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Abstract

The primary aim of this thesis is to derive higher analogues of Gauss’s celebrated 

law of composition on the space of binary quadratic forms. Specifically, we show that 

Gauss’s law is only one of at least ten such laws of composition tha t yield information 

on the class groups of algebraic number fields. We begin our investigation of higher 

composition laws by giving a new perspective on Gauss composition in a manner 

reminiscent of the group law on elliptic curves. We then proceed to derive new laws 

of composition on 2 x 2 x  2 cubes, binary cubic forms, pairs of binary quadratic forms, 

2 x 3 x 3  boxes, and pairs of ternary quadratic forms. We show th a t the resulting 

groups in these spaces all have natural interpretations in terms of ideal classes of 

orders in algebraic number fields.

We also develop a theory of resolvent rings in order to explain how orders in 

number fields of low degree should be parametrized. The theory allows us, in par

ticular, to obtain a new derivation of the Delone-Faddeev-Gross parametrization of 

cubic rings by means of binary cubic forms. More importantly, our perspective en

ables us to generalize the Delone-Faddeev-Gross result to the quartic case, yielding a 

param etrization of quartic rings by means of two ternary quadratic forms.

We use this new param etrization result for quartic rings, in the spirit of Davenport- 

Heilbronn, to compute the density of discriminants of S4-quartic fields, thus resolving 

this long-standing problem. In addition, our methods allow us also to compute the 

mean value of the size of the 2-class group of cubic fields. This result confirms, for 

the first time, a case of the Cohen-Martinet heuristics, and implies that a t least 75% 

of totally real cubic fields have odd class number.

Finally, we expect th a t the composition laws presented here will have many addi

tional applications, e.g., to the theory of automorphic forms on exceptional groups. 

We outline a few of these potential applications to indicate directions for future work.
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Chapter 1

Int ro duct ion

Two centuries ago, in his celebrated work Disquisitiones Arithmeticae of 1801, Gauss 

laid down the beautiful law of composition of integral binary quadratic forms which 

would play such a critical role in number theory in the decades to follow. Even today, 

two hundred years later, this law of composition still remains one of the primary tools 

for understanding and computing with the class groups of quadratic orders.

It is thus only natural to ask whether higher analogues of this composition law 

might exist that could shed light on the structure of other algebraic number rings 

and fields. The primary objective of this dissertation is precisely to work towards 

such “higher composition laws.” In fact, we show th a t Gauss’s law of composition is 

only one of at least ten composition laws of its kind th a t yield information on number 

rings and their class groups.

In Chapter 2 , we begin by examining the quadratic case more closely, and derive 

a general law of composition on 2 x 2 x  2 cubes of integers, from which we obtain 

G auss’s law as a simple special case in a m anner reminiscent of the group law on 

elliptic curves. We also obtain from this general law on 2 x 2 x 2 cubes two further 

new laws of composition, one defined on the space of binary cubic forms, and the 

other on pairs of binary quadratic forms.
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These composition laws all turn out to have natural interpretations in terms of 

ideal classes of quadratic rings. We prove tha t the law of composition on 2 x 2 x 2 

cubes gives rise to groups isomorphic to N C^S) x NC1(S), where NCl(S') denotes 

the narrow class group of the quadratic order S . This interpretation of the space of 

2 x 2 x 2  cubes then specializes to give the narrow class group in Gauss’s case and 

in the case of pairs of binary quadratic forms, and yields roughly the 3-part of the 

narrow class group in the case of binary' cubic forms.

In Chapter 3, we look for the cubic analogue of the 2 x 2 x 2  cube. Interestingly, 

it is not the 3 x 3 x 3  cube as one might first guess, but is rather the 2 x 3 x 3  box. 

The space of 2 x 3 x  3 boxes of integers turns out to be exactly what is needed for 

a cubic analogue of Gauss’s theory; indeed, there is again a natural composition law 

on this space, and we prove that the groups obtained via this law of composition are 

isomorphic to the class groups of cubic orders.

Specializing this general cubic law, we then also obtain a law of composition on 

pairs of ternary  quadratic forms. We show th a t the corresponding groups turn out 

to equal roughly the 2-parts of the ideal class groups of cubic rings.

Very helpful in discovering the above cubic composition laws was the parametriza

tion of cubic rings due to Delone-Faddeev and Gross, who showed th a t cubic rings 

correspond naturally  to integral binary cubic forms. Parametrizations of this kind 

have not been known to exist for rings of higher rank. In Chapter 4, we derive such 

a param etrization result for quartic rings. We begin by developing a theory of resol

vent rings, which allows us to give a new, purely ring-theoretic interpretation of the 

Delone-Faddeev-Gross parametrization of cubic rings. We are then able to generalize 

this perspective to rings of rank 4, and prove th a t the correct objects parametrizing 

quartic rings are pairs of integral ternary quadratic forms.

One of the most stellar applications of the param etrization of cubic orders is the 

well-known work of Davenport and Heilbronn [11], who used this param etrization to
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compute the asymptotic density of discriminants of cubic fields. Having obtained a 

param etrization for quartic orders (Chapter 4), it is natural to ask whether similar 

density theorems could now be proven for quartic fields. We accomplish this in 

Chapter 5. As a by-product, we also obtain the mean value of the size of the 2-class 

group of cubic fields; our result verifies, for the first time, a case of the Cohen-Martinet 

heuristics, and implies, in particular, th a t at least 75% of totally real cubic fields have 

odd class number.

We note tha t many of the spaces we have derived here over Z were previously 

considered over the rational numbers in the work of Wright-Yukie [25], who showed 

th a t generic rational orbits in these spaces correspond to etale extensions of Q of 

degree 2, 3, 4, or 5. One of the motivations for their work was to apply an adelic 

version of Sato and Shintani’s zeta function theory [23], developed by Datskovsky 

and Wright [8], to obtain density theorems for field extensions. In the case of pairs 

of ternary quadratic forms over Q, the corresponding global adelic zeta function was 

treated in the treatise of Yukie [26], who showed that the rightmost pole of this zeta 

function is of order 2. The double pole, however, poses some significant difficulties 

in obtaining a density of discriminants result for quartic fields, because the necessary 

“filtering process” does not apply in its usual form (see [8], [26]). As these difficulties 

have not been overcome, the long-standing question on the density of discriminants of 

quartic fields has remained open. We resolve this problem by using the rich structure 

over Z  to cut directly to (the orders in) ^ -q u a rtic  fields, eliminating altogether the 

undesirable dominant term  corresponding to reducible rings. The problem then is 

eventually reduced to a simple volume computation which we carry out explicitly.

Regarding our result on the density of discriminants of quartic fields, we should 

also like to mention the recent announcement of Cohen-Diaz-Olivier [5], who have 

obtained by very different methods the correct order of growth cX  for the number of 

SVquartic fields of absolute discriminant at most X .  Their methods do not, however,
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yield any information on the value of the constant c. Our approach leads naturally 

to the explicit determination of c, which is im portant in the applications.

We end this introduction with two remarks on generality. First, since there is 

always a unique ring homomorphism Z —> T, the param etrization and composition 

laws defined in this thesis over Z are in fact valid over any base ring T . However, as 

it is our main case of interest, we always take the base ring T  to be Z. Second, the 

param etrization results obtained in this thesis may be extended in a natural way to 

“orders” in non-etale extensions of Q. Although not of essential interest here from the 

perspective of higher composition, class groups, and density theorems, such general

izations to discriminant zero rings may prove im portant in the study of automorphic 

forms on exceptional groups, and will be treated more fully in subsequent work.
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Chapter 2

Quadratic composition laws

In th is chapter, we begin our study of higher composition by taking a closer look at 

the  quadratic case. We find that the fundamental object of quadratic composition 

is the space of 2 x 2 x 2 integer cubes, which has on it a natural composition law. 

O ur perspective of 2 x 2 x 2 cubes leads in particular to a very simple and elegant 

description of the composition law of Gauss, and additionally, yields new composition 

laws on binary cubic forms and on pairs of binary quadratic forms. These four laws 

of composition are discussed in Section 2.1.

In Section 2.2, we then show how the groups resulting from these composition laws 

m ay naturally be interpreted in terms of the ideal class groups of quadratic orders.

2.1 On 2 x 2 x 2 cubes of integers

In this section, we examine the natural action of F = S L 2 (Z) x S L 2 (X) x S L 2 (Z) on 

the  space C2 =  Z2 ® Z2 ® Z 2 of 2 x 2 x 2 cubical integer matrices.
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2 .1 .1  T h e  fu n d am en ta l slicings

A cube of integers A  E C2 may be partitioned into two 2 x 2  matrices in three 

essentially different ways, corresponding to the three possible slicings of a cube—along 

its three planes of symmetry—into two congruent parallelopipeds. More precisely, the 

integer cube

a

d

- h
/

can be partitioned into the 2 x 2 matrices

or into

a b

1----

i

II II£

c d

----1i

a c b dIIs? to
1 II

e g 1i

or

M , =
a e

b f
iV, =

c g 

d  h

Our action of T is defined so that, for any 1 <  i  < 3, an element
r s

t u
in the zth

factor of 5L 2(Z) acts on the cube A  by replacing (Mi, N{) by (rM i + sN i,tM i + uN i).
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For each. such, i, let us construct a quadratic form Qi, by defining

—Qi(x, y) = Det(MiX -  N {y).

Then note that the form Qi is invariant under the action of the subgroup {e} x 

SL2(Z) x  SL2(Z) C  T. The remaining factor of S L 2(X)  acts in the standard way on 

Q i, and it is well-known that over C  this action has exactly one invariant, namely the 

discriminant Disc(Q1) of Q\. Thus the unique invariant for the action of SX2(C) x 

S L 2 (C) x 5L 2(C) on its representation C 2 ® C 2 <g> C 2 is given simply by Disc(Qi). 

Of course, by the same reasoning, Disc(Q2) and Disc(Q3) must also be equal to 

this same invariant up to scalar factors. A quick calculation shows th a t in fact 

Disc(Qi) =  Disc(Q2) =  Disc(<2a); we denote this common value simply by Disc(A).

2.1 .2  G au ss’s law  rev isited

We have seen that every cube A in C2 gives three integral binary quadratic forms Q i, 

Q 2 , Qz-i all having the same discriminant. Let us define an addition law on binary 

quadratic forms by declaring that, for all such triplets Q 1, Q2, Qz arising from a 

cube A,

T h e  C u b e  Law. The sum of Q 1; Q2, Qz is zero.*

The Cube Law has some interesting consequences. First, suppose that 7  =  7 t x e x e  E 

T, and that A gives rise to the three quadratic forms Qi, Q2, Qz. Then A! =  7 A gives 

rise to the three quadratic forms Q\, Q2, Qz, where Q[ = jiQ i-  It follows immediately 

from the Cube Law that SX2(Z)-equivalent forms correspond to the same element.

For quadratic forms Q 1, Q2, Q3 associated to a cube A we shall write [Qi] +  

[Q2] +  [Qa] =  0; where [Q] is used to denote the SL2(Z)-equivalence class of Q. When
‘The analogy with elliptic curves is evident.
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this law is then restricted to the set of all (equivalence classes of) primitive binary- 

quadratic forms of a  given discriminant D, and an identity element is chosen, we find

T h e o re m  2.1 This defines a group law!

For the identity, we may take any binary quadratic form Q such th a t [Q] + [Q] +  [Q] =  

0. The most natural choice of identitv is

O d =  [x2 -  or O d =  [x2 — x y +  ^ y2] (2.1)

in accordance with whether D =  0 (mod 4) or D  =  1 (mod 4). T hat [ O d ] + [Od ] +  

[ Od ] =  0 follows from the cubes

or
-JD + 3)/4

(2 .2)

whose three associated quadratic forms are all given by O d (as defined by (2 .1)).

More formally, the group referred to in Theorem  2.1 is obtained by considering the 

free abelian group generated by all primitive quadratic forms of a given discriminant 

D , and quotienting by Od  and by all relations of the form Q \ -+- Q2 +  Q3 =  0, where 

{Qi,  Qz, Qz}  is a triplet of quadratic forms arising from a cube A  of discriminant D. 

Assuming the Cube Law, we find tha t its converse must then also be true:

T h e o re m  2 .2  I f  [Qx] +  [Q2] +  [Q3] =  0 , then there exists a cube A  €  C2 such that the 

three associated quadratic form s are Qi, Q 2, Qz respectively.*

We denote the set of primitive binary quadratic forms of discriminant D, equipped

with the above group structure, by Cl((Sym 2Z)*; D ). Indeed, this group structure on 
f\Ve note again the analogy with elliptic curves.
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integral binary quadratic forms turns out to be equivalent to th a t defined by Gauss. 

We give a proof of this equivalence, and of Theorems 2.1 and 2.2, in Section 2.2 using 

the language of ideal classes. An alternate proof not using ideal classes is given in 

the Appendix.

2 .1 .3  C o m p o sitio n  o f  2 x 2 x 2 cu b es

Having defined a law of composition on the quadratic forms arising from a cube, we 

may now define a law of composition on the cubes themselves. First, let us make a 

definition.

D e fin itio n  2.3 A 2 x 2 x 2 cube A  is said to be projective if each of the three quadratic 

forms Q i, Q2, Qz associated to A  is primitive.

Now let A  and B  be any two projective cubes in C2 having the same discriminant 

£>, and let Qi, Q i, Qz and R i, R 2, Rz be their associated triples of primitive quadratic 

forms. Then since [Qi] +  [Qi] +  [Q3] =  0 and [f?i] +  [f?a] +  [# 3] =  0: we must have 

([<5i]-f-[i?i])+([<52]-f-[-^2])-f-([<33]-f-[-ft3]) =  0; hence by Theorem 2, there exists a cube 

C € Ci whose three associated quadratic forms are (up to equivalence) [<3ij -f- [f?i], 

[Q2] +  [f?2], and [Q3] +  [H3]. We define the composition of A  and B  by declaring th a t 

[A] +  [B] = [C\.

T hat this is a group law on the set of F-equivalence classes of projective cubes 

having the same fixed discriminant D follows immediately from Theorems 1 and 2. 

Furthermore, the identity in this group is given as in (2.2) in accordance with whether 

D =  0 or 1 (mod 4).

We denote the set of equivalence classes of projective binary cubic forms of dis

criminant D equipped with the above group structure by C1(Z2 <g> Z 2 <g> Z2; D ).
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2 .1 .4  C om p o sitio n  o f  b inary cu b ic  form s

The above law of composition on cubes also leads naturally to a law of composition on 

S Lo (Z)-equivalence classes of integral binary cubic forms p x 3 -F 3qx2y +  3rxy 2 4- sy3. 

For ju st as one frequently associates to a binary quadratic form px2 + 2 qxy + ry2 the 

symmetric 2 x 2 m atrix

V q
}

q r

one may naturally associate to a binary cubic form px 3 -I- 3qx2y + 3rxy2 -f- sy3 the 

symmetric 2 x 2 x 2 m atrix

V — cI

7 — s
/q ---------- r

It is easily checked th a t within the group defined on equivalence classes of projective 

cubes, the set of classes containing a symmetric cube forms a subgroup. Therefore, 

by restriction, we obtain a natural group law on the space of projective binary cubic 

forms of fixed discriminant D. The identity elements of course correspond to those 

indicated in the case of cubes (2 .2), and are given by

[3x 2y  +  D y3] or [3x 2y  4- 3xy 2 4- ^  y3] (2.3)

in accordance with whether D  =  0 (mod 4) or D  =  1 (mod 4).

We denote the set of equivalence classes of projective binary cubic forms of dis

criminant D  equipped with the above group structure by Cl(Sym3Z2; D).
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2 .1 .5  C o m p o sitio n  o f  pairs o f  b in a ry  q u ad ratic  form s

The group law on binary cubic forms of discrim inant D  was obtained by imposing a 

sym m etry condition on the group of 2 x 2 x 2 cubes of discriminant D, and checking 

tha t th is symmetry was indeed preserved under the group law. Rather than imposing 

a threefold symmetry, one may instead impose only a twofold symmetry. This leads 

to cubes taking the form

T hat is, these cubes can be sliced (along a certain fixed plane) into two 2 x 2  symmetric 

matrices. It is again easily checked th a t such a symmetry is preserved under the 

group law. Thus we obtain a natural group structu re  on (projective) pairs of binary

The groups C1(Z2 <g> Sym2Z 2; D ), however, are not new. Indeed, we have imposed

two associated quadratic forms Q2 and Q z  are equal, while the first, Q\, is (possibly) 

different. Therefore the map

taking twofold symmetric projective cubes A  E Z 2 <g> Sym2Z2 to their third associated

d e
a b

e

b c

quadratic forms having a fixed discriminant D. We denote the latter group by C1(Z'20  

Sym2Z 2; D).

our sym m etry condition on cubes so that, for such a cube A s Z 2 ® Sym2Z 2, the last

C1(Z2 <S> Sym2Z 2;£>) Cl((Sym 2Z 2)*; D ),

quadratic form Qz, yields an isomorphism of groups.

*That these two spaces (Sym2Z)* and Z 2®Sym 2Z 2 carry similar information may be a reflection 
of the fact that, in the language of prehomogenous vector spaces, Sym 'Z is a reduced form  of the 
space Z 2 ® Sym2Z 2.
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In summary, we have the natural inclusions

Sym3Z 2 -> Z2 ® Sym 2Z2 -> Z2 ® Z 2 ® Z 2 (2.4)

leading to natural group homomorphisms

Cl(Sym3Z 2; D) -*  C1(Z2 0  Sym2Z2; D) C1(Z2 0  Z 2 0  Z 2; £>) (2.5)

where we have shown that the center group, C1(Z2 0  Sym2Z 2;D) ,  is isomorphic to 

Cl ((Sym2Z 2)*; D ) .

2.2 Relations with ideal classes in quadratic orders

The integral orbits of the four spaces discussed in the previous section each have 

natural interpretations in terms of quadratic orders.

2 .2 .1  T h e  p aram etr iza tion  o f  quadratic rings

It is elementary and well-known th a t a ring having finite rank as a Z-module must 

have discriminant congruent to 0 or 1 (mod 4). Conversely, given any integer D  =  0 

or 1 (mod 4) there is a unique quadratic ring S{D)  of discriminant D , given by

explicitly, the ring S ( D ) has Z-basis <  I , r  > where multiplication is determined by 

the law

r
Z[ar]/(a:2) if D  =  0,

S(D)  =  Z © Z if D =  1, (2.6 )

Z[(D -t- y/D)/2] otherwise;V

(2.7)
4
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in accordance with whether D  =  0 (mod 4) or D =  1 (mod 4).

Therefore, if we denote by Z  the elements of Z  th a t are congruent to 0 or 1 (mod 4), 

we may say th a t the isomorphism classes of quadratic rings are parametrized bv Z .

T h e o re m  2.4  There is a one-to-one correspondence between the set o f elements of 

Z  and the set of isomorphism classes o f quadratic rings, by the association

D S (D ) ,

where D  =  Disc(S(D)).

2 .2 .2  T h e  case o f b inary q u ad ratic  form s

As is well-known, the group Cl((Sym2Z 2)*; D)  is almost, but not quite the same as, 

the ideal class group of the unique quadratic order S  of discriminant D. To make 

up for the slight discrepancy, it is necessary to introduce the notion of narrow class 

group, which may be defined as the group NCl(S') of oriented ideal classes. More 

precisely, an oriented ideal is a pair ( / , e) , where I  is an ideal, and e =  ±1 gives 

the orientation of I. Multiplication of oriented ideals is defined componentwise, and 

the norm of an oriented ideal (I, e) is defined to be N(I)e.  For an element k G S,  

k - ( / ,  e) is defined to be (k / ,  sgn(iV(«;))e). W ith these notions, the narrow class group 

can then be defined as the group of invertible oriented ideals modulo multiplication 

by nonzero scalars k €  S  (equivalently, modulo the subgroup consisting of invertible 

principal oriented ideals ((/c), 1)). In practice, we shall denote an oriented ideal (I, e)
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simply by I , with the orientation e =  e(I)  on /  being understood .5

We may now state the precise relation between equivalence classes of binary 

quadratic forms and ideal classes of quadratic orders.

T h e o re m  2.5 There is a bijection between the set o f S - e q u i v a l e n c e  classes of 

binary quadratic form s of discriminant D , and the set of pairs (S, I) ,  where S  is a 

quadratic ring of discriminant D and I  is a (not necessarily invertible) narrow ideal 

class of S .

Restricting the above result to the set of primitive quadratic forms, we obtain the 

following group isomorphism.

T h e o re m  2.6 The bijection of Theorem 2.5 restricts to a correspondence

Ci((Sym2Z 2)*: D ) NCI(S(D)):

this correspondence is in fact an isomorphism of groups.

Theorem 2.5 is known in the indefinite case, while the general definite case follows 

easily from the known case of positive definite quadratic forms. We will give proofs 

of Theorems 2.1 and 2.2 in a more general context in the next section.

2 .2 .3  T h e case o f 2 x 2 x 2 cu b es

We now turn to the general case of 2 x 2 x  2 cubes. Before stating the result, we 

make some definitions. Let S  be the quadratic ring of discriminant D. If D  > 0 

(resp. D < 0), we say three ideals (resp. oriented ideals) Ii, Io, h  of S  are col linear if

there exists an element 5 £ S  such th a t N ( I i ) N ( l 2 )N(Iz)  =  N(6)  and I 1I 2 I 3 Q (£)•
5 Traditionally, the narrow class group is considered only for quadratic orders S  of positive dis

criminant D , and is defined as the group of invertible ideals of S  modulo the subgroup of invertible 
principal ideals that are generated by elements of positive norm. We prefer our definition here since 
it gives the correct notion also when D <  0.
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Also, we define two collinear triples ( / i ,  I 2, 1 3 ) and (I[. I'2 , I f )  of ideals (resp. oriented 

ideals) of S  to be equivalent if I x =  Kil[,  I2 =  h  = K3^ 3  f°r some elements

Ki, K2 , k 3 of positive norm in the ring of quotients of S.  (In particular, we must have 

KiK2 k 3 =  1.) For example, if S  is Dedekind, then an equivalence class of collinear 

triples means simply a triple of narrow ideal classes whose product is the principal 

class.

T h e o re m  2 .7  There is a bijection, to be given below, between the set o f F -orbits on 

the space of 2 x  2 x 2 integer cubes, and the set of pairs (S, ( Ix, I 2,13)), where S  is a 

quadratic ring and (A, I2, I 3 ) is a collinear triple of narrow ideal classes o f S .

P ro o f : Given a collinear triple ( i \ ,  / 2, I 3 ) of ideals of a quadratic order S , where S 

is an element such th a t h h h  Q (5) and N{5)  =  N^I ^ I z ) - ,  we first show how to 

construct a corresponding 2 x 2 x 2  cube. In accordance with whether D  =  Disc(S) 

is congruent to 0 or 1 (mod 4), let t  be an element of S' satisfying r 2 -  j  =  0 or 

r 2 — r  +  =  0 respectively. Then as a Z-module, S  has basis <  l , r  > . Let

<  cni, ac2 > , <  0i, 0 2  > , and <  71,72  >  denote Z-bases of the ideals I x, I2, and 

I 3 respectively, where the basis for each I j  is chosen to be oriented the same as or 

different than <  l , r  >  precisely in accordance with whether e(Ij) =  +1 or —1. Since 

by hypothesis the product I 1I 2 I 3 is contained in <5S, we may write

<*i,Si7i =  ^ ( cm  +  a i i i r  )

O i\0 \l2  =  5  ( C112 +  0-112  ̂) . .
(2 .9)

&202T2 =  ( c222 +  0222T )

for some set of sixteen integers and Cijk (I <  i , j ,  k  < 2). Then A  =  (ayfc) is our

desired 2 x 2 x 2 cube.
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It is clear from construction th a t changing <  au, a 2 > , <  P\,P 2 > , <  7 i ,72 >  

to some other set of (appropriately oriented) bases for i \ ,  I2, 1 3, via an element 

T  6  T, would simply transform  A  into an equivalent cube via th a t same element 

T . Hence the 17-equivalence class of A  is independent of our choice of bases for I \. 

I 2, and J3. Furthermore, it is clear tha t if the collinear triple (17, / 2, 13) is replaced 

by an equivalent triple, our cube A  does not change. Hence we have a well-defined 

map from collinear triples of narrow ideal classes in a  quadratic ring to T-orbits in 

Z 2 ® Z2 ® Z 2.

It remains to show that this m apping (S, (Ji, I2> h ) )  A  is in fact a bijection; that 

is, we wish to show that for any given cube A  there is exactly one pair (5, (17, / 2, 13)) 

up to equivalence tha t yields the  element A  via the above map.

