZK/p-vector space (of

dimension k) for all k ≤ n. We will show by induction that for all k ≤ n, the
classes modulo Pk of the πi for 0 ≤ i < k generate ZL/P

k. Applied to k = n,
this will show that the classes modulo pZL of the πi for 0 ≤ i < n generate
ZL/pZL, hence form a basis, and the lemma follows from the equivalence
(2)⇐⇒ (6) of Lemma 10.1.1.

Since ZL/P is a ZK/p-vector space of dimension 1, it is generated by the
class of 1, so our claim is true for k = 1. Assume that it is true for some
k < n, and let x ∈ ZL. Thus, there exist xi ∈ ZK such that x ≡∑0≤i<k xiπ

i

(mod Pk). On the other hand, since π ∈ PrP2, multiplication by πk induces
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an isomorphism from ZK/p ≃ ZL/P to Pk/Pk+1. Since x −∑0≤i<k xiπ
i ∈

Pk, this implies that there exists xk ∈ ZK such that

x−
∑

0≤i<k
xiπ

i ≡ xkπk (mod Pk+1) ,

thus proving our induction hypothesis and hence the lemma. ⊓⊔

10.1.2 The Decomposition and Inertia Groups

From now on, we let L/K be a normal extension of number fields with Galois
group G = Gal(L/K) and degree n = [L : K], let p be a prime ideal of K,
and let

pZL =
∏

1≤i≤g
Pei with f(Pi/p) = fi .

We recall (with proof) the following basic facts (see [Marc]).

Proposition 10.1.3. Let L/K be a normal extension of number fields as
above.

(1) The ideals Pi are permuted transitively by the Galois group G: in other
words, for every pair (i, j) there exists a (not necessarily unique)σi,j ∈ G
such that σ(Pi) = Pj.

(2) All the ei are equal (to e, say), all the fi are equal (to f , say), and we
have the equality efg = n.

Proof. (1) Fix Pi, and assume that for some j, Pj is not of the form σ(Pi)
for σ ∈ G. By the weak approximation theorem (Proposition 1.2.3), we can
find x ∈ Pj such that x /∈ σ(Pi) for all σ ∈ G. If we let a = NL/K(x) =∏
σ∈G σ(x), we have a ∈ ZK ∩Pj = p. On the other hand, for all σ ∈ G we

have σ(x) /∈ Pi (otherwise, x ∈ σ−1(Pi)), and since Pi is a prime ideal we
have a /∈ Pi and in particular a /∈ p, which is absurd.

(2) follows immediately, since (1) shows that the Pi play a symmetrical
role. ⊓⊔

We will denote by P any of the prime ideals Pi above p.

Definition 10.1.4. (1) The decomposition group D(P/p) is the subgroup
of G defined by

D(P/p) = {σ ∈ G/ σ(P) = P} .

(2) The kth ramification group Gk(P/p) is the subgroup of G defined by

Gk(P/p) = {σ ∈ G/ ∀x ∈ ZL, σ(x) ≡ x (mod Pk+1)} .

(3) The inertia group is the group I(P/p) = G0(P/p), and the decomposition
group D(P/p) will also be denoted G−1(P/p).



478 10. Appendix A: Theoretical Results

If σi,j is any element of G such that σi,j(Pi) = Pj , it is clear that the set
of all such σ is the coset σi,jD(Pi/p) and also that

D(Pj/p) = σi,jD(Pi/p)σ−1
i,j .

More generally, this is true for all the ramification groups Gk.
If σ ∈ D(P/p), then σ(P) = P (by definition) and σ fixes ZK pointwise.

Thus σ induces a field isomorphism s(σ) from ZL/P into itself which leaves
ZK/p pointwise fixed, hence s(σ) ∈ Gal((ZL/P)/(ZK/p)).

Proposition 10.1.5. (1) The map s defined above is a surjective homomor-
phism from D(P/p) to Gal((ZL/P)/(ZK/p)) whose kernel is equal to
I(P/p). In other words, s induces an isomorphism from D(P/p)/I(P/p)
to Gal((ZL/P)/(ZK/p)).

(2) There exists σP ∈ D(P/p) such that for all x ∈ ZL

σP(x) ≡ xN (p) (mod P)

and σP is defined uniquely up to conjugation by an element of I(P/p).

Proof. (1) The finite field extension (ZL/P)/(ZK/p) is Galois (that is,
normal and separable, and even cyclic). Hence, in particular, the primi-
tive element theorem applies, so we can find θ ∈ ZL/P such that ZL/P =
(ZK/p)

(
θ
)
. By the weak approximation theorem, we can find θ ∈ ZL such

that θ ≡ θ (mod P) and θ ∈ σ(P) for all σ /∈ D(P/p). This is possible since
by definition of D(P/p) all the σ(P) for σ /∈ D(P/p) are distinct from P.
Set

P (X) =
∏

σ∈G
(X − σ(θ)) ,

and let P (X) be the polynomial in (ZL/P)[X ] obtained by reducing the
coefficients of P modulo P. Since σ(θ) ∈ P for all σ /∈ D(P/p), it follows
that for m = |G| − |D(P/p)| we have

P (X) = XmP1(X) with P1(X) =
∏

σ∈D(P/p)

(X − σ(θ)) .

By Galois theory P (X) ∈ (ZK/p)[X ], hence P1(X) ∈ (ZK/p)[X ], so θ is
a root of P1(X), hence its minimal polynomial is a divisor of P1, so the
conjugates of θ are among the σ

(
θ
)

for σ ∈ D(P/p). This means exactly that
the homomorphism s is surjective.

The kernel of s is the set of σ ∈ D(P/p) such that s(σ) is the identity on
ZL/P, in other words such that σ(x) ≡ x (mod P) for all x ∈ ZL, and by
definition this is the inertia group I(P/p), finishing the proof of (1).

The proof of (2) is a simple and well-known property of finite fields. It
is clear that the map x 7→ xN (p), called the Frobenius homomorphism, is an
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element of Gal((ZL/P)/(ZK/p)) (here N (p) is the absolute norm of p, in
other words the cardinality of ZK/p). It is also not difficult to prove that
Gal((ZL/P)/(ZK/p)) is cyclic and generated by the Frobenius homomor-
phism, which is therefore of order exactly equal to f = f(P/p). Statement
(2) follows from immediately from this. ⊓⊔

Corollary 10.1.6. We have

|D(P/p)| = e(P/p)f(P/p) and |I(P/p)| = e(P/p) .

Proof. Since there are g ideals Pi above p and the D(Pi/p) are conjugate
groups, and hence have the same cardinality, we have D(P/p) = n/g =
e(P/p)f(P/p). The cardinality of I(P/p) then follows from the proposition.

⊓⊔

Corollary 10.1.7. If L/K is a normal extension of number fields which is
not cyclic, no prime ideal of K is inert in L/K.

Proof. Indeed, if p is inert, then D(P/p) = Gal(L/K) and I(P/p) = {1},
hence Proposition 10.1.5 shows that Gal(L/K) = D(P/p)/I(P/p) is cyclic.
Note that the converse is true: if L/K is a cyclic extension, there exist inert
primes in L/K, even a positive density. This follows immediately from the
Chebotarev density theorem (see [Lan3]). ⊓⊔

From now on, we consider P fixed, and we write D, I, Gk, e, f instead
of D(P/p), I(P/p), Gk(P/p), e(P/p), f(P/p), respectively.

Let LD and LI be the fixed fields of L by D and I, respectively. The
inclusions {1G} ⊂ I ⊂ D ⊂ G lead to the following diagram of fields, where
we have also written the corresponding prime ideals and some relations, whose
easy proofs are left to the reader (Exercise 1).

L

e

P = Pe
I

LI

f

PI = PDZLI

LD

g

PD | pZLD

K p

Remark. We have f(PD/p) = 1, in other words PD is of degree 1 over
p, but it is not true in general that f(P′

D/p) = 1 for the other prime ideals
P′
D of LD above p (see Exercise 1).
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10.1.3 Higher Ramification Groups

In this section, we follow [Ser] essentially verbatim. We start with a trivial
lemma.

Lemma 10.1.8. Recall that D = G−1 and I = G0.

(1) We have the inclusions

G ⊃ G−1 ⊃ G0 ⊃ G1 · · · .

(2) There exists n such that Gk = {1G} for all k ≥ n.
Proof. (1) is trivial. Furthermore, if σ ∈ Gk for all k, then for all x ∈ ZL

and for all k, σ(x) ≡ x (mod Pk+1), so σ(x) = x and hence σ = 1G. Since G
is finite, it follows that Gk = {1G} for k sufficiently large. ⊓⊔

Lemma 10.1.9. For all k ≥ 0, Gk is a normal subgroup of D = G−1 (not
of G itself, however).

Proof. Let σ ∈ Gk and τ ∈ D. For all x ∈ ZL, we have

σ(τ−1(x)) ≡ τ−1(x) (mod Pk+1) ;

hence
τ(σ(τ−1(x))) ≡ x (mod τ(P)k+1) ,

and since τ ∈ D, we have τ(P) = P, so the result follows. ⊓⊔

By definition, Gal(L/LI) = I and Gal(L/LD) = D. By this lemma, the
extension LI/LD is normal, with Galois group isomorphic to D/I and hence
to Gal((ZL/P)/(ZK/p)). Thus it is even a cyclic extension of degree f .

Lemma 10.1.10. Keep the above notation. Then for all k ≥ 0 we have
Gk(P/PI) = Gk(P/p) and we also have vP(D(L/K)) = vP(D(L/LI)),
where as usual D(L/K) denotes the relative different (see Definition 2.3.16).

Proof. Since I = G0, it is clear that for k ≥ 0, σ ∈ Gk(P/p) if and
only if σ ∈ Gk(P/PI), so the groups are equal. To prove the second state-
ment, we note that the extension LI/K is unramified at PI , hence PI and
hence also P do not divide the relative different D(LI/K). By the tran-
sitivity formula for the different (see Proposition 2.3.17), it follows that
vP(D(L/K)) = vP(D(L/LI)), as was to be proved. ⊓⊔

Since PI is totally ramified in the extension L/LI, this lemma shows that
to study higher ramification groups (i.e., the Gk for k ≥ 0), we can restrict to
normal extensions L/K and prime ideals p such that p is totally ramified in L,
in other words such that pZL = Pe. It also shows that the computation of the
relative different can also be reduced to that case. We will use this reduction
in several places, particularly in the proof of Theorem 10.1.22 below.



10.1 Ramification Groups and Applications 481

Lemma 10.1.11. Assume that p = Pe is totally ramified in L/K and let
π ∈ P r P2 be a uniformizer at P. If σ ∈ G = Gal(L/K), then σ ∈ Gk if
and only if σ(π) ≡ π (mod Pk+1).

Proof. The condition is evidently necessary. Conversely, if it is satisfied,
then σ(x) ≡ x (mod Pk+1) for all x ∈ ZK [π]. Let y be an arbitrary element of
ZL. By Lemma 10.1.2 we know that ZK [π] is a p-maximal order, so it follows
that the index-ideal b = [ZL : ZK [π]] is not divisible by p. By the weak
approximation theorem we can find d ∈ ZK such that vp(d) = 0 and vq(d) ≥
vq(b) for q | b. Thus dy ∈ by ⊂ ZK [π], hence σ(dy) ≡ dy (mod Pk+1). Since
d ∈ ZK we have σ(d) = d, and since d is coprime to p and hence to P, we
deduce that σ(y) ≡ y (mod Pk+1), as desired. ⊓⊔

When p is totally ramified, thanks to this lemma, to check if σ ∈ Gk it is
sufficient to check the congruence on the single element π.

Definition and Proposition 10.1.12. Keep all the above notation. For all
σ ∈ G = Gal(L/K), we define

iG(σ) = vP(σ(π) − π) ,

where by convention vP(0) = +∞.
Then this does not depend on the choice of the uniformizer π, and in fact

σ ∈ Gk if and only if iG(σ) ≥ k + 1, in other words, iG(σ) = k + 1 if and
only if σ ∈ Gk rGk+1.

Proof. By Lemma 10.1.11, we have iG(σ) ≥ k + 1 if and only if σ ∈ Gk,
and since this condition is itself independent of π, the result follows. ⊓⊔

Proposition 10.1.13. Let p be a prime ideal of K which is not necessarily
totally ramified in L/K, let π be a uniformizer of P, and let σ ∈ G0 = I.

(1) We have vP(σ(π)/π) = 0.
(2) For k ≥ 1, σ ∈ Gk ⇐⇒ σ(π)/π ≡ 1 (mod ∗Pk).

Note that since σ(π)/π is not an algebraic integer in general, the congru-
ence is multiplicative, in other words (2) reads σ ∈ Gk ⇐⇒ vP(σ(π)/π−1) ≥
k.

Proof. Since π is a uniformizer of P, we have

vP(σ(π)/π) = vσ−1(P)(π)− vP(π) = 0

since σ is in the inertia group, hence a fortiori in the decomposition group,
proving (1).

For (2), by Lemma 10.1.10, we have Gk(P/PI) = Gk(P/p). Since we
assume that σ ∈ G0 = I, this implies that we can replace the extension L/K
by the extension L/LI without changing the ramification groups, and in this
extension PI is totally ramified. We clearly have
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vP(σ(π)/π − 1) = vP(σ(π) − π)− 1 = iG(σ) − 1 ;

hence the definition shows that σ ∈ Gk if and only if iG(σ) ≥ k + 1 if and
only if σ(π)/π ≡ 1 (mod ∗Pk), as was to be proved. ⊓⊔

Proposition 10.1.14. As above, let π be a uniformizer of P.

(1) The map that sends σ ∈ G0 to σ(π)/π induces an injection θ0 from
G0/G1 to (ZL/P)∗.

(2) For k ≥ 1 the map that sends σ ∈ Gk to σ(π)/π − 1 induces an injection
θk from Gk/Gk+1 to Pk/Pk+1.

(3) The maps θk do not depend on the choice of the uniformizer π.

Proof. First note that if vP(α) ≥ k, by Lemma 1.2.31 we may write
α = x/d with vP(d) = 0, hence with vP(x) ≥ k. It follows that we can send
α to Pk/Pk+1 by sending it to the class of xd−1, where d−1 is the inverse of d
modulo Pk+1, and this clearly does not depend on the chosen representation
of α.

On the other hand, proposition 10.1.13 shows that for k ≥ 1, σ(π)/π ≡ 1
(mod ∗Pk) if and only if σ ∈ Gk, showing both that for k ≥ 1 the maps θk are
well-defined and that they are injective. For k = 0, a similar reasoning shows
that the map θ0 is well-defined, and σ(π)/π ≡ 1 (mod ∗P) is equivalent to
σ ∈ G1 by Proposition 10.1.13, so the map is also injective in this case. We
leave the proof of (3) to the reader. ⊓⊔

Corollary 10.1.15. Let p be the prime number below p and P or, equiva-
lently, the characteristic of the residue fields ZK/p and ZL/P. Then we have
the following.

(1) The group G0/G1 is a cyclic group of order prime to p, and in fact
|G0/G1| = e/(p∞, e), the prime to p part of the ramification index e =
e(P/p).

(2) For all k ≥ 1, Gk/Gk+1 is an Abelian group isomorphic to a product of
copies of Z/pZ (in other words, an elementary p-group). In particular,
G1 is a (not necessarily Abelian) p-group, and |G1| = (p∞, e).

Proof. Since (ZL/P)∗ is the multiplicative group of a finite field with
pf(P/p) elements, it is a cyclic group of order pf(P/p)−1. Proposition 10.1.14
thus implies that G0/G1 is a subgroup of this group, hence is a cyclic group
of order dividing pf(P/p) − 1, and in particular of order prime to p. Since we
know that |G0| = e = e(P/p) and we will see in (2) that G1 is a p-group, (1)
follows.

Similarly, Proposition 10.1.14 shows that for k ≥ 1, Gk/Gk+1 is isomor-
phic to a subgroup of the additive group Pk/Pk+1, which is (noncanonically)
isomorphic to ZL/P as we saw in Section 4.2.3. Since this is the additive group
of a finite field, it is an Fp-vector space and hence an elementary p-group,
finishing the proof of the corollary. ⊓⊔
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In the same way that the extension LI/K is the maximal subextension
of L in which p is unramified, the above corollary implies that the extension
LG1/K is the maximal subextension of L in which p is tamely ramified , in
other words, such that e(PG1/p) is coprime to p.

Proposition 10.1.16. Let σ ∈ G0 and let τ ∈ Gk for some k ≥ 1. Then in
Pk/Pk+1 we have

θk(στσ
−1) = θ0(σ)kθk(τ) .

Proof. Note first that this formula makes sense, since θ0(σ)k ∈ (ZL/P)∗,
which operates multiplicatively on the ZL/P-vector space Pk/Pk+1.

Set π1 = σ−1(π). Since σ is in the decomposition group, π1 is also a
uniformizer of P. Thus by definition, if we set a = τ(π1)/π1 − 1, we have
vP(a) ≥ k and the class of a modulo Pk+1 is equal to θk(τ). On the other
hand, we have

σ(a) = σ(τ(π1))/σ(π1)− 1 = στσ−1(π)/π − 1 ,

so θk(στσ
−1) is the class of σ(a) modulo Pk+1.

Finally, if we set b = a/πk, we have vP(b) ≥ 0, and since σ ∈ G0 we have
σ(b) ≡ b (mod ∗P), so

σ(a) = (σ(π)/π)kσ(b)πk ≡ θ0(σ)kbπk

≡ θ0(σ)ka ≡ θ0(σ)kθk(τ) (mod ∗Pk+1) ,

proving the proposition. ⊓⊔

Corollary 10.1.17. Let σ ∈ G0 and let τ ∈ Gk for some k ≥ 1. Then
στσ−1τ−1 ∈ Gk+1 if and only if either τ ∈ Gk+1 or σk ∈ G1.

Proof. Indeed, by the above proposition

στσ−1τ−1 ∈ Gk+1 ⇐⇒ στσ−1 ∈ τGk+1

⇐⇒ θk(στσ
−1) = θk(τ)

⇐⇒ θ0(σ)kθk(τ) = θk(τ)

⇐⇒ θk(τ)(θ0(σ)k − 1) = 0

⇐⇒ θk(τ) = 0 or θ0(σ
k) = 1

⇐⇒ τ ∈ Gk+1 or σk ∈ G1 ,

proving the corollary. ⊓⊔

Corollary 10.1.18. Let e0 = e/(p∞, e) be the order of G0/G1.

(1) If G0 is an Abelian group, then for k ≥ 0, Gk 6= Gk+1 implies e0 | k.
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(2) If G0 is a dihedral group Dn with n odd, then G1 = Cn and for k ≥ 1,
Gk 6= Gk+1 implies k odd (note that this is the opposite of the condition
in (1) if e0 = 2).

Proof. Let σ ∈ G0 be such that the image of σ in G0/G1 generates the
cyclic group G0/G1.

(1). Assume that e0 ∤ k, and in particular k ≥ 1. This means that σk /∈ G1.
It follows that for any τ ∈ Gk, στσ−1τ−1 ∈ Gk+1 if and only if τ ∈ Gk+1.
Since G0 is Abelian, στσ−1τ−1 = 1G, so τ ∈ Gk+1 for all τ ∈ Gk, and hence
Gk = Gk+1.

(2). If G0 = Dn with n odd, G1 must be a normal subgroup of G0 of
prime power order such that G0/G1 is cyclic, and it is easily seen that the
only such subgroup is Cn (see Exercise 2).

Assume that k is even. It follows that σk = (σ2)k/2 ∈ G1, hence by
Corollary 10.1.17, τ ∈ Gk =⇒ στσ−1τ−1 ∈ Gk+1. Since τ ∈ Gk ⊂ G1 = Cn,
στσ−1τ−1 = τ−2, hence τ ∈ Gk =⇒ τ2 ∈ Gk+1, and hence τ ∈ Gk+1 since
Gk is of odd order, so Gk = Gk+1, as claimed. ⊓⊔

Remark. Since G1 must be a p-group, when G0 = Dn with n odd, n is
necessarily a prime power.

We refer to [Ser] for a more detailed study of the ramification groups (see
also Exercises 3 and 4). We now use them for our specific needs.

10.1.4 Application to Different and Conductor Computations

Definition 10.1.19. For any sub-ZK-module M of L, we set (when there is
no risk of confusion with other notation)

M∗ = {x ∈ L/ TrL/K(xM) ⊂ ZK} .
For example, D(L/K) = Z∗

L.

Lemma 10.1.20. Let π be as above, and let f be the minimal polynomial of
π in ZK [X ]. Then

ZK [π]∗ =
1

f ′(π)
ZK [π] .

Proof. Set ai,j = TrL/K(πiπj/f ′(π)), and let A be the n×n matrix whose
entries are the ai,j . For any x ∈ L we can write x =

∑
i xiπ

i/f ′(π) with xi
in K but not necessarily in ZK . If X is the column vector of the xi, the
condition x ∈ ZK [π]∗ is equivalent to AX ∈ ZnK , hence to prove the lemma
we must prove that A ∈ GLn(ZK) — in other words, that A has entries in
ZK and determinant equal to a unit.

To do this, we first note the rational function identity

1

f(X)
=

n∑

k=1

1

f ′(αk)(X − αk)
,
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where the αk are the roots of f(X) in Q (see Exercise 5).
Since f(X) is a monic polynomial of degree n, if we expand this identity

in powers of 1/X , all the coefficients of (1/X)i for i < n vanish and the
coefficient of (1/X)n is equal to 1. Looking at the right-hand side, this gives

∑

1≤k≤n

αik
f ′(αk)

=

{
0 if i ≤ n− 2,

1 if i = n− 1;

in other words, TrL/K(πi/f ′(π)) = 0 for i ≤ n− 2 and TrL/K(πn−1/f ′(π)) =
1.

Let us now prove that A ∈ GLn(ZK). Thanks to the above formula, we
already see that ai,j = TrL/K(πi+j/f ′(π)) is equal to 0 for i+ j ≤ n− 2 and
is equal to 1 for i+ j = n− 1. For i+ j ≥ n we have

ai,j = TrL/K(πnπi+j−n/f ′(π)) .

Since f is monic, πn is equal to a ZK-linear combination of the πk for k < n,
and this shows by induction that ai,j ∈ ZK for all i and j. Finally, up to
reversal of rows or columns A is a triangular matrix, and clearly det(A) =
(−1)n(n−1)/2 is indeed a unit, proving our claim and the lemma. ⊓⊔

Corollary 10.1.21. With the above notation,

vP(D(L/K)) = vP(f ′(π)) .

Proof. As in Section 10.1.1, set

a = Ann(ZL,ZK [π]) = {x ∈ ZK/ xZL ⊂ ZK [π]} .

Since ZK [π] is p-maximal, we know that p ∤ a.
On the other hand,

x ∈ a ⇐⇒ xZL ⊂ ZK [π] ⇐⇒ xZL/f
′(π) ⊂ ZK [π]∗

⇐⇒ TrL/K(xZL/f
′(π)) ⊂ ZK ⇐⇒ x/f ′(π) ∈ D(L/K)−1

⇐⇒ x ∈ f ′(π)D(L/K)−1 .

It follows that D(L/K) = f ′(π)a−1, and since p ∤ a, the result follows. ⊓⊔

We are now ready to prove the main theorem that we need, which involves
the higher ramification groups.

Theorem 10.1.22. Let L/K be a normal extension of number fields, set
G = Gal(L/K), let P be a prime ideal of L, and let p be the prime ideal of K
below P. The valuation at P of the relative different is given by the formula

vP(D(L/K)) =
∑

k≥0

(|Gk| − 1) .
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By Lemma 10.1.8, the apparently infinite sum on k has in fact only a
finite number of nonzero terms, so the sum makes sense. Note also that since
this formula gives the P-adic valuation of the different for all P, it gives the
different itself.

Proof. By Lemma 10.1.10, if we set K ′ = LI , the ideal P has the same
ramification groups (for k ≥ 0) in the extension L/K ′ as in the extension
L/K, and vP(D(L/K ′)) = vP(D(L/K)). We may thus assume that p is
totally ramified in the extension L/K, so that we can apply the results proved
in that case.

Thus, let π ∈ P r P2 with minimal monic polynomial f(X) ∈ ZK [X ],
so that we know that ZK [π] is a p-maximal order in ZL (by Lemma 10.1.2)
and that vP(D(L/K)) = vP(f ′(π)) (by Corollary 10.1.21). Since f(π) =∏
σ∈G(X − σ(π)), we have

f ′(π) =
∏

σ∈Gr{1G}
(π − σ(π)) ,

so that
vP(D(L/K)) = vP(f ′(π)) =

∑

σ∈Gr{1G}
iG(σ)

by definition of the function iG(σ).
To finish the proof, set gk = |Gk| − 1 and let n be such that Gn = {1G}.

If σ ∈ Gk−1 rGk, we have by definition iG(σ) = k. It follows that

∑

σ∈Gr{1G}
iG(σ) =

n∑

k=0

k(gk−1 − gk) =

n∑

k=0

gk(k + 1− k) =

n∑

k=0

gk ,

as was to be proved. Note that in general the intermediate result

vP(D(L/K)) =
∑

σ∈Gr{1G}
iG(σ)

that we have found is only valid when p is totally ramified in L/K. ⊓⊔

As an application of the above result, we prove the following.

Proposition 10.1.23. Let L/K be a cyclic extension of number fields of
prime degree ℓ, let p be a prime ideal of K above ℓ, and denote as usual by
Gk the ramification groups of P/p for any prime ideal P of L above p. If k0

is the largest k such that Gk 6= {1}, then k0 ≤ ⌊ℓe(p/ℓ)/(ℓ− 1)⌋.
Proof. If p is unramified in L/K, we have G0 = {1}, so the inequality

is trivial. Thus, since ℓ is prime, we may assume that p is totally ramified
in L/K, so that pZL = Pℓ. For simplicity set e = e(p/ℓ) = vp(ℓ). By The-
orem 10.1.22, since |Gk| = ℓ for k ≤ k0 and |Gk| = 1 for k > k0, we have
vP(D(L/K)) = (k0 + 1)(ℓ− 1). Hence
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k0 > ⌊ℓe/(ℓ− 1)⌋ =⇒ k0 > ℓe/(ℓ− 1) =⇒ (k0 + 1)(ℓ− 1) > ℓe+ ℓ− 1

=⇒ (k0 + 1)(ℓ− 1) ≥ ℓ(e+ 1) =⇒ Pℓ(e+1) | D(L/K)

=⇒ pe+1 | D(L/K) =⇒ p−(e+1)ZL ⊂ D−1(L/K)

=⇒ TrL/K(p−(e+1)ZL) ⊂ ZK

=⇒ p−(e+1) TrL/K(ZL) ⊂ ZK =⇒ TrL/K(ZL) ⊂ pe+1

=⇒ ℓ = TrL/K(1) ∈ pe+1 =⇒ e = vp(ℓ) ≥ e+ 1 ,

and this contradiction proves the proposition. ⊓⊔

Corollary 10.1.24. Let L/K be a cyclic extension of number fields of prime
degree ℓ and let p be a prime ideal of K above ℓ. If f denotes the conductor of
L/K, then vp(f) ≤ ⌊ℓe(p/ℓ)/(ℓ−1)⌋+1, and this upper bound is best possible.

