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PREFACE

This bock contains an exposition of the main theorems of the class field
theory of algebraic number fields along with the necessary introductory
material. An attempt is made to keep the exposition self-contained. The only
material presupposed is that which would be used in elementary Galois
theory. The structure theorem for finitely generated modules over a principal
ideal domain is used, but a proof is included in an appendix.

We use the direct approach to the subject by congruence subgroups of the
ideal group rather than the more subtle description involving the cohomology
of groups. This may be considered the historical approach to the subject, but
we have presented it because it seems most useful for mathematicians who
are specialists in other areas but wish to use it. From the student’s point of
view, this approach seems to require less background preparation and so is
desirable for them.

The student who is not particularly interested in the theory of class fields
can profitably read the first three chapters for an introduction to the study
of arithmetic in fields, Dedekind domains, valuations, and general back-
ground material necessary for further work in several directions.

The first chapter contains an introduction to the algebra of number
theory. The basic properties of Dedekind domains are presented using rather
general ring theoretic arguments as much as possible. Emphasis is placed
upon local methods and proofs by localization. The results are given for
rather general fields except in the last three sections. There we discuss
cyclotomic extensions of the rational field and prove the unit theorem and
finiteness of the class number for algebraic number fields.

ix
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Valuations and complete fields are discussed in the second chapter. This
depends partly upon the previous chapter.

Chapter three contains material connecting Galois groups and ramification.
The last section introduces the Artin map, which is of fundamental importance
for the rest of the book.

In Chapter four the material becomes more specialized. We work ex-
clusively with algebraic number fields and their completions. The analytic
theorems proved include the Frobenius density theorem and Dirichlet’s
theorem on primes in an arithmetic progression.

Chapter five contains the main results on class fields. A small amount of
cohomology is developed here. We use only H° and H' and then only for
cyclic groups. In this case a concrete description of the cohomology groups
is used so the reader is not carried far from the fields and Galois groups. The
approach to the main theorems makes systematic use of the Artin map and
the Artin reciprocity theorem. We close the chapter with a discussion of the
Hilbert class field and Artin’s reduction of the principal ideal theorem.

The last chapter is intended primarily for illustration of the concepts
introduced in the earlier chapters. We study mainly quadratic fields and
prove a result which goes back to Gauss giving information about the class
group of a quadratic number field. A few calculations are made to illustrate
the use of the norm residue symbols.

The material in this text was used in a year-long course at the University
of Illinois in 1970-1971. The first three chapters were covered in the first
semester and the balance in the second semester.



Chapter 1

SUBRINGS OF FIELDS

1. LOCALIZATION

Let R be an integral domain. This means R is a commutative ring with
identity having no zero divisors.

Let S be a subset of R which does not contain zero and which contains the
product of any two elements in S. A set satisfying these conditions is called a
multiplicative set in R.

1.1 Proposition. There is a ring Ry which contains R as a subring (up to
isomorphism) and such that each element of S has a multiplicative inverse
in Rg.

ProoF. Let us first consider the collection of all pairs (r,s) in Rx S. Call
two such pairs (r, s) and (g, 1) equivalent if gs = rt. We leave as an exercise the
verification that this is an equivalence relation. Let r/s denote the equivalence
class containing (7, s). By definition of the equivalence class we see that r/s =
rt/st for any 7 in S.

Let Rg = {r/s| re R, se S}. Addition and multiplication are defined for
elements of Rg by the rules

ris+r'fs

rs’ + r's/ss’
rls-r'ls’ = rr'jss’.

One can check that these operations are well defined and Rg is a ring. To imbed

1



2 1 SUBRINGS OF FIELDS

Rinto Rg we first fix a particular s € S and use the mapping
r— rs/s.

This is a ring homomorphism and is in fact one to one. If we identify rin R
with any of the (equal) elements rs/s, then we do have R = Ry.

Ifzisin S, then 1/tisin Rgand ¢- 1/t = 1/1, which is the identity in Rg. This
completes the proof.

The ring Rg constructed in the proof has the following universal property:
If ¢ is a homomorphism of R into a ring T such that every element in ¢ (S) has
an inverse in T, then ¢ has a unique extension to a homomorphism from Rg
into 7. The extended map is defined by ¢ (r/s) = ¢(r)p(s)”'. This kind of
reasoning shows the ring R is characterized as the smallest ring containing R
and inverses for the elements of S.

Definition. The ring Ry is called the localization of R at S.
One may verify that Rg is also an integral domain.

ExErcISE 1. Let R and S be as above and let S* = {1} U S. Prove S*isa
multiplicative set such that Ry = Ry..

This shows we may assume | is in S and the mapping of R into Rg may be
taken as r — r/1. We shall identify r with r/1 so R = Rg has this meaning.

ExaMPLE l. R = Z = integers, S = {l,n,n?,...} for some fixed nonzero
integer n. Then Zj is the collection of all rational numbers a/n’.

ExaMPLE2. R = Z, S = {all positive integers not divisible by 3}, Ry =
{a/b| 3 does not divide b}.

EXAMPLE 3. R = any integral domain
S =R-{0}.
Then Rg is a field (all nonzero elements have an inverse) and we call this the
quotient field of R. It is the smallest field containing R.
We next look for some relation between ideals in R and ideals in Rg.

Definition. Anideal B of Ris prime if whenever ab belongs to P with g, bin R,
then either a or b already belongs to B. We shall exclude the case B =R
always.

ExerciSE 2. P is a prime ideal of R if and only if the factor ring R/ is an
integral domain.

1.2 Proposition. Let R be an integral domain and S a multiplicative set in
R. There is a one-to-one correspondence between the prime ideals of Rg and
the prime ideals of R which have empty intersection with S. Under the cor-
respondence, a prime B of R is associated with the ideal PRy in R;.



1. Localization 3

Proor. Let Q be a prime ideal in Rg. From the definition it is immediate
that p = Q N Risa prime ideal of R. Then PR; is an ideal of R contained in
L. We show these are equal. Let g/s be any element in Q with g in R and s in
S. Then g = (g/s)sisin RN Q = P. Thus g/s is in PRy since g(1/s) = g/s, g in
P, 1/sin Rg. So far we have proved that every prime ideal in Rg has the form
Q = PR, with P = Q n R, uniquely determined by Q. Since every element in
S has an inverse in Rg we know Q n Sis empty. Thus P n Sis empty.

Now suppose we start with the prime ideal 8 of R which has no elements in
S. Let Q = PRy. This is an ideal of Rg which we shall prove is prime. Suppose
a,b are elements in Rg with ab in Q, then ab = x/s with some x in P and some
sin S. Supposea = r,/s,, b = r,/s, withr,,r,in Rand s, s,in S.

We have r, r, s = xs, 5, belongs to . Thus one of the elements r,, r, or s in
P because P is prime. Also s is not in P by choice of P. Thus r, or r, belongs
to P and so a =r,/s, or b =r,/s, is in Q. Thus Q is prime. Now finally we
proveQ N R=P.Ifuisin Q n Rthenu = x/s with xin P because Q = PR;.
But « also belongs to R and so x = us implies u or s is in B. Since s is not, we
have u is in PB. Hence the correspondences P - PRy and Q- Q n R are
inverses of one another and the proposition is proved.

ExampLE 4. Let *B bea primeideal in the domain RandletS = {r| rnotin
B} = R—P. The definition of prime ideal is equivalent with the assertion that
S is a multiplicative set. Then Rg can be identified with {a/b| a,b in R, b not
in B}.

This is the most important example of localization. It will be encountered so
frequently that we shall use the notation Ry, to denote the localization of R at
S = R— P when P is a prime ideal. Since a prime ideal can never be a multi-
plicative set, this should not cause a conflict.

Observe that the prime ideals of R which have empty intersection with
S = R— P are those prime ideals contained in B. Hence the only prime ideals
of Ry are those contained in PRy. Maximal ideals are always prime so PRy
is the only maximal ideal in Ry,. We summarize these facts.

1.3 Proposition. If B is a prime ideal in R then Ry has only one maximal
ideal; namely PRy.

ExerciSE 3. Let R be a domain and P a maximal ideal. Show there is an
isomorphism between the fields R/} and Ry/PRy.

Exercise 4. If S is a multiplicative set in a noetherian domain R, then Ry
is also noetherian.

Rings having only one maximal ideal occur frequently and we give them a
special term.



4 1 SUBRINGS OF FIELDS

Definition. A ring having only one maximal ideal is called a local ring.

A few properties of local rings will be developed here.
Let R be a local ring (always with identity) and P be the unique maximal
ideal.

Lemma. Every element in R which is not in $§ has a multiplicative inverse.
In particular for m in B, the element 1 + m is invertible.

ProorF. Ifxisnotin Pthen Rxisnotin P. Since Pis the only maximalideal,
it follows that Rx = R. There exists a y in R such that yx = 1.

1.4 Proposition. Let M be afinitely generated R module such that M = M.
Then M = (0).

Corollary (Nakayama’s Lemma). Let M be a finitely generated R-module,
and L a submodule of M such that L+ PBM = M. Then L = M.

PROOF OF COROLLARY. The equality L+ M = M implies that every
coset of L in M has a representative in ‘BM. This means P(M/L) = M/L. By
the Proposition 1.4 it follows M = L.

Before giving the proof of Proposition 1.4 we recall some facts about
matrices.

Let A = |ay| be a matrix (size n x n) with all a; in some commutative ring.
The (i,j) cofactor is (—1)"*Juy; = b;;, where oy is the determinant of the
(n—1) x (n—1) matrix obtained from A by removing the ith row and the jth
column. The matrix B = |b| is called the adjoint matrix of4. Then BA = 4B

= diag{d,...,d} with d = det(A).

PROOF OF PROPOSITION 1.4. Let M =Y Rm,; with m,,...,m, in M. Since
PM = M there exist elements a;; in B such that

(%) m; = Zau-mj.

Let A be the matrix |a;|—1. Then A(m,,...,m,)' = 0 is just a restatement of
(). Let B = adjoint of 4 so that by the above remarks BA(m,,...,m,) =
(dm,,...,dm,) = 0 with d = det A. It follows dM = (0). Now consider the
expansion of det 4. The term d is a sum of a large number of terms each of
which is a product involving certain g; except for one term which is (—1)".
Thus d = (—1)"+(sum of elements of P). By the lemma above, 4 has an
inverse in R so that dM = 0 implies M = 0 as required.

2. INTEGRAL DEPENDENCE

Let R be a subring of the commutative ring R’ and assume the identity of R
is the identity of R’.



2. Integral Dependence ‘ 5

Definition. An element b in R’ is integral over R if there is a monic poly-
nomial f(X) in R[X] such that f(b) = 0. We say f(X) is the equation of
integral dependence.

2.1 Proposition. The following statements are equivalent:

(1) The element b of R’ is integral over R.

(2) R[b] is a finitely generated R module.

(3) R[b] is contained in a subring B of R’ which is a finitely generated R
module. '

(4) There exists in R" an R[b]-module M such that M is finitely generated
over R and the only element y in R[b] for which yM =0isy = 0.

ProoOF. (1) — (2). If the monic polynomial satisfied by b has degree n+ 1
then R[b] is generated by 1,54,...,b".

(2) —» (3). Take B = R[b].

(3) —» (4). Take M = B. Since 1 is in B, yB always contains y,

(4) - (1). Letmy,...,m, be a set of R generators for M. Let r; be elements
of R such that

bm; =Y rym;.
]
This can be rewritten as
0= Z(ru-—bé(-,-)mj,

where &; = Kronecker delta. If A is the matrix of the coefficients in these
equations then (by the same method as the proof of Proposition 1.4) dM =0
when d = det(A). This forces d = 0. Consider the polynomial det (X -1—|ry|) =
f(X). The expansion of this determinant shows f(X) is a monic polynomial
with coefficients in R. Moreover 0 = d = f(b) so b is integral over R.

2.2 Proposition. Suppose b,,....b, are elements of R’ which are integral
over R. Then R[b,,...,b,] is a finitely generated R module.

Proor. Use induction on n. R[b,] is finitely generated by Part (2) of
Proposition 2.1. Assume that thering R[b,,...,b,_,] = R"isfinitely generated
over R with generators a,,a,,...,a,. Then b, is integral over R” so R"[b,] is
generated by 1,b,,...,b,* (for some k) over R”. Thus the finite set a;b,’ of
t(k+1) elements generates R[b,,...,b,] over R.

Corollary. The set of all elements of R’ which are integral over R is a subring
of R’ containing R.

PrROOF. Suppose x, y arein R’ and are integral over R. Then the proposition
just proved says R[x,y] = B is a subring which is finitely generated over R.
Since x + y and xy are in B we see by Part (3) of Proposition 2.1 that x + y, xy are
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integral over R. Thus the set of integral elements forms a subring. It is clear
that R is integral over R.

A situation frequently encountered involves an integral domain R contained
in its quotient field K. The set of all elements of K integral over R is a subring
called the integral closure of R, The domain R is said to be integrally closed if
every element in the quotient field which is integral over R is already in R.

One way to obtain integrally closed domains is to start with any domain R
and let R’ denote the integral closure of R (in its quotient field). It follows
from the next proposition that R’ is integrally closed.

2.3 Proposition. If R < R’ = R” are rings with R’ integral over R and R”
integral over R’, then R” is integral over R.

Proor. Take any b in R”. There is a polynomial f(X) = X"+r, X"~ ' +...
+r, with r;in R’ such that f(b) = 0. Then by Proposition 2.2 R[r,,...,r,] = B
is a finitely generated R module and so B[b] is also a finitely generated R
module. By Part (3) of Proposition 2.1, b is integral over R.

ExaMpPLE 1. Let R be any unique factorization domain (UFD). Then R is
integrally closed.

To prove this we suppose x, y are in R and x/y is an element in the quotient
field which is integral over R. It is necessary to prove x/y is in R. There is a
relation

n—1

(el = X rilly)
with r; in R. Because R is a UFD we may suppose at the start that x and y
have no common factor apart from units.
Now multiply the equation above by y" and find

1
x" = y Z r,ixlyn—l—l
0

This shows y divides x" and so y must be a unit of R for otherwise a prime
divisor of y also divides x, contrary to assumption. So x/y is in R since y~! is

in R.

ExaMpLE 2. Any PID (principle ideal domain) is integrally closed because
itisa UFD.

ExaMpLE 3. If Ris integrally closed in its quotient field and if S is a multi-
plicative set in R, then Ry is integrally closed.

The proof of this uses computations similar to those above. We suppose u
is an element of the quotient field which is integral over Rg. Thus u is the root
of a monic polynomial with coefficients in Rg. We find a common denominator
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for all these coefficients so that u is a root of
X"+ (ry ) X" 4 oo 4 (r,)5).

Multiply this by 5" and discover that su is the root of a monic polynomial with
coefficients in R. Thus su is in R because R is integrally closed. Finally u = su/s
is in Rg as required.

EXERrcISE 1. Prove that the integral closure of Z in the field Q(\/ 3) is just
zZ+Zz /3.

EXERCISE 2. Provethering Z [\/ 3] is not integrally closed. In fact ([ + \/ 3)
is an integral element in the quotient field.

Exercise 3. If Kis a field and {R,} is a family of integrally closed subrings
of K, then the intersection () R; is also integrally closed.

The procedure for determining whether or not an element is integral over R
might generally be a lengthy one since there is no clear way to select the poly-
nomial which expresses the integral dependence. The next proposition shows
a circumstance where this procedure is simplified.

Suppose R is a domain with quotient field K.

2.4 Proposition. Let b be an element in an extension field of K. Let f(X) be
a monic irreducible polynomial in K[X] having b as a root. If & is integral
over R then the coefficients of f(X) are integral over R. If R is integrally closed
then b is integral over R if and only if f(X) e R[X].

Proor. Extend the field from which b is taken to a splitting field of f(X)
over K. Let by, ..., b, be all the roots with b = b, say.

Suppose b is integral over R and g(X) is the equation of integral dependence.
Since f(X) is irreducible and has a root in common with g(X), it follows that
JS(X) divides g(X) in K[X]. Hence the roots b,, ..., b, of f(X) are also roots
of g(X). So b,, ..., b, are all integral over R. It follows that the coefficients of
J(X)=(X=b,)---(X-b,) are integral over R.

These coefficients belong to K so when R is integrally closed we see f(X) is
in R[X].

This shows that one can test for integral dependence of an element by looking
at its minimum polynomial over the quotient field.

ExERCISE 4. Let 4 be an integer not divisible by the square of any prime.
Show that the integral closure of Z in Q(,/d) is

ZINdl = Z+ ZJd if d=2,3mod4,
and
z['+2*/d]=z+zl+2‘/‘—’ if d=1mod4.
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3. DISCRETE VALUATION RINGS AND DEDEKIND RINGS

Definition. A ring is called a discrete valuation ring (DVR) if it is a principal
ideal domain with only one maximal ideal.

Let R be a DVR and let = be an element such that ®f = Rz is the unique
maximal ideal.

3.1 Elementary Properties
(i) Ris a noetherian ring. (P1Ds are noetherian.)

(i) Every nonzero element of R has the form un* for some nonnegative

integer k£ and some unit % in R.
This follows at once because R is a UFD and hence can contain only

one prime element up to unit multiples.

(iii) Every nonzero ideal has the form Rn* for some k. This follows from
(ii) and the fact that R is a PID.

(iv) Ris integrally closed (because it is a UFD).

(v) R has only one nonzero prime ideal [immediate from (iii)].

Definition. A ring R is called a Dedekind ring if it is a noetherian integral
domain such that Ry is a DVR for every nonzero prime ideal P of R.

ExampLE. If Ris a PID then R is a Dedekind ring.

3.2 Elementary Properties of a Dedekind ring R
(1) Every nonzero prime ideal of R is a maximal ideal.

Suppose P, € B, are nonzero prime ideals, P, # P,. Then Proposition
1.2 implies P, Ry, = P, Ry, are distinct prime ideals. Since Ry, is a DVR
there can be only one prime ideal. It follows that no chain P, = P, can exist
in R.

(2) If S'is a multiplicative set in R then Ry is a Dedekind ring.

A prime ideal of Ry has the form PR for some prime ideal P of R. One
can verify that

Ry = (Ry)grs
so the localization of Rg at PRy is also a DVR.
The goal of this section is to obtain a factorization theorem for ideals in a
Dedekind ring. It need not happen that elements have unique factorization but

we will prove that ideals have unique factorization as a product of prime ideals.
We begin with a very useful tool that can be applied in many situations.

3.3 Chinese Remainder Theorem (CRT). Let B be a ring with identity,
Qy,...,Q, a set of ideals such that B = Q,+Q, fori # j. Let 3 = (" Q,. Then

B3~ B/Q, ® - ® B/Q,.
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Proor. If we replace B and the Q; by B/J and Q,/J it will be sufficient to
prove the theorem under the assumption that 3 = (0). Suppose first n = 2 so
Q,+Q,=7Rand Q, (| Q, = (0). We map B to the direct sum B/Q, @ B/Q,
by

b (b+2,,0+2,).

This is a ring homomorphism with kernel Q,; » Q, = (0). It must be shown
that the map is onto the direct sum. Since Q, +Q, = B there exists elements
g; in Q; such that ¢, +¢, = 1. Then

g = (g, +2,,4,+1;) = 0,1 —g,+Q,) = (0,1 +RQ,).

Thus Bg, maps onto (0, B/Q,). Similarly Bg, maps onto (B/Q,,0) so the map
is onto in the case n = 2.

Now suppose n>2. LetQ,_, n Q,=Q,_,andlet Q; = Q/ forj<n—1.
The first step is to show that induction can be applied to the n—1 ideals Q.
Clearly N Q; = (Q;and Q/+Q; = Bifi,jare both # n—1. It is necessary
to show

Q- 1+9/=8 for j#n—1.

We have B= B-B=(Q,+Q,)(Q,-,+Q)) = Q, [, +RQ;. It is always true
that Q,Q,_, = Q, N Q,_; s0

Bc L, +Q.
Equality must follow so by induction we have
B B/Q,® - @ B/Y,_,.

In the ring B/Q, _, the two ideals Q,_;/Q;,_, and Q,/KQ,_, have sum equal to
the whole ring B/Q;,_ and intersection equal to zero. By the case n =2 we
get B/Q;,_, = B/Q,_, ® B/Q, and so the theorem follows.

3.4 Theorem (CRT for modules). Let B, Q,,...,Q,,3J be as in Theorem
3.3. If M is a B-module then

M/3M = MIQ M@ - ® M/Q,M.

ProOF. We may prove the theorem under the assumption that 3M = (0).
Let u; be some element of B which maps onto (0,...,0,,0,...,0) in the iso-
morphism of Theorem 3.3. Here the 1 is in the ith position so u; is in Q; for
j# iand u;—1 is in Q;. Consider the homomorphism from M to u; M which
sends m to u;m. The kernel consists of all m for which u;m = 0. For such an
element we have m = (1 —u;) mis in Q; M. On the other hand ¥, Q; M < IM =
(0). Thus u; M =~ M/Q; M. To complete the proof it is only necessary to show
u, M+ .- +u, Mis a direct sum equal to M. One easily sees the sum equals M
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because #, + -+, = | modulo J and since IM = (0) we havem = u, m+---
+u,mforallmin M.
Now suppose Y u;m; = 0. We must show each u;m; = 0. For j # i we have

u;u;M = IM = (0),
s00 =u; Y u;m; = u;u;m;. From this equation it follows that
um; = (1~u)u;m; e Qyu; M = (0).

This completes the proof.
A little more can be said in the context of Theorem 3.3, Namely we have the
following.

3.5 Proposition. Let B,Q,,...,Q,,3 be as in Theorem 3.3. Then I =
QQ, 9,

PrRoOF. Use induction on n. Suppose n = 2. There exists u; in Q; with
u;+u, =1. Now for g in Q; n Q, we have g = qu, + qu,. The element qu, is
inQ,;Q, and gu, isin Q,Q,s0qgisin Q, V,. Thus Q; n Q, € Q, Q,. The
reserve inclusion is immediate because the Q; are ideals so the result holds for
two ideals. Now suppose n> 2. Let Q;,_, =RQ,-, n Q,. By the case n =2
we have also Q,_, = Q,_,Q,. We saw in the proof of Theorem 3.3 that
induction can be applied with the n—1 ideals Q,,...,Q,-,,9,_,. Then we
have

OD; =Q NN ,nY_ =2 ,8. = Il]mi

and this completes the proof.

Now let R be a Dedekind ring and 2 a nonzero ideal of R. We shall study
the factor ring R/U.

Observe that the prime ideals in R/ are quotients P/A with P a prime ideal
of R containing . Since nonzero primes in R are maximal ideals we see that
all prime ideals in R/ are maximal. Also R is a noetherian ring so R/ is also
a noetherian ring. We shall prove some facts about rings satisfying these
conditions.

In what follows we let B denote a noetherian ring in which all prime ideals
are maximal. The ring R/ = B satisfies this condition.

3.4 Lemma. Everyidealin Bcontains a product of prime ideals.

Proor. This proof uses only the fact that B is noetherian. If the lemma is
false there is an ideal I which is maximal with respect to not containing a
product of prime ideals. In particular Jitself is not prime so there exist elements
x and y with xp in J but x,p both outside 3. Let U = Bx+ 3, 8= By+J.
Then U and B are both ideals larger than J so each one contains a product of
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prime ideals. But UB < J so J contains a product of prime ideals. This
contradiction shows no such J can exist.
Apply this to the zero ideal of B.

3.7 Corollary. There exist distinct prime ideals ,,..., B, and positive
integers a@,, ..., a, such that

Pr P = (0)

Qur next object is to apply CRT to these B{‘ but first we must verify the
hypothesis of Theorem 3.3.

3.8 Lemma. If PB,,P, are distinct maximal ideals of B then B,*+P,* = B
for any integers a,b > 0.

Proor. PB,” cannot be contained in P, unless P, = P,. Thus P, "+ P, =
B. Suppose for some integer ¢ > 1 we have

B,*+ P, = B.
Then B,° = B,°B = P, (B,"+B,) = B+ B5* . So
B=P"+%,"S B+ (B +BTH =B+ P
The result follows.
39 Lemma. LetB,,..., B, be distinct prime ideals such that
(©0) = P31 By
Then
B~ B/B)' @ - ® B/Pi.

Proor. Each 9P, is maximal so Lemma 3.8 implies that CRT can be applied
to give

B3 BB @ @ BB

when J = () . We will be done if I3 = (0).
By Proposition 3.5 we see I = [T P = (0) so the proof is complete.

3.10 Corollary. The ideals B, ..., B, are all the prime ideals of B.

ProOF. One checks easily that P,/ is the only prime ideal in B/{* and
the only ideals in a direct sum B, @ --- @ B, are direct sums ¥, @ - @ T, of
ideals T, in thering B, = B/P¥. The ideal T, @ --- ® T, is prime if and only if
B/, ® - ® B,/T, is an integral domain. It follows that I ; = B; for all but
one index jand ¥; = P, for the remaining index.

It follows now that there exist only a finite number of prime ideals of R
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which contain 2 (namely the primes which map onto the B, in B) and also U
contains a product of these primes. Our goal is to show in fact that U is equal
to a product of primes. To get this it is necessary to use some additional
information. Up to now we have used only that primes of R are maximal
ideals but we have not used that Ry is a principal ideal domain when B is a
nonzero prime of R. We shall bring this into consideration shortly.

3.11 Lemma. Let P bea prime ideal of R and a be a positive integer. Then
R/PB = Ry/BRy.

ProoF. The map f(r+P°) = r+ PRy from R/P” to Ry/PRy is a ring
homomorphism which is one to one. We must show f'is onto. Take any r/s in
Ry with s not in B but r in R. Since P is a maximal ideal it follows that
Rs+ B = R. By the method of proof used in Lemma 3.8, one finds Rs+ P“ =
R. Thus there exists ¢ in R and ¢ in B with cs+¢ = 1. Then f(rc+P°) =
re+ PRy = r(l/s—q/s)+ PRy = r/s+PBRg. Thus fis onto as required.

3.12 Corollary. Every ideal of R/$*is a power of B/P“. Moreover P/P* is
a principal ideal.

PrROOF. In view of Lemma 3.11, we may replace R by Ry in order to prove
these assertions. But Ry is a DVR so the statements follow from Property
3.1 (iii).

3.13 Proposition. Let U be a nonzero ideal of R and let B, ..., B, be all the

prime ideals of R which contain . Then W = P5' ... P~ for some positive
integers a;.

PrOOF. We have seen above that Pi'... B2 < A for some positive
integers b;.
In the factor ring

B = R/®} P = R/PY @ - @ R/Py
the ideal U has image which is necessarily of the form
PP D - © W/

for some positive integers a; because of Corollary 3.12. The ideal 9’ --- P
has the same image so A = B4' -.- P& because both contain P! .. Phn,

3.14 Theorem. Let 2 be a nonzero ideal in the Dedekind ring R. Then
A = PT -.- Pé» with B, ..., P, distinct prime ideals uniquely determined by
A and certain positive integers a,, ..., a, uniquely determined by 2.

Proor. Every thing except uniqueness has already been done. The primes
By, ..., B, are uniquely determined by 2 because they are all the primes of R
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which contain 0. The integer a; is uniquely determined by the condition that
a; is the least power of the maximal ideal of Ry /ARy, which is zero. That is
Ry, = Pi Ry, .

As an application of Theorem 3.14, we can prove the next result.

3.15 Theorem. If Ris a Dedekind ring with only a finite number of prime
ideals, then R is a principal ideal domain.

Proor. Let B, ..., B, be all the nonzero primes of R. The first step is to
find an element x; which is in B; but not in 8,? and also not in P, forj#i To
produce x; we let x, be an element of R which maps onto (=, 1,1,...,1)in

RIBPy B, = RIPZORP, @ @ R/B,,

where 7 is a generator of B, /B, 2. Such an x, exists by CRT. Clearly it satisfies
the required conditions. Similarly select x;. Now the ideal Rx; is contained in
9, but not in any other prime. Moreover Rx; is not in 3;>. Hence the only
factorization possible is Rx; = ;. Thus every prime is principal. Since each
ideal #0 is a product of primes, each ideal is also principal.

Exercise.  If Wis an ideal of R, we write x=y mod A to mean x—y is in .

Let R,,...,*B, be distinct prime ideals #(0) in the Dedekind ring R;
a,,...,a, are positive integers; y;, ..., v, are elements of R. Show there exists an
element x in R with x =y, modPf fori=1,2,...,n.