To this end, let us fix a cube A  =  (aljfc) of discriminant D, and consider the 

system (2.9), which currently consists mostly of indeterminates. We show that all 

these indeterminates are in fact essentially determined by A.

First, we claim that the ring S  is determined by A. It suffices to show that Disc(S) 

is determined. W riting out a,-, Pi, 7 i (1 <  i <  3) and 5 in term s of the basis <  1, r  >  of 

S  (with indeterm inate coefficients), and using the relations (2.9), a large but beautiful 

calculation shows that

Disc(A) =  N ( h ) N ( I 2 )N{ I 3 ) N ( 6 ) - 1 ■ Disc(5).

But by assumption N ( I i ) N ( l 2 ) N ( I 3) =  N(5),  so

Disc(A) =  Disc(S), (2.10)

and therefore S  is indeed determined by A.
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Now by the associativity and commutativity of S, we must have

Q i f i j ' J k  ‘ O i j t f t j ' f k  '  & i f i j , 'Ykr —  & i P j , ''fk ' & i'  —  ^ ■ iP j''fk '  '  P j ' ^ k  ( 2 - 11 )

for all 1 <  i, i ', j , j ' ,  k, k' < 2. Expanding out these identities using (2.9), and then 

equating all coefficients of 1 and r, yields 18 (linear and quadratic) equations in the 

eight variables Cyfc in terms of the aijk. We find that this system, together with the 

condition N (I i)N ( I 2 )N (I3) > 0, has a unique solution, given by

C m  =  (*^111^222 +  2o,ii2C Li2i(l2ll ~  UmGU2&221 — <Zma l21a 212 — <2lll&l22a 2 n ) / 2

or by

C m  =  ( a m a 222 +  2au2ai2 i<22 ii  — & m a i i2 a 22i — <2in<2i2ia 2i2 — a m a i22a 2 i i  ~  a i u ) / 2 ,

in accordance with whether D  =  0 (mod 4) or D = 1 (mod 4), with symmetrically 

obtained expressions for the other Cijk■ A quick congruence check shows that the 

solutions for the Cijk are necessarily integral! Therefore, the ci jk s in (2.9) are also 

uniquely determined by the cube A.

We must still determine the existence of a i, /3j, j k £  S  yielding the desired aijk and 

CijkS in (2.9). It is clear th a t the pair (aq.a^) (similarly (/?i,/?2), (71, 72)) is uniquely 

determined—up to nonzero scaling factors in S —by the equations (2.9). For example, 

given any fixed 1 <  j ,  k < 2, we have

<̂ L/3j7fc(c2jfc +  0,2jkr ) =  a 2f3j7k(C]_jk T- aijkT),

so the ratio ac\ : a 2 is determined, and we may let, e.g., aq =  Cijk + ai]kT and 

a 2 =  c2jk +  o.2jkT• T hat this choice of (aq, a 2) is independent of i, j  (up to a constant
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factor) follows from the associative laws (2 .11) th a t have been forced upon the system

(2.9).

Thus we must show only th a t the Z-modules I x =<  au, a 2 > , I 2 = <  /?i, /32 >, 

J3 = <  71,72  > as determined above actually form ideals in S . In fact, it is possible 

to determine the precise 5-module structures of I x, I 2, / 3. Let Q 1, Q2, Q 3 be the 

three quadratic forms associated to A as in Section 2.1.2, where we write Qi =  

PiX2 + qixy -f- TiU2. Then a short calculation using the explicit expressions for a i: /3j, 

as above shows that

1 • &i = a x

1 ■ a 2 = a 2

r  ■ a i = ^  +  pi • a i

—r  ■ a 2 = ■ a i  + ^  • a 2

(2 .12)

or

1 • Q!l =  0(1

1 • a 2 =  Oii

T ■ Oil = ' a l d- Pi • Oi2

-r ■ a 2 =  rq • a i  +  ■ a 2

(2.13)

in accordance with whether D  =  0 (mod 4) or D  =  1 (mod 4), where the module 

structures of / 2 = <  8 X, p2 > and / 3 = <  71, 72 >  are given analogously in terms of the 

forms Q2 and Q3 respectively. In particular, we see tha t / L, / 2, 13 are indeed ideals 

of 5 .

We have now determined all the indeterm inates in (2.9), having started only with 

the value of the cube A. It follows th a t there is exactly one pair (5, ( h ,^ 2 ,h ) )  up 

to equivalence which yields the cube A under the m apping (5, ( / i , / 2, / 3)) —> A; this 

completes the proof. □
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Note th a t the above discussion makes the bijection of Theorem 2.7 very precise. 

Given a quadratic ring S  an d  a collinear triple (A, I 2, I 3 ) of ideals in S , the corre

sponding cube A  =  (dijk) is obtained from equations (2.9). Conversely, given a cube 

A e Z 2 ® Z 2 ® Z 2, the ring S  is determined by (2.10); bases for the ideal classes A> 

I 2, I 3 in S  are obtained from  (2.9), and the S'-module structures of A> I2, and I3 are 

given by (2.12) and (2.13).

Finally, define a collinear triple ( J i , /2, / 3) of ideals of S  to be projective if A> 

J2, I 3 are projective as S-modules. Then there is a natural group law on the set of 

projective collinear triples of ideals of a ring S . Namely, for any two such collinear 

triples (A , A> A ) and {I[, I 2, 1 3 ), define their composition to be the (collinear) triple 

(AA» AA> AA)- This group of projective collinear triples is naturally isomorphic to 

NC1(S) x NC1(S), via the m ap (A, A, A) (A, A)-

Restricting Theorem 2.7 to the set of projective elements of C2, and noting that 

projective cubes give rise to  projective collinear triples of ideals, yields the following 

group isomorphism.

T h e o re m  2.8 The bijection o f Theorem 2.7 restricts to a correspondence 

C1(Z2 <g> Z 2 <g> Z 2; D) *+ NC1(S(£>)) x NC1(S(D));

this correspondence is in fa c t an isomorphism of groups.

T hat primitive binary quadratic forms and projective ideal classes are in one-to- 

one correspondence (the case of Gauss) is of course recovered as a special case. Indeed, 

a short calculation shows th a t  the norm forms of A, Ai A as given by Theorem 2.7 

are simply Q i,Q 2 ,Q 3 , where Q i,Q 2 ,Q 3 are the three quadratic forms associated to 

A. Thus we have also proven Theorems 2.1, 2.2, 2.5, and 2.6.
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2 .2 .4  T h e  case  o f  b inary cubic form s

In this section, we obtain the analogue of Theorem 2.7 for binary cubic forms.

T h e o re m  2.9 There is a bijection, to be given below, between the set o f S L 2 (Z)~ 

orbits on the space Sym3Z 2. and the set of equivalence classes of triples (S ,I ,S ) ,  

where S  is a quadratic ring, I  is an ideal of S , and S is an element of I 3 such that 

N ( 8 ) =  N ( I ) 3. (Here two triples (S , I ,5 ) and (S ,I ' ,5 ') are equivalent i f  there exists 

a nonzero element k  in the ring of quotients of S  such that I '  =  k I  and S' =  k 3 5.)

P ro o f: Given a triple (S , 1 ,5) as in the theorem, we first show how to construct the 

corresponding binary cubic form f ( x ,  y ). Let again S  =  Z 4 -Z r, and let I  = Z a  + ZP  

with a,  ft positively oriented. In analogy with (2.9), we may write

a 3 ~  5  ( c0 4- a0 r )

a2P = 5 ( Ci -F a\T )

a/3 2 =  5 (c2 + a2r )

P3 = 5 ( c3 +  a 3r )

(2.14)

for some eight integers ai and c,-. Then f ( x ,  y) =  ao^3 +  Zaix2y + 3a2xy 2 -f a3y3 is 

our desired binary cubic form.

It is easily verified that changing <  a, p  > to some other basis for I , via an element 

T  €  S L 2 {Z), simply changes f {x, y)  (via the natural S L 2 ( Z )-action on Sym3Z 2) by 

that same element T . Hence the SL2(Z)-equivaIence class of f ( x , y )  is independent 

of our choice of basis for I.  Conversely, any binary cubic form SZ/2(Z)-equivalent 

to f ( x , y) can be obtained from (5 ,1, S) in the m anner described above simply by 

changing the basis for I  appropriately. Finally, it is clear that triples equivalent to 

(S , I , S ) yield the identical cubic forms f { x , y )  under the above map.

It remains to  show tha t this map from the set of equivalence classes of triples 

(S, 1 , 5) to the set of equivalence classes of binary cubic forms f ( x ,  y) is in fact a
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bijection.

To this end, fix a binary cubic form f ( x ,  y), and consider the system (2.14), which 

again consists mostly of indeterminates. We show tha t these indeterminates are 

essentially determined by the form f ( x , y ) .

First, the ring S  is completely determined. To see this, we write out a,  B G S  in 

terms of the basis <  l , r  >  of 5  (with indeterminate coefficients): using the relations 

(2.14), a calculation shows that

D isc(/) =  N( I ) 3 N(S)~l - Disc(S).

By assumption, N(5) = N ( I ) 3, so

Disc(f) =  Disc(S). (2.15)

Thus D isc(S), and hence the ring S  itself, is determined by A.

The associativity and commutativity of S  implies (a 2/3)2 =  a 3 • aB 2 and (afi2 ) 2 =  

a 2B ■ /33. Expanding these identities out using (2.14), we obtain two linear and two 

quadratic equations in c0, Ci, c2, C3. Assuming the basis <  a , (3 > of I  has positive 

orientation, we find that this system of four equations for the Cj has exactly one 

solution, given by

c0 =  —(2a? -  3a0a ia 2 +  ajja3) /2  

ci =  —(a?a2 — 2a0a2 +  a0a 1a3) /2  

c2 =  {axa\ -  2a?a3 +  a0a2a3) / 2 

c3 =  (2a3 — 3aia2a3 +  a0a2) /  2 .

(Again, the solutions for the {c*} are necessarily integral.) Thus the Ci’s in (2.14) are 

also uniquely determined by the binary cubic form / .
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An examination of the system (2.14) shows that we must have

a  : /3 = C i+  aXT : c2 4- a2r  (2-16)

in 5 , and hence a, 0  are uniquely determined up to scalar factors in 5 . Regardless of 

how a , 0  are scaled, this then determines 5 uniquely up to the cube of an element in 

5 . Thus we have produced the unique triple up to equivalence that yields the form 

/  under the mapping (5, I , S) —> f ( x ,  y ).

To see tha t this object (S, 1 ,5) is a  valid triple in the sense of Theorem 2.9, we

must only check that I , currently given as a Z-module, is actually an ideal of 5 . In

fact, one can calculate the module structure of I  explicitly in terms of / ;  it is given 

by (2.12) or (2.13) in accordance with whether D  =  0 (mod 4) or D  =  1 (mod 4), 

where we set

Pi = b2 — ac, qi =  ad — be, rq =  c2 — bd. (2-17)

This completes the proof. □

The above discussion gives very precise information about the bijection of The

orem 2.9. Given a triple (S, I , S) ,  the corresponding cubic form f ( x , y )  is obtained 

from equations (2.14). Conversely, given a cubic form f ( x ,  y) G Sym3Z 2, the ring S  

is determined by (2.15); a basis for the ideal class I  is obtained from (2.16), and the 

5-m odule structure of I  is given by (2.12), (2.13), and (2.17).

Restricting Theorem 2.9 to the set of projective classes of binary cubic forms now 

yields the following group isomorphism; here, we use CI3(5(D )) to denote the group 

of ideal classes of order dividing 3 in C1(5(T>)).

Theorem 2.10 Let S ( D ) denote the quadratic ring o f discriminant D. Then there
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is a natural surjective group homomorphism

Cl(Sym3Z 2; D) -> Cl3{S(D))

which sends a binary cubic form f  to the S(D)-module I ,  where (S ( D ) , I , 8 ) is a 

triple corresponding to f  as in Theorem 2.9. Moreover, the cardinality of the kernel 

o f this homomorphism is precisely \U /U 3\, where U denotes the group o f units in the 

normalization o f S(D) .

The special case where D  corresponds to the ring of integers in a quadratic number 

field deserves special mention.

C o ro lla ry  2.11 Suppose D is the discriminant of a quadratic number field K . Then 

there is a natural surjective homomorphism

i
Cl(Sym3Z 2; D) Cl3 (iiT),

where Cl3(i^) denotes the 3-part o f the ideal class group o f the ring of integers in K . 

The cardinality of the kernel is equal to

{ 3 i f  D  < 0; and 

1 i f  D  > 0 .

2 .2 .5  T h e  case o f  pairs o f  b in a ry  quad ratic  form s

Just as the case of binary cubic forms was treated by imposing a threefold symme

try  on collinear triples ( / i , l 2, / 3) of a quadratic ring S, the case of pairs of binary 

quadratic forms can be handled by imposing a twofold symmetry. The method of 

proof is similar; we simply state the result.
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T h e o re m  2.12 There is a bijection between the set of SL^iTf) x SLiCZ)-orbits on 

the space Sym2Z <g> Z2, and the set o f pairs (S , ( / i , I 2 , 13)),  where S  is a quadratic ring 

and (I\.  I 2 • Iz) is a collinear triple of narrow ideal classes o f S  such that / 2 =  T-

The map taking a collinear triple (i\, 1$, If) to the third ideal / 3 corresponds to the 

isomorphism of groups stated at the end of Section 2.1.5. In particular, the theorem 

sta ted  for Cl((Sym2Z 2)*; D) in Section 2.2.2 holds also for C1(Z2 ® Sym2Z 2 ;D ) with 

no other changes.
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Appendix: Equivalence of the Cube Law and Gauss 

composition

The most elementary way to see the equivalence oof the Cube Law and Gauss com

position is probably via the definition of Gauss coimposition due to Dirichlet. In this 

Appendix, we show how Dirichlet composition cam be derived in a very natural and 

simple maimer from the Cube Law.

Suppose we have a projective cube

a
e — 

/ I
—\

1

| I)

9 - — h
/

° a (2.18)

Since the cube is projective, the greatest common divisors of the entries of the cube 

is 1. Therefore, by applying elements of T =  S L ^ ( Z )  x SL^(Z)  x SX2(Z), we may 

obtain an entry “1” in the (1,1,1) position; tha t iis, we may find an equivalent cube 

with a =  1 in (2.18). This “1” entry can then be u_sed to clear out the three adjacent 

entries in the cube, i.e., we may arrange for b =  c =  e =  0. Thus we see th a t any 

projective cube can be transformed by an element of T to some cube of the form

0
/ I  /  
 0

0

/

- h

“ (2.19)

Let us write down the three quadratic forms Q x, Q ^, Q3 associated to the cube (2.19).
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We have

Q i =  — dx2 4- hxy  4- f g y 2 

Q 2 =  —gx 2 + hxy  4- df y 2 

Qz =  — f x 2 +  hxy  4- dgy2.

Now the cube law declares th a t [Q\\ 4- [Q2] =  — [Q3], and therefore

[ -d x 2 + hxy  +  f g y 2} 4- [~gx2 4- hxy  +  df y2} =  [dgx2 4- hx y  -  f y 2}. 

This is precisely Dirichlet composition.
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Chapter 3

Cubic composition laws

In this chapter, we develop the cubic analogue of the theory of quadratic composition 

presented in Chapter 2. Recall that the fundamental object in our treatm ent of 

quadratic composition was the 2 x 2 x 2  integer cube, from which all our quadratic 

composition laws were derived. To proceed with the cubic case, we must first ponder 

the following question: what are the correct objects on which to define composition 

laws, so th a t the resulting groups yield information on the class groups of cubic fields?

Based on our study of the quadratic case in Chapter 2, our first inclination might 

be to examine 3 x 3 x 3  cubes of integers. A 3 x 3 x 3 cube C  can be sliced (in three 

different ways) into three 3 x 3  matrices £ z, M,-, Ni (i =  1 ,2 ,3). We may therefore 

obtain from C  three ternary cubic forms f \ (x,  y , z),  f 2 (x, y, z ), f z(x, y,  z) by setting

f i (x,  y, z) = —D et(L{x  + M ty + N tz).

Again, we may declare a cubic analogue of the “Cube Law” of the previous chapter 

by demanding tha t [ft] +  [/2] -f- [/3] =  0.

This procedure does in fact yield a law of composition on ternary cubic forms, and 

gives the desired group structure on the norm forms of ideal classes in cubic rings. 

The only problem is tha t it gives us a bit more than  we want, for the norm form of
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an ideal class in a cubic ring is always a decomposable form , i.e., one th a t decomposes 

into linear factors over Q. On the other hand, our group law arising from 3 x 3 x 3  

cubes gives a law of composition not just on decomposable forms, but on general 

ternary cubic forms. Since our interest in composition laws here is primarily for their 

connection with class groups, we should like to “slice away” a part of the space of 

3 x 3 x 3  cubes somehow so as to extract only the part of the space we are interested 

in

flow this slicing should occur becomes apparent upon examination of how cubic 

rings are parametrized. Since cubic rings do not correspond to ternary cubic forms, 

but rather to binary cubic forms (as was shown by Delone-Faddeev and Gross), this 

indicates that we should perhaps slice away one layer of the 3 x 3 x 3  cube to retain only 

a 2 x 3 x 3 box of integers, so that the one S L (3) x S L (3)-invariant is a binary cubic 

form, while the other two dimensions might then give ideal classes in the associated 

cubic ring. This is precisely what we determine in the next section.

3.1 On 2 x 3 x 3 boxes of integers

In this section we discover that, just as the basic building blocks for understanding 

the quadratic case were 2 x 2 x 2  integer cubes, the building blocks in the cubic 

case are 2 x 3 x 3  integer boxes. As such boxes have a bit less symmetry, there is 

essentially only one slicing of interest, namely, the one which splits a 2 x 3 x 3 box 

into two 3 x 3  submatrices. Hence we shall identify the space Z 2 0  Z 3 ® Z 3 of 2 x 3 x 3 

integer boxes with the space of pairs (A, B ) of 3 x 3 integer matrices. Note that the 

group T =  GT2(Z) x GL3(Z) x GLz(Z) then acts in the natural way on the space 

Z 2 ® Z 3 0  Z 3.
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3 .1 .1  T h e  unique F -invariant Disc(A, B )

In. studying the orbits of f  =  G L 2 (Z,) x GL3(Z) x G L3(Z) on pairs (A, B) of 3 x 3 

matrices, it suffices to restrict the F-action to the subgroup T =  G L 2 (Z) x SX3(Z) x 

5X3(Z ), since (—/ 2, —/ 3) €  F acts trivially on all pairs (A, B ). Moreover, unlike F, T 

acts w ithout stabilizer.

Over C, we find that the action of S L 2 (<C) x S L 3 (C) x .S L 3 (C) on its 18-dimensional 

representation V  =  C2 <g> C3 <S> C3 has just a single invariant. This may be seen as 

follows. F irst, the action of S 1 3(C) x S L 3(C) on V  has four independent invariants, 

namely the coefficients of the cubic form f ( x , y )  =  D et(A x — By) ,  for it is readily 

seen th a t the cubic form /  completely specifies the 5'L3(C) x SL3(C)-orbit of the pair 

(A,  B ). Now S L 2 (C) acts on the cubic form f ( x , y ) ,  and it is well-known that the 

la tter action has exactly one invariant, namely the discriminant Disc( /)  of / .  Thus 

the unique S L 2 (C) x S L 3 (C) x S L 3 (C)-invariant on V  is given by Disc(Det(A:r — By)) ,  

which we denote simply by Disc(A, B).

3 .1 .2  T h e  p aram etriza tion  o f  cu b ic  rin gs

The param etrization of cubic orders by integral binary cubic forms was first discovered 

by Delone and Faddeev in their famous treatise on cubic irrationalities [12]; this 

param etrization was refined recently to general cubic rings by Gross [17]. Their 

construction is as follows. Given a cubic ring R  (i.e., any ring free of rank 3 as a 

Z-module), let <  1 , u , 9  > be a Z-basis for R . Translating oj, 6  by the appropriate 

elements of Z, we may assume th a t oj ■ 6  €  Z. We call a basis satisfying the latter 

condition normalized, or simply normal. If <  1, uj, 9 > is a normal basis, there exist
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constants a, 6, c, d, £, m , n  E Z such that

uiO = n

ui2 =  m  + bu> — ad (3-1)

0 2 = t  +  dw — c6 .

To the cubic ring R, associate the binary cubic form / ( x ,  y) =  ax3 + bx2 y+ cxy 2 -\-dy3.

Conversely, given a binary cubic form / (x ,  y) — ax3 +  bx2y  -f cxy2 +  dy3, form a 

potential cubic ring having multiplication laws (3.1). The values of £, m, n are subject 

to the associative law relations ui9-9 = ui-92 and m2-9 =  u-ui9, which when multiplied 

out using (3.1), yield a system of equations which possess a unique solution for n, m, £, 

namely

n  = —ad

m  = —ac (3-2)

i  = -b d .

If follows th a t any binary cubic form /(x ,  y) =  ax3 + b x2y  -\-cxy2 + d y 3, via the recipe 

(3.1) and (3.2), leads to a unique cubic ring R  = R( f ) -

Lastly, one observes by an explicit calculation th a t changing the Z-basis < o j , 9  > 

of i? /Z  by an element of G L2(Z), and then renormalizing the basis in R, transforms 

the resulting binary cubic form /(x ,  y) by th a t same element of GL-ziZ). Hence an 

isomorphism class of cubic ring determines a binary cubic form uniquely up to the 

action of G L2(Z). It follows that isomorphism classes of cubic rings are parametrized 

by integral binary cubic forms modulo integer equivalence.

One finds by a further calculation that the discrim inant of a cubic ring R{f )  is 

precisely the discriminant of the binary cubic form / .  We summarize this discussion 

as follows:
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Theorem 3.1 ([12],[17]) There is a one-to-one correspondence between the set of 

equivalence classes o f integral binary cubic forms and the set o f isomorphism classes 

of cubic rings, by the association

f  *+ R( f ) -

Moreover, D isc(/) =  Disc(R( f ) ) .

3 .1 .3  C ubic rin gs and 2 x 3 x 3  b oxes o f  in tegers

In this section we determine as promised the T-orbits on Z2 <g> Z 3 <8> Z3 in terms of 

ideal classes of cubic rings. Before stating the result, we make a definition. Let us 

say two ideals 1,1 ' in a cubic ring R  are weakly inverse in R  if there exists an element 

5 G R  such tha t I I '  C (d) and N ( I ) N ( I r) =  N(5).  (If R  is a Dedekind domain, the 

notion of “weakly inverse” coincides with the usual notion of “inverse” .)

Theorem 3.2 There is a bijection, to be given below, between the set ofT-orbits on 

the space Z 2 <g) Z 3 ® Z 3, and the set o f pairs (R, (I, / ') ) ,  where R  is a cubic ring, and 

( /, I')  is a pair o f weakly inverse ideals in R .

Proof: Given ideals I  and I ' of a cubic ring R  with N{ I ) N( I ' )  = N{5) and I I '  C (5), 

we first show how to construct a corresponding pair (.4, B)  of 3 x 3 integer matrices. 

Let <  1, u,  6  > denote a normal basis of R, and let <  au, a 2, <*3 >  and <  Pi, 6 2 , Pz > 

denote Z-bases for the ideals I  and I ' having the same orientation as <  1 , u , 6  >. 

Then since I I '  C (5), we must have

a xpi =

a xp2 =

q 3 ^ 3  =  $  ( c 3 3  +  b$$U) +  C I33# )
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for some set of twenty-seven integers a^, 6^, and ĉ - (1 <  i < j  < 3). Let A and B  

denote the 3 x 3  matrices (a^-) and (6i7) respectively. Then (A, B ) £  Z2 <g> Z 3 <8> Z 3 is 

our desired pair of 3 x 3 matrices.

By construction, it is clear that changing <  a i ,a 2, ctz > and <  fii, fi2, fiz >  to 

some other bases of I  and via an element T  £ S L 3 (Z) x  S L z (Z), would simply 

transform (A, B )  by that same element T. Similarly, a change of the basis <  1, u>, 6  > 

to another normal basis <  l ,u /, O' > of R  is completely determined by the element

u/ =  q ru  4- sO 

O' =  t + uoj -I- v 6 .

Again, it is easily checked that this change of basis transforms (A, B) by the same

other generator u5 of the ideal (5), where u is a unit of positive norm, then this 

simply transforms (A ,B ) by Tu £ SL3(Z) (or, equivalently, by £ SLz(Z)) ,  where 

Tu (resp. T„) denotes the multiplication-by-u operator on I  = <  g^, a 2~ 03 >  (resp. on 

I ' = <  Pi, @2 , fiz >). We conclude tha t the T-equivalence class of (A, B ) is independent 

of our initial choice of bases for R , / ,  and and of our choice of 5. Conversely, any 

pair of 3 x 3 matrices in the same T-orbit as (A, B)  can actually be obtained from 

(R, I ,  I' ) in the manner described above, simply by changing the bases for R, / ,  and 

I '  appropriately.