Proof. Indeed, we may assume that p | f, so p is ramified, hence totally
ramified in L/K. Thus, using the same notation as that of the proposition,
we have vp(d(L/K)) = vP(D(L/K)) = (ℓ − 1)(k0 + 1). On the other hand,
by Corollary 3.5.12 we have d(L/K) = fℓ−1, so vp(f) = k0 + 1, and the upper
bound thus follows from Proposition 10.1.23. The fact that it is the best
possible is an immediate consequence of Hecke’s Theorem 10.2.9 (1), which
we will prove later. ⊓⊔

10.1.5 Application to Dihedral Extensions of Prime Degree

In this section we choose an odd prime number ℓ, and we let L/K be an
extension of number fields of degree ℓ. We assume in this section that the
Galois closure N of L/K is a dihedral extension with Galois group isomorphic
to Dℓ. The goal of this section is to prove Theorem 9.2.6 in this case (the
general case can be proved in a similar but more complicated manner). Thus
N has a unique quadratic subfield K2, and the diagram of fields is similar to
the one given for Theorem 9.2.6:

N
2

〈τ〉
||

||
||

||

ℓ〈σ〉L

ℓ K2

2

〈τ〉
||

||
||

||

K
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We first prove the following proposition.

Proposition 10.1.25. Let f2 = f(N/K2) be the conductor of N/K2. There
exists an ideal f of K such that f2 = fZK2 .

Proof. Note first that since ℓ is odd, a real place of the normal extension
N/K2 is necessarily unramified, hence the infinite part of the conductor of
N/K2 is empty, so f2 = f(N/K2) is an integral ideal of K2. Let

f2 =
∏

P

PvP(f2)

be the prime ideal decomposition of f2 in K2. Since τ(N) = N , it is clear
that τ(f2) = f2, hence if P1 and P2 are the two prime ideals above a prime
ideal of K that splits in K2/K, we have vP1(f2) = vP2(f2). It follows that

f2 =
∏

p

pxp

∏

P

PvP(f2) ,

where the first product is over prime ideals of K which are inert or split in
K2/K and xp = vP(f2) for any prime ideal P of K2 above p, and the second
product is over prime ideals of K2 above prime ideals p of K which ramify
in K2/K as pZK2 = P2. Thus, to prove the proposition we must show that
vP(f2) is even when p is ramified in K2/K, so that

∏

P

PvP(f2) =
(∏

p

pxp

)
ZK2

with xp = vP(f2)/2.
If P ∤ f2, this is trivial, so we may assume that P | f2, hence P is ramified,

and hence totally ramified in N/K2 since ℓ = [N : K2] is prime. Thus we
can write PZN = Pℓ

N for an ideal PN of N , hence pZN = P2ℓ
N , so p is

totally ramified in N/K. For simplicity set Gk = Gk(PN/p). Since p is totally
ramified in N/K, we have G0 = Gal(N/K) ≃ Dℓ. Thus, as we have already
seen, we must have G1 ≃ Cℓ, hence p = ℓ.

Since the only subgroups of Cℓ are itself and {1}, it follows that the
sequence of ramification groups is G0 ≃ Dℓ, Gk ≃ Cℓ for 1 ≤ k ≤ k0, and
Gk = {1} for k > k0. By Corollary 10.1.18, we must have k0 odd. This is
of course the crucial point in this whole proof. Applying Exercise 3 (which
for this situation is trivial), we know that Gk(PN/P) = Gk ∩Gal(N/K2) =
Gk ∩ Cℓ, hence that Gk(PN/P) ≃ Cℓ for 0 ≤ k ≤ k0 and Gk(PN/P) = {1}
for k > k0 with k0 odd. By Theorem 10.1.22, we thus have

vPN (D(N/K2)) =
∑

k≥0

(|Gk(PN/P)| − 1) = (k0 + 1)(ℓ − 1) .
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Since the residual degree of PN over P is equal to 1, we have

vP(d(N/K2)) = vPN (D(N/K2)) = (k0 + 1)(ℓ− 1) .

By Corollary 3.5.12 we have d(N/K2) = fℓ−1
2 , so vP(f2) = k0+1 ≡ 0 (mod 2),

finishing the proof of the proposition. ⊓⊔

The following proposition completely describes the splitting and ramifi-
cation behavior of primes in L/K.

Proposition 10.1.26. Keep the above hypotheses and notation, and let p be
a prime ideal of K.

(1) The prime ideal p cannot be inert in N/K.
(2) If pZN = PN,1PN,2 with prime ideals PN,i of N of degree ℓ over p, then

p is inert in L/K.
(3) If pZN = PN,1PN,2 . . .PN,ℓ with prime ideals PN,i of N of degree 2 over

p, then
pZL = PL,1PL,2 . . .PL,(ℓ+1)/2 ,

where PL,1 has degree 1 over p and PL,i has degree 2 over p for 2 ≤ i ≤
(ℓ+ 1)/2.

(4) If p is totally split in N/K, it is totally split in L/K.
(5) We cannot have pZN = P2

N with a prime ideal PN of N of degree ℓ over
p.

(6) If pZN = P2
N,1P

2
N,2 . . .P

2
N,ℓ with prime ideals PN,i of N of degree 1 over

p, then
pZL = PL,1P

2
L,2 . . .P

2
L,(ℓ+1)/2 ,

where the PL,i have degree 1 over p.
(7) If pZN = Pℓ

N with a prime ideal PN of N of degree 2 over p, then p is
totally ramified in L/K.

(8) If pZN = Pℓ
N,1P

ℓ
N,2 with prime ideals PN,i of N of degree 1 over p, then

p is totally ramified in L/K.
(9) If p is totally ramified in N/K, in other words if pZN = P2ℓ

N , then p is
totally ramified in L/K, and in addition p | ℓ.

Proof. Note first that if g is the number of prime ideals of N above p and
if PN is one of them, we have e(PN/p)f(PN/p)g = [N : K] = 2ℓ, hence the
possibilities listed in the proposition are exhaustive.

(1). This follows immediately from Corollary 10.1.7 sinceDℓ is not a cyclic
group.

(2). By transitivity of residual degrees and since ℓ is an odd prime, if
ℓ | f(PN/p) for some prime ideal PN of N , we must have ℓ | f((PN ∩L)/p);
in other words, p is inert in L/K, proving (2).

(3). Since the PN,i are prime ideals of degree 2 over p, it follows that
G−1(PN,i/p) is a subgroup of order 2 in Dℓ. Since the Galois group of N/K
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permutes transitively the PN,i, and since the Galois group acts by conjuga-
tion on the decomposition groups, it follows that when 1 ≤ i ≤ ℓ, the decom-
position groups G−1(PN,i/p) span the ℓ subgroups of order 2 of Dℓ. Thus,
exactly one of these groups, say G−1(PN,1/p), will be equal to Gal(N/L),
and the others will have a trivial intersection. Since the residual degrees are
transitive, it follows that the prime ideal of L below PN,1 will be of degree
1 over p, and the prime ideals of L below the PN,i for 2 ≤ i ≤ ℓ will be of
degree 2, proving (3).

(4). Trivial.
(5). If pZN = P2

N , then G−1(PN/p) ≃ Dℓ and G0(PN/p) ≃ C2, which is
impossible since no subgroup of Dℓ isomorphic to C2 is normal in Dℓ.

(6). The proof of (6) is identical to that of (3), replacing the decomposi-
tion groups G−1 by the inertia groups G0, and the residual degrees by the
ramification indices.

(7) and (8). Same proof as for (2), replacing residual degrees by ramifica-
tion indices.

(9). The first statement of (9) is proved as (7) and (8). The second has
been proved during the proof of Proposition 10.1.25. ⊓⊔

Remark. By giving explicit examples for ℓ = 3, it is easy to show that
all possibilities not excluded by this proposition can occur (Exercise 7).

Lemma 10.1.27. Keep the above hypotheses and notation. We have

NL/K(d(N/L)) = d(K2/K) .

Proof. We are going to show that for every prime ideal p of K, the p-
adic valuations of both sides are equal. Thus, let p be a prime ideal of K,
and assume first that p ∤ 2. If p | d(K2/K), then pZK2 = P2

K2
, hence we

are necessarily in cases (6) or (9) of the above proposition, since case (5)
cannot occur. In case (9), p is totally ramified everywhere, and since p | ℓ
and ℓ 6= 2, it is easily seen by applying Proposition 3.3.21 that vp(d(N/L)) =
vp(d(K2/K)) = 1.

In case (6), we have pZL = PL,1P
2
L,2 . . .P

2
L,(ℓ+1)/2, PL,1 is ramified in

N/L, and the PL,i are split in N/L for i > 1. It follows that PL,i ∤ d(N/L)
for i > 1. By Proposition 3.3.21 once again, we know that vp(d(K2/K)) =
vPL,1(d(N/L)) = 1, and since PL,1 is of degree 1 above p and is the only
prime ideal of L above p ramified in N/L, we have

vp(d(K2/K)) = vp(NL/K(d(N/L))) = 1 .

Conversely, assume that p ∤ d(K2/K). Then for any prime ideal PN of N
above p, e(PN/p) is odd (it must be equal to 1 or ℓ), hence no prime ideal
of L above p can ramify in N/L by transitivity of ramification indices. Thus
vp(NL/K(d(N/L))) = vp(d(K2/K)) = 0. We have thus proved that if p ∤ 2
(the “tame” case), then vp(NL/K(d(N/L))) = vp(d(K2/K)).
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Assume now that p | 2 (the “wild” case). The reasoning we have just
made is still valid in that case, hence we may assume that p | d(K2/K).
Thus pZK2 = P2

K2
, so we are in case (6) (case (9) is impossible here since

it would imply p | ℓ). We have Gk(PN,i/p) ≃ C2 for 0 ≤ k ≤ k0 and
Gk(PN,i/p) = {1} for k > k0 for some k0 ≥ 0. It follows from this and
Theorem 10.1.22 that vPN,i(D(N/K)) = k0 +1. Intersecting the ramification
groups with Gal(N/L) and Gal(N/K2), respectively, and applying Theorem
10.1.22 once again, we find that vPN,1(D(N/L)) = k0+1, vPN,i(D(N/L)) = 0
for i > 1, and vPN,i(D(N/K2)) = 0 for all i. Since the different is transitive,
we have D(N/K) = D(N/K2)D(K2/K). Hence for all i,

k0 + 1 = vPN,i(D(N/K)) = vPN,i(D(K2/K)ZN) .

This implies that vp(d(K2/K)) = k0+1. On the other hand, vPL,1(d(N/L)) =
k0 +1 and vPL,i(d(N/L)) = 0 for i > 1, hence vp(NL/K(d(N/L))) = k0 +1 =
vp(d(K2/K)), finishing the proof of the lemma. ⊓⊔

We can now easily prove the case n = ℓ prime of Martinet’s Theorem
9.2.6.

Proposition 10.1.28. Keep the above hypotheses and notation. In particu-
lar, recall that f is an ideal of K such that fZK2 is the conductor of N/K2.
Let p be a prime ideal of K.

(1) We have

d(L/K) = d(K2/K)(ℓ−1)/2fℓ−1 =
(
d(K2/K)f2

)(ℓ−1)/2
.

(2) The ideal p is totally ramified in L/K if and only if p | f.
(3) If p2 | f, then p | ℓ.
(4) If p | (d(K2/K), f), then p | ℓ.

Proof. (1). By Theorem 2.5.1 we know that

d(N/K) = d(L/K)2NL/K(d(N/L)) = d(K2/K)ℓNK2/K(d(N/K2))

= d(K2/K)ℓNK2/K

(
fℓ−1
2

)
= d(K2/K)ℓf2(ℓ−1) ,

where we have used Corollary 3.5.12 and Proposition 10.1.25. By Lemma
10.1.27, we deduce that

d(L/K)2 = d(K2/K)ℓ−1f2(ℓ−1) ,

proving (1).
(2). The prime ideal p is totally ramified in L/K if and only if we are in

cases (7), (8), or (9) of Proposition 10.1.26, and these are the cases for which
some prime ideal of K2 above p is totally ramified in N/K2, hence for which
p | f.
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(3). This is a restatement of Proposition 3.3.21.
(4). If p | (d(K2/K, f)), then p is totally ramified in K2/K and the prime

ideal of K2 above p is totally ramified in N/K2, hence p is totally ramified
in N/K, so we are in case (9) of Proposition 10.1.26, and hence p | ℓ. ⊓⊔

Remarks

(1) Statements (2), (3), and (4) are easy to prove. On the other hand, we
have had some trouble proving (1). It is possible to prove (1) in a more
natural and shorter way by using the invariance of Artin L-functions
under induction. This would have carried us too far afield, however, hence
I have preferred to give the above admittedly heavier proof, which has
the added advantage of giving complete information on the ramification
and splitting behavior of prime ideals in a dihedral extension L/K.

(2) We leave to the reader the proofs of statements (3) and (5) of Theorem
9.2.6 in the case n = ℓ prime (Exercise 8).

10.2 Kummer Theory

In this section, we state and prove in detail a number of results we need in
an essential way in Chapter 5 in order to compute defining polynomials of
number field extensions using Kummer theory.

10.2.1 Basic Lemmas

Lemma 10.2.1 (Dirichlet’s Character Independence Theorem). Let
G be a group, let L be a field, and let χ1, . . . , χm be distinct characters of
G with values in L∗. The characters χi are L-linearly independent, in other
words a relation

∑
1≤i≤m aiχi = 0 for ai ∈ L implies that ai = 0 for all i.

Proof. Assume that the characters are L-linearly dependent. Choose a
dependence relation of minimal length, so that, up to reordering of the χi,

∀h ∈ G
∑

1≤i≤n
aiχi(h) = 0 (1)

with n minimal. For any g ∈ G, we have for all h,
∑

1≤i≤n aiχi(gh) = 0.
Multiplying relation (1) by χ1(g) and subtracting, we obtain that for all g
and h in G we have

∑

1≤i≤n
ai(χi(g)− χ1(g))χi(h) ,

and since the first coefficient vanishes, this is a relation of length n−1 between
the characters. By the minimality of n, this must be the trivial relation, and
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again by minimality the ai are nonzero, hence χi(g) = χ1(g) for all i ≤ n and
all g ∈ G. Since the characters are distinct, this implies n = 1, hence χ1 = 0,
which is absurd. ⊓⊔

Corollary 10.2.2. Let K and L be fields, and let σ1, . . . , σm be distinct ho-
momorphisms from K to L. Then the σi are L-linearly independent.

Proof. Simply apply the preceding lemma to G = K∗ and to χi equal to
the restriction of σi to K∗. ⊓⊔

Lemma 10.2.3 (Noether’s Theorem). Let L/K be a normal extension
with Galois group G, and let φ be a map from G to L∗. We will say that φ
satisfies the cocycle condition if for all g, h in G we have

φ(gh) = φ(g) · g(φ(h)) .

Then φ satisfies the cocycle condition if and only if there exists α ∈ L∗ such
that

∀g ∈ G, φ(g) =
α

g(α)
.

Proof. If φ(g) = α/g(α), we have

φ(g) · g(φ(h)) =
α

g(α)
g

(
α

h(α)

)
=

α

g(h(α))
= φ(gh) ,

so φ satisfies the cocycle condition. Conversely, assume that φ satisfies the
cocycle condition. For x ∈ L, set

σ(x) =
∑

h∈G
φ(h)h(x) .

Then σ is an additive map from L to L. Applying Lemma 10.2.2 to the
distinct homomorphisms h ∈ G, we deduce that σ is not identically zero
(recall that φ(h) 6= 0 for all h by assumption). Hence, let x ∈ L such that
α = σ(x) 6= 0. We have

g(α) = g

(
∑

h∈G
φ(h)h(x)

)
=
∑

h∈G
g(φ(h))gh(x) ;

hence by the cocycle condition

g(α) = φ(g)−1
∑

h∈G
φ(gh)gh(x) = φ(g)−1

∑

h∈G
φ(h)h(x) = φ(g)−1α ,

proving the lemma. ⊓⊔
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Lemma 10.2.4 (Hilbert’s Theorem 90). Let L/K be a cyclic extension
with Galois group G generated by an element σ. Then α ∈ L is an element of
relative norm equal to 1 if and only if there exists β ∈ L such that α = β/σ(β).

Proof. Clearly NL/K(σ(β)) = NL/K(β), hence the relative norm of
β/σ(β) is equal to 1. Conversely, assume that NL/K(α) = 1. Let n = |G|,
and for 0 ≤ i < n, set

φ(σi) =
∏

0≤k<i
σk(α) .

I claim that φ satisfies the cocycle condition. Indeed,

φ(σi)σi(φ(σj)) =
∏

0≤k<i
σk(α)

∏

i≤k<i+j
σk(α) =

∏

0≤k<i+j
σk(α) .

Hence if i+ j < n, this is equal to φ(σi+j), while if i+ j ≥ n, this is equal to
∏

0≤k<n
σk(α)

∏

0≤k<i+j−n
σk(α) = NL/K(α)φ(σi+j) = φ(σi+j)

once again, since NL/K(α) = 1. Thus φ satisfies the cocycle condition. Hence
by Lemma 10.2.3, there exists β ∈ L∗ such that φ(σi) = β/σi(β) for all i,
and in particular α = φ(σ) = β/σ(β), as desired. Note that by choosing
γ = σn−1(β), we would get α = σ(γ)/γ. ⊓⊔

Remarks

(1) The above construction is algorithmic. Indeed, if we retrace our steps,
for all x ∈ L, we have β = σ(β)α with

β =
∑

0≤i<n
σi(x)

∏

0≤k<i
σk(α) ,

which can, of course, be checked directly. The point of the proof is to
show that x can be chosen so that β 6= 0.

(2) There is a simpler additive version of Hilbert’s Theorem 90, as well as a
version for ideals (see Exercise 9).

(3) If β ∈ L∗ is such that α = β/σ(β), then by Galois theory all other
possible β are of the form γβ for γ ∈ K∗.

(4) Even though Hilbert’s Theorem 90 is not true as written for an arbitrary
Abelian extension L/K, there exist suitable generalizations to this case
(see Exercise 10).

10.2.2 The Basic Theorem of Kummer Theory

Let K be a number field and K a fixed algebraic closure of K. We will assume
that all algebraic extensions of K are in K. Let n ≥ 1 be an integer, and
denote by ζn a primitive nth root of unity. In this section, we make the
fundamental assumption that ζn ∈ K.
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Theorem 10.2.5. Let n ≥ 1 be an integer, and let K be a number field such
that ζn ∈ K. There is a natural bijection between finite subgroups of K∗/K∗n

and finite Abelian extensions of K whose Galois group is of exponent dividing
n. This bijection is obtained as follows. If B is a finite subgroup of K∗/K∗n,
the corresponding Abelian extension is obtained by adjoining toK all nth roots
of lifts of elements of B. If L is a finite Abelian extension of K whose Galois
group is of exponent dividing n, then B = (L∗n ∩ K∗)/K∗n. In addition,
under this correspondence the Galois group Gal(L/K) is isomorphic to B.

Proof. Let B be a finite subgroup of K∗/K∗n, and let S = {s1, . . . , sk} be
a set such that the classes of elements of S in K∗ generate the group B (for
example, the representatives of all the elements of B). Note that conversely,
if S is a finite set, the subgroup of K∗/K∗n generated by the classes of the
elements of S is also finite, since it has at most n|S| elements. We let

KB = K ( n
√
s1, . . . , n

√
sk) .

This makes sense since ζn ∈ K (it could also be made to make sense oth-
erwise). Note for future reference that for all b ∈ K∗ such that b ∈ B, the
equation xn − b = 0 has a solution in K∗

B (and, in fact, n solutions since

ζn ∈ K). Indeed, if b =
∏
i si

ai
for some integers ai, then x =

∏
i(

n
√
si)

ai is
a solution.

We are going to prove that the map B 7→ KB is the desired bijection. Note
first that KB/K is a finite Abelian extension. Indeed, it is the compositum
of the extensions K( n

√
si)/K, and these are Abelian extensions since ζn ∈ K,

and so all the roots of the polynomial Xn− si = 0 belong to K( n
√
si) for any

choice of the root. In fact, all these extensions are cyclic extensions of degree
dividing n; hence the Galois group of their compositum is isomorphic to a
subgroup of (Z/nZ)k, hence in particular has an exponent dividing n.

Let G be the Galois group of KB/K, and denote by µn = µn(K) the
subgroup of K∗ of nth roots of unity. We define the following pairing < , >
from G × B to µn as follows. Let σ ∈ G and b ∈ B. As we have seen, there
exists β ∈ KB such that βn = b. We will set

< σ, b >=
σ(β)

β
.

First, note that this is indeed an nth root of unity. In fact, (σ(β)/β)n =
σ(b)/b = 1 since b ∈ K∗. Second, the definition does not depend on the
choice of β. Indeed, if β′ is such that β′n = bγn for some γ ∈ K∗, then for
some j we have β′/β = ζjnγ ∈ K∗, and so σ(β′)/β′ = σ(β)/β.

Furthermore, we evidently have

< σ, bb′ > =< σ, b >< σ, b′ > and

< στ, b > =
στ(β)

β
=
σ(τ(β))

τ(β)

τ(β)

β
= τ(< σ, b >) < τ, b > ,
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and since τ acts trivially on K, hence on µn, we have

< στ, b >=< σ, b >< τ, b > .

This means that < , > is a Z-bilinear pairing. In other words, the map
σ 7→< σ, · > is a group homomorphism from G to Hom(B,µn), and the map
b 7→< ·, b > is a group homomorphism from B to Hom(G,µn). We are going
to compute the kernels of these two homomorphisms.

First, fix σ ∈ G, and assume that < σ, b >= 1 for all b ∈ B. Thus, if
βn = b, then σ(β) = β. This implies that for all our generators si we have
σ( n
√
si) = n

√
si, and so σ(x) = x for all x ∈ KB; hence σ = 1, so the left

kernel is trivial.
Second, fix b ∈ B, and assume that < σ, b >= 1 for all σ ∈ G. If βn = b,

we thus have σ(β) = β for all σ ∈ G, and hence by Galois theory, β ∈ K∗.
Thus, b ∈ K∗n, so b = 1 in B, and the kernel is again trivial. Therefore, we
obtain what is called a perfect pairing between G and B.

Thus, the two maps we deduce from the pairing are injective, and in
particular we obtain

|G| ≤ |Hom(B,µn)| and |B| ≤ |Hom(G,µn)| .

On the other hand, if A is a finite Abelian group of exponent di-
viding n then Hom(A,µn) ≃ A noncanonically (see Exercise 11). Hence
|Hom(G,µn)| = |G| and |Hom(B,µn)| = |B|, so both our injective homo-
morphisms are also surjective, from which we deduce that

B ≃ Hom(G,µn) ≃ G .

Thus, to each finite subgroup B of K∗/K∗n we have associated a finite
Abelian extension KB of K whose Galois group G is of exponent n and
isomorphic to B.

Conversely, let L be such an Abelian extension. We must show that L =
KB for a suitable B. Let G be the Galois group of L/K. We are going to show
that B = (L∗n ∩ K∗)/K∗n is such that L = KB. Clearly, B is a subgroup
of K∗ of exponent dividing n. Let us show that B is finite. Using the same
pairing < , > as before, we see that the proof of the injectivity of the map
B → Hom(G,µn) did not use the finiteness of B. Thus this map is still
injective, and since G is a finite group, we deduce that B is finite.

Lemma 10.2.6. Any homomorphism from G to µn is of the form

σ 7−→< σ, b >

for some b ∈ B.

Assuming this lemma, it follows that the map B → Hom(G,µn) is a
bijection and hence that |B| = |G|. By definition of B we have K ⊂ KB ⊂ L.
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Since Gal(KB/K) ≃ B, Gal(L/K) = G and |B| = |G|, it follows that [KB :
K] = [L : K] and so L = KB, as claimed.

To prove the lemma, let φ be a homomorphism from G to µn. Recall that
µn ⊂ K, hence that any element of G = Gal(L/K) fixes µn pointwise. Thus,
for all σ and τ in G we have

φ(στ) = φ(σ)φ(τ) = φ(σ)σ(φ(τ)) .

Thus the map φ considered as a map from G to L∗ satisfies the conditions
of Noether’s theorem (Lemma 10.2.3); therefore there exists α ∈ L∗ such
that φ(σ) = σ(α)/α for all σ ∈ G. Since we also have φ(σ)n = 1, we obtain
σ(α)n = αn for all σ ∈ G. Hence by Galois theory αn ∈ K∗, and so αn ∈
L∗n ∩ K∗. It is clear that b = αn is such that φ(σ) =< σ, b >, proving the
lemma and hence the theorem. ⊓⊔

Corollary 10.2.7. Let K be a number field and n ≥ 1 be an integer such
that ζn ∈ K.

(1) An extension L/K is a cyclic extension of degree n if and only if there
exists α ∈ K∗ such that α is exactly of order n in K∗/K∗n and such that
L = K( n

√
α).

(2) The cyclic extensions L1 = K( n
√
α1) and L2 = K( n

√
α2) are K-

isomorphic if and only if there exists an integer j coprime to n and
γ ∈ K∗, such that α2 = αj1γ

n.

Proof. (1) Let L/K be a cyclic extension of degree n. By Theorem
10.2.5, there exists a subgroup B of K∗/K∗n such that L = KB and B ≃
Gal(L/K) ≃ Z/nZ. If α is a generator of B, it is clear that KB = K( n

√
α).

Conversely, if L = K( n
√
α) with α ∈ K∗, then L/K is a cyclic extension of

degree n if and only if α generates a subgroup of order n of K∗/K∗n.