Now that the structure of ideals is known, it will be practical to have several
ways of identifying Dedekind rings. We offer two alternate characterizations
of these rings.

3.16 Theorem. Let R be an integral domain which is not a field. The
following are equivalent statements.

(a) Ris a Dedekind ring.

(b) For each maximal ideal B, Ry is a DVR and for each element a # 0
there exists only a finite number of prime ideals containing a.

(c) Risnoetherian, integrally closed and each prime ideal #(0) is a maximal
ideal.

PrOOF (a) = (b). If R is Dedekind, then Ry is a DVR and by the remark
following Corollary 3.10, there exist only a finite number of prime ideals
containing Ra = .

(b) = (c). Let (0) # Q be a prime ideal. If Q is not maximal then Q = P
with B maximal. It follows that QR is a nonmaximal prime ideal in Rq so
Rgis not a DVR. Thus Q is maximal. Next we show R is integrally closed. We
need an elementary fact before proceeding.
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3.17 Lemma. Let R be any integral domain. Then
R= () Ry,

P max

where the intersection taken over all maximal ideals.

Proor. The inclusion of R into the intersection is immediate. Suppose x
is in Ry for every maximal ideal . We may write x = a/b with a,b in R. Let

A = {yeR| yae Rb}.

U is an ideal of R. For any maximal ideal B we can find r,s in R with s not in
P such that x = a/b = r/s. In particular sa = rb so s is in U. This means A is
not contained in ‘B. Hence U is not contained in any maximal ideal and so
A = R. Thus a belongs to Rb and a/b = x belongs to R.

Now we return to the proof of (c). Each Ry is a DVR, so Ry is integrally
closed. By Exercise 3 on page 7, R = () Ry is integrally closed.

The last assertion to be proved is that R is noetherian. To prove this we shall
need another lemma.

3.18 Lemma. Let R be any domain and let 2 < B be two ideals of R such
that ARy = BRy for all maximal ideals P of R. Then A = B.

Proor. Let b be an element of B. For each maximal ideal P, we have
bRy = URy. So there is some a in A and some s in R with s not in P such that
b = a/s. The ideal of R defined by

{yeR| bye¥}

must contain s and so it does not belong to . This ideal is not in any maximal
ideal so it is all of R. Thus b is in U as required.

Now to complete the proof of (¢) it is necessary to prove each ideal is finitely
generated. We can prove even more. Namely, each ideal requires at most two
generators.

3.19 Proposition. Let R be a domain which satisfies Condition (b) of
Theorem 3.16, and let A be a nonzero ideal of R. For any a in A with a # 0
there exists b in A such that Ra+ Rb = U.

Proor. Let B,,..., B, be all the prime ideals of R which contain a. Each
localization Ry, is a PID, so there exists ¢; with

Q[le = C‘chB‘..

We can write ¢; = x/s with x in % and s in R and observe that ¢; Ry, = xRy,
So we shall assume that c; is in 2 to start with, We have enough information
already to show U is finitely generated. Consider the ideal € = Ra+ Rc; + -
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+ Rc, which is contained in 2. If B is a prime ideal and a is not in ‘P then 1/a
isin Ry 50 €Ry = ARy = Ry. If P is one of the P, which contain a, then CRy
contains ¢; so again Ry = UR,. By Lemma 3.18 it follows that € = A. To
complete the proof we need to find b. Select b in U so that under the iso-
morphism of Theorem 3.4

WP P, A= WP, ASD - @ UB, Y,

the coset b+ B, -+ B, U maps onto the n-tuple (¢, + P, U, ..., ¢, + B, A). Then
b—c; is in P; A and certainly Ra+ Rb = A. We show equality by the same
technique as above. Let © = Ra+ Rb. For a prime § not containing aq,
DRy =URy = Ry. If P is the prime P; then DRy+ PAUR, contains
b+(c;—b) = ¢;. Thus this sum contains c¢; Ry = URy. On the other hand,
D < U so the sum is contained in ARy It follows

The hypothesis of Nakayama’s Lemma (Corollary to Proposition 1.4) is
satisfied : Ry is local, ARy is a finitely generated module, DRy is a submodule.
The above equation implies DRy = ARy. By Lemma 3.18, A = D = Ra+ Rb.

This completes the proof that (b) — (c) in Theorem 3.16. We begin the proof
that (c) — (a).

Let 9B be a maximal ideal of R. Then Ry, is a noetherian local ring with PRy
the only nonzero prime ideal (because primes in R are maximal). Moreover Ry
is integrally closed because R is integrally closed. It remains to show these
conditions imply Ry is a PID.

3.20 Proposition. Let R be a noetherian, local, integrally closed domain
with P its only nonzero prime ideal. Then R is a DVR.

PRrROOF. Select any a # 0in B and let M = R/Ra. For each min M let
ann(m) = {re R| rm=0}.

Since R is noetherian there is a maximal element in the collection
{ann(m)| m#0, me M}. Let b be an element of R such that Q=
ann(b+ Ra) is such a maximal element. Q is nonzero because a # 0 and a is
in Q. We show now Q is prime. If Q is not prime there exist elements x, y not
in Q with xy in Q. Now y(b+ Ra) # 0+ Ra because y is not in Q. Then
ann( yb+ Ra) contains both Q and x which is against the maximal choice of Q.

Thus Q is prime and since R has only one prime #0 it follows that the
maximal ideal P is the set of all elements which multiply b into Ra. That is
Pb = Ra but b is not in Ra.

We now carry through several steps which lead to the conclusion of the
proof.
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Step 1. bjaisnotin R,
If it were then b is in Ra contrary to b+ Ra # 0+ Ra.

Step 2. B = R(a/b).

The inclusion b & Ra means Pb/a is an ideal in R. If Pb/a = P then by
Part (4) of Proposition 2.1 it follows b/a is integral over R. Since R is integrally
closed we get b/a is in R contrary to Step 1. Thus Bb/a = R and P = Ra/b.

We now know the maximal ideal is principal. Let us write ® = Rz for short.

Step 3. Every ideal is principal.
Let U be a nonzero ideal. Consider the chain

NcUAr tcUn 2 c -

If Wn~* = An~*"! then n~ ' sends Arn~* into itself so n~ ! is integral over R.
But this is impossible since 7~ ! cannot be in R.

Since R is a noetherian ring, the part of the chain which falls into R must
be finite. Let An "< R, An " ' ¢ R IfAn""c P=RathenAn ""'c R
so it must be An~" = R. Thus A = Rr" which completes the proof.

4. FRACTIONAL IDEALS AND THE CLASS GROUP

Throughout this section R denotes a Dedekind ring and X its quotient field.

DEerINITIONS. (1) A fractional ideal of R is a nonzero finitely generated
R-submodule of K.
(2) IfMis a fractional ideal, M~ is the set {x e K| xIM < R}.

ExampLEs. If yis a nonzero element of K| then Ry is a fractional ideal. The
inverse (Ry)"'is Ry~ L.
Any nonzero ideal of R is a fractional ideal.

REMARK. If M is a fractional ideal then so is M~ L. It is clear that M~ is
an R-submodule of K. It is necessary to show it is finitely generated. Select any
m in M with m # 0. Then M~ 'm < Rso M~ ' = Rm™"'. Certainly Rm~'is a
finitely generated R module and because R is noetherian, the submodule ™!
is also finitely generated,

Suppose M and N are fractional ideals. The product MR is the collection of
all elements of the form 3. m; n; with m; in 9, n; in N. If {x;} and {y,} are sets
of generators for M and N, respectively, then IMM is generated over R by the
products x; y,. Hence MI is also a fractional ideal.

Definition. A fractional ideal 9 is invertible if MM~ = R.

ExampLE. The principal fractional ideal Rx is invertible for any x in K
because (Rx)(Rx) ™! = Rxx™' = R.
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EXErRCISE. Multiplication and inversion behave properly with respect to
localization. That is, if 8 is a prime ideal of R and M a fractional ideal of R,
then M Ry is a fractional ideal of Ryand (MRy) ™! = M~ ' Ry Also (MIN) Ry, =
(MRy) (NRy) for M, N fractional ideals of R.

4.1 Lemma. A prime ideal of R is invertible.

Proor. Let P be a nonzero prime of R. Then PP ' = A is an ideal of R.
For any maximal ideal & we know Rg is a PID so PRy is principal and hence
is invertible. Thus UAg = (PP~ g =B Pg'! = Rg. This holds for all
maximal Q, so by Lemma 3.18, ¥ = R as required. (In this proof we have
written g for ARy .)

When 9 is a fractional ideal and » a positive integer, we shall write 3™ " to
mean (M 1)

4.2 Theorem. Any fractional ideal 9 can be uniquely expressed as a
product 5 --- Pi» with B, ..., P, distinct prime ideals of R and a,,---,a,
integers (positive or negative).

Proor. Let M be a fractional ideal with generators m,, ...,m,. Each m; is
in K so there is a “common denominator” s in R such that m;s is also in R. It
follows that s < R. There exist factorizations of the ideals Rs and 9Mis as

Rs=[[QF,  Ms=T]P
where the B; and the Q; are the prime ideals of R. It follows mQh - Qb =

P9t .- Pgx. We have seen in Lemma 4.1 that prime ideals are invertible so we
obtain

M= H‘B?"nnj_bj'

This establishes the existence of a factorization of M as a product of prime
ideals with integral exponents. Now we obtain uniqueness as follows. Suppose

M= TP = [[XT1D;¢

where B, Q, X, 9 denote prime ideals and the a;, b;, ¢;, d; are positive integers.
Then we have [T [TV$ = [1X; [TQ¥. This is a factorization of ideals in
R so the uniqueness statement for ideals in R can be used to get the uniqueness

of the expression for 0.

The discussion to this point shows that the collection of all fractional ideals
forms a group under the rule for multiplication of fractional ideals described
at the beginning of the section. We denote this group by I(R) and call it simply
the ideal group of R. The uniqueness statement of Theorem 4.2 implies that
I(R) is a free abelian group with the collection of nonzero prime ideals as free
generators. Generally, this is an infinitely generated group.
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There is a subgroup of particular interest. Namely the collection of all
principal fractional ideals Rx with x in K forms a subgroup of I(R) which is
denoted by P(R). While I(R) and P(R) may be very large Abelian groups, the
quotient can be very small. We let

C(R) = I(R)/P(R)

and call C(R) the class group of R.

The class group is an invariant of the ring R. In many cases R itself is
canonically selected from its quotient field K in which case C(R) may be
viewed as an invariant of K.

For example, let K be a finite dimensional extension of the rationals and let
R denote the integral closure of Z in K. Then C(R) is an important invariant
of K. We shall prove later that C(R) is a finite group in this case. We refer to
C(R) as the class group of K and its order is the class number of K.

It is not generally true that C(R) is finite for arbitrary Dedekind rings.

EXERCISE . For a Dedekind ring R, C(R) has order one if and only if R
is a PID.

EXerCISE 2. Let R=Z+Z+/ —5 = integral closure of Zin Q(v/ —5). R is
a Dedekind ring (by Theorem 6.1). Show that R is not a UFD (and so not a

PID) because
3.7 = (1+2/=5)(1-2J-5)

gives two essentially different factorizations of 21. Prove this fact and then find
an ideal of R which is not principal. (It happens in this case that C(R) has
order 2.)

5. NORMS AND TRACES

Let K be a field and L a finite-dimensional extension of K. Each element
x in L gives rise to a function

Fet V2 X

sending L into itself. We may regard L as a finite-dimensional vector space over
K and then r, is a linear transformation. If we select a basis u,, ..., u, for L over
K, then r, has a matrix representation |a;|, where the gy are in K and satisfy

u,—x = Zai"uj.

The mapping of L defined by sending x to |a;| is called the regular representa-
tion of L over K. This is a monomorphism of L onto a subfield of the K-algebra
of n x n matrices. The regular representation depends upon the choice of basis.
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If another basis is selected and if U is the change of basis matrix, then the
regular representation determined by the second basis sends x to Ulay| U ™.
The two functions trace |a;| and det|a;| are independent of the particular
basis and depend only upon the linear transformation r,, and so only upon x.
We use this observation to see that the maps in the following definition depend
only upon L and K and not upon the particular basis.

Definition. The trace map from L to K is the function T, x(x) = trace(r,).
The norm map from L to K is the function N, x (x) = det(r,).

5.1 Properties of the Norm and Trace. Letx,ye L and ae K.

) TyxGx+y)=Tre(x)+Tk(y);
(ii) Ty x(ax) = aTyx(x);
(iii) NL/K (xy) = Ny (x) Npx(»);
(iv) Npx(ax)=a"Np(x).

These are easily verified if we simply observe r,, = r,r, and ry,, =r.+r,
along with the fact that for ain K, r, has a scalar matrix with a on the diagonal.

We shall also require the following transitivity property of the trace. Let
K < E < L be a chain of finite-dimensional extensions.

(v) Forxin L, T,k (x) = Tgx(TLp(x)).

PrROOF. Let a,,...,a; be a basis for E over K and b,, ..., b,, a basis for L
over E.For xin Land yin E let

xb; = Zﬂii(x)bja ya;, = Zaii(y)aj'
Then
TE/K ) = Z o (»), TL/E(x) = Zﬁu(x)-
It follows that
Tgix (TL/E (x) = Z Z & (ﬂjj (%))
The products a;b; give a basis for L over K and

xa,b, =Y a,B,;(x)b;
= Y Y aa(By(x))a;b;.

Thus Tk (x) = X X «;(B,;(x)) as required.

The corresponding property of the norm is more complicated to verify in
this way so we shall postpone it until later when it can be proved using Galois
theory.
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The characteristic polynomial of the element x in L is defined to be
J(©) = det|tI—r,|.

This is a monic polynomial and we know from matrix theory that f(r,) = 0.
This implies f(x) = 0 because f(r,) multiplies elements of L by f(x). The coef-
ficient of /"' is —Tx(x) and the constant term is (— 1)" Ny x(x).

The trace map is used to define a bilinear form from L x L to K by the rule
(x,¥) = T x(xy). The bilinear properties are easily verified and also the
symmetric property (x, ) = (¥, x).

Recall that a symmetric bilinear form is called nondegenerate if (L,x) =0
implies x = 0.

This idea is important because it characterizes separable extensions.

5.2 Theorem. The finite-dimensional extension L of K is separable if and
only if the bilinear form (x, y) = Ty x(xy) is nondegenerate.

Proor. Assume L/K is separable. There is an element 8 in L such that
L =K(6). Then 1,0,...,6° ! is a basis for L over K and

(x, Y. a,6") = Y a;(x, 0.
So (x, L) = 0 if and only if (x,0") =0 fori=0,1,...,n—1. Our problem is to
prove that x = O under these conditions. Let x = } 5,6". Then
(*) (x,0)) = Y b(8',0).
Let D denote the matrix |dy| with d; = (6'"',6/7'). The equation * and the
assumption (x, L) = 0 implies
(b09bls "'9bn—l)D = (0,0, ,0)

We shall prove D is nonsingular so after one multiplies by D™ it follows that
each b, = 0. Thus x = 0 as required.

The separability of L is crucial in the proof that D™} exists.

Let f(¢) be the (monic) minimum polynomial of § in K. Let E be any field
containing L in which f(¢) splits. Then

J(0) = (t=0)(1=03) - (1=6,)

with 6 = 0, and all 8, in E. The separability of L implies 0; # 0, for i # j.
The characteristic polynomial of 6 over K has degree n =[L:K] and is
divisible by f(¢) because 0 is a root of its characteristic polynomial. It follows
that f(¢) is both the characteristic and minimum polynomial of §. From the
product decomposition of f(¢) we find the coefficient of "~ !. It follows that

Tyx®) =0, +0,+ - +0,.

We want a similar formula for T, (6*). The linear transformation ry has the
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distinct characteristic roots 04, ..., 8, in E. Hence the matrix for r, (with respect
to some basis of L over K) can be diagonalized over E. So there exists U such
that

U_Iro U = diag{gl,ez, ...,6"}-
Raise this to the kth power and it follows that
U 'rg U = diag{0,*,...,0,*}.

Take traces to get Ty x(6*) = 0,*+--- +6,*. We shall return to this formula.
Now let V = V(6,,...,0,) denote the matrix

1 1 1
01 02 gn
0,2 8,2 .. 9"2
9';_1 9;—1 6:—1

and V' the transposed matrix. The i, entry of V'V'is
;0,‘;“0,{" = ;6;;”'"2 = T k(067" = d.

We have thus V'V* = D. Since V and V! have the same determinant, it follows
det D = (det V).
The matrix V is a van der Monde matrix and

detV = [](6,-9)).
i>j
The 6, are distinct so det ¥ # 0 and this proves D! exists and consequently
shows the form is nondegenerate.
For the converse we suppose L/K is not a separable extension. Then the
characteristic of K is a prime p # 0 and there is a subfield F of L containing
K such that

(@ (L:F)=p"#1,
(b) foreachxelL,xPisinF.

We prove (L, x) =0 when x is an element in L but not in F. Start with any
element y in L. Suppose first xy ¢ F. Then the minimum polynomial of xy over
Fis ®—afor some a in F. The characteristic polynomial of xy over F must be

(tp_a)pm—l‘

This means T, ,r(xy) = 0 and by transitivity of the trace, (y,x) = T, x(xy) =
Trix (TL/F(X.V)) =0.
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Now suppose xy € F. Then
Tyr(xy) = xyTyp(l) = pPixy = 0

and just as above (y, x) = 0. In all cases (¥, x) = 0 and the form is degenerate,
as we had to show.

We turn next to the situation most frequently encountered: the case where
a Galois group is used to describe the norm and trace.

Assume L/K is separable and F is a normal, separable extension of K con-
taining L. Let G denote the Galois group of F/K and H the subgroup which
leaves L fixed element-wise. Suppose

o,H,..,0,H

are the distinct cosets of H in G. Notice that n = (L:K) and the o; are the
distinct imbeddings over K of L into a normal extension of K.

5.3 Theorem. Foreach 8 e L we have

@) Tpx@)=a,0)++0,(0),
(b) NL/K(O) =0,(0)0,(0)---0,(0).

PrROOF. Let ¢g(¢) be the minimum polynomial of 8 over K. Then ¢(r) is the
characteristic polynomial of 8 acting upon K(6). Let

(L:K@)=d and (K(@):K)=m.

Then L is the vector space direct sum of d copies of K(6) and the characteristic
polynomial of 8 acting on L must be g(¢)°.
Let 8 = 8,,...,0,, be the distinct roots of g(¢) in F so that

q(t) = [J(t-6).

Since T, ¢ (6) is the sum of the roots of the characteristic polynomial of 8 on
L, and N (8) is the product of these roots, we have

Tyx(0) =d6,+---+6,),
NL/K (6) = (91 92 0m)d'

Now let H, be the subgroup of G fixing 8. Then H < H, andd =[H,: H],
m =[G : H,]. Make a choice of coset representatives so that

TI Hl U o U TmHl = G,
vwHvY vy H=H,.

(1

Then the products 7;y; represent the cosets of H in G and we may use these
representatives in place of the os because they differ only by elements which
leave 8 fixed. Notice that y;(#) = 6 for all j and with suitable numbering we
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may assume 7;(0) = ;. So finally
n m d m
zl:ak(e) = ;Zl:ri‘yj(e) = dzfi(g) =d@;++0,),
1

l—lak(e) = (0,0, 6m)d-
When these are combined with Egs. (1), Egs. (a) and (b) are proved.

Now the transitivity of the norm is easy to prove.

54 Corollary. If K c E c L are finite-dimensional separable extensions of

PrROOF. Let F be a normal extension of K containing L. Let y,,...,7, be
the distinct imbeddings of L into F which are the identity on £ and let
i, ..., T, be imbeddings of L into F which give all the distinct imbeddings of £
into £ over K. Then Ny, z(6) =y, (0) -+ y,(0)

Ny x(0) = l—lfi)’k(e) = HT;'(NL/E(B)) = NE/K(NL/E(B))-
We record for future use one consequence of Theorem 5.2.

5.5 Theorem. Let L be a separable finite-dimensional extension of K and
let u,, ..., u, be a basis of L over K. Then there exists a second basis v, ..., v,
with the property T, (u;v;) = 6; where 6; =1 if i =jand 6y = 0if i % j.

Proor. This is a standard result about vector spaces. Every K-linear
function from L to K has the form x — (x, y) for some unique y in L. We let
v; be the element with the property x — (x,v;) is the function equal to zero at
u;, j# iand | atu;. It is easy to verify the v; give a basis of L over K.

6. EXTENSIONS OF DEDEKIND RINGS

The main theorem of this section shows the reason for concentrating on
Dedekind rings instead of other kinds of integral domains.

6.1 Theorem. Let R be a Dedekind ring with quotient field K and let L be
a finite dimensional extension of K. Then the integral closure of Rin Lis a
Dedekind ring.

Proor. The extension L can be viewed as a chain of extensions K< Ec L
with E separable over K and L purely inseparable over E. Let R’ be the integral
closure of R in E and R” the integral closure of R’ in L. Then R” is the integral
closure of Rin L so the proof of the theorem can be accomplished in two steps.
We show R’ is a Dedekind ring by using the separability of E over K and then
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show R” is a Dedekind ring by using facts about the purely inseparable
extension L over E.

We shall prove that R’ satisfies Condition (c) of Theorem 3.16.

R’ is integrally closed by choice and the transitivity of integral dependence.

To show R’ is noetherian we begin by selecting a basis a4, ...,q, of E over
K. If necessary we may multiply this basis by a suitable common denominator
to insure each g; is in R'. Let by, ..., b, be a dual basis for E over K which
satisfies (a;,b;) = Tk (a;b;) = Oy (see Section 5). Let y be any element in R'.
There exist elements ¢; in K with y = 3 ¢;b;. We compute the ¢; by using the
inner product; that is

(r,a) = zkv_,fk(bk’aj) = ¢

This element c; is Tg(ya;) which in turn is a coefficient in the minimum
polynomial of ya;. It follows that ¢; is in R because ya; is in R’. This proves

R < Zij.
i

This means R’ is contained in a finitely generated R module. Any ideal of
the ring R’ is also an R submodule of this finitely generated R module and so it
is finitely generated over R. It follows then that every ideal of R’ is finitely
generated over R’. This proves R’ is noetherian.

[t remains to prove that prime ideals in R’ are maximal ideals or equal to
zero. To do this we need the following lemma.

6.2 Lemma. Let A < B be integral domains with B integral over 4 and A
integrally closed. If 0 is a nonzero prime ideal of B, then ' n A4 is a nonzero
prime ideal of A.

PrOOF. Take an element x in ‘B, x # 0 and let /() = Y a;¢ denote the
minimum polynomial of x over the quotient field of 4. By Proposition 2.4 we
know the coefficients a; belong to A4. Since f(r) is irreducible we find a, # 0
and

ap =Y a;x' e P n A,
1
which proves the lemma.

6.3 Corollary. If A is a field and B a domain which is integral over 4, then
Bis a field.

Proor. If B were not a field, there would exist a prime ideal § which is
nonzero (and not equal to B). By the lemma, 8 n 4 would be a nonzero
prime ideal. Since 4 is a field, f N 4 = A so 1 isin P, an impossibility.

Now return to the proof of the theorem. Let Jf denote a nonzero prime ideal
in R’ so by the lemma, '} n R = p is a nonzero prime ideal of R. Thus R/pisa
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field and R/ is a domain containing (an isomorphic copy of) R/p. Let
X = x+ ‘B be any element in R’/P. There is a monic polynomial

=" +r "+ 4,

such that the r; come from R and f(x) = 0. Let f(r) denote the polynomial
obtained by reducing the coefficients of /(1) modulo p = R n B. Then f(X) =
0 so X is integral over R/p. Now the hypothesis of Corollary 6.3 hold with
A= R/pand B= R’/ so R’/P is a field. That is ‘P is a maximal ideal of R’.
This completes the proof in the separable case.

We now make a change of notation. Let R be a Dedekind ring with quotient
field £ and let R’ denote the integral closure of R in the purely inseparable
extension L of E.

One of the reasons why the proof is given in two steps is this time we cannot
prove R’ is contained in a finitely generated R-module. There exist examples
where this fails. So the noetherian condition is more difficult to prove. We shall
verify that R’ satisfies Condition (b) of Theorem 3.16.

Since L is purely inseparable over £ and finite dimensional, L must have
characteristic p and for some power p" = ¢ it happens that x? is in F for all x
in L. If x is in R then x?is in £ n R’ = R (because R is integrally closed).
Conversely if x is in L and x%is in R, then x is integral over Rso xisin R’

Now let B # (0) be a prime ideal in R’. Then f n R = Q is a nonzero
prime ideal in R so Q is a maximal ideal. Now for x € 3, x? € Q because x? is
in both R and B. Suppose x is an element of L with x? in Q. Then first of all
xisin R"and also x?is in *B. This implies x is in ‘P because P is prime. Thus x
is in P if and only if x? is in Q. This sets up a one-to-one correspondence
P — Q between nonzero primes of R’ and of R. Now for a # 0in R’ we know
there exist only a finite number of primes in R which contain a? and hence
only a finite number of primes of R’ which contain a. This is half the proof.
It remains to show Ry’ is a DVR for each nonzero prime P of R’

We make a simplification by reducing to the case where R is itself a DVR.
Let Q=R Pand S=R-N, so Rg = Ry is a DVR. S is a multiplicative
set in R’ so Rg' has meaning. We want to assert that Ry’ = Ry'. We clearly
have Ry’ = Ry'. Suppose x/y is in Ry’ with y not in . Then p?is in R but not
in B~ R=9Q. Thus p? is in S so x/y = xy" " !/y? is in Rg' proving equality.
We know also that R’ is the integral closure of Ry so the proof of the theorem
reduces to the following situation.

6.4 Lemma. Let R be a DVR with quotient field E, and R’ the integral
closure of R in an extension field L which satisfies I € E. Then R’ is a DVR.

Proor. Let Rr denote the maximal ideal of R and M the maximal ideal of
R'. Then M is an ideal of R which is # R so M? = Rn" for some positive
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integer n. Let « be an element of M such that a? = n". We shall prove M = R'a.
Let x be any element of R’ and let x? = un with u = unit of R and d = integer.
Write d = nt+r with 0 < r < n and observe (xa ™) = un’n ™™ = un". This is in
R so xa~"is in R'. The choice of » insures that xo~* is not in M so xa ™' is a
unitin R’. Let w = xo~‘ and observe x = wa' = unit times a power of «. Now
let A be any ideal £0in R’ and let m be the least positive integer with «™ in .
If x is in A then x = wa' for some ¢ and ¢ > m implies x is in R'a™. Thus A =
R'o™ so R’ is a PID, which proves the result.

Now we return to the more general situation of R = R’, two Dedekind
rings with quotient fields K and L, respectively. We shall study the relation
between the prime ideals in R and the prime ideals in R'.

Let p be a nonzero prime ideal of R. Then the ideal R'p of R has a
factorization,

®) Rp = P e

with P,,..., B, distinct prime ideals in R’ and e,,...,e, positive integers.
Notice that the exponent e; of B, is completely determined by the prime
ideal B, because B, determines the ideal p in R. Thatis p=R N P,.

Definition. The integer e; is called the ramification index of B; with respect to
R. We shall sometimes write e(B/R) or e(‘B/p) for the ramification index of
P over Rwhen B N R=1p.

ExerCISE 1. Let R < R’ = R” be Dedekind rings and P a nonzero prime
ideal in R". Prove

e(B/R) = e(P/R)e(P n R'/R).

It is sometimes useful to compare various factor rings of R and R’. Notice
that R’/ is a field which contains an isomorphic copy of R/p. The following
result can be used to insure that R’/%, is finite dimensional over R/p.

6.5 Lemma. Suppose (L:K) is finite. Let U be an ideal of R’ such that
A ~ R=pis prime and #(0). Then

(R'/U:R/p) < (L:K).

Proor. The proof can be given most simply if we first reduce to the case
where p is a principal ideal. Let S§ = complement of p in R so that Rg is a
DVR. Then AR n Ry = pRg and R'/URS' =~ R'/U. Hence we may prove
the lemma with Rg, Ry, and so forth, in place of R, R’, and so forth. In par-
ticular we may suppose p = Rn is principal.