Next, suppose J  and J ' are ideals of R  such that I,  J  and I ',  J ' correspond to the 

same ideal classes. Then there exists a nonzero element k  in the ring of quotients 

of R  such tha t J  =  k I  and J ' — k 'I ' . If we choose bases for / ,  J, J ' to take the 

form <  ai,OL2 ,ocz > , <  Pu@2 ,Pz > , <  koci, koc2, Ka3 > , and <  k ! k ! p 2, tz'fiz > 

respectively, it is immediate from (3.3) th a t (R , / ,  / ')  and (R, J , J') (where 5 is then

element £ S L 2 (Z). Along the same lines, if 5 is replaced in (3.3) by some
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replaced by kk'S) will give rise to identical elements (A, B )  in Z2<g>Z3® Z 3. It follows 

th a t the  association (R, I ,  I 1) —> (A , B )  is a well-defined map even on the level of 

ideal classes.

It remains to show th a t our m apping (R , (1,1')) -4  ( A , B)  from the set of pairs 

(R,  (I,  I' )) to the space (Z2 <g> Z 3 <g> Z 3) / r  is in fact a bijection.

To this end, fix 3 x 3  symmetric matrices A  =  (a ,j) and B  — (6y ), and consider the

system (3.3), which a t this point consists almost entirely of indeterminates. Contrary 

to how it m ight look, we show in several steps tha t these indeterm inates are in fact 

essentially determined by the pair (A,  B).

First, we claim th a t the ring structure of R  is completely determined. Indeed, let 

us write

oj9 — —ad

lo2 =  —ac -\-bu) — ad (3-4)

Q2 =  —bd 4- du> — c6 ,

and let /  be the corresponding binary cubic form given by

f ( x ,  y) =  a xz -h bx2y  4- cxy2 4- dy3.

W riting out the seven elements ai,/3 j,5  E R  in terms of the basis 1, to, 9 of R  (with 

indeterm inate coefficients), and using the relations (3.3), a  rather large but beautiful 

calculation (best suppressed here) shows tha t

Det(.4rr — B y) = N ( I ) N ( I ,) N ( 8 ) ~ 1 ■ (ax3 4- bx2y + cxy2 4- dy3). (3.5)

But by assumption, N( I ) N( I ' )  =  N ( 8 ), so

Det(A:r — By)  — f ( x ,  y) = ax3 4  bx2y  4- cxy2 4  dy3, (3.6)
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and therefore the ring R  =  R ( f )  is indeed determined.

Next, we show th a t the quantities Cy in (3.3) are also completely determined. By 

the associative law in R, we have nine equations of the form

(oiiPj )(cii'Pr) = (3-7)

for 1 <  < 3. Expanding these out using (3.3), (3.4), and (3.6), and then

equating the coefficients of 1, cj, and 0, yields a system of 18 linear and 9 quadratic 

(!) equations in the 9 indeterminates Cy. Although it seems that this system may be 

a bit overdetermined, we find (by another large calculation) that it has exactly one 

(quite pretty) solution, given by

a n a i2 bn b\3 On 0 13 611 bi2
Cu — • *

0-21 0-22 bzi 3̂3 O31 03 3 621 622

a n a 12 bn b\3 On O13 611 b\2

a31 032 &21 &23 O21 023 bzi bz2

where the values of the other Cy are symmetrically obtained. (Note that the solutions 

for the {cij} are necessarily integral, since they are polynomials in the ay and %!) 

Thus the Cy’s are also uniquely determined by the pair of matrices (A , B ).

We still must determine the existence of Qi, /3j, 6  E R  yielding the desired ay, 6y , 

and Cy’s in (3.3). An examination of this system (3.3) shows that we must have, for 

any 1 <  j  < 3,

a i : Ci2 • olz — C]j -(- bijOJ +  dijQ : c^j +  4- a.2j 6  : c$j +  +  a$jd ; (3-9)

th a t the ratio on the right hand side of (3.9) is independent of the choice of j  follows 

from the identities (3.7) that we have forced on the system (3.3). Thus the triple
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(aq , ct2,0:3) is uniquely determined up to factors in R. Similarly, the triple (8 i, 8 2 , 8 2 ) 

is so determined. Regardless of how (aq, aq, aq) and {8 1 , 8 2 , 8 3 ) are scaled, this then 

determines 5 uniquely up to a unit of positive norm in R.

To see tha t this object (R , (/, I')) forms a valid pair in the sense of Theorem 3.2, we 

must only check that I  and currently given only as Z-modules, actually form ideals 

of R.  In fact, one can calculate the exact R-module structures of I '  and I  explicitly 

in terms of (A, B) ,  which are too beautiful to be left unmentioned. Given a m atrix 

M,  let us use M x to denote the ith  column of M  and \M\  denote the determinant of 

M.  Then the i?-module structure of I '  is given by

—OJ ■ aq = IB1 A 2 A 3| •■ aq 1~r IA1 B l A 3 | ■• 02 + |A L A 2 B l \ • 0:3

—UJ ■■ 0.2 = \B2 A 2 A 3| •• Oi + IA1 B 2 A 3 | • a2 + |A l A 2 B 21 •• 03

—UJ ■• Ctz = \BZ A 2 A 3 | •■Oi + IA1 B3 A 3 | •• o 2 + IA1 A 2 B 3| ■• a 3

- e • Oi = IA1 B2 B 3| ■ aq + | A 1 B 3| ■ a2 + \Bl B 2 A 1! • Q3

- 9 ■ a2 = |A2 B 2 B 31• aq | R 1 A2 B 31■ a2 + IB1 B 2 A2| • 03

-9 ■ o 3 = |A3 B 2 B 3| • aq + | R 1 A3 B 31■ o 2 + 1B 1 B 2 A3| - « 3,

where the R-module structure of I  is given analogously in terms of the rows of A  and 

B  rather than  the columns. This concludes the proof of Theorem 3.2. □

Note th a t our discussion makes the bijection of Theorem 3.2 very precise. Given 

a cubic order R  and a weakly inverse pair ( / , I') of ideals in R,  the corresponding 

element {A, B)  €  Z2 <S> Z3 <2> Z3 is obtained from equations (3.3). Conversely, given 

an element (A , B ) E Z2 <g> Z3 <g> Z 3, the ring R  is determined by (3.4) and (3.6); 

bases for the ideal classes I  and I '  of R  may be obtained from (3.9), and the R-  

module structures of I  and I'  are given by (3.10). Finally, we note that equation 

(3.6) implies that if (A, B ) corresponds to (i£, ( / , / ') ) ,  then Disc(A, B)  =  Disc(R); 

thus the bijection of Theorem 3.2 preserves discriminants.
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3 .1 .4  C u b ic  rings and pairs o f  tern a ry  q u ad ratic  form s

Just as we were able to put a symmetry conditiou on 2 x 2 x 2 matrices to ob

ta in  information on the 3-parts of class groups of quadratic rings, we can impose a 

sym m etry condition on 2 x 3 x 3 matrices to obtain information on the 2-parts of 

class groups of cubic rings. The “symmetric” elements in Z2 ® Z 3 <S> Z 3 are precisely 

the  elements of Z 2 ® Sym2Z3, i.e., pairs (A,  B ) of symmetric 3 x 3  integer matrices, 

which may be viewed as pairs (A , B)  of integral ternary quadratic forms. The group 

GLoi^j) x SLz (Z)  acts in the natural way on Z 2 <g> Sym2Z3, and the precise corre

spondence between pairs of ternary quadratic forms and ideal classes “of order 2” in 

cubic rings is given by the following theorem.

Theorem 3.3 There is a bijection, to be given below, between the set o f GL2(Z) x 

SLz(Wj)-orbits on the space Z 2 <g> Sym2Z 3, and the set of equivalence classes of triples 

( R , I , 5 ) ,  where R  is a cubic ring, I  is an ideal o f R , and 3 is an element of I 2 

such that N{5) = N ( I ) 2. (Here two triples (R , I , S ) and (R , I ' , 5 ') are equivalent if  

there exists a nonzero element k in the ring of quotients of R  such that / '  =  k I  and 

3' = k 23.)

Proof: For a triple (f?, I , 3) as above, we first show how to construct a corresponding 

pair (A, B )  of ternary quadratic forms. Let <  l ,cu,0 >  denote a normal basis of R, 

and let <  aq, 02 , 0:3 >  denote a Z-basis of the ideal I  having the same orientation 

as <  1 ,u),6 >. Since by hypothesis I  is an ideal whose square contains the element 

3 G R , we must have

(XiCtj =  5 ( Cij +  bijUJ + aijO) (3.11)

for some set of integers a*,-, 6^, and Cij. Let A  and B  denote the  3 x 3  symmetric 

m atrices (ay) and (6y) respectively. T hen the ordered pair (A, B )  €  V (Z) is our 

desired pair of ternary quadratic forms.
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The matrices A and B  can naturally be viewed as quadratic forms on the lattice 

I  =  Zaq +  Z a 2 +  Za;3- Hence changing <  aq, az > to some other basis of I ,  via an 

element T  G SLz (Z) ,  would simply transform (A , B ) (via the natural SLz(Z)-a.ction) 

by th a t same element T . Also, ju st as in Theorem 3.2, a change of the basis <  1, uj, 9 > 

to another normal basis by an element of G L 2 (Z) transforms (A , B ) by that same 

element. We conclude tha t our map from equivalence classes of triples (R , I ,  (5) to 

equivalence classes of pairs (A, B)  of ternary quadratic forms is well-defined.

To show th a t this map is a  bijection, we fix the pair A =  (cty) and B  — (6y ) of 

ternary quadratic forms, and then show th a t these values determine all the indeter

minates in the system (3.11). First, to show th a t the ring R  is determined, we assume 

(3.4), and derive from (3.11) the identity

D et(Ax  — By)  =  N  ( I ) 2 N  (S)~l (ax3 +  bx2y  +  cxy 2 4- dy3)
(3.12)

=  ax3 +  bx2y +  cxy2 +  dy3,

where we have used the hypothesis that N(5)  = N ( I ) 2. It follows, as in the proof of 

Theorem 3.2, th a t the ring R  is determined by the pair (A, B).

Next we use the associative law in R  to show tha t the constants ĉ - in the system 

(3.11) are uniquely determined. We have three identities of the form (J-1^ ) ^ -1^ )  =  

(c5'- 1Q'xq;2)2, and three more of the form (S~la 2 )(S~1a 2 a z) =  (d- 1a:ia:2)(£- 1a:].a3). Ex

panding out all six of these using (3.4) and (3.11), and then equating the coefficients 

of 1, ui, and 6 , yields a system of 18 linear and quadratic equations in the six inde

term inates cii, c22> C33, C12, C13, C23. This system in the Cy has a unique solution, given 

again by (3.8), w ith symmetrically obtained solutions for the other Cy.

An examination of the system (3.11) shows tha t we must have, for any 1 <  j  < 3,

aq : a-2 : 0:3 =  C\j +  bijui -+- aijd : c2j  +  b2jUi +  a2jd : Czj +  bzjCJ +  CLzjd , (3.13)
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and the latter ratio is independent of the choice of j .  Thus the triple (ati, az, (*3 ) 

is uniquely determined up to factors in R. Regardless of how the triple (o;L, 0:3)

is scaled, this then determines 5 uniquely up to a square factor in R. Thus we 

have produced the unique triple, up to equivalence, that yields the form /  under the 

mapping (R , I , 5 ) —»■ (A, B).

To see tha t this object (i?, I ,  S) is really a valid triple in the sense of Theorem 3.3, 

we must only check that I  is an ideal of R.  Again, the R-module structure of I  can 

be determined explicitly in term s of (A ,B),  and is given by (3.10). This completes 

the proof of Theorem 3.3. □

The proof gives very precise information about the bijection of Theorem 3.3. Given 

a  triple (R , I,  6 ), the corresponding pair (A, B)  of ternary quadratic forms is obtained 

from equations (3.11). Conversely, given an element (A , B ) G Sym3Z 2 <S>Z2, the ring 

R  is determined by (3.4) and (3.12); a basis for the ideal class I  may be obtained 

from (3.13), and the R-module structure of I  is given by (3.10). We should point out 

again tha t by (3.12), if (A, B)  corresponds to (R, I , 5) ,  then Disc(A, B)  = Disc(R); 

th a t is, the correspondence of Theorem 3.3 is discriminant-preserving.

3.2 Resulting composition laws

In this section, we describe natural composition laws on 2 x 3 x 3 boxes of integers 

and on pairs of integral ternary quadratic forms. These composition laws may be 

viewed as cubic analogues of the composition laws presented in Chapter 2.

3 .2 .1  C om p osition  o f  2 x 3 x 3 in teger m atrices

Define a pair of ternary quadratic forms (A, B)  G (Z2<g>Z3<g>Z3) / r  to be projective if in 

the corresponding pair (R , ( / , I')) (as in Section 3.1), the ideals I  and I'  are projective 

as i?-modules. For a given binary cubic form / ,  let Z2 ® Z3 <g> Z3(/)  denote the set of
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ail elements (A, B)  E Z 2 ® Z 3 ® Z3 such that Det(A:r — By)  is GT2(Z)-equi valent to

The purpose of this section is to note that, for a  given cubic form / ,  there is 

a natural group law on the set of projective elements of Z 2 <2> Z 3 <g> Z 3( /) /T . This 

law of composition is most easily defined as follows. Let (A, B)  and (A', B') be 

any two elements of Z 2 <8> Z3 ® Z 3( /) /T , and let (R , ( /i, J2)) and (R , (/[, Z^)) be the 

corresponding pairs as constructed in Section 3.1 (here R  can be chosen to be the 

same in both pairs, since they correspond to equivalent cubic forms). Define then 

the composition of (A, B)  and (A', B ') to be the pair (A", B")  of ternary quadratic 

forms corresponding to the pair (R , ( ^ / j ,  J2/ 2)). It is not hard to see that this does 

in fact yield a group law on the desired set. We denote the resulting group by 

C1(Z2 <g> Z 3 <g> Z3; / ) .

If R ( f )  denotes the cubic ring corresponding to a cubic form / ,  then the group 

C1(Z2 <g> Z 3 <g> Z3; / )  is closely related to the ideal class group Cl(R{f ) )  of R{f ) .  To 

be precise,

Theorem 3.4 There is a natural group isomorphism

C1(Z2 <g) Z 3 ® Z 3; / )  *+ Cl(# ( / ) ) ,

which sends an element (A, B) E Z2<S>Z3® Z 3( /)  to the ideal class I  in the cubic ring 

R( f ) ,  where (i?(/), ( / , / ' ) )  is the pair corresponding to (A , B ) as in Theorem 3.2.

The whole situation may thus be viewed as a cubic analogue of Gauss’s theory of 

composition for binary quadratic forms and its relation to ideal classes of quadratic

39

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .



orders. Indeed, the analogy is quite strong:

• In the case of binary quadratic forms, the unique *9L(2)-invariant is the dis

crim inant D , which classifies orders in quadratic fields. The primitive classes 

having a fixed value of D  form a group under a certain  natural composition law. 

This group is naturally isomophic to the narrow class group of the corresponding 

quadratic order.

•  In the case of 2 x 3 x 3 integer boxes, the unique SL(3) x  ST (3 )-invariant is 

the cubic form / ,  which classifies orders in cubic fields. The projective classes 

having a fixed value of /  form a group under a certain  natural composition law. 

This group is naturally isomorphic to the ideal class group of the corresponding 

cubic order.

If f ( x ,  y ) — ax2+ bx2 y + c x y 2 -\-dy3 is a given cubic form, then the identity element 

of C1(Z2 ® Z 3 <g> Z3; / )  (i.e., the ■principal class) is given by

f 1

—a 1 1

1

b

\

V 1 - c d /

as may be seen from the multiplication laws for R  as given by (3.4). It is interesting 

to check th a t indeed Det(Ax — By) = ax3 -I- bx2y -I- cxy2 +  dy2 for this pair (A, B ).

3 .2 .2  C o m p o sitio n  o f pairs o f  tern ary  q u a d ra tic  form s

We may restrict the group law on pairs of 3 x 3 matrices defined in the previous section 

to symmetric pairs (A, B ) of 3 x 3 matrices, i.e., pairs (A, B )  of ternary quadratic 

forms. Again, this set is easily verified to be preserved under the group law. We 

denote the resulting groups by C1(Z2 ® Sym2Z 3; / ) ,  where /  denotes again the binary 

cubic form invariant.
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As in the quadratic case, we find that the restriction to symmetric classes isolates 

a certain arithm etic part of the ideal class group of the corresponding order. In the 

current case, if R ( f )  is the cubic ring corresponding to the cubic form / ,  then there 

is a natural map from C1(Z2 <S> Sym2Z3; / )  onto the 2-class group Cl2(i?) of R . To be 

more precise,

T h e o re m  3.5 There is a natural surjective group homomorphism

C1(Z2 <g> Sym2Z3; / )  Cl2 (R),

which takes a pair (A, B ) of ternary quadratic form s to the R-module I;  here (R, I , d) 

is a triple corresponding to (A, B) as in Theorem 3.3. Moreover, the cardinality of the 

kernel o f this homomorphism is precisely \U/{U2, d tl} |, where U denotes the group of 

units o f R.

The special case where /  corresponds to the ring of integers in a number field 

deserves special mention.

C o ro lla ry  3.6 Suppose f  corresponds to the ring o f integers in a cubic field K . Then 

there is a natural surjective homomorphism

C1(Z2 0  Sym2Z3; / )  -► C l2 (K) ,

where G\2 (K ) denotes the 2-class group of the ring o f integers R  in K . The cardinality 

of the kernel is equal to 2 i f  R  ® R  =  R © C, and is equal to A i f  R  <g> 3R =  R3.

41

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .



Chapter 4 

The parametrization of quartic 

rings

The parametrizations of quadratic and cubic orders presented in Sections 2.2.1 and

3.1.2 are at once both beautiful and simple, and have enjoyed numerous applications 

both within this thesis and elsewhere (see e.g., [11], [12], [13], [17], [20]). It is therefore 

only natural to  ask whether analogous parametrizations might exist for orders in 

number fields of degree k > 3. In this chapter, we show how such a parametrization 

can also be achieved for quartic orders (i.e., the case k =  4).

In classifying quartic rings, the first approach (as in the cases k  =  2 and k =  3) 

might be simply to write out the multiplication laws for a rank 4 ring in terms of an 

explicit basis, and examine the transformation properties of the structure coefficients 

under change of basis. However, since the jum p in complexity from k = 3 to k =  4 

is so large, this idea goes astray very quickly (yielding a huge mess!), and it becomes 

necessary to have a new perspective in order to make any further progress.

In Section 4.1, we give such a new perspective on the case A: =  3 in terms of 

what we call resolvent rings. The notion of quadratic resolvent ring, defined in 4.1.2, 

immediately yields the Delone-Faddeev parametrization of cubic orders from a purely
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ring-theoretic viewpoint. Generalizing this notion to k  =  4 then indicates th a t the 

analogous objects parametrizing quartic orders should be pairs of ternary quadratic 

forms.

Section 4.2 is dedicated to proving this assertion. The proof is accomplished in 

several steps, and the main result on param etrization is achieved in Subsection 4.2.5. 

In the five rem aining subsections of Section 4.2, we investigate how cubic resolvents, 

m axim ality and  splitting of primes manifest themselves in terms of pairs of ternary 

quadratic forms: this may have future com putational applications, and will also be 

im portant to  us in Chapter 5 in obtaining results on the density of discriminants of 

quartic fields.

4.1 Resolvent rings and parametrizations

Before introducing the notion of resolvent ring, it is necessary first to understand the 

notion of “Galois closure” (specifically, “Sfc-closure” ) a t the level of rings, which we 

tu rn  to first.

4 .1 .1  T h e  5fc-closure o f  a  ring o f  rank  k

Let R  be any ring of rank k  (i.e., any ring having rank k  when viewed as a Z-module), 

and let Tr(-) denote the trace form on R. Let R®k denote the kth. tensor power

R®k =  R  ®z R  <g>z • - • ®z R

of R, and let I r  denote the ideal in R®k generated by all elements in R®k of the form

(x <g> 1 <g> • • • <g> 1) +  (1 <g> x ® • <8> 1) H + (1  <S> 1 <S> • • • <8> x ) — T r(x )(l ® 1 ® ® 1)

for x  €. R.
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D efin ition . 4 .1  The Sk-closure R  o f a ring R  o f rank k  is the ring extension R  o f R  

given by R®k / 1 r .

The notion of S^-closure is precisely the analogue of “Galois closure” we seek. We 

may write Gal(-R/.R) =  Sk, since the symmetric group Sk acts naturally as a group of 

autom orphism s on R; furthermore, it is clear th a t R Sk, the subring invariant under 

this action, is simply Z ® Z ® - - - ® Z  =  Z.

For example, if R  is an order in an number field K  of degree k  such that Gal(i<T/Q) =  

Sk, then  R  is simply the Z-algebra generated by all the Galois conjugates of elements 

of R, i.e.,

R  =  Z [{a : a  Sk-conjugate to some element of i?}].

The <Sfc-closure may similarly be described for any ring of rank k  having nonzero 

discrim inant. If R  has nonzero discriminant, then K  =  R<S>Q is etale over Q and hence 

is the direct sum ®Ki of algebraic number fields. Let G* denote the Galois group of 

K i  over Q; then G = U G i  may be viewed as a  group of automorphisms of K  over 

Q in the natural way. Let R  denote the ring in K  generated by all G-conjugates of 

elements of R  in K , i.e., let

R  =  Z [{a : a  G-conjugate to some element of R}],

and finally set R  to be the direct sum of k\/\G \ copies of R . Then R  is clearly a ring 

of rank hi, and it is the S^-closure of R.

To fix notation, we always assume a fixed embedding of R  into R. In the next 

two sections, we use the notion of S^-closure to attach rings of lower rank to orders 

in cubic and quartic fields.
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4 .1 .2  T h e  quad ratic  reso lven t o f  a  cu b ic  ring

Given a cubic ring, there is a natural way to associate to R  a quadratic ring S , 

namely the unique quadratic ring S  having the same discriminant as R. Since the 

discriminant D  =  Disc(-R) of R  is necessarily congruent to 0 or 1 modulo 4, the 

quadratic ring S(D )  of discriminant D  always exists; we call S  = S (D ) the quadratic 

resolvent ring of R.

Definition 4.2 For a cubic ring R , the quadratic resolvent of R  is the unique quadratic 

ring S  such th a t Disc(i?) =  Disc(S) -

Given a cubic ring R, there is a natural map from R  to its quadratic resolvent 

ring S  that preserves discriminants. Indeed, for an element x  E R, let x , x', x" denote 

the ^ -con jugates of x  in a fixed S'3-closure R  of R. Then the element

JL ^  [(* -  X>) (x> -  X") (x‘" -  ^)]2 +  (x -  x') (x' -  x") (:X" - x )  fA ^
03,2 (x)  — ------------------------------------------ 2 ^ '

is contained in some quadratic ring, and it has the same discriminant as x. In fact, 

all the elements <£3,2(2;) may be viewed as lying in a single ring S mv(R ) naturally 

associated to R , namely the quadratic subring of R  <g> Q defined by

S inv(R) =  Z[{03,2(x) : x e  R}}. (4.2)

This ring is quadratic since it is fixed under the natural action of the alternating 

group on the rank 6 ring R  ® Q. We call S inv (R) the quadratic invariant ring of R.

How is S mv(R ) related to the quadratic resolvent ring S  = S res(R)? To answer 

this question, we observe tha t forming ^ 3,2 (x) for x  6  R  involves taking a square root 

of the discriminant of x  in R . Since Disc(x) is equal to r 2Disc(i?) for some integer 

r, 03,2 (x) is naturally an element of the quadratic resolvent S  for all x  E R, so th a t 

S inv(R ) is naturally a subring of S . In particular, the map 03i2 : R  S inv(R) may
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also be viewed as a  (discriminant-preserving) map

03,2 : R  S. (4-3)

W hen does S inv(R ) =  5? As we shall prove in the next chapter, the answer is 

th a t S mv(R ) =  S  precisely when R  is Gorenstein. Thus for most nice cubic rings R, 

S inv(R) = S.