(2) Let φ be a K-isomorphism from L1 to L2, and let B1 and B2 be
the subgroups of K∗/K∗n corresponding to L1 and L2, respectively. If z =
φ( n
√
α1), we thus have zn ∈ L∗

2
n ∩ K∗, hence zn ∈ B2, and since φ is a K-

isomorphism, we have zn = φ(α1) = α1 ∈ B2, and similarly α2 ∈ B1. Since
αi is a generator of Bi, it follows that α2 = αj1γ

n and α1 = αk2δ
n. Hence

αkj−1
1 ∈ K∗n, and since α1 is exactly of order n in K∗/K∗n, this implies that
kj ≡ 1 (mod n), hence j is coprime to n, as claimed. ⊓⊔

Definition 10.2.8. Let K be a number field and n ≥ 1 be an integer such
that ζn ∈ K. Let α1 and α2 be elements of K∗ of order exactly equal to
n in K∗/K∗n. We will say that α1 and α2 are n-Kummer-equivalent (or
simply Kummer-equivalent if n is understood) if K( n

√
α1) is K-isomorphic

to K( n
√
α2), hence by the above corollary, if there exists an integer j coprime

to n and γ ∈ K∗ such that α2 = αj1γ
n.
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Since any finite Abelian extension of K can be obtained as a compositum
of cyclic extensions of prime power degree, to build finite Abelian extensions
it suffices to build cyclic extensions of prime power degree. In turn, these
extensions can be built as towers of extensions of prime degree (although
this is not a nice way to look at such extensions). Thus we now consider in
detail such extensions.

10.2.3 Hecke’s Theorem

In view of our applications to the explicit construction of ray class fields,
we now want to study in detail ramification and discriminants of Kummer
extensions. In this section, we consider the case of cyclic Kummer extensions
of prime degree ℓ, which is the only case that can be treated relatively easily.

We use the following notation. Let K be a number field, let ℓ be a prime,
and assume that ζℓ ∈ K. Let L be a cyclic extension of K of degree ℓ. By
Corollary 10.2.7, there exists α ∈ K∗, α /∈ K∗ℓ such that L = K( ℓ

√
α). We

let d(L/K) be the relative discriminant ideal of L/K and D(L/K) be the
relative different of L/K (see Definition 2.3.16). Finally, p denotes a prime
ideal of ZK .

In this section, our goals are to find the decomposition of p in the extension
L/K and to compute the valuation vp(d(L/K)), so as to obtain d(L/K)
(recall that by Corollary 3.5.12 we have d(L/K) = f0(L/K)ℓ−1, where f(L/K)
is the conductor of L/K). The final result, due to Hecke, is as follows.

Theorem 10.2.9. Let K be a number field, ℓ a prime number such that
ζℓ ∈ K, and L = K( ℓ

√
α), where α ∈ K∗ rK∗ℓ. If p is a prime ideal of ZK ,

we set
e(p/ℓ) = vp(ℓ) = (ℓ − 1)vp(1− ζℓ) ,

so that e(p/ℓ) is the absolute ramification index of p if p is above ℓ and 0
otherwise, and we also set

z(p, ℓ) = ℓ
e(p/ℓ)

ℓ− 1
+ 1 = ℓvp(1− ζℓ) + 1 .

(1) Assume that ℓ ∤ vp(α). Then p is totally ramified in L/K and

vp(d(L/K)) = ℓ− 1 + ℓe(p/ℓ) = (ℓ − 1)z(p, ℓ) .

In particular, vp(d(L/K)) = ℓ− 1 if ℓ ∤ vp(α) and p ∤ ℓ.
(2) Assume that ℓ | vp(α) and that p ∤ ℓ. Then p is unramified in L/K, and

hence vp(d(L/K)) = 0. In addition, p is totally split in L/K if and only
if the congruence

xℓ ≡ α (mod p1+vp(α))

has a solution in K; otherwise, p is inert in L/K.
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(3) Finally, assume that ℓ | vp(α) and that p | ℓ. Let a be the largest (possibly
infinite) exponent k such that the congruence

xℓ ≡ α (mod pk+vp(α))

has a solution. Then:
a) p is totally split in L/K if and only if a ≥ z(p, ℓ), in which case we

have in fact a = ∞ — in other words, the congruence is soluble for
all k;

b) p is inert in L/K if and only if a = z(p, ℓ)− 1;
c) p is totally ramified in L/K if and only if a ≤ z(p, ℓ) − 2; in that

case, we have a ≥ 1, ℓ ∤ a, and

vp(d(L/K)) = (ℓ− 1)(z(p, ℓ)− a) .

Remark. Here and in the sequel, we make an abuse of notation. When
we write xℓ ≡ α (mod pk), we mean in fact vp(x

ℓ − α) ≥ k, in other words,
xℓ ≡ α (mod ∗pk).

Proof. To simplify notation, write ζ for ζℓ. For (1), assume that ℓ ∤ vp(α).
Let π be a uniformizer of p in K. There exist integers x and y such that
xℓ + yvp(α) = 1. Thus, if β = αyπxℓ we have vp(β) = 1. Furthermore, since
(y, ℓ) = 1, by Corollary 10.2.7 we have K( ℓ

√
β) = K( ℓ

√
α). Thus, replacing α

by β, we may assume that vp(α) = 1.

Set θ = ℓ
√
α. Thus, θ is a root of the polynomial Xℓ − α = 0, which is an

Eisenstein polynomial since vp(α) = 1. By Eisenstein’s criterion (see [Coh0,
Corollary 6.2.4]), or more precisely by its extension to the relative case, it
follows that p is totally ramified in L/K. This is, however, easily checked
directly. Set P = pZL + θZL. Then, by looking at valuations, we see that

Pℓ = pℓZL + θℓZL = (pℓ + αZK)ZL .

Since vp(α) = 1, we have pℓ + αZK = p; hence Pℓ = pZL, as claimed.
Thus

ℓvP(θ) = vP(α) = ℓvp(α) = ℓ ,

so θ ∈ P r P2 is a uniformizer for P. Since p is totally ramified, Corollary
10.1.21 tells us that vP(D(L/K)) = vP(f ′(θ)), where f(X) is the minimal
polynomial of θ in ZK [X ], which here is simply f(X) = Xℓ − α. Hence

vp(d(L/K)) = vP(D(L/K)) = vP(ℓθℓ−1) = ℓ− 1 + ℓvp(ℓ) = ℓ− 1 + ℓe(p/ℓ) ,

proving (1).

For (2), we assume that ℓ | vp(α) and p ∤ ℓ. Replacing if necessary α
by (π−vp(α)/ℓ)ℓα, we may assume that vp(α) = 0. Since a trivial compu-
tation shows that the discriminant of the polynomial Xℓ − α is equal to
(−1)(ℓ−1)(ℓ−2)/2ℓℓαℓ−1, the valuation at p of this discriminant is equal to
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zero, hence p is unramified in L/K. Furthermore, by Proposition 2.3.9, the
decomposition type of p in ZL is the same as that of the polynomial Xℓ − α
in (ZK/p)[X ], and since ζ ∈ ZK , (2) is clear.

The proof of (3) is the longest, although it is not more difficult than the
other proofs. We assume here that ℓ | vp(α) and p | ℓ. As in (2), we may
assume that vp(α) = 0. To simplify notation, we write e instead of e(p/ℓ)
(any other ramification index will be written explicitly). We first note the
following lemma.

Lemma 10.2.10. Assume that vp(α) = 0 and p | ℓ. The congruence xℓ ≡ α
(mod pk) has a solution in K for k = z(p, ℓ) if and only if it has a solution
for all k ≥ z(p, ℓ).

Proof. Assume that the congruence has a solution x for some k ≥ z(p, ℓ).
We apply a Newton–Hensel iteration: in other words, we set

x1 = x+ y with y = −x
ℓ − α
ℓxℓ−1

.

Then vp(y) ≥ k − e > 0. On the other hand,

xℓ1 − α = xℓ − α+ ℓxℓ−1y +
∑

j≥2

(
ℓ

j

)
xℓ−jyj =

∑

2≤j≤ℓ−1

(
ℓ

j

)
xℓ−jyj + yℓ .

By our assumption on k, for 2 ≤ j ≤ ℓ− 1 we have

vp

((
ℓ

j

)
xℓ−jyj

)
= e+ jvp(y) ≥ e+ 2(k − e) = 2k − e ≥ k + 1 .

Also, vp(y
ℓ) = ℓvp(y) ≥ ℓ(k − e), and the inequality ℓ(k − e) ≥ k + 1 is

equivalent to k ≥ 1/(ℓ−1)+ eℓ/(ℓ−1), hence to k ≥ z(p, ℓ), which is true by
assumption. Thus all the terms have a p-adic valuation greater than or equal
to k + 1; hence xℓ1 ≡ α (mod pk+1), proving the lemma. ⊓⊔

Resuming the proof of (3), let k be an exponent such that k ≤ z(p, ℓ)
and such that the congruence xℓ ≡ α (mod pk) has a solution. We will use
the following construction. Let k = qℓ + r with 0 ≤ r < ℓ be the Euclidean
division of k by ℓ, so that q = ⌊k/ℓ⌋.

If x is a solution of the above congruence, we set z = ρ(θ − x), where
θ = ℓ

√
α, ρ = π−q, and π ∈ p r p2. Then (z + ρx)ℓ − ρℓα = 0, hence z is a

root of the monic polynomial equation P (Z) = 0, where

P (Z) = Zℓ +
∑

1≤j≤ℓ−1

(
ℓ

j

)
ρjxjZℓ−j + ρℓ(xℓ − α) .
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Since vp(α) = 0, for 1 ≤ j ≤ ℓ− 1 we have

vp

((
ℓ

j

)
ρjxj

)
= e− jq ≥ e− (ℓ− 1)q

and
vp(ρℓ(xℓ − α)) ≥ −qℓ+ k = r .

Since k ≤ z(p, ℓ) = 1 + eℓ/(ℓ − 1), it follows that q ≤ e/(ℓ − 1); hence the
p-adic valuations of all the coefficients of P (Z) are nonnegative, so vP(z) ≥ 0
for all prime ideals P above p (see Exercise 12). On the other hand, σ(z)−z =
−ρθ(1− ζ), and vP(θ) = 0 since vp(α) = 0, hence

vP(σ(z)− z) = e(P/p)vp(ρ(1− ζ)) = e(P/p)

(
−q +

e

ℓ− 1

)
.

Assume first that our congruence is soluble for some k ≥ z(p, ℓ)−1. Using
k = z(p, ℓ) − 1 in the construction above, we obtain q = e/(ℓ − 1), and so
vP(σ(z)− z) = 0 for all prime ideals P above p. Since the only subgroups of
G are G and {1}, it follows that the inertia group I = G0 is trivial, hence
that p is unramified in L/K.

Assume in addition that the congruence is soluble for some k ≥ z(p, ℓ). By
Lemma 10.2.10, this is equivalent to the solubility for k = z(p, ℓ). Choosing
this value of k in the preceding construction gives an element z ∈ L such
that, for all prime ideals P above p, vP(σ(z) − z) = 0 and vP(z) ≥ 0.
Furthermore, up to sign the relative norm of z is equal to the constant term
of the polynomial P (Z); in other words,

NL/K(z) = ±ρℓ(xℓ − α) .

In particular, vp(NL/K(z)) ≥ 1.
Fix a prime ideal P above p. Using the same proof as before, we see that

for all i and j with i 6≡ j (mod ℓ) we have vP(σi(z)− σj(z)) = 0. Therefore,
we cannot have vP(σi(z)) = vP(σj(z)) ≥ 1. Since all the valuations are
nonnegative, it follows that there exists at most one i such that 0 ≤ i ≤ ℓ− 1
with vP(σi(z)) > 0. Since vP(NL/K(z)) = vp(NL/K(z)) ≥ 1, there must
indeed be such an i. We have thus defined a map from the set S of prime
ideals above p to the interval [0, ℓ− 1]. But conversely, if i is in this interval,
we cannot have vP(σi(z)) = 0 for all prime ideals P above p, since this would
imply that the norm of σi(z), which is equal to the norm of z, is coprime to
p. Thus our map is surjective, and hence S has at least ℓ elements, and hence
exactly ℓ since this is the degree of the extension L/K, so p is totally split.
The map defined above is thus a bijection, so it follows that the prime ideals
above p are the ideals

Pi = pZL + σi(z)ZL .

Conversely, assume that p is totally split in L/K. Let P be a prime ideal
above p. Then P is of relative degree 1. Let k ≥ 1 be an integer, and consider
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the natural homomorphism φ from ZK/p
k to ZL/P

k obtained by sending the
class of x modulo pk to the class of x modulo Pk. Since p is unramified, we
have Pk ∩ ZK = pk (see Exercise 14). Therefore, the map φ is injective. By
multiplicativity of the norm, we have

∣∣ZL/Pk
∣∣ = NL/Q(P)k and

∣∣ZK/pk
∣∣ =

NK/Q(p)k. Since P is of relative degree 1, we have NL/Q(P) = NK/Q(p);

therefore,
∣∣ZL/Pk

∣∣ =
∣∣ZK/pk

∣∣. It follows that our map φ is also surjective
or, in other words, that any element of ZL is congruent to an element of ZK
modulo Pk.

In particular, there exists x ∈ ZK such that x − θ ∈ Pk. Taking the
relative norm of this, we obtain xℓ − α ∈ pk, and so the congruence xℓ ≡ α
(mod pk) is soluble for all k. It follows from above that if the congruence is
soluble for a = z(p, ℓ)− 1 = e(p/ℓ)ℓ/(ℓ− 1) but not for a+ 1 = z(p, ℓ), then
p is unramified and not split, so p is inert.

We now assume that the congruence xℓ ≡ α (mod pk) is not soluble in
k for k = z(p, ℓ)− 1, and we let a be the largest exponent for which it does
have a solution, so that a ≤ z(p, ℓ)− 2.

Lemma 10.2.11. With this notation, we have a ≥ 1 and ℓ ∤ a.

Proof. This follows immediately from Proposition 10.2.13, which we will
prove in the next section. ⊓⊔

Thus, if we write a = ℓq+r with 0 ≤ r < ℓ as above, we know that r ≥ 1. If
we use our construction, we obtain an element z such that vp(NL/K(z)) = r ≥
1. Multiplying by an element prime to p, we may assume that z ∈ ZL. If we set
I = pZL+zZL, so that pZL ⊂ I ⊂ ZL, then vp(NL/K(I)) ≥ 1. Hence I 6= ZL,

and I 6= pZL since otherwise z ∈ p, and so vp(NL/K(z)) = vp(z
ℓ) ≥ ℓ, in

contradiction with r < ℓ. So pZL is not a maximal ideal, hence p is not inert,
and since we have seen that p cannot be split, it follows that p is totally
ramified in L/K, say p = Pℓ.

To compute the valuation of the relative discriminant, we use Theorem
10.1.22. Since d(L/K) = NL/K(D(L/K)) and NL/K(P) = p (the ideal p

being totally ramified in L/K), we obtain the formula

vp(d(L/K)) =
∑

i≥0

(|Gk| − 1) .

Let us compute the cardinalities of the ramification groupsGk. Recall that
if θℓ = α and ρ = π−q, then z = ρ(θ − x). We know that vP(NL/K(z)) =
ℓvp(NL/K(z)) = ℓr. I claim that vP(z) = r. Indeed, for 1 ≤ j ≤ ℓ − 1 we
have

vP(σj(z)−z) = vP(ρθ(1−ζj)) = ℓ

(
−q +

e

ℓ− 1

)
= z(p, ℓ)−1−(a−r) > r .
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Thus, if vP(z) > r, we would have vP(σj(z)) > r for all j, so vP(NL/K(z)) >
ℓr, which would be a contradiction. Thus, vP(z) ≤ r; hence for all j,
vP(σj(z)) = vP(z), from which it follows that vP(z) = r, as claimed.

Since r is coprime to ℓ, let u and v be such that

ur + vℓ = 1 , 1 ≤ u < ℓ ,

ψ = zuπv = π(1−ua)/ℓ(θ − x)u .

Then vP(ψ) = uvP(z) + vℓ = 1, so ψ is a uniformizer for the ideal P.
Since ℓ is prime, Gk = G or Gk = {1} and Lemma 10.1.11 implies that

Gk = G if and only if vP(σ(ψ)−ψ) ≥ k+ 1. We now compute this quantity.
We have

vP(σ(ψ)− ψ) = 1− ua+ vP((θζ − x)u − (θ − x)u) .
Set y = θ − x = πqz. We then have

(θζ − x)u − (θ − x)u = (y + θ(ζ − 1))u − yu =
u∑

j=1

(
u

j

)
yu−jθj(ζ − 1)j .

Since vP(y) = qℓ + r = a, vP(ζ − 1) = eℓ/(ℓ − 1) = z(p, ℓ) > a, and

vP

((
u
j

))
= 0 since 1 ≤ u ≤ ℓ− 1, the valuation at P of the term of degree j

is equal to

(u− j)a+ j(z(p, ℓ)− 1) = ua+ j(z(p, ℓ)− 1− a) .
Since a < z(p, ℓ) − 1, these valuations are strictly increasing with j, and so
the valuation of the sum is equal to the lowest valuation, obtained for j = 1.
Hence,

vP(σ(ψ) − ψ) = 1− ua+ (ua+ z(p, ℓ)− 1− a) = z(p, ℓ)− a .

If follows that Gk = G if and only if 0 ≤ k ≤ z(p, ℓ) − 1 − a, hence
vP(D(L/K)) = (ℓ − 1)(z(p, ℓ) − a), and since p is totally ramified, we have
vp(d(L/K)) = vP(D(L/K)). Thus,

vp(d(L/K)) = (ℓ − 1)(z(p, ℓ)− a) = ℓ− 1 + ℓe− (ℓ− 1)a ,

as claimed, thus finishing the proof of Theorem 10.2.9. ⊓⊔

Corollary 10.2.12. Let K be a number field, ℓ a prime number such that
ζℓ ∈ K, and L = K( ℓ

√
α), where α ∈ K∗ r K∗ℓ. Let p be a prime ideal of

ZK . Then we have the following results.

(1) The ideal p is unramified in L/K if and only if ℓ | vp(α), and in addition,
either p ∤ ℓ or p | ℓ and the congruence

xℓ ≡ α (mod pz(p,ℓ)−1+vp(α)) (1)

has a solution in K.



504 10. Appendix A: Theoretical Results

(2) The ideal p is ramified in L/K if and only if either ℓ ∤ vp(α) or if ℓ | vp(α)
and the congruence (1) has no solution in K.

(3) We always have (ℓ − 1) | vp(d(L/K)), and vp(d(L/K)) = ℓ − 1 if and
only if ℓ ∤ vp(α) and p ∤ ℓ.

Proof. This is an immediate consequence of Theorem 10.2.9. ⊓⊔

10.2.4 Algorithms for ℓth Powers

In view of Hecke’s Theorem 10.2.9, we must be able to check the solubility
of congruences of the type

xℓ ≡ α (mod pk+vp(α))

when p | ℓ and ℓ | vp(α), for 1 ≤ k ≤ z(p, ℓ) − 1 = ℓe(p/ℓ)/(ℓ − 1). If π
is a uniformizer of p, we can replace α by α/πvp(α) and x by x/πvp(α)/ℓ, so
we may assume without loss of generality that vp(α) = 0, an assumption we
make in the rest of this section.

There are several methods to check the solubility of the congruence. The
most straightforward is to use Algorithm 4.2.17 directly, which gives the
structure of (ZK/p

k)∗, together with Algorithm 4.2.18, which gives the dis-
crete logarithm of α. The congruence is soluble if and only if the components
of the discrete logarithm of α corresponding to the cyclic components of
(ZK/p

k)∗ that are divisible by ℓ are themselves divisible by ℓ. This method
can take some time since the computation of (ZK/p

k)∗ and/or of discrete
logarithms in this group may be an expensive operation.

In our specific situation, we can considerably improve on this general
method by using the following proposition.

Proposition 10.2.13. Keep the above notation and hypotheses, and let π
be a uniformizer of p. Let k be an integer such that 1 ≤ k ≤ z(p, ℓ) − 1 =
ℓe(p/ℓ)/(ℓ− 1), and let xk−1 ∈ ZK be such that xℓk−1 ≡ α (mod pk−1). The

congruence xℓk ≡ α (mod pk) is soluble if and only if one of the following two
conditions holds:

(1) vp(x
ℓ
k−1 − α) ≥ k, in which case we can take xk = xk−1;

(2) vp(x
ℓ
k−1 − α) = k − 1 and k ≡ 1 (mod ℓ), in which case we can take

xk = xk−1 + π(k−1)/ℓy, where y is a solution of the congruence yℓ ≡
(α− xℓk−1)/π

k−1 (mod ∗p).

Proof. Assume first that the congruence modulo pk is satisfied. Since ZK/p
is a perfect field of characteristic ℓ, the map x 7→ xℓ is a bijection (hence an
injection) from ZK/p to itself, so if we write xk = xk−1 + u, we know that
u ∈ p. If u = 0 — in other words, if vp(x

ℓ
k−1 − α) ≥ k — we are in case (1).

Thus, assume that vp(x
ℓ
k−1 − α) = k − 1.
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By the binomial theorem we can write

xℓk − α = xℓk−1 − α+ s+ uℓ

with

s =
∑

1≤j≤ℓ−1

(
ℓ

j

)
xℓ−jk−1u

j ,

and in particular vp(s) = e(p/ℓ) + vp(u).
If vp(u) ≥ e(p/ℓ)/(ℓ − 1), we have vp(u

ℓ) ≥ z(p, ℓ) − 1 and vp(s) ≥
z(p, ℓ) − 1, hence since k ≤ z(p, ℓ) − 1 we have vp(x

ℓ
k − α) = vp(x

ℓ
k−1 −

α) = k − 1, which is a contradiction. Thus if we are not in case (1), we
have 1 ≤ vp(u) < e(p/ℓ)/(ℓ − 1). In this case we have vp(s + uℓ) = ℓvp(u);
hence a necessary condition for the solubility of the congruence modulo pk is
that ℓvp(u) = vp(x

ℓ
k−1 − α) = k − 1, that is, k ≡ 1 (mod ℓ), in which case

we must choose u such that vp(u) = (k − 1)/ℓ. Since k ≡ 1 (mod ℓ) and
k ≤ z(p, ℓ)− 1 = ℓe(p/ℓ)/(ℓ− 1), we have k ≤ ℓe(p/ℓ)/(ℓ− 1)− ℓ+ 1; hence
e(p/ℓ) ≥ (ℓ− 1)((k − 1)/ℓ) + ℓ− 1. Thus

vp(s) = e(p/ℓ) + vp(u) = e(p/ℓ) +
k − 1

ℓ
≥ k + ℓ− 2 ≥ k ,

and hence
(xk−1 + u)ℓ − α ≡ xℓk−1 − α+ uℓ (mod pk) .

Thus, if we let y ∈ ZK be such that u/π(k−1)/ℓ ≡ y (mod ∗p), we will have
uℓ ≡ yℓπk−1 (mod pk), so yℓ ≡ (α−xℓk−1)/π

k−1 (mod ∗p), finishing the proof
of the necessity of the conditions.

Conversely, if condition (1) is satisfied, we take xk = xk−1. If it is not
satisfied we are in case (2), and our construction shows how to construct xk
if we can find a y ∈ ZK such that yℓ ≡ (α − xℓk−1)/π

k−1 (mod ∗p). Such a
y exists (and is unique modulo p) since ZK/p is a perfect field, finishing the
proof of the proposition. ⊓⊔

From this proposition, we immediately deduce the following algorithm for
solving ℓth power congruences. The proof of its validity, which is immediate
from the above proposition, is left to the reader (Exercise 17).

Algorithm 10.2.14 (Solving ℓth Power Congruences). Let K be a number
field, let ℓ be a prime number such that ζℓ ∈ K, let p be a prime ideal of K
above ℓ, and let α ∈ ZK rZℓK be an integral element of K such that vp(α) = 0.
(As explained earlier, it is easy to reduce to this case if we have more the more
general condition ℓ | vp(α).) If k is an integer such that 1 ≤ k ≤ z(p, ℓ)− 1 =
ℓe(p/ℓ)/(ℓ− 1), this algorithm either determines an x ∈ ZK such that xℓ ≡ α
(mod pk) or says that there is no such x. We assume as usual that the prime
ideal p is given by a two-element representation p = ℓZK +πZK with vp(π) = 1
(otherwise, change π into π + ℓ).
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1. [Initialize] Set v ← 0 and x← 0.

2. [Compute α2] (Here v = vp(x
ℓ−α), v < k and ℓ | v.) Set α1 ← (α−xℓ)/πv.

This will be of the form α1 = β/d with β ∈ ZK and d ∈ Z coprime to ℓ. Let
d1 be an inverse of d modulo ℓ, and set α2 ← d1β mod ℓ.

3. [Compute y] Compute y ∈ ZK such that yℓ ≡ α2 (mod p). Such a y will
be unique modulo p and can be computed by simple enumeration if N (p) is

small or by the formula y ≡ αN (p)/ℓ
2 (mod p) otherwise.

4. [Loop on x] Set x ← x + πv/ℓy mod ℓ and v ← vp(xℓ − α). If v < k and
ℓ | v, go to step 2.

5. [Terminate] If v ≥ k, output x; otherwise output a message saying that there
is no solution. Terminate the algorithm.

Remarks

(1) By our choice of π, we have vp(π) = 1 and vq(π) = 0 for every prime
ideal q above ℓ and different from p. It follows that if γ ∈ ZK , we have
vp(γ/π

vp(γ)) = 0 and vq(γ/π
vp(γ)) ≥ 0 for every prime ideal q above

ℓ and different from p. Proposition 4.2.23 shows that γ/πvp(γ) is of the
form β/d with β ∈ ZK and d coprime to ℓ, as claimed in step 2 of the
algorithm.

(2) The usual way to compute the p-adic valuation of an element γ ∈ ZK is
to use the five-element representation of the prime ideal p as explained
in [Coh0, Algorithm 4.8.17] and the remark following it (see Algorithms
2.3.13 and 2.3.14 of the present book in the relative case). In the present
case, however, we can also compute γ/πv on some integral basis for v = 0,
1, ... as long as the denominator is not divisible by ℓ. For the same
reason as in (1), the largest possible value of v will be equal to vp(γ).
The advantage of this method is that the value of α1 used in step 2 will
have already been computed. The disadvantage is that we do successive
divisions (by π) instead of successive multiplications, which is usually
more expensive.