Let {x;} be a finite set of elements of R’ whose cosets x;+ 2 are linearly
independent over R/p. Suppose there is a relation Y a;x; =0 with certain
elements g; in K. We may multiply the g, by a suitable common denominator
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to obtain such a relation in which the a; are in R. Suppose not all the g, are
zero. Then there is a highest power of © which divides all the a;. After we
cancel this highest power we obtain a relation in which not all the a; are in Rz.
It follows that

&"x" = 6

is a relation of dependence in R’/ contrary to the assumed linear inde-
pendence of the cosets X, = x;+:. Consequently the x; are linearly
independent over K and the inequality of the lemma follows.

Definition. The dimension f; = (R'/B;: R/p) is called the relative degree of B,
over p. We shall sometimes write f (B;/R) or £ (B/p) for this relative degree.

EXerCISE 2. Let R < R’ = R” be Dedekind rings and P a prime ideal #(0)
in R”. Then f(B/R) = f(B/R) f(B ~ R'/R).

We shall now make a connection between the ramification indices, relative
degrees, and the dimensions of the quotient field.

6.6 Theorem. The integer Y e, f;is the dimension of R'/pR’ over R/p. If the
quotient field L of R’ has finite dimension over the quotient field K of R, then
Y e, fi< (L:K). If S = the complement of p in R and if Ry’ is finitely generated
over Rg, then Y e, f; = (L: K).

PrOOF. We use the factorization (*) of pR’ and CRT to obtain

R/pR =Y @ R'/%s.

The first statement will follow if R'/P¢* has dimension e, f; over R/p. This can
be proved as follows. The ring R’/B;* is not a vector space over R'/P; (unless
e; = 1) but the quotients P,2/B?*! are vector spaces over R'/P,. If we show
this space has dimension one over R'/%; then it will have dimension f; over R/p
and the result will follow. To show P,*/PB?*! is one dimensional over R/, it
is enough to show the space has one generator. By Proposition 3.19 the ideal
P.? can be generated by two elements x and y and y may be selected as nonzero
element in P¢*'. Thus P,2/P** requires only one generator x over R’ and so
also over R’/B;. This proves the first assertion. The second follows from
Lemma 6.5.

Now suppose Ry’ is a finitely generated module over Rg. Ry is PID with
maximal ideal nRg for some = in R. Let x,, ..., x, be a minimal generating set

of Rg' over Rg. Let us first show these elements are linearly independent over
K. If there is a relation

Yax; =0

with a; not all zero then the a; may be multiplied by a common denominator to
obtain such a relation with all @; in R. Since not all g; are zero, there is a highest
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power of 7 which divides all the a;. After removing this highest power we find
at least one of the gs, say a,, which is not in 7Rg. Thus @, has an inverse in Ry
and
x, = —lja, Y a;x;.
i#1

This contradicts the choice of the x; as a minimal set of generators.

Next we prove the x; in fact give a basis for L over K. If this were not so,
there would exist in L an element y such that

Ky n ) Kx; = 0.

However there is some element s # 0 in R such that sy is integral over R. (This
is so because y satisfies a monic polynomial over K and with the right choice
of 5, sy satisfies a polynomial over R). Thus sy belongs to R’ and to Ky which
cannot be consistent with the above intersection unless y = 0. Hence Ry’ is
generated by exactly n = (L: K) elements.

Now we have

R¢'[pRs" = Z(R/p) X;

and the right-hand side is a vector space direct sum. From above we know the
left-hand side has dimension Y e, f; and the right-hand side has dimension
(L : K). This completes the proof.

6.7 Corollary. Let L be a finite-dimensional, separable extension of K. Then

Xefi=(L:K).

ProoF. Incase L is separable over K we have proved Theorem 6.1 (proof)
that R’ is finitely generated over R. In particular then Ry’ is finitely generated
over Rg so the last result applies.

EXERCISE 3. Let R = Z and R’ = integral closure of R in Q(\/ :1) with d a
square free integer. Let p denote a prime integer. Prove that pR’ can have
only the following factorizations:

@ pR =%, (b) pR =P, (o) pR =BQ
where P and Q are distinct primes of R’. In each case compute (R'/: R/p).

If it happens that L/K is normal as well as finite dimensional and separable,
a little more precise information is available about the e; and f;. Suppose G is
the Galois group of L over K. For each ¢ in G, 6(p) = p and 6(R') = R’ so
a(pR’) = pR'. It follows from the factorization (*) of pR’ that ¢(P;) must be
one of the P, for each i =1,...,g9. We shall give an argument to show that
every B; is the image under G of ;.

Suppose this is not the case. Let B, ..., B,, r <g, be all the images of R},
under G. Then G must also permute the set ,.,,...,°¥,. The product
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P, - P, is not contained in any B; with r+1 < j < g. There must exist an
element a in P, --- B, which is not in P,. Then o (a) is in P, --- P, for each ¢
in G and

[[o@eRn BB, <p.

aeG
It follows that [Ta(a) is in B, since p is in B,. But P, is prime so some o (a) is
in B, and thus a belongsto o™ '(B,) which means g ! (B, isoneof P,,..., P,
contrary to assumption. Hence the assumption cannot stand and G is transitive
on the P,;.

6.8 Proposition. Let L be a normal, separable, and finite dimensional
extension of K. Then the factorization (*) of pR’ has the form (P, --- B )°.
Moreover, all the relative degrees are equal (to f'say) and efg = (L : K). Also
the Galois group permutes the B, transitively.

ProoF. Let ¢ be the automorphism of L which maps 9§, onto ;. Then
o (pR’) = pR’ and the uniqueness of the factorization implies o (B5') = P¢' so
e, = e,. It also follows that ¢ induces an isomorphism of R’/*B, onto R'/'B, so
that f; = f,. The statement that efg = (L : K) follows from Corollary 6.7.

Definition. The prime P of R’ is ramified with respect to R if ‘B has ramifica-
tion index > 1 or if the field R'/*B fails to be separable over R/R N P.

We say the prime p of R is ramified in R’ if pR’ is divisible by some ramified
prime of R'.

Our next goal is to determine which primes of R ramify in R’. We shall see
below there are only a finite number of them.

7. DISCRIMINANT

In this section R is a Dedekind ring with quotient field K; L is a finite-
dimensional, separable extension of K; R’ is the integral closure of Rin L. Let
T denote the trace map from L to K (see Section 5).

Let x,,...,x, be a basis of L over K. The determinant A(x,,...,x,) =
det|T(x; x,)| is called the discriminant of the basis x,, ..., x,. If we select the
x;in R', then x;x;isin R"so T(x;x;) isin R. As we let x|, ..., x, range over all
possible bases of L/K which lie in R’, the discriminants generate an ideal of
R which we shall call the discriminant ideal of R’ over R, We denote this ideal
by A or A(R'/R).

We begin the study of the discriminant by showing it can be determined by
localization.

7.1 Lemma. LetS bea multiplicative setin R. Then A(Rs'/Rs) = A(R'/R)s.
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Proor. If x,,...,x, is a basis of L over K contained in R’ then the x; are
also in Ry’ and of course are still a basis for L. Thus A(R’/R) is contained in
A(Rg'[Ry). It follows that

A(R'[R)s = A(R{'[Ry).

Now let yy, ..., », be a K-basis for L with each y; in Rg'. There exists some s
in S with sy, in R’. Since T (sy;sy;) = s*T(y;»;) one can compute

A(SY1soerSYa) = STA(P 1 eees Vo)

It follows that A(sy,, ...,sy,) is in A(R'/R) and so A(yy,...,»,) is in A(R'/R).
This proves both inclusions.

One further computation will be made before we get an application.

7.2 Lemma. If R’ is a free R-module on the generators x,,...,x,, then
A(R'/R) = R A(xy,...,x,).

Proor. Lety,...,y, be a K-basis of L in R'. Let
y; = Zri,xj, ri € R.
J

The existence of such equations is a consequence of the freeness of R’ on the
X;. A simple matrix calculation yields

[Tyl = !"uHT(xixj)H"iill
and so

A(yyy .. yn) = det|rg]? Axy, ..., x,).

Thus every discriminant of a basis is in the principal ideal generated by
A(x,, ..., x,) which proves the lemma.

Now the connection can be made between the discriminant and the ramified
primes of R.

7.3 Theorem. The primes of R which ramify in R’ are those which contain
A(R'/R).

ProOF. Let p be a nonzero prime ideal in R and S the complement of p in
R. Then p contains A(R’/R) if and only if pRg contains A(R’'/R)s. Moreover
pisramified in R’ if and only if p Ry is ramified in Rg’. The proof of the theorem
will follow then if we can prove it for Rg. Thus since Rgis a DVR we may as
well assume at the start that R is a DVR. With this additional information it
follows that R’ is free over R. Let x,..., x, be free generators of R’ over R.
Then this set is also a basis for L over K. Then x,, ..., X, is a basis for R'/pR’
over R/p (by the freeness of R’ over R).

It will be necessary to compare the regular representation of R’ over R with
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that of R’/pR’ over R/p. For each y in R’ the linear transformation

ryi X = Xxy

)
sends R’ into itself and r, has a matrix |a;| with respect to the basis x,, ..., x,
with a; in R. The equations which define the a; are

Xy =Y a;x;.
We reduce this modulo pR’ and obtain
X7 =) a;x;.

This means the linear transformation r; of R'/pR’ over R/p has matrix |a;|.
Let tr denote the linear function from R’/pR’ to R'/p defined by tr(y) =
trace (r;). The above computation proves

(7.4) For y in R, T_x(») = tr(y).

Now we proceed to the proof of the theorem. By Lemma 7.2 we know the
discriminant ideal is generated by A(x,, ..., x,). Thus p > A(R'/R) if and only
if A(xy, ..., x,) is in p. This holds if and only if
(7.5 A(Xy, ..., X,) = det|tr(X;X))| =0
in R/p. [For this we have used (7.4) and the definition of A(x,,...,x,).] It
remains to examine the structure of R'/p R’ under the assumption that Equation

(7.5) holds for the basis of R'/pR’ over R/p.
Let

pR’ =‘B'i’1... ;ﬂ,
so that by CRT it follows that
R/pR = R/P} @ - ® R/PBg
Consider first the case with p not ramified in R’. Theneache; = | and R/,
is a separable extension of R/p. Let ¢; denote the trace map from R’/B; to R/p
Select a new basis for R’/pR’ which is compatible with the direct sum decom-
position. That is select u,,...,u, a basis for R'/P,; uy,4,..., 44, a basis for

R'/P,, and so forth. Then for y in R'/pR’ we can write ) =y, +---+y, with
yiin R’/PB;. The matrix for r; has the block decomposition

A, 0

0 4,
where A; is the matrix for r , acting on R'/;. It follows that

tr(p) =t (y) + - + t,(y).
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More importantly the discriminant matrix has the block form
A,
A,

A

g

where A; = discriminant matrix of the basis of R'/*B; over R/p. We know from
Section 5 that R'/*B; separable over R/p implies detA; # 0. Thus

A(Xy,...,%,) = u*(detA,) - (detA)) # O,

where u is the determinant of the matrix which represents the change of basis.

This proves that p not ramified implies p does not contain A(x,, ..., x,), by
7.5.

To complete the proof we must show that whenever some ¢; > | or some
R’/B; is not separable over R/p, then A(X,,...,X,) =0.

Suppose ¢; > 1. Select a basis u,, ..., u;, for R/’ such that u, is in P,/ P7.
Then (u,)* = 0 so that r,, is a nilpotent linear transformation. Moreover u; u;
is also nilpotent so the characteristic polynomial of r, ,, has only zeros for its
characteristic roots. Thus

t;(uy u;) = tracer,, = 0.

Uy

It follows that the discriminant matrix for R'/*R; over R/p has a row of zeros
and so detA; =0. Since A(X,,...,X,) is a product of the detA; we get
A(x,,....,x,) =0.

Finally suppose all the ¢, =1 but R/, is not separable over R/p. By
Theorem 5.2 (proof) we know the discriminant of R'/%; over R/p is zero so
again A(x,,...,X,) = 0.

In both of these cases it follows p must contain the discriminant ideal.

Next we consider some means by which a factorization of pR’ can be
computed. This procedure will not cover all possible cases but is still rather
general,

7.6 Theorem. Let R’ denote the integral closure of the Dedekind ring R in
a finite-dimensional extension L of the quotient field K of R. Let p be a nonzero
prime ideal of R. Suppose there is an element § such that the integral closure
of R, in Lis R, [0]. Let f(X) be the minimal polynomial of 6 over K. Let f(X)
denote the polynomial obtained by reducing the coefficients of f(X) modulo p.
Suppose

J(X) = g, (X)" - g, (X)*

is the factorization of f(X) as a product of the distinct irreducible polynomials
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g;(X) over R/p. Then
PR = Pt ... P
for certain primes B; of R’ and the relative degree f; equals the degree of g,(X).

Proor. The factorization of pR’ is completely determined by local infor-
mation so we may replace R by R, and R’ by Ry', S = R—~p. In particular we
assume R is a DVR. Then we have R’ = R[#] and this is isomorphic to
R[X]1/(f(X)). Hence R'/pR’ isisomorphic to R[X] modulo the ideal generated
by p and (f(X)). If we first divide out by p we have finally

R'/pR = RIXI/(f(X)),

where R = R/p. The factorization of f(X) and CRT now yields
R/pR = Y ® R[X]/(g:(X)™).

The prime ideals in this ring are in one-to-one correspondence with the g;(X)
and so it follows that

PR = Pt PP
with R/, = R[X1/(g:(X)). Thus ‘B, has a relative degree equal to the degree
of g,(X) and the proof is done.

This theorem is limited by the necessity that R’ = R[6] (locally). It need not
happen that such a 8 exists. We can give a criterion for this in case Risa DVR.

7.7 Proposition. Let R be a DVR with maximal ideal p and let 0 be an
element of R’ such that L = K(8). If A(1,0,...,6" ") is not in p then R' =
R[0].

Proor. Since Ris a PID, R’ has a free basis «q, ..., ®,_, over R. We have
R[6] < R’ so each power of 8 can be expressed in terms of the basis.

0 =Y ryo;, r; € R.
7
Then
A(L,0,...,6m ") = det|T, (66|
= det|ry|? det|T, 4 (x; )|

The elements here are all in R and the element on the left is not in p. Thus
det |r;| is not in p and since Risa DVR, det|r;| has an inverse in R. This means
each a; can be expressed as an R-linear combination of the 6'. Hence
R’ = R[#] so equality must hold.

ExaMpLE. We consider K = Q = rationals and L = Q(0) with 0°=2.
One computes the discriminant first. We know T x(6) = sum of the roots of
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X3-2 so T x(0)=60+wl+w?0=0 where w*=1 and w#1. Also
Ty x(0?) =02 +0?0*°+wh? =0. It follows that T(#*)=2T(1)=6 and
T(0*) = 0. Then A(1,6,0%) = — 22.3% = det|T(0'¢")|. Let R’ be the integral
closure of Z in L. The factorization of pR’ is determined by the factorization
of pRy’ with S = Z—(p). That is if

pR =[] Pr
then
pRs" = ([ B{)s-
Let p denote any prime #2, 3. By Proposition 7.7 the integral closure of Z,

is Z,[0]. By Theorem 7.6 the factorization of p in Z,[6] is determined by the
factorization of X°—2in Z/p. We consider a few cases.

p=1 X3—2 is irreducible modulo 7 so 7R’ = B, is prime and we
find R'/P, = GF(7%).

p=29  X3-2=(X+3)(X*-3X+9) modulo 29 and the second factor
is irreducible. Thus

29R" = P, B,  with R/P, = GF(29)
and R'/B, = GF(29%).

p =31 X3 -2=(X-49(X-7)(X+11)modulo3land31R = B, B, B,
with R'/'B, = GF(31).

Notice that these computations are possible without actually knowing R’
explicitly. After a rather lengthy computation, it does follow that R’ = Z[#8].
Hence Theorem 7.6 can be applied also to the cases p = 2, 3.

p=2 X3-2=X3modulo2so0o2R = PB*and R'/B = GF(2).
p=3 X3-2=(X+1)modulo3so3R = P*and R'/P = GF(3).

We will be able to do these calculations in Section 8 without first proving
R = Z[0].

EXERCISE. Let d be a square free integer and R’ the integral closure of Z in
Q(ﬂ). As a continuation of Exercise 3 in Section 6 determine which of the
three possible factorizations of pR’ actually occurs. Prove the following.

(a) Suppose p divides A(R'/Z). Then pR’ = P2,

(b) Suppose p is odd and does not divide A(R’/Z). Then pR’ = PR with
P # Q if and only if d is a quadratic residue modulo p. That is X*—d
has a root in Z/p.

(c) Suppose p =2 and does not divide A(R'/Z). Then necessarily d = 1
mod 4. Show 2R’ = PQ if d=1 mod8 and 2R = P is prime if d= 5
mod 8.
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8. NORMS OF IDEALS

In this section R is a Dedekind ring with quotient field K; L is a finite-
dimensional, separable extension field of K, and R’ is the integral closure of
Rin L.

Let N denote the norm function, N(x) = det(r,) where r, is the K-linear
transformation on L given by r,(y) = yx (see Section 5).

For any element x of L, the characteristic polynomial of x is a power of its
minimum polynomial. When x is in R’, the coefficients of the minimum poly-
nomial are in R (by Proposition 2.4) and so also the coefficients of the
characteristic polynomial are also in R. In particular N(x) belongs to R.

Let A be an ideal in R'.

Definition. The norm of U, N(A), is the ideal in R generated by all N(a) with
ain A.

8.1 Properties of the Norm:

(i) N(ab) = N(a)N(b).
(i) N(R’a) = RN(a).
(iii) If S'is a multiplicative set in R, then N(2)g = N(2j) for any ideal
in R,
(iv) N(AB) = N(W) N (B) for ideals A, B in R'.

ProoF. (i) isjust a statement about determinants.

(ii) Since 1 isin R" and N(1) = 1 it follows that N(R’) = Rand N(R'a) =
RN(a).

(iii) Any element in Ug has the form a/s with @ in U and s in S. Thus
N{(a/s) = N(a)/s" if n = (L : K). Thus N(2g) = N(U);s.

Conversely the ideal N () is generated over Rg by elements N(a) with a in
A. All such elements are in N (2[) so the other inclusion follows also.

(iv) We shall use Lemma 3.18 to get the equality. It is necessary to prove
equality at the localizations at each maximal ideal. For any maximal ideal p
of R, let S = R—p. By Part (3) we know

N@)s = N(Ug),  N(B)s = N(By),  NUB)g = N(UsBy).

The ring Rg is a DVR and Ry’ has only a finite number of prime ideals. By
Theorem 3.15 we obtain Ry’ is a PID. Thus g = aRy’, Bs = bR’ for some
a,bin R'. Then

N(B,) = N(abRg') = N(ab) Rg = N(a) Rs-N(b) Ry
= N(2) N(By).
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This Property (iv) shows that we can determine N () if we can determine
N(B) for each prime ideal B of R’. That is when

A=T[P¥ then NA) = []N(B)~.

The computation of N(*B) is simplified if we first work in the situation where
L is normal over K with Galois group G. We assume this is the case.

Now let P denote a prime ideal of R" and let p'= B n R. For an element a
in B the product of all g(a) must also fall in B (because P is an ideal) so
N(a)e P n R = p. We argue that N () must be a power of p. It is enough to
show that no other prime of R can enter into the factorization of N (). Clearly
B > pR’ so P divides pR'. Thus N(P) divides N(pR)=N@®)R=p", n=
(L: K). So it follows that N () is a power of p. We shall now determine the
exact power. This power will not be changed if we localize at S = R—p. Thus
we may work with Ry, R¢' in place of R, R'. Both of these rings are now PIDs
so let PRy = R and pRg = TR;.

The ramification numbers for the primes of Rg" which divide 7 are all the
same by Proposition 6.8. We may assume

(8.2) PRs = Ry = (P, - B)*

for certain primes PB; of Ry’. We may assume B, = 7R’ = BR’. Now we
know the Galois group permutes the primes B, transitively and |G| = efg with
S = relative degree of . Thus as o ranges over G, o (B,) ranges over B, ..., B,
with each P, counted ef times. It follows that

NMRs = [[ o(mRs = [[a(By) = (B, B

ceG

But also N(nRy') = pg" for some m so N(n) Rg' = p"Rs" = (B, - B in
view of the factorization Eq.(8.2). It follows that m = f = relative degree of ‘B
over R and

(8.3) N(B) =p’, f= relative degreeof P over R.

Now we drop the assumption that L/K is normal. Let E be a field containing
L which is normal, separable, and finite dimensional over K. Let R” be the
integral closure of R in F and let Q be some prime of R” which appears in the
factorization of YR". Then E is normal over L, so by Eq. (8.3) we find

NE/L(Q) = ‘Bf', f1 =f(D/R')-
Also
Nk (@) = p'2,  f, = f(Q/R).

By the transitivity of the norm (Corollary 5.4), Ng(x) = Ny x(Ng,.(x)),
and so

p’? = Nyx(Ng () = Nyx (B
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Exercise 2 of Section 6 states in this context that £, = f; f(B/R). Hence Eq,
(8.3) holds again.

8.4 Proposition. For any nonzero prime P of R’, the norm N () equals p’
with p = R n P and fthe relative degree of P over R.

8.5 Corollary. Let A =[]*B; be an ideal of R’ and f; the relative degree of
B, over R. Let p; = B, n R. Then N(2) = [T p&/+.

Consider now the case with K = Q = rational field and R = Z = rational
integers. L and R’ have the same meanings as above. For any ideal U of R’,
N () is an ideal in Z which is necessarily a principal ideal, say N() = Zm =
{m)for some integer m. If we require that m = 0 then m is uniquely determined.
Let us denote the integer m by A7 () so that the norm of an ideal 2 # 0 is
now a positive integer. We call A" (W) the absolute norm of .

8.6 Proposition. For any nonzero ideal 2 in R’ the integer 4" () is equal
to the number of elements in the ring R’/

Proor. Let % =[] B and p; the prime number such that (p;) = B, n Z.
Let f; denote the relative degree of B, over Z. By CRT we know

RN =~ R/P} @ - @ RV
We shall first compute the number of elements in each of these summands.
In the proof of Theorem 6.6 we observed that each quotient R,/ RE*! is a
one-dimensional vector space over R'/*B;. Thus R'/{3{" has |R’/P;|* elements.

Since R'/*B; has dimension f; over Z/(p,) it follows that | R’/®,| = p{*. Thus the
order of R'/B% is p?/i. Consequently

(R 2] = []pe

By Corollary 8.5 this number is A7 (20).
In this same context we shall make a few remarks about computations.
Suppose U is an ideal with A7 () = p = prime integer. 1t follows that R'/A
has p elements so U is a prime ideal of relative degree f = |. In particular, if x
is an element of R and N(x) = p is prime, then Rx is a prime ideal with relative
degree equal to one.

ExaMPLE. In the last section we considered factorization of primes in the
ring of integers in Q(#) where 6 = 2. The factorization of p could be easily
obtained by Theorem 7.6 when p # 2,3. For p = 2, 3 it was necessary to know
that R = Z[0]. We can avoid that last computation. Clearly N(0) = 2 because
X3 —2is the minimum polynomial of 0. Thus OR is a prime with relative degree
equal to one. Moreover, 2 is in (OR)? so (OR)® = 2R. The sum of the e, f; must
equal three so 2R = (R)* = P gives the factorization of 2R.

For the prime p = 3 we proceed in a similar way. f(X) = X>—2 is the
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minimum polynomial for 6 so f(X—1) = (X—1)*-2 is the minimum poly-
nomial for 8+ 1. 1t follows that N(6+ 1) = 3so (0+ 1) Ris prime. It is slightly
more difficult this time to show 3 is in (8+1)*R.

Let « = 6+ 1 and observe that the minimum equation for « is o ~3a® +
3a—3=0.

Suppose 3R = (xR)B. Then 3 = af and f = 3/a = «® — 3a+ 3. This belongs
to aR so 3 is in a*R. Now suppose 3 = «?8’. Then

B =3a*=a-3+3a=a-3+a*—3a+3

which also belongs to aR. Hence 3 isin o> R s0 3R = (aR)* by the same reason-
ing as before for p = 2.

Application of Preceding Results. We shall use the information obtained
about norms to prove the following theorem which tells precisely which
integers can be expressed as the sum of two squares.

Theorem. The positive integer n can be expressed in the form n = a? + b?
with a, b integers if and only if no prime of the form 4k +3 appears in the
factorization of n with an odd exponent.

PrROOF. Let i be a root of x>+ 1 = 0. The integral closure of Z in Q(i) is
just Z[i]= R.Ifa+ibisin R then N(a+ib) = a*+b*.

Conversely if n = a?+b* then n = N(a+ib) and a+ib is in R. So the
integers we are trying to characterize are precisely the norms of elements in R.
Consider an element x in R and let

xR = T1%¢ TS

be the factorization of xR as a product of primes in R. We select the notation
so that

PnZ=(p) [fB/Z)=2;
9, nZ=1(g) fQ)2)=1
By Proposition 8.4 we see A" (B;) = p;> and A (Q;) = ¢; and so
N = []pi [T}

We see from this that if a prime factor of N(x) has an odd exponent in the
factorization, then the prime must be one of the g;. The integral primes g
which are divisible in R by some prime with relative degree 1 are precisely
those primes ¢ for which X2+ 1 is reducible modulo ¢. These in turn are the
primes of the form 4k+1 or g = 2. This proves half the result. Namely the
norm of an element of R cannot have a prime of the type 4k + 3 appear with
an odd exponent in the factorization.



9. Cyclotomic Fields 39

For the converse suppose # is a positive integer and

n=mp, - p,
with p,,...,p, distinct primes equal to 2 or numbers 4k+1. Then p, R is
divisible by a prime B; with N(*B,) = (p,). We shall leave as an exercise the
fact that R is a PID. Thus B; = w; R for some w; in *B;. It follows that N(w,)

generates (p;) so N(w;) = = p;. However, for any win R we have N(w) = 0 so
N(w,) = p;. Now then

N(mvvl wrs) = m2p1 P =N
which proves » is a sum of two squares.

EXERCISE. LetR =27 [\/ -——l]. Let a, b be nonzero elements in R. Show that
there exist ¢, r in R such that

a=>bg+r and 0 < N(r) < N(b).
Conclude that Ris a PID.

9. CYCLOTOMIC FIELDS

For a positive integer m, the splitting field of the polynomial X™—1 over
the rationals is called the cyclotomic field of mth roots of unity. If 8 is a root of
X™—1 but not a root of X" — 1 for any n < m, then 0 is a primitive mth root of
unity. If 0 is one primitive mth root of unity, then any other has the form 6*
with k and m relatively prime. From this it follows that Q (9) is the splitting field
of X™— 1. We shall study this field in some special cases first.

We first fix some notation for later use.

Notation. Let p be a prime and g = p®. The number p°~!(p—1) will be
denoted by ¢(g), the Euler function at g.
X7 —1
X) =
) = s
0 = primitive gth root of unity.
R = algebraic integers in Q(0).

9.1 Theorem. (a) (Q(0):Q)=p*" '(p—1).
(b) The polynomial f(X) is irreducible over Q and it is the minimum
polynomial of 6.
(c) The element a = 1—0 is a prime element, aR is a prime ideal and
PR = (ozR)"“”.
(d) The prime p is the only ramified prime.
(e) R=Z[0].

=P E P ], = X
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Proor. The element 8 is a root of X7 — 1 and not a root of X**™'—1 so it
follows that f(6) = 0. The other roots of f(X') are the other primitive gth roots
of unity, namely 8* for (p, k) = 1. We see that 6* is an algebraic integer for all
k. Notice also that

1-6*
1-9

=140+ -+ =y

belongs to R. If (p, k) = 1, then @ is a power of 6* so the same method implies
1-6
'1—_7( = uk" isin R.

This u, is a unit in R and 1—6* = (1 —6)u,. Since there are ¢ (g) distinct 6*
with (p, k) = 1 and f(X) has degree ¢ (g) it follows that

Xy =TI x-69.

(k,p)=1
From the definition of f(X) it follows that f(1) = p so we find
) p= [l (1-6%=(1-6*9(unitof R).

(k,p)=1

Next we compute the norm N (1 —6). The field Q(8) equals Q(1 —0) so the
minimum polynomial and the characteristic polynomial of 1 — 0 are the same.
Thus N (1 —8) is the product of the distinct roots of the minimum polynomial.
These roots are among the elements 1 — 6%, (k,p) = | so N(I —8) divides the
product of the 1 —6*. So N(1-0)=+1 or +p. If N(1—0) =+ 1 then 1—60
has an inverse in R and so by (1) p has an inverse in R—impossible. Thus
N(1—0) = +p. This proves | — 0 is a prime element and (1 —-68) R is a prime
ideal with relative degree equal to one. Let « = 1 —8. Equation (1) implies
pR = (aR)*9. By the general equality Y e, f; = (Q(0) : Q) we find

?(q)f = $(q) < (Q0): Q)

(We have just seen the relative degree f'= 1.) On the other hand, since 8 is a
root of f(X) we obtain

(Q(0): Q) < degree f(X) = ¢(q).