Let us now examine the implication of our construction for the parametrization 

of cubic rings. Suppose R  is a cubic ring and S  is the quadratic resolvent ring of 

R , and let 03,2 : R  —>■ S  be the natural map given by (4.1). Then observe tha t 

03,20*0 =  4>{x c) for any c €  Z; hence 03,2 : R  S  actually descends to a map

03,2 : R /Z  - r  S /Z .  (4.4)

As a map of Z-modules, 0 3,2 is a cubic map from Z2 to Z, and thus corresponds to 

an integral binary cubic form, well-defined up to GL2 (Z) x GLi (Z)-equi valence.

To produce explicitly a binary cubic form corresponding to the cubic ring R  as 

above, we compute the discriminant of xui-{-y9 E R, where R  is spanned by <  1 , w, 9 > 

and multiplication is defined by (3.1). An explicit calculation shows that

Disc(xo; -f- yd) =  D  (ax3 +  bx2y  +  cxy2 H- dy3)2.

Since S /Z  is generated by (D  -I- V D ) /2, it is clear tha t the binary cubic form corre

sponding to the map 03,2 is given by

y /Disc(jaj +  y9)/2  =  ^  2 +  3

y/D /2
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Thus we have obtained a  concrete ring-theoretic interpretation of the Delone-Faddeev- 

Gross param etrization of cubic rings.

4 .1 .3  C ubic reso lv en ts  o f a  q uartic ring

Let Q be a quartic ring, i.e., any ring of rank 4 over Z. Developing the quartic 

analogue of the work of the previous section is the key to determining what the 

corresponding param etrization of quartic rings should be. To accomplish this task, 

we m ust in particular determine the correct notions of a cubic resolvent ring R  of Q, 

a cubic invariant ring R tnv(Q) of Q, and a map

^4,3 : Q  R -

As it turns out, the notion of what the cubic resolvent ring R  should be is not quite 

as immediate and clear cut as was the concept of quadratic resolvent ring in the cubic 

case. Thus, we turn  first to the map 04>3 and to the cubic invariant ring R Lnv{Q), 

which are easier to define.

In analogy with the cubic case of the previous section, we should like <p4i3 to be 

a polynomial function th a t associates to any a; in a  quartic ring a natural element of 

the same discriminant in a cubic ring. Such a m ap does indeed exist: if Q denotes the 

S4-closure of Q, and x ,x ',x " ,x '"  denote the conjugates of x  in Q, then define 4>4,z(x) 

by the following well-known expression:

<Z>4i3(a;) =  x x ' +  x" x" '. (4-5)

It is known from the classical theory of solving the quartic th a t <p4i3 is discriminant- 

preserving; it is also clear th a t d4)3(x) lies in a cubic ring, having exactly three 

S4-conjugates in Q. In fact, all elements 0 4i3(a;) for x  E Q are seen to lie in a single 

cubic ring, namely, the cubic subring of R  fixed under the action of a fixed dihedral
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subgroup D4 C S4 of order 8 . Following the example of the previous section, define

=  Z[{04,3(x) : x  6  Q}}. (4.6)

We call R inv(Q) the cubic invariant ring of Q. Thus we have a natural, discriminant- 

preserving map

04,3 : Q -> R inv{Q).

Let us return to the notion of cubic resolvent of Q. In analogy again with the 

cubic-quadratic case, we should like to define the cubic resolvent of Q  to be a cubic 

ring R  th a t has the same discriminant as Q and that contains R L71V{Q). However, 

there may actually be many such rings, and no single one naturally lends itself to 

being distinguished from the others. Thus we ought to allow any such ring to be 

called a cubic resolvent ring of Q.

Definition 4.3 Let Q be a quartic ring, and R inv(Q) its cubic invariant ring. A cubic 

resolvent ring of Q is a cubic ring R  such tha t Disc(Q) =  Disc(i?) and R  D R inv(Q).

In the next section we will see th a t all quartic rings have a t least one cubic 

resolvent, and moreover, for Gorenstein quartic rings the cubic resolvent is in fact 

unique. Thus cubic resolvents exist, and given any cubic resolvent R  of Q, we may 

then of course speak of the natural map

04,3 : Q —*■ R.

Following the cubic case, let us see what implications our construction of cubic 

resolvents has for the param etrization of quartic rings. Suppose Q is a quartic ring, 

R  is its cubic resolvent ring, and 04,3 : Q —¥ R  is the natural map as defined by (4.5).
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Then, observe th a t for any c €  Z,

<£4,3 Oe -he) = (x + c)(x' -he) -h (x" +  c)(x"' -he) = 4>{x) +  d

for some d £  Z, namely d =  cTr(a;) +  2c2. Hence <t>4,3 - .Q —t R  descends naturally to 

a map

<£4,3 : Q /Z  —¥ i?/Z . (4-7)

As a map between Z-modules, this map is a quadratic map from Z 3 to Z 2, and 

thus corresponds to a pair of integral ternary quadratic forms, well-defined up to 

G Lz(Z) x -equivalence.

As the reader will have noticed, the analogy with the cubic case up to this point 

is very remarkable, and if it is to continue, it suggests that isomorphism classes of 

quartic rings should be parametrized roughly by pairs of integral ternary quadratic 

forms, up to integer equivalence.

On the other hand, proving the latter statement, or even ju st determining the 

pair of ternary quadratic forms attached to a given quartic ring Q, is not quite as 

easy as the corresponding calculation was in the cubic case. The difference lies in 

the fact that, in the case of cubic rings, one could completely describe the quadratic 

resolvent ring, so 03i2 could also be described explicitly. For quartic rings, however, 

it is difficult to say anything a priori about the cubic resolvent ring other than that 

it is a ring of rank 3 and certain discriminant D ; more structural information is not 

forthcoming without some additional work, which we carry out in Section 4.2.
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4.2 Quartic rings and pairs of ternary quadratic 

forms

Given a quartic ring Q , and a cubic resolvent R  of Q, we have shown th a t there is a 

pair of integral ternary  quadratic forms (>1,5) associated to (Q ,R ), determined by 

the natural map

<̂4,3 - Q /2  — -R/Z. (4.8)

However, even when we are given explicitly a pair of rings (Q ,R ), it is not imme

diate how to produce explicitly the pair (A , B ) of integral ternary quadratic forms 

corresponding to (Q , R ). Hence our strategy in this chapter is to work the other way 

around: given a pair (A, B) of integral ternary quadratic forms, we determine the 

possible structures th a t  the rings Q and R  can have.

It is necessary first to understand some of the basic invariant theory of pairs 

of ternary quadratic forms. This is summarized briefly in Section 4.2.1. In Sections 

4.2.1-4.2.4, we gather structural information on the rings Q and R , using only the data 

(A, B )  corresponding to  the map (4.8). In Section 4.2.5, we present our main theorem 

on the param etrization of quartic rings and their cubic resolvents. In Section 4.2.6- 

4.2.7, we study an invariant of rank k  rings th a t we call the content, and show that 

the content of a quartic  ring Q is related in a precise way to the number of cubic 

resolvents of Q. Finally, in Sections 4.2.8-4.2.10, we use this notion of content to 

determine the precise relationship between quartic rings and pairs of integral ternary 

quadratic forms.

4 .2 .1  T h e  fu n d a m en ta l invariant Disc(A, B)

In studying a pair (A , B ) of ternary quadratic forms representing the  map <j>4i3 as in 

(4.8), we m ay change the basis of Q /Z  or 5 / Z  by elements of G L 3(Z) or GL2(Z)
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respectively- This reflects the fact that the group G LZ(Z) x G L 2 (Z) acts on the 

space of pairs (A, B ) of integral ternary quadratic forms in a natural way; namely, 

if (A, B ) € Vz is a pair of ternary quadratic forms (which we write as a pair of 

symmetric 3 x 3  matrices), then an element (9 2 , 9 3 ) €  G  operates by sending (A ,B) 

to

Over C, the representation V  =  Sym2^? <g> C2 of SX3(C) x S L 2 (C) has just 

one fundam ental invariant. To see this, notice first that the action of SX3(C) on V  

has four independent invariants, namely the coefficients a, b, c, d of the cubic form 

f ( x , y ) =  4 • Det(A:r — B y), for it is easily seen tha t the cubic form /  completely 

specifies the SX3(C)-orbit of the pair (A, B ). Next, S L 2 (<C) acts on the cubic form 

f ( x , y ), and it is well-known that this action has exactly one invariant, namely the 

discriminant D isc(/) of / .  Thus the unique S L 2(C) x 5X 3 (C)-in variant on V  is 

Disc(4*Det(Ax—B y)). We call this fundamental invariant the discriminant Disc(A, B ) 

of the pair (A, B ). (The factor 4 has been included to insure that any pair of integral 

ternary  quadratic forms has integral discriminant.)

4 .2 .2  H ow  m uch  o f  th e  stru ctu re  o f  Q is d eterm in ed  by (A, B )?

The only fact we have so far relating the structures of Q, R, and the map 4>̂z is that 

cj>4)3 is discriminant-preserving as a map from Q to R. However, this fact alone yields 

little information on the nature of Q and R. Thus the following lemma on 04>3 plays 

an invaluable role in determining the multiplicative structure of Q.

To state  the lemma, we use the notation IndAr(ui, v2, . . .  ,Vk) to denote the index 

of the lattice spanned by v2, . . .  , u*} in the rank k  Z-module M .

(92,9z) - (A, B ) =  (r • <73A<73 -l- s - gzB glz , t  ■ gzAg£ 4 - u ■ g3 B gz), (4.9)

where we have written g2 as
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L em m a  4 .4  If Q is a quartic ring, and R is a cubic resolvent of Q, then

IndQ( l ,x ,y ,x y )  =  ± In d R(l, 04,3(a;), ^ 4,3(7/)). (4.10)

P ro o f: Since Disc(Q) =  Disc(R), the assertion of the lemma is equivalent to the 

following identity:

1 1 1  

x x ' +  x"x"' xx"  +  x 'x" ' xx'"  +  x'x"  

y y '  +  y"y" ' y y "  +  y 'y " ' y y '"  +  y 'y"

The identity may be verified by direct calculation. □

The sign in expression (4.10) of course depends on how Q and R  are oriented. To 

fix the orientations on Q  and R  once and for all, let <  1, a , /?, 7  > and <  1, lj, 9 >  be 

bases for Q and R  respectively such that the map 04j3 is given by

1 1 1 1

X x' x" x"'

y y' y" y'"

xy x 'y ' x"y" x"'y"'

<p4t3(ra  4- s/3 +  t j )  = A(r, s, t)u> -f B (r , s, t)9.

Then we fix the orientations on Q and R  so th a t In d g (l, a, /3,7 ) =  Indft(l,u;, 9) =  1.

We may make one additional assumption about the basis <  1, a, /3,y > without 

any harm. By translating a, ft, 7  by appropriate constants in Z, we may arrange for 

the coefficients of a  and /3 in aft, together with the coefficient of a  in 0 7 , to each 

equal zero. We call a basis < l , a ,  £ , 7  > satisfying the latter condition a normal 

basis for R.

Assuming our basis <  1 , 0:,/?, 7  > has been normalized, let us write out the mul-
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tiplication laws for Q explicitly as

a 2 =  ftn + g n o c + f u P + e n 7

P 2 =  h 22 + <722 OC + S2 2 P + 622 7

7 2 =  ft3 3 + <733 a + S3 3 P + e 33 7

ct/3 =  ft 12 + gv io c + f l 2  P + e i2 7

a y =  ftl3 + g u o - + 1x3 P + 6l3 7

P y =  ft23 + g23 OC + f23 P + ^23 7,

where ft#, <7#, /# , e# G Z are constants. The condition th a t the basis <  1, a ,P ,y >  is 

normal is then equivalent to

£12 =  g \ z  =  /1 2  =  0 .

We use Lemma 4.4 as follows. Let x  — r^a  4- r2P 4- r37 , y  =  Sia 4- s2p  4- s3j  be 

general elements of Q, where 77, S{, ti G Z. Then using (4.11), we find th a t

xy  = c + t ta  + t2P 4 -£37,

where c G Z and

£1 =  riS igu  4- n s 2gi2 4- r is 3gi3 4- r2 Sigi2 4- r2 s2g22 4- r 2 s3g23 4- r3 Sigi3

+  r 3 $ 2 g 2 3  +  r 3 s 3^33

£2 =  T i S x / i i  4 - r i S 2 / l 2  + r l S 3 / l 3  + 7 * 2 S i / l 2 + 7*252 /22  + r 2 S 3 / 2 3 + ^ 3 S l / i 3
(4.12)

+  ̂ 3 8 2 /2 3  +  r 3 s 3 f 33

t 3 =  rxSiexi 4- r iS 2e i2 +  r i s 3e i3 +  T2Sxei2 +  7*2S2e22 +  7*253623 +  r3Sxei3 

+  7*3S2e23 +  r3s 3 e33 ,
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so th a t

In d 0 ( l , i , ! / ,a ; t / )  =

1 0 0 0

0 n r3

0 Sl s2 S 3

0 ti 2̂ tz

(4.13)

The right side of (4.13) is a polynomial of degree 4 in the variables r 1? r 2, r 3, s L, s2, 

s3, and we denote it by p ( rL, r 2, r 3, si, s2, s3).

Similarly,

I n d R ( l , ^ 4 , 3 ( ^ ) , ^ 4 , 3 ( y ) )  =

1 0  0 

0 A(t*i, r 2, r 3) B (rx, r 2l r 3) 

0 A (s i,s2, s 3) 5 ( s i , s 2, s 3)

(4.14)

The right side of (4.14) is also a polynomial of degree 4 in the variables rq, r 2, r3, 

Si, s2, s3, and we denote it by q(ri, r 2, r 3, si, s2, s3). (Note that the multiplicative 

structure of R  was not needed for computing the polynomial q.)

By Lemma 4.4, we conclude that for all integers r i , r 2, r 3, si, s2, s3,

p(?'i! ’"2, r 3, s 1, s 2, s 3) =  5 (r1, r 2, r 3, s i , s 2, s3).

As they take equal values a t all integer arguments, the polynomials p  and q must 

in fact be identical. Equating coefficients of like terms yields a system  containing 

numerous linear and quadratic equations in the 15 variables gij, f i j ,  eij in terms of 

the coefficients of the quadratic forms A  and B . Solving (which takes some work!) 

this overdetermined system, we find that, rather miraculously, there is exactly one 

solution for these 15 variables.

The values of g^, f i j ,  eXJ- are given as follows. W riting out the pair (A, B ) of ternary
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quadratic forms (viewed again as symmetric matrices) in the form

f
2a n a i2 o-iz 2&u bi2 biz

\

2 • (A, B ) = a 12 2<222 Q-2Z 1 612 2622 b2Z

\ <213 &2Z 2(233 biz &23 2&33 /

(4.15)

define the 15 constants X^e =  X^e(A, B ) by

Ajj(A, B )  =
dij bij

o-kt bkt
(4.16)

where 1 <  i < j  <  3, 1 <  k < t  <  3, and (1,1) < {i,j)  < (k,£) < (3,3) in the 

lexicographic ordering. Then we find th a t the unique solution to the system p =  q is 

given by

9 n  

f i i

3̂3

—  A 2 3  +  A j g ,  g22 —  A 2 3 ,  gzz —  A 3 3 ,  g12 —

\ 13 _  \ 12 a 22 23; / u  = - A13, fzz

\ l l  , \12 „a 23 - r  a 13, e n A[2, e22

=  A33, /12

=  A ||, e12

0  , <7l3 —  0  , # 2 3  —

0 , f l  3 : •A33, /23

\11 „ 
A22> e 13 A231 e23

\ 2 2  A33 ’

— A12A331

A13a22,

(4.17)

where the h^- are still undetermined. However, it turns out that the associative law 

for Q now uniquely determines the hijl Namely, we use (4.11) and (4.17) to expand 

out the identities

a 2 ■ (3 = a  • a/3, a  ■ (32 = a/3 • (3. a2 ■ 7  =  a  • cry,

a  ■ j 2 = a y  ■ 7 , /32 ■ 7  =  /3 ■ cry, 0 - y2 =  @ 7  • 7 ;
(4.18)

equating coefficients of 1, a, (3,7 , we obtain a system of several linear and quadratic 

equations in the hij. By another miracle, these equations also possess a unique
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solution, namely,

f i l l  = —  A 11 a 22 A 1133 — A 1 5 a 21  + A 11a 13 A 13a 22

h i  2 = A 1122
\  22  

33 — A i l
\  22  

A 23 A 1123
\  22  

23

hzz = __\  11
33

\ 2 2
A 33 — A 1213 A 3 3

h n  =
_\  11

13
\ 2 2
A 23 + A u12

\  22  
33

hi3  =
__\  11

13
\ 2 2

33 + A 11A 12 A H

^ 2 3  =
_\  11

33
\  22  

23
— A 1213

\ 2 2  
33  *

ku  A12'1 2  A 33

(4.19)

Thus we have completely determined the ring structure of Q; it is given in sum 

by (4.11), (4.17), and (4.19).

It is interesting to ask what the discriminant of the resulting quartic ring Q =  

Q (A ,B )  is in terms of the pair of ternary quadratic forms (A ,B ). As an explicit 

calculation shows, the answer is happily th a t Disc(<2(A, B)) =  Disc(A, B ).

Notice that all the structure coefficients of Q are given in terms of the quantities 

Aj^(A, B ), which are SL(2)-invariants of the space of pairs (A, B ) of ternary quadratic 

forms. This should be expected since S L {2) acts only on the basis of the cubic ring 

R  and does not affect Q or the chosen basis of Q. We study the S L ( 2 )~invariants 

A£(A, B ) in more detail in Section 4.2.7.

4 .2 .3  H ow  m uch  o f th e  stru ctu re  o f  R  is d eterm in ed  by (A, B )?

Having found that the structure of Q is uniquely determined from the data (A, 5 ) , 

it may come as little surprise that the cubic ring R  is also determined by (A, B).

We may guess what this ring R  should be as follows. Suppose multiplication in R  

is given by (3.1). We have seen in Chapter 2 that as GL2(Z) acts on the chosen basis 

<  w, 6  > of R / Z, the quantities a, 6, c, d change according to the action of GL2(Z) on 

the binary cubic form g(x ,y ) = ax3 -+- bx2y  +  cxy2 + dy3, where Disc(^) =  Disc(-R).
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On the other hand, as observed in Subsection 4.2.1, changing basis in R / Z results 

also in an action of SL2(Z) on the binary cubic form f ( x , y ) =  4 - Det(Ax — B y) =  

a'x3 + b'x2 y+ cfxy 2 + d'y3 , and again, D isc(/) =  Disc(i2). Hence we expect th a t g  =  / ,  

i.e., a = a1, b =  b', c = d , d =  d’.

To prove the latter assertion, we may simply use the relation

IndQ( l ,x ,x 2,x 3) =  In d * (l, 04,3(x ) ,0 4i3(x)2), (4.20)

since the multiplicative structure of Q  is now in place. Let x  = r xa  +  r2/3 4- r 37  €  Q. 

Then

Indg(l, x, x2, x3) = p ( r i , r 2, r 3)

and

IndR(l, 04,3 0c), 04,3O'?)2) =  <7(r i, r 2, r 3),

where p  and q are determinantal expressions similar to (4.13) and (4.14), but quite 

a bit larger and thus best left suppressed. As before, we argue that the polynomials 

p and q must take the same values for all integer choices of r x,r 2 , r 3, and conse

quently are identical. Equating coefficients of like terms, we obtain several linear 

and quadratic equations in a, b, c, d. Solving these equations for a, b, c, d, we find that 

there is a  unique solution, and it is indeed given by a = a', b =  6', c = c', d = d', i.e.,

4 • Det(.4x — B y) = ax3 +  bx2y -+- cxy2 4- dy3, (4.21)

and we have determined the structure of R .

57

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .



4 .2 .4  Is R  th e  cu b ic  reso lven t o f Q?

It remains only to verify th a t the unique pair (Q, R) of rings we have obtained from 

(A, B ) satisfy the conditions we require of them, namely, tha t R  is a  cubic resolvent 

of Q and th a t (A, B ) describes the map

04,3 : Q /Z  -4- jR /Z.

We have already seen th a t Disc(Q) =  Disc(f2). Hence it suffices just to show that: if 

Rw,x,y,z is the characteristic polynomial of a general element w +  x a  +  y(3 + z j  e  Q 

(acting on Q by m ultiplication), then there exists a constant c £  Z  such that the 

characteristic polynomial C7u,,x,y,z,c of the element c  -I- A (x, y, z)u> +  B { x , y, z)9 £  R  

(acting on R  by multiplication) is the cubic resolvent of FWtX<y,z *

To prove the la tte r assertion, we use (4.11), (4.17) and (4.19) to  determine the 

action of w +  x a  4- y/3 4 - 2 7  on Q explicitly, allowing us to compute Fw>x<ytZ. Similarly, 

we use (3.1) and (3.2) to explicitly compute GWyX̂ yZ<c. These (somewhat lengthy) 

computations then show th a t there is a certain polynomial c, in the entries of A and 

B , such tha t GWiX>yiZiC is the cubic resolvent of FWjXty<z, as desired.

4 .2 .5  T h e m ain  resu lt

We have completed the proof of the following theorem:

T h e o re m  4.5 There is a bijection between the set o f GLz(Z) x GLziT*)-equivalence 

classes o f pairs of integral ternary quadratic forms, and pairs (Q ,R ), where Q is an 

isomorphism class o f quartic ring and R  is a cubic resolvent ring o f Q. Moreover,

this bijection is discriminant-preserving, i.e., Disc ((A, B)) =  Disc(Q) =  Disc(B).
“The cubic resolvent o f a  quartic polynomial F(t)  =  z 4 -h p x 3 +  qx~ +  rx  +  s  is given by the 

expression G(t)  =  x 3 — qx~ +  (pr — 4 s)x  — p2s  4-4qs — r2. If th e  roots of F  are denoted k , k ', k " , k '" , 
then the roots of G  axe k k '  4* k " k '"  , k k "  4- k 'k '" ,  kk!"  -t- k 'k " .
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Notice that in the statement of the theorem we do not say “isomorphism class of 

cubic ring” . This is because, for certain rings Q of discriminant zero, a  cubic ring R  

may arise as a cubic resolvent of Q in more than one way which is not accounted for 

by any automorphism of Q. This phenomenon does not occur for rings of nonzero 

discriminant (e.g., for orders in num ber fields), but in general, when writing a pair 

(Q, R ), R  is implied to be not ju st an isomorphism class of cubic ring, but rather an 

explicit overring of R mv(Q) such th a t Disc(i?) =  Disc(Q).

It may seem slightly disconcerting a t first to see that pairs of integral ternary 

quadratic forms do not precisely parametrize rings, but rather pairs of rings! But the 

situation is still very analogous to the case for cubic rings (Theorem 3.1), for binary 

cubic forms parametrize pairs (R, S ), where R  is a cubic ring and S  is a quadratic 

resolvent. However, since one finds th a t the quadratic resolvent S  is unique for all 

cubic rings R , the parametrization becomes a bijection on cubic rings.

This leads to the question: for which quartic rings Q is the cubic resolvent unique? 

More generally, given a quartic ring Q, how can we determine the number of cubic 

resolvents of Q ? To answer this question, it is necessary to introduce the notion of 

content of a ring, which we discuss in the next section.

4 .2 .6  T he con ten t o f a  ring

In addition to the discriminant, rings of rank k possess another very im portant in

variant which we call the content.

D efinition. 4.6 Let 1Z be a ring o f rank k. The content ct(72.) of 7Z is defined to be 

ct(7Z) =  max{n : 3 7Z of rank k such that 7Z — Z +  n R } ,  

i f  the latter maximum exists; otherwise, the content is said to be co.
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For example, the quadratic ring Z[x]/(x2) of discriminant 0 has content oo, since 

it is equal to Z  +  n S n, where Sn =  Z[xn]/(x 2) and x  = nxn. For other quadratic 

rings, the content coincides with what is usually called the conductor.

The content of a cubic ring R  =  R ( f )  is equal to the content of the corresponding 

binary cubic form /  (in the usual sense, i.e., the greatest common divisor of its 

coefficients). Indeed, the correspondence /  <->• R ( f )  given by (3.1) implies that

R{nf )  =  Z +  n R ( f )

for all n  and / ,  so tha t a ring corresponding to a cubic form of content n  has content 

a t least n , and, conversely, a cubic form corresponding to a cubic ring of content n  

must be a multiple of n.

One finds using the same reasoning and formulas (4.11), (4.17), and (4.19) tha t 

the content of a quartic ring Q =  Q(A, B) is equal to the greatest common divisor 

of the fifteen SX(2)-invariants A^(A, 23). It is thus natural to  define the content 

ct(A, B ) of a pair (A, B) of integral ternary quadratic forms to be the content of the 

corresponding quartic ring, i.e.,

ct(A, B) = ct(<2(A, B )) =  gcd{A&(A, B)}.