(3) If we want to compute the integer a that occurs in Theorem 10.2.9 (in
other words, the largest k ≤ z(p, ℓ)− 1 such that the congruence xℓ ≡ α
(mod pk) is soluble), we use the above algorithm applied to k = z(p, ℓ)−1,
and we replace step 5 by the following:

5’. [Terminate] Output a← min(z(p, ℓ)−1, v) and terminate the algorithm.

Let us consider two special cases of Algorithm 10.2.14.
• k ≤ ℓ. Note that this always happens when e(p/ℓ) = ℓ − 1, which is a

very common occurrence. In this case, there is a single loop: we compute y
such that yℓ ≡ α (mod p) by one of the two methods indicated in step 3. The
congruence xℓ ≡ α (mod pk) is soluble if and only if vp(y

ℓ−α) ≥ k, in which
case we can, of course, take x = y.
• e(p/ℓ) < ℓ(ℓ − 1) and k > e(p/ℓ). In this case, we first check using

Algorithm 10.2.14 or another (see, for example, Algorithm 10.2.15) whether
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or not the congruence xℓe ≡ α (mod pe(p/ℓ)) has a solution. If a solution
does exist, then the congruence xℓ ≡ α (mod pk) is soluble if and only if
vp(xℓe − α) ≥ k, in which case we can of course take x = xe. Indeed, in that
case the largest multiple of ℓ that is strictly less than z(p, ℓ)− 1 is equal to
z(p, ℓ)− ℓ− 1, and we have

z(p, ℓ)− ℓ− 1 =
ℓe(p/ℓ)

ℓ − 1
− ℓ = e(p/ℓ) +

e(p/ℓ)

ℓ− 1
− ℓ < e(p/ℓ)

since e(p/ℓ) < ℓ(ℓ − 1). Thus, according to Proposition 10.2.13, if the con-
gruence has a solution xe modulo pe(p/ℓ), it will have a solution modulo pk if
and only if vp(x

ℓ
e − α) ≥ k, as claimed.

If, in addition, k ≤ e(p/ℓ), we may also use the following algorithm (see
[Dab2]).

Algorithm 10.2.15 (Solving ℓth Power Congruences When k ≤ e(p/ℓ)).
Keep the notation and hypotheses of Algorithm 10.2.14, and assume in addition
that k ≤ e(p/ℓ). This algorithm determines an x ∈ ZK such that xℓ ≡ α
(mod pk) or says that there is no such x. We assume given an integral basis
(ωi)1≤i≤n of K as well as the prime ideal p by a two-element representation
p = ℓZK + πZK .

1. [Compute the matrix of the ωℓj ] Compute the n × n matrix M whose jth

column expresses ωℓj on the ωi for 1 ≤ j ≤ n. The coefficients of M can be
reduced modulo ℓ.

2. [Compute the matrix of pk] Set β ← πk. Compute the n×n matrix P whose
jth column expresses βωj on the ωi for 1 ≤ j ≤ n. The coefficients of P can
be reduced modulo ℓ. Finally, replace P by the HNF of (P |ℓIn) (P will be the
HNF matrix of pk on the ωi).

3. [Compute HNF] Apply an HNF algorithm to the matrix (M |P ), and let U =(
U1 U2

U3 U4

)
be a unimodular matrix and H an HNF matrix such that (M |P )U =

(0|H). We can discard the matrices U2, U3, and U4.

4. [Terminate] Let A be the column vector expressing α on the ωi. If H−1A /∈
Zn, output a message saying that the congruence is not soluble. Otherwise,
output the element x whose coefficients on the ωi are the entries of the vector
U1H

−1A. Terminate the algorithm.

Proof. First note that by the binomial theorem, if x and y are in ZK we
have (x + y)ℓ ≡ xℓ + yℓ (mod ℓZK). Thus when k ≤ e(p/ℓ) = vp(ℓZK), this
is true also modulo pk. It follows that if we write x =

∑
1≤j≤n xjωj with

xj ∈ Z, then

xℓ ≡
∑

1≤j≤n
xℓjω

ℓ
j ≡

∑

1≤j≤n
xjω

ℓ
j (mod pk)

by Fermat’s little theorem. If α =
∑

1≤i≤n aiωi, and if (βj)1≤j≤n is a Z-basis

of pk, it follows that the congruence xℓ ≡ α (mod pk) is soluble if and only
if there exist xj and yj in Z such that
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∑

1≤j≤n
xjω

ℓ
j +

∑

1≤j≤n
yjβj =

∑

1≤i≤n
aiωi .

This means that the column vector A of the ai belongs to the image of the
matrix (M |P ), where M is the matrix of the ωℓj and P the matrix of the βj .

On the other hand, the HNF matrix of pk is computed as explained in
Proposition 2.3.15. Since k ≤ e(p/ℓ), all computations can of course be done
modulo ℓ. This proves the algorithm’s validity. ⊓⊔

Remark. If we are interested only in the existence of a solution and not
in the solution itself, in step 3 we can simply compute the image of the matrix
(M |P ) by Gaussian elimination in the field Fℓ, ignoring completely any HNF
computation. This will probably be faster.

10.3 Dirichlet Series with Functional Equation

10.3.1 Computing L-Functions Using Rapidly Convergent Series

In this section, we will state and prove a generalization of Theorem 6.1.4,
which is essentially due to Lavrik (see [Lav]). I thank E. Friedman for help
in writing this section.

In the sequel, using a traditional notation, we will usually write a complex
number s as s = σ + iT , where σ is the real part of s and T the imaginary
part. We start with the following definition.

Definition 10.3.1. Let ai be a finite sequence of positive real numbers, let
bi be a sequence of complex numbers, and let D be a positive real number. If
n ≥ 1, the function γ(s) defined by

γ(s) = Ds/2
n∏

i=1

Γ (ais+ bi)

will be called a gamma product.

The main properties of gamma products are summarized in the following
proposition.

Proposition 10.3.2. Let γ(s) = Ds/2
∏n
i=1 Γ (ais+bi) be a gamma product.

Then we have the following results.

(1) The function γ(s) is a meromorphic function of s.
(2) There exists σ0 ∈ R such that γ(s) is holomorphic for Re(s) > σ0.
(3) For any real numbers σ1 and σ2 such that σ1 < σ2, the function γ(s) has

only a finite number of poles s such that σ1 < Re(s) < σ2.
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(4) Set N = 2(
∑
i ai), P = D1/2

∏
i a
ai

i , Br =
∑

i Re(bi), and Bi =∑
i Im(bi). For any fixed real number σ, as T → ±∞ we have

|γ(σ + iT )| ∼ C±P
σ |T |Nσ/2+Br−n/2 e−π|T |N/4 ,

with
C± = (2π)n/2

∏

i

a
Re(bi)−1/2
i e∓πBi/2 .

Proof. It is clear from the definition that γ(s) is a meromorphic function
whose poles are the complex numbers s such that ais + bi = −k for some
nonnegative integer k — in other words, the numbers s = −(bi+k)/ai. Since
the ai are positive real numbers, we have Re(s) = −(Re(bi)+k)/ai, so we can
take σ0 = maxi(−Re(bi)/ai). In addition, for each i there are only a finite
number of values of the integer k such that σ1 < −(Re(bi) + k)/ai < σ2, so
this proves (1), (2), and (3).

For (4), we recall the complex Stirling formula for the gamma function,
which implies that for fixed real σ, as |T | → ∞ we have

|Γ (σ + iT )| ∼
√

2π |T |σ−1/2
e−π|T |/2 .

A short computation gives the result of the proposition. ⊓⊔

The number N = 2
∑

1≤i≤n ai is the most important number associated
with the gamma product γ(s) and will be called the degree of the function
γ(s).

Example. Let γ(s) be the gamma factor associated with the Dedekind
zeta function of a number fieldK of signature (r1, r2) and degree n = r1+2r2.
Then we know that

γ(s) = Ds/2Γ
(s

2

)r1+r2
Γ

(
s+ 1

2

)r2

with D = |d(K)|π−n (see, for example, [Coh0, Theorem 4.9.12]). Thus we

have N = r1 + 2r2 = n, P = |d(K)|1/2 /(2π)n/2, Br = r2/2, and Bi = 0;
hence, in particular, the degree of γ(s) is equal to the degree of the number
field K, whence the name.

The following lemma gives the essential properties that we need about
gamma products.

Lemma 10.3.3. Let γ(s) be a gamma product. Denote by W (t) the inverse
Mellin transform of γ(s), in other words,

W (t) =
1

2iπ

∫ δ+i∞

δ−i∞
t−zγ(z) dz ,

and let σ0 be the real part of the rightmost pole of γ.
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(1) The integral defining W (t) converges absolutely and is independent of
δ > σ0.

(2) When t tends to ∞, the function W (t) tends to 0 faster than any power
of t. More precisely, using the notation of Proposition 10.3.2, as t tends
to ∞ we have

W (t) ≤ At(2Br−n+1)/Ne−(πN/4)(t/P )2/N

for some explicit constant A > 0.
(3) For Re(s) > σ0 we have

γ(s) =

∫ ∞

0

tsW (t)
dt

t
.

Proof. (1). Since γ(z) decreases exponentially when |Im(z)| tends to infin-
ity with Re(z) fixed, it is clear that the integral defining W (t) converges abso-
lutely. For the same reason, by integrating over the rectangle [δ1, δ2]× [−T, T ]
and letting T tend to∞, it is clear that the integral is independent of δ > σ0,
proving (1).

(2). For any δ > σ0, we clearly have

|W (t)| ≤ 1

2π
t−δ

∫ ∞

−∞
|γ(δ + iT )| dT ,

and this last integral is convergent, so W (t) tends to 0 faster than any power
of t since δ can be chosen arbitrarily large. More precisely, if for simplicity
we set C2 = Br − n/2 and if C1 is suitably large, Proposition 10.3.2 implies
that

|γ(δ + iT )| ≤ C1P
δ |T |Nδ/2+C2 e−(π/4)N |T | ,

from which it follows as above that

W (t) ≤ C1(P/t)
δ

π

Γ (Nδ/2 + C2 + 1)

(πN/4)Nδ/2+C2+1
.

We choose δ close to the smallest possible value of the right-hand side, for
example, δ = (π/2)(t/P )2/N , which will indeed be larger than σ0 for t suffi-
ciently large. A small computation gives (2) with an explicit constant A (see
Exercise 18).

(3). This is simply Mellin’s inversion formula, which is applicable here
since γ(s) and W (t) are rapidly decreasing functions as |Im(s)| → ∞ and
t→∞, respectively. ⊓⊔

Remark. If we use the method of steepest descent instead of simple in-
equalities, it is not difficult to obtain an asymptotic formula for W (t) instead
of an upper bound (see [Bra]), but we will not need this. See also [Tol] for
precise inequalities.
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The main result that we want to prove is the following. (Recall that a
meromorphic function f having a finite number of poles is of finite type α ≥ 0
if for all ε > 0 and all sufficiently large |z| we have |f(z)| = O

(
exp
(
|z|α+ε))

.)

Theorem 10.3.4. For i = 1 and i = 2, let Li(s) =
∑

n≥1 ai(n)n−s be
Dirichlet series such that the ai(n) have at most polynomial growth (or, equiv-
alently, the series Li(s) converge in some right half-plane Re(s) ≥ σ0). For
i = 1 and i = 2, let γi(s) be functions such that the following conditions hold.

(1) The functions γi(s) are gamma products with the same degree N .
(2) The functions Λi(s) = γi(s)Li(s) extend analytically to the whole complex

plane into meromorphic functions of finite type having a finite number of
poles.

(3) There exists a functional equation

Λ1(k − s) = w · Λ2(s)

for some constant w ∈ C∗, some real number k, valid for all s different
from the poles of Λ2(s).

Define the functions Fi(s, x) by

Fi(s, x) =
xs

2iπ

∫ δ+i∞

δ−i∞

x−zγi(z)
z − s dz =

1

2iπ

∫ δ+i∞

δ−i∞

x−zγi(z + s)

z
dz ,

where δ is sufficiently large, and the functions pi(s, x) by

pi(s, x) =
∑

a6=s
Resz=a

(
xz−sΛi(z)
s− z

)
,

where the sum is over all poles a of Λi(z) different from s.
Then for all t0 > 0, we have

Λ1(s) =
∑

n≥1

a1(n)

ns
F1(s, nt0) + w

∑

n≥1

a2(n)

nk−s
F2

(
k − s, n

t0

)
+ p1

(
s,

1

t0

)

and symmetrically

Λ2(s) =
∑

n≥1

a2(n)

ns
F2

(
s,
n

t0

)
+ w−1

∑

n≥1

a1(n)

nk−s
F1(k − s, nt0) + p2(s, t0) .

If, in addition, t0 = 1, we have pi(s, 1) = φi(s), where φi(s) is the polar part
of Λi(s): in other words, the unique rational function such that Λi(s)− φi(s)
is an entire function and φi(s) tends to 0 as |s| tends to ∞.

Proof. Before beginning the proof itself, we will make a few remarks about
convergence. First, it is clear that Li(s) converges in some right half-plane if
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and only if ai(n) has at most polynomial growth. Since the functions Λi(s)
have only a finite number of poles, we may choose a real number σ0 large
enough so that for i = 1 and i = 2, the functions Li(s) converge absolutely
for Re(s) > σ0 and all the poles of Λi(s) are in the strip k−σ0 < Re(s) < σ0.

For i = 1 and i = 2, denote by Wi(t) the inverse Mellin transform of γi(s)
and by σi the real part of the rightmost pole of γi(s). The definition and
main properties of this function are given in Lemma 10.3.3. In addition, for
Re(s) > σi we have

∫ ∞

x

Wi(t)t
s dt

t
=

1

2iπ

∫ ∞

x

∫ δ+i∞

δ−i∞
t−zγi(z) dz t

s dt

t

=
1

2iπ

∫ δ+i∞

δ−i∞
γi(z)

∫ ∞

x

ts−z−1 dtdz

=
1

2iπ

∫ δ+i∞

δ−i∞
γi(z)

xs−z

z − s dz = Fi(s, x) ,

where the exchange of integral signs is justified by the fact that the functions
γi(z) are rapidly decreasing as |z| → ∞. Thus, for Re(s) > σi we have

Fi(s, x) =

∫ ∞

x

Wi(t)t
s dt

t
.

Set σ = max(σ0, σ1, σ2), and choose s such that Re(s) > σ. We have

Λi(s) =
∑

n≥1

∫ ∞

0

ai(n)

ns
Wi(t)t

s dt

t
=
∑

n≥1

∫ ∞

0

ai(n)Wi(nu)u
s du

u

=

∫ ∞

0

∑

n≥1

ai(n)Wi(nu)u
s du

u
=

∫ ∞

0

θi(u)u
s du

u

with
θi(u) =

∑

n≥1

ai(n)Wi(nu) .

In the above derivation, we can justify the exchange of summation and in-
tegration as follows. We break up the integral into an integral from 0 to 1
plus an integral from 1 to ∞. The exchange in the integral from 0 to 1 is
justified since the interval is compact and the series converges uniformly. The
exchange in the integral from 1 to ∞ is justified by the fact that by Lemma
10.3.3, |Wi(u)| decreases more rapidly than any power of u as u→∞.

It follows from the Mellin inversion formula that for δ > σ,

θi(u) =
1

2iπ

∑

n≥1

ai(n)

∫ δ+i∞

δ−i∞
(nu)−sγi(s) ds =

1

2iπ

∫ δ+i∞

δ−i∞
Λi(s)u

−s ds ,

where the interchange of summation and integration follows immediately
from the fact that γi(s) is a gamma product.
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We now want to shift the line of integration to Re(s) = k − δ. To justify
this, we need the following lemma

Lemma 10.3.5. Keep all the above notation.

(1) For all fixed r ∈ R, there exists e(r) such that as |T | → ∞, we have

Li(r + iT ) = O
(
|T |e(r)

)
.

(2) For all r1 < r2, we have

lim
|T |→∞

∫ r2+iT

r1+iT

Λi(s)u
−s ds = 0 .

Proof. We prove (1) for L1, the result following by symmetry. For r > σ,
we have L1(r+iT ) = O(1) since the series converges absolutely. For r < k−σ,
we apply the functional equation, which gives us

L1(r + iT ) = wL2(k − r − iT )
γ2(k − r − iT )

γ1(r + iT )
.

Since γ1 and γ2 are gamma products with the same degree N and L2(k− r−
iT ) = O(1) for r < k − σ, it follows that for r < k − σ we have

L1(r + iT ) = O
(
|T |c(r)

)

for some constant c(r) depending only on r. Since Λ1(s) is a function of finite
type and γ1(s) is a gamma product, the function L1(s) is of finite type in any
strip σ1 ≤ Re(s) ≤ σ2. Thus we may apply the Phragmén–Lindelöf convexity
theorem on the strip [k− σ, σ] (see, for example, [Lan3]), which implies that

L1(r+ iT ) = O
(
|T |e(r)

)
for any r in the strip k−σ < r < σ, with an explicit

value of the exponent e(r) (which we do not need), proving (1). The result of
(2) is an immediate consequence of (1) and of the fact that γi(s) is a gamma
product. ⊓⊔

Resuming the proof of the theorem, thanks to this lemma we may shift
the line of integration to Re(s) = k− δ, and we simply catch all the residues
at the poles of Λi(s). Changing s into k − s gives

θi(u) =
∑

a

Resz=a(Λi(z)u
−z) +

1

2iπ

∫ δ+i∞

δ−i∞
Λi(k − s)us−k ds ,

where the sum is over all poles a of Λi(s). Applying the functional equation,
we obtain
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θ1(u) =
∑

a

Resz=a(Λi(z)u
−z) + wu−k

1

2iπ

∫ δ+i∞

δ−i∞
Λ2(s)

( 1

u

)−s
ds

=
∑

a

Resz=a(Λi(z)u
−z) + wu−kθ2

(1

u

)
.

Changing u into 1/u gives the functional equation

θ1

( 1

u

)
= wukθ2(u) +

∑

a

Resz=a(Λi(z)u
z) .

Conversely, by computing the Mellin transform it is easily seen that this
functional equation is equivalent to the functional equation linking Λ1(s) with
Λ2(s).

Coming back to our integral representation of Λ1(s), for any t0 > 0, we
can write Λ1(s) = I1 + I2 with

I1 =

∫ t0

0

θ1(u)u
s du

u
and I2 =

∫ ∞

t0

θ1(u)u
s du

u
.

Consider first the integral I2. We have

I2 =
∑

n≥1

a1(n)

∫ ∞

t0

W1(nu)u
s du

u
=
∑

n≥1

a1(n)

ns

∫ ∞

nt0

W1(t)t
s dt

t

=
∑

n≥1

a1(n)

ns
F1(s, nt0) .

Consider now the integral I1. Changing u into 1/u and using the functional
equation for θi(u) that we just derived, we obtain

I1 =

∫ ∞

1/t0

θ1

( 1

u

)
u−s

du

u
= wI ′1 +

∑

a

I3(a)

with

I ′1 =

∫ ∞

1/t0

θ2(u)u
k−s du

u

and

I3(a) =

∫ ∞

1/t0

Resz=a(u
zΛ1(z))u

−1−s du .

The integral I ′1 is of the same form as I2 with θ1 replaced by θ2, s by k − s,
and t0 by 1/t0; hence we obtain

I ′1 =
∑

n≥1

a2(n)

nk−s
F2

(
k − s, n

t0

)
.
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But since Re(s) > σ, we have

I3(a) = Resz=a

(
Λ1(z)

∫ ∞

1/t0

uz−1−s du

)
= Resz=a

(
Λ1(z)t

s−z
0

s− z

)
.

Putting everything together gives the desired formula for Λ1(s) for Re(s) > σ.
Since Wi(t) tends to 0 faster than any power of t as t → ∞, it is easily

seen that because s is fixed, Fi(s, x) tends to 0 faster than any power of x as
x → ∞ (see Exercise 19). It follows that the right-hand side of the formula
that we just proved for Λ1(s) defines an analytic continuation of Λ1(s) to
the whole complex plane outside the poles of p1(s, 1/t0). By uniqueness of
analytic continuation, it follows that the identity is valid for every s that is
not a pole of Λ1(s), and the formula for Λ2(s) follows by symmetry.

The last statement of the theorem follows from the next lemma.

Lemma 10.3.6. For any rational function φ(z) that tends to 0 when |z|
tends to ∞, we have the identity

∑

a6=s
Resz=a

(
φ(z)

s− z

)
= φ(s) ,

where the sum is over all the poles a of φ(z) different from s.

Proof. Let R be a real positive number larger than the modulus of the
poles of φ(z) and of |s|, and let CR be the circle of radius R centered at the
origin. By the residue theorem we have

∑

a6=s
Resz=a

(
φ(z)

s− z

)
− φ(s) =

1

2iπ

∫

CR

φ(z)

s− z dz .

Since φ(z) is a rational function that tends to 0 when |z| tends to infinity,
there exists B such that |φ(z)| ≤ B/ |z| for |z| sufficiently large. It follows
that ∣∣∣∣

∫

CR

φ(z)

s− z dz
∣∣∣∣ ≤ 2πR

B

R

1

R− |s| =
2πB

R− |s| ,

and this tends to zero when R tends to infinity, proving the lemma and hence
the theorem. ⊓⊔

The main point of the above theorem is that it allows us to compute the
value of Λi(s) in the whole complex plane, which is not possible using the
Dirichlet series directly, and also to compute it using a rapidly convergent
series, since the functions Fi(s, x) decrease faster than any power of x to 0
as x → ∞, as we have seen above. In fact, we know from Lemma 10.3.3 (2)
and Exercise 19 that they even decrease exponentially fast.
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We have kept the arbitrary positive parameter t0 so that we can check
the validity of an implementation, since the result must be independent of
t0. In practice, to ensure fastest convergence, if Im(s) is small, one should
choose t0 close to 1, or equal to 1 if the implementation has been sufficiently
checked. On the other hand, if Im(s) is large, one should choose a complex
value for t0 (see Exercise 20). Another use for having a variable t0 is to obtain
approximate functional equations ; see [Lav] for details.

Remark. The formula given above for Λi(s) is one among an infinite
family of formulas. Indeed, if g(s) is an entire function of finite type and
if we set γ′1(s) = g(s)γ1(s), γ

′
2(s) = g(k − s)γ2(s), and Λ′

i(s) = γ′i(s)Li(s),
then we still have a functional equation Λ′

1(k − s) = wΛ′
2(s). Although the

functions γ′i(s) are strictly speaking not gamma products in general, if g(s)
satisfies very mild conditions, it is easy to see that the proof of Theorem
10.3.4 goes through without change for this type of function (see Exercise
21). The possibility of using an arbitrary complex value of t0 is a special case
of this construction. The advantage of having an auxiliary function g(s) is
that we can tailor it so that the computation of Li(s) is as fast and accurate
as possible. In practice, the method sketched in Exercise 20 using complex
values of t0 is usually sufficient.

10.3.2 Computation of Fi(s, x)

The computation of pi(s, x) being trivial, to be able to compute Λi(s) we
must give an algorithm for computing the functions Fi(s, x). From now on,
we drop the index i, and write W (t) instead of Wi(t), γ(s) instead of γi(s),
and F (s, x) instead of Fi(s, x).

As can be seen for the formulas, we will need F (s, x) for complex s and
positive real x. We can write

F (s, x) = γ(s)−
∫ x

0

W (t)ts
dt

t
.

We are going to expand firstW (t) and then F (s, x) into a (generalized) power
series. By definition,

W (t) =
1

2iπ

∫ δ+i∞

δ−i∞
t−zγ(z) dz .

Here, δ is in particular larger than the real part of all the poles of the function
γ(z). If we push the line of integration to the left and stop at an abscissa δ′

that is not the real part of a pole of γ(z), we will have “caught” the residues of
the function t−zγ(z) with real part between δ′ and δ. Since γ(z) is a gamma
product, the integral of t−zγ(z) on the line Re(z) = δ′ tends to zero when δ′

tends to −∞, assuming we choose δ′ such that the distance of δ′ to the real
parts of the poles of γ(z) is always larger than η for some fixed η > 0. By
definition of a gamma product, it is easy to see that this is indeed possible.
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It follows that
W (t) =

∑

a

Resz=a
(
t−zγ(z)

)
,

where the sum is over all the poles of the function γ(z). If

γ(z) =
∑

1≤k≤m

uk,a
(z − a)k + holomorphic at a

is the polar expansion of γ(z) in the neighborhood of z = a, we have

Resz=a
(
t−zγ(z)

)
= t−a

m−1∑

k=0

(−1)k

k!
uk+1,a logk t .

A little computation shows that if s is not a pole of γ(s), we have

F (s, x) = γ(s)−
∑

a

xs−a
m−1∑

j=0

(−1)j
logj x

j!

m∑

k=j+1

uk,a
(s− a)k−j .

This is the desired generalized power series expansion of F (s, x).
When s is a pole a0 of γ(s), a similar computation shows that

F (s, x) =

m∑

j=0

uj,a0(−1)j
logj x

j!

−
∑

a6=a0

xs−a
m−1∑

j=0

(−1)j
logj x

j!

m∑

k=j+1

uk,a
(s− a)k−j ,

where u0,a0 is the next term (in other words, the constant term) in the Lau-
rent series expansion of γ(z) around z = a0 (see Exercise 22).

It is easy to show that this power series converges for all x (see Exercise
23) but suffers from bad cancellation problems when x is large. More precisely,
although some of the terms in the above series for F (s, x) are quite large, we
know from Exercise 19 that the final result will be exponentially small when
x is large, hence we should avoid using the above generalized power series
when N(x/P )2/N > 20, say.

Consider, for example, one of the simplest cases, γ(z) = Γ (z). The func-
tion F (s, x) is the incomplete gamma function, and the above expansion reads
in this case

F (s, x) = Γ (s)−
∞∑

n=0

(−1)nxs+n

n!(s+ n)
.

When s = 1 for instance, this is exactly the expansion of e−x, which should
evidently not be used to compute e−x if x is large.

In this special case, for x large we can use a continued fraction expansion
for the incomplete gamma function, of which [Coh0, Propositions 5.3.15 and
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5.6.12] are special cases. In the general case, however, one would need to gen-
eralize this continued fraction by considering higher-order linear recursions.
This can indeed be done (see [Del]).

Meanwhile, there are two possible methods. One is to use the generalized
power series expansion above for all x. By closely analyzing its convergence,
we can quite easily see in any given situation how much accuracy is needed,
and E. Tollis (see [Tol]) has shown that it is sufficient to compute with ap-
proximately twice the required accuracy. For example, to obtain the value of
F (s, x) to 28 decimal digits, in reasonable ranges of s it is enough to perform
the computations using 56 decimal digits. This result generalizes the well-
known fact that for x > 0, the largest summand in the expansion of e−x is
of the order of ex (more precisely, ex/

√
2πx).