It follows that (Q(0) : Q) = ¢(g) and this implies that f(X) is irreducible over
Q [otherwise the dimension of Q(0) would have to be smaller].

This completes the proof of (a), (b), and (c). The remaining parts require
more calculation. It will be convenient to number the roots of f(X) as 6 =
0,,0,,...,04, so that

fx) =[1x-6).
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Differentiate this by the product rule to obtain
(2) f’(e.’) = n (ai_ej)-

J#i
We shall make use of this formula to compute the discriminant
A(L,0,...,0007 1) = A,
By the results in Section 5 we know
A =T]6,—-6)

i>j
This is an integer which divides
3) 1 -6y =TI/
alll*l'{j !
Now compute f'(X) from the quotient rule using the definition of f(X)
given at the beginning of this section. One obtains
110 = p0;7 8y = 1.

Use this to evaluate the expansion (3). Observe that 67°”' is a primitive pth
root of unity and as 6, ranges over the p®~ ! (p— 1) p°th roots of unity, each
pth root of unity will arise p®~! times. If { is a primitive pth root of 1 then
N(1—{) = p by the results already obtained. This means that the denomi-
nators of the fractions for £7(8;)? will contribute p>**~' to the product (3). Also
N (6) = 1 so it turns out that

I_I (0.~—9,-) = p2(a¢(q)—p"“)‘

alli#j

We knew this expression was divisible by A so we finally obtain
4) A=pf for some positive s.

Because Z isa PID, we know R has a free Z-basis x, ..., x4, . Let U = |uy
be the matrix with integral entries such that

0!' = Zuu Xj.
J
By a (now familiar) matrix calculation one finds
(5) A(L,0,..,87 1) = (det U)? A(xy, ..., Xy

The three quantities here are integers and the one on the left is a power of p.
It follows that A(x, ..., X,,,) is also a power of p. By Lemma 7.2 one finds

A(R|Z) = ZA(xy,....X4) = (P).

So the only ramified prime is p since no other primes divide the discriminant
ideal. This proves (d).
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Equations (5) and (4) also yield the fact that det U is a power of p so that
U ~!is a rational matrix with only powers of p appearing in the denominators.
We can express the elements x; as rational combinations of the 6' using
coefficients with only powers of p in the denominators. Since all the §' belong
to Z[6], there is some positive integer r such that p"x; is in Z[8] for all /.
This implies

(6) P'R<c Z[6] < R.

Our goal is to prove Z[0] = R. The crucial part of the argument is the
observation that R/aR is isomorphic to the field Z/(p) of p elements. This
follows because we have seen above that aR is prime with relative degree one.
Now Z[0]/Z[8] n oR must be isomorphic to a nonzero subring of R/aR. The

only possibility is that Z[6]/Z[6] n aR also has p elements. Thus every coset
of R in R contains an element in Z{0]. This means

) Z[0]+aR = R.
Multiply by a to get
Z[0a+ «*R = aR.
Since o« =1—6 is in Z[0] we may substitute this expression for aR into
Eq. (7) to get
Z[6] + 2*R = R.
Continue this way and by induction one obtains
®8) Z[0]+ R =R, forall t>1.
By Eq. (1) we see pR = («R)*® and by expression (6)
(pR)Y = (@R)*9 < Z[6].
So in Eq. (8) use ¢ = r¢(q) to get «' R = Z[6] and finally Z[6] = R. This
completes the proof of Theorem 9.1.

Exercise. If 0 is a primitive p™th root of unity, then the discriminant
A(1L,0,...,0°PM Yy is +p° withc = p" ' (mp—m—1).

Now we consider the cyclotomic field Q(6) with 6 a primitive mth root of
unity and m not necessarily a prime power.

9.2 Theorem. (a) (Q(8): Q)= d(m),
(b) If pis a prime integer which ramifies in Q () then p divides m,
(c) If m=p®mgy with p a prime not dividing m,, then p has ramification
number ¢ (p?) in Q(0).

Proor. Use induction on m—the theorem being true when m is a prime
power. Assume m = p°n with p a prime not dividing n. Let L, and L ,. denote,
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respectively, the fields obtained by adjoining to Q a primitive ath root and a
primitive p“th root of unity. Then Q(6) = L, L,.. We argue next that

L,n Le=0.

For any subfield K of L,., the ramification number of p in K equals (K: Q)
because this holds in L,.. In any subfield of L,, p has ramification number one
because p does not divide r and the induction hypothesis can be applied. Thus
Q is the only common subfield of L, and L,.. From Galois theory it follows
that

Gal(Q(6)/Q) = Gal(Q(8)/L,) x Gal(Q(0)/L,.)
> Gal(L,./Q) x Gal(L,/Q).
By induction, the order of Gal(Q (6)/Q) is ¢ (p*) d (n) = ¢ (p°n) = ¢(m), which
proves (a).

Now let R denote the ring of algebraic integers in L,, S the algebraic integers
in Q(0) and ¢ a primitive p°th root of unity. Then

R[elc S

and the discriminant ideal A (S/R) contains the discriminant A(1, ¢, ..., e?®9 1),
Observe that for x € L,. we have

To@y L. (X) = ) o(x) = ) o(x)
a e Gal(Q(8)/Ly) o e Gal(Lp?/Q)
= TLpa/Q(x)‘

From the computations in the proof of Theorem 9.1 we see
A(l,g, ..., e?*) "1y = power of (p).

Hence A(S/R) = power of pR. The only primes of R which can ramify in S are
the divisors of pR. The transitivity of the Galois group implies every prime
divisor of pR ramifies in S if any one of them does. Since p has ramification
number ¢(p®) in L., a prime P dividing pR ramifies in S with ramification
number of ‘P cannot exceed the dimension (Q(6): L,) = ¢(p?). Hence the
ramification number of P and p in S is exactly ¢(p?). This proves both (b)
and (¢).

Exercise 1. If m is an odd integer then Q(e,,,) = O(e,,) so 2 does not
ramify in Q(e,,,) even though 2 divides 2m. Show this is the only exception to
the assertion *‘p ramifies in Q (e,) whenever p is a prime dividing n.”

The following exercises are given to show how Theorem 7.6 can be used to
obtain the factorization of prime ideals of Z when extended to the ring of
algebraic integers in a cyclotomic field. Let m be a fixed positive integer and 0
a primitive mth root of unity.
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EXErciSE 2. Show Z[6] is the full ring of algebraic integers in Q(6).
{Using the notation of the proof of Theorem 9.2 it is only necessary to show
R[e] = S. This can be done by slightly modifying the proof of Theorem 9.1 (e).}

EXErcISE 3. Let ¢ be a prime integer not dividing m and let q be a prime
ideal in Z[6] containing g. If 6*—1 is in q then 8*— 1 = 0. Conclude that 8 in
Z[0]/q is still a primitive mth root of unity.

Exercise 4. Let @, (x) be the minimum (monic) polynomial of § over Q.
Then ®,,(x) has integer coefficients and we let ®,,(x) denote the polynomial
after reduction mod g, ¢ as in Exercise 3. Show the splitting field of ®,, over
GF(q) = Z/q is the field GF (¢") where r is the least positive integer for which
GF(¢") contains a primitive mth root of unity. This is the least r such that m
divides ¢" — 1. Conclude every prime factor of ®,, has degree r.

EXERcISE 5. If gisanintegral prime not dividing m then the ideal generated
by g in the ring of algebraic integers in Q(0) has the factorization (g) =
B, -+ P,, where the P, are distinct primes, gr = ¢ (m) and r is the least positive
integer such that m divides ¢"— 1.

EXERCISE 6. If m = p®n with p a prime not dividing n then the factorization
of p in Z[6] has the form

(P) = (3B, -+ PP
where gr = ¢ (n) and r is the least positive integer such that » divides p"—1.

ExErcisE 7. (Galois groups of cyclotomic fields), Let G, denote the
Galois group of Q (6)/0.

(a) If m has the factorization m = p9' ... pf*, then

Gy = Gpu, X X Gpa,.

(b) For p an odd prime G . is cyclic of order (p—1) p*~ !

Procedure. G . is isomorphic to the multiplicative group of units in Z/p®
and is also (by Sylow decomposition) isomorphic to a direct product of a group
of order (p—1) with a group of order p®~ . The group of order p—1 is iso-
morphic to the multiplicative group in Z/p so it is cyclic. The element cor-
responding to 1+p in Z/p® has multiplicative order p"~' 50 G is the direct
product of two cyclic groups of relatively prime orders.

(c) The group G,. (for 2 = 8) is the direct product of a group of order 2
and a cyclic group of order 2°~ 2,

Procedure. Show the group of units in Z/2° is generated as a direct product
by the images of —1 and 5.
The groups, G, and G,. have orders | and 2, respectively.
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Quadratic Reciprocity

Now we turn to some special questions. Assume p is an odd prime and 6 a
primitive pth root of unity. The Galois group of Q(8) over Q is cyclic of order
p—1. This number is even so there is precisely one subgroup of index two.
Accordingly there is a unique quadratic extension of Q contained in Q(8). We
can describe this quadratic subfield by studying the ramification of primes.

9.3 Theorem. When p is an odd prime, the cyclotomic field of pth roots of
unity contains exactly one quadratic subfield over Q and it is Q([e(p)p]'/?)
where e(p) = (— )P~ 172

Proor. We have indicated above why the quadratic subfield is unique.
Suppose Q(\/d—) < Q(8), d square free. Any prime integer 4 which ramifies in
Q(\/H—) also ramifies in Q(8). Since p is the only prime which ramifies in Q(6)
it follows that p is the only prime divisor of the discriminant of Q(\/E). This
discriminant is either 4 or 4d depending upon d = | mod 4 or not. Since p is
odd the discriminant is not 44 and so d =1 mod4 and p is the only prime
divisor of d. Thus d = +p and the sign is uniquely determined by the con-
gruence modulo 4. An examination of the cases shows d = ¢(p) p as required.

This computation can be made the basis of one of the many proofs of the
law of quadratic reciprocity. We shall present the details.

For an odd prime p, let U, denote the multiplicative group of the field
Z/(p). Then U, is a cyclic group of order p— 1. The collection of all squares of
elements in U, forms a subgroup, Upz, of index two. Let { -1} = T denote the
multiplicative group of order two. There is a unique homomorphism of the
group U, onto T which has kernel U,%. This homomorphism will be denoted
by (- /p) and its value at u is written (u/p). We call (u/p) the Legendre symbol. It
is usually convenient to define (a/p) for @ in Z to mean the value of (- /p) at the
image of a in U, when (p,a) = 1. If p divides a, then (a/p) is not defined.

9.4 Elementary Properties. Let g, b be integers relatively prime to p.

(1) (ab/p) = (a/p)(b]p).
(2) (a/p) =1 if and only if @ = x? mod p for some x in Z.
(3) (a/p) =1if and only if X?—a is reducible modulo p.

Proors. (1) Immediate because (- /p) is a homomorphism.
(2) (a/p) =1if and only if the image of a in U, falls into U,>.
(3) X?2—ais reducible if and only if @ = x> mod p for some x in Z.

In view of Property (3) and the exercise at the end of Section 7, one easily
proves the following.

9.5 Lemma. Let a be a square free integer. The odd prime p splits as a
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product of two distinct primes in Q(\/?z) if and only if p and g are relatively
prime and (a/p) = 1.

The law of quadratic reciprocity gives a relation between (p/q) and (¢/p) for
distinct odd primes p and g. We shall obtain this law by examining the decom-
position of ¢ in the cyclotomic field of pth roots of unity.

Fix the odd prime p; let 6 = primitive pth root of unity; £ = Q([e(p)p]'/?)
is the unique quadratic subfield over Q contained in Q(6) as in Theorem 9.3.
Let R = algebraic integers in £, R’ = algebraic integers in Q(0).

9.6 Lemma. The prime g splits as a product of two distinct primes in R if
and only if ¢ splits as a product of an even number of primes in R’.

ProoF. Let gR = B, B, for distinct primes in R. These prime ideals must
be conjugate within the Galois group of E over Q (by Proposition 6.8) and so
there is an automorphism ¢ in the Galois group of Q(8) over Q such that
a(P,)=P,. Nowlet B, R' = &, :-- S, with &, primes in R’. It follows that

gR' = P, PR = S, -, 0(S)) 0 (S)

and these must be distinct primes because g is not ramified. Thus ¢ has an even
number of factors in R’.

Conversely suppose gR’' = S, -+ &,,, &, distinct primes in R'. Let G denote
the Galois group of Q(6) over Q and H the subgroup of elements ¢ for which
6(©,)=&,.Then |G: H| = 2k. Let G, be the subgroup of G fixing E element-
wise so that |G: G| = (E: Q) = 2. Since G is cyclic, there can be only one
subgroup with index 2. Since |G: H| is even, it follows that H < G, and
|G,:H|=k.Let B =&, n R. Then PR’ is divisible by &, and moreover for
g in G, we see d(PR’) = PR’ so ¢(S)) also divides PR’. This accounts for
exactly k distinct primes of R’ in the factorization of ‘PR’. Since G, = Galois
group of Q(0) over E, G, is transitive on the primes of R’ which divide PR’
Thus PR’ has exactly k prime divisors. Now gR’ has 2k prime divisors so
gR = P is impossible. The only alternative is gR = P, P, for some pair of
primes in R.

In the proof of the next lemma it is necessary to know the relative degree of
a prime divisor of g in R’ over 4. This has been computed in the exercises just
above. An alternate method based on the Frobenius automorphism is described
in the exercises following Section 3 of Chapter III. The relative degree of a
prime & in R’ dividing q is the least integer f such that ¢/ = 1 modp.

9.7 Lemma. The prime g # p splits as a product of two primes in
Q(le(p)p1'?) if and only if (q/p) = 1.

PROOF. Let gR' = &, --- §, be the factorization of ¢ in R’. Then gR has
two prime factors in R if and only if g is even (Lemma 9.6). By Proposition
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6.8 wehaveefg = fg = p—1 =(Q(0): Q). Thus g is even if and only if f divides
{p—1)/2. Because of the characterization of the relative degree mentioned just
above, this holds if and only if

g?~ "% = | modp.

Now in the cyclic group U, an element has order dividing (p —1)/2 if and only
if that element lies in U,”. Then g has two prime factors in R if and only if

(g/p)=1.

One last computation before we reach our goal.

9.8 Lemma. (—1/p)=(—1)*""2forany odd prime p.

ProOF. (—1/p) =1if and only if —1 = u? for some u in U,. Necessarily
this element u has order 4 so 4 divides p— 1. Conversely if 4 divides p— 1 then
there is an element u of order 4 and u*> = — 1 because — 1 is the only element in
U, with order 2. Thus (—1/p) =1 if and only if 4 divides (p— 1) which is
equivalent to (— 1)P~1/2 = |,

9.9 Propesition. Let p and ¢ be distinct odd primes. Then

p—14g—1
2 2,

(p/9)(q/p) = (—1)

PROOF. (g/p) =1 if and only if g splits into two factors in Q([e(p)p]'/?)
by (9.7) and this holds if and only if

(e(p)plg) =1
by Lemma 9.5. It follows that

p-1
(q/p) = (e(p)plq) = (e(P)/D)(plg) = (—1/9) % (p/q)

—1g—1

P4’
= (plg(=1) 2 2.
For completeness in this matter we shall also evaluate (2/p). The preceding
arguments still apply to obtain the following.

9.10 Lemma. (2/p)=1 if and only if 2R’ has an even number of prime
divisors in R’. This holds if and only if 2R has two distinct prime divisors in
O(le(p)P]'?).

Now we are unable to proceed as in the odd case because the factorization
of 2R in E is not determined by the polynomial X?—¢(p)p. Instead we have
R = Z[w] with 2w = 1 +(&(p) p)"/*. (For odd g we see R, = Z,,[e(p)p]'?
so the factorization of g was determined by X?—¢(p)p.) The minimum poly-
nomial of w is

1—e(p)p

9 = X2 =X+ ——,
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and so by Theorem 7.6, 2R has two prime divisors if and only if g(X) is re-
ducible modulo2. This occurs if and only if (1 —&(p)p)/4 is even. This is
equivalent to e(p)p = 8m+ 1 for some m. By an examination of the cases it
follows that this is equivalent to the assertion (p® —1)/8 is even. Thus (2/p) = |
if and only if (p*>— 1)/8 is even. It follows then

@fp) = (=)D,
SummaRY. Let p and g be distinct odd primes:

(1) (=1/p)=(=1r-b2
(2) (/p)= (=118

@) @p) =l (=1)

-1
2
EXERCISE 1. Let m be an odd positive integer and 6,, a primitive mth root
of unity. Describe the quadratic subfields of Q(4,,).

q—1
2

EXERCISE 2. Let m=27>8. Show Q(68,) has exactly three quadratic

subfields, 0 (/= 1), Q(/2) and Q(\/=2).

EXEeRCISE 3. Let d be a square free integer. Show Q(\/H) is contained in
Q(8,,) for some primitive mth root of unity. Also determine the least m that
will do for a given d. (This is a special case of the theorem of Kronecker-Weber
which is proved in Chapter V.)

10. LATTICES IN REAL VECTOR SPACES

In this section # denotes the real field and Z the ring of integers. Let V'
denote an n-dimensional # vector space.

Definition. If »,,...,v, are linearly independent vectors in ¥V, the abelian
group Zv, +---+ Zv, = & is called an r-dimensional lattice in V.
In case r = n, we then say % is a full lattice in V.

We shall refer to v, ..., v, as a basis of the (full) lattice .#. Of course a lattice
may have many different bases but any two of them compare in a nice way.
That is, a second basis can be carried into the first by a matrix with integer
coefficients and determinant equal to +1.

Let # be a full lattice with basis v,, ..., v,. The set

T = {rlul+---+r,,v,,|rie.@, 0<r;<i}

is called a fundamental parallelopiped of #. Of course T depends upon the
choice of basis for &£,
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10.1 Lemma. The translates A+7, A€ %, cover all of VV and they are
pairwise disjoint.

ProoF. For any v =3 s;v; with 5s;,€ # we write s; = n;+r; with n; an
integer and 0 < r; < 1. Then

Vo= mo+ Yy,
expresses v as an element in A+ T with 1 e &.
Now suppose A, + 7 and 4; + 7T have a common point for 4;,4, € ¥. Then
T and (4, —4;)+ T have a common point. Examine the coefficients of the v; in
A,—A togetd, = 4y

Definition. A sphere of radius min Vis a set
U@m) = {r o, + - +r,olr 2+ +r2 < m?}.

This depends upon the particular basis.
We can now describe a criterion that applies to subgroups of V' to determine
whether or not the subgroup is a lattice.

10.2 Theorem. An additive subgroup & of V is a lattice if and only if every
sphere contains only a finite number of points of Z.

PrOOF. Suppose & is a lattice with basis vy, ..., v,. Extend this set (if r # n)
to a basis vy, ..., v, of V. Any sphere of radius m’ with respect to some basis is
contained in a sphere of radius m with respect to v, ..., v,, for some m. Now
if Y. n;v;isin & and in U(m) then |n;| < mso there exist at most a finite number
of points in & and U(m).

Now suppose # is an additive subgroup of ¥ with only finitely many points
in any sphere. Use induction on n. Suppose V' = Zv, has dimension one. Let
rv, be an element of ¢ with r positive but as small as possible. Such an r exists
because there are only a finite number of points in {sv,|s> < m?} for any m.
Let v = rv,. Then £ contains Zv and in fact ¥ = Zv. For we may select any
svin & and write sv = nv+rv with nin Z and 0 < r < |. By choice of v we see
r=0.

Now suppose # > 1. Because of the induction, we may suppose % is not
contained in any proper subspace of V. Select a basis v,,...,v, of Vin £ and
let V,, be the subspace of V with basis v,, ..., v,_,. By induction, £, = £ n ¥,
is a lattice of rank n— 1. Let u,, ..., u,_, be a basis of #,. Now any element of
£ can be expressed as

n-1
A=Y ru+r,u,.
1
If r, = O then the r; are integers. There are only a finite number of 4 having the
r; bounded so it is possible to select some A, having r, > 0 and minimal subject
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to |r;| <1, for i # n. Let u, denote this particular A. Since r, # 0, u,, ..., u,is a
basis for V. Now for any element 1’ in £ we may write

! —_—
N =Yau;, a2

From this subtract an integer multiple of u, to insure either a, = 0 (in which
case A’ € ;) or 0 < |a,| < 1. Then subtract a suitable element of %, to insure
|a;| <1 for all i # n. Now in this case return to the expression involving v, to
see that the coefficient of v, in A’ is a4, r, which is smaller in absolute value than
r,. This is against the choice of u, (and r,) so in fact this case does not occur.
In the expression for A’, then, a, must be an integer. It follows that

FecPy+Zu,c Z.
This completes the proof.

1t will be necessary to consider volumes of certain sets in V. We shall con-
sider only *“‘nice’ sets for which there will be no question about the existence of
volume.

The next theorem gives a means of testing whether or not certain sets X will
contain a nonzero point of some given lattice.

10.3 Theorem. (Minkowski). Let % be a full lattice in  and let A denote
the volume of a fundamental parallelopiped of .#. Let X be a set in ¥ which
contains the point (x, — x,)/2 whenever x,, x, are in X. If vol(X) > 2"A, then
X contains a nonzero point in %£.

Proor. Let T denote a fundamental parallelopiped of ¥. We begin by
proving the following assertion:

10.4 Assertion. If Y is a bounded subset of ¥ such that the translates A+Y,
A € & are pairwise disjoint, then vol(T) = vol(Y).

To prove this first observe that there can be only a finite number of 4 in &
such that (A1+7) n Y is nonempty. This follows from Theorem 10.2 and the
fact that Y is contained in some sphere. By Lemma 10.1 the intersections
{A+T) n Y are pairwise disjoint and cover Y. Thus

vol(Y) = Y vol((A+T) nY).

re?

It is easy to check that
A+ Y =[Tn(Y-D]+4,
and since volume is not changed by translation we find
vol((A+T)n'Y) = vol(T n (Y- 4)).
The translates of Y are disjoint so the sets T n (Y —4) are disjoint for A € &.
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These sets may not cover T so we obtain
vol(T) = Y vol(T n (Y- 1)) = vol(Y)
A

as required for Assertion 10.4.
Now return to the set X. Consider the set

31X = {Ix|xe X}.

We have vol(3X) = 27" vol(X) > vol(T) = A. Thus the translates of +X by
elements in % must not be pairwise disjoint in view of Assertion 10.4. There
exists A, # 4, in & such that

x+ 4, =4y + 4, x,y€ X.

Then 4(x—y) = 4,—4, isin X and in % and is nonzero.

The Minkowski theorem will be applied to prove that certain lattices must
contain points satisfying various conditions. We will select various sets X
having sufficiently large volume to force these conditions. We shall describe
now two types of sets of X that will appear later.

Let us fix a coordinate system in V so that points are represented by the
usual n-tuple of real numbers. Write n = r+ 25 for some nonnegative integers
r,s and let ¢y, ..., ¢, , ; be positive real numbers. Consider the set

(105) X = {(xl"",xr’yl,zl’---aysazs)l |xi| < Cis
I1<igsryt+zt<cu;, 1<j<s)

This set X satisfies the condition, $(x—y) is in X whenever x,y are in X. The
volume is easily computed since X is just a product of intervals of length 2¢;
with two-dimensional spheres of radius (¢, ;)'/?. It turns out that

(10.6) vol(X) = 2'a°(c €y Crag)-

Another set that will be useful is the set

(10.7) Xy = {(Xpseos Xy P1s Zys s Voo Z9)
Yixl+2Y(yr+zH? <1}

Here ¢ can be any positive real number.

It follows (by the triangle inequality) that 4 (x—p) is in X whenever x, y are
in X. The volume of X is somewhat more difficult to compute in this case. The
reader may see the calculation in Artin [1] or Lang [7]. We shall simply state
the result.

(10.8) vol (X)) = 2" (n/2)t"/n!.

The sets described here will play a role in the next section.
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11, THE UNIT THEOREM AND FINITENESS OF THE CLASS NUMBER

In this section let K denote an algebraic number field, that is, a finite-
dimensional extension of the rational field Q, and R the ring of algebraic
integers in K. Our object is to determine the group of units in R and prove the
class group of R, C(R) defined in Section 4, is a finite group. The proofs of the
two results are similar in spirit and so they are both discussed here.

We must fix the notation very carefully. Let £ be a normal extension of Q
which contains K, G is the Galois group of E over Q, and H the subgroup of
G which leaves K fixed elementwise. We shall regard E as a subfield of the field
of complex numbers which we denote by .

Select representatives o,...,g, of the distinct cosets of H in G. Then
n = (K: Q) and the o; are all of the possible imbeddings of K into 4. Some of
the fields g,(K) may actually lie in the field of reals Z. Select the numbering so
that o4,...,0, map K into #. (We allow r = 0 in case there are no imbeddings
of Kinto #.) Of the remaining os we can assert that no one of them is equal to
its complex conjugate. [The conjugate of ¢ is the map & which sends x to
o (x) = complex conjugate of a(x).] Hence there must be an even number of
os remaining. Number them so that

Or+15230r450r4 15003 Op gy

are all of the remaining imbeddings of K into ¢. Then we have n =r+2s =

(K: Q).
Consider the function v defined on K by

(1.1 v(x) = (6,(x),...,6,(x), ...,0,,,(x)).

The values of v lie in the space of (r+ s)-tuples having the first r coordinates
real and the last s coordinate complex. There is a natural identification of €
as a two-dimensional vector space over #Z and so we may regard v(x) as an
element of an (r+ 2s)-dimensional space over #. Let V = %" x ¢* denote this
space.

11.2 Lemma. The map v of K into V is an additive monomorphism.
ProoF. Obvious.
The importance of this procedure can now be illustrated.

11.3 Theorem. Let 2 be a nonzero ideal in R = algebraic integers of K.
Then v(A) is a full lattice in V.

Proor. Since Z is a PID there exists a free basis a,,...,a, of ¥ over Z.
Necessarily these give a Q-basis for K. The image v() has the elements v(a;)
as a free basis over Z so the result will be proved if the elements v(a,), ..., v(a,)
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are linearly independent over . This in turn will be the case if and only if the
matrix with row i equal to v(a;) has a nonzero determinant. Let M denote this
matrix with 7, j entry equal to the j entry of v(a;). We shall evaluate det (M) by
relating to a matrix that has appeared previously.

Let D denote the matrix whose ith row is

(0,@@), ..., 0,(a), 0,1 1(a), 5,11 (a),
N SN CAN AN CH))
Compute the product DD' by using Corollary 5.3 to obtain
DD' = [T(asa))l,
where T is the trace map from K to Q. Thus we know
m A(ay,...,a,) = (detD)* # 0

because the discriminant of any basis of a separable extension is nonzero (see
Section 5).

Now relate M and D. Column r+1 of row i in M has entry Re(o, ., (a)) =
real part of g,,,(a;). Column r+2 of row i in M has entry Im(g,, ,(a)) =
imaginary part of ¢, , (a;).

In matrix D add column r+2 to column r+1 to obtain in row i the entry
2 Re(o,+ (a;)). Now subtract one-half of column r+1 from column r+2 to
obtain in row i the entry —i Im(o,, , (a;)). Repeat this procedure in each pair
of conjugate columns of D and one transforms D into a matrix “almost” equal
to M. The only difference being a factor of 2 in s of the columns and a factor
—1iin s of the columns. Hence

) detM = (—2i)"*detD # 0.
This proves the result.
We can draw a few corollaries from this computation,

11.4 Corollary. The discriminant A(a,,...,a,) of the basis a,,...,a, for K
over Q is positive if and only if s is even.

PROOF. A =A(a,,...,a,) = (det D)? = (det M)?(—2i)?. Since M has only
real entries we see (det M)? > 0. Thus A has the same sign as (/)% = (~ 1)".
The result follows at once.