Most “nice” rings have content 1. For example, it is easy to see th a t any Gorenstein 

ring 7Z of rank at least 3 must have content 1; for if 7t did not have content 1, then 

there would exist a prime p such that

Ti/(p) =  Fp[xj.,x2, • ..  ,Xk- i ] / (xx,X2 , . . .  ,x k- 1)2,

and the latter is clearly not Gorenstein if k  >  2 . Gross [17] has shown tha t in 

the rank 3 case, the notions of Gorenstein and content 1 actually coincide. This,
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however, does not hold true for higher rank, as the non-Gorenstein content 1 ring 

Z  © Z[x, y \!(x2, x y , y2) illustrates.

Like the discriminant, the content gives im portant structural information about 

a  ring of rank k. Our motivation for introducing the content arises from its close 

relation to  resolvent rings. In the case of cubic rings, the notion of content is exactly 

w hat is needed to answer the question posed at the end of Section 3.3: when is the 

quadratic invariant ring of a  cubic ring equal to  its quadratic resolvent ring?

T h e o re m  4 .7  Let R  be a cubic ring, and let S mv(R ) denote the quadratic invariant 

ring o f R  and S  the quadratic resolvent ring o f R . Then S 1TiV(R) = S  i f  and only i f  

R  has content 1.

Proof: We observe th a t, by definition, the quadratic invariant ring S tnv(R ) is the 

smallest ring containing the image of the m apping <f>3j2 : -££—>- S', and any subring of S  

} takes the form Z + rS ,  for some nonnegative integer r . In the case of S inv(R) C  S, this 

num ber is simply the smallest nonnegative integer r  such th a t 0 3]2 (re) is a m ultiple of 

r  in S /Z  for all x  E R / Z.

However, <£3>2 is given by a binary cubic form, and the greatest common divisor of 

the  values taken by a cubic form is given simply by the greatest co m m on divisor of 

its coefficients. Therefore, we have r  =  1 if and only if some (any) binary cubic form 

: corresponding to R  is primitive. On the other hand, we have seen that /  is primitive 

if and only if R  has content 1 . This is the desired conclusion. □

The analogue of Theorem 4.7 also remains true for quartic rings: the cubic in

variant ring R lTlv(Q) of a  quartic ring Q forms the unique cubic resolvent ring if and 

only if ct(Q) =  1. To prove this statem ent, and its generalizations, it is necessary 

to  better understand the 5'L(2)-related invariant theory of pairs of ternary quadratic 

forms. This is carried out in the next section.
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4 .2 .7  Invariant th eo ry  o f  pairs o f tern ary  q u ad ratic  form s II

We observed in Section 4.1 tha t the SX3(C)-invariants on the space V  =  C2® Sym2C3 

of pairs (A, B )  of ternary quadratic forms are given by the four coefficients of the 

binary cubic form f ( x , y )  =  4 ■ Det (Ax  — By)  = ax3 bx2y  -f- cxy 2 + dyz. Moreover, 

the unique SL {2) x  S L {3) invariant on V  is given simply by Disc(A, B) =  Disc(4 • 

Det (Ax — By)) .

In this section, we examine more closely the S L 2 (C)-invariants on V,  as these are 

precisely the quantities th a t determine the structure of the quartic rings corresponding 

to points in V . If we write out again the element (A, B)  G V  as

(4.22)

/ 2 u u a i 2 “ 13 2 6 u bi2 ^13
\

2 • (A, B)  = a i 2 2 a 22 “ 23 1 b\2 2622 ^23

V &13 0-23 2  “ 33 bu 623 2633 J

then we observed earlier tha t the -invariants are given by

AU A ,  B)  =
&ij bij

“w bki
(4.23)

where 1 <  i < j  < 3, 1 <  k  < t  < 3, and (1,1) <  (i, j )  < (k, t )  < (3,3) in the 

lexicographic ordering. This yields a to tal of 15 invariants. However, unlike the case 

of the four SX(3)-invariants a ,b ,c ,d , these 15 SL(2)-invariants are not independent, 

but are related by the fifteen syzygies

X t M ,  B )  A«,(A B )  =  A f ( A ,  B)  A “  (A, B) + A± ( A ,  B)  A %(A, B ), (4.24)

where (1,1) <  (g, h) < (i , j ) <  (k, £) < (m , n ) <  (3,3), again in the lexicographic 

ordering.*
^These fifteen syzygies axe also not independent, but this does not matter for our purposes.
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Conversely, given any set of 15 constants {A^} satisfying the fifteen relations 

(4.24), there is always an SX2((C)-orbit in V  possessing these 15 constants as the 

S L ( 2 )-invariants. In fact, something stronger is true; namely, if these 15 constants 

A& are actually integers, then there exists an integer point in V  possessing these 

15 constants as the S L { 2 )-invariants. We state  this more precisely in the following 

lemma.

L em m a  4.8 For any 15 constants A^ E C satisfying the relations (4.24), there exists 

an irreducible SX2(C)-orbit W  C V  such that

f or aU * ^  k  ^  ^  ^)-

I f  the 15 constants X^e are not all equal to zero, then W  is uniquely determined, and 

i f  furthermore all the X^e are integers, then the variety W  contains an integer point 

( A , B ) e V z .

P ro o f: It is easy to see tha t all invariants A^(A. B)  are equal to zero if and only if 

{A, B } spans a zero or one-dimensional space in V.  There are of course (infinitely) 

many such points (A, B) ,  both in V /G  as well as in Vz/G z-

We therefore proceed to the case where not all invariants are zero; without loss 

of generality, we may assume A[2 A  0. Applying the appropriate transformation in 

SX2(<C), we m ay assume then that a u  =  1, &u =  and &L2 =  A}2 ^  0 .

W ith these assumptions, the definition (4.23) of A^ for (i, j )  =  (1,1) and (1, 2) 

immediately imply tha t bkt =  A£J for all k , f, and tha t aki =  A ^ /612 for all (k, t) ^  

(1,1). Six of the equations in (4.23) remain unused, but they, when expanded out, 

turn  out to be equivalent to the six of the syzygies in (4.24). Therefore, if the 15 

invariants X)?e are fixed, not all zero, and satisfy the syzygies (4.24), then there is a 

unique solution for (A , B ) of the above type, and so a unique 5 T 2(C)-orbit W  having 

the prescribed set of invariants.
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Assume now th a t the 15 constants are also integral. Then, by the above 

discussion, the quantities b{j  = Ajj are themselves forced to be integers, while the 

quantities a^- =  A \j/b X2 are all integer multiples of 1/&12- Consider the pair of integral 

forms (&12A., B ) e  Vz, whose A-invariants are all multiples of 612- By the theory of 

elementary divisors, there exists an S L 2 (h ) -transform ation (A!, B ') of (612A, B) such 

th a t A' is a multiple of n x and B ’ is a  multiple of n2, where n x, n 2 are integers such 

th a t n xn 2 =  n. It follows tha t (A '/ n x, B '/ n 2) 6  Vz is S L 2 (Q)-equivalent to (A ,B ), 

and is therefore an integer point of W . □

Lemma 4.8 implies that if the A^’s are integers satisfying (4.24), then there exists 

a t least one G z-orbit on Vz having those integers as the ST(2)-invariants. The next 

lemma strengthens this, by giving the exact number of Gz-orbits on Vz having a 

prescribed set of (integral) S L (2)-invariants.

Lemma 4.9 Let A  ̂E h  be any 15 integers satisfying the relations (4.24). Then the 

number o f Gz-orbits W% in Vz such that

f ° r i <  h  k < £, ( i , j )  < (k, £)

is equal to the number of index n sublattices o f Z 2, where

n =  gcd{A& : ( i , j )  < (k, £)}.

Proof: The lemma is true when all the 5'L(2)-invariants A  ̂are zero (i.e., n = 0 0 ), 

so we assume the integers Aj  ̂ are not all equal to zero.

Clearly, the set of integers {A ^/n} also satisfy the syzygies (4.24); hence, by 

Lemma 4.8, there is exactly one 5X2(<C)-orbit W  in V  having {Aj^/n} as the SL{2)- 

invariants, and W  contains an integral point (A, B).  Let X  C Sym2<C3 denote the 

two-dimensional C-vector space of ternary  quadratic forms spanned by A and B
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(equivalently, X  is the vector space spanned by A0, B q for any point (A0, B 0) E W) ,  

and let X z  denote the (unique) maximal lattice in X  consisting of integral ternary 

quadratic forms. Since gcd{A^(A, B ) }  =  1, it m ust be that A , B  span a maximal 

integral lattice in X , so A, B  actually form a Z-basis for Xz-  

Define Wz  by

W z  =  {(A, B)  : {A, B } spans X z  as a Z-module}.

Then W% C W ,  Wz  forms a single SX2(Z)-orbit, and any integral point (A , B ) E W  

must lie in Wz- Hence Wz is the unique SL 2(Z)-orbit in Vz  having Â e/n  as the 

S L (2 )-invariants.

Similarly, if W% is an 5X2(Z)-orbit Vz having S T (2)-invariants A^, then for any 

(A', B ')  E W%, A, B  span a lattice L  in X z , and we may define W% by

W% — {(A, B) : {A, B }  spans L  as a Z-module}. (4.25)

Moreover, gcd{A}J£(A, B )}  = n  implies th a t this sublattice L  has index n  in Xz- Con

versely, given any index n  sublattice L  of X z ,  let W% be defined by (4.25). Then W% 

is an S T 2(Z)-orbit with the desired invariants. Thus the SL 2(Z)-orbits in Vz having 

S L (2 )-invariants Xge are in one-to-one correspondence with the index n  sublattices of 

X z  — Z 2. This implies the lemma. □

4 .2 .8  Iso la tin g  Q

Given a quartic ring Q, and given the structure coefficients of Q with respect to a 

norm al basis <  1, a , /?, 7  > of Q, the relations (4.17) and (4.19) completely determine 

the values of the 15 constants A^. Indeed, only the coefficients of a, and 7  in 

(4.17) are needed in order to determine the values of The associative law in Q
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then does two things. First, as we have observed earlier, it implies th a t the values of 

the constant coefficients hij must then be as given in (4.19). Second, it implies tha t 

the syzygies (4.24) must hold among the A^. By Lemma 4.8, it follows that there 

exists an integer orbit x  6  Vz/G% such th a t Q{x) =  Q and Disc(Q(x)) =  Disc(rr). 

Combined with Theorem 4.5, we have shown:

Theorem 4.10 The map x  —> Q(x) is a discriminant-preserving surjection from  

the set V x/G z onto the set o f isomorphism classes of quartic rings. The number of 

preimages in V z /G z of a given quartic ring Q is equal to the number of index ct(Q) 

sublattices o f I f1.

Corollary 4.11 Every quartic ring has at least one cubic resolvent.

Corollary 4.12 The cubic resolvent ring of a quartic ring Q is unique i f  and only if  

the quartic ring has content 1 ; in that case, the cubic resolvent ring R  is equal to the 

cubic invariant ring R lnv(Q).

Thus Theorem 4.10 shows th a t the map x  —> Q {x) is a genuine bijection on quartic 

rings having content 1 (and hence on all Gorenstein rings).

An im portant class of rings on which Theorem 4.10 gives a bijective correspon

dence are the maximal orders in quartic number fields. These, of course, are the 

quartic rings of greatest interest to algebraic number theorists. It may therefore be 

desirable to understand those pairs (A , B) of integral ternary' quadratic forms tha t 

correspond to maximal orders in quartic fields, and to understand the splitting be

havior of primes in those fields in terms of the corresponding pairs (A ,B ). This is 

the goal of the next two sections.

4 .2 .9  L ocal behaviour

In this section, we consider pairs (A, B) of ternary  quadratic forms over the p-adic 

ring Z p and over its residue field Z /pZ .
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Let (A, B) be an element of Vz (resp. of Vzp, Vpp). Over the residue field Fp, (A, B) 

determines two conics on P |  , which, aside from certain degenerate cases, intersectk p
each other in exactly four points (counting multiplicities). For such nondegenerate 

pairs (A, B ), define the symbol ((A, B) , p)  by putting

( ( A B ) , p ) =  (A “

where the /,-’s indicate the degrees of the residue fields at the points of intersection, 

and the e / s  indicate the respective multiplicities. There are thus eleven possible 

values for the symbol ((A, B) ,p) ,  namely, (1111), (112), (13), (4), (22), (1211), (122), 

(131), ( l4), (1212), and (22). (As is customary, we suppress exponents that are equal 

to one.)

It is clear that if two points x , y  in Vz  (resp. V'2p, Vfp), are equivalent under 

a transformation in GL2(Z) (resp. GL2(ZP), G.L2(FP)), then (x,p)  =  (y,p)- By 

T p ( ll l l) ,T p(112), etc., denote the set of x  such th a t (x , p ) =  (1111), (x , p ) =  (112), 

etc.

By the definition of Q{A,  B ), the ring structure of the quotient ring Q(A, B)/{p)  

depends only on the GL2(Fp)-orbit of the pair (A, B)  modulo p: thus the symbol 

((A , B ) , p ) should indicate something about the structure of the ring Q( A, B)  when 

reduced modulo p. In fact, a direct calculation shows that

(A, £ )  e  T p t/f1/ ! 2 • • •) (4.26)

if and only if

Q(A,  B) / (p)  2* Fpa  [ i , ] / ( t f )  ® F [ t 2]/(f!! ) ® • • • , (4.27)

except in the case Tp( l4), where the ring Q{A,B) / {p)  might also take the form
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Fp[x, y]/(rr2, y2). It is hence natural to divide Tp ( l4) into two further sets: Tp^ ( l4), 

consisting of the pairs (A, B ) such that Q(A,  B ) / ( p )  =  Fp[£]/(£4), and Tp2 \ l 4), con

sisting of the  pairs (A, B ) such tha t Q(A,  B ) /(p ) =  Fp [x, y] / (x 2, y2).

For any set S  in V% (resp. Vzp, Vpp) th a t is definable by congruence conditions, 

denote by fJ-(S) — f^p(S)  the p-adic density of S  in Vzp, where we normalize the 

additive measure n  on V  so tha t fJ.{Vzp) =  1. T he following lemma determines the 

p-adic densities of the sets Tp(-).

L e m m a  4 .13  We have

= £ ( P “ )4 p4 (p 4- l )2 (p2 + p  +  1) /  p 12

/*(r,( n 2 )) = } ( P - )4 p4 (p -+-1)2 (p2 -F p 4-1) / p12

/*(T,(13)) = j ( P ~ )4 p4 (p 4- l )2 (p2 + p  +  l ) / p 12

»(TP(22)) = i ( p - )4 P4 (P 4- I )2 (p2 +  p 4- 1) / p12

4)) = ? (p - )4 P4 (P 4 - 1)2 (p2 4- p 4- 1) /  p12

/‘ (Tp( l 2l l ) ) = i ( p - )3 P4 (P 4- l )2 (p2 4- p 4- 1) /  p12

v(TP(122 )) = i ( p - )3 p4 (p 4- l )2 (p2 4- p 4- I) /  p12

M T A 1212)) = i ( p - )2 p4 (p 4- l )2 (p2 +  p  4-1) / p 12

M( r p(22)) = i ( p - )3 p4 (p +  l)  (p2 + p + l ) / p l 2

M(rP( i 3i)) = ( p - )3 p3 (p +  l )2 (p2 4- p 4- 1) /  p12

(X4)) = (p - )3 p2 (p 4- l )2 (p2 4- p 4- 1) / p12

= ( p - )2 P3 (P 4- 1) (p2 + p  +  l ) / p 12

P ro o f: Since the criteria for membership of (A, B ) in a Tp(-) depend only the residue 

class of (A, B)  modulo p, it suffices to consider the  situation over Fp.

We examine first p(Tp( l l l l ) ) .  An elementary count shows that the number of 

unordered quadruples of points in P | , such th a t  no three are collinear, is ^-(p2 + p  +  

I)(p2 + p )(p 2)(p2 — 2p +  1). Furthermore, given such a quadruple of points, there is a 

two-dimensional family of conics passing through those four points; th a t is, there are

68

R e p r o d u c e d  with p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .



(p 2 — 1 ){jp2 — p) ordered pairs (A, B) of ternary  quadratic forms over Fp having those 

four points as common zeros. Since the to ta l number of pairs of ternary quadratic 

forms over Fp is p 12, it follows that

p ( r p( l l l l ) )  =  ^  [(p2 + p  +  l)(p2 + p )(p 2)(p2 - 2 p  +  l ) 4] - [(p2 -  l)(p2 - p ) ]  / p 12,

as given by the lemma.

The other parts may be handled similarly. □

It can be seen by a direct calculation th a t a pair (A, B ) has nonzero discriminant 

modulo p if and only if it is in Tp( l l l l ) ,  Tp(112), Tp(13), Tp(4), or Tp(22) (i.e., if and 

only if (A, B) intersect in four distinct points as conics over Fp).

4 .2 .1 0  M axim al q u artic  rings

A quartic ring having nonzero discriminant is said to be maximal if it is not a subring 

of any other quartic ring. In this section, we determine necessary and sufficient 

conditions on (A, B ) €  Vz for Q(A,  B)  to be a maximal quartic ring.

By the theory of algebraic numbers, a maximal ring R  of nonzero discriminant 

is a direct sum of Dedekind domains. In particular, a prime p factorizes uniquely in 

Q  as a product of prime ideals of Q. If p — P ^ P ^ 2 • • ■ is the factorization of p into 

prime ideals of Q(A,  B),  where Q /Pi =  Fp/ i , define the symbol {Q,p)  by setting

(Q,p) =  ( / r / i 2 ---)-

Suppose now (A, B)  e  Vz is such that Q ( A , B)  is maximal. If (Q,p) =  (f i l fo2 • • • )• 

then clearly

Q(A,  B ) / ( p ) =  FpA ) ® Fp/! [t2] / ( t? )  ® • • • ,
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so that by (4.26), (A , B ) 6  Tp( f l l f%* * • • )• Therefore, if the ring Q( A , B ) is maximal 

for an element (A , B ) €  Vz, then (A , B ) is contained in one of the Tp(-)’s as defined 

in the previous section, and

( (A, B) , p)  = (Q(A,B) ,p) .

Now a quartic ring Q is maximal if and only if the Zp-algebra Qp = Q ® Zp 

is maximal for every p, in the sense tha t Qp is not contained in any other quar

tic Zp-algebra over Zp. As a quartic ring Q with discriminant prime to p is nec

essarily maximal at p, Q ( A , B)  is automatically maximal a t p for any (A, B ) in 

r p( l l l l ) , r p(112),Tp(1 3 ),rp(4), o rT p(22).

In order to understand the other Tp(-)’s with regard to maximality, we require the 

following lemma.

L em m a  4 .14  I f  Q is not a maximal ring at p, then there exists a "L-basis 1, a, /3,7 

o f Q. such that at least one o f the following is true:

• Z +  Z • (a/p)  +  Z • (3 +  Z • 7  form s a ring

• Z Z - (a/p)  +  Z - (P/p) +  Z - 7  forms a ring

•  Z +  Z • (a/p)  -I- Z  • (P/p)  4- Z - (7 /p) forms a ring.

P ro o f: Let Q' be a maximal ring at p containing Q , and let Q\ =  Q" C\QP. Then the 

ring Qi also strictly contains Q, and moreover, the index of Q in Qi is a power of p. 

By the theory of elementary divisors, there exist nonnegative integers i > j  > k and 

a basis <  a , P, 7  > of Q such tha t

Q i = Z  +  Z ( a / f )  +  Z(/3 fr?) +  Z (7 /p*). (4.28)

If i  = 1, then we are done. Hence we assume i > 1.
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Suppose the multiplicative s tru c tu re  of Q with respect to the basis <  a , 0 , 7  >  

is given by (4.11). T hat the right sside of (4.28) is a ring then translates into the 

following congruence conditions on tlhe structure coefficients:*

(4.29)

g u  =  0 (mod p1), / u  =  0 (mod p2i~j ), en  = 0 (mod p2i~k),

P22 =  0 (mod p2-7-1), f n =  0 (m odp7), e22 =  0 (mod p2j~k) ,

gzz =  0 (mod p2k~l), / 33 =  0 (mod p2k~j ), e33 =  0 (mod pk),

gi2 =  0 (mod p7), /12 =  0 (mod p*), e i2 =  0 (mod pi+j~k),

gi3 =  0 (mod pk), / 13 =  0 (mod pi+k~j ), e13 =  0 (mod p{),

P23 =  0 (mod p7’4"*-1'), /23 =  0 (mod pk), e23 =  0 (mod p7),

If j  =  k  =  0, then a quick check showrs tha t replacing ( i,j, k) by (i — l , j ,  A:) m aintains 

the tru th  of the above congruences, and so Q' as defined by (4.28) remains a ring. 

Similarly, if k =  0 and j  >  0, then w*e may replace ( i ,j, k ) by (i — 1, j  — 1, k), and if

A; >  0, then we may replace {i,j, k ) b j-  (£ — 1, j  — 1, k  — 1). Thus by a finite sequence

of such moves we arrive a t i =  1, the desired conclusion. □

For an (A ,B ) €  Vz, using the mmltiplication laws of Q (A ,B ) as given in (4.11) 

the conditions itemized above tra n s la te  into the following conditions respectively on 

the A-invariants of (.4, B):

•  ^22> ^ 23> ^ 33> ^ i3> aELd ^i2i ML aEre multiples of p2

•  ^ i3> ^23> ^ i3> ^ 23> ^22> ^23 are multiples of p, and A^, A^, A^| are multiples of

p2

•  all the A^’s are multiples of p

Recall that the third condition is equivalent to A, B  spanning a rank zero or one 

space over Fp.
HVe follow here the convention that, for e <  0, we have a =  0 (mod p e) for any integer a.
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Assume now th a t A, B  span a two-dimensional space of conics over Fp. Then 

condition (i) occurs if and only if a n  =  6U =  0 (mod p) and the vector (a n /p , ai2, ai3) 

is a multiple of (bn /p , &i2, 613) modulo p. By a transform ation in G L2(Z), we may 

then assume in sum that

a n  =  612 =  613 =  0 (mod p), and 6U =  0 (mod p2). (4.30)

T hen we see th a t (1 ,0 ,0) is a double intersection point when A, B  are viewed as two 

conics in P |  . It follows that (A ,B ) must be in TP(1211),Tp( l22), TP(131), Tp^ ( l 4), or 

TP(1212).

On the other hand, any element (A, B) of TP(1211), Tp( l22 ), TP(131), Tpl\ l 4), or 

TP(1212) can be brought into the form

flu =  bx2 = b  13 =  0 (mod p), and &n =  0 (mod p)

by sending a double point of intersection of (A, B ) in P |  to (1, 0 ,0), via an element of 

S L 3 (Z), and then using an GL2(Z) transformation to insure th a t B  becomes a double 

line through (1 ,0,0) modulo p. Of all (A, B) in TP(1211), Tp( l22), TP(131), Tp^ ( l4), or 

TP(1212) rendered in such a form, a proportion of 1/p actually satisfy (4.30). There

fore, if we denote by Up(-) C Vz the elements of Tp(-) which correspond to rings 

maximal a t p, then p(17p( l2l l) )  =  ^ ^ ^ ( ^ ( l 2!!)).

One proceeds similarly with T ^ l 2! 2) and Tp(22).

We have proven the following.
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L e m m a  4 .15 We have

# ( 1111]) = (P - )4 P4 (P +  l )2 (p2 +  p H- 1

n(U„(112)) = (P “ )4 p4 (p + l )2 (p2 +  p H- 1

H(U„( 13)) = (P - )4 p4 (p H- I )2 (p2 H-p +  1

ft(Up{2 2 )) = (P “ )4 p4 (p H_ 1)2 (p2 H- p -F 1

M W ) = ( P - )4 P4 (P +  I )2 (p2 4- p H- 1

#*(£/,( 1211)) = ( P - )4 p3 (p +  l )2 (p2 H- p +  1

2)) = ( P - )4 p3 (p +  l )2 (p2 +  p H- 1

^(£/p( l 2l 2)) = ( P - )4 P2 (P +  I )2 (p2 + p H- 1

^(£/p(22)) = (P - )4 p2 (p +  l )2 (P2 + P H" 1

Ai(C/p( l3 l)) = (P - )4 p2 (p +  I )2 (p2 +  p H- 1

m(£/p( i 4)) = ( P - )4 p (p + l )2 (p2 +  p H- 1

/24

/4

/3

/8

/4

/2

/2

/2

/2

Let denote the union of the eleven Up(-)'s in Vz- Then Lemma 4.15 implies 

th a t

/j.(Up) =  (p -  l )4 p (pH- l )2 (p2 H-pH- l)(p3 H-p2 +  2p +  1). (4.31)

Regarding maximality, we have shown:

T h e o re m  4.16 Let (A, B) E Vz- Then Q (A ,B ) is a maximal ring if  and only if  

(A, B ) E Up fo r  all primes p.
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Chapter 5 

The density of discriminants of 

quartic rings and fields

The primary purpose of this chapter is to prove the following theorem.