A complementary method is to choose a value of t0 that depends on the
value of s at which we want to evaluate Λi(s) (see Exercise 20). A suitable
choice can avoid many of the cancellation problems.

10.4 Exercises for Chapter 10

1. With the notation of Section 10.1.2, let P be a prime ideal of L above p, and
set PI = P ∩ LI and PD = P ∩ LD = PI ∩ LD. Prove the following results.

a) We have P = Pe
I ; in other words, PI is totally ramified of degree e in the

extension L/LI .
b) We have PI = PDZLI ; in other words, PD is inert of degree f in the

extension LI/LD.
c) We have f(PD/p) = 1; in other words, PD is of degree 1 over p.
d) If Gal(L/K) is Abelian, then f(P′

D/p) = 1 for all prime ideals P′
D of LD

above p.
e) Give an explicit example where there exists another prime ideal P′

D of LD

above p such that f(P′
D/p) > 1.

2. Let Dn be the dihedral group with 2n elements, generated by two elements σ
and τ such that σn = τ 2 = 1Dn and τστ−1 = σ−1.

a) Give the complete list of subgroups of Dn.
b) Find among these subgroups those that are normal.
c) Find among the normal subgroups H those for which Dn/H is cyclic of

prime power order.
d) Deduce that, as claimed in the text, if n is odd the only normal subgroup

H of Dn of prime power order such that Dn/H is cyclic is the group Cn.

3. Let N/K be a Galois extension of number fields with Galois group G, and let
L/K be a subextension of N/K. Let p be a prime ideal of K, let PL be a prime
ideal of L above p, and let PN be a prime ideal of N above PL.

a) Show that for all k,

Gk(PN/PL) = Gk(PN/p) ∩ Gal(N/L) .
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b) Assume that L/K is Galois, so that L = NH for a normal subgroup
H of G, and let φ be the canonical surjection from G = Gal(N/K) to
Gal(L/K) ≃ G/H . Show that for −1 ≤ k ≤ 1,

Gk(PL/p) = φ(Gk(PN/p)) .

(Hint: for k = 0 and k = 1, show that there is an inclusion and then use a
counting argument.)

Note that this last result is not true in general for k ≥ 2, but it is true if we
replace Gk by the upper ramification groups Gk (which are the same groups
numbered differently); see [Ser].

4. Using similar techniques as those used in the proofs of Proposition 10.1.16 and
Corollary 10.1.17, show (in the given order) the following additional results on
ramification groups. Let σ ∈ Gj and τ ∈ Gk for j and k ≥ 1.

a) We have στσ−1τ−1 ∈ Gj+k and

θj+k(στσ−1τ−1) = (k − j)θj(σ)θk(τ ) .

b) The integers k ≥ 1 such that Gk 6= Gk+1 are in the same residue class
modulo p, where p is the prime number below p.

c) We have στσ−1τ−1 ∈ Gj+k+1 (which is of course stronger than the first
statement of a)).

5. Using the usual techniques of rational function decomposition, prove that if
f(X) =

Q

1≤k≤n(X − αk) with distinct roots αk, then, as claimed in the text

1

f(X)
=

n
X

k=1

1

f ′(αk)(X − αk)
.

6. Let L/K be an Abelian extension of K of prime power degree ℓr, where ℓ is
prime, and let f be the conductor of L/K. Generalizing Corollary 10.1.24, prove
that if p is a prime ideal of K above ℓ, then vp(f) ≤ ⌊rℓe(p/ℓ)/(ℓ− 1)⌋ + 1 (use
Exercise 15 of Chapter 3). Deduce from this a slightly weaker version of Hasse’s
Theorem 5.4.6, at least in the case of extensions of prime-power degree.

7. By giving explicit examples with ℓ = 3 and K = Q, show that all the de-
composition types not excluded by Proposition 10.1.26 can actually occur (case
(8), which is the most difficult to attain, occurs for L = Q(θ) with θ root of
X3 −X2 − 9X + 8 and p = 7).

8. Prove statements (3) and (5) of Theorem 9.2.6 in the case n = ℓ prime.

9. Let L/K be a cyclic extension of Galois group G generated by σ.

a) Show the following additive version of Hilbert’s Theorem 90 (Lemma
10.2.4). If α ∈ L is an element of relative trace equal to 0, there exists
β ∈ L such that α = β − σ(β). Give an explicit formula for β.

b) Show the following ideal-theoretic version of Hilbert’s Theorem 90. If I is a
fractional ideal of L of relative norm equal to ZK , there exists a fractional
ideal J of L such that I = Jσ(J)−1.

10. Extend as many results of Sections 10.2.1 and 10.2.2 as you can to the case
of noncyclic, but still Abelian, extensions. In particular, generalize Hilbert’s
theorem 90, Corollary 10.2.7, and the notion of Kummer-equivalence.
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11. Let A be a finite Abelian group of exponent dividing n. Show that Hom(A,µn) ≃
A noncanonically by first proving it for cyclic groups and then using the ele-
mentary divisor theorem giving the structure of finite Abelian groups.

12. Let L/K be an extension of number fields, let P be a monic polynomial with
coefficients in K, let p be a prime ideal of K, and let α ∈ L be a root of P .
Assume that the p-adic valuations of all the coefficients of P are nonnegative.
Show that vP(α) ≥ 0 for any prime ideal P of L above p.

13. Let ℓ be a prime number, and let K be a number field containing a primitive
ℓth root of unity ζℓ.

a) Show that for all j coprime to ℓ, the number (1− ζj
ℓ )/(1 − ζℓ) is a unit in

K.
b) Deduce from this the formula ℓZK = (1−ζℓ)

ℓ−1ZK , hence that, as claimed
in the text, for any prime ideal p of K,

vp(1 − ζℓ) =
vp(ℓ)

ℓ− 1
=
e(p/ℓ)

ℓ− 1
.

14. Let P be a prime ideal above a prime ideal p in an extension L/K of number
fields. Show that

P
k ∩ ZK = p

a with a =

‰

k

e(P/p)

ı

.

In particular, if P is unramified, then Pk ∩ ZK = pk (see Proposition 2.3.15).

15. Let K be a number field, ℓ a prime number, and set d = [K(ζℓ) : K] and
m = (ℓ− 1)/d.

a) Using Hecke’s theorem or otherwise, show that

f(K(ζ3)/K) = d(K(ζ3)/K) =
Y

p|3, 2∤e(p/3)

p .

b) More generally, show that for any prime ideal p of K above ℓ, we have
m | e(p/ℓ), and that

d(K(ζℓ)/K) =
Y

p|ℓ

p
d−(d,e(p/ℓ)/m) =

Y

p|ℓ

p
(ℓ−1−(ℓ−1,e(p/ℓ)))/m .

c) Show that

f(K(ζℓ)/K) =
Y

p|ℓ, (ℓ−1)∤e(p/ℓ)

p .

16. Let p be a prime ideal of K above ℓ ∈ Z.

a) Show that the map x 7→ xℓ from (ZK/p)
∗ to itself is injective.

b) Deduce from this that the field ZK/p is a perfect field : in other words,
show that the map x 7→ xℓ is surjective (the same proof works of course
for any finite field).

c) Let α ∈ (ZK/p)
∗. Give a formula for the element x ∈ ZK/p such that

xℓ = α, and deduce from this that x can be found in polynomial time.

17. Prove the validity of Algorithm 10.2.14.

18. Fill in the missing details of the proof of Lemma 10.3.3.

19. Show that, as claimed in the text, when s is fixed the functions Fi(s, x) defined in
Theorem 10.3.4 tend to 0 faster than any power of x as x→ ∞. More precisely,
find an upper bound for |Fi(s, x)| of the same type as the upper bound for
|Wi(t)| given in Lemma 10.3.3.
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20.

a) Show that with a suitable definition of the functions Fi(s, x) for complex
values of x, the formulas for Λi(s) given by Theorem 10.3.4 are valid for
t0 belonging to a certain domain of the complex plane.

b) For a fixed value of s, estimate the (complex) value of t0 that gives the
best result for the evaluation of Λi(s) using Theorem 10.3.4.

21. Give sufficient conditions on the entire function g(s) so that Theorem 10.3.4
remains valid if the gamma products γi(s) are replaced by the functions γ′

1(s) =
g(s)γ1(s) and γ′

2(s) = g(k − s)γ2(s).

22. Prove the generalized power series expansion of F (s, x) given in the text for s
not a pole of γ(s). Then by letting s tend to a pole a0 of γ(s), prove the given
expansion for s = a0.

23. Show that, as claimed in the text, the series for F (s, x) given in Section 10.3.2
converges for all x.

24. Let E be an elliptic curve defined over Q, let N be its conductor, and let
L(E, s) =

P

n≥1 ann
−s be its associated L-series (see [Coh0, Definition 7.3.3]).

Now that the complete Taniyama–Weil conjecture has been proved, we know
that

Λ(E, s) = Ns/2(2π)−sΓ (s)L(E, s)

can be analytically continued to the whole complex plane into a holomorphic
function satisfying the functional equation Λ(E, 2− s) = wΛ(E, s) for w = ±1.

a) Using Theorem 10.3.4, find a rapidly convergent series for L(E, s).
b) Compute L(E, 1) when w = 1 and L′(E, 1) when w = −1.

c) More generally, assume that L(k)(E, 1) = 0 for 0 ≤ k ≤ r − 1 and that

w = (−1)r. Compute L(r)(E, 1) using special functions, which you will
need to define.
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11. Appendix B: Electronic Information

In [Coh0], I have given a rather extensive list of packages more or less related
to number theory. While that list is not out of date, it is perhaps worthwhile
to insist here on the really useful packages and also on other types of elec-
tronically available information. I also mention programs or data not related
to the subject matter of this book but important for number theory and for
related subjects. Since pricing policies change very rapidly (and free packages
sometimes become not free), I have decided to include no pricing information,
but only pointers to the relevant web pages or e-mail addresses.

11.1 General Computer Algebra Systems

The packages listed here have the advantage of being able to perform a wide
range of symbolic operations, but the applications to number theory almost
always suffer from the excessive slowness of these packages (a factor of 100 in
speed is not uncommon). Most of these packages are expensive, but there is
usually an inexpensive student edition that already has many features. Also,
site licenses are often available.

Axiom

This is a huge system containing a wealth of structures and algorithms.
However, the author does not advise it for number theory. All information
can be obtained from the URL

http://www.nag.com

Macsyma

A very robust package, which has undergone enormous improvements in
recent years. All information can be obtained from the URL

http://www.macsyma.com

There also exist free (although licensed) versions, for instance Maxima,
maintained by W. Schelter. For more information, ftp the file

ftp://rascal.ics.utexas.edu/README.MAXIMA

Maple

Probably the most popular package in the academic community. All infor-
mation can be obtained from the URL
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http://www.maplesoft.com

Mathematica

The most aggressively advertised package but probably not the best, in the
author’s opinion (who is perhaps biased by the aggressiveness). All informa-
tion can be obtained from the URL

http://www.wolfram.com

Note. The large commercial packages such as the three “Ms” above can
usually be obtained from your local computer software shop or specialized
bookstore.

MuPaD

Until very recently, this was the only free general computer algebra system
(at least for nonprofit purposes). Unfortunately, it is not completely free any-
more, although a free version (MuPaD-lite) is available for nonprofit organi-
zations and students. In any case, it is a very nice system with a Maple-like
syntax.

For detailed information about the system, pricing and license conditions,
see the URLs

http://www.mupad.de

and
http://www.sciface.com

11.2 Semi-general Computer Algebra Systems

There are two systems in this category.

Magma

This is a huge system, specialized in algebraic structures and morphisms
between them and containing an incredible number of algorithms, usually
the fastest existing ones. The environment is mathematically rigorous and
hence very pleasing to mathematicians. It is very fast, is programmed in a
high-level programming language, and has extensive on-line as well as written
documentation. Many people developing algorithms and implementations in
the fields covered by Magma (which expand frequently) have been asked
to contribute their code. It is developed in Sydney by a group directed by
J. Cannon. It is not free, but it is strongly recommended to acquire at least
one license. As for general-purpose computer algebra systems, a student PC
version is available for a reasonable price.

A description is given in [Bo-Ca-Pl]. For complete details, consult the
home page at

http://www.maths.usyd.edu.au:8000/u/magma/

or send e-mail to
magma@maths.usyd.edu.au
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Pari/GP

Developed by the author and collaborators in Bordeaux, this system is copy-
righted but free. Contains the implementation of almost all the algorithms
presented in [Coh0] and in the present book, plus many other types of al-
gorithms such as multiple precision evaluation of many transcendental func-
tions, elliptic curve computations, and so forth. Complete source code is
available. A large part of Pari is included in Magma, and a smaller part is
included in MuPaD.

Available by anonymous ftp from the URL
ftp://megrez.math.u-bordeaux.fr/pub/pari

The website, maintained by G. Niklasch, is at the URL
http://hasse.mathematik.tu-muenchen.de/ntsw/pari/

11.3 More Specialized Packages and Programs

All these packages are free, although usually copyrighted.

Kant/Kash

Developed by M. Pohst and collaborators in Berlin, this is for the moment
the only package with Pari/GP that is able to perform heavy-duty work in
algebraic number theory. It also contains algorithms for lattices. Almost all
of Kant is included in Magma. This package is free, but the source code is
not available.

A description is given in [DFKPRSW]. Available by anonymous ftp from
the URL

ftp://ftp.math.tu-berlin.de/pub/algebra/Kant/Kash

LiDIA

Developed by J. Buchmann and collaborators in Darmstadt. This young pack-
age will certainly become a third package able to perform heavy-duty work
in algebraic number theory. It is a C++ library that provides multi-precision
arithmetic for basic domains, finite fields and classes for integer factorization,
factorization of polynomials over finite fields, lattices, matrices, quadratic or-
ders, number fields of larger degree, and elliptic curves.

Like Pari, complete source code is available. Since the developers of LiDIA
take among other things Pari as a benchmark for their code, you can expect
that the common functions will run faster with LiDIA than with Pari.

Free for noncommercial use, and available by anonymous ftp from the
URL

ftp://ftp.informatik.tu-darmstadt.de/pub/TI/systems/LiDIA

or from the URL
http://www.informatik.tu-darmstadt.de/TI/LiDIA
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Simath

Developed by H. Zimmer and collaborators in Saarbrücken. This package is
more oriented towards elliptic curve computations.

All information is given at the Simath home page at
http://emmy.math.uni-sb.de/~simath

The package can be ftp’ed from the URL
ftp://ftp.math.uni-sb.de/pub/simath

or from the mirror site
ftp://ftp.math.orst.edu/pub/simath

Ubasic

This is a quite old but very nice and fast Basic-like language for multi-
precision computations written by Y. Kida, which works only on DOS-based
PCs. Many people love it, although it is quite limited in scope. Many scripts
are given with the package, including sophisticated factoring and primality
proving algorithms.

Available by anonymous ftp from the URL
ftp://ftp.math.ohio-state.edu/pub/msdos/ubasic/

Calc

This package, written (in C) and maintained by K. Matthews, contains refined
methods for extended GCD, HNF, SNF, LLL, and MLLL computations which
avoid coefficient explosion, as well as a crude MPQS/ECM factoring program.
Complete source code is available from the URL

ftp://www.maths.uq.edu.au/pub/krm/calc/

and the web page is at the URL
http://www.maths.uq.edu.au/~krm/krm calc.html

(see also the author’s home page at the same location).

Miscellaneous

J. Guardia, using an algorithm of J. Montes, has written a program that
computes the decomposition type of primes in very high-degree number fields.
It is available from the URL

ftp://drac.mat.ub.es/pub/FiniteFields

11.4 Specific Packages for Curves

In addition to Magma, Pari, and Simath, which contain many programs for
elliptic curves in particular, the following packages are specific to curves.

Apecs

Apecs is a Maple program written by I. Connell for the arithmetic of (plane)
elliptic curves. An elliptic curve E can be introduced in various ways (not only
by a Weierstrass equation) and essentially over any field. Apecs maintains a
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catalog of E defined over Q, and for such E all isogenies over Q and all
the ingredients of the Birch–Swinnerton-Dyer conjecture can be calculated.
Together with mwrank, this package is very popular among people working
on elliptic curves.

Get the README file from the URL
ftp://math.mcgill.ca/pub/apecs/README

and then get the necessary files.

Mwrank

This standalone C++ program written by J. Cremona is the best existing
program for computing the rank and generators of an elliptic curve defined
over Q. Several other useful elliptic curve related programs are in the distri-
bution. Like most other standalone programs, mwrank can be called directly
from a program like Pari/GP. Be sure to obtain the very latest version.

Available from the URL
http://www.maths.nott.ac.uk/personal/jec/ftp/progs

More General Curves

A few programs are available for curves of higher genus or for other types of
computations on curves.
• V. Flynn’s ftp site contains Maple routines for computing with curves

of genus 2, available from the URL
ftp://ftp.liv.ac.uk/pub/genus2/

• M. van Hoeij has a Maple package for computing the genus of plane
curves, rational parameterizations of genus 0 curves with a point, and Weier-
strass forms for genus 1 curves with a point. Available from the URL

http://klein.math.fsu.edu/~hoeij/compalg/IntBasis/

• Q. Liu has a Pari program that computes the local reduction of genus
2 curves (for the moment outside the prime 2) analogous to Tate’s algorithm
for elliptic curves. It is available from the URL

ftp://megrez.math.u-bordeaux.fr/pub/liu/genus2reduction.gz

11.5 Databases and Servers

Two large databases exist for algebraic number theory: the Berlin and Bor-
deaux databases. Both contain all the important information about number
fields of small degree (about one million number fields of degree up to 7).

The Berlin Database

The first such database from the Kant/Kash group is not available by ftp but
is directly accessible using kash, which opens for you a TCP/IP connection
to Berlin (type ?Db at the kash prompt).
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The Bordeaux Database

The second database cannot be queried but is available by anonymous ftp
from the URL

ftp://megrez.math.u-bordeaux.fr/pub/numberfields

Recover first the file README.tex (or README.dvi) for a complete descrip-
tion of the contents of the database.

In addition, we know of at least two databases of a different kind related
to number fields.

The Munich Database

This database, maintained by G. Niklasch, is much smaller than the previous
two but presents a different selection of fields (of larger degrees and small
absolute discriminants). It is available at the URL

http://hasse.mathematik.tu-muenchen.de/nfdb/

The Arizona Database

This database, maintained by J. Jones (jj@asu.edu), lists number fields in an
ordering not related to the size of the discriminant, but to their ramification
behavior. This is a natural ordering in certain contexts, for example in the
number fields occurring in the theory of coverings of the projective line minus
3 points (A. Grothendieck’s theory of “dessins d’enfants”). It is available from
the URL

http://math.la.asu.edu/~jj/numberfields

It contains complete lists of number fields of a given degree which are
unramified outside of a small set of small primes. The site provides lists of
defining polynomials and many field invariants, with an emphasis on decom-
positions of associated local algebras.

In addition to databases related to number fields, there are databases
related to algebro-geometric objects, essentially curves.

The Nottingham Database

This database, maintained by J. Cremona (jec@maths.nott.ac.uk), is the
best available database for elliptic curves. It is available by ftp from the URL

http://www.maths.nott.ac.uk/personal/jec/ftp/data

It contains all the important arithmetical and analytical data for elliptic
curves of conductor up to 6000.

The Liverpool Database

Maintained by V. Flynn, it contains data about curves of genus 2. For the
moment it is still very fragmentary. As with Flynn’s programs, it is available
from the URL

ftp://ftp.liv.ac.uk/pub/genus2/

In most of the sites mentioned above, one can also find miscellaneous
information. For example, at the Bordeaux site, one can find errata sheets
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for the author’s books, and at the Nottingham site, one can find errata sheets
for Cremona’s book.

11.6 Mailing Lists, Websites, and Newsgroups

Several mailing lists, websites, and newsgroups are useful for number theory.

The Number Theory Mailing List

The most important mailing list is the number theory mailing list maintained
by V. Miller. To subscribe or send a message to the list, connect to

http://listserv.nodak.edu/archives/nmbrthry.html

and follow the links on the top of the page.

The Pari Mailing Lists

There are three mailing lists concerning the Pari package, maintained by
D. Bernstein (and archived on the Pari website; see above). The first one
(pari-users) is a general forum for discussing the Pari package itself and
difficulties users may have in installing or using the package. The second one
(pari-dev) is much more technical and is a forum devoted to exchanges be-
tween people involved in the development of the package, including of course
bug reports and so on. A user should post in this mailing list only if he or
she already has some knowledge of the inner workings of the package. The
third one (pari-announce) can and should be subscribed to, but is reserved
for announcements of new versions of the package and related information,
posted by the Pari developers or close collaborators.

To subscribe, send an e-mail to
pari-xxx@list.cr.yp.to

where xxx should be replaced appropriately by announce, users, or dev. The
same e-mail address is used for posting a message to the list.

The Munich Website

This website is a server maintained by G. Niklasch which comprises the Pari
website, the Munich number field database and related auxiliary data, and
links to further number-theoretical online information. The URL is

http://hasse.mathematik.tu-muenchen.de

The Number Theory Website

Maintained by K. Matthews (krm@maths.uq.edu.au), in addition to scien-
tific material this site contains information about people, conferences, book
announcements, and so forth, related to number theory. The URL is

http://www.math.uga.edu/~ntheory/web.html
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The L-function Website

Maintained by B. Conrey and D. Farmer, this contains information on L-
functions, mainly from the viewpoint of Selberg’s attempt to characterize
functions that should satisfy the Riemann hypothesis. The URL is

http://www.math.okstate.edu/~loriw/start/start.html

11.7 Packages Not Directly Related to Number Theory

Of course, a large number of such packages exist. We mention here a few that
may be useful from time to time in number-theoretical work. Of course, the
general or semi-general computer algebra systems contain a lot of programs
useful in fields other than number theory. For example, Magma, which is
certainly the most advanced in its class, contains a huge amount of programs
and algorithms in group theory, finite geometries, combinatorics, geometry
of numbers, and so on, and is expanding to include algebraic and arithmetic
geometry. In addition, there are the following more specialized systems.

Plouffe and Sloane’s Programs and Databases

If you have a sequence of natural numbers that you want to identify, your
best bet is to look in the book of S. Plouffe and N. Sloane [Plo-Slo], which
completely supersedes a much older book by Sloane with the same title. You
can also use an online search by connecting to

http://www.research.att.com/~njas/sequences

This page also includes links to two automated e-mail servers, called “se-
quences” and “superseeker”:

sequences,superseeker@research.att.com

Both servers search a database containing a more complete and updated
Plouffe–Sloane book. However, “superseeker” applies additionally clever al-
gorithms which try to transform your sequence into one it can recognize.

On the other hand, if you want to recognize a real number, you may use
an LLL algorithm, as explained in [Coh0, Algorithm 2.7.4], if you think the
number is algebraic, but you can also use the huge and powerful database of
S. Plouffe (the Inverter) by using the server available at

http://www.lacim.uqam.ca/pi/

This server contains a database of almost a hundred million mathematical
constants, specialized programs to recognize a real number, and information
about records on the computation of mathematical constants.

Shoup’s NTL package

This package, developed by V. Shoup, is the most efficient package for fac-
toring polynomials over finite fields. Complete details are available at the
URL

http://www.cs.wisc.edu/~shoup/ntl



11.7 Packages Not Directly Related to Number Theory 531

Macaulay 2

This is a package developed by D. Grayson and M. Stillman that is designed
to support mathematics research in commutative algebra and algebraic geom-
etry. It features fast algorithms for computing Gröbner bases and projective
resolutions, together with an object-oriented interpreted user language that
supports high-level mathematical concepts.

For information, send e-mail to Macaulay2@math.uiuc.edu, and see the
URL at

http://www.math.uiuc.edu/Macaulay2

CoCoa

This package is aimed at computations in commutative algebra. It is available
by ftp at the URL

ftp://ideal.dima.unige.it/cocoa

with the U.S. mirror at
ftp://ftp.reed.edu/mirrors/cocoa

The web page is at the URL
http://cocoa.dima.unige.it/

with the U.S. mirror at
http://ftp.reed.edu/cocoa

Faugère’s FGb (Fast Gb)

A professional and orders of magnitude faster version of J-C. Faugère’s
program Gb for computing Gröbner bases (which is incorporated in some
of the larger systems), this is by far the best package for Gröbner bases
computations. All information can be found on the author’s home page at
the URL

http://posso.lip6.fr/~jcf/
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12. Appendix C: Tables

In this appendix, we group a number of tables related to the subject matter
of this book.

12.1 Hilbert Class Fields of Quadratic Fields

Let K be a quadratic field and L = K(1) its Hilbert class field. Recall that
Theorem 6.2.8 tells us that L = KLK for a number field LK linearly disjoint
from K. Thus, to give a relative defining polynomial for L/K we may sim-
ply give an absolute defining polynomial for LK/Q which will be a relative
defining polynomial for L/K with coefficients in Z and not simply in ZK .

12.1.1 Hilbert Class Fields of Real Quadratic Fields

In Section 6.1 we saw how to use Stark’s conjectures and Stark units to
compute Hilbert and ray class fields of totally real fields. Here, we give results
obtained in the simplest nontrivial case, that of Hilbert class fields of real
quadratic fields. The tables are taken from [Coh-Rob].

In the case of real quadratic fields, the class number is usually rather small
and the same number fields LK occur frequently. Thus, instead of giving a
table ordered by discriminant, it is more reasonable to give a table roughly
ordered by the complexity of the field LK , and this is what we will do.

We give the table of Hilbert class fields of all real quadratic fields of
discriminant less than or equal to 2000. They have been obtained as follows.
We first apply the algorithms described in Section 6.1 to obtain a preliminary
relative defining polynomial. We then check that this polynomial is correct
(to remove the dependence on GRH), and we compute a defining polynomial
for LK . Finally, we use a strong polynomial reduction algorithm of the Polred
type to obtain a polynomial which is as simple as possible.