It is also possible to compute the volume of the fundamental parallelopiped
of v(A). Since the vectors v{(a,),...,v(a,) give a basis of the lattice v(A4), the
fundamental parallelopiped is the set

T={}rv@)|0<r<l1}
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Recall how the volume of a parallelopiped in n-dimensional space is com-
puted. We form the matrix whose ith row is the vector »(a;) expressed in terms
of the canonical basis. Then the absolute value of the determinant of this
matrix is the volume. Hence we have

vol(T) = +det(M).

Of course, T depends upon the choice of basis for #. If a,’, ..., a,’ is another
basis then there is a matrix with integer entries n; such that

ai = Znu ajl.
Necessarily this transformation is invertible and maps % onto . It follows
that det |n;| = £ 1. This means vol(7T) is not dependent upon the choice of

basis for Z.
Now combine Egs. (1) and (2) of the proof of Theorem 11.3 and obtain

vol(T) = 27%(A|/?,
where A is the discriminant of (any) Z-basis for U.

11,5 Corollary. Let U be a nonzero ideal of R and A the discriminant of
some Z-basis for 2. Then the fundamental parallelopiped of v () has volume
275 |A2

It will be useful to have an expression for vol(T) that depends only upon
the discriminant of R rather than the discriminant of . To obtain this we do
the following.

11.6 Lemma. Let U be a nonzero ideal of R. Then
AN/Z) = /(WP A(R/Z).

Proor. 1t is sufficient to prove this equality holds after localization at
every prime in Z. Let p be a prime, S = Z—(p) and let A5 = aRg with a in A.
Since Ry is a PID (by Theorem 3.15) such an element a exists. Then select a
basis x,, ..., x, of R over Z and it follows that ax,,...,ax, is a Z basis of Us.
Thus A(g/Zs) is the principal ideal generated by

A(axy, ...,ax,) = det|T,,(ax;ax;)|.

Let r, denote the matrix of the map y — ya with respect to the basis x, ..., x,,.
Then

Ty lax;axy)| = r,|T(x;x)|r,.
But now N(a) = det(r,) so we have

Aax,,...,ax,) = N@)?A(x,,..., X,).
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N () = ZgN(a) so we obtain
AQUs/Zs) = A (Us)* A(Rs/Zs).
After applying Lemma 7.1 the result follows.

11.7 Corollary. If U is a nonzero ideal of R and A, the discriminant of R
over Z, then the volume of the fundamental parallelopiped of v() is
27SH (W) | Agl3.

We are now in a position to prove the main step along the way to proving
the finiteness of the class group.

11.8 Theorem. Let 2 be a nonzero ideal in R. There exists an element
a # 0 in A such that

174
IN@I < 5(2fr @ iag 7

Proof. Consider the set X, = {(x,,...,x,+,)} in which x,,..., x, are real,
Xp 11y .--s X, 45 are complex and

3 X[+ x4+ 20+ + 2k < 2

This is a subset of V whose volume is given by Eq. 10.8. We want to apply
Theorem 10.3 (Minkowski’s) to obtain a nonzero point in X, and in v(A4). We
require vol(X,) > 2" vol(T), T = fundamental parallelopiped of v(A4). This
inequality holds if

“4) " =&+ n' 2" "/n) N (U)|Ag|'?

and ¢ is any positive real number. Assume that ¢ is this number and then by
Theorem 10.3 there exists @ in A with a # O such that

U(a) = (0'1 (a)s"'!ar+s(a)) = (xl""’xr+s)

isin X,. We can assume in fact that ¢ = 0 in (4) because there exist only a finite
number of points in v() in any sphere, and hence in any X,. If we consider
the sets X, with ¢ given by Eq. (4) and with ¢ decreasing to zero, there must be
some point v(a) in all of them.

Now with this value of r we estimate N(a). By the results in Section 5 we
have

IN@)| = 'Ilflai(a>|f11|&,+j(a)l

= |0'1 (a)’ |a,(a)||0',+1(a)|2 te Ia-r+sr(a)|2

=[xy [ 2o ]
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Now use the arithmetic-geometric mean inequality. It yields
nnlxll Ixr| ' Ixr+1|2 "xr+s|2 < {|xl| i Ixrl + 2|xr+1l
o 2

Use this equation along with Eqs. (3) and (4) where ¢ = 0 to get |[N(a)| < n™"t".
Since n = r+ 2s the theorem now follows.

Recall that the class group C(R) is the collection of equivalence classes [B]
of fractional ideals B of R. Two fractional ideals B, and B, are in the same
class if and only if there is some x # 0 in K for which 8, = xB,.

11.9 Theorem (The Minkowski bound). Let [B] denote a class in C(R).
There exists an ideal B, in [B] with B, = R and

nt[ 4y
o @l < {2 a2

ProoF. Let [B~!]=[U]. If A is not in R, select an element y in A~ ?,
y # 0, and replace A by Uy. Then [A] =[AUy] and Ay = R. So assume
A = Rto start with. Let M denote the constant on the right of the inequality.
According to Theorem 11.8 there is an element a # 0 in A such that

IN(@N@)™'| < M.
Set B, = aN ™' and observe B, isin [B] and B, < R. Then
¥ (B)] = |4 @AY = [N@ A< M
as required.

The importance of this theorem lies in the fact that the bound depends only
upon the field K and not upon the ideal class. This result makes it easy to prove
the next result.

11.10 Theorem. The class group C(R) is finite.

Proor. Every class [B] in C(R) contains an integral ideal B, with
|4 (B,)| < M with M the bound given above. It is sufficient to prove there
exist only a finite number of ideals in R having norms bounded by M.

Let B = Pi -« P be a nonzero ideal, P, are distinct primes and the a; are
positive integers. Let (p;) = ‘B, n Z, p; = prime integer. Then suppose

N (®B)=[]pli < M
with f; = relative degree of B; (see Corollary 8.5). First, each prime p, must be

less than or equal to M. Thus only a finite number of p; can arise this way.
Next the exponent a,f; is bounded and the number of P, that can appear is
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finite since there exist only a finite number of ; which contain a given p,.
These facts taken together imply there exist only a finite number of ideals B,
in Rwith A" (B,) < M.

This proof that C(R) is finite is not the shortest proof possible but it is very
useful because the bound is good enough to be practical for computation.

ExaMpPLE. We return to the example K = Q(0) with 8 =2 which was
considered at the end of Section 7. There is one real root of X3—2 and two
complex roots. Hence in this case r =1 and s =1. The discriminant A =
A(R/Z) =—2%.3% and n = 3. If one computes the bound in Theorem 11.9 we
see that every ideal class [B] in C(R) contains an ideal B, with 4 (B,;) < 4.
Thus 4" (B,) = 2 or 3 and in either case B, must be a prime ideal dividing 2R
or 3R. We have already determined the structure of these last two ideals.
Namely 2R and 3R are each the cube of a prime ideal which is principal;
2R = 0°R and 3R = (1 +0)*R. It follows that any ideal B, with N(B,) < 4 is
a principal ideal. Hence C(R) is the group of order one and R is a PID.

We can obtain more information from Theorem 11.9. For any ideal B # 0,
the norm A7 (B) is an integer no smaller than one. It follows that

nn \* nn P nf2
=) ==l5) -
A n!<4> n!<4>

Let a, denote the right-most expression. We find
an+l/an = (Tt/4)1/2(1 + l/n)"'

This number is always >1 so a,,, > a,. Since a, > 1 we see |Ag|>1. This
proves the following statement.

11.11 Corollary (Minkowski). Let R be the ring of algebraic integers in
an algebraic number field # Q. Then A(R/Z) # Z. In particular some prime
in Z must ramify in R,

Next we apply the ideas above to solve another problem. Let U denote the
multiplicative group of units in the ring R of algebraic integers in K. (K is still
an algebraic number field.) We shall apply the Minkowski lemma to determine
the structure of U.

Let a be a nonzero element of K. Define the function /(a) by

£(a) = (In|o, (@), ...,In|e,(a)], 2 In|o,  (a)|,
sy 2106, 4 4(a)]).

For convenience let £,(a) = In|o;(a)| if 1 <i<r and £;{(a) =2In|o;(a)] if
r<i<gr+s.
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Then in view of Theorem 5.3 we find
(11.12) In|N(a)| = }.Z,(a).
Furthermore £ (ab) = ¢ (a)+ ¢ (b).

11.13 Proposition. The function / maps the units U into an (r+s—1)-
dimensional lattice in the vector space ¥V, of dimension r+ s over #.

Proor. LetV, denote the space of (7 + s)-tuples over the reals so £ (U) = V
Any element u € U must have norm N(«) = +1 since N@)N(u) ™' = 1. Thus
(11.12) implies Y #;(u) = 0. This means Z(U) lies in the hyperplane

{(xl» ---axr+s) € Vlzxi = 0}

The image #(U) is an abelian group (in fact Z is a group homomorphism) so
/(U) will be a lattice if every sphere in V contains only a finite number of
points in ¢ (U). It is certainly sufficient to show that any “‘cube’ contains only
a finite number of points in £ (U). Let m be a positive constant and consider the
set U, of all elements u € U for which |£;(x)| < m. That is £ (u) is in the cube
with side m and center at the origin. Then §; In|g;(u)| < m implies

lo: ()] < €™/, 6,=1 or 2.

It follows that the set U,, is mapped by the function v, defined in Eq. 11.1, to a
bounded subset of v(R) in m-dimensional space. This means there can be only
a finite number of points in »(U,,). But v is a one-to-one function, so U,, is a
finite set and that proves the proposition.

The main goal is to prove that #(U) is actually r + s—1 dimensional (rather
than just contained in a lattice of this dimension).

We first work with the lattice v(R) in the n-dimensional real space V =
R xE. Let y=(y,,...,V:+5) denote a vector in ¥ and Y the linear trans-
formation

Y(xli"-’xH-s) = (xlyl,ww r+syr+s)'

The matrix for Y is almost diagonal, namely,

Y= diag{yls ---,.Vray:(+1, “.,y;k+s}’

where 7, ; is a 2 x 2 matrix which represents the linear transformation on the
complex field determined by multiplication with y,, ;. If y,, ; = a+ib, with
a, b real, then

a b
—-b a

* -
yr+j -

It follows easily that
ldetY| = |yll lyr||yr+1|2.” Iyr+s12'
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Select Y so that
(11.14) detY = 1.

Then Y is a volume preserving linear transformation on V. In particular the
lattices v(R) and Yv(R) have fundamental paralielopipeds with the same
volume. This volume is

vol(Yu(R)) = 275|A|'2,
where A = discriminant of R over Z.
Let ¢,,...,c, ;s be positive constants. Let X = {(x,,...,x,,,) €V} which
satisfy |x;| < c;when 1 <i<rand|x,,;|* <c,,;whenl <j<s.
This is a set such as that described in Eq. 10.5. We have
vol(X) = 2'n°c, -+ €y s-

The object is to apply Minkowski’s Theorem 10.3 to obtain certain points
in Yo(R). For this it is necessary that vol(X) is large enough. We require

vol(X) > 2"27%|A|V2

Since Yv(R) has only a finite number of points in any such X it follows that
Yv(R) and X have a common nonzero point even if

vol(X) = 2"27¢|A|'/2
So we assume this holds for the choice of constants ¢,...,¢, .. Suppose
0+# ae Rand Yv(a) e X. Then

Yv(a) = (0'1 (a)yl’ ""Ur+s(a)yr+s)

and
(11.15) lo@yl<e, i<

Ia'r+j(a)yr+j[2 < Cryje
In view of Eq. 11.14 we obtain

|N(a), = Ial (a)l |0,(a)||0,+,(a)l2 Io'r+s(a)l2 < €y Cpyse

Notice the element a depends upon Y but the bound for |[N(a)| does not. It
has been seen earlier that only a finite number of ideals of R have norms which
lie below some bound. Let Ra,, ..., Ray be all the distinct principal ideals with
norm <c, '+ ¢,,,. Then Ra must coincide with one of these so there exists a
unit # in R and some index k such that a = ua,. It will be necessary to estimate
the size of g,(#) in terms of Y. Note that u depends upon Y since a does. From
(11.15) one sees

lo; (@) yi| = |o;(W)y;0:(a)| < ¢

'a'r+j(a)}"r+j|2 = |°'r+j(u)J’r+j0'r+j(ak)|2 < Cryj-
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Let b, =min{|e,(a)|, k=1,2,...,N}. Then
(11.16) AP ARS S I<isr
|0r+j(“)HJ’r+j| < (Cr+j)”2/br+j

So far Y is arbitrary except for the restriction (11.14). Now let W be a
constant and select the y; so that

|yal = = |Voasl = W, (yi| = 1/Wﬁs_l-

The condition (11.14) still holds. Let u; denote the unit corresponding to this
choice of Y. The condition (11.16) now reads

loyu)| < /Wby,  i#1, i<r
16,4 5] < (¢j40)" /Wb,
loy ()| < Wr*s~1e,/b,.
We may select W so large that |o,(u,)| < 1 for all 7 # 1. Having done this we

observe £;(uy) < 0 for i # 1. Moreover N(u,) = +1 because u, is a unit in R
so by Eq. (11.12) we obtain

£y(uy) = "‘_Zl/i(ul) > 0.

In a similar way one produces units u,,...,4,,,_; in R which satisfy the
following conditions:

(11.17) (@ £i(u) <0 if i#}],

r+s—1

(b) Y fiu) >0 forall i
i1

The crucial point to notice is that

r+s

Y liu)=0  by(ll.12),
i=1

so by dropping the last term 7, , (u;) (Which is negative) we obtain (b).

This last statement produces units in R which are very ‘““large” at the ith
conjugate, a,(»;), but “small” at all the other conjugates, g;(%;). They will be
the important units needed to show that the lattice /(U) has dimension
r+s—1.

We first cut down the dimension of the space. Let pr denote the projection
map from the (r+ s)-dimensional space V, to an (r+s— 1)-dimensional space
V, defined by

pf(xn ""xr+s—l’xr+s) = (xl9 -'-’xr+s—1)'
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Then #(U) in V, is projected onto a lattice pr/(U) = Z.
We shall prove & has dimension r+s—1.

11.18 Proposition. Let u,,...,u, .., be units of R which satisfy (11.17).
Then the vectors pr/ (i) are linearly independent over #.

Proor. To prove this we form the matrix M whose ith row is the vector
pr (u;). The proposition will be proved if we show M is nonsingular. We
simplify the notation. M =|my]| is (r+s—1) x (r+s—1) and

@ my<0 if i#])
(b) Ymy>0  foreach i
7

If M is singular there exist real numbers x; not all zero such that

Ymix; =0 for each 1i.
7

Select the index & so that |x,| > |x;| all { and assume x, > 0. (Just multiply all
the xs by — 1 if x, < 0.) Now we have

0 = kakk + ;kmijj > kakk -+ (kal)x,‘ > 0
J

because of (b). This»contradiction proves Proposition 11.18.

11.19 Theorem (Dirichlet). The group of units in R is the direct product
of a finite cyclic group and a free abelian group of rank r+s— 1. Equivalently
there exists units #,, ..., #,,,—, in R such that every unit ¥ in R can be uniquely
expressed as

w= Wt
for some root of unity w and integers q;.

ProoF. By Proposition 11.13 we know /(U) has dimension at most
r+s—1 and by Proposition 11.18 it has dimension at least r+s—1 so there
must exist units u,, ..., %, .., such that £(U) has Z-basis /(¢,). For any unit u
in U there exist unique integers such that

/(u) = Za,-/(u,-)
and so /(u[Tu;7%)=0.
The proof will be complete if we prove that any unit w for which /(w) =0isa
root of unity.
We have /(w) = 0 if and only if |g;(w)| =1 for all i. Thus
D(W) = (61 (W), v 0',+S(W)) .

lies in a bounded subset of the lattice v(R). This means only finitely many w
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can arise by Theorem 10.2 and the fact that v is one to one. This means that the
kernel of / is a finite subgroup of U and hence is cyclic. (Every finite subgroup
of the multiplicative group of a field is cyclic.)

ExaMPLES. Let D >0 be a square free integer and K = Q(\/ D). Then
2 =nand r =2, s =0 so the group of units in the ring of integers of K is the
direct product of a finite cyclic group and an infinite cyclic group.

In case D = 2, the infinite cyclic group is generated by | +\/f.

If K= Q(\/:T)) then s =1 and r = 0 so the group of units in the ring of
integers is a finite cyclic group.

EXercISE I. Let D be a positive, square free integer and R the ring of
integers in Q(\/—_D). Let U denote the group of units in R. Show U has order
two except in the two cases D =1, D =3, where U has order four or six,
respectively. (Hint: Use information about cyclotomic fields and their
dimensions.)

REMARK. If R is the ring of integers in Q(\/T)) with D a positive integer,
then the unit group has the form { +¢*) where ¢ is a generator of the infinite
cyclic part of the unit group. Notice that ¢, —¢, 1/e, 1/ —¢ are also generators
of this subgroup. We are dealing here with real numbers and exactly one of the
four generators is > 1. Suppose ¢ > 1. Then ¢ is called the fundamental unit of
Q(\/T)). For any given D the fundamental unit can be calculated by methods
using continued fractions. For more information see Chapter II, Section 7.3
of Number Theory by Borevich and Shafarevich. Also see the exercise following
this section. We shall close this section with an example showing a field with
class number two.

ExampLE. Let K= Q(0) with 0° =11, R =ring of integers in K. Then
Z[03 < R. In fact equality holds here but we shall not prove this here. One
computes directly that A(1,6,0%) = A =—33112. Then A(R/Z) must divide
A so we use A in the Minkowski bound. We find every ideal class [U] in C(R)
contains an ideal B with A4 (B) < 17. This means we can generate C(R) by
classes [B] with B a prime ideal having norm A4 (P) < 17. So to find these
primes, it is necessary to describe pR when p is an integral prime <17. For the
primes p = 2,5,7,13 we use Theorem 7.6 and Proposition 7.7.

p=2 X3—11l=X-1)(X*+X+1)mod2
2R=9,P,,, NV (P)=2  HN(P,))=4
p=>5 X2=1l =(X-1)(X*+X+1)mod5
SR = ms ‘lea JV(ms) =35, -/V(‘Bs') = 5
p =1 X3 — 1l isirreducible, mod7; 7R=9P,, S (B,)=7
p=13 X3 — 1l isirreducible, mod 13; 13R = B,;,
N (Py3) = 13°.
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The remaining primes 3, 11 are ramified. Since N(#) = 11 (look at the mini-
mum polynomial) we have 11R = 3, B,; = R, &/ (P,,) = 11.

For the last case we make a general observation. For any integer k, 8+ k
has minimum polynomial (X —k)*—11 and so

(*) N@+k) = k> +11.

In particular N(@—2) = 3 s0 (8 —2) R = ‘B, is a prime with A/ (P;) = 3. Itis
not difficult to show (as in the example on page 37) that 3R = B,3.

It follows now that C(R) is generated by the classes [B, ], [B.'1, (B, [Bs],
[*B,.]. since these represent all the primes with norm <17. The class of a
principal ideal is the trivial class in C(R) so at once we have [B;] =[P, ] =1,
since these are principal ideals. [ We write 1 for the identity in C(R).] Further-
more, [PB,F1[P,"] =1 since 2R is principal. Thus, C(R) is generated by [B,]
and [*Bs].

Now we must look for further relations. By (x) one finds N(—1) = 10 =
2.5. Thus (by Corollary 8.5) (§—1) R is the product of a prime with norm 2
and a prime with norm 5. In each case the prime is unique. Hence

(G—I)R = ‘Bz‘Bs-

This means [P,] = [Bs] ™' in C(R) so C(R) is generated by [B,].

To get additional relations it would be helpful to find an element with norm
a power of two. The minimum polynomial of 6% is X — 121 and by the method
above one finds

N0 +k) = k3 + 121.

In particular N (6% —5) = —4 so (% —5) R is an ideal with norm 4. There are
two possible ideals with norm 4; namely, 8,2 or B,’.

FirsT Case. (02—5)R =P, . Then2R =P, P,’ = (6*—5)P,. This means
B, is the principal ideal generated by 2/(6% — 5). However, we can prove this
elementis not in R. We describe a general method for deciding such a question.

Suppose « is any element of R and

fX)y=X’+a, X +a,X+a;=0
is the minimum equation for . Then the minimum equation (over @) for 1/x is
XS/X)y=1+a, X+a,X* +a,X>.
The monic equation for 1/« is (1/a;) X*f(1/X). The monic equation for 2/« is
8/as + (4a,/a3) X + (2a,ja;) X* + X3.

So 2/a is in R if and only if these coefficients are integers (Proposition 2.4).
In the case @ = 6% —35 it turns out that 2/a has minimum monic equation
with 75/2 as the coefficient of X% so 2/(6%—5) is not in R.
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SECOND CASE.  P,2 = (82— 5) R. It now follows that [B,]?> = 1 in C(R) so
C(R) has order 1 or order 2 depending upon whether B, is a principal ideal or
not.

The task of proving B, is not principal is not at all an easy one. We shall use
a method suggested by Artin [1] p. 170 (used in a different example.)

This method requires that we know the unitsin R. By the unit Theorem 11.19,
the unit group is the direct product of a finite group and an infinite cyclic
group. Since R, and Q(6), can be imbedded into the reals by taking 8 to be the
real cube root of 11, it follows that the finite group of units is ( +1) and so all
units in R have the form +u* for some fundamental unit u.

We shall not describe how the unit u can be found although there exists an
algorithm by which this can be done. It turns out that

u = 89 + 400 + 1862

It is straightforward to verify that N(#) = 1 so indeed u is a unit. Moreover,
there are techniques for estimating the fundamental unit (Artin [1], p. 169).
This enables one to verify that v is indeed a fundamental unit.

Now suppose B, = aR is a principal ideal. Then

PB,2 = >R = (*—5)R.

It follows that a® = (82— 5) w for some unit w in R. Necessarily (8>—5)w is a
square in R and so certainly must be a square modulo any prime ideal in R.
After we multiply (6% — 5) w by a suitable square of a unit we obtain

x = +u?(0*—5) = (square) mod P

where one of the signs is fixed and d = 0 or 1. We are able to make this assertion
because w = +u* for some k.

We first take P = B, = (6—2) R. In R/P; we map B onto 2since #—2 € P,.
Thus using the form of u yields

x = +(89+40(2)+18(2)2)(4—5) = +(1)*(=1).

We know x is congruent to a square in R/B; but R/P; has order three. Since
— L is not a square mod 3, the negative sign must be the one. That is

x = —u*(0*-95), d=0orl.
Next use a calculation above to find
N(@+9) = 740 = 2%.5.37.

This means (8 + 9) R is divisible by a prime ‘B, which has norm 37 and relative
degree 1. In R/*B3, we must have x map onto a square. Now compute with 0



11. The Unit Theorem and Finiteness of the Class Number 65

mapping onto —9:
x = —(89-40-9+18-9%)4(92-5)
—(3Y(2) mod 37.

We know this is a square mod 37.
However we shall see this is not the case by evaluating the Legendre symbol,

(3 (=2)/37) = 33D (=1/31)(2/37) = —1.

This follows because

i

(3/37) = (37/3) = (1/3) = + 1,
(=130 =+1, @37 =-1.

This shows x is not a square modulo P, and so is not a square in R. This
final contradiction proves B, is not a principal ideal. Thus C(R) has order two.

Exercise 1. Let d > 0 be a square free integer and m the smallest positive
integer such that one of the numbers dm? —4, dm* + 4 is a square. Let a be the
least positive integer for which a> = dm? + 4, ¢ = + 1. Then the fundamental
unit in the field Q(/d) is u = (a+m/d)j2 and N(u) = e.

{Hint. For any unit u in the ring of integers of Q(v/d) the minimum
polynomial of u over Q has the form X*>—aX+e¢, ¢ = N(u) = £ 1. Solve for u
and use (a> ~4¢)'/? = m/d for some m. Now verify the least possible m does
give the fundamental unit.}

Exercisg 2. Verify the following table, which gives the fundamental unit

in Q(/4).

d 2 3 5 6 7 10

u 1+42 2443 (14452 s+26  8+3T  3+,10

EXercise 3. Imitate the procedure in the example above to show Q(\/-l—(_))
has class number 2. In fact the unique prime divisor of (2) is nonprincipal.



Chapter 11

COMPLETE FIELDS

1. VALUATIONS

Let K be any field and x — | x| a function from X to the reals.
Definition. The function |x| is called a valuation if

(i) |x|> 0 except that |0| =0,
(i) |x||yl=1|xyl],
(i) [x+y|<|x|+|y].

If the valuation satisfies the stronger condition
G(i)*  |x+y|<max{|x|,|y|}

then it is called nonarchimedean valuation. All others are called archimedean
valuations. The valuation is nontrivial if | x| # 1 for some x # 0.

ExampLE I. Suppose K is any subfield of the real field. Then the usual
absolute value |x| is an archimedean valuation of K.

ExaMPLE 2. Let R be a Dedekind ring with quotient field K and let P be a
nonzero prime ideal in R. For any nonzero x in R let vy(x) denote the power
to which B appears in the factorization of Rx. We may then write

Rx = []B»™, B runs through the primes.

We abuse the notation slightly and also let ‘B denote the maximal ideal in
the DVR Ry. We extend the definition of vy to all of Ry using the same

66
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defining property. If y is in K but not in Ry, then y~' is in Rg. We define
vp(y) to be —ovg( y~1). If we interpret YRy as a fractional ideal then vg(y) is
still the power of  appearing in the factorization. In fact for all y # 0 in K,

yR” = %vg(y).

Let B = (n) in Ry so every nonzero element in K can be expressed as y =
un” for a unit u in Ry and some integer n. Clearly vy (y) = n.
Observe that vy satisfies the following:

I. vg(p)isan integer for each y # 0 in K,
2. vg(xy) =0y (x) +vg(»),
3. vg(x+y) = min{vg(x), vg(»)}.

The first two follow at once. We shall prove 3. Let x = u, 2™, y = u, n", with
u;,u, units in Ry. Suppose m > n. Then

x+y= @ u 7" "+ u, "
The element in parenthesis belongs to Ry so
vg(x+y) = n = min{vy(x),v4(»)}.

Definition. A function »(x) which satisfies (1)-(3) is called an exponential
valuation on K.

Remark. For convenience let us set vy(0) = 4+ co so that Statement 3 is
meaningful even if x+y = 0.

One easily obtains a valuation of K from the exponential valuation vg.
Select a real number ¢ such that 0 < ¢ < 1. Now define

|x] = v,

That | x| is a nonarchimedean valuation follows from Statements 1-3. This
valuation will be called the B adic valuation on K.

There is much freedom here due to the choice of the constant ¢ from the
interval (0, 1). If a second constant d were used to define a valuation |x|,, we
would have | x| and |x|, equivalent in the following sense:

Definition. Two valuations |x|, |x|; on K are equivalent if whenever |x| <1
then also |x[, <1 for x in K.

There is a very precise relation that holds between equivalent valuations on
any field K.

1.1 Proposition. Let |x| and |x|, be nontrivial but equivalent valuations on
K. Then there is a real number a such that |x|* =|x|, for all xin K.
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ProoF. Since the valuations are nontrivial, there exists an element y in K
with |y|> 1. Let a denote the real number

a = log|yl/log|yl.
Now let x be any nonzero element in K. There is a real number b such that
x| =|y]"

Now let m;/n; be a sequence of rational numbers (with n, > 0) converging to b
from above. Then

x| = |yI" < [y|mm

and so

[x™[y™] < 1.
1t follows that

[x"fy™|, <1
and so

|, < [pI7m.

This means |x|, <[y|,".
If we repeat this procedure with a sequence of rationals converging to b from
below we can obtain the reverse inequality. Thus

|x| = |y|* implies |x|, =|y[,"
for all x # 0.
This implies
log|x|/log|x], = 1/a
and so |x|* =|x|, as required.

When we consider various questions about valuations, it is often necessary
to consider archimedean and nonarchimedean valuations separately. We
consider next one of the important features of nonarchimedean valuations.

1.2 Proposition. Let |x| be a nonarchimedean valuation on K. Let R =
{x e K||x| <1}, B = {x||x| < 1}. Then R is a local ring with P as its maximal
ideal and K as its quotient field.

R is a DVR if and only if the set of nonzero values |K*| is a multiplicative
subgroup of the reals isomorphic to the additive group of integers.