T h eo re m  5.1 Let denote the number of totally real S 4 -quartic fields K  such

that £ <  Disc(ii') <  rj. Then

^4(0, .AT) 1 1 r , _ 2 _3 —4\
2 - p  3 - p  *>■

p

Three further results are obtained as by-products. F irst, our methods enable us 

to count all orders in S^-quartic fields.

T h eo rem  5.2 Let denote the number of quartic orders O contained in to

tally real S^-quartic fields such that <f <  Disc(C>) <  rj. Then

M ,( 0 , X )  C(2)2C(3) 
x-SL X  48C(5) ’

Second, the proof of Theorem 5.1 involves a determ ination of the densities of 

various splitting types of primes in S4-quartic fields. If K  is an ^ -q u artic  field and
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K 2A denotes the Galois closure of K ,  then the A rtin  symbol {K^f-p) is defined as 

a conjugacy class in S4 , its values being (e), ((12)), ((123)), ((1234)), or ((12)(34)), 

where (x ) denotes the conjugacy class of x  in 54 . It follows from the Cebotarev 

density theorem that for fixed K  and varying p (unramified in K ),  the values (e), 

((12)), ((123)), ((1234)), and ((12)(34)) occur with relative frequency 1 :6 : 8 : 6 :3. 

We prove the following complement to Cebatorev density:

T h e o re m  5.3 Let p be a fixed prime, and let K  run through the totally real quartic 

fields in which p does not ramify, the fields being ordered by the size of the discrimi

nants. Then the Artin symbol (K -^/p) takes the values (e), ((12)), ((123)), ((1234)), 

and ((12)(34)) with relative frequency 1 :6 :8 :6 :3 .

Actually, we do a little more: we determine for each prime p the density of quartic 

fields K  in which p  has the various possible ramification types.

Lastly, using the duality between quartic fields and 2-class groups of cubic fields, 

we obtain the mean value of the size of the 2-class group of totally real cubic fields. 

More precisely, we prove

T h e o re m  5 .4  For a totally real cubic field F , let h^iF)  denote the size of the 2-class 

group o f F . Then

lim =  5 /4 , (5.1)
X-+00 1

where the sums range over all totally real cubic fields F  of discriminant less than X .

It is natural to compare the value 5 /4  obtained in our theorem with the corresponding 

value predicted by the Cohen-M artinet heuristics (the analogues of the  Cohen-Lenstra 

heuristics for noncyclic, higher degree fields). There has been much recent skepticism 

surrounding these heuristics (even by Cohen-M artinet themselves; see [7]), since at
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the prime p =  2 they do not seem to agree w ith current com putational data*. In light 

of this situation, it is interesting to note th a t our Theorem 5.4 agrees exactly with the 

(original) prediction of the Cohen-Martinet heuristics [6]. In particular, Theorem 5.4 

is a strong indication that, in the language of [6], the prime p =  2 is indeed “good” , 

and the fact th a t Theorem 5.4 does not agree well w ith existing computations is due 

only to the extremely slow convergence of the lim it (5.1).

The cubic analogues of Theorems 5.1, 5.3, and 5.4 for cubic fields were obtained 

in the well-known work of Davenport-Heilbronn [11]. Their m ethods relied heavily 

on the remarkable discriminant-preserving correspondence between cubic orders and 

equivalence classes of integral binary cubic forms, established by Delone-Faddeev [12]. 

It seems, however, th a t Davenport-Heilbronn were not aware of the work in [12], and 

derived the same correspondence for maximal orders independently; had they known 

the general form of the Delone-Faddeev param etrization, it would have been possible 

for them  (using again the results of Davenport [10]) simply to read off also the cubic 

analogue of Theorem 5.2.*

The key ingredient tha t allows us to extend the  la tte r results to the quartic case is 

a param etrization of quartic orders by means of two integral ternary quadratic forms, 

which we established in Chapter 4. The proofs of Theorems 5.1-5.4 thus reduce to 

counting integer points in certain fundam ental regions. We carry out this counting 

in a m anner sim ilar to tha t of Davenport [10], although our case is a good deal more

involved since the  dimension is now 12 instead of 4. The necessary point-counting is
'A  computation, of all cubic fields of discriminant less than 100000 ([14]) shows that 

(Eo<DiSC(F)<100000 ft2 ( F ) ) / ( £ o < D i s C(F )< iooooo 1) equals about 1.08, a  good deal less than 5/4!
*We note the result here, since it seems not to have been stated previously in the literature.

Let Mz(£,rf) denote the number of cubic orders O  such that f  <  Disc(O) <  77. Then

^  ^ M  = lrVl08>
X-+00 X

t o  ^ w u jV 12.
X ~ ¥ Q O  X
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accomplished in Section 5.1, and forms the bulk of this chapter. This counting result, 

together with the results of Chapter 4, immediately yields the asymptotic density of 

discriminants of pairs (Q, R), where Q is an order in a totally real SVquartic field and 

R  is a cubic resolvent of Q. Obtaining Theorems 5.1—5.4 from this general density 

result then requires a simple sieve which we carry out in Section 2.

We remark that the analogous counting results for mixed and totally complex 

quartic fields should be obtainable by similar techniques. For the purposes of this 

chapter, though, we concentrate on the totally real case.

5.1 On the class numbers of pairs of ternary quadratic 

forms

Say a pair (A, B) of integral ternary quadratic forms is absolutely irreducible if

•  A and B  do not have a common zero in P2(Q)); and

•  the binary cubic form f ( x , y )  =  Det(A:r — By)  is irreducible over Q.

We write pairs (A, B) of ternary quadratic forms as pairs of 3 x 3 symmetric matrices 

as follows:

f 2a n  a i2  a i3 2 b u  b  12 b i z
\

2 - (A,B)  = a i2  2a?2 <223 1 b  12 2622 2̂3

\ a 13 a 23  2a33 b  13 623 2 &33 /

Thus a  pair (A, B)  is integral if, in this m atrix representation, A and B  have integer 

diagonal entries and half-integer off-diagonal entries.

The group G =  GL2(Z) x SLz{Z) acts naturally on the space V  of pairs of ternary 

quadratic forms, and preserves the integral elements Vz- The aim of this section is 

to count the number of G-equivalence classes of pairs (A, B ) € Vz having absolute
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discriminant at most X .  At the moment, we restrict ourselves to counting only the 

totally real elements (A, B ) £ Vz, where (A, B ) is said to be totally real if it possesses 

four zeros in P2(R). Specifically, we prove the following theorem.

Theorem 5.5 Let N (£, 77; Vz) denote the number o f G-equivalence classes o f abso

lutely irreducible, totally real elements (A, B ) £  Vz satisfying £ <  Disc(A, B ) < rj. 

Then

jV(0,A;Vfc) C(2)2C(3)hm -------—-------= ------ —----- .x-*oo X  48

Notation. We use e to denote any positive real number. Thus we say “/ (A )  =  

0 ( X l+£)" if f ( X )  = 0 { X l+e) for any e >  0.

5.1 .1  R ed u ctio n  th eo ry

Let Vr denote the space of pairs of ternary quadratic forms over the reals.

We say an element (A, B ) of positive discriminant in Vr is G L 2 (Z)~reduced if the 

binary cubic covariant

f ( x ,  y) =  Det(Ax — By)  = ax3 +  bx2y  +  cxy 2 4- dy3

is GL2(Z)-reduced in the sense of Hermite, i.e., if

\bc — 9ad\ < b2 — 3ac < c2 — 3bd. (5-3)

Next, given a pair (A, B) £  Vz, let Q =  Q(A,  B)  be the corresponding quartic 

ring, and let Q denote the ternary quadratic form Tr(ar) on Q restricted to the 

hyperplane Tr(:r) =  0. Then Q is an SL 3(Z)-covariant of (A, B) ,  and is a  positive 

definite ternary quadratic form for all totally real (A, B ). Call a  totally real element
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( A ,B )  in V r  S L 3 (Z)-reduced if this quadratic covariant Q =  (qij) is 5X 3(Z)-reduced 

in the sense of Minkowskii (see, e.g., Cassels [2]), i.e.,

0 <  9u <  922 <  933?

I9 1 2 I <  9 u ,  |9 i31 <  9 u >  I9 2 3 ! <  922 

|9 l2  ± 9 1 3  ±  9231 <  922-

(5.4)

(The coefficients of the form Q =  (qij) are given in the Appendix.)

We say a totally real element (A, B)  in V r  is G-reduced (or simply reduced) if it is 

both  GL2(Z)-reduced and SX3 (Z)-reduced. Let T  denote the region in V r  consisting 

of totally  real reduced elements (A , B), and let T x  denote the subset of T x  consisting 

of those elements having discriminant less than  X .  Finally, let JFX(Z) denote the set 

of integer points in T x -  Our task is to understand the number of points in Tx (Z) .

We  note th a t T x  is contained in the image of a standard Siegel set, i.e.,

T x  C XT* • N ' A  K v

for some fixed v €  Vr; here

K  =  {orthogonal transformations in G r } ;

A! =  (a (s ,t)  : 0 <  js^ <  c |s 2|, 0 <  j£i| <  c|£2| <  c |t3|},

where a(s, t) =

(

\

si
So

N'  = (n(u) : |u |, \u2\, |u3| <  c},
(

f l u
where n(u) =

\

f

V 

/

V

to

(5.5)

C |* 3 }> (5.6)

>
; (5-7)

i s  J )
(5.8)

Uo  ^ \

U3 (5.9)

1 J /

and c is an absolute constant.
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5.1.2 Som e fu rth er  n o ta tio n

Let Ri (y , z ) ,  R2(x,z),  R3(x.y)  denote the resultants of the two quadratic forms 

A(x,  y, z) and B { x , y , z ) with respect to the variables x , y , z  respectively. (The R f  s 

are thus binary quartic forms.)

Next, denote by Ai 2 (x, y), Ai3(2;, z), A23(y, z) the binary quadratic forms obtained 

from A(x, y, z) by setting 2 , y, x  equal to zero respectively. Define £ 12(2:, y), £13 (r, z), 

and £ 23(2/7-2) analogously.

Associate with these pairs (Ai2, £ i 2), (A13, £ i 3), (A23, B 23) of binary quadratic 

forms their discriminant invariants D\2, D 13, D23 as defined in Chapter 2. Equiva

lently, Dij  is the resultant of the binary forms Aij(x,y)  and B{j(x, y) with respect 

to y, divided by xA. The discriminants are forms of degree four in the entries of 

(A, £ ) .  We note also that D i2 is the coefficient of x4 in R2(x, z) and of y4 in R\{y, z), 

with the analogous interpretations for £ 13 and D23.

5.1.3 P relim in ary  e stim a tes

We begin with some estim ates th a t must be satisfied by the coefficients of any reduced 

element (A, £ )  6  V r .

Lem m a 5.6 Let (A, £ )  E T x  have entries given by (-5.2), and let S  be a multiset 

consisting solely of elements o f the form aij or bij. Let m  denote the number of 

a ’s which occur in S , and let n  = \S\ — m  denote the number of b ’s; let i, j, and 

k = 2\S\  — i — j  denote the number of indices in S  equal to 1 , 2 , and 3 respectively. 

I f  m > n ,  2i > j  +  k, and i + j  > k, then

J J s  =  0 (W|5|/12).
ses

P roo f: As noted in Subsection 5.1.1, T x  C • N 'A 'K v  for some fixed vector 

v E V r , where N ' and A! are as in (5.5) .  Given S  as in the lemma, it is clear that
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the value of /  =  fJses s *s bounded on K v , since K  is compact. Next, the values of 

/  on A 'K v  are simply sfs^tXt^t^  times the values of /  on K v. If m  > n. 2i > j  + k , 

and i + j  > k, then it is clear that is absolutely bounded, and hence the

values of /  on A 'K v  are also bounded. Finally, N ' is compact, and it acts by upper 

triangular transformations; thus /  also takes bounded values on N 'A 'K v , and so 

the values of /  on • N 'A 'K v  are at most 0{X^S^ 12) in size. This is the desired 

conclusion. □

Lemma 5.6 gives those inequalities which follow immediately from the fact that 

T  is contained in a Siegel set. When we wish to use the inequalites (5.3) and (5.4) 

more precisely, the following two lemmas will be useful. The first of these is due to 

Davenport [9]. Given a region 7 J c R n , let Vol(7£) denote its Euclidean volume.

L em m a 5.7  The number o f integer points in a compact region TL C Rn enclosed by 

a bounded number of algebraic surfaces o f bounded degree is

Vol (11) + 0(max{Vol(7l), 1}),

where Vol(7?.) denotes the maximum of the volumes of the projections of 7Z onto 

smaller-dimensional coordinate hyperplanes.

The second lemma states that in controlling certain one-variable inequalities, it suf

fices to consider only the leading term.

L em m a 5.8 Let P(x)  be a polynomial of degree n over K. in one variable, with leading 

term coxn. Let X  be any large real number. Then there exists a subset [ / C I ,  

consisting of at most n  intervals and of total length at most n (|co |X |)1/,n, such that i f  

|P (a ) | <  X  (o 6  K), then a  £  U.
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P ro o f: W rite P{x)  as a product over its roots r,- (taken with multiplicity):

P(x)  = co -  n) .
i= 1

Set

U = {a  G R  : |a  -  r ^ 71 <  X / c 0}.

Then U  satisfies the desired property. □

5 .1 .4  E stim a tes  on  red u cib le  pairs (A,B)

L em m a  5.9 The number of absolutely irreducible elements (A , B ) G .Fx-(Z) with 

a u  =  0 is 0 (X 191/ 192+e).

Therefore, for the purposes of Theorem 5.5, we may assume th a t a n  7  ̂0.

(We postpone the proof of Lemma 5.9 to Subsection 5.1.6.)

L e m m a  5.10 The number of {A, B )  G P x { ^ )  with a u 7  ̂ 0 and a ^  0, fo r  which 

f ( x , y )  =  Det(Ax — By)  is reducible, is O (X 101/ 108+e).

P ro o f: Any cubic ring R  = R ( f )  of discriminant n  such th a t f { x , y) is a reducible 

cubic form must sit in a unique cubic Q-algebra K  =  Q © F,  where F  is a certain 

quadratic Q-algebra (indeed, F  depends only on the squarefree part of n). Write 

Disc(i?) =  A:2Disc(A). Then the number of quartic Q-algebras L  having discrimi

nant dividing Disc(R) =  k 2 Disc(K) , and such that the cubic resolvent of L  is K,  is 

0 (h2 (K)Disc(RY)  by the work of Baily [1].* Since K  is of the form Q © F,  where

F  is a quadratic Q-algebra, we have h^{K)  =  0 (D isc(A )e) by genus theory. Hence
* Although Baily states all results for “cubic fields” , it is clear that his arguments hold also when 

every occurrence of “field” is replaced by “etale Q-algebra”.
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the to tal num ber of possibilities for the quartic Q-algebra L, given R  — R( f ) ,  is 

0(D isc(f?)e).

Now any quartic ring Q such tha t the cubic resolvent ring of Q is R  must be an 

order in such an L, and the index of this order in O l  (the ring of integers of L) must 

divide k , since Disc(<3) =  Disc(i?) =  k 2 'D\sc(K) <  k2Disc(L). In particular, for a 

fixed choice of L  the number of Q C L  with R res(Q) =  R ( f )  is a t most the number 

of orders of index k  in Ol-  For any integer k > 0, let EP(k) denote the product of all 

factors pe occurring in the prime power decomposition of k such tha t e >  8 . Then it 

follows from a result of Nakagawa [19, Theorem 1] th a t the number of orders of index 

A; in an etale quartic Q-algebra L  is at most 0(E P(fc)1/,2+e), independent of L.

Let s =  20/27. We divide the set S  of reducible cubic forms f ( x , y )  into two sets: 

Si,  the set of all reducible cubic forms /  with E P(D isc(/)) >  D isc(/)S, and S2 , the 

set of all reducible cubic forms /  with with E P(D isc(/)) <  Disc( f )s.

We trea t first the number of (A, B)  €  T x  with f ( x , y )  6  S\.  It is a standard 

fact tha t the number of positive integers n  such th a t EP(n)  > n 5 is 0 ( X l~ i s+£). 

Furthermore, it is easy to see (see e.g., Datskovsky-Wright [8], Nakagawa [20]) that 

the number of orders of a given index k  in the maximal order of a cubic Q-algebra 

K  is at most 0 ( k 1/,3+e), independent of K\  it follows that the number of reducible 

f { x , y )  with a given discriminant n is a t most 0 ( n 1//3+c). Hence the total number of 

reducible cubic forms /  6  Si  of discriminant less than  X  is at most

0 ( X l~^s+e -X s ) .

Finally, given an /  £  Si  with 0 <  D isc(/) <  X ,  the number of quartic Q-algebras L  of 

discriminant a t most Disc(R( f ) ) ,  such that the cubic resolvent of L  is K  =  R { f ) ® Q, 

is 0 (D isc ( /)e) =  0 ( X £); and the maximal number of orders Q of index k  in O l is at 

most 0 (E P (k )1/,2't'e) =  0 { X l/A+£). We conclude th a t the total number of (A, B ) e  T x
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with f ( x ,  y ) E Si  is a t most

0 { X l~ ^ +£ - X *  - X £ • X l/4+£) =  O (X 101/108+£).

To trea t the number of (A, B) E T x  with f ( x , y ) 6  S 2 , we may invoke a result 

of Davenport [10, Lemma 3], which states that the to ta l number of reduced binary 

cubic forms f ( x ,  y) =  ax3 + bx2y + cxy2 4- dy3 with 0 <  D isc(/) <  X  and a /  0 

is a t most 0 ( X 3/4+e). In particular, the to tal number of cubic forms f  E So is at 

most 0 ( X 3/4+e). Again, given an /  € S 2 , the number of quartic Q-algebras L  having 

discriminant a t most Disc(# ( /) ) , such that the cubic resolvent of L  is K  = R ( f )  <8>Q, 

is 0 (D isc ( /)£) =  0 ( X £); and the maximal number of orders Q of index k in Oc 

is a t most 0(E P(fc)1/,2+e) =  0 ( k ^ s+£) = 0 ( X * s+e). Therefore, the total number of 

(A, B ) 6  T x  with f ( x ,  y) E So is at most

0 ( x t +£X<*+£) =  O (X 101/108+£),

as desired. □

Let T  denote the set of twelve variables {a^-, 6^}. Note tha t a n  7  ̂ 0 together with 

the estim ate a \rt  =  0 ( X 1/3) for t E T  (Lemma 5.6) shows that

t  = 0 ( X l/3)

for all t  E T .

L em m a  5.11 The number of (A, B) E T x ( Z )  with a u  7  ̂ 0 and a ^ O  such that A  

and B  have a common zero in P2(Q) is 0 ( X 47/48+e).

P ro o f: Let (A, B ) be an element in Tz(%)  having a common rational zero (r, s, t) E 

P2(Q), where r, s, t  are integers having no common factor. (If there is choice, we pick
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as many of the r, s, £ to be zero as possible.) W rite r  =  (r, s)(r, £)r0, s  =  (r, s)(s, £)so, 

t  =  (r, £)(s, t)to (set (x, 0 ) =  (0, x) =  1 for convenience).

We consider first the case where rs t  ^  0 (so A and B  have no common rational 

point in P2 with a coordinate equal to zero.) To bound the number of possibilities 

for (A ,B ) in this case, we examine the discriminants £>12, £ 13, £ 23.

If any of these discriminants, say £ 12, is equal to zero, then the corresponding pair 

of quadratic forms (Ax2, £ 12) must have a common zero (r', s') in P x. By assumption, 

this zero cannot be rational, for otherwise (r', s ', 0 ) would be a common rational zero of 

(A, B )  having a zero coordinate. Therefore, if £12 =  0, then A i2, £12 possess the same 

pair of conjugate zeros (defined over some quadratic extension of Q), and thus AX2 

and £12 are scalar multiples of each other. Pick u ,v  £  Z such th a t uA x2 — v B i2 =  0. 

Then clearly f ( u , v ) =  Det(uA — vB)  =  0, so th a t f ( x , y )  is reducible over Q. Such 

elements (A, B)  with f ( x , y )  reducible have already been handled, by Lemma 5.10.

We may therefore assume that £12 ^  0, £13 7̂  0, and £23 7  ̂0. If all ciy, bij aside 

from possibly b23 are nonzero, then the inequality (Lemma 5.6)

Y [  t = 0 ( X ll/l2) (5.10)
£€T \{623}

implies that the number of nonzero choices for the variables in T\{&23} is 0 (X u / l2+e). 

If some elements of T  \  623 are equal to 0, we may replace those variables in (5.10) by 

a u , and the inequality remains true by Lemma 5.6. Thus the number of choices for 

the remaining nonzero variables in T  is still 0 (W11A2+£).

Once the variables in T\{&23} have been chosen, they also determine the quantities 

D l2  and £ 13, which by assumption are nonzero. Since the coefficients of x A in i?3(x, y) 

and R 2 (x, z ) are £12 and £ X3 respectively, and R$(r, s) =  R 2 (r, t) =  0, it follows that 

£0 and s0 divide £12 and £ 13 respectively. Thus the number of possibilities for s0 

and t 0 are bounded by the number of factors of £12 and £ x3 respectively. Since
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Z)i2£>13 =  0 { X 2/Z) by Lemma 5.6, the num ber of possibilities for so, tQ is a t most 

0 ( X £). Now r  divides (the nonzero quantity) A23(s, t) , and as A23(s, t) is clearly at 

most 0 ( X 2) in absolute value, the number of choices for r  is also at most 0 ( X £). 

The factors (r, s), (r, £), and (s, t) are also determined up to 0 ( X e) choices, as they 

are factors of r ,  r , and a n  respectively. Finally, since B ( r , s , t )  =  0 , &23 is uniquely 

determined by T \{ 623}, r , s, and t. Hence the number of choices for 623, given T \ 623, 

is a t most 0 ( X £), and so the total number of choices for T  is <3(XU//12+e).

We consider next the cases where exactly one of r, s, t  is equal to zero (so A  and 

B  do not have a common rational point in P2 with two coordinates equal to zero).

If r  =  0 and s t ^  0, then

4 23(s, t) =  B23(s, t) =  0. (5.11)

We can assume th a t a t least one of a22, &22 (say 622) and a t least one of a33, 633 (say 

633) is nonzero, for otherwise (0,1,0) or (0 ,0 ,1) would be a rational zero of {A’,B )  

with two zero coordinates. Since

t  =  O ( X l0/l2) (5.12)
teT\ {023,623}

(where as before zero variables are replaced by a u ), we see th a t the number of choices 

for T  \  {a23,&23} is bounded by 0 (X 1(VI2+e). Once these choices are made, (5.11) 

implies tha t s divides &33 and t  divides 622; hence the num ber of possibilities for s 

and t  is bounded by the number of factors of 633 and &22 respectively, so s and t can 

take a t most 0 ( X £) values (since 622 and b33 are both 0 ( X 1̂ 3)). The values of a23 

and &23 are then determ ined by T  \  {a23, &23}, r , s, and t. Thus the total number of 

possibilities for (A, B)  in this case is O (X 10̂ l2+£).
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The case s =  0, r t  ^  0 is handled similarly; the equation (5.12) is simply changed

to

a n  n  « =  0 ( * u /l2 ), (5.13)
teTX {a 13,613}

and we find in conclusion th a t there are a t most 0 ( X u / l2+e) choices for (.4, B) in 

this case.

The case t  =  0, rs  7  ̂0 is a bit more difficult. Proceeding in the same manner, we 

find a 12 and &i2 are determined up to 0 ( X e) possibilities once a u , a22, 6U, and &22 

are fixed. However, equation (5.13) now becomes

“fi F t  t  =  O pTl2/l2), (5.14)
££T\{ai2 ,6 i2 }

which does not yield a satisfactory estimate. Thus we must instead appeal to the 

inequalities (5.4).

If a 13 =  0, then (5.14) becomes

“?i n  t = 0 ( X u ' a ), (5.15)
£GT\{ai2,1113,612}

and again the number of choices for the remaining variables in T  is at most 0 ( X u / 12+£). 