For each of the 607 real quadratic fields K of discriminant less than 2000,
we give a polynomial defining a field LK over Q as in Proposition 6.2.8. For
the sake of completeness, we recall the list of the 319 fields K with class
number equal to 1, for which trivially LK = Q.
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Discriminant of the fields such that LK = Q
5 8 12 13 17 21 24 28 29 33 37
41 44 53 56 57 61 69 73 76 77 88
89 92 93 97 101 109 113 124 129 133 137
141 149 152 157 161 172 173 177 181 184 188
193 197 201 209 213 217 233 236 237 241 248
249 253 268 269 277 281 284 293 301 309 313
317 329 332 337 341 344 349 353 373 376 381
389 393 397 409 412 413 417 421 428 433 437
449 453 457 461 472 489 497 501 508 509 517
521 524 536 537 541 553 556 557 569 573 581
589 593 597 601 604 613 617 632 633 641 649
652 653 661 664 668 669 673 677 681 701 709
713 716 717 721 737 749 753 757 764 769 773
781 789 796 797 809 813 821 824 829 844 849
853 856 857 869 877 881 889 893 908 913 917
921 929 933 937 941 953 956 973 977 989 997
1004 1013 1021 1033 1041 1048 1049 1052 1057 1061 1069
1077 1081 1084 1097 1109 1112 1117 1121 1132 1133 1137
1141 1149 1153 1169 1177 1181 1193 1201 1208 1213 1217
1228 1237 1244 1249 1253 1273 1277 1289 1293 1301 1317
1321 1324 1329 1333 1336 1337 1349 1357 1361 1381 1388
1389 1397 1401 1409 1432 1433 1437 1441 1453 1457 1461
1468 1473 1477 1481 1493 1497 1501 1516 1528 1529 1532
1541 1549 1553 1561 1569 1577 1589 1592 1597 1609 1613
1621 1633 1637 1657 1661 1669 1673 1676 1688 1689 1693
1697 1709 1713 1721 1724 1733 1741 1753 1757 1777 1784
1789 1793 1797 1801 1816 1817 1821 1829 1837 1841 1852
1857 1861 1868 1873 1877 1889 1893 1909 1912 1913 1916
1933 1941 1948 1949 1964 1969 1973 1977 1981 1993 1997

There are 194 fields with class number 2. We give a table for each possible
value of the discriminant d(LK) of LK .

First, there are 70 real quadratic fields K of discriminant less than 2000
with class number 2 and such that LK = Q(

√
5).

Discriminant of the fields K such that LK = Q(
√

5)
40 60 65 85 105 120 140 165 185 205 220
265 280 285 305 345 365 380 385 440 460 465
485 545 565 620 645 665 685 705 745 760 805
860 865 885 920 965 1005 1065 1085 1165 1180 1185
1205 1240 1245 1265 1285 1340 1385 1405 1420 1465 1505
1545 1565 1580 1585 1605 1645 1660 1685 1720 1865 1880
1905 1945 1965 1985
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There are 34 real quadratic fields K of discriminant less than 2000 with
class number 2 and such that LK = Q(

√
2).

Discriminant of the fields K such that LK = Q(
√

2)
104 136 168 232 264 296 424 456 488 552 584
616 712 744 776 808 872 1032 1064 1128 1192 1256
1416 1448 1544 1576 1608 1672 1704 1832 1864 1896 1928
1992

There are 14 real quadratic fields K of discriminant less than 2000 with
class number 2 and such that LK = Q(

√
3).

Discriminant of the fields K such that LK = Q(
√

3)
156 204 348 444 492 636 732 1068 1212 1308 1356
1644 1788 1884

There are 26 real quadratic fields K of discriminant less than 2000 with
class number 2 and such that LK = Q(

√
13).

Discriminant of the fields K such that LK = Q(
√

13)
221 273 312 364 377 429 481 533 572 728 741
949 988 1001 1144 1157 1196 1209 1261 1417 1469 1612
1729 1781 1833 1976

There are 21 real quadratic fields K of discriminant less than 2000 with
class number 2 and such that LK = Q(

√
17).

Discriminant of the fields K such that LK = Q(
√

17)
357 408 476 493 561 629 748 952 969 1037 1173
1241 1309 1496 1513 1564 1581 1649 1717 1853 1921

There remain 29 fields K with class number 2 and such that d(LK) > 17.
We give them in a single table containing first the discriminant of K and
then d(LK), ordered by increasing value of d(LK).

Discriminant of the fields K and d(LK) for d(LK) > 17
609 21 861 21 1113 21 1281 21 1533 21 1869 21
696 24 888 24 984 24 1272 24 1464 24 812 28
1036 28 1148 28 1484 28 957 29 1073 29 1189 29
1276 29 1537 29 1624 29 1653 29 1769 29 1353 33
1749 33 1517 37 1628 37 1961 37 1804 41
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There are 24 real quadratic fields with class number equal to 3 and dis-
criminant less than 2000. In the following table, we give their discriminants
together with a polynomial defining the field LK .

Discriminants of the fields K such that hK = 3 and polynomials for LK
229 X3 − 4X − 1 257 X3 −X2 − 4X + 3
316 X3 −X2 − 4X + 2 321 X3 −X2 − 4X + 1
469 X3 −X2 − 5X + 4 473 X3 − 5X − 1
568 X3 −X2 − 6X − 2 733 X3 −X2 − 7X + 8
761 X3 −X2 − 6X − 1 892 X3 −X2 − 8X + 10
993 X3 −X2 − 6X + 3 1016 X3 −X2 − 6X + 2
1101 X3 −X2 − 9X + 12 1229 X3 −X2 − 7X + 6
1257 X3 −X2 − 8X + 9 1304 X3 − 11X − 2
1373 X3 − 8X − 5 1436 X3 − 11X − 12
1489 X3 −X2 − 10X − 7 1509 X3 −X2 − 7X + 4
1772 X3 −X2 − 12X + 8 1901 X3 −X2 − 9X − 4
1929 X3 −X2 − 10X + 13 1957 X3 −X2 − 9X + 10

There are 41 real quadratic fields with class number equal to 4 and dis-
criminant less than 2000. In the following table, we give their discriminants
together with a polynomial defining the field LK .

Discriminants of the fields K such that hK = 4 and polynomials for LK
145 X4 −X3 − 3X2 +X + 1 328 X4 − 2X3 − 3X2 + 2X + 1
445 X4 −X3 − 5X2 + 2X + 4 505 X4 − 2X3 − 4X2 + 5X + 5
520 X4 − 6X2 + 4 680 X4 − 6X2 + 4
689 X4 −X3 − 5X2 +X + 1 777 X4 − 2X3 − 4X2 + 5X + 1
780 X4 − 2X3 − 7X2 + 8X + 1 793 X4 −X3 − 6X2 + 8X − 1
840 X4 − 6X2 + 4 876 X4 − 7X2 − 6X + 1
897 X4 − 2X3 − 4X2 + 5X + 3 901 X4 − 2X3 − 4X2 + 5X + 2
905 X4 −X3 − 7X2 + 3X + 9 924 X4 − 5X2 + 1
1020 X4 − 2X3 − 7X2 + 8X + 1 1045 X4 −X3 − 8X2 +X + 11
1096 X4 − 2X3 − 5X2 + 6X + 7 1105 X4 − 9X2 + 4
1145 X4 −X3 − 8X2 + 6X + 11 1160 X4 − 6X2 + 4
1164 X4 − 2X3 − 7X2 + 8X + 4 1221 X4 −X3 − 10X2 +X + 1
1288 X4 − 2X3 − 7X2 + 8X + 8 1292 X4 −X3 − 11X2 + 12X + 8
1313 X4 −X3 − 8X2 − 4X + 3 1320 X4 − 6X2 + 4
1365 X4 − 9X2 + 4 1480 X4 − 6X2 + 4
1560 X4 − 9X2 + 4 1640 X4 − 6X2 + 4
1677 X4 −X3 − 7X2 + 2X + 4 1736 X4 − 2X3 − 7X2 + 6X + 9
1740 X4 − 2X3 − 7X2 + 8X + 1 1745 X4 −X3 − 10X2 + 2X + 19
1752 X4 − 2X3 − 5X2 + 6X + 3 1820 X4 − 9X2 + 4
1848 X4 − 10X2 + 4 1885 X4 − 9X2 + 4
1932 X4 − 5X2 + 1
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Finally, there are 29 real quadratic fields with class number greater than
or equal to 5 and discriminant less than 2000. In the following table, we give
their discriminants together with a polynomial defining the field LK .

Discriminants of the fields K such that hK ≥ 5 and polynomials for LK
401 X5 −X4 − 5X3 + 4X2 + 3X − 1
577 X7 − 2X6 − 7X5 + 10X4 + 13X3 − 10X2 −X + 1
697 X6 − 3X5 − 3X4 + 11X3 −X2 − 5X + 1
785 X6 −X5 − 8X4 + 6X3 + 16X2 − 10X − 5
817 X5 −X4 − 6X3 + 5X2 + 3X − 1
904 X8 − 2X7 − 9X6 + 10X5 + 22X4 − 14X3 − 15X2 + 2X + 1
940 X6 − 3X5 − 5X4 + 14X3 + 9X2 − 15X − 5
985 X6 − 3X5 − 4X4 + 13X3 + 3X2 − 10X + 1
1009 X7 −X6 − 9X5 + 2X4 + 21X3 +X2 − 13X − 1
1093 X5 − 8X3 − 3X2 + 10X + 4
1129 X9 − 3X8 − 10X7 + 38X6 + 5X5 − 107X4 + 58X3 + 78X2

− 60X − 1
1297 X11 − 5X10 − 4X9 + 54X8 − 53X7 − 127X6 + 208X5 + 69X4

− 222X3 + 29X2 + 56X − 5
1345 X6 − 3X5 − 8X4 + 16X3 + 24X2 − 5
1384 X6 − 2X5 − 7X4 + 14X3 + 3X2 − 12X + 4
1393 X5 −X4 − 7X3 + 6X2 + 3X − 1
1429 X5 −X4 − 13X3 + 23X2 + 9X − 23
1596 X8 − 2X7 − 13X6 + 16X5 + 43X4 − 10X3 − 34X2 − 4X + 4
1601 X7 − 2X6 − 14X5 + 34X4 + 4X3 − 38X2 + 7X + 1
1641 X5 −X4 − 10X3 +X2 + 21X + 9
1705 X8 −X7 − 14X6 + 9X5 + 62X4 − 23X3 − 84X2 + 20X − 1
1708 X6 − 3X5 − 8X4 + 21X3 − 6X2 − 5X + 1
1756 X5 − 2X4 − 10X3 + 14X2 + 21X − 16
1761 X7 − 2X6 − 14X5 + 14X4 + 50X3 − 22X2 − 51X − 3
1765 X6 − 3X5 − 6X4 + 17X3 + 5X2 − 14X + 4
1768 X8 − 4X7 − 6X6 + 32X5 − 5X4 − 48X3 + 14X2 + 16X − 4
1785 X8 − 2X7 − 13X6 + 17X5 + 48X4 − 23X3 − 33X2 + 3X + 1
1897 X5 −X4 − 13X3 + 8X2 + 27X + 1
1937 X6 − 10X4 + 25X2 − 13
1996 X5 − 9X3 − 4X2 + 10X + 4
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12.1.2 Hilbert Class Fields of Imaginary Quadratic Fields

In Section 6.3 we saw how to use complex multiplication and modular func-
tions to compute Hilbert and ray class fields of imaginary quadratic fields.
Here, we give some results obtained in the simplest nontrivial case, that of
Hilbert class fields.

Contrary to the case of real quadratic fields where the class number is
usually rather small, in the case of imaginary quadratic fields the class num-
ber is roughly of the order of the square root of the discriminant, hence grows
quite rapidly. This does not prevent the complex multiplication methods to
be very efficient (even more so than the methods using Stark’s conjectures for
the real case), but the results that we obtain become large quite rapidly, even
after applying polynomial reduction algorithms. Thus we give tables only for
discriminants in absolute value less than or equal to 451 (corresponding to
four pages of the present book). The polynomials have been obtained as fol-
lows. We use Schertz’s method described in Section 6.3 with several choices
of the primes p and q, and we choose the one giving the smallest polynomial
in some sense (in fact, for the T2-norm always used in number field nor-
malizations; see [Coh0, Section 4.4.2]). We then use an absolute polynomial
reduction algorithm to obtain one of the polynomials with smallest T2-norm.
This is feasible in practice up to degree 30, but in the range of our table this
is not a problem since the largest degree is equal to 21.
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Discriminants and Hilbert class fields of imaginary quadratic fields
−3 X
−4 X
−7 X
−8 X
−11 X
−15 X2 −X − 1
−19 X
−20 X2 −X − 1
−23 X3 −X2 + 1
−24 X2 − 2
−31 X3 +X − 1
−35 X2 −X − 1
−39 X4 −X3 −X2 +X + 1
−40 X2 −X − 1
−43 X
−47 X5 − 2X4 + 2X3 −X2 + 1
−51 X2 −X − 4
−52 X2 −X − 3
−55 X4 −X3 +X2 +X + 1
−56 X4 −X3 +X + 1
−59 X3 + 2X − 1
−67 X
−68 X4 +X2 − 2X + 1
−71 X7 −X6 −X5 +X4 −X3 −X2 + 2X + 1
−79 X5 −X4 +X3 − 2X2 + 3X − 1
−83 X3 −X2 +X − 2
−84 X4 −X2 + 1
−87 X6 −X5 + 4X4 − 4X3 + 5X2 − 3X + 1
−88 X2 − 2
−91 X2 −X − 3
−95 X8 −X7 +X5 − 2X4 −X3 + 2X2 + 2X − 1
−103 X5 − 2X4 + 3X3 − 3X2 +X + 1
−104 X6 −X5 + 2X4 +X3 − 2X2 −X − 1
−107 X3 −X2 + 3X − 2
−111 X8 − 3X7 + 3X6 − 3X5 + 5X4 − 6X3 + 6X2 − 3X + 1
−115 X2 −X − 1
−116 X6 − 2X3 +X2 + 2X + 2
−119 X10 −X9 + 2X8 − 4X7 + 5X6 − 7X5 + 9X4 − 8X3 + 5X2

− 4X + 1
−120 X4 −X3 + 2X2 +X + 1
−123 X2 −X − 10
−127 X5 −X4 − 2X3 +X2 + 3X − 1
−131 X5 −X4 + 2X3 −X2 +X + 2
−132 X4 −X2 + 1
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Discriminants and Hilbert class fields of imaginary quadratic fields
−136 X4 − 2X3 +X2 + 2X + 1
−139 X3 −X2 +X + 2
−143 X10 − 3X9 + 6X8 − 6X7 + 3X6 + 3X5 − 9X4 + 13X3 − 12X2

+ 6X − 1
−148 X2 −X − 9
−151 X7 −X6 +X5 + 3X3 −X2 + 3X + 1
−152 X6 + 2X4 − 2X3 − 2X2 − 1
−155 X4 − 2X3 + 2X2 −X + 8
−159 X10 −X9 + 3X8 − 4X7 + 2X6 − 2X5 +X4 + 6X3 + 4X2 + 6X + 3
−163 X
−164 X8 + 3X6 − 2X3 −X2 + 2X + 1
−167 X11 −X10 + 5X9 − 4X8 + 10X7 − 6X6 + 11X5 − 7X4 + 9X3

− 4X2 + 2X + 1
−168 X4 −X3 −X2 − 2X + 4
−179 X5 −X4 + 3X2 −X + 2
−183 X8 + 5X4 − 9X3 + 6X2 − 3X + 1
−184 X4 −X3 + 4X2 +X + 1
−187 X2 −X − 4
−191 X13 − 2X12 + 4X10 − 5X9 +X8 + 5X7 − 11X6 + 19X5 − 22X4

+ 16X3 − 10X2 + 6X − 1
−195 X4 −X3 + 2X2 +X + 1
−199 X9 −X8 − 3X6 + 3X3 + 3X2 + 5X + 1
−203 X4 −X3 − 3X2 − 2X + 4
−211 X3 − 2X − 3
−212 X6 − 2X5 − 2X4 + 6X3 − 2X2 − 4X + 5
−215 X14 − 2X13 + 6X11 − 3X10 − 8X9 + 13X8 + 4X7 − 16X6

+ 7X5 + 13X4 − 11X3 − 4X2 + 6X − 1
−219 X4 −X3 + 5X2 − 2X + 4
−223 X7 +X5 − 4X4 −X3 + 5X + 1
−227 X5 −X3 − 2X2 + 3X + 4
−228 X4 −X2 + 1
−231 X12 −X11 − 2X10 − 5X9 + 7X8 + 8X7 − 7X6 + 8X5 + 7X4

− 5X3 − 2X2 −X + 1
−232 X2 −X − 7
−235 X2 −X − 1
−239 X15 − 4X14 + 4X13 + 4X12 − 5X11 − 13X10 + 20X9 + 4X8

− 15X7 − 13X6 + 27X5 − 4X4 − 8X3 − 2X2 + 6X − 1
−244 X6 − 2X5 −X4 + 4X3 + 3X2 − 6X + 2
−247 X6 − 3X5 + 6X4 − 7X3 + 7X2 − 4X − 1
−248 X8 − 3X7 + 3X6 − 2X5 + 2X4 + 2X3 + 3X2 + 3X + 1
−251 X7 + 4X5 − 2X4 + 2X3 − 3X + 2
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Discriminants and Hilbert class fields of imaginary quadratic fields
−255 X12 −X11 − 4X10 + 10X9 − 3X8 − 14X7 + 25X6 − 25X5

+ 18X4 − 7X3 + 2X2 − 2X + 1
−259 X4 − 2X3 +X + 2
−260 X8 − 2X7 + 3X6 + 2X5 − 4X3 + 7X2 − 4X + 1
−263 X13 − 6X12 + 15X11 − 21X10 + 19X9 − 13X8 + 12X7 − 22X6

+ 36X5 − 38X4 + 27X3 − 16X2 + 8X − 1
−264 X8 − 3X7 + 3X6 + 2X4 + 3X2 − 3X + 1
−267 X2 −X − 22
−271 X11 +X9 −X8 + 3X7 + 3X6 − 6X5 + 3X4 + 5X3 − 6X2

+ 5X + 1
−276 X8 − 4X7 + 11X6 − 18X5 + 23X4 − 18X3 + 14X2 − 4X + 4
−280 X4 − 6X2 + 4
−283 X3 + 4X − 1
−287 X14 −X13 + 3X12 +X11 −X10 + 2X8 − 6X7 − 8X6 + 7X5

− 5X4 − 6X3 + 9X2 + 8X + 1
−291 X4 −X3 − 4X2 +X + 7
−292 X4 −X2 − 4X + 5
−295 X8 − 4X7 + 5X6 −X5 + 11X4 − 25X3 + 14X2 −X + 1
−296 X10 − 2X9 − 3X8 + 4X7 + 5X6 − 2X5 + 5X4 + 4X3 − 3X2

− 2X + 1
−299 X8 −X7 − 5X6 + 6X5 + 2X4 − 10X3 − 7X2 −X − 1
−303 X10 − 3X8 − 2X7 + 6X6 − 8X4 + 21X3 + 12X2 − 9X + 9
−307 X3 −X2 + 3X + 2
−308 X8 − 4X7 + 12X6 − 22X5 + 25X4 − 18X3 + 8X2 − 2X + 5
−311 X19 −X18 + 2X17 − 5X16 + 8X15 − 14X14 + 13X13 − 10X12

−X11 + 9X10 − 18X9 + 25X8 − 10X7 − 4X6

+ 38X5 − 42X4 + 37X3 − 16X2 + 4X + 1
−312 X4 −X3 + 4X2 + 3X + 9
−319 X10 − 5X9 + 11X8 − 14X7 + 10X6 − 2X5 +X4 − 5X3 + 9X2

− 6X − 1
−323 X4 − 2X3 − 2X2 + 3X − 2
−327 X12 − 2X11 + 8X10 − 16X9 + 24X8 − 28X7 + 22X6 − 5X5

− 9X4 + 4X3 + 5X2 − 4X + 1
−328 X4 − 2X3 + 3X2 − 2X + 3
−331 X3 −X2 + 3X − 4
−335 X18 + 3X16 − 8X15 + 14X14 − 20X13 + 37X12 + 10X11

+ 13X10 + 41X9 − 48X8 + 16X7 − 8X6 + 4X5

+ 45X4 + 4X3 + 15X2 +X + 1
−339 X6 − 4X4 + 4X2 + 3
−340 X4 + 3X2 + 1
−344 X10 + 4X8 − 4X7 + 5X6 − 8X5 + 10X4 − 8X3 −X2 − 8X + 2
−347 X5 −X4 + 4X3 −X2 + 5X − 4
−355 X4 + 3X2 + 20
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Discriminants and Hilbert class fields of imaginary quadratic fields
−356 X12 − 4X10 − 2X9 + 12X8 + 20X7 + 18X6 + 16X5 + 20X4

+ 18X3 + 12X2 + 4X + 1
−359 X19 − 2X18 + 2X17 − 2X16 − 3X15 + 14X14 − 7X13 − 22X12

+ 30X11 − 9X10 + 5X9 − 2X8 − 51X7 + 90X6

− 19X5 − 91X4 + 113X3 − 59X2 + 14X − 1
−367 X9 −X8 − 3X7 −X6 + 6X5 −X4 + 6X3 − 7X2 + 2X − 3
−371 X8 − 4X7 + 8X6 − 10X5 − 6X4 + 24X3 − 27X2 + 14X − 4
−372 X4 −X2 + 1
−376 X8 − 5X6 + 13X4 − 11X2 + 18
−379 X3 −X2 +X − 4
−383 X17 −X16 −X15 −X14 +X12 + 13X11 + 7X10 + 11X9 + 4X8

+X7 + 7X6 + 23X5 + 31X4 + 42X3 + 24X2 + 6X − 1
−388 X4 − 2X3 − 3X2 + 4X + 5
−391 X14 − 5X12 − 5X11 + 7X10 + 15X9 + 6X8 − 8X7 − 3X6 + 4X5

− 12X3 − 12X2 − 8X + 1
−395 X8 − 4X7 +X6 + 11X5 + 4X4 − 31X3 + 38X2 − 20X + 16
−399 X16 − 3X15 + 6X14 − 3X13 + 7X12 − 12X11 − 3X10 − 3X9 + 30X8

− 42X7 + 21X6 + 12X5 − 11X4 − 6X3 + 12X2 − 6X + 1
−403 X2 −X − 3
−404 X14 − 2X13 + 8X12 − 18X11 + 33X10 − 66X9 + 99X8 − 136X7

+ 188X6 − 192X5 + 181X4 − 150X3 + 86X2 − 28X + 4
−407 X16 −X15 + 2X14 −X13 + 9X12 + 2X11 + 15X10 + 12X8

+ 4X6 − 19X5 − 17X4 − 33X3 − 4X2 − 10X − 1
−408 X4 + 2X2 + 4
−411 X6 + 5X4 + 13X2 + 12
−415 X10 + 6X8 − 2X7 + 14X6 − 2X5 + 11X4 + 7X3 +X2 + 10X − 1
−419 X9 − 2X7 − 4X6 + 4X5 + 10X4 −X3 − 8X2 + 8X + 8
−420 X8 − 3X6 + 8X4 − 3X2 + 1
−424 X6 − 3X5 + 5X3 − 2X2 −X − 7
−427 X2 −X − 15
−431 X21 − 3X20 + 6X19 − 9X18 + 9X17 + 4X16 − 10X15 + 36X14

− 30X13 + 14X12 − 2X11 − 66X10 + 41X9 − 83X8 + 44X7

− 10X6 + 21X5 + 40X4 + 16X3 + 15X2 + 12X + 1
−435 X4 −X3 + 2X2 +X + 1
−436 X6 +X4 − 6X3 + 13X2 − 12X + 4
−439 X15 − 5X14 + 11X13 − 9X12 − 7X11 + 17X10 −X9 − 29X8 + 38X7

− 13X6 − 20X5 + 24X4 + 7X3 − 23X2 + 13X − 1
−440 X12 −X11 + 6X10 +X9 − 2X8 + 7X7 + 10X6 − 7X5 − 2X4

−X3 + 6X2 +X + 1
−443 X5 −X4 −X3 + 5X2 + 3X − 5
−447 X14 − 2X13 − 3X12 + 7X11 + 9X10 − 34X9 + 60X8 − 118X7

+ 174X6 − 164X5 + 135X4 − 113X3 + 58X2 − 12X + 3
−451 X6 − 3X5 + 3X4 −X3 + 7X2 − 7X − 4
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12.2 Small Discriminants

In this section, we give information on the best results about number fields
of small discriminant known to the author at the date of writing.

12.2.1 Lower Bounds for Root Discriminants

Assuming the GRH, it is possible to give very good lower bounds for the root
discriminant of an algebraic number field, depending on its signature (r1, r2).
Many people, and especially H. Stark, A. Odlyzko, J.-P. Serre, G. Poitou,
and F. Diaz y Diaz, have contributed to this subject (see, for example, [Odl]
for an up-to-date account).

It is also possible to give bounds if we do not assume the validity of GRH,
but these are so far from the smallest known values that it does not seem
reasonable to use these bounds.

The GRH bounds that we use are now called (for short) Odlyzko bounds.
It is widely believed that these bounds are very close to the actual truth,
in other words that it is not possible to substantially improve these bounds,
at least in full generality. The knowledgeable reader will understand that
the bounds can of course be improved if we have specific knowledge on the
splitting of small primes or on the height of the first zeros of the Dedekind
zeta function.