Proor. We first show that R is a ring. Whenever x,y € R then (ii) and
(iii)* insure that xy and x+ y are in R. Furthermore |- 1|> = 1| =|1|? by (ii) so
[l|=]-1|=1.Thus |y|=|—y| and so x—ye R which shows R is a ring
containing 1. For any ze K, z # 0 we have |z||z"*|=1 so either z or z7!
belongs to R. Thus K = quotient field of R.
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Certainly P < R and by (iii)* B is an ideal of R. To see that P is the unique
maximal ideal of R let y be any element of R not in P. Then |y|=1. Also it
follows |y~*|=1s0 y~'isin R. Thus every element in R outside P is a unit.
Hence P is a maximal ideal and is the only one.

Now suppose R is a DVR so then P = Rxn. Every element of K (nonzero)
can be expressed as x = un” for some unit « in R and an integer n. If ¢ = x|
then |x|=c". The function |x|—n now establishes an isomorphism of the
group of nonzero values with the additive group of integers.

Conversely let ¢ denote the isomorphism of | K*| with Z. From the equation
d(|x|”") =—¢(|x]) we conclude that ¢(|R|) or —¢(|R|) contains all the
positive integers. Replace ¢ by — ¢ if necessary to assume 1 is in ¢ (|R|). Let
7 be an element of R such that ¢(|n|) =1. For any x in R, ¢(|x|)=nisa
positive integer and

¢(xn™") = 0.
Since ¢ is an isomorphism it must be that
|xn™" = 1.

Thus xz~" = u is a unit in R so that x = un". Every nonzero element of Ris a
unit times a power of n. It follows at once that the only ideals in R are powers
of Rn so Risa DVR as required.

Remark. Thering R obtained from a nonarchimedean valuation ring as in
Proposition 1.2 is called a valuation ring. In the case where the value group is
an infinite cyclic subgroup of the reals, the value group is necessarily a discrete
subgroup and so the valuation ring is called a discrete valuation ring (DVR).

Next we describe a useful test to determine if a valuation is archimedean or
not.

1.3 Proposition. A valuation |x| of K is nonarchimedean if and only if the
values |nl] are bounded as # runs through the rational integers Z.

Proor. If |x| satisfies (iii)* then
[l = [14-+1] < [1],

so |1] is a bound on the values |n1|.
Conversely suppose |nl|< N for all integers n. For any x, y in K we have

for any positive integer n,
n n
xryn-r <
()< 2l

Now if |x|>|p| then |x|"|y|" " <]x|" Since (") is an integer and |x|=

|x+y|" =

[x[" |y
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max {|x|, | |}, it follows that
|x+y|" < N(n+1) max {|x], | y|}".
Now then
|x+y| < NY"(n+1)!"" max {|x|, | y|}.

Since this is true for all positive » it must be that the nonarchimedean axiom
(iii)* holds.

It follows from this result that a field of characteristic p has only non-
archimedean valuations.

We shall now determine all the (nonequivalent) valuations of Q.

Let |x| be a nontrivial valuation of Q. Let m and n be integers > 1. We may
write

m=a,+an+--+an

with @; an integer, 0 < g; < nand #" < m. Let N = max {1, |n|}. By the triangle
inequality,

Im| < Xlan]" < 3 |ail N".
The number r satisfies r < logm/logn and the numbers a; are less than n, so
la;| = [1+--+1] < a1] < n.
Substitute this information into the previous inequality to get
* Im| < (1+logm/logn)nN'osm/losn
In this inequality replace m by m° and take s roots on both sides (s an integer).
|m| < (1+slogm/logn)'/sn'/s N'esm/logn

Now let s increase without bound. The terms in the inequality involving s
converge to 1. It follows

ok Iml < Nlogm/logn
We now consider two cases.

Case I. n>1implies |n| > 1.
In this case we always have N =|n| and the condition (x+) now yields

Iml 1/logm S Inllllogn'

We may reverse the roles of m and n to obtain the inequality in the reverse
direction also. Thus

¢ = |m|l/logm — Inll/losn
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and we have |n|=c"®" for all integers n > 1. Since |—n|=|n| and [a/b|=
|a|/|b] we find that

|x| — Clogx

for all positive rational x. When ¢ = e the valuation is the usual absolute value
on Q. Any constant ¢ has the form ¢° for some « so the valuation is just the
usual absolute value raised to the power a.

In Case 1 only the usual absolute value arises (up to equivalence).

Case 2. Forsomen > 1 we have |a| < 1. In this case N = | and by (%) we
have |m|< 1, for all integers m > 1. It follows from Proposition 1.3 that the
valuation is nonarchimedean. Let R = {x & Q||x|< 1} denote the valuation
ring and B is maximal ideal as in Proposition 1.2. Then Z < R and  # (0)
because the valuation is not trivial. In fact § n Z is nonzero because |m|= 1
for all m in Z, m # 0 would imply the valuation is trivial. Thus P Z = (p)
isa prime ideal. If misin Z but notin (p) then misa unitin Rand {m|=1. Thus
{mp’| =| p|" and this valuation on Q is equivalent to the padic valuation.

We have proved the next statement.

1.4 Proposition. A nonarchimedean valuation of Q is equivalent to a padic
valuation for some prime p. An archimedean valuation of Q is equivalent to
the usual absolute value.

We shall introduce some*new terminology.

Definition. An equivalence class of valuations on a field K will be called a
prime of K. We shall use letters B, p to denote primes of K. If we want to select
a particular valuation from P we may denote it by a symbol such as |x|g.

For the rational field Q the primes are in one-to-one correspondence with
the prime integers except that the class of archimedean valuations is not
obtained this way. In order to have a consistent terminology we shall call the
equivalence class of archimedean valuations on Q the infinite prime of Q. All
others will be called finite primes.

We shall now make some normalizations. From each prime of Q we shall
select a particular valuation.

Let p be a prime integer and B the prime of Q corresponding to the padic
valuation. Let |x|, be the valuation in ¥ which satisfies

lpl, = 1/p.
Let B, denote the infinite prime of Q and let |x|,, denote the usual absolute
value.
The collections of valuations defined here will be called the normalized

valuations of Q.
The reason for making these choices can be seen (in part) from the following.
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Product Formula. If | |y denotes the normalized valuation in the prime of
P on Q then for each nonzero x in Q we have

[Tlxly =1,
R
where the product is taken over all primes of Q.

Proor. The function
n(x) = [[Ixlp
P
is well defined because there exist only a finite number of primes 9 such that
|x| # 1 for any given x. To prove the formula, it is first useful to observe that
n(xy) = n(x) m(y) because each valuation is multiplicative. Thus it is sufficient
to prove n(p)y =1 for each prime integer p. But this is trivial because
[p|g =1 unless P is the infinite prime or the padic prime. But then

|Plplple =1

by definition of the normalized valuations.

One of our goals will be to prove a product formula theorem for finite
extensions of Q. This will require detailed information about extending a
valuation from Q to some finite extension field. 1t will turn out that the exten-
sions of nonarchimedean valuations can be described by using the information
in Chapter 1. However some new ideas are required to discuss the extensions
of archimedean valuations. We shall return to this after some preliminary
work.

2. COMPLETIONS

Let K be a field with a valuation |x|. A sequence of elements {a,} in K is
called a Cauchy sequence if
lim |a,—a,| = 0.
m,n— o0
Notice that the limit makes sense because the values |a,—a,| are real
numbers.
A sequence {a,} converges to a if
lim |a—a,| = 0.
n—w
It may or may not happen that a Cauchy sequence in K converges to an
element of K. For example a Cauchy sequence of rationals with respect to the
usual absolute value need not converge to a rational number.
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Definition. The field K is complete with respect to the valuation if every
Cauchy sequence converges to an element of K.

Our object is to start with a field K and valuation and imbed K into a com-
plete field having a valuation which extends the one on K. The process is a
generalization of the familiar procedure of obtaining the reals from the
rationals.

We begin by defining an equivalence relation on the collection of all Cauchy
sequences in K. Say {a,} ~ {b,} if

lim|a,—b,] = 0.

By using the properties of valuations and the fact that we are dealing with
Cauchy sequences, one proves this is indeed an equivalence relation. Let {a,}*
denote the equivalence class of the CS {a,} and let K denote the collection of
all such equivalence classes.

We leave for the reader the verification of the following statements.

(2.1) Let {a,} and {b,} be Cauchy sequences in K.

(1) {a,+b,} and {a,b,} are CSin K.
(2) Iflim]a,|# O then a, # O for all n > n, for some n,.
In this case {a, '} n = nyisa CSin K.

We use these facts to define addition and multiplication in K.
Define

{a}* + {b}* = {a,+b,}*
{a,}*{b.}* = {a,b,}*
{a,}* ' = {a;'}* whena,! defined.

One checks that these operations are well defined and that K becomes a
field. The original field K is imbedded in K by identifying an element x in K
with the constant sequence {x}. The valuation |x| on K is extended to K by
defining

[{a,}*| = lim|a,|.

One easily verifies this function is actually a valuation on K which agrees with
the original valuation on K.

The heart of the matter is to prove K is complete with respect to this valua-
tion. Let [a,] denote a CS in K. This means each «, is a CS, say «, = {alm}*,
in K. Let o be the sequence {a{™}*.

In order for this to make sense, {a™} must be a CS in K. This follows
because

@~ ] < [a —at? |+ [~
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For fixed s, {a*} is CS so the second term on the right converges to zero. The
sequence [«,] is Cauchy so |a,™ —a,"™| converges to zero as n, m, ¢ get large.
Thus the first term on the right also goes to zero. Thus a = {a,™M}* is in K.
Moreover we claim [, ] converges to a. This follows from

lim|a,~a| = limlim|a,” —a,™| = 0.

Thus {«,} has a limit in K and K is complete.

We shall now establish the uniqueness of this construction. In fact a slightly
more general result is useful.

The phrase “(K,,| |o) is a completion of (K,| |)” will mean K is a field
with valuation| |and K| is a field which is complete with respect to a valuation
| |oand K is a subfield of K, such that | |, agrees with | | on K. Moreover
we require that every element in K, be a limit of a sequence of elements in K.

2.2 Theorem. Let K be a field with a valuation | |, and L a field with a
valuation | |,. Suppose there is an imbedding o of K into L such that |x|=
|6 (x)|, for all xin K. Let (K,| |)and (L,| |,) be completions of (K,| |)and
(L,| 1), respectively.

Then there exists a unique imbedding & of K into L such that |x|=|8(x)|,
for all xin K, and é(x) = o(x) for all x in K.

Proor. Take {a,}* in K with each a, in K. Since {a,} is a CS with respect
to] | itfollowsthat{o(a,)}isCSin Lwithrespectto| |,. Wedefined{a,}*=
{o(a,)}*. One can verify that & is well defined and gives an imbedding of K
into L which preserves the valuations.

If @ is another imbedding of K into L which preserves the valuation and also
agrees with ¢ on K we can show 0 = é. Take « = {q,}* in K. Then « = lim 4,
where A, is the constant sequence {a,,4,,...}. Since 0 preserves the valuation
we may compute 8 (x) by exchanging it with the limit sign. Then since 6 agrees
with ¢ on K (constant sequences) we have

O(a) = limb(4,) = lima(4,) = &(x).
This proves the uniqueness.

2.3 Corollary. The completion (K,| |) of (K,| |) is unique up to an
isomorphism which preserves the valuation on K.

ProOF. Take L = K, o = identity in the theorem. If (K,| [)and (K,,| |,
are two completions then there exists a valuation-preserving monomorphisms
o, of K, into K and o, of K into K, such that the compositions o, ¢, and
0,0, are identity on K and preserve the valuation. The identity map of K,
also has this property so by the uniqueness statement we have 6,0, = 1. It
follows that g, and o, are both isomorphisms.
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When K= @ and |x| denotes the usual absolute value then @, the com-
pletion, is isomorphic to the real field.

If| [, is a padic valuation on Q we shall write Q, to denote the completion
with respect to this valuation.

We shall require some additional information about Q,,. Itis most convenient
to adopt a more general point of view.

Let R be a DVR with maximal ideal Y = Rr and quotient field K. Let | |
denote the Padic valuation on K and Ky the Padic completion of K. The
valuation is nonarchimedean on K and so by Proposition 1.3 it is nonarchi-
medean on Ky. So we may speak of the valuation ring in Ky. Let

R = {xe Ky||x|< 1},
P = {xeKyl|x|<1}.

We assume at the start that the valuation on R has values |un"| = ¢" with
¢ =|=n| some positive constant less than one.

Let us show R is a DVR. This can be accomplished if we show the set of
values of elements from Ky, is an infinite cyclic group (Proposition 1.2), If « is
in Ky then |a is a limit of terms |a,| with a, in K. Thus |«| is a limit of sequence
of powers ¢™. For a # 0 this sequence of powers of ¢ must have a nonzero
limit. The only finite limit of a sequence containing infinitely many different
powers of ¢ is zero. Since this is not allowed for « 3 0 it must be that only
finitely many distinct powers of ¢ appear and the sequence |q,| is eventually
constant—say with value c*. Then |a| = c* and so every value |« is already a
value |a,| with a, in K. Thus it follows from Proposition 1.2 that R is a DVR
and P = xR for some x.

Suppose |x|=c¢" for some integer n. Necessarily |x|<1 so n>1. Now
|n]=c so |n"/x|=1 implies n"/x is in R and is a unit in R. Then Rn"=
(7"[x)® = P. This implies n = 1 and P = 7R. We summarize this.

2.4 Proposition. If |x|isa nonarchimedean valuation on K whose valuation
ring R is a DVR, then the valuation ring R of the completion Ky is also a
DVR. Moreover the maximal ideals of R and R can be generated by the same
element.

One more fact can be gleaned from the discussion above.

2.5 Corollary. In the context above, every element « in Ky can be repre-
sented by a class « = {a,}* in which |q,| is constant.

ProOF. We have seen above that a = {a,}* and the collection of values
|a,| is finite. Thus |a,| is constant for all n = N for some sufficiently large N.
If we drop the first N terms from {a,} we will not change the equivalence class
{a,}* so the result follows.
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2.6 Corollary. The units of R are the elements {g,}* in Ky for which
|a,|=1for all n.

Proor. Every element of R (and even Ky) is {a,}* with |a,| constant. For
this to be in R the constant must be <1 and must =1 if the element is a unit

of R.
2.7 Corollary. R/P" = R/(B)” for any positive integer n.

ProoF. Take B = Rn so that P = Rxn. Select any « in R with « not in .
By Corollary 2.6 we may assume o = {a,}* with |a,| =1 for all n. Since this
is a Cauchy sequence, there is some N such that

Ian+1_an|<%a nz N

If we drop the first N terms from the sequence a, we will not change o so
assume N = 0. Then a,,, —a, has value <1 so is not a unit in R. We have

a,+, = a,mod Rn forall n
and so

a, mod Rxn.

Ay 41

Thus
{a,}* = {a}* modnR

where {a} is the constant sequence with all terms equal to a,. Now {a}* is in
R so the coset o+ P is in R+ P. Since « was an arbitrary element of R outside
of P it follows that R = R+ ‘13 Now multiply this by # and make the appro-
priate substitutions to get R = R+(})2. By induction one obtains R =
R+ ()" for any positive integer n. One more observation is required. By con-
sidering the values we find B" = R n (B)". Thus

RIBY = R+ (B)/B) = RIR ~ (Py

and so we obtain the desired result.

Next we describe an alternate form for the elements in K. Let S be a set of
representatives of the cosets of B in R. Assume 0 € S. Let {s5,} be any sequence
of elements in S. For a fixed integer r and any n > 0 let

a, =T (So+s, -+ +s,7").
Then a,-a,, is divisible by #"*** ! with ¢ = min {n, m} so it follows that {a,}
is a Cauchy sequence in K. The class {a,}* in K may be considered as a power
series

' (So+s )

and the g, are the partial sums.
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2.8 Propesition. Every element o # 0 in K, has a unique representation as
a power series,

o =7 (so+s;,T+-)
with the s; in S and sy # 0.

PrOOF. We know R is a DVR with quotient field Ky so every element #0
of Ky has a unique expression as n"u with r some integer and u a unitin R.1Itis
sufficient to show u can be expressed by a unique power series.

The coset #+ 7R contains a unique element s, of S and s, # 0 because u is
a unit. Thus ¥ — s, = nx, for some x, in R. Assume we have found sy, 5,..., , 5,
in S and x, in R such that

U—Sog—8s;m— o —sak=na*1x,.
Then there is a unique s,, , in S and some X, , , in R such that
Xy — Sg+1 = X+ T € Rm.

This gives the next s and x. This method of successive approximation enables
us to obtain the sequence of partial sums

s

b, =

o=

which converges to u because the “‘remainder” z"* 'x,, ; converges to zero.
To show the uniqueness of the expression first observe that the integer r is
determined from |«| = ¢". The uniqueness for units of R follows easily.
It is possible to do calculations with these power series representations by
imitating the procedures for the more familiar power series encountered in
calculus.

ExaMpLE. Let R=Z;, and K = Q,=3adic completion of Q. The
elements in 4 can be expressed as series

3r(s0+sl3+S232+"'),
where s; € {0, 1,2}, The rational number —§ has the form
—3=1/(1-3)=1+32+3%+ ...
Similarly
—1=2/1-3=2(14+3+3%+-).

EXeRCiSE 1. In Q3 1+2-3+3%+..-+3%"+2.32"* 14 ... converges to a
rational number. Find it.

EXERCISE 2. More generally show that a periodic series Y a;p" with
a; = a;,,, for some fixed m, converges in Q,, to a rational number.
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Exercise 3. Show the usual Taylor series in powers of z for the function
f(2) = (1 -42)"/? has integer coefficients. Use this to show 1 —4kp has a square
rootin Q,forany k in Z,,.

Exercise 4. Let U, denote the multiplicative group of units in the valuation
ring of Q,. Show the group of nonzero elements in @, is isomorphic to the
direct product {p> x U,.

EXEeRCISE 5. Let p be an odd prime and u an element in U,,. Let i denote
the image of u in GF(p) under the natural map of the valuation ring onto the
field of p elements. Show u is the square of an element U,, if and only if & is a
square of an element in GF(p).

EXERCISE 6. Let i denote the image of w under the mapping of the valuation
ring in Q, onto Z/(8). The units in Z/(8) have square equal to 1. Show that
ueU,isasquareifand onlyif i = 1.

ExercisE 7. Show Q,,*/(Q‘,,*)2 has order 4 when p is odd and order 8 when
p = 2. Here Q,* means the multiplicative group of nonzero elements in Q,.

3. EXTENSIONS OF NONARCHIMEDEAN VALUATIONS

Let K be a field with a nonarchimedean valuation |x|,. Let R be the valuation
ring and assume R is a DVR with maximal ideal p = nR. Let v, denote the
exponential valuation defined by v, (un") = n when u is a unit of R.

Let L denote a finite-dimensional, separable extension of K and R’ the
integral closure of Rin L.

We shall consider the problem of finding all valuations on L which, when
restricted to K, give a valuation equivalentto | |,.

It is not difficult to describe some valuations on L which are closely related
to| |,.In the ring R’ we factor r as

(1) PR = 1R = Pt Pes

with the B, distinct primes in R. Let | |; denote the P,adic valuation of L.
We shall now show that the restriction of | |, to K gives a valuation equivalent
to] I,

The valuation ring of | |; is the localization Rg,. Let the generator of the
maximal ideal be t. The factorization of =R’ above now yields © = ut® for
some unit  of Ry, . That is

Ry, = (Bi Ry)™.
Now for any wn" in K with w a unit in R we have

[wa™l; = jwurz"etf; = |2y
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If we evaluate the original valuation at wr" we have
|W7t"lv = |n|v"'

If a is some real number such that |t%|,” = |r[, then it follows |x[;* = |x], for all

xin K. Thus| |;and| |, are equivalent on K.

Next we prove the converse of this result. Namely if | | is a valuation on L
which is equivalent to | |, on K, then | |=]| |[; for one of the | |; defined
above.

Let Ry = {x e L||x|<1)}. Ry is a local ring with maximal ideal 0 and M N
R = p. We shall first show R’ = R,. Suppose there is an x in R’ with x not in
R,. Then [x|> 1. Hence |[x ™| < 1sox"isin M.

The element x is integral over R so there is a relation

X+ax" '+-4a,=0

with q; in R. From this we obtain

n—1
1= Y ag(x 1)y

i=0
which means 1 is in 9. This is impossible because |1|=1. Thus R’ € R,. Let
P =R n D Pis a prime ideal of R” which contains p. The localization Ry’
is also in R, because all elements in R’ outside 9 are units in R,. Let the maxi-
mal ideal of Ry’ be generated by 7. Every element in L has the form uz" for
some unit # in Ry’. This element u is also a unit in R, so |u|=1. Thus |ut"| =
|z|". It follows that | | is the Padic valuation on L.

3.1 Theorem. Let R be a DVR with maximal ideal p and quotient field K.
Let R’ denote the integral closure of R in a finite dimensional separable exten-
sion L of K. Let pR’ have the factorization (1) above. Then the inequivalent
valuations of L which give the padic valuation on K are the P;adic valu-
ations. The exponential valuations are related by e, v, (x) = vy, (x) for x in K
where ¢; is the ramification index.

All parts of this have been done except that we must show the P,adic valua-
tions on L are mutually inequivalent. This is immediate however because
equivalent valuations have the same valuation ring. For B, # P, we have

Ry, # Ry,

so the P,adic valuation is not equivalent to the B ;adic one if P, # P;.

The relation between the exponential valuations was proved above when it
was observed that|t®|; = |=|,.

We have seen that the nonarchimedean valuations of Q are in one-to-one
correspondence with the prime integers p. The valuation of Q corresponding
to p is the padic valuation.
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If K is any algebraic number field, then a nonarchimedean valuation on K
must restrict to some padic valuation on Q. Then Theorem 3.1 is used to deter-
mine the possible extensions to K. Thus all the nonarchimedean valuations of
K are known once the factorization of primes from Q are known.

This theorem can be made more precise if we impose further conditions
upon K. We shall prove that when K is complete there is only one extension
of the valuation to L. This is equivalent to the assertion that g =1 in the
factorization (1) of pR’. The proof of this will be accomplished by considering
some more general properties of complete fields.

Now keep the same notation and assumptions given at the beginning of the
section and assume further that K is complete with respect to the padic
valuation.

We shall temporarily adopt a more general point of view,

Let A be an algebra over R. That is 4 is a ring with identity and R is in the
center of 4. We shall say 4 is complete if every Cauchy sequence in 4 converges
to an element of 4. Here the terms Cauchy sequence and convergence are
interpreted as follows. The sequence {a,} is Cauchy if there is a function
N (n, m) with integer values such that

a,— a, € An*m

and N(n,m) goes to infinity with n and m. The sequence converges to the
element a if

a,—ae An™®™

where N(n) is an integer valued function that goes to infinity with a.

3.2 Theorem. Let A be an R-algebra which is complete. Suppose e is an
idempotent element in A/4n. Then there exists an idempotent element E in A
such that e = E+ An. If e, and e, are idempotents in A/Ax such that e, e, =
e, e, = 0then we may select £, £, idempotent in 4 such that E;+ An = ¢; and
E E,=F,E, =0.

ProoF. The proof requires some very formal manipulations at the start.
For each positive integer #,

2n 2n . )
Q) = [X+(1=-X)) = Z( )X’"‘J(I—X)J.
o\ J
Let

" {2n
£ = Z( ,)X“"f(l - Xy
j=o\J
Then £, (X) has integral coefficients and

3) £(X)=0modX", f,(X)=1mod(l—X)"
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The second congruence requires that Eq. (2) be used for 1 —£,(X). If we
square both sides of the congruences (3) we see they both hold when f£,(X) is
replaced by f,(X)?. It follows then

4) fo(X) = £(X)? mod X"(1 - X)".

We may also observe that (3) holds when £, (X) is replaced by f,, ,(X) so
by the same reasoning one obtains

&) Jorr (X) = f,(X) mod X”(1 - X)".

Now we turn our attention to the theorem. Let e be an idempotent element
in A/An and let a be any element of 4 such that e = a+ An. Since e = e we
must have a’—a € An. Thus

(6) a'(l—-a) e An" forall n.
It follows from (5) that
Jor1(@) —fr(a) € An".

Since A4 is complete, the sequence a, = £, (a) must converge to an element
E in A. The congruence (4) shows E = E? so E is idempotent. Finally we
observe f, (X) = X mod X(1 — X) so from (5) again

@ =fo_(@ = =f(a) = amodAn

and it follows that E+ An = e as required.

Now consider the two idempotents e,, e,. First note that e; + ¢, is idem-
potent in A/An so there is an idempotent E in A with E+ An = e, +e,. Take
any element a in 4 with a+ An = e,. Let b= EgFE. Then

b = EaE = e,

where the bars indicate cosets of An. Thus b*>—b is in An and limf,(b) = E,
is an idempotent in A such that £, + An = e,. We look at the definition of
to see that b = bE = Eb so we also obtain f,(b) = f,(b) E = Ef,(b). Passing to
the limit shows E, = E, E = EE,. It follows now E, = E—E, is an idem-
potentand E, E, = E, E, =0, E, = e,.

We shall obtain a number of consequences from this result.

3.3 Proposition. Let K be a complete field with respect to a nonarchi-
medean valuation whose valuation ring, R, is a DVR. Let L be a finite-
dimensional separable extension field of K and R’ the integral closure of R in
L. Then R’ is a DVR and L is complete in the valuation induced by R’'.

ProoF. Let p denote the maximal ideal of R and suppose pR’ has the
factorization (1).



82 II COMPLETE FIELDS

We intend to apply Theorem 3.2 with R’ = A4 so let us first show R’ is
complete.

R' is a finitely generated free R-module so let x,, ..., x,, be an R-basis. Let
{a,} be a Cauchy sequence in R’ in the sense defined for 4 above. Write

a, = aVx, + -+ + a,"™x,,

with the 4, in R. For each i, {a"} is CSin Rso has alimit in R. It follows that
{a,} has a limit in R’
Now we compute R'/pR’ by CRT to get
R/pR = R/P{ @D - @ R /P,
If g>1 there is an idempotent element e =(1,0,...,0) and e# 1. By
Theorem 3.2 there is an idempotent E in R’ in the coset corresponding to e.
But R’ is an integral domain so E =0 or E =1, since E(1—E) = 0. It follows

that g = 1. Thus R’ has only one maximal ideal B and since R’ is a Dedekind
ring, it must be a DVR.

3.4 Corollary. Let K be complete with respect to a nonarchimedean
valuation |x|, and let L be a finite dimensional extension field of K. Then
there is a unique extension of the valuation on K to L and it is given by the
formula

|J’| = INL/K(}’)|;1»/"
forall yin L where n = (L: K).

Proor. The existence and uniqueness have already been proved. It remains
to verify the formula is correct. Let R, R’ denote the valuation rings in K and
L, respectively with maximal ideals 7R, TR’, respectively. We have aR’ =
°R’. Let ¢ =|1] so for any element y = ut™ of L we have |ut™| = c™ when u is
a unit in R'. In particular

|n| = x|, = c*

Now let /' denote the relative degree of TR’ over R. We have
Nk (tR) = n'R
by Chapter I, Proposition 8.4. Thus
N() = wnf
with w a unit of R, We now have
IN(D)|, = [N@r™)|, = [unit-2/™|, = /™.

From Theorem 6.6 of Chapter I we obtain ef = (L : K) = n so the formula

INOD™ = 1]
follows at once.
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This formula for the extension of valuations will be useful in the last section
of this chapter.

As another corollary to Theorem 3.2 we obtain a result about polynomials
over R.

3.5 Proposition (Hensel's Lemma). Assume R (and K) as in Proposition
3.3, and let R denote the residue field of R. Suppose F(X) is a monic poly-
nomial in R[X] which factors as F(X) = g(x) h(x) modulo p with g(X) and
h(X) relatively prime polynomials in R[X]. Then F(X) = G(X) H(X) with
polynomials G(X), H(X) in R[X] which satisfy G(X) = g(X), H(X) = h(X)
and degree G(X) = degree g(X).

PrOOF. Let A denote the R-algebra R[X]/(F(X)). Then 4 is a finitely
generated free R-module [because F(X') is monic]. The argument in the proof
of Proposition (3.3) shows A is complete so Theorem 3.2 can be applied. We
can identify 4/pA4 with R[X]/(F (X)) and since g(X) and A(X) are relatively
prime it follows from CRT that

A = Afp4 = R[X1/(9(X)) @ R[X]/(h(X)).

Let e,, e, denote the identity elements in the first and second factors, respec-
tively. There are idempotents E,, E, in A whose sum is 1 and whose product
is zero and which satisfy E;+ Ap = ¢,. It follows that

A = AE, @ AE,.