We therefore assume that a 13 ^  0, and examine the coefficients <7u  and <?i3 of Q.  Since 

by (5.4), |g13| <  gu , and by Lemma 5.6,

|a u |5/2a i39n  J J  t2 = 0 ( X 23-5/12) (5.16)
T \{ai3 ,6 2 3 ,0 1 2 ,6 1 2 }
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(where again ail variables equal to zero are replaced with a n ), we conclude

|a u |5/2ai3<Zi3 I I  t2 = 0 ( X 235' 12). (5.17)
T\{ai3,623,a 121 612}

Now q13, when viewed as a polynomial in b23, has leading term a u a i3&23- It follows 

from Lemma 5.8 that, once all variables in T \  {623} are fixed (we recall a i2  and bl2  

are determined by a n , a i3, bn, 613), the number of possibilities for 623 is a t most

o f  n )
\  T \ { a 12M 2 }

Summing the latter expression over the variables in T  \  {a12, 612}, we see tha t (A, B)  

can take at most 0 ( X 23°/2A+e) values in this case.

Finally, we consider the cases where exactly two of r, s, t are equal to 0. This 

condition implies that either a u  =  6U =  0 (which does not occur by hypothesis), 

a22 =  b22 = 0 , or a33 =  &33 =  0 .

If a33 =  633 =  0, then the inequality

J J  t  < O ( X l0/12) (5.18)
teT\{a33,633}

(again with variables equal to zero replaced by an) shows that there are a t most 

O ( X l0/ l2+e) possibilities for the variables in T.

Finally, suppose a22 =  b22 =  0. Again, if a 13 =  0, then

*n I I  t  = 0 ( X n ' 12) (5.19)
f e r \ { a i 3  ,0.22,t>22 }

(Lemma 5.6) shows that (A, B)  can take at most 0 { X llfl2+e) values. Thus we as

sume a 13 7  ̂ 0, and again consider |5i3| < gn- The same reasoning as in (5.16) and
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(5.17) (but with. {022,622} and {012,612} interchanged) shows tha t there are at most 

0 {X 2Z-5/2A+e) values for (A, B)  in this case as well. □

5 .1 .5  C u ttin g  th e  cusps

Let 5 =  1/192.

L e m m a  5.12 The number of absolutely irreducible (A, B ) E Tx{T>) with 0 <  On < 

X s is 0 ( X i + lA+e).

Proof: Let us consider first the case where 013 =  0. If, in addition,

022633 — 2023623 — o 33622 =  0 , (5 .20)

then since a t least one of a22, a23,033 must be nonzero (Det(A) 7̂  0), one of 622, 623,633, 

say 622, is completely determined by the other variables. Lemma 5.6 then implies

a j f  J J  t  =  O ( X 10-5/12),
t6T\{ai3,622

and therefore the number of absolutely irreducible (A, B )  €  T x  satisfying (5.20) and 

a. 13 =  0 is only O ( X l0'5/ L2+c). We may therefore assume A =  022633 — 2023623—033622 =  

0 / 0. Similarly, we may also assume A' =  —011633 4- 2013613 — a336n 7̂  0 (otherwise 

633 is determined by the other variables) and A" =  - a u 622 +  2ai26i2 — 022611 #  0 

(otherwise 622 is determined by the other variables).

Now the leading coefficient of be — 9ad, as a polynomial in 6n, 622, 633, 612, 613, 

or 623 respectively is given by (o |3 — a22a33)A, (af3 -  Ona33)A', (of2 — a n a 22)A", 

2033(013023 — ^12^33), 2022(^12^23 — ^13022), or 2 a n (a u a 23 — Oi2ai3) respectively. If 

Det(A) #  0, then at least one of these leading coefficients must be nonzero; let us 

assume, say, tha t the leading coefficient (0^3 — a22<233)A is nonzero (the other cases 

can be dealt with analogously).
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From. Lemma 5.6, we have

a l l a 12a22a23a33&i2&13622623&i3 ~  3ac) =  0 ( X 23/12).

Since \bc — 9ad\ < b2 — 3ac,

a3n a22a22a23a33b212b2l3b22b23b23 (b c - 9ad) =  0 ( X 23/l2).

Since the leading coefficient of (be — 9ad) as a polynomial in 6U is (a23 — a22a33)Xb\l: 

it follows from Lemma 5.8 that 6U can take a t most

0( X 11'5̂ 12/ ( a \^ a \ 2 CL22 ay^bi2b-iZb2 2by2 bz3 (a23 — a22a33) l^2A1̂ 2)) (5-21)

values when all other variables are held fixed. Summing (5.21) over the variables b23, 

a33, and then over the remaining variables yields

Q ( j l l . 5 / 1 2 + E ) .

thus, the number of absolutely irreducible (A, B) E X x  w ith a n  7̂  0 and a i3 =  0 is 

0 (X 23/24).

The identical arguments show that the number of absolutely irreducible (A, B) E 

T x  with a u  7̂  0 and a23 =  a.i2ai3/a u  is 0 ( X 23/24). Therefore, to prove the theorem, 

we may assume ai3 7̂  0 and aua23 — ai2ai3 7̂  0.

By Lemma 5 .6 , we know

o f l a M  sfit*2 - 3 a c )  I I  *”  =  0 ( * 294/12).
ter\{au ,ai2,013,623}
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The inequality |qr13 j <  £U and [6c — 9ad\ < b2 — 3ac then implies

a i ia i3a i2 9i3(^c — 9ad) P J  £25 =  0 (X 294/ 12). (5.22)
t 6 T \ { a n , a i 2 , a i 3 ,6 2 3 }

The leading term  of qf3(6c — 9ad), viewed as a polynomial in 623, is <211(213(011023 — 

0i20i3)3&23- Hence by Lemma 5.8, if all other variables are held fixed, 623 can take at 

most

X 49/50/ ( a u /25a52/25o?3/25(a u a 23 -  a i2a i3)3/25 £)j (5.23)
£ € T \ { a n , a i 2 , 0 1 3 ,6 2 3 }  /

values. Summing the latter over a i3, and then over the remaining variables in T  \  

{011,013,623}, we obtain

O ( X A9/50+e/a[9l/25).

Finally, summing over ou  (1 <  a n  <  X s), we get

o ( x l l + « <y+£)

as desired. □

L em m a 5.13 The number of elements (A, B ) 6  T x ( Z )  with |a u | >  X s is

V ol(^i ) - X  + o(X),  

where V o l^ x )  denotes the Euclidean volume of the region T x -

P ro o f: Let T'x  denote the region T x  n  { |o u |  > X 5}. The region T'x  is bounded; 

indeed, a n  >  X s and a fL£ =  0 ( X L/3) implies t  = 0 ( X l^3~35) for all £ 6 T. Further-
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more, the boundary of J~'x  consists of a bounded number of algebraic surfaces. Thus 

the number of integer points in T'x  is

V o l ( ^ )  +  0(VX) (5.24)

where Vx  denotes the greatest m-dimensional volume of a projection of T'x  onto any 

of the m-dimensional coordinate hyperplanes (1 <  m <  11).

Let T' be any proper subset of T,  and consider the projection of !FX onto the 

coordinate hyperplane Ht ' given by

H r  =  {t =  0 : t  G T  \  T '}.

We know by Lemma 5.6 th a t for (A, B) E T'x ,

a 12—|T ' |
11 < C iX

for some constant C\. Since a u  >  X s, and 12 — \Tr\ > 1, it follows that

IT
teT'

< C i X l~s.

Furthermore, we have seen tha t |a u | >  X s implies that for any t  €  T \

(5.25)

|t| <  C2X lf3 (5.26)

for some constant C-z- Thus the projection of T'x  onto H t> is contained in the \T'\- 

dimensional region defined by (5.25) and (5.26). This region is seen to have volume 

at most

0( X l~5+e),
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for any proper subset T ' C T.

Therefore, (5.24) implies th a t the number of integer points in T'x  is given by

V o l ( ^ ) + o ( X ) .  (5.27)

By Lemma 5.12, this also gives the number of integer points in Tx - 
Finally, it follows from homogeneity considerations that

V ol(^v) =  V ol(^i) - X,

and that

Xo\{T'x ) = V ol(X x ) + o (X ) .

This proves the lemma. □

5 .1 .6  P r o o f  o f  L em m a 5.9

We may divide the proof into two cases, namely the case where a n  =  0, a i2 ^  0, 

and the case where a u  =  a 12 =  0. Of these, the second is by far the more difficult. 

Since the first case can be treated in a similar (and much easier) fashion, we proceed 

directly to the second case and assume an  =  a 12 =  0. This is the worst case scenario, 

since absolute irreducibility implies th a t a 13, a22, and 611 m ust then be nonzero. 

In particular, all variables in T  remain bounded by some constant power of X;  for 

example, the estimate

\al/3 a22bn b33\ = 0 ( X ^ 3) (5.28)

j
shows th a t b33 is bounded by 0 ( X l/z).
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We begin, with a  simple argument th a t yields 0( X l+£) for the number of possibil

ities for (A, B ) of this type. First, we observe that if a n  =  ai2 =  0 , then <712 does not 

depend on &33. By (5.4 ) and Lemma 5 .6 ,

1912023 6231 <  |9ll®23̂ 231 =  0 (X 6̂ 12).

Since the leading term  of 912023623 as a polynomial in &13 is —013023022612623613, it 

follows th a t the num ber of choices for &i3, once all variables outside &13 and 633 have 

been fixed, is

0 (X * /(a  13O22612O23623))- (5.29)

Similarly, by (5.4) and  Lemma 5.6 again,

1 9 i3  0 . 3 3  6 2 2 1 <  1 9 1 1 0 3 3 6 2 2 ! =  0 (X 6/<12);

since the leading coefficient of q13a33b22 as a polynomial in b33 is 20^022611033622633, 

the number of choices for b33 once 613 has also been fixed is

0( X i  7(013022611035622))- (5.30)

Multiplying (5.29) and  (5.30), we see th a t the total num ber of choices for 6i3 and b33, 

once all other variables have been fixed, is

0( X /  (013022023053611612622623))- (5.31)

Summing (5.31) over all variables outside 615 and b33 yields 0( X l+£).

Note th a t if |a i3022| >  X s then the number of possibilities for (A, B )  6  Xx(%) is

then 0( X l~s+£). Hence we may assume tha t a i3 and 022 are small, i.e., |a i3022| <  X s.
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Similarly, suppose <223623 and <233622 differ by a factor of more than X s. W ithout 

loss of generality, assume 023623 >  <133622 - X s. Then applying the above argument 

using the estim ate $13023623 =  0 (X 6/12) (instead of $13033622 =  0 (X 6/ 12)) shows that 

the num ber of choices for 613 and 633, once ail other variables have been fixed, is

^ ( ^ / ( n i3 a22a23^11^126|3)) =  0 ( X l~5/ (a l3a22 0-230.33bubi2b22b23)), (5.32)

summing the latter over all variables outside 613 and 633 yields 0( X l~5+£). Hence we 

may assume th a t 023623 and 033622 are close to each other within a factor of X s.

Let us suppose now tha t 613 is also small, say [6131 <  X 1/48. An upper bound for 

the num ber of choices for 633, when all other variables have been fixed, is given by 

(5 .30). In addition, by Lemma 5.6,

|o1/36l f  013023612623! =  0 ( X 5-5/ 12). (5.33)

This shows th a t (5.30) is less than

0( X n '°^12/(a 1̂ 3a23 o22 023 <133 6i{2 612 622 623)) •

Summing the above over all variables in T  \  {633} yields 0 ( X U-5/ 12+e - X 1/48) =  

0 (X 47/48+e). Thus it suffices to assume that |6i31 > X 1/48.

Almost the identical reasoning (using the inequality a23623$i3 =  0( X 8/ 12) instead 

of 033622$13 =  0 (X 8/ 12)) shows that the number of (A, B) with |6221 < X 1/48 is also 

0 (X 47/48+£). Hence we may assume in addition tha t |6221 > X 1/48.

Next, let

j3 =  |6ll6l26l3622623633|1/,6,
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where nonzero variables are replaced by 6U to assure (3^ 0. Suppose |/3| <  X ^ l2+5/2. 

Then the to ta l number of choices for B  is 0 ( X 6̂ l2+3S+e). On the other hand, by 

Lemma 5.6 ,

Î 11^^22^23^331 <  X 4'0/ 12,

and so the to ta l  number of choices for A  is X 4-5/L2+<f+£. The to tal number of choices 

for (A ,B) is therefore O (X l0-5/ L2+4*+e) =  0 (X L1/ 12).

Now suppose 7 =  — ĈL\za ^ b \x — 3af3a22a336ii +  4a i3 023611612 — af36f2 =  0, so that 

033 is determ ined by a23, 6u, a22, 6X2, a i3. As in (5.29), the number choices for 613, 

when ail variables outside 613 and 633 are held fixed, is

0 (AT2/ ( a i3a226i2a23623))- (5.34)

The leading coefficient of /32(6c — 9ad), taken as a linear polynomial in 633, is /32 k, 

where k  is given by

k =  a22a236ii — a22a3362i — 2ai3a22a236n6i2 +  9a23a226i2 +  20130^611613 — 8oi3a226ii622.

If in addition k  =  0, then 622 is uniquely determined by the other variables; Lemma 5.6 

implies

|a2/3ai3a222a236i{26i26i3623633| =  0(X1I/a2),

and hence the  to ta l number of choices for (A, B)  if k  =  0 is 0 ( X n ^12+e). Thus we 

may assume th a t  k  7̂  0. It follows from the estimate

(6c — 9ad)02 = 0 ( X 8/ 12)
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th a t  th e  to ta l  n um ber o f  ch o ices for 613 an d  633, once a ll o th e r  var iab les have been  

fixed , is

O (X 14/ 12/ (a i3a22&12a23&23/32«) ) •

But since ,B2 > X 2I l2+5. the above is

0 ( X l <V ( a 1 3 a 22 & 1 2 a 23& 23K;) ) -

Summing first over 622 and then over the remaining variables shows tha t the number 

of choices for (A, B)  when 7 =  0 is at most 0{ X l~5). Hence we may assume also that 

7  #  0.

We consider now the region S  in R10 defined by the conditions of Lemma 5.6 and 

the inequalities

19 121 <  9u  (5.35)

19i31 ^  9n  (5.36)

1̂ 231 <  922 (5.37)

16c -  9ad|6136^ 2 =  0 (X 7-5̂ 12) (5.38)

|aL3cz22 i <  X s (5.39)

X ~ 5\a^zb22\ <  IU23623I <  X^ [<233622i (5.40)

|613| >  X 1/48 (5.41)

|622| >  X 1/48 (5.42)

j3 > X x!l2+5f2 (5.43)

|7 | >  1. (5.44)

We estim ate the number of integral choices for 613, 622, 623 and 623 satisfying the above
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inequalities when all other variables have been fixed. By Lemma 5.8, this quantity is 

approxim ated by the volume of the four-dimensional region R  (R  is dependent on the 

set of variables outside 6L3, b22, &23 and 623) cut out by the inequalities (5.35)-(5.44). 

The error is at most

O £ > o l ( f l ) ) ,
R

where R  ranges over the various projections of R  onto smaller dimensional coordinate 

hyperplanes. The total number of integral points satisfying inequalities (5.35)-(5.44), 

where all 10 variables are allowed to vary, is therefore

O ^max

where R  ranges over all projections of R  onto four- and smaller-dimensional coordinate 

hyperplanes, and the inside sums are taken over all values of the variables in T  \  

{613,6221 b23 , 633}. We estimate each of the latter sums in turn.

We begin by estimating ^  Vol(i?). We divide into two cases. F irst suppose

|a?3^ A | < X 15''12+M. (5.45)

Then note that the inequalites (5.36) and (5.37) are linear in the variables b22 and

633. The two-dimensional volume cut out by these two inequalities, when all variables

outside 622 and 633 are fixed, is

0 (q n q 22/ \ ) ,  (5.46)

where

A =  — 3 a i3<222®23^33^n 3a^3<222<233^ii^i2 — 2a i3a22<223^xi^i3 4" 2a\za22bnb23.
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We may assume A ^  0 for the same reason we assumed 7  ^  0 (623 is uniquely 

determined by the rest). By Lemma 5.6,

<7iiWA =  0 { X w-5/ l2 /{a Z3blzay2% l£ \ ) ) -  

thanks to  (5.45), this in turn is a t most

0 (X 47/48+35/4/ ( a l/6a336i3a7/12622A))i

and since |a336221 <  ^ 23623! • X s by (5.40), it is a t most

0 (X 47/48+75/4/ ( a l/6a236i3G7/12623A))

Integrating now over 613 and 623, then summing over the remaining variables, we 

obtain

Y  Vol(tf) =  o ( X 4T/48+75/4+e).

Suppose next that the negation of (5.45) holds. Then note th a t the first two 

inequalities (5.35) and (5.36) are linear in the three variables &13, 622, and b23. We 

make the change of variables

x  =  qi2-

V =  913-

Solving for 623 and 622 in terms of x  and y (simultaneous linear equations), and 

substituting these values into the left side of the third inequality (5.37), we obtain an
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inequality of the form

p C r .V .& u ^ O p f 7-5' 12).

If we trea t p(x, y , 613) els a polynomial of degree 4 in 6l3, then the leading coefficient 

of p  is given by

-72a?34 2a^36ti622272/7 4

and hence bL3 is restricted to lie in an interval of length

O (X 7̂ 7  611622V /2/ 7 ) )

once x  and y have been fixed. TEiking into account the Jacobian of the transformation 

(x, y, &i3) —» (623,622,613) (a quick com putation shows that the Jacobian of the map 

(x, y) —> (623 , 622) is 7 ), we see tha t the three-dimensional volume of R"—the cross 

section of R at the given value of 633— is bounded above by

O ( X 7-5/i8qll /(a% 4a22 al/32bl 1 b ^ 8 j l/2)) .

By Lemma 5.6, qh is bounded above by 0 (X /( a 222<*23 622 633))- Thus Vol(R") is

bounded by

O ( X55'5/ 48 /  (a  ̂ 34 a 222 a 23 a33 6116228 6337L/ 2) ) ,  

which, by assumption is less than 

0 ( X l~s /  (a?3a 22a 23a336l l 63371/,-)).
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Integrating over 633, then summing over 612, and finally summing over the remaining 

variables, we obtain 0 ( X l~5).

which correspond to the error in our estimate for the number of integer points in 

R. To improve our estim ate for this error, we perform a piecewise linear change-of- 

variable by replacing 633 by 633, where

This transform ation evidently preserves the integer lattice as well as the volume form 

on R10, and is therefore harmless. The inequality (5.36) thus becomes

where fj. is some integer with 0 <  [i <  2a l3a22&u-

It will suffice to estim ate the projections of the larger region R! defined only by the 

inequalities (5.35) and (5.36). We have already seen th a t the volume of this region 

R', when summed over the variables in T  \  {613, 622, 623}, is 0 ( X l+£).

Let us examine the projection of R! onto 613 =  0. W hen all other variables are 

fixed, the number of choices for 613, as we have seen, is

Next, we consider the volumes of the smaller-dimensional projections R  of R,

Qiz ~  2^ 13^22611633 
2013022611

12013022611633 + 111 <  <711,

0 ( X 2 7 (013022612^23623)) • (5.47)

By Lemma 5.6,

a 13|6ll622|1,/26l2023623 — 0 ( X L/̂ 2);
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it follows from (5.39) and (5.42) that

® 13̂ 22̂ 12^23^23 — 0 (X 47̂ 96+i).

Therefore, (5.47) is a t least c X 1/96~s for some c > 0, and so the region R' has 613- 

thickness at least X l/96~s everywhere; hence the volume of the projection of R' onto 

613 =  0, summed over all variables in T  \  {613, 622, 623}, is a t most x 9o/96+(f+£. The 

projections onto 622 =  0 , 623 =  0 , and 633 =  0 are similar (but easier) to handle, and 

the same estimate is obtained.

The one- and smaller-dimensional projections are even easier. We simply observe 

th a t by Lemma 5.6,

<2i3a22 ^23^33611 612623633 =  0 (X U/ 12);

thus the volume of the projection of R  onto 613 =  622 =  0, summed over all variables 

in T  \  {613, 622, 623}) is a t most 0(J*l u / 12+e). Similar estimates hold for the other 

one-dimensional projections.

We conclude finally tha t the number of (A, B)  G T 'x i’Z*) with a n  =  a i2 =  0 is at 

most 0 (X 191/ 192+£), as desired.

5 .1 .7  C o m p u ta tio n  o f th e  fundam ental vo lu m e

To prove Theorem 5.5, it remains only to compute Vol(^yv)- Before performing this 

computation, we state  first some propositions regarding the group G =  GL2 x S L Z 

and its 12-dimensional representation V.

Let denote the G^-orbit in Vr consisting of the totally real elements.

P ro p o s it io n  5.14 The group Gr acts transitively on and the isotropy groups

for x G are isomorphic to the symmetric group S 4 .
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Now define the usual subgroups K , A +, N ,  and N  of G r  as follows:

K  =  {orthogonal transform ations in G r } ;

A + =  (a(£) : £ G K £ 4 } ,  where a(t) =

N  =  {n (u ) r u e i 4}, where n (u ) =

IV =  {n (x ) r i e R 4}, where n(x) =

(

V £2

1

U \  1

£ 4

v
(  X / 1

1 Xi

V (£3£4)“ l

(  1 W

U2 1

Zi3 U4 1 J

\ \  

/

1
V

Xo X3 

1 X4

\

\ 1

It  is well-known that the na tu ra l product map K  x  A + x  N  —>• G r is an analytic 

diffeomorphism. In fact, for any g €E G r , there exist unique k G K ,  a = a ( t i , . . .  , £4) € 

A+ , and n  =  , u4) G AT such tha t g = k a n .  In particular, the element

n(x)  G  iY  can also be factored uniquely in this way; the corresponding value of a is 

provided in the following proposition.

P ro p o s it io n  5 .15 Let fi(x 1, . . .  , x 4) G N .  Set

q =  1 +  x \ , r — I +  X2 +  (x2x4 — x3)2, s =  1 +  x \  +  x\.

Then n  = k  a ( £ i ,  £2 , £3 , £4) n, where

tl  =  1/ \/q, t2 =  y/q, t 3 =  l /y /r ,  t 4 = y /r /y /s .

Define an invariant measure dg on  G as follows. Choose an invariant measure dk  on

103

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .



K  so tha t f K 1 dk  =  1, and define

[  f(g)dg = f  f  f  f ( k n a )d * td u d k  
J g j k  J r 4 J r^J

=  I I I t ^ l t 2 t^ 4 fL2 f ( k a n )d x td u d k .
J k  Jr* J r**

Let dy = dyi dy2 • • ■ dy i2  be the standard Euclidean measure on P r.

P ro p o s it io n  5.16 For any f  £  L l (G),

[ f ( g ) d g = ^ - j [  [  [  f{n (x )n (u )a (t) )dxdud * t.
J g  ,5Z7r J r x4 J r *  J r 4

P ro o f: Use Proposition 5.15. □

P ro p o s it io n  5 .17  Let f  £  Cq( V ^ ) ,  and let y denote any element o f V T h e n

f  f ( g  ■ y ) d g  = 4  /* p (x ) ~ l f ( x ) d x -JG % JvW

P ro o f: It suffices to prove the equality for

y  =

f

1

r—1
1

\

- 1 5 - 1 i

V 1 /

£  U (1).

Put

(zu . . .  , z 12) = n(x)n(u)a(t)  • y.

Then the form P (z)~ ldzi A  • • • A  dz i2  is a G-invariant measure, and so we must have

P (z)~ l dzi A  • • • A  dzi2 = c dx  A  du A  d*t  
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for some constant factor c. An explicit calculation shows that c =  —3/16. By 

Proposition 5.14, G  is a 24-fold covering of V w via the map g —»• g -y. Hence

J G f ( g  ■ y)dg =  24 • —l̂—  - y  P (x)~ l f ( x ) d x  = ^  P{x)~l f(x )dx ,

as desired. □

Finally, we obtain using Proposition 5.17 th a t

^  r xw‘ .  f  7T3 X  C(2) C(2)C(3) _ C(2)2C(3) „
V o l ( ^ )  -  T  yo J a z \a i -  “ 48— * '

This concludes the proof of Theorem 5.5.

5.2 Pairs of ternary quadratic forms and Theo

rems 5.1—5.4

Theorem 4.5 of Chapter 4 together with Theorem 5.5 of the previous section now 

immediately imply the following.

T h e o re m  5.18 Let (£, g) denote the number of pairs (Q, R) where Q is a quartic 

order in a totally real S^-quartic field, R  is a cubic resolvent ring of Q, and £ < 

Disc(Q) <  77. Then

M„-( 0,X) C(2)2C(3)
X  =  48 •

To obtain finer asymptotic information on the distribution of quartic rings (in 

particular, w ithout the weighting by the number of cubic resolvents), we need to be 

able to count absolutely irreducible equivalence classes in Vz lying in certain subsets 

S  G Vz- If S  is defined, say, by finitely many  congruence conditions, then this can
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easily be done; we have

P

This refinement of Theorem 5.5 is proven in exactly the same way as the original 

theorem.