We give a table of such bounds up to degree 26 for every signature. A
complete table up to degree 100 can be obtained by ftp at
ftp://megrez.math.u-bordeaux.fr/pub/numberfields/odlyzkobounds

(take also the file README.odlyzko from the same directory).
Since they are lower bounds, the values are given rounded down to three

decimals after the decimal point.
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Odlyzko GRH bounds for n ≤ 26 and 0 ≤ r2 ≤ 6
n�r2 0 1 2 3 4 5 6

1 0.997
2 2.228 1.722
3 3.633 2.821
4 5.127 4.038 3.266
5 6.644 5.326 4.348
6 8.148 6.643 5.487 4.595
7 9.617 7.964 6.657 5.622
8 11.042 9.271 7.838 6.678 5.737
9 12.418 10.553 9.016 7.749 6.703
10 13.744 11.805 10.182 8.824 7.685 6.730
11 15.021 13.023 11.330 9.893 8.673 7.637
12 16.250 14.206 12.454 10.951 9.661 8.554 7.602
13 17.432 15.353 13.554 11.995 10.644 9.473 8.457
14 18.571 16.465 14.627 13.020 11.617 10.389 9.316
15 19.668 17.542 15.672 14.026 12.577 11.300 10.176
16 20.726 18.586 16.691 15.011 13.523 12.203 11.032
17 21.747 19.597 17.682 15.975 14.452 13.094 11.883
18 22.733 20.578 18.647 16.916 15.365 13.974 12.726
19 23.686 21.528 19.586 17.836 16.260 14.840 13.560
20 24.608 22.450 20.499 18.735 17.138 15.692 14.384
21 25.500 23.346 21.389 19.612 17.997 16.530 15.196
22 26.365 24.215 22.255 20.468 18.839 17.353 15.997
23 27.204 25.060 23.099 21.305 19.663 18.160 16.785
24 28.017 25.881 23.920 22.121 20.469 18.953 17.560
25 28.807 26.680 24.721 22.918 21.259 19.730 18.323
26 29.575 27.457 25.502 23.697 22.031 20.493 19.072

Odlyzko GRH bounds for n ≤ 26 and 7 ≤ r2 ≤ 13
n�r2 7 8 9 10 11 12 13

14 8.377
15 9.184
16 9.994 9.073
17 10.802 9.838
18 11.607 10.603 9.702
19 12.407 11.367 10.429
20 13.200 12.127 11.156 10.276
21 13.984 12.882 11.880 10.969
22 14.760 13.631 12.601 11.661 10.802
23 15.526 14.373 13.317 12.350 11.464
24 16.281 15.107 14.027 13.036 12.125 11.288
25 17.026 15.832 14.731 13.717 12.783 11.922
26 17.760 16.548 15.428 14.394 13.438 12.555 11.739
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To test whether the Odlyzko bounds are good, we can compare them
with actual data coming from known number fields. As already explained in
Chapter 9, the number fields are obtained by a variety of methods:
• complete enumeration using the geometry of numbers for degrees up to

8;
• the class field method described in Chapter 5;
• searches for polynomials of small discriminant, using resultant or similar

methods (see [Sim2]).
We refer the interested reader to [Sim2] for a table of such polynomials.

The conclusion is that first of all the Odlyzko bounds are indeed excellent,
and second that we do have good methods to construct number fields of small
root discriminant since in most cases we approach the GRH bound by less
than 2 or 3 percent. An exception is the smallest totally real field in degree
7, which is known, and whose root discriminant is almost 15% above the
Odlyzko bound.

12.2.2 Totally Complex Number Fields of Smallest Discriminant

In the totally complex case, we can explicitly give a table of the smallest
known discriminants, first because the number of signatures is linear instead
of quadratic, second because the discriminants are smaller, and third because
the computations are simpler.

Thus, in this section, we give a table of totally complex number fields of
degree less than or equal to 80, having the smallest known root discriminant.
They have all been obtained by using the class field method described in
Section 9.2.1, with the exception of the field in degree 26, found by D. Simon
by more elementary methods (see [Sim2]). The table is taken from joint work
with F. Diaz y Diaz and M. Olivier (see [Co-Di-Ol4]).

In each case, the congruence subgroup is equal to Pm, and m∞ is the set
of all real places of the base field K (if this was not the case, either L would
not be totally complex or m would not be its conductor).

Two tables are given. The first table lists the absolute degree [L : Q],
the base field K, the modulus m0 as a product of prime ideals (written Pp

to indicate a prime ideal of degree 1 above p and pp a prime ideal of degree
2 above p), the discriminant in factored form, the root discriminant, and
the percentage above the Odlyzko bound that we have computed, except for
degree 26, where K and m0 are irrelevant.

The second table lists the absolute defining polynomials for the above
fields L up to degree 36, since above degree 36 (and even the largest degrees
below) the polynomials become unwieldy. Almost all of the missing polyno-
mials can be found in [Co-Di-Ol4].

With the exception of degree 26, all the polynomials have been obtained
using the methods of Kummer theory described in Chapter 5, and each gives
an exercise on the use of Kummer theory for finding such polynomials, as
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we saw in the two examples of Section 5.6 (see, for example, Exercise 16 of
Chapter 5).

Smallest known totally complex discriminants

n K m0 d(L) n
√
|d(L)| %

2 X P3 −3 1.732 0.558%
4 X2 −X + 1 P13 32 · 13 3.289 0.685%
6 X2 −X + 1 P19 −33 · 192 4.622 0.576%
8 X2 + 1 P17 28 · 173 5.787 0.856%
10 X5 −X2 + 1 P23 −72 · 23 · 4312 6.793 0.939%
12 X6 −X5 + 2X3 − 2X2 + 1 P41 372 · 41 · 8572 7.666 0.843%
14 X2 −X + 18 (1) −717 8.426 0.581%
16 X4 −X − 1 P17P37 172 · 372 · 2834 9.179 1.164%
18 X6 − 2X5 + 3X4 +X2 + 3X + 1 (2) −212 · 236 · 1073 9.836 1.378%
20 X4 + 1 p11 240 · 118 10.438 1.573%
22 X2 −X + 2 P23 −711 · 2310 11.003 1.854%
24 X4 −X3 −X2 +X + 1 P397 312 · 136 · 3975 11.441 1.349%
26 ∗ ∗ ∗ −239 · 15357612 · 70369032 12.419 5.788%
28 X4 + 2X2 − 2X + 1 P71 228 · 377 · 716 12.296 1.135%
30 X5 −X − 1 P307 −196 · 1516 · 3075 12.766 1.721%
32 X4 −X3 + 2X + 1 P3p13 328 · 78 · 1314 13.065 1.135%
36 X4 −X3 + 31X2 − 24X + 252 (1) 318 · 40579 13.823 1.709%
40 X2 + 2 P3P

′
3P11 260 · 320 · 1118 14.412 1.543%

44 X4 −X3 + 2X + 1 P463 333 · 711 · 46310 14.960 1.511%
48 X4 −X3 + 4X2 + 3X + 9 p2p5 216 · 324 · 520 · 1324 15.386 1.006%
52 X4 − 2X3 + 21X2 − 20X + 68 (1) 278 · 100913 15.941 1.626%
56 X4 −X3 − 2X + 8 P3

2 249 · 342 · 24114 16.472 2.283%
60 X4 −X3 − 2X2 + 3 p19 330 · 1928 · 3715 16.880 2.352%
64 X4 − 2X3 − 2X + 5 P3

2p3p
′
3 2128 · 348 · 1316 17.314 2.738%

68 X4 −X + 1 P647 22917 · 64716 17.838 3.777%
72 X4 + 1 P577 2144 · 57717 17.948 2.531%
76 X4 − 2X3 + 21X2 − 20X + 32 (1) 1738 · 43319 18.808 5.656%
80 X4 +X2 −X + 1 P641 25720 · 64119 18.583 2.774%

Note that the field in degree 26 obtained with the methods of Simon can
also be obtained with the class field method by choosing K defined by a root
of the polynomial

X13 +X12 − 10X11 − 8X10 + 38X9 + 22X8

− 69X7 − 24X6 + 62X5 + 7X4 − 26X3 + 2X2 + 4X − 1

and a modulus m such that m0 = P239.
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Absolute defining polynomials of L for 2 ≤ n ≤ 36
x2 − x+ 1
x4 − x3 − x2 + x+ 1
x6 − x5 + x4 − 2x3 + 4x2 − 3x+ 1
x8 − 2x7 + 4x5 − 4x4 + 3x2 − 2x+ 1
x10 − 3x9 + 7x8 − 11x7 + 13x6 − 12x5 + 9x4 − 5x3 + 3x2 − 2x+ 1
x12 − 2x11 + 2x10 − x9 + 2x8 − 5x7 + 8x6 − 7x5 + 4x4 − 3x3 + 4x2 − 3x+ 1
x14 − 7x13 + 25x12 − 59x11 + 103x10 − 141x9 + 159x8 − 153x7 + 129x6

− 95x5 + 58x4 − 27x3 + 10x2 − 3x+ 1
x16 + 2x14 − x13 + 3x12 − 4x11 + 4x10 − 7x9 + 5x8 − 7x7 + 4x6 − 4x5 + 3x4

− x3 + 2x2 + 1
x18 − x17 + 3x16 + 2x15 − x14 + 11x13 + 3x12 + 3x11 + 28x10 − 18x9 + 47x8

− 27x7 + 45x6 − 23x5 + 27x4 − 11x3 + 9x2 − 2x+ 1
x20 − 4x19 + 8x18 − 8x17 − x16 + 12x15 − 8x14 − 16x13 + 43x12 − 44x11

+ 24x10 − 12x9 + 24x8 − 44x7 + 48x6 − 36x5 + 21x4 − 12x3 + 8x2

− 4x+ 1
x22 − 5x21 + 13x20 − 26x19 + 48x18 − 82x17 + 127x16 − 179x15 + 238x14

− 309x13 + 391x12 − 475x11 + 560x10 − 644x9 + 703x8 − 690x7

+ 578x6 − 398x5 + 220x4 − 95x3 + 31x2 − 7x+ 1
x24 − 6x23 + 22x22 − 62x21 + 146x20 − 295x19 + 522x18 − 829x17 + 1191x16

− 1559x15 + 1874x14 − 2078x13 + 2127x12 − 2007x11 + 1752x10

− 1403x9 + 1023x8 − 683x7 + 407x6 − 216x5 + 103x4 − 41x3

+ 15x2 − 4x+ 1
x26 − x25 + 3x24 − 4x23 + 6x22 − 8x21 + 9x20 − 12x19 + 12x18 − 14x17

+ 14x16 − 14x15 + 15x14 − 13x13 + 15x12 − 14x11 + 14x10 − 14x9

+ 12x8 − 12x7 + 9x6 − 8x5 + 6x4 − 4x3 + 3x2 − x+ 1
x28 − 6x27 + 14x26 − 12x25 − 15x24 + 64x23 − 94x22 + 38x21 + 106x20

− 230x19 + 198x18 + 20x17 − 268x16 + 324x15 − 128x14 − 132x13

+ 241x12 − 164x11 + 6x10 + 82x9 − 68x8 + 28x7 − 2x6 − 10x5

+ 9x4 − 2x3 + 1
x30 − 5x29 + 13x28 − 20x27 + 22x26 − 36x25 + 77x24 − 141x23 + 211x22

− 237x21 + 247x20 − 329x19 + 456x18 − 543x17 + 580x16 − 538x15

+ 327x14 − 54x13 − 34x12 − 85x11 + 176x10 − 109x9 + 16x8 + x7

+ 13x6 − 9x5 − 4x3 + 9x2 − 5x+ 1
x32 − 5x31 + 17x30 − 40x29 + 77x28 − 131x27 + 200x26 − 295x25 + 385x24

− 496x23 + 575x22 − 647x21 + 669x20 − 585x19 + 561x18 − 292x17

+ 323x16 + 52x15 + 162x14 + 183x13 + 111x12 + 146x11 + 92x10

+ 67x9 + 31x8 + 22x7 + 11x6 + 11x5 + 11x4 + 7x3 + 8x2 + 5x+ 1
x36 + 2x35 − x34 − 6x33 − 10x32 − 7x31 + 6x30 + 16x29 + 64x28 + 18x27

− 72x26 − 119x25 + 140x24 + 20x23 + 96x22 − 528x21 + 429x20

− 237x19 + 613x18 − 533x17 + 1151x16 − 484x15 + 664x14 − 464x13

+ 161x12 + 1006x11 − 1324x10 + 716x9 − 36x8 − 239x7 + 245x6

− 197x5 + 121x4 − 55x3 + 17x2 − 4x+ 1
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The reason we have not given any examples in degrees 34, 38, and so
forth, is that they are too far away from the Odlyzko bounds. In fact, the
examples given in degrees 26, 68, or 76 are already not very good, but they
are the best known to us.

In any case, there is no reason to believe, especially in large degrees, that
small discriminants will correspond to Abelian extensions of subfields. Al-
ready in degree 26 the best-known example has not been obtained in this
way, although the field L is an Abelian extension of a subfield of degree 13.
In fact, it is plausible that the Galois group of the fields with smallest dis-
criminants will tend to be the complete symmetric group Sn, which prevents
the fields from having nontrivial subfields.

Remark. Although we have never considered this aspect of the question
in this book, it should be noted that the search for number fields with small
root discriminant is in many ways analogous to the search for curves of small
genus having many rational points over a finite field. We refer the interested
reader to [Nie] for this very interesting subject.
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results, Sém. de Théorie des Nombres Bordeaux (Série 2) 2 (1990),
119–141.

[Oli1] M. Olivier, The computation of sextic fields with a cubic subfield and
no quadratic subfield , Math. Comp. 58 (1992), 419–432.

[Oli2] M. Olivier, Corps sextiques primitifs, Ann. Inst. Fourier 40 (1990),
757–767.

[Poh] M. Pohst, On the computation of number fields of small discrim-
inants including the minimum discriminants of sixth degree fields,
J. Number Theory 14 (1982), 99-117.

[Poh-Zas] M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory
(3rd ed.), Cambridge Univ. Press, Cambridge (1993).

[Que] R. Quême, A computer algorithm for finding new Euclidean number
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[Smy1] C. Smyth, Totally positive algebraic integers of small trace, Ann.

Inst. Fourier 33 (1984), 1–28.
[Smy2] C. Smyth, The mean value of totally real algebraic integers, Math.

Comp. 42 (1984), 663–681.
[Smy3] C. Smyth, An inequality for polynomials, Proceedings of the CTNA

Ottawa conference, to appear.
[Suz] H. Suzuki, A generalization of Hilbert’s Theorem 94 , Nagoya Math.

J. 121 (1991), 161–169.
[Tat] J. Tate, Les conjectures de Stark sur les fonctions L d’Artin en s = 0,

Progress in Math. 47, Birkhaüser, Boston (1984).
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Index of Notation

Symbols

1A unit element of an Abelian group A, 164
1A row vector of unit elements of an Abelian group A,

164
(1 + a)/(1 + b) group useful for computing (ZK/m)∗, 188

A

⌊A⌉ entries of the matrix A rounded to the nearest inte-
ger, 211

[a, b[ semi-open interval, also denoted by [a, b) in certain
countries, 32

(A|B) horizontal concatenation of matrices A and B, 164(
A
B

)
vertical concatenation of matrices A and B, 164

A(χ) :=
∏

p|f,p∤f(χ)(1− χ(p)), 300

(A,DA) Smith normal form of Abelian group A, 165
(A, I) pseudo-matrix, 29
(A, I, J) integral pseudo-matrix for SNF, 43
ak kth elementary symmetric functions, 451
α ≡ 1 (mod ∗m) multiplicative congruence, see definition, 136
((α, a), (β, b)) pseudo–two-element representation of an ideal, 87
α ≡ β (mod ∗m) multiplicative congruence, see definition, 136
αj jth conjugate of α, 451
α class of α in (ZK/m)∗, 136
Am(L/K) Artin group for the modulus m, kernel of Art, 153

Art(a) :=
(
L/K

a

)
, Artin reciprocity map, 153

B

(B,DB) Smith normal form of Abelian group B, 165

C

Cα characteristic polynomial of α, 70
C(χ) := (π−md(K)N (f(χ)))1/2 , 300
(C,DC) Smith normal form of Abelian group C, 165
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Cli(K) abbreviation for Cli,L(K), 348
Cli(L/K) relative pseudo-class group, 348
Cli,L(K) capitulating subgroup of the extension L/K, 348
Cli,S(L/K) S-relative class group, 380
Cl(K) class group of K, 134
Clm := Clm(K), 138
Clm(K) ray class group for the modulus m, 136
ClN (K) abbreviation for ClN,L(K), 349
ClN (L/K) relative norm-class group, 349
ClN,L(K) norm-default quotient of the extension L/K, 349
ClS(K) S-class group of K, 373
C := C/Pm, 138
Cp p-Sylow subgroup of C, 177

D

D1 set of indices such that ai,i = 1 in HNF of a prime
ideal, 105

Dp set of indices such that ai,i = p in HNF of a prime
ideal, 105

deg(T ) degree of polynomial T , 51
∆(a) value of the discriminant form on the ideal a, 318
δ(x) 1 if x = 0, 0 if x 6= 0, 157
d(L/K) relative discriminant ideal, 79
D(P/p) decomposition group at P (also G−1(P/p)), 151
diag((bi)i) diagonal matrix whose diagonal entries are the bi,

166
di elementary divisors of a torsion module, 6
disc(L/K) := (d(L/K), d(L/K)), 79
discT (M) := (dT (M), dT (M)), 28
D(L/K) discriminant of relative Abelian extension together

with part at infinity, 158
D(L/K) relative different of L/K, 96
d(L/K) relative discriminant in K∗/K∗2, 79
dT (M) discriminant ideal of M , 28
dT (M) discriminant of M in K∗/K∗2, 28

E

ei := e(Pi/p), 83
ℓ a prime number, often degree of a field extension,

227
e(P/p) ramification index of P above p, 83
η(τ) Dedekind eta function at τ , 316
expa(x) Artin–Hasse exponential of x, 202, 221
expp(x) p-adic exponential of x, 190

F
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f can be the conductor of a congruence subgroup, 144
f can be the index-ideal of a suborder, 79
FB(x, y) cubic form associated to an integral basis B, 395
f(χ) conductor of the character χ, 146
fH content of the Hessian, 408
fi := f(Pi/p), 83
FK(x, y) cubic form associated to the cubic field K, 396
f(L/K) conductor of the extension L/K (usually Abelian),

151
f(P/p) residual degree of P above p, 83

G

G3 subset of Rn for Lagrange multiplier method, 456
G4 subset of Rn for Lagrange multiplier method, 456
Gal(L/K) Galois group of L/K, 74
Γ 0(pq) upper Cartan congruence subgroup of level pq of

PSL2(Z), 318
Γ∞ group of integer translations, 122
Ĝ group of characters of Abelian group G, 157
gj(A) ideal generated by minor-ideals in the last n+ 1− j

rows, 31
Gk(P/p) kth ramification group of P, 502
gp,q(τ) := η(τ/p)η(τ/q)/(η(τ/pq)η(τ)), 318
gp,q,e(a) := gp,q(ω1/ω2)

e for a Z-basis of a, 319
gp,q,e(a) := gp,q,e(a) for all suitable Z-bases of a, 320
Gp := (1 + p)/(1 + pk), p-part of group G = (ZK/p

k)∗,
189

H

H−
3 (X) number of complex cubic forms of discriminant down

to −X , 421
H+

3 (X) number of real cubic forms up to discriminant X ,
417

HA HNF matrix representing subgroup of A, 172
HB HNF matrix representing subgroup of B, 172
HC HNF matrix representing subgroup of C, 172
H(F ) Hessian of F , 393
HF := −H(F )/4, 394
hi(L/K) relative pseudo-class number, 348
h(K) class number of K, 134

hm,C := |Clm/C| = |Im/C| = [K(m)C : K], 142
hm(K) := |Clm(K)|, ray class number for the modulus m,

137
HNF Hermite normal form, 1
hN (L/K) relative norm-class number, 349
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I

idP identity map on P , 8
I(P/p) inertia group at P (also G0(P/p)), 151
iL/K natural map from K to an extension L, 348
Im := Im(K), 135
Im(K) group of ideals of K coprime to m, 135
Im,L := ImZL(L), 153
In n× n identity matrix, 11
Ip the p-radical of an order, 102

J

j(a) value of modular invariant j on the ideal a, 315
J(F ) Jacobian covariant of F , 393

K

K(1) Hilbert class field of K, ray class field for the trivial
modulus 1, 134

K2 quadratic subfield of the Galois closure of a dihedral,
usually cubic, extension, 440

K number field or field of fractions of a Dedekind do-
main, 2

Kj kernel of the map x 7→ xp
j

from Gp into itself, 197
KM := K ⊗RM , 6
K(m) ray class field for the modulus m, 138
K∗

m group of α ≡ 1 (mod ∗m), 136
Kz Kummer extension K(ζn) of base field K, 227

L

L2 can be the Galois closure of a dihedral, usually cubic,
extension, 440

Lab maximal Abelian subextension of L/K, 216
λ simpler lift in characteristic zero of a multiple of

idempotent e1, 250
λ0 lift in characteristic zero of a multiple of idempotent

e1, 248
Λ(s, χ) Hecke L-function with gamma and exponential fac-

tors, 300
L(s, χ) pure Hecke L-function, 300
[ℓ] ℓth power map, 232
LK splitting field of the Hilbert class field of K, 312
[L : K] degree of relative extension L/K, 50(
L/K

a

)
:= Art(a), Artin reciprocity map, 153

L∗K extended multiplicative group of L by K, 352
LLL Lenstra–Lenstra–Lovász algorithm, 23
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Lm(α) short discrete logarithm of α, 238
loga(x) Artin–Hasse logarithm of x, 202, 221
logp(x) p-adic logarithm of x, 190
LS(s, χ) Hecke L-function outside S, 299
Lz Kummer extension of L(ζn) of extension field L, 227

M

m modulus, 135
m0 finite part of the modulus m, 135
(m1, C1) ∼ (m2, C2) equivalence of congruence subgroups, 140
Madj adjoint matrix of M , 51
(m, C) congruence subgroup C modulo m, 138
m∞ infinite part of the modulus m, 135
m | n divisibility relation between moduli, 135
M/pM reduction modulo p of a module M , 37
M∗ dual of a ZK -module for the trace, 484
M t transpose matrix of M , 51
Mtors torsion submodule of M , 7
µb a useful element of Z[G] (see text), 250
µ(K) group of roots of unity in K, 232
µn = µn(K) subgroup of nth roots of unity in K, 495

N

N−
3 (X) number of complex cubic fields of discriminant down

to −X , 421
N+

3 (X) number of real cubic fields up to discriminantX , 417
[n]G raising to the nth power in the group G, 348
NL/K relative norm map from an extension L to K, 348
NL/K(α) relative norm of α, 76
N (α) absolute norm of α, 3

O

O an order, 102
(ω, a) pseudo-element, 26
(ωi, ai) pseudo-generating set or pseudo-basis, 26

P

P a prime ideal above p, 83
p prime ideal of a base field K, 3
φCΦ Davenport–Heilbronn map from cubic fields to cubic

forms, 397
φh(f1, f2) hth higher covariant made from f1 and f2, 392
φ(m) Euler φ-function for modulus or ideal m, 137
Φn(K) space of binary forms of degree n on K, 389
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φΦC Davenport–Heilbronn map from cubic forms to cubic
fields, 397

π often a uniformizer at the prime ideal p, 104
PID Principal ideal domain, 1
(p∞,m) := pvp(m), 177
P (K) group of principal ideals of K, 134
Pm := Pm(K), 136
Pm(K) group of principal ideals αZK with α ≡ 1 (mod ∗m),

136
[p] multiplication by p in an Abelian group, 179
Pp,q,e(X) characteristic polynomial of gp,q,e(ZK), 321
ψi,N natural map from Cli(L/K) to ClN (L/K), 350
ψN,i natural map from ClN (L/K) to Cli(L/K), 350
P∗ group of pseudo-principal ideals, 348

Q

[Q : P ] index-ideal of P into Q, 15

R

R often a Dedekind domain, 2
R resultant, 51
r1 number of real embeddings of K, 3
r2 one half of the number of nonreal embeddings of K,

3
ra := ga mod ℓ, 250
rc ℓ-rank of Abelian group C, 181
Ri(L/K) relative regulator associated to iL/K , 358
RN (L/K) relative regulator associated to NL/K , 359
R/p residue field at p, 37
ru unit rank of K, 231
rv ℓ-rank of the ℓ-Selmer group of K, 231
R′
X partial derivative of R with respect to X , 53
RY resultant with respect to the variable Y , 53
R′
Z partial derivative of R with respect to Z, 53

S

S usually a finite set of places of a number field, 2
S0 usually a set of prime ideals (or finite places) in S, 4
S∞ set of embeddings in S, 4
s(α) vector of signs of embeddings of α, 186
Sℓ set of p ∤ m, p | ℓ, 227
S∅ set of p ∤ m, p ∤ ℓ, 227
σi one of the real or complex embeddings of a number

field, 3
σi,K relative K-linear embeddings, 73
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σP(x) Frobenius homomorphism for P, 152
σp(x) common Frobenius homomorphism for all P above

p, 152
σ(z, L) Weierstrass σ-function of a lattice L at z, 328, 334
sk = sk(α) kth power sum of conjugates of α, 451
Sm set of p | m, p ∤ ℓ, 227
sm1,m2 canonical surjective map from Im1 to Im2 if m2 | m1,

146
Sm,ℓ,1 set of p | (m, ℓ) such that vp(m) = z(p, ℓ), 227
Sm,ℓ,2 set of p | (m, ℓ) such that vp(m) < z(p, ℓ), 227
Sm,ℓ,3 set of p | (m, ℓ) such that vp(m) > z(p, ℓ), 227
SNF Smith normal form, 42
St(M) Steinitz class of M , 11

T

T2 = T2(α)
∑

1≤j≤n |αj |
2
, 451

t2 upper bound for T2 usually given by Hunter’s theo-
rem, 451

Tk = Tk(α)
∑

1≤j≤n |αj |
k
, 452

Tm(L/K) Takagi (or norm) group for the modulus m, 153
tors torsion, 7
TrL/K(α) relative trace of α, 76
T σ conjugate by σ of polynomial T , 72

U

Ua part of unimodular matrix necessary for computing
discrete logarithms in Abelian groups, 165

Ui(K) an abbreviation for Ui,L(K), 358
Ui(L/K) group of relative pseudo-units, 353
Ui,L(K) in fact, the trivial group, 358
U(K) unit group of K, 136
U usually a unimodular transformation matrix, 17
Um(K) := U(K) ∩K∗

m, 136
UN,0(L/K) subgroup of UN (L/K), 358
UN (K) abbreviation for UN,L(K), 358
UN (L/K) group of relative norm-units, 358
UN,L(K) U(K)/(µ(K) · NL/K(U(L))), 358
US(K) group of S-units of K, 371

V

vη(γ) multiplier system for the modular form η, 317
Vℓ(K) group of ℓ-virtual units of K, 231
vp(x) p-adic valuation of x, 3

W



INDEX OF NOTATION 563

W (χ) Artin root number of χ, 300
w(L/K) w(L)/w(K), 355
℘(z, L) Weierstrass ℘-function of a lattice L at z, 325
w(z, L) Weber functions for ray class field computations, 333

X

⌊x⌉ floor of x+ 1/2, 33
|x|p p-adic norm of x, 3(
X
Y

)
vertical concatenation of matrices or column vectors
X and Y , 164

Z

ζK,S(s, σ) partial Dedekind zeta function, 298
ζn primitive nth root of unity, specifically e2iπ/n, 227
ζ(z, L) Weierstrass ζ-function of a lattice L at z, 326
ZK the ring of integers of K, 2
(ZK/m)∗ := (ZK/m0)