Let x denote the image of X in A. The characteristic polynomial of x on 4 is
F(X) since 4 = R[X]/(F). Also by direct computation, the characteristic
polynomial of x is a product G, (X)H,(X) with G,(X) the characteristic
polynomial of x on AE, and H,(X) the characteristic polynomial of x on
AE,. Here G,, H, may be taken as monic polynomials. After we pass to the
residue field R and compare the two decompositions of 4, it can be seen that
the characteristic polynomial of x on AE, is g(X) except that it need not be
monic. Thus G,(X) is a scalar multiple of g(X). The scalars in R are the
images of units in R so we may multiply G, by a unit and H, by the inverse
to get polynomials G, H such that G =gand F= GH =G, H,.

3.6 Corollary. Same notation as just above. Suppose F(X) has a root in R
with mulitiplicity one. Then F(X) has a root in R with multiplicity one.

Proor. If F(X)=(X—a)h(X) and h(a) # 0 then these factors are rela-
tively prime. Thus F(X) has a monic factor of degree one which is relatively
prime to the other factor.

3.7 Corollary. In the padic field Q,, the polynomial X?~!'—1 has p—1
distinct roots.
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Proor. The polynomial X?~'—1 is in R[X] and has p— 1 distinct roots
in R because R is the field of p elements. Hence the polynomial splits in R by
Corollary 3.6.

We close this section by describing the relation between ramification
numbers for primes in a number field and in the completions.
Let K be an algebraic number field which is the quotient field of the DVR
R with maximal ideal p. Let L be a finite dimensional extension of K, R’ the
integral closure of R and
PR = PG - Poo, PB; distinct primes in R,

Let |x|, and | y|y denote the padic valuation on K and the adic valuation on
L, respectively, with B = PB,. Assume |x|, =|x|y for x in K. A

Now complete both fields. Let K, Ly denote the completions; R, R’ the
valuation rings, §, P the maximal ideals.

3.8 Proposition. The following equations hold:
(@ p=»pR  P=2%R,
(b) PR = (By,
© e(B/R) = e(P/R) = e,
@ f(B/R) =f(B/R) =,
(&) (Ly:K,)=¢f

PrROOF. Proposition 2.4 says p and p can be generated by the same element
of R and that P and P can be generated by the same element of R’. Thus
Statement (a) holds.

The ideals P,, ..., B, each contain elements of R’ outside of P so B, R =
R’ because R’ is a valuation ring with BR’ as maximal ideal. Now we have

PR = (pPRIR" = (P PR = (P, Ry = P,

This proves (b) and (c) is simply a restatement of this. The equality of the
relative degrees is a consequence of Corollary 2.7 which implies

(R/B:R/P) = (R'|B: R/p).
Finally (e) follows from Theorem 6.6 of Chapter 1.

Exercise 1. Let 6 denote a primitive p® root of unity, p a prime, and let
L = (). Use the facts about the ramification of (p) in L to conclude

(Q:(0):Q,) = (L: Q).

ExerciskE 2. Conclude from Exercise 1 that the only roots of unity in
Q,(0) having p power order are those in the cyclic group (8).

EXERCISE 3. Show the group of roots of unity in Q,(6) has order p”(p—1).
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4. ARCHIMEDEAN VALUATIONS

In this section we determine all the fields which are complete with respect
to an archimedean valuation. This information is necessary to determine how
archimedean valuations on noncomplete fields extend to finite-dimensional
field extensions.

4.1 Theorem (Ostrowski). Let K be a field which is complete with respect
to an archimedean valuation |x|. Then K is isomorphic to either the real or
complex field and the valuation is equivalent to the usual absolute value.

PrOOF. Since the valuation is archimedean, the values |a} for # in Z are
unbounded. Thus K has characteristic zero and the restriction of |x| to the
rationals, O, must be an archimedean valuation on Q. We know all the
valuations on Q so we may replace the original valuation by an equivalent one
to obtain that | x| is the usual absolute value of x when x is in Q.

The field K is complete, so the completion of @ must be contained in K. Let
# denote this completion. We know £ is isomorphic to the field of reals and
the valuation on Z is the usual absolute value.

It may happen that K contains an element i such that i>+1 = 0. If so then
% = (i) is isomorphic to the complex field.

If K does not contain a root of X?+ 1 we adjoin one to K to obtain a field
K (i). The valuation on K is extended to K(i) by the rule

la+ib| = (Ja|*+[b|H?,  a,beKk.

It is straightforward to check that this does give a valuation on K(i) and
K(i) is complete under this valuation.

The result of this argument is simply that we may assume ¥ < K since a
proof of the theorem for K(i) will also prove the theorem for K.

We have arranged a normalization of the valuation so that on # it is the
usual absolute value. Next we show it is the usual absolute value on ¥ also.

42 Lemma. Let |x| be a valuation on ¢ which coincides with the usual
absolute value on #. Then |a+ib| = (a*+b*)!/* fora, be A.

ProOF. Write |+ ib|| for (a*+b%)'/2.
Now first notice that i* = 1 implies |i|= 1. So for o = a+ib e € we have

| = la+ib| < [a] + |b] < V2(a? +6)"2 = /2 fa.

The function f(a) = |a|/]« for « # 0 is bounded by +/2. Since f(a") = f(«)" it
follows that f(«) < 1. However f(a~ ') = f(x) ! implies f(2) = 1 for all a # 0.
Thus f(«) = | as required.
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Now we come to the main part of the proof. We have ¥ < K and it is neces-
sary to show equality. Suppose there is some z € K but z ¢ %. Let
m = glb|z—a.
xe¥
Let us prove first there is some o in € for which m = |z —ay|.
For any positive number &, the set of complex numbers « for which |z —a| <
m+¢ is contained in the set

{Be¥%||Bl<sm+e+]|z|}.

This is a disc and the function f(f) = |z— f| is a continuous function from the
disc into the reals. The minimum of this function is attained at some a, in €.
The assumption that z was not in € implies z—a, is not in ¥. We may now
replace our original z with z—a to obtain

() z¢ ¥ and b) m=|z| <|z~q|, a€E.

Notice that m = |z| # 0 because z is not in . The next step shows |z—a|=m
whenever o is in € and |a| < m.

Let n denote any positive integer and w a primitive nth root of unity in €.
The factorization

M= (z—)(z—wa) - (z— 0" a)
implies

lz—allz~wa| - |z—@" o = |2"—a"] < |z|" + |a|™
Each term |z—w'a| > m so
|z—alm"™" < [2]"(1+]a]"/|2]") = m"(1+]a|"/n").
This implies
|z—a| < m(1+|a|"/m").

This holds for any integer n so if || < m we let n increase without bound. Then
it follows |z—a| < m.

The minimal choice of m forces |z —a| = m. If we now replace z by z—«, for
any « in % with |a| < m, then conditions (a) and (b) above are satisfied. We
may repeat the above procedure and obtain |z—a— | =m whenever f € ¥
and || < m. In particular |z — 2a| = m. Repeat this and by induction we obtain
for any positive integer n,

|z—net| =m, a€%, || < m.
But any complex number £ can be written as

B = na, |¢] < m,  n = positive integer
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because m # 0. Thus {z—oa|=m for all « € €. This implies for any «, f € %,
la—Bl < |z—af +|z—B| = 2m

which is clearly not the case if « = 3m, f = 0. This contradiction is a result of
the assumption that K # ¢. Hence K = % and by the Lemma 4.2, the valuation
is uniquely determined.

This theorem allows one to describe all the archimedean valuations of an
algebraic number field.

Let K be an algebraic number field and |x|, an archimedean valuation on
K. The completion, K, of K with respect to the valuation must be a copy of
the reals or complexes with the usual valuation. This means there is an
isomorphism, ¢, of K with 2 or € such that

X1, = [ (x)|

for all x in K and where |¢(x)| denotes the usual absolute value on % or %.
We compose ¢ with the natural imbedding of K into K to see that |x|, is
determined by the imbedding of K into # or ¥. So far we have proved the
following:

4.3 Lemma. Every archimedean valuation of K is equivalent to one
obtained by the formula | x|, =|¢(x)| for all x in K where ¢ is an imbedding of
Kinto # or € and | ¢ (x)| is the usual absolute value.

We shall next determine which of these are inequivalent. The notation of
Section 11, Chapter I will be used. Namely let 5,, ..., g, be the distinct imbed-
dings of K into # and let 6,,,,...,6,,4,G,41,....6,4+5 be the 2s distinct
imbeddings of K into . Here & means the map defined by taking the complex
conjugate of o (x) for the value of g(x).

Since a complex number and its conjugate have the same absolute value we
find

lo(x)] = |&(x)]

forall x. So theimbedding g, , ; givesrise to the same valuation as the imbedding
.. ;. It will be seen that these are the only relations between the valuations.

Let |x|;=]|o;(x)| for 1 <i<r+s. Each archimedean valuation of K is
equivalent to one of the |x|; and these are inequivalent. This has been proved
already in the proof of the Dirichlet Unit Theorem (11.19). It was seen there
that for each i there exists u; in K such that

[ui]; > 1 and [;]; < 1i#].

This means | |; is not equivalent to any other | |;. We summarize these
calculations.

4.4 Theorem. Let K be an algebraic number field; o,...,0, the real
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imbeddings of K; g, , y, ..., 0, , one member of each conjugate pair of complex
imbeddings. Each archimedean valuation is equivalent to one and only one of
the valuations defined by |x|; =|o;(x)|.

The terminology introduced for the rationals will also be used in the case
of an algebraic number field, K. A prime of K is an equivalence class of valua-
tions. A prime is called an infinite prime if it contains an archimedean valuation.
The other primes are called finite. An infinite prime is called a real prime of K
if the completion at that prime is the real field. The other infinite primes are
complex.

If we now consider a finite-dimensional extension L of K and an archi-
medean valuation on K, then the valuations of L which restrict to the given
one on K are easily described.

Let o be an imbedding of K into # or € such that the valuation on X is
|x[; =|a(x)|. We may regard ¢ as an imbedding into a field containing an
algebraic closure of K. By Galois theory there exist (L : K) = n extensions of
o to imbeddings of L into %. (Even though ¢(K) « # we cannot assert the
extended map will carry L into Z.)

We shall not try to describe any more precisely what the extensions are but
at least we see extensions to L can be described by Galois theory. In the next
section a method will be described.

5. LOCAL NORMS AND TRACES AND THE PRODUCT FORMULA

Let K denote any field and L = K(6) a finite-dimensional, separable exten-
sion. Let f(X) be the minimum polynomial of 8 over K. Take p either an
archimedean prime of K or a prime whose valuation ring R is a DVR. Let
By, ..., B, denote the primes of L which extend p and let L, denote the com-
pletion of L at B,.

5.1 Theorem. Let f(X)=/f,(X) - f,(X) be the factorization of f(X) as a
product of irreducible polynomials over K, . If the f;(X) are suitably numbered
then g = r and

L, = K, [X]/(f;,(X)).
Wealsohave L Qx K, =L, @ @ L,.
PRrOOF. Since f(X) is a separable polynomial we obtain (by CRT)
L® K, = K,[X]/(f(X)) = } ® K, [X]/(/,(X)).
We show the L; are the direct summands of L® K.

Let x — x; denote the imbedding of L into L;. Then the map on L ® K,
determined by

Qi x® k - x;k
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is a homomorphism into L;. This is in fact onto L; as one easily verifies by
examining the Cauchy sequences in L;. The only fields which are homo-
morphic images of L ® K, are the direct summands. So each L; is a direct
summand. No two of the ¢, have the same image because the composite map
sending x to ¢,;(x ® 1) is the natural imbedding of L into L; and the L, are
distinct completions of L. Thus the direct sum L, @ --- @ L, is a direct sum-
mand of L ® K;,. But now

Y(LitKy) =3efi=(L:K)=(L®K,:K,)

by Proposition 3.8 and Corollary 6.7 of Chapter I. Thus LK, =L, @ -+
®L,

Next we establish a further connection between the extension L/K and the
various completions L;/K,,.

5.2 Theorem. For each element yin L we have
(i) charpoly,x(y) = Il;charpoly, x, (1)
(i) Npx(¥) =TT Ngk, ()

(i) Tpx(¥) =ZiTrk, ()

Proor. Letx,,...,x, bea K-basis for L. For y in L let r, denote the matrix
|ay| defined by x;y = 3 a; x;.

Now x, ®1,...,x,® 1 is a K, basis for L ® K, and multiplication by y ® 1
induces a linear transformation with matrix |g;| also.

Use a basis for L @ K, which is compatible with the decomposition
L, @@ L,. It follows that a matrix for r, ® I has the form

diag{r,,...,7,},

where r; is a matrix for the regular representation of y on L; over K. Now it
follows that

charpoly, x(y) = det(XI-r,)
= []det(XI—r)
= [[charpolyy,k,(¥).

The statements (ii) and (iii) follow by examining the coefficients of the charac-
teristic polynomials.

Now assume p is a nonarchimedean prime on K so it may be considered as
an ideal in the valuation ring R. Let R’ be the integral closure of R in L and
PR’ has the factorization

pR' = ‘Bi‘ . %;g_
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If L, is the P,adic completion of L then (L; : K,) = e, f;. We have seen that the
valuation on L, can be given in the form

Iyl = |NL,/K,,(Y)|;/e'f‘-
We consider this for y in L and observe that

I;“}"e’f' = [TINLk, Dp = INLx (D),

If we replace the valuation | |; on L, by its e, f; power we then obtain the
following.

5.3 Lemma. If the valuations | |, on L are suitably normalized, the
following formula holds:

H |yl = |NL/K(y)|p'

A similar normalization can be obtained for archimedean valuations.
Assume |x|, is the valuation on K which is obtained by a particular imbedding
o of Kinto Z or ¥ by the formula | x|, = |6 (x)|, where the last denotes the usual
absolute value. All the extensions of |x|, to L are determined by imbeddings
o, of L into %€ which agree with ¢ on K. The valuations on L are normalized
as follows:

I. o(K) < £ so pis a real infinite prime. Then
Iyl = la:(»)] if o(L)c R
=lo;(»* if o(l) ¢ A

In this case the term |a;(y)|? can be written as |ai(y);,-(y)|. So

[Tixh = [Tlew()

where o, runs through all extensions of ¢ to imbeddings of L into %. These
images may be regarded as landing in a normal extension of K so the product
is [N gk, -
II. o(K) & Z so p is a complex infinite prime.

Then | y|; =|o;(y)| where g; runs through all extensions of o. As above,

[Tyl = INLx DI,
These normalizations enable us to prove a product formula for algebraic
number fields.

Product Formula. Let K be an algebraic number field. For each prime P of
K (finite or infinite) there is a valuation |x|y in B such that for each x # 0 in
K the formula holds

[Tlxlg = 1.
¥
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Proor. Let p be any prime of the rational field Q and B,,..., P, the
distinct primes of K which extend p. We may select valuations |x|g, in B, such
that

1:[|x|an = [Ngo ()|,

where | y|, is the normalized valuation on Q defined in Section 1. Let us write
B, |p to denote that B, is a prime extending p. Then

[Tixle = ITI] Ixle, = [TINgjx)], =1
P p Bilp )
by the product formula for Q.

ExaMpLES. Let K = Q(6) with 6° = 2.

There is one real imbedding of K obtained by taking o (8) = real cube root
of 2 = 2!/3, The pair of complex imbeddings are found by o, (f) = w2'/? and
&,(0) = @2'"® where w is a primitive cube root of unity. Thus K has two
archimedean primes, one real and one complex.

To discuss the nonarchimedean primes of K it is necessary to know either
how X?*—2 factors over Q,, the padic completion of Q or how the prime p
factors in the ring of algebraic integers in K. This latter information has been
given for some primes p in Chapter I, Section 7.

For example the prime p = 7 remains prime. That is there is a unique prime
of K, say P, containing 7. Hence the 7adic valuation on Q has a unique exten-
sion to K. After taking completions we find (Ky : @) = 3 by Proposition
3.7(d) and (e).

The prime p = 29 is contained in two primes P,, P, of K having relative
degrees f; = 1 and f, = 2. Thus the completions satisfy

(Kp,: Q29) = 1, (Kp,: Q29) = 2.

This gives an example where K # Q but Ky, = Q4. This will happen, of course,
whenever ef = 1.

The ramified primes p = 2 and p = 3 are each contained in unique primes
B,, P, of K with relative degrees equal to one and ramification numbers equal
to three. The completions Ky,, Ky, have dimension three over Q,,Q;,
respectively.

We can compute the extended valuations by the formulas obtained in this
section. Forexample Ny, o, = Ngpon K since 2 has a unique prime of K over
it. Thus the valuation on Ky, is given by

1/3 :
|x| = INKWZ/QZ(xNz/ ) x in Kg,.
When we restrict x to lie in K we obtain

| x| = |NK/Q|5/3-
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For example, if we normalize | |, so that |2, = 4 then
6] = [Nk, (0)]2° = (2]} = )"

Exercise 1. Let K be an algebraic number field, L = K(6) an extension
generated by an element 6 with minimum polynomial f(X). Let p be a prime
of K and suppose f(X) factors as f, (X) --- f,(X) over the completion K, . Then
the prime p of K has exactly g extensions to primes ,,..., B, of L and with

suitable numbering e (B,/p)S(P,/p) = degree f, (X).
ExercisE 2. Let L = Q(6) where is a root of X*—14 = 0.

(i) Show the prime 5 of Q has two factors P,, B, in L and (Ly,: Qs) =2
fori=1,2.

Procedure. Use Exercise S following Chapter 11, Section 2 to see that 14 is
a square but not a fourth power in Q.
(ii) Show that the prime 11 has three factors P,, P,, P, in L and Ly, =

Lmz = Qll While (l;vJ . Qll) = 2.
(iii) The prime 13 has four prime factors in L.

Let k = GF(g), g a prime power, and K = k(x) the field of rational functions
in one indeterminant.

ExercisE 3. For each monic irreducible polynomial p(x) in k[x] there is
a prime of K containing the valuation defined by

Iy, = ¢*®

where v is the exponential valuation

v(p(x)'a(x)/b(x)) = t degp(x)
if a(x), b(x) are polynomials not divisible by p(x).
There is a prime p on K containing the valuation

la(x)/b(x)|, = gieaex)—deab(x),

Show that these primes are mutually inequivalent and every prime of K is
equivalent to one of these.

EXERCISE 4. With the valuations of K normalized as above show the
product formula holds; that is y ## 0 in K implies

Iy, =1

allp

ExXERCISE 5. Let p be the prime of K corresponding to the irreducible
polynomial p(x) = x. The completion K, is naturally isomorphic to the
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Laurent series field k£ (x> consisting of all elements
X"aotagx+-)
with 7 any integer and the g, € k.

EXERCISE 6. If p is the prime corresponding to an irreducible polynomial
of degree f then K, is isomorphic to the Laurent series field F{(x) with
F = GF(q’).

Exercise 7. The completion of K with respect to the remaining prime is
isomorphic to k {y) with y = 1/x.



Chapter 111

DECOMPOSITION GROUPS AND THE ARTIN MAP

1. DECOMPOSITION AND INERTIA GROUPS

We want to study the decomposition of primes of an algebraic number field
K in a finite-dimensional Galois extension L with Galois group G. There are
connections between ramification numbers, relative degrees of a prime and
certain subgroups of G. Parts of the discussion work equally well for finite and
infinite primes so we shall make the appropriate definitions.

Let p be an infinite prime of K and B, ..., B, the distinct primes of L which
extend p. We say P, is unramified if the completions Ly, and K, are equal;
that is if B; and p are both real or both complex. In this case we set e(P;/p) =
S(B,/p) = 1. In the remaining case p is real and B, complex. We set e(P,/p)=
2, f(B,/p) = 1. We then have

(LQ‘ : Kp) = e,-f;'
Y (Lg,:K,) = (L:K),

just as in the case of finite primes. These definitions are the same whether L
is Galois over K or not. Just as in the finite case the Galois group is transitive
on the B, and all the ¢, are equal.

Now let p denote any prime of K, finite or infinite, and let its decomposition
in L be

P = (“Bl e gBy)e'
94
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Set P = P, and
G(B) = {0 Glo(PB) =P}

We call G(B) the decomposition group of *P.
1.1 Lemma. |G(*B)|=ef with f= relative degree of ‘B over p.

Proor. The Galois group G is transitive on the 'R, so the subgroup fixing
one of them has index [G:G(*B)] =g. The result now follows from the
relation |G| = (L : K) = efy.

Let K, and Ly denote the completions at the indicated primes. Each element
o in G(*B) leaves fixed the Padic valuation on L and so there is a unique
element 6* in G(Ly/K,) with the property 6* = o on L (by Chapter 11, Theorem
22 appliedtos: L — L).

This shows that the correspondence o — ¢* is one to one. It is a group
homomorphism because of the uniqueness property. That is o*t* and (o1)*
are both extensions of gt and hence are equal. Finally we recall (Ly: K,) =
ef = |G(B)| so G(B) maps onto the full Galois group of Ly over K.

From now on we shall identify G () with G(Ly/K,).

Now assume p is a finite prime of K.

Let R, R’ denote the valuation rings in K, and Ly, respectively; the maximal
ideals are p and P; the residue fields are R and R’. These are finite fields with
(R":R) =f. For 6 € G(*B) let @ denote the automorphism of R’ defined by

a(x+P) = o(x) + B.

The mapping ¢ — & is evidently a homomorphism of G (%) into G(R'/R).
The kernel of this map is denoted by T () and is called the inertia group of B.
Clearly T(B) reflects the ramification of B. We shall describe T(B) more
precisely and make this connection clear. First the following definition is
needed.

Definition. A finite prime p of K is fotally ramified in L if p has only one prime
divisor ‘B in L and the relative degree f(*B/p) equais one.

When this situation holds it necessarily follows that the ramification number
of B over p equals the degree of the field extension.

ExXErCISE. Let K « E < L be a tower of algebraic number fields and let p
be a prime of K which is totally ramified in L. Then p is totally ramified in E.

Now we describe some properties of T(R) and G (‘B).
1.2 Theorem

(a) The map ¢ — & carries G(*B) onto G(R'/R);
(b) [T(P)|=e(PB/p)=¢;
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(c) the subfield E of Ly left fixed by T(P) is an unramified extension of
K, and

SEIK) = (E:Ky) = f(Ly/K}) = f;
(d) the extension Lg/E is totally ramified having e(Lg/E) = (Ly: E)=e.

Proor. Let R GF(g), R’ = GF(¢’) and let d=¢'—1. Consider the
polynomial

AX)=X—1 eR[X]

When we pass to R, A(X) splits in R’ and in fact the roots of 4(X) are precisely
the nonzero elements in R’. One of the elements in R’ has degree f over R so
A(X) must factor as

A(X) = b(X)c(X)

with b(X) irreducible of degree f over R. The polynomials 5(X) and ¢(X) are
relatively prime because 4(X) has no repeated roots. Hensel’s lemma (Chapter
I1, Proposition 3.5) may be applied to obtain the factorization

A(X) = B(X)C(X)

with B(X) in R[X] irreducible of degree fand B(X) = b(X). By Chapter 11,
Corollary 3.6 a simple root of 5(X) in R’ is the image of a root 6 in R’ of B(X).

Now let £ = K,(6) and S = valuation ring in E. Since 0 is a dth root of unity
all roots of B(X) are powers of 8. Thus E is the splitting field of B(X) so E is
normal over K,. Moreover (E: K,) = f= degree B(X). Any element ¢ in
G (P) permutes the roots of B(X) in exactly the same way as & permutes the
roots of B(X) since the roots correspond one to one. Thus ¢ fixes @ if and only
if & fixes 8. It follows that 7'(B) is exactly the subgroup fixing E because any ¢
fixing 8 is the identity on R'. Now

[GB):T(P)] = (E:K)) =f

and so {T(PB)| = e because |G (P)| = ¢f.

Since |G(R'/R)| = f it follows that G(P) maps onto G(R’/R). This proves
Statements (a), (b), and (c).

To prove Statement (d) we observe that

R252R@=FR

soinfact § = R’. Thus f(Ly/E) =1 and (Ly: E) = e(Lgy/E) as required.
We now translate this local data into global data.
The chain of subgroups

1 <TMP) <GP) <G =G((L/K)
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corresponds by Galois theory to the chain of subfields
L> KT(‘B) > KG(‘”) > K.

We call K7™ and K% the inertia field and decomposition field of B over K.
Let the primes in these fields be denoted by

SBT = SB o) KT('B), ‘BZ — sB A KS8®
1.3 Theorem

(a) P, is unramified in K™, The only divisor of B, in KT® is P, and
S(B1/B2) =S(B/p).

(b) Py is totally ramified in L. B is the only divisor in L of ¥ and
e(P/PB7) = e(P/p).

PrOOF. The group G(P) is the Galois group of L over K™ and so G(*P)
is transitive on the divisors in L of PB,. However B is one of those divisors and
G (PB) leaves P fixed. Hence P, has only one divisor in L. Now we complete all
the fields at the primes above B,. The statements about relative degree and
ramification hold in the complete case by Theorem 1.2 and so they hold also
in the global case.

The group G (*B) need not be normal in G so this complicates the discussion
of the factorization of p in K%, We shall be able to describe the situation
shortly but for now we give the easier case. We shall refer to this in the case
where G is abelian.

1.4 Proposition. Suppose G(P)is normal in G. Then p has the factorization
p=p, - p,in KS® where e(p;/p) = f(pi/p) = 1.
PrOOF. From above we see e(‘'B/B,) = e(B/p) and f(PB/P;) = f(B/p) so

the multiplicative property of the es and fs implies

e(Pz/p) = f(Pz/p) = 1.

Our additional hypothesis that G () is normal in G means K® is Galois
over K so all prime divisors of p in K¢® have the same ramification number
and same relative degree as P, over p.

2. THE FROBENIUS AUTOMORPHISM

We continue in the context of the previous section except that we suppose
p is unramified in L.

In this case the inertia group T(‘B) has order ¢ = 1 so in particular G(*B) =
G(R’/R). This last group is the Galois group of a finite field and so it is cyclic
of order f. Then the decomposition group G () is cyclic of order f.
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Even more can be said. The Galois group of R’ = GF(g’) over R = GF(q)
is generated by a distinguished automorphism
X - x4
This means there is a unique automorphism ¢ € G (*B) which satisfies
2.1) o(x) = x*mod B, xeR

This automorphism is called the Frobenius automorphism of P. To indicate
the dependence upon B, L, and K we denote it by

c=|—1.
RY
This notion plays an important part in the sequel.

EXErCiSE.  Show there is a primitive ¢/ — 1 root of unity, , in Ly and the
Frobenius automorphism o is uniquely determined by the condition o (ff) = 4.

We shall make a number of calculations to determine the behavior of the
Frobenius automorphism as a function of B, X, L.

Suppose B, is another prime of L dividing p. There exists t € G(L/K) with
7(P) = B,. If 6 is an element of G(P) then 167~ ' is in G(P;) and conversely.
So we have

G(B) = G(P) = 1G(P)1™".

4]-14)
() P '

PrROOF. Any element in the ring of algebraic integers of L can be written as
77! (x) with x an algebraic integer. By (2.1) we obtain

[E‘—/;jlt—l(x) = 17 1(x) mod P.

Apply 7 to this and obtain

2.2 Property

r[L—‘gK—Jt“(x) = x? mod = (P).

The uniqueness of the Frobenius automorphism gives the desired result.

Suppose L o E > Kand P n E = p,. Since p is unramified in L, p, is also
unramified in L. There is defined then a Frobenius automorphism of P for the
extension L/E. It is related to that for L/K as follows.
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|:_L/_K:|f(vo/v) _ [_L/_E:I
P LS

Proor. The residue fields of the rings of integers in L, E, K modulo B, p,, p
are related by

2.3 Property

GF(¢’) > GF(¢'°) > GF(g)

with f, = f(po/p). The generating automorphism for the Galois group of
GF(q’) over GF(g’°) is

X - xv'°
and this is the f power of the generating automorphism when GF(qg) is the
ground field. The property now follows from the definitions of the Frobenius

automorphism of P over E and over K.
Suppose we also know E is normal over K. Thus the expression

5

is defined.
2.4 Property

E (restriction to F).