We recall from Section 4.10, however, th a t the set U. =  C\PUP of elements (A, B)  € 

Vz corresponding to maximal orders is defined by infinitely many congruence condi

tions. To prove th a t (5.48) still holds for such a set, we require a uniform estimate 

on the error term  when only finitely many factors are taken in (5.48). This estimate 

is provided in Section 5.2.2. In Section 5.2.3, we then use this estimate to complete 

the proofs of Theorems 5.1-5.4.

5.2 .1  N ow h ere overram ified  q uartic  fields

Let Q be an order in an SV-quartic field, and let p E Z be a prime such that Q is 

maximal at p. We say p is overramified in Q if (p) factors into primes in Q as P 4, 

P 2, or P?Pi; we say a quartic maximal order Q (or the quartic field in which it 

lies) is nowhere overramified if no prime in Z is overramified in Q.

The significance of being “nowhere overramified” is as follows. Given an ^ -q u a rtic  

field K 4 , let denote its Galois closure. Let K 3 denote a cubic field contained in 

^24  (the “cubic resolvent field” ), and let K$ be the unique quadratic extension of 

Kz such tha t the Galois closure of iv6 over Q is precisely K 2a- Then one checks 

that the quadratic extension Kg/Kz  is unramified precisely when the quartic field 

is nowhere overramified. Conversely, if Kz is a noncyclic cubic field, and K 6 

is an unramified quadratic extension of Kz, then the Galois closure of Kg is an S4- 

extension K 2a which contains up to conjugacy a unique, nowhere overramified quartic 

extension K±.
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5 .2 .2  A  u n ifo rm ity  e stim a te

Let us denote by Vp the set of all (A, B) €  Vz corresponding to quartic orders Q th a t 

are maximal a t p  and in which p is not overramified. Let Wp = Vz — Vp. In order to 

apply a simple sieve to obtain Theorems 5.1-5.4, we require the following proposition, 

analogous to Proposition 1 in [11] (though our proof is significantly simpler).

Proposition 5 .1 9  iV(0, X \  Wp) =  0 ( X / p 2), where the implied constant is indepen

dent o f p.

Proof: The set Wp may be naturally partitioned into two subsets: Wp^ , the set of 

points (A, B )  G Vz corresponding to quartic rings not maximal a t p; and Wp , the 

set of points (A, B )  G Vz  corresponding to quartic rings tha t are maximal at p but 

also overramified a t p. We treat first W pl\

L e m m a  5 .20 Let Q be a maximal quartic ring o f nonzero discriminant. Then Q has 

at most 6 subrings of index p.

Proof: Let <  1, a , /?, 7  > be a normal basis for Q corresponding to an element 

(A, B ) €  Vz- Any Z-submodule Q' of index p in Q  containing Z is spanned by 1, pa, 

pj3, p7 , and two additional elements £1 =  x xa  +  y x/3 +  z xy  and £2 =  x xa  -t- yx/3 +  z x7 , 

where £1, £2 span  a sublattice in Q well-defined modulo p. Let L  be the line in IP|p 

passing through the two points {xx,y x, z x) and (2:2, y<i, zf). Then one checks tha t Q' 

is a ring if and only if L  intersects A and B  (viewed as conics in P |p) in the same two 

points. Since A and B  intersect in four points (counting multiplicities), there are at 

most 6 =  Q) possible lines tha t L  could be. This is the desired conclusion. □

L e m m a  5 .21 Let Q be a maximal quartic ring of nonzero discriminant. Then there 

are at most 4 index  p2 subrings of Q containing Z  + pQ .
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P ro o f : Let <  1, a , /3,7  >  be a normal basis for Q corresponding to to an element 

{A, B ) G Vz■ A Z-submodule Q' of index p2 in Q containing Z + pQ  is spanned by 

1, pa, p(3, p j ,  and an  additional element £ =  x a  -+- y(3 + z j ,  where is well-defined 

modulo p  up to m ultiplication by scalars. One checks th a t Q' forms a ring if and only 

if (x, y , z ) is a common zero of the quadratic forms A  and B .  Since A  and B  intersect 

in a t most four points as conics in P |p, there axe a t most 4 values th a t (x, y, z) could 

take (as an element of P |p). This is the desired conclusion. □

For general index pk subalgebras of Q not containing Z +pQ, much cruder estimates 

will suffice. First, we recall that, by Lemma 4.14, any index pk subring of a maximal 

order Q contains some proper subring Q' of Q  such tha t Z +pQ Q Q'■ In addition, the 

num ber of such subrings Q' of index p, p2, or p3 in Q is a t most 6 , 4, or 1 respectively, 

by Lemmas 5.20 and 5.21.

Now the set of index pk subrings of Q is contained in the set of index pk Z- 

submodules of Q containing Z, or equivalently, the index pk Z-submodules of Q /Z. 

Furthermore, any index pk submodule of Q /Z  is an index p submodule of some index 

pk~l submodule of Q / Z. Since any rank 3 Z-module has exactly p2 +  p +  1 index 

p  submodules, we have by Lemmas 5.20 and 5.21, and induction, th a t there axe at 

most 6 (jp2 +  p 4- l ) fc_1 -I- 4(p2 + p + l ) k ~ 2 +  (p2 + p ■+■ l )fc~3 <  11 (jp2 + p + l ) fc_1 index 

pk subrings of Q.

Next, given any index pk subring Q" of Q, by Lemma 4.10 there are a t most 

(p +  l)  L*/6J points x  G Wp with Q(x) =  Q". I t follows that

N(X-, Wp) <  n (P2 + P +  +  1)L*/6J X  = 0 ( X / p 2),
k=1 P

as  desired.

We tu rn  next to  Wp2\  Let us say a quadratic extension K q of a non-cyclic cubic 

field K z  is acceptable if the Galois closure of K$ over Q  has Galois group a subgroup
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of S4. For a  fixed Kz, let g(n) denote the number of acceptable quadratic extensions 

whose conductor has absolute norm n. To estimate g(n). we require two lemmas. 

The first lemma is due to Baily:

L em m a 5.22 (Baily) Kq is an acceptable quadratic extension of Kz i f  and only if  

N K3/qD\sc{Ks/Kz) is the square of an ideal in Z.

The second lemma gives an upper bound on the sum of h2 (F) over all cubic fields 

F  of discriminant a t most X .

L em m a 5.23 We have

J 2 hi ( K 3 ) = 0 ( X ) ,  (5.49)
F

where the sum ranges over all totally real cubic fields Kz of discriminant less than X .

Lemma 5.23 follows from Theorem 5.5 as Theorem 5.4 will follow from Theorem 5.1. 

Now for any s > 1, it is an easy consequence of Lemma 5.22 that

OO OO

] T  <?(n)n-s < Khl{Kz) I IC 1 +  3P“2S) = Kh*2( K z ) Y 2 3T{n)n~2S' t5'50)
71 =  1 p 71=1

where r(n ) denotes the number of prime factors of n, and k is a constant bounded 

independently of Kz (it corresponds to the even and infinite places; see [1] for details). 

Lemma 5.23 and (5.50) now imply that, for some constant d,

1V(X;W<2>) <  * £  £  3 r(n)hl(Kz)
Kz p\n

n.2 Disc(/C3 )<X

<  3k 3T(n) £  h'^ K ^
p2n 2 < X  Disc(AT3)<X /(p27i2)

0 , X  v -  3r (n)
<  3 k c  —  V  — 2“V ^—* n 1

*  p 2n 2< X

0 , X  v -  3T<n>< 3kc —z  y  —v2 ' n2
n
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As the last sum converges absolutely, this concludes the proof of the lemma. □

5 .2 .3  P roo fs o f  T h eo rem s 5 .1—5.4

Proof of Theorem 5.1: Suppose Y  is any positive integer. It follows from Theo

rem 4.15 and (5.48) that

Um iV(° ’ g LT W i fel =  C(2)428C(3) n b “ 12P (P2 -  1) V -  D (p4 + P 2 -  P -  Dl-
-K5° p < Y

Letting Y  tend to oo, we obtain  immediately tha t

lim sup^^oo <  C(2£C(31 Y[p<Y\p~l2p  (p2 -  l ) 2(p3 -  1) (p4 +  p2 -  p -  1)]

=  n P[(i -  p~2)2 ( i  -  p_3)(i + p_2 -  p~3 -  p-4)]-

=  ^ n P( i + p - 2 - p - 3 - p - 4)-

To obtain a lower bound for N (0 , X; U) ,  we note tha t

f | « p C ( W U  | J  w p )-
p < Y  p > Y

Hence by Proposition 5.19,

j ™  >  c(2)48c(3) n  [p-‘2P (p2 -  0  v  -  dc p4 + p2 -  p - 1)] -  o ( £  p-
P < Y  P > Y

Letting Y  tend to infinity completes the proof of Theorem 5.1. □

Proof of Theorem 5.2: We first prove the analogue of Theorem 5.2 for SVquartic 

orders of content 1; on such quartic rings the correspondence of Theorem 4.5 is 

bijective. Let S p denote the set of elements (A, B)  E Vz having content prime to p, 

and let S  =  UpS p. Then note th a t an element (A, B) e  Vpp has nonzero content if
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and only if A  and B  are linearly independent over Fp. It follows tha t

M S P) = (p6 - l ) ( p 6 - p ) / p 12-

The same argument as in the proof of Theorem 5.1 then shows that

48C(5)C(6)
P

To obtain Theorem 5.2 from (5.51), we observe tha t every content 1 ring Q\ 

contains the content n  ring Qn =  Z + n Q i, and conversely, every content n  ring Qn 

arises from a unique content 1 ring Qi in this way. Furthermore, if Qi has discriminant 

D  then  Qn has discriminant n 6 D. It follows that

as desired. □

P r o o f  o f  T h e o re m  5.3: It is known that the Artin symbol (AT2a/ p ) equals (e), 

((12)), ((123)), ((1234)), and ((12)(34)) precisely when (Q ,p ) equals (1111), (112),

(13), (4), or (22) respectively, where Q denotes the ring of integers in Af4. The set of all 

(A, B )  E Vz corresponding to maximal quartic rings Q with a given value a  of (Q, p) 

is given by U fl Tp(cr); hence by the same argument as in the proof of Theorem 5.1,

On the other hand, an exam ination of Theorem 4.15 immediately shows that the 

values of //p(Tp(cr)) for a  =  (1111), (112), (13), (4), or (22) occur in the ratio 1:6:8:6:3 

for any value of p; this is the desired result. □

AU{0, X )  ^  1 C(2)2C(3) C(2)2C(3)
xl^°° X  n& 48C(5)C(6) 48C(5) ’

we have

lim N ( 0 ,X - ,U n T p(a)) =  nP(Tp(cr)) jQ / i9(£/,).
X->oo
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P r o o f  o f  T h e o re m  5.4: Let V =  DPVP be the set of all (A, B ) €  Vz corresponding 

to nowhere overramified maximal quartic rings. Using Theorem 4.15 and the fact 

tha t Vp is simply the union of all £/p(cr)’s where cr ^  ( l4), (22), or ( l 212), we obtain

MVP) =  p- 12 p2 (p2 -  l )2 (p3 -  l ) 2- (5.52)

By the same argument as in Theorem 5.1, we therefore get

L e m m a  5.24 Let L4(£, p) denote the number of nowhere overramified totally real 

S4-quartic fields K  such that £ < Disc(iT) <  p. Then

&  T  =  M c ( 2 ) - C ( 3 ) -  =  l / ( « f ( 3 ) ) .
p

On the other hand, given a nowhere overramified S4-quartic field K 4 with Galois 

closure K 24, we have observed earlier th a t in K 24 is contained a unique (up to con- 

jugacy) cubic field K 3 and a unique unramified extension K 6 of K 3. In addition, the 

discriminant of K 4 is equal to the discriminant of K 3, and the num ber of quadruplets 

of quartic fields K 4 corresponding to a given K 3 in this way equals h^(K3) — 1 (see 

Heilbronn [18] for full details). Therefore,

(h-2(K 3) ~ l )  = L i (0, X) .

0< Disc( /C3 )<X

Since Davenport and Heilbronn [11] have shown that

lim ^o<Disc(x3)<x 1 _
X —voo X
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(5.54)



we conclude

l im  ^ ° < Di'sc(^3)<a ' ^ 2 ( ^ 3 ) _  ^  Zr4(0, A~) +  1 _  1 /(48C (3))
1 1/(12C(3))

□
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Appendix: The quadratic covariant Q

The space Z 2 <g> Sym2Z3 of pairs (A, B)  of integral ternary quadratic forms has an 

integral ternary quadratic 6X3-covariant Q of degree 4. Below we give the coefficients 

° f  this covariant Q  in terms of the coefficients of the quadratic forms 

A  =  {flij) and B  =  (6i:7-).

911 =  o2362x — 022O33 ̂ 11 — 2013023611612 +  2012033611612 +  3af3622 — 20110336^2

+  2013022611613 — 2012023611613 — 6012013612613 +  4011023612613 +  3af26f3

— 2a n a 226f3 — 2af36n  622 +  ^11033611622 +  2011013613622 +  ^ 0,120.13^1 ^ 2 3

— 2011023611623 — 2011013612623 — 2011012613623 +  02!&23 — 2a226u 633

+  011022611633 +  2011012612633 — 0^1622633

9 12 =  o\zbi\bi2 — O22O33611612 +  0130236^2 — 013022612613 — O12O23612613 +  0120226^3

— 3013023611622 +  2012033611622 +  O13612622 — 011033612622 — 012013613622

+  3011023613622 +  3013022611623 — 012O23611623 — O12O13612623 — 011023612623

+  0^613623 — 3011022613623 +  O nO i2623 — O12O22611633 +  2011022612633

— 011012622633

9x3 =  0130336^ +  a 236u 6i3 — 022O33611613 — 013023612613 — 012033612613 +  012023615

— 0 1 3 0 3 3 6 1 1 6 2 2  +  2 0 1 1 0 3 3 6 1 3 6 2 2  ~  0 1 3 0 2 3 6 1 1 6 2 3  +  3 0 1 2 0 3 3 6 1 1 6 2 3  +  0 ^ 3 6 1 2 6 2 3

— 3O11O33612623 — 012013613623 — 011023613623 +  OnOi3623 +  2013022611633

— 3012023611633 — 012013612633 +  3011023612633 +  0^613633 — 011022613633

— 011013622633

922 =  3a 236f 2 — 2022033 622 — 2022023612613 +  o 22623 — 2 a 236 n 6 2 2  +  022O33611622

— 2013023612622 ■+■ 2012033612622 — 2013022613622 +  ^012023613622 4" Oi3&22

— On 033 &22 +2022023611623 +4013022612623 — 6012023612623 — 2O12O22613623

— 2012013622623 +  2011023622623 +  3af2623 — 2011022623 — o226h633 

+  2012O22612633 — 20^2622633 +011022622633
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923 =  a23®33 l̂2 +  a23^12^13 — 30220-33^12^13 +  <222<2236 1 3  — <223a33̂ Ll&22 ~  <2 1 3 * 2 2 3 6 1 3 6 2 2  

+  3fli2®33^13^22 +  2a22®33^n623 — 0x3023̂ X2^23 — ®12a33̂ 12̂ 23 — 0x3022^13^23 

~  O\20-236 1 3 6 2 3  +  a 1 3 2̂2^23 — <^u<̂ 33̂ 22̂ 23 +  1 2® 13 2̂3 — a22023^11^33

4* 30x^022^X2^33 ~  a 12a23 l̂2^33 — 30x20x3^22^33 +  2a 11023 2̂2 3̂3 +<^12^23^33

— 01x022^23^33

933 =  ®33^i2 — 2a23®33^12^13 +  3a\^b\^ ~  2<222<233̂ 13 — <233611622 +  2013033613622 

4-2023033611623 — 2013033612623 — 6013023613623 4- 4012033613623 4- 3af36| 3

— 2011033633 — 2033611633 4- 022^233611633 4- 4013023^12633 — 2012033612633

4- 2013022613633 — 2012*223613633 — 20^3622633 4- 011033622633 — 2012O13623633 

4-2011O23623633 +<212633 — <211022633
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Chapter 6

Conclusion

During the past two centuries, Gauss’s law of composition has been of central impor

tance in algebraic and analytic number theory, and has enjoyed numerous applica

tions. It is our hope tha t the composition laws presented in this thesis might similarly 

enjoy many additional applications in the future.

In this final chapter, we outline just a few of these potential applications,, and 

indicate directions for future work.

6.1 Higher composition laws and exceptional groups

The higher composition laws we have presented in this thesis tu rn  out to be closely 

related to the exceptional Lie groups. To be precise, let G  be an exceptional Lie 

group, and let P  be a certain maximal parabolic of G. W rite P  = LU, where L  is 

the Levi factor and U  is the unipotent radical at P. Then the group L acts naturally 

(by conjugation) on the abelianized unipotent radical W  =  U/\U, U}; for appropriate 

choices of G  and P, we find that we obtain precisely the spaces W  underlying our 

composition laws.

For example, the first case we considered in Chapter 2 was the space of 2 x  2 x 2 

cubes. Let G denote the exceptional Lie group of type -D4, and let P  denote the
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maximal parabolic corresponding to the central vertex of £>4:

W hen this central vertex is removed, what rem ains are three isolated vertices, and 

hence the Levi £  a t P  is £  =  S £ 2 x 51*2 x SX2- In  addition, a calculation shows that 

W ,  the abelianized unipotent radical a t P , is precisely the space of 2 x  2 x 2 cubes.

As we discovered in C hapter 2 , the three factors of SX2 in £  act on the bases of 

three ideals I \ , J2, and / 3 respectively in some quadratic  order S  (where the three 

ideals sum to zero). This suggests that we ought to  label the vertices of the Dynkin 

diagram  of £>4 in the following manner:

In particular, we see th a t the outer automorphisms of £>4 act by perm uting the triple 

(£., I 2 ,1 3) of ideals in S.

Next, let us see what happens when we im pose certain symmetry conditions, as 

we did in Chapter 2. First, we would like to im pose the symmetry condition that 

identifies / 2 with / 3, so th a t / 2 =  / 3. On the level of Dynkin diagrams, then, we 

perform the identification

»
h S

to yield
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• (§)• - *h  i s r2 = i z

and we have obtained the Dynkin diagram C3. Thus the composition law correspond

ing to pairs of binary quadratic forms, as discussed in Section 2.1.5, arises from the 

group Cz, where the parabolic P  corresponds again to  the central vertex.

Finally, let us identify all three ideals I x , h , I 3. This corresponds, on the level of 

Dynkin diagrams, to the identification

triply-sym m etric Dynkin diagram of D 4. To obtain a  theory of cubic composition, 

we then  m ight want a Dynkin diagram of the form

Unfortunately, a  group with the above Dynkin diagram  does not exist. However, if 

we cut short one of the legs of this diagram, we do obtain a genuine Dynkin diagram, 

namely th a t of the group Eq. (This corresponds to the “slicing” we performed at 

the s ta r t of Chapter 3). Taking again the parabolic P  of E$ corresponding to  the 

central vertex, we find the Levi factor is L =  (7L2 x G L 3 x G L 3 , and the abelianized 

unipotent radical W  is the space of 2 x 3 x 3 boxes, the subject of Chapter 3.

yielding the Dynkin diagram G2. Thus the composition law on binary cubic forms, 

discussed in Section 2.1.4, arises in this sense from G2.

The above discussion shows th a t quadratic composition essentially stems from the
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We have shown in Chapter 3 that the GL2 factor of L  acts on the basis of a cubic 

ring R , while the two S L 3 factors act on bases of ideals I  and I '  of R  (where I  and 

I 1 sum to zero). Thus suggests we may label the Dynkin diagram  of F 6 as follows:

I t r

As with the quadratic case, we may impose a symmetry condition on the situtation, 

and identify the ideals I  and / ';  this corresponds to the identification

yielding the Dynkin diagram for F4. Thus the composition law on pairs of ternary 

quadratic forms, discussed in Section 3.2.2, arises in this sense from the exceptional 

group F4.

6.2 Modular forms on exceptional groups

The connections between composition laws and exceptional groups outlined in the 

previous section may play an im portant role in understanding automorphic forms on 

the exceptional Lie groups, particularly in developing notions of “Fourier expansion” 

for these groups. In the case of the exceptional group G2, such a theory of Fourier 

coefficients was recently obtained by Gross [17] and Gan-Gross-Savin [15]. We suspect 

tha t our work in Chapters 2, 3, and 4 should additionally yield a theory of Fourier

J i

■e- R i  = r
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coefficients for modular forms on each of the exceptional groups C3, D4, E4, Eg, E 7, 

and (possibly) Eg. We hope that this will be worked out more precisely in the near 

future.

6.3 Higher composition laws and prehomogeneous 

vector spaces

The work we have described here also has a natural interpretation in terms of the the

ory of prehomogeneous vector spaces. Following Sato, a prehomogeneous vector space 

is a vector space having a Zariski open orbit under the action of a reductive group. 

Over fields, such group representations have been studied by Wright and Yukie [25], 

who determined when generic rational orbits of such representations correspond to 

field extensions. Our approach differs from theirs in tha t we consider integral orbits 

rather than rational ones—as we have seen, the integral orbits have an extremely rich 

structure, and allow a direct extraction of arithm etic information on orders and their 

class groups by purely elementary means.

There are three spaces arising in Wright and Yukie’s classification, however, that 

we have not considered in this thesis, and they correspond (from the point of view 

of Lie groups) to D5, E 7, Eg respectively. Again, it is interesting to ask whether the 

integer orbits in these spaces too might have intrinsic interpretations. We believe, 

in fact, th a t the integer orbits in these spaces should correspond to quadratic ideal 

classes, cubic rings, and quintic rings, respectively. We hope to treat these cases more 

carefully in a future article.

In 1974, Sato and Shintani [23] developed, for prehomogeneous vector spaces, 

a theory of zeta functions defined as certain sums over integer orbits. It may be 

interesting from the point of view of prehomogeneous vector spaces to ask how arith

metic interpretations of integer orbits, such as those given here, might correspond to
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data  (special values, functional equations, etc.) of the associated Sato-Shintani zeta 

functions.

6.4 Computational applications

As we stated a t the outset, Gauss’s law of composition is still the best known way 

for performing computations in the class group of quadratic fields; similarly, the 

Delone-Faddeev parametrization still gives the best known m ethods for computing 

cubic fields.* It is our hope th a t the higher composition laws presented here will 

additionally yield the best known algorithms for computing the class groups of cubic 

fields, the 3-parts of the class groups of quadratic fields, the 2-parts of the class groups 

of cubic fields, as well as quartic fields.

"Optimized implementations of these algorithms, due to Shanks and Belabas respectively, may 
be found in [3] and [4] respectively.
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S u m m a ry  o f  H ig h e r  C o m p o s itio n  L aw s

Space Group acting Parametrizes Dim. Lie G.

{0} - Linear rings 0 -

z S Ia (  Z) Quadratic rings 1

(Sym2Z 2)* 

( g a u s s ’s  l a w )

S L 2( Z) Ideal classes in 

quadratic rings

3 b 2

Z2 <8> Sym2Z2 S L 2(Z) x  5 L 2(Z) Ideal classes in 

quadratic rings

6 c 3

Z 2 ® A2Z 4 SL2(Z) x GL4(Z) Ideal classes in 

quadratic rings

12 D 5

Z 2 ® Z 2 ® Z2 SX2(Z) x  S L 2{Z) 

x  S L 2 (Z)

Pairs of ideal classes 

in quadratic rings

8 £>4

Sym3Z 2 S L 2 (Z) Order 3 ideal classes 

in quadratic rings

4 g 2

(Sym3Z 2)* G L 2 (Z ) Cubic rings 4 g 2

Z 2 <g> A2Z 6 S L 2 (Z) x  GX6(Z) Cubic rings 12 e 7

Z 2 ® Z 3 ® Z3 GL2(Z) X 5 L 3(Z) 

x  SL3(Z)

Ideal classes in 

in cubic rings

18 E6

Z 2 <S> Sym2Z 3 OL2(Z) x S L 3 (Z) Order 2 ideal classes 

in cubic rings

12 F±

(Z2 ® Syxn2Z 3)* G L 2{Z) x S L 3 (Z) Quartic rings 12 F*

Z4 0  A2Z 5 S L a{Z) x SX5(Z) Quintic rings* 40 e 8

^Conjectural.
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