∗ × Fm∞
2 , 135

ZK,S ring of S-integers of K, 371
z(p, ℓ) := ℓe(p/ℓ)/(ℓ− 1) + 1, 498



Index of Algorithms

A

Absolute defining polynomial (from
relative), 63

Absolute to relative defining poly-
nomial, 66

ad− bc = 1 algorithm, 25
Addition of ideals, 94
Artin map on Kummer extensions,

272
Artin root number W (χ), 308

B

Buchmann–Lenstra algorithm, 111

C

Capitulation group, 361
Chinese remainder algorithm for

ideals, nonrecursive, 188
Class group and capitulation group,

361
Norm class group and norm-default

quotient group, 361
S-class group, 373
Cli(L/K) andCli(K) = Cli,L(K),

361
ClN (L/K) andClN (K) = ClN,L(K),

361
Compositum of two number fields

using θ1θ2, 60
Compositum of two number fields

using kθ1 + θ2, 57
Conductor of a character, 219

Conductor of a congruence sub-
group, 214

Conductor of an Abelian exten-
sion, 216

Congruence subgroups dividing a
given one, 214

Congruence subgroups of index ℓ,
182

Coprime representative computa-
tion, 207

Cubic extensions list
– relative cyclic, 438
– relative noncyclic, 441
Is a cubic form the image of a cubic

field (version 1), 408
Is a cubic form the image of a cubic

field, 422

D

Dedekind η-function on H, 317
Dedekind criterion, 106
Discrete logarithm in (1 + p)/(1 +

pk), 201
Discrete logarithm in (ZK/m)∗, 208
Discrete logarithm in (ZK/p

k)∗,
202

Discrete logarithm in Cl(K)/Cl(K)ℓ,
236

Discrete logarithm in the ℓ-Selmer
group, 255

Discrete logarithm in the unit group,
254

E

564
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Element down, 65
element norm, 76
Euclidean algorithm in Dedekind

domains, 17
Exceptional set S0 for Galois ex-

tensions, 382
Exceptional set S0 for non-Galois

extensions, 382
Extended Euclidean algorithm in

Dedekind domains, 17
Extension Abelian or not, 217
Extension of an Abelian group by

another, 170

F

Factorization of an ideal, 99

H

Hermite normal form algorithm in
Dedekind domains, 30

– interleaved version, 40
– modular version, 39
– transformation matrix, 41
Hilbert class field
– compute P (X) ∈ Z(X), 312
– suitability of P (X), 312
Hilbert class fields of imaginary

quadratic fields, 321
HNF reduction of an element mod-

ulo an ideal, 32

I

Ideal addition, 94
Ideal factorization, 99
Ideal inversion, 98
Ideal inversion using different, 98
Ideal list up to n
– conductor at ℓ, 101
– general, 100
– squarefree, 100
Ideal multiplication, 95
ideal norm, 116
Ideal powering, 95
Ideal product, 95

Ideal reduction (relative), 366
Ideal up in absolute HNF, 117
Image of a subgroup by a group

homomorphism, 172
Integral pseudo-basis (driver algo-

rithm), 107
Interleaved modular HNF algorithm

in Dedekind domains, 40
Intersection and sum of two sub-

groups, 176
Intersection of two ZK-modules,

36
Intersection of two subgroups as a

subgroup of one of them, 177
Inverse image of a subgroup by a

group homomorphism, 173
Inverse of a prime ideal, 94
Inverse of an ideal, 98
Inverse of an ideal using different,

98

K

Kernel of a group homomorphism,
173

Kummer extension of prime de-
gree when ζℓ ∈ K using Hecke,
238

Kummer extension of prime de-
gree when ζℓ /∈ K using Hecke,
265

Kummer extension when ζn ∈ K
using Artin, 278

Kummer extension when ζn /∈ K
using Artin, 284

L

Left four-term exact sequence: com-
putation of the second group,
175

Linear system in integers, 182
Linear system of congruences, 184
Linear system of congruences and

equations, 185
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List of reduced binary quadratic
forms, 323

List of relative cyclic cubic exten-
sions, 438

List of relative noncyclic cubic ex-
tensions, 441

List of relative quadratic exten-
sions using class field theory, 436

List of relative quadratic exten-
sions using squarefree ideals, 434

LLL-reduction of an element mod-
ulo an ideal, 33

M

Mixed linear system, 185
Modular HNF algorithm in Dedekind

domains, 39
Modular HNF with transformation

matrix, 41
Multiplication of ideals, 95

N

Norm (or Takagi) group of an Abelian
extension, 215

Norm equations, 383
– integral, 385
Norm group of an extension that

is not necessarily Abelian, 216
norm of an element, 76
Norm of an ideal, 116
Norm-default quotient group, 361
Numerical value belongs to ZK
– for K imaginary quadratic, 343
– for K real quadratic, 309, 344

O

One-element representation in (ZK/m)∗,
205

Over-order computation, 104

P

pa/pb, 200
(1 + pa)/(1 + pb), 200
p-maximal order, 108

Polynomial reduction in the rela-
tive case, 110

Powering of an ideal, 95
p-radical computation, 102
Prime ideal below a prime ideal,

116
Prime ideal decomposition, 111
Prime ideal factorization of an ideal,

99
Primitive representatives of ray class

group, 342
Principal ideal algorithm in ray

class groups, 210
Product of ideals, 95
Product of two orders, 108
Pseudo–two-element representation

of a prime ideal, 91
Pseudo–two-element representation

of an ideal, 89

Q

Quadratic extension list using class
field theory, 436

Quadratic extension list using square-
free ideals, 434

Quasi-period computation, 327
Quotient of groups, 168

R

Raising an ideal to a power, 95
Random element in an ideal, 23
Ray class field of imaginary quadratic

field using σ(z, L), 341
Ray class group associated to a

modulus, 209
Reduction modulo p of a pseudo-

basis, 37
Reduction modulo p of an element,

106
Reduction of a relative ideal, 366
Reduction of an element modulo

an ideal using HNF, 32
Reduction of an element modulo

an ideal using LLL, 33
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Reduction of an ideal in a fixed ray
class, 212

Reduction of polynomials in the
relative case, 110

Reduction of the representative of
a ray ideal class, 213

Relative Buchmann–Lenstra algo-
rithm, 111

Relative class group and capitula-
tion group, 361

Relative defining polynomial (from
absolute), 66

Relative ideal reduction, 366
Relative ideal reduction (naive),

366
Relative integral norm equations,

385
Relative integral pseudo-basis (driver

algorithm), 107
Relative norm equations, 383
relative norm of an element, 76
Relative norm of an ideal, 116
Relative polynomial reduction, 110
Relative prime ideal decomposition,

111
Relative round 2 algorithm (driver

algorithm), 107
Relative round 2 algorithm at p,

108
Relative to absolute defining poly-

nomial, 63
Relative unit group for iL/K , 363
Relative unit group for NL/K , 364
Representation of an element co-

prime to an ideal, 207
Representative of an ideal class co-

prime to an ideal, 24
Reversion of an algebraic number,

66
Right four-term exact sequences:

compute third group, 171
Round 2 algorithm (driver algo-

rithm), 107
Round 2 algorithm at p, 108

S

Weierstrass σ-function computation,
331

Simple relative polynomial reduc-
tion, 110

Smith normal form algorithm in
Dedekind domains, 44

Smith normal form of an Abelian
group given by generators and
relations, 165

Solving ℓth power congruences, 505
Solving ℓth power congruences when
k ≤ e(p/ℓ), 507

Splitting class field extensions, 224
Splitting of a prime ideal in a class

field, 304
Stark units for cyclic, real ray class

fields over real quadratic fields,
310

Stark units for real ray class fields
over real quadratic fields, 310

Subgroup reconstruction from its
p-Sylow subgroups, 180

Subgroups of index ℓ, 182
Sum of two subgroups, 176

T

Table of complex cubic fields up
to a given absolute discriminant,
424

Table of real cubic fields up to a
given discriminant, 423

θ1 and θ2 computation, 60
Pseudo–two-element representation

of an ideal, 89
Two-element representation of an

ideal, 24
Pseudo–two-element representation

of a prime ideal, 91

U

U(L)/iL/K(U(K)), 362
U(L)/(µ(L) · iL/K(U(K)), 363
Unit group for iL/K , 363
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Unit group for NL/K , 364
S-unit group, 376

V

Valuation at a prime ideal for a
relative quadratic extension, 125

Valuation of an ideal at a prime
ideal, 93

Z

(ZK/m)∗, 206
(ZK/p

k)∗, 201



General Index

A

Abelian extension
– character, 157
– conductor, 151, 155, 158
– conductor computation, 216
– norm group computation, 215
– prime decomposition, 154
– signature, 157
Abelian group
– cokernel, 174, 220
– effective computation, 166
– effective homomorphism, 166
– exact functor, 178
– exact sequence, 178
– extension, 169, 199
– finite, 164
– finitely generated, 164
– generators and relations, 164
– image, 172
– inverse image, 173
– kernel, 174
– left four-term exact sequence, 175
– p-Sylow subgroup, 177
– presentation, 165
– quotient, 168
– right four-term exact sequence,

171
– six-term exact sequence, 354
– Smith normal form, 165
– subgroup, 166
absolute
– defining polynomial, 49
– discriminant, 158

– equation, 49
– extension, 49
– polynomial, 49
absolute and relative discriminant,

114
addition of ideals, 95
additive structure of ZK/p

k, 193
algebra (bigraded), 392
algebraic K-theory, 354, 359
algebraic number
– characteristic polynomial, 55
– norm, 55
– reversion, 65
– trace, 55
ambiguous class, 380
Amice, Y., 190
approximate functional equation,

516
approximation theorem, 20
– strong, 4
– weak, 2
Artin group, 153
Artin map in Kummer theory, 227
Artin reciprocity law, 153, 154
Artin reciprocity map, 153
Artin root number, 300
Artin, E., 133, 150, 153
Artin–Hasse exponential, 202, 221
Artin–Hasse logarithm, 202, 221

B

Bachmann, G, 190
base field, 49, 50
Belabas, K., iv, v, 389, 418, 430

569
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Bergé, A.-M., 445
bigraded algebra, 392
Bilhan, M., vi
binary form, 389
Birkhoff, G., 180
Bosma, W., 1
bounds (Odlyzko), 431
Buchmann, J., 83, 111, 445
Butler, L., 180

C

capitulating subgroup, 348
capitulation, 134, 348, 352
character
– conductor, 146
– conductor computation, 218
– even, odd, 300
– of a congruence subgroup, 145
– of an Abelian extension, 157
– primitive, 146, 300
characteristic polynomial, 55, 76
– computation, 76
– transitivity, 130
Chevalley, C., 380
Chinese remainder theorem
– for ideals, 187
– for moduli, 143
class field
– Hilbert, 133, 134, 155
– ray, 139, 155
– real ray, 301
class field theory, 133
class field tower, 134, 349
class group
– ray, 135, 347
– relative, 348
clique of exceptional units, 466
closed (integrally), 2
cocycle condition, 493
codifferent (relative), 96
Cohen, H., 430, 448
cokernel, 174, 220
complex cubic form (reduced), 419
complex multiplication, 223, 314

composition of pseudo-quadratic forms,
126

compositum, 49
– discriminant, 71
– of étale algebras, 65
– of number fields, 56
conductor, 145
– necessary conditions, 148, 149
– of a character, 146, 218
– of a class of congruence subgroups,

144
– of a congruence subgroup, 155,

214
– of an Abelian extension, 151, 155,

158, 216
conductor at ℓ, 101
congruence subgroup, 138
– character, 145
– conductor, 155
– conductor computation, 214
congruence subgroups
– conductor, 144
– equivalence relation, 140
– GCD, 144
congruences (linear system of), 184
content of an ideal, 86
Conway, J., 445
coprime ideal class, 21
Cornell–Rosen theorem, 312
Couveignes, J.-M., v
covariant
– Jacobian, 393
– of a binary form, 391
Cremona, J., 392, 419, 427
cubic form, 395
– reduced, 411, 419
cubic polynomial (reduced), 426
cubic resolvent, 461

D

Davenport, H., 405
Davenport–Heilbronn theorem, 405
decomposition (of an ideal), 236
decomposition group, 151
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Dedekind criterion, 106
Dedekind domain, 2
defining polynomial, 54
degree (of a gamma product), 509
Delaunay, C., 518
determinantal ideal, 39, 95
Diaz y Diaz, F., v, 131, 290, 430,

443, 445, 543
different (relative), 96
discrete logarithm, 166, 237
– short, 238
discriminant, 28, 78
– absolute, 158
– absolute and relative, 114
– elementary divisor, 80
– factorization, 71
– ideal, 78
– of a form, 390
– of an étale algebra, 55
– of compositum, 71
– relative, 79, 158
– root, 430
discriminant ideal, 28
– relative, 151
domain (Dedekind), 2
dual of an ideal, 97

E

element
– reduction, 211
– relative norm, 82
– torsion, 7
elementary divisor, 15, 42
– discriminantal, 80
– theorem, 16
elementary transformation, 20, 30
elliptic function, 325
embedding
– extension, 72
– ramified, 73
– relative, 73
– unramified, 73
equivalence
– Kummer, 498

– of congruence subgroups, 140
étale algebra, 50, 51
– compositum, 65
– discriminant, 55
– Galois group, 56
Euclidean algorithm, 17
– in Dedekind domains, 18
Euler φ-function for moduli, 137
even character, 300
exceptional unit, 466, 467
exponent of an Abelian group, 377
exponential
– p-adic, 190
– Artin–Hasse, 202, 221
extended multiplicative group, 352
extension
– absolute, 49
– Galois, 74
– normal, 74
– relative, iii, 49
– tamely ramified, 483
– unramified, 133
extension of an embedding, 72
extension of groups, 169

F

factor refinement, 23
factorization
– ideal, 99
– of discriminant, 71
Fieker, C., 227, 270, 294
field
– global, 17
– Hilbert class, 155
– ray class, 155
field norm, 3
f∞-positive, 307
finite field polynomial factorization,

110
finite type (function of), 511
Ford, D., 445
form
– binary, 389
– covariant, 391
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– cubic, 395
– discriminant, 390
– integral, 394
– invariant, 391
– irreducible, 394
– primitive, 394
– pseudo-quadratic, 122
– root of, 389
four-term exact sequence
– left, 175
– right, 171
fractional ideal, 2
freeness test, 10, 35
Friedman, E., 301, 386, 508
Frobenius homomorphism, 152, 478
function
– elliptic, 325
– of finite type, 511
– theta, 329
functional equation, 511
– approximate, 516

G

Galois
– extension, 74
– group, 74
Galois group
– of an étale algebra, 56
Galois representation, 445
gamma product, 508
Gauss sum, 307
Gauss–Bareiss, 39
GCD of congruence subgroups, 144
generalized Smith normal form, 355
generators and relations, 164
global field, 17
Golod, E., 134, 349
Gras, G., 133, 150
GRH, 431
group
– Artin, 153
– cokernel, 174, 220
– congruence, 138
– decomposition, 151

– extension, 169
– ideal, 138
– image, 172
– inertia, 151
– inverse image, 173
– kernel, 174
– left four-term exact sequence, 175
– norm, 153, 215
– quotient, 168
– ramification, 439
– ray, 136
– ray class, 135, 209, 347
– right four-term exact sequence,

171
– Selmer, 231
– subgroup, 166
– subgroups, 179
– Takagi, 153

H

Hasse, H., 133, 150, 157, 276
Havas, G., 38
Hecke L-function, 299
Hecke’s theorem, 227, 498
Hecke, E., 299, 498
Heilbronn, H., 405
Hensel lift, 189, 500
HNF representation, 84
Hermite normal form in Dedekind

domains, 30
Hermite’s constant, 445
Hessian, 400
Hilbert class field, 133, 134, 155
Hilbert’s Theorem 90, 494
Hilbert, D., 133, 494
HNF algorithm in Dedekind do-

mains, 30
– modular, 39, 40
homomorphism
– Frobenius, 152, 478
Hoppe, A., 95
Hunter’s theorem, 445

I
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ideal
– Chinese remainder theorem, 187
– content, 86
– decomposition modulo Cl(K)ℓ,

236
– determinantal, 39
– discriminant, 28
– dual, 97
– Euler φ, 137
– factorization, 99
– fractional, 2
– index, 15
– inverse, 97
– minor, 31
– order, 15
– powering, 96
– primitive, 86, 319
– product, 95
– pseudo-principal, 348
– reduced, 365
– reduction, 211, 212
– relative norm, 80, 83
– relative reduction, 366
– representation, 83
– S-integral, 372
– sum, 95
ideal group, 138
image
– of a subgroup, 172
– pseudo-matrix, 29
index of a suborder, 79
index-ideal, 15, 79
inertia group, 151
inessential discriminantal divisor,

396
integral binary form, 394
integral pseudo-basis, 78
integral pseudo-matrix, 43
integrally closed, 2
invariant factor, 15
invariant of a binary form, 391
inverse image of a subgroup, 173
inverse Mellin transform, 511

inverse of a pseudo-quadratic form,
126

inverse of an ideal, 97
inverter, 530
irreducible binary form, 394

J

Jacobi quintuple-product identity,
345

Jacobi triple-product identity, 329
Jacobian covariant, 393
Janusz, G., 133, 150
Julia-reduced, 427

K

Kant/Kash, iii, 430, 525
kernel of a group map, 174
Klüners, J., 313
Koblitz, N., 190
Kummer theory, 223, 297, 545
– Artin map, 227
– using Artin when ζn ∈ K, 270
– using Artin when ζn 6∈ K, 280
– using Hecke when ζℓ ∈ K, 227
– using Hecke when ζℓ 6∈ K, 242
Kummer-equivalence, 498

L

Lagrange multiplier, 455
Lagrange resolvent, 227, 248
Lagrange’s identity, 471
Langlands, R. P., 133
Lavrik, A. F., 508
left divisor of a matrix, 167
Lenstra, H. W., 83, 111, 466, 467
Leutbecher, A., 467
LiDIA, iii, 525
lift (Hensel), 189, 500
linear system
– of congruences, 184
– in integers, 182
– mixed, 184
LLL (partial), 34, 127
local norm, 151
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logarithm
– p-adic, 190
– Artin–Hasse, 202, 221
– discrete, 166, 237
– short discrete, 238

M

Magma, iii, 524
Martinet, J., v, 2, 133, 349, 433,

439, 445, 448
matrix (left divisor), 167
maximal order, 17
Mellin inversion formula, 512
Mellin transform, 511
Minkowski, H., 430
minor-ideal, 31, 45
mixed linear system, 184
modular HNF algorithm, 39, 40
module
– finitely generated, 6
– projective, 8, 46
– pseudo-matrix, 29
– rank, 6
modulus, 135
– Chinese remainder theorem, 143
– Euler φ, 137
– suitable, 152
Montgomery, P., 34, 127
multiplication of ideals, 95
multiplicative group (extended), 352
multiplicative structure of (ZK/p

k)∗,
194, 196, 201

multiplier (Lagrange), 455
multiplier system, 317

N

Nakagawa, J., 418
Nakayama’s lemma, 475
Neukirch, J., 133, 150
Newton
– iteration, 189, 500
– power sum recursion, 252
Newton’s formulas, 447, 451
Newton’s inequalities, 454

Niklasch, G., 467
Noether’s theorem, 493
Noether, E., 493
Noetherian ring, 2
norm
– Archimedean, 3
– field, 3
– local, 151
– non-Archimedean, 3
– relative, 76, 153
norm group, 153
– of an Abelian extension, 215
norm-class group, 349
norm-default quotient, 349
norm-unit, 358
normal extension, 74
number field
– compositum, 56
– primitive, 446

O

odd character, 300
Odlyzko bounds, 431
Odlyzko, A., 430, 543
Olivier, M., v, 445
one-element representation, 205
order
– maximal, 17
– p-maximal, 102
– product, 108
order-ideal, 15
orthogonal idempotents, 55
Ostrowsky’s theorem, 3

P

p-adic completion, 190
p-adic exponential, 190
p-adic integer, 190
p-adic logarithm, 190
p-maximal order, 102
p-radical, 102
pairing (perfect), 496
Pari, iii
Pari/GP, iii, 430, 525
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perfect pairing, 496
℘-function of Weierstrass, 325
Phragmén–Lindelöf theorem, 513
place of a number field, 3
Plouffe’s inverter, 530
Plouffe, S., 530
Pohst, M., 1, 430, 445, 455
Poitou, G., 430, 543
polynomial
– absolute, 49
– defining, 49
– relative, 49
polynomial factorization in a finite

field, 110
polynomial reduction, 290
Poonen, B., 76
f∞-positive, 307
power of an ideal, 96
power sum recursion, 252
presentation, 165
prime ideal
– decomposition, 111
– down, 116
– representation, 89
– uniformizer, 104
primitive
– character, 146, 300
– element, 54
– element theorem, 52, 54
– field, 446
– form, 394
– ideal, 319
– relative ideal, 86
principal ideal algorithm, 209
– in ray class groups, 210
product
– of ideals, 95
– of orders, 108
product formula, 3
projective module, 8, 46
pseudo–two-element representation,

87
pseudo-basis, 26
– integral, 78

– reduction modulo p, 37
pseudo-class group, 348
pseudo-class number, 348
pseudo-element, 26, 87, 348
pseudo-generating set, 26
pseudo-matrix, 28, 29
– image, 29
– integral, 43
– module, 29
pseudo-principal ideal, 348
pseudo-quadratic form, 122
– composition, 126
– inverse, 126
– reduction, 127
pseudo-unit, 353

Q

quadratic form (pseudo), 122
quasi-period, 326
quintuple-product identity, 345
quotient (norm-default), 349
quotient of two Abelian groups,

168

R

radicand, 118
ramification (tame), 483
ramification group, 439
ramification index, 82
ramified embedding, 73
ray class field, 139, 155
– real, 301
ray class group, 135, 136, 163, 172,

209, 347
ray group, 136
real cubic form (reduced), 411
real ray class field, 301
reciprocity law, 154
– Artin’s, 153
– Shimura’s, 315
reduced
– complex cubic form, 419
– cubic polynomial, 426
– Julia, 427
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– real cubic form, 411
– swap, 128
– translation, 127
reduction
– ideal in a ray class, 212
– modulo p of a pseudo-basis, 37
– modulo an ideal in HNF, 32
– modulo an ideal in LLL, 33
– of a pseudo-quadratic form, 127
– of an ideal, 366
– of elements, 211
– of ideals, 211
– partial LLL, 34, 127
– polynomial, 290
– relative ideal, 365
– relative polynomial, 110
regulator
– relative, for iL/K , 358
– relative, for NL/K , 359
relative
– characteristic polynomial, 76
– class group, 348
– codifferent, 96
– defining polynomial, 49
– degree, 50
– different, 96
– discriminant, 79, 158
– discriminant ideal, 151
– element norm, 82
– embedding, 73
– equation, 49
– extension, iii, 49
– ideal norm, 80, 83
– ideal reduction, 366
– integral pseudo-basis, 78, 102
– norm, 76, 153
– norm of an element, 76
– norm of an ideal, 80
– norm-class group, 349
– norm-class number, 349
– norm-unit, 358
– polynomial, 49
– polynomial reduction, 110
– prime ideal decomposition, 111

– primitive ideal, 86
– pseudo-class group, 348
– pseudo-unit, 353
– regulator for iL/K , 358
– regulator for NL/K , 359
– round 2 algorithm, 107
– trace, 76
– valuation, 124
representation
– Galois, 445
– HNF, 84
– of a group, 165
– of a prime ideal, 89
– of a subgroup, 166
– of an ideal, 83
– of elements of (ZK/m)∗, 205
– of elements of ZK/p, 105
– one-element, 205
– pseudo–two-element, 87, 89, 91
– two-element, 95
residual degree, 82
resolvent
– cubic, 461
– Lagrange, 227, 248
reversion of an algebraic number,

65
ring (Noetherian), 2
Roblot, X., v, 298
root discriminant, 430, 545
root number, 300
round 2 algorithm, 107

S

Schertz, R., 314, 320
Schwarz, A., 445
section, 8
Selmer group, 231
separable algebra, 51
sequences, 530
Serre, J.-P., 430, 468, 543
Shafarevitch, I., 134, 349
Shimura, G., 315
Shintani, T., 418
short discrete logarithm, 238



GENERAL INDEX 577

Siegel, C.-L., 454
σ-function of Weierstrass, 328, 334
signature homomorphism, 206
signature of an Abelian extension,

157
Simon, D., iv, v, 130, 347, 352, 360,

377, 466
S-integral ideal, 372
Sloane, N., 445, 530
Smith normal form
– generalized, 355
– in Dedekind domains, 44
– of an Abelian group, 165
SNF, 42, 165
Smyth, C., 454
splitting field, 312
Stark
– conjecture, 297
– units, 297
Stark, H., 223, 297, 430, 543
Steinitz class, 6, 11
– additivity, 12
strong approximation theorem, 4
structure theorem
– for finitely generated modules,

13
– for projective modules, 11
– for torsion modules, 13
– for torsion-free modules, 8
subgroup
– congruence, 138
– enumeration, 179
– image, 172
– inverse image, 173
– kernel, 174
subresultant algorithm, 52, 60
suitable modulus, 152
suitable set S0 for L/K, 378
sum of ideals, 95
superseeker, 530
swap-reduced quadratic form, 128
Sylvester matrix, 51, 63
syzygy, 394

T

Takagi existence theorem, 154
Takagi group, 153
tamely ramified extension, 483
Tate, J., 133, 150, 298
theta function, 329
Tollis, E., v
torsion
– element, 7
– module, 7
– submodule, 7
torsion-free, 7
tower (class field), 349
trace, 55
– relative, 76
transitivity
– of degrees, 50
– of relative discriminants, 114
– of the characteristic polynomial,

130
– of the different, 97
– of the ideal norm, 80
– of the trace and norm, 76
translation-reduced quadratic form,

127
triple-product identity, 329
two-element representation, 21, 87,

95

U

uniformizer (of an ideal), 5
uniformizer of a prime ideal, 104
unit
– exceptional, 467
– virtual, 231
unramified embedding, 73
unramified extension, 133

V

valuation
– at a prime ideal, 92
– relative, 124
virtual unit, 231

W
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weak approximation theorem, 2
Weierstrass σ-function, 328, 334
Weierstrass ζ-function, 326
Weierstrass ℘-function, 325
Wright, D., 450

Y

Yukie, A., 450

Z

Zassenhaus, H., 104
ζ-function of Weierstrass, 326
ZK/p

k (additive structure), 193
(ZK/p

k)∗ (multiplicative structure),
194, 196, 201