E/K L/IK
- 5]
Proor. For an algebraic integer x in E, a congruence of the type
o(x) = x*mod P
is equivalent to a congruence

o(x) = x*mod p,

because P N E = p, is sent to itself by G(*B) when E is normali over K. Thus

with
4]

o|E = [—E/—K:l
Po

Next suppose E,; and E, are normal over Kand L = E| E,. Let B n E; = p;
for i =1, 2. The expressions

Sl
B ’ P P2

we have
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are defined but they lie in different groups. Consider the mapping
G(L/K) —» G(E,/K) x G(E,/K)
defined by
o — (6|E,,0|E}).

This is a one-to-one mapping because any automorphism which is the
identity on both E, and E, is the identity on L = E,| E,. Identify G(L/K) with
its image in the direct product of G(E,/K) and G(E,/K). Property 2.4 implies

the next statement.
[El E2/K:| I:E‘/K] |:E2/K]
= X .
pu P P2

Definition. A prime p of K is said to split completely in L if p has (L : K)
distinct prime divisors in L.

2.5 Property

An equivalent statement is that p splits completely in L if for each prime
P of L dividing p we have e(P/p) = f(B/p) = 1.

2.6 Property. The prime p splits completely in L if and only if

)
g

implies that it generates the decomposition group G(B). However p splits
completely if and only if |G(P)|=ef = 1.

PrOOF. The definition of

27 Corollary. Let E, and E, be normal extensions of K and L = E| E,.
The prime p of K splits completely in L if and only if p splits completely in both
E, and E,.

ProoF. By Property 2.5,
[%IS] =1 if and only if [E/i(:l =1

fori=1and 2.
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Factorization in Nonnormal Extensions

In the case L/K is a normal extension, the Frobenius automorphism carries
all the information about the factorization of unramified primes. That is

&1
B
has order f [because it generates G ()] and the number of prime factors in L
of pisg = (L: K)/f.

We shall now consider how the Frobenius automorphism can be used to
describe the factorization of p in some nonnormal extension.

Consider a tower K <« F < L with E/K not necessarily normal. Let H be the
subgroup of G(L/K) fixing E elementwise. Consider a coset decomposition of
G = G(L/K) given by

G = Ho, v -+ v Ho,.

Any element ¢ in G permutes these cosets by right multiplication:
Ho,— Ho,o. By a cycle of length t for ¢ we mean a sequence

2 t—1
Ho;,Ho,0,Hao;0°, ..., Ho;0

in which the ¢ cosets are distinct and Ho;, = Ho,o'. This coincides with the
usual notion of a cycle for permutations. The collection of all cosets is par-
titioned into disjoint cycles of o.

We want to describe how the prime p of K factors into a product of primes
of E. We still assume p is unramified in L and 9P is a prime factor of p in L.

2.8 Proposition. Let ¢ be the Frobenius automorphism of ¥ in L/K.
Suppose ¢ has cycles of length 7,, ..., ¢, when acting upon the cosets of HinG.
Then p is the product of s distinct primes in E having relative degrees 7, ..., f,.

ProOF. Let Hzt be a representative of a cycle of length ¢ for o. Set po =
7(P) N E. Then p, is a prime of E dividing t(*B) n K = p. The relative degree
S (po/p) =S can be computed in the following way:

The relative degree of T (‘R) over p, is the order of the decomposition group
H(z(P))— the subgroup of H = G(L/E) fixing t(P). This subgroup is clearly
given by

H(x(P) = H 0 G(2(P)).

Now G(t(P))=1G(P)t~ ' =(ro1™ ') because the Frobenius auto-
morphism ¢ generates G (*B). It takes just one step to show

Hn (tot™!) = (ra't™")
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when ¢ is the least positive integer for which Ht = Hre'. So we have H(t(P)) =
{r6't~ 'y, Now finally

So/P) = f(B/P)(B/po)
= |G(P/|H(=(P))|
= [Kod|/|<ro' T )| = 1.

Thus a cycle for o of length ¢ corresponds to a prime of E dividing p and
having relative degree 7. Next we prove this correspondence is one to one.
Suppose Ht and HA are cosets of H for which

po=APB) N E=1(P) n E

Then A(P) and t(P) are primes of L dividing p, and by transitivity properties
of the Galois group H, there is some y in H with yA(B) = 7(*B). It follows
17 ylisin G(B) = <o) 50 yA = ¢’ for some i. Hence
Hte' = HyA = HJ
and so Ht, H4 belong to the same cycle.
The last step requires that we show every prime divisor in E of p has been

obtained by this procedure. Each of the s cycles corresponds to a prime p; of
E having relative degree ¢, = f(p;/p). But now

St =[G:H] = (E:K)

along with Corollary 6.7, Chapter I, implies that all the prime divisors of p in
E have been counted.

2.9 Corollary. The number of primes in E dividing p which have relative
degree one over p is equal to the number of coset representatives o; which
satisfy 0,G(P)a; ' S H.

Proor. The stated condition is equivalent to Ho,6 = Ho; when (a) =
G(B). This gives a cycle of length one so the result follows from the last
proposition.

This corollary is important in the next chapter.

3. THE ARTIN MAP FOR ABELIAN EXTENSIONS

In this section it is assumed that L is normal over K and G = G(L/K) is
abelian. For an unramified prime p of K and two prime divisors 9 and 7(B) in
L, 7 in G, we have by Property 2.2

41-[4)
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This shows the Frobenius automorphism does not really depend on ¥ but
only upon p. Accordingly we change notation and write

] w [

and call this the Frobenius automorphism of p.

In this way the Frobenius automorphism may be considered a corre-
spondence between unramified primes of K and elements in the abelian Galois
group. This can be extended further.

The ideal group I of K is the group of fractional R-ideals, R = algebraic
integers in K (Chapter I, Section 4). Let S denote a finite set of primes of K
including all the primes which ramify in L. Then I,* or simply I® denotes the
subgroup of Ix generated by all the primes outside S. For each element U in
I® we shall define an element ¢, () in G. First factor A as

N = npa(v)
[

and then set
a(p)
DL = ﬂ[ﬂ’f] .
. P

The product is well defined because G is abelian. The function ¢, is a homo-
morphism from I® into G and is called the Artin map for the extension L/K.
We emphasize that ¢,  is defined only for ideals whose factorization involves
only unramified primes.

Of course when p is a prime unramified in L, ¢, x(p) is the Frobenius
automorphism of p.

Suppose E is any finite-dimensional extension of K. We may translate the
abelian extension L/K by E to obtain an abelian extension EL/E with Galois
group H. The restriction of H to L naturally identifies H as a subgroup of G.
The next lemma relates the Artin maps for EL/E and L/K. Let I;° denote the
part of the ideal group of E, generated by primes of E which do not divide any
prime in S. We could equally well say I is generated by primes of E having
norms in I;5,

3.1 Proposition. When G(EL/E) is identified (by restriction) with a sub-
group of G(L/K) we have

PELIE = ‘PL[K‘NE|K on IES'

Proor. Let B denote a prime of EL and let B, =P L, Py =B N E,
Py =P A K. Let Ny,o(PBy) = g = prime power and Ng,(B) = B/, Set
o = @g e(Pr). For each algebraic integer x in EL we have

o(x) = x* mod P.
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When x also lies in L then
6(x) = x*’ mod B,.

Here we use the fact that o(P) = P and o (P,) = P.. Now let 1 = ¢ (V).
For x as just above

1(x) = x"mod P, and 7/ (x) = x* mod P,.
By the uniqueness property, 7/ = ¢ on L. Thus
‘PEL|K(‘BE) = (pL]K(qu)f = Qrix NE[k(‘BE)-

This proves the equation for primes in I and the equation must hold on all of
1.5 because all maps are multiplicative.

3.2 Corollary.
Ny (1.%) < ker Prik-
ProoF. In Proposition 3.1 take E= Ltoget o, x Nyx = .= 1.

This result describes a part of the kernel of the Artin map. One important
goal is the description of the kernel and image of the Artin map. In the next
chapter it is proved that the Artin map is always onto G(L/K). Later the kernel
will be described explicitly. For now we shall work an example which will
illustrate the ideas and which will also be important later on.

Let m be a positive integer, 6 a primitive mth root of unity, K= Q =
rationals, L = Q(8). The Galois group G of L over K consists of auto-
morphisms g, uniquely determined by the condition

c,(0) =¢.

Here ¢ must be a positive integer relatively prime to m. Let p denote a prime
integer not dividing m. Then (p) is unramified in L and the automorphism o,
satisfies the requirement (2.1) placed upon the Frobenius automorphism of
(p). Thus
PL(p) = Gp-

For a positive integer a = [ p{* relatively prime to m we have

‘PL/Q(”) = H‘PL/Q(P.‘)C' = H(Up,)“ = 0Og4-
For a positive integer b relatively prime to m there is a positive integer b* such
that

bb* = | modm.

We then find
‘PL/Q(I/b) = ‘PL/Q(b*) = Ope,s
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and more generally

®10(alb) = 0.
It is now an easy matter to describe the kernel and image of ¢ 5.

3.3 Proposition. Let S denote the set of prime ideals containing (m). The
Artin map ¢, carries 1,° onto G(L/Q) and the kernel is the set of fractional
ideals (a/b) with a, b positive integers satisfying a = » mod m.

Proor. We see from the discussion above that ¢, x maps onto G(L/Q).
The ideal (a/b) is in the kernel precisely when o,,. = o,; that is when a = b
mod m.

An important part of the theory to be developed later will give a generaliza-
tion of this theorem to the case of an abelian extension of an arbitrary algebraic
number field rather than an abelian extension of Q as given here,

Exercise 1. Use the theory of the Frobenius automorphism to describe the
factorization of primes of Q in Q(8), 6™ = 1. (This gives an alternate approach
to the results in Section 9, Chapter I about factorization.)

ExeRcISE 2. (a) The Galois group of Q(65)/Q is generated by ¢,(05) =
(05) when 05 is a primitive fifth root of unity. Show &, has order four and
conclude the ideal (2) remains prime in Q(f5) with relative degree four. Show
the same assertion holds for any prime ideal (p) with p = +2 modS5.

(b) The prime 19and any primep = — | mod 5 has Frobenius automorphism
of order 2 and so (p) has two prime factors in Q(8;) each with relative degree
two.

(c) The primes p = [ mod 5 have trivial Frobenius automorphism and (p)
splits completely in Q(85).

(d) Let E be the subfield of Q(0;) fixed by ¢,. Use the formula ¢, =
res E¢yy,)0 to compute the factorization of rational primes in E (res E means
restriction to E).

EXERCISE 3. (a) Let 0 = 0,5 and 6,(0) = 6". Compute the order of ¢, for
each integer n not divisible by 5. For a prime p # 5, describing the factorization
of (p) in Q(0) in terms of the congruence class of p mod 25.

(b) Let E be the subfield of Q(#) left fixed by o,; (E:Q)=2S5. Use the
restriction of ¢y, () to E to show that p splits completely in E if and only
if p=+1, +£7 mod 25 where as p splits completely in Q(0) only when p =1
mod 25.

(c) There is a unique subfield of Q(6) properly between E and @(8). Find
its Galois group and determine which rational primes split completely in it.



Chapter 1V

ANALYTIC METHODS

Nil sapientiae odiosius acumine nimio.

Seneca

In this chapter we begin to study rather delicate properties of primes in
number fields. Many results in earlier chapters hold in much more general
fields. However we shall use in several ways the assumption that our field is
a finite extension of the rationals. The main idea involves the use of infinite
series to prove results about the distribution of prime ideals. The Frobenius
density theorem shows, roughly speaking, that infinitely many primes have
the same Frobenius automorphism. This is the result needed to prove that
the Artin map is onto. Other results proved by analytic techniques include
Dirichlet’s famous theorem about primes in an arithmetic progression.

Much has been written about procedures to avoid the analysis in this alge-
braic subject. Chevalley and others did accomplish this by introducing ideles
and the machinery of cohomology of groups. It is this approach that is called
the modern treatment of class field theory. The use of Dirichlet series to prove
algebraic theorems goes back more than a century and so it can hardly be
called modern. However the approach presented here benefits from Artin’s
ideas involving the systematic use of the Artin map. Historically the existence
theorem was proved by Tagaki before the reciprocity theorem of Artin. The
reversal of the order here simplifies the development.

It seems that the analysis required by the student in this treatment is far less
than the corresponding amount of material he would have to know before
attacking the development of the subject by cohomology of groups and the
method of ideles. For this reason 1 prefer to think of this as the direct approach
to class field theory.

106
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1. MODULI AND RAY CLASSES

We consider an algebraic number field K and its ring of algebraic integers
R. For a prime p of K, K, denotes the completion of K with respect to a
valuation in p.

The ideal group I of K is the group of fractional R-ideals of K. It is the free
abelian group with the finite primes (integral ideals) as generators.

The multiplicative group of nonzero elements in K is denoted by K*. There
is a natural map i which sends K* into I, by mapping an element « in K onto
the principal ideal («) = R = i(a). The kernel of i is the group Uy of units in
R. The structure of Uy is given in Chapter I, Theorem 11.19. The cokernel of
i is by definition the class group of K, denoted by C,. We saw in Chapter I,
Section 11 that Cy is a finite group. We summarize these facts with an exact
sequence

]“')UK—'K*—*IK—’CK—)I.

It is fair to say that our main interest for most of what follows in this book
is in the study of certain subgroups of the groups in this sequence and how
they relate to the problem of describing, in terms of K, all the abelian extensions
of K.

Definition. A modulus for K is a formal product
m = Hp”(?)
P

taken over all primes p of Kin which n(p) is a nonnegative integer and n(p)> 0
for only a finite number of p. Furthermore n(p) =0 or 1 when p is a real
infinite prime and n(p) = 0 when p is a complex infinite prime.

A modulus m may be considered a product m,m,, with i, the product of
the finite primes appearing with positive exponent in m and m,, the product
of the real primes in m. Then m, is identified with an integral ideal; that is an
ideal in R.

Our intention is to extend the notion of congruence between two elements
of R modulo an ideal to a notion of congruence between elements of K*
modulo a modulus.

Let p denote a real prime of K so K, is isomorphic to the real field. Let
x — x, denote the imbedding of K into K,,. For elements a, f in K* we write

o= fmodp

to mean o, and f, have the same sign; equivalently we could say («/B), > 0.
Now let p be a finite prime, «, § elements in K* and suppose that

o = ajc, B = b/d, a,b,c,d € R.
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Then we write

a = fmodp”"
if #/f = ad/bc is in the valuation ring R, of p and this element is congruent to
1 modulo p"; that is, (ad— bc)/bc € p".

Some care must be taken with congruences defined for elements of K*
because they can be multiplied but not added. By this we mean

o, = f and o, = fi, modp”
implies
o0, = B, B, mod p”
but it need not follow that
oy + 0, = B, + B, modp™.

For example, with K = Q and p a prime integer we takeo. = 1/p, B = (p+ 1)/p.
Then

Bla =p+1=1modp andso « = fmodp.
However we do not have
o—o=f—omodp

because f—a = | # 0 mod p.
Now we extend in the expected way to congruences for a modulus m as
given in the definition. For a, f in K* we write

o = fmodm
if
o = f modp"®

for all primes p with n(p) > 0.
We now define two subgroups of K* associated with a modulus m = mgym,,.

Definition
K., = {a/b| a,b e R,aR,bR relatively prime to mg},
Ky. ={reK,| «a=1modm].

Notice that K,, depends only upon the finite primes dividing m, and not
upon their exponents.

The group K, ; is sometimes called the “ray mod m.”

Recall that for a set S of primes, I (or I,5) denotes the part of the ideal group
I, generated by primes outside S. We shall also use the symbol I (or I,™) to
denote I where S is the set of primes dividing m,. Thus I does not depend
upon the exponents of the primes dividing m.
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Clearly the image under i of K, or K, | lands in I"™. The quotient
Im/i(Km, 1)

is called the ray class group mod m and the cosets of (K|, ,) in this quotient
are the ray classes mod m. The study of the ray class group requires approxima-
tion techniques. We shall see momentarily the ray class group is finite.

1.1 Theorem (Approximation Theorem). Let| |,,...,| |, be nontrivial
pairwise inequivalent valuations on K and let §,, ..., B, be nonzero elements in
K. For any positive real ¢, there is an « in K such that |a—f,|, < ¢ for all
i=1,..,n

ProoF. The first step is to show there exists elements y,,...,», in K such
that

|yili > 1, lyil; < 1, i#J

Use induction on n. For n =2 the definition of equivalence implies the
existence of elements w, z such that

[wly > 1, wl, < 1,
Iz], €1, [z], > 1.
Now set y = w/z to get
vl > 1, [yl < L
Suppose we have an element y which satisfies
yi>1,  Il;<1, j=2..,n-1

By the case n = 2 there is an element ¢ which satisfies |7|; > 1 and |#], < 1.
Now select y, in the following way:

yi=y if [yl,<1,
=yt if |yl.=1,
V't .
= if » > L
Y1 l+yr lyl

In the last two cases r is an integer yet to be determined. If the second case
holds,

by = 1115, 2<j<n

and this can be made <1 with sufficiently large r for all j # 1.
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In the third case we reach the same conclusion because

| 1
EATHR _
|l+yr|j Iy |1—1

and this has limit =0 as r - co.

In all cases we have the element y; which is “large” at | |; and “small” at
the other valuations. By symmetry we can obtain y,,,,...,¥, to satisfy our
requirement.

Now to finish the proof let

»
a = — .
2 Tryh

with r an integer to be determined. The triangle inequality implies

B +z

r
Tyl

y B,
5l

a—B.l; €
l Bill\ 1+yjr ;

For r sufficiently large this expression will be less than the given ¢ and the
theorem is proved.

Before recording some consequences of this approximation theorem it is
helpful to see how we can passfrom statements about valuations to congruences.

When p is a real prime of K, the statement o8 # 0 and |« — f8|, < & for small
& means a,/f, is positive. That is « = f mod p.

Suppose p is a finite prime and «f # 0. The p-adic valuation satisfies ||, =
¢"® where v(a) is the power of p appearing in i(2) and ¢ is some real number
O<exl.

The condition |a— |, < ¢ is equivalent to |¢/f— 1], < ¢&/|B|, = ¢. When &’
is sufficiently small, say ¢ < ¢" with »n a positive integer, then v(x/f—1) > n.
In particular /8 —1 is in the valuation ring and moreover

a/f = 1 mod p”.
In the extended sense of congruences defined above we also have
o = f modp”.

To summarize then for af # 0 and sufficiently small ¢, the inequality |a— |, <
¢ implies « = f mod p".

This idea is extended in the proof of the next result.

When m, and i1, are moduli for K such that no prime appears with positive
exponent in both i, and m, we say m, and m, are relatively prime.

1.2 Proposition. Letmm,,...,m, be relatively prime moduli (in pairs) and let
m denote the product m =m, --m,. The natural map from K, into the
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Cartesian product '] K,,,, induces an isomorphism

m ~| | nu
ml

PrROOF. By the natural map we mean the one sendinga in K, to (o, 2, ..., a).
The induced map is the one

o O (I G §

The kernel of this map is the collection of cosets aK,, ; with a in all of the
K., 1- However theintersection of these is just K, , because the m; are relatively
prime. So the induced map is one-to-one. To show it is onto, we select §; in
K., and find an « in K to satisfy

|a—'Bilp <ée

where p runs through the divisors of m; and i = 1,2,...,n. For ¢ sufficiently
small, we saw just above that this implies

o/f; = | modm;.

Thus o/f; € K,y and oK, | = B, K. ;. So aK,, , mapsonto (..., 5, K. 1,-..)
and the proof 1s complete.

1.3 Corollary. For any modulus m, the group K,,/K,, ; is finite.

Proor. The Proposition 1.2 shows the result is true provided we can prove
it true in the special case with m the power of a single prime.

Suppose n is a real prime of K. Then K,,/K,, , is the full group K* modulo
the subgroup of positive elements at m. This quotient has order two.

Now suppose m = p” with p a finite prime. Then K|, is the group of units in
the valuation ring R, and K, | is the subgroup of units congruent to I modulo
p". It follows that K/K,, , is the group of units in the ring R,/p". Since this is
a finite ring with Ny, (p") elements, the unit group is also finite.

EXERCISE. If mt = mgym, then K /K|, | has order

2"N (i) H(l - Wp))

plmo

where r is the number of real primes dividing m,, and N means Ng .

Proposition 1.2 will be frequently used in a slightly different way which is
nothing but a restatement. Namely, given the relatively prime moduli
my,...,m, and B;€ K, we can find « in K to solve the congruences
o = f; modm;.



112 IV ANALYTIC METHODS

1.4 Corollary. Each coset of K, , in K, contains an element relatively
prime to any given ideal.

ProoF. Let the given ideal be [Tq’ = 2 and let K, , be some coset in
K,,. Select y such that

y = fmodm, y = 1 modg;,

where q; runs through those g not dividing m. Then y and f lie in the same
coset of K,, ; and y is prime to .

1.5 Corollary. For any finite set of primes S, there is a natural isomorphism
Cx = /P n i(K*).
ProOF. The inclusion I¥ — I gives an inclusion
/IS A i(K*) - L Ji(K*) = Cx.

To show this map is onto, it is necessary to prove each ideal class contains a
representative not divisible by any prime in S. Let 8B be any ideal in I, and
B =B, B, with B, prime to S and

%2 — H pn(v)_

peS

Let 7, be an element which generates p in R, (the localization at p) and which
satisfies

n, = 1 modq forall g#p in S
Such elements exist by CRT. Let

a =[] (m, ).
pes

Then by localization one sees the power of p dividing («) is precisely n(p). It
may be that («) is divisible by primes outside S but this is no matter. Now
Ba~ ! is not divisible by any primes in S. The ideal class containing B is the
same as that containing Ba~' so each class has a representative in I as
required.

1.6 Corollary. Let i be any modulus. Then the ray class group I"™/i(K,, 1)
is a finite group.

ProoF. One sees at once that I"™ n i(K*) is the collection of principal
ideals relatively prime to m so

I™ N i(K*) = i(K,).
So then
(I :i(Ky, )] = (MM iK1 LK) 1 i(Ky, )]
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The first factor is the class number, |Cx| by Corollary 1.5 and the last remark
and the second is a divisor of [K,, : K, ] which is finite by Corollary 1.3.
Since the class number is finite, the result follows.

We shall use 4, to denote the order of the ray class group mod m. In case m
is the trivial modulus, that is, the empty product, then the ray class group is
just the class group whose order is denoted by /. We extract one fact from
the above proof.

1.7 Proposition. hy divides A,, for any modulus n.

2. DIRICHLET SERIES

A Dirichlet series is a function of the type

o0

(M) fi = >

n

n=1

with a(n) complex and s = o +ir a complex variable. A special case is the
Riemann {-function defined by

< 1
@ (=2
n=1

Series of this form will be used to study properties of primes in number fields.
We begin by studying questions about convergence.
Denote by D (b, 6, ¢) the region of the complex plane

{s| Re(s) = b+34,|arg(s—b)| < nf2—¢}.

2.1 Proposition. Let f(s) have the form (1) and let s(x) = " a(n) taken over
n < x. Suppose there exist positive constants a, b such that |s(x)| < ax® for all
x = 1. Then the following hold:

(a) The series f(s) is uniformly convergent for s in D(b,d,¢), with any
positive 4, ¢;

(b) f(s) is analytic in the half-plane Re(s) > b;

(c) if

x-w X

then
lim(s—1f(s) = aq, s € D(1,0,¢).
s—+1
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Proor. Notice that a(n) = s(n)—s(n—1),soforv = u+1
a(n) _ Yosn) D s(n)
lg:—nT - zu: n’ . (n+1)‘

_s(v) s(u 1 1
N +Z ()[n (n+l)‘:|

1
(n+1)y]"

s(v) +

<
o

s(u ‘

Recall that |n|=n° when s = a+it.
The estimate of |s(x)| allows us to rewrite the first two terms. The expression
behind the summation can be rewritten with the use of the identity

1 1 SJ"“ dt
n (n+1)s - A ts+1 .
Thus far we see

—a(n) a nt1 gy
an < ob ,b+2|s|an i ;s—-f-_l

We can further change this expression by noting the term involving the
summation is less than

|s|aroﬂ <|s]afw dt_ _ als|
Y |ts+ll\ Y - (o,_b)ua—b'

Also v > u so finally

|sla
(a byue?

‘Za(n)

Now |s|]/e—b < (js—b|+ b)(6—b) ' < 1/cos B+ b/d, with 8 = arg(s—b). The
number /6 is constant and the restriction |6| < n/2—¢ means 1/cos 0 < M for
some constant M. Thus given any number ¢, we can find a sufficiently large
integer u to insure

2a [s|a 2a+ M +b/d
<
(o._b)ua—b ua—b

< 80.

This implies the uniform convergence of f(s) in D(,4,¢).

To prove (b) first note that any point s in the half-plane Re(s) > b lies in
some D(b,d,¢). Thus at this s the series is a uniformly convergent series of
analytic functions and hence is analytic.
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Now assume (c) holds. This means s(x) = a, x+ e(x) x with lime(x) = 0 as
x — o0. Necessarily e(x) is bounded and so there is some constant g, with
|s(x)] < a, x. By Part (a) f(s) is uniformly convergent in D(1, 4, ) for positive
0,8

The proof of (c) is carried out by showing (s—1)f(s) has the same limit at
s = 1 as a, (s— 1) { (s) with {(s) defined in Eq. (2), and then evaluating the limit
for {(s). Notice by Part (a), the {-function {(s) is uniformly convergent in
D(1,46,¢2) just as f(s) is.

Begin with the same sort of computation as used in the proof of (a). Namely,

a(n)—ag

f©=at@)] = |

n

1 1
= Z[S(n)—nao:][’?—z;l_i_—l)s:]
n+1 dt
< Zne(n)sJ; FEa)

n+1 dt
< zn|e(n)[|s|J; pak

Select any g, > 0 and N so large that |e(n)| < &y if n > N. Take M as a bound
on |e(n)| for all n. Also notice

J‘n+1 dt n+1 tdt
n <f L
A to‘+l A ta+1

After all these estimates are combined, one sees

ls=1{1f(s)—ao L(s)]

Ndt o dt
<ls<s—1)|Mf —,+|s(s—1)|sof @,
1 ¢ N I

The first term involving an integral can be evaluated and as s — 1 with
se D(1,0,¢) the limit is zero.
The second term involving the integral is

Is(s—1)]eg 1
-1 N°U

The restriction that s € D(1,0, &) means

S—

< sec(nf2—e) = T,.
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Thus for s near 1 in D(1,0,¢) we have
[s—=1||f(&)—ao {(s)| < € T
Since ¢, was arbitrary we find

lirrll {s=Df)—ass—1)i(s)} =0 if se D(,0,¢).

The proof will be complete if we show
3) lim@s—1){(s) = 1.
s—1

This will be done by first showing that (s—1){(s) can be continued to a
function analytic in the disk |s— 1| < 4 and so the limit can be taken along any
convenient path to s = 1. The convenient path is the real axis to the right of 1.
Consider the function

> 1
{o(s) = ZH)M?'

The sum of the first n coefficients is 0 or I so by Part (a) this is uniformly
convergent in D(0, 4, ¢). In particular it is analytic in the disk |s— 1| < 4. Next
observe

2
£2(9) + 5:0(8) = L)

in the common region of convergence. It follows

1 -1
OF (1 - F) 429,

The function on the right is the quotient of analytic functions and the
denominator is zero only at points where 2°~! = 1; namely s = 1+ 2kni/In2
with k an integer. Clearly the only real pole of { (s) can occur at s = 1. We shall
verify the other points are not poles.
Consider the function
I 2

1
Cs(s)—T;+§—§+

I 1 2
TGt T Gnry Garar T

For this the sum function s(x) has values 0, 1, or 2 and so {5(s) is uniformly
convergent in D (0, , &). As above we find

-1
(0= (1-55) 6o
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and so the only possible poles of {(s) are the points where s = 1 +2mni/In 3.
If this is in fact a pole then 1+ 2nmi/ln3 = 1+ 2rki/In2 and so 3¥ = 2™. Since
k,m are integers we must have k = m = 0 and the pole of {(s) must be s = 1.
One easily checks that it is a pole of order | because 2°"! — 1 has only zeros of
order 1. Finally we obtain (s— 1) {(s) is analytic at s = 1 and in the half-plane
Re(s) > 0. The limit at 1 can be evaluated by approaching 1 on the real axis
from the right.

Approximate the area under the curve y = x™° (s real) by rectangles with
base [n,n+ 1] and height 1/(n+1)°. The area of the rectangles summed from

n=0to oo is{(s)so

© dx 1
<1 — = .
£ vz o

In a similar way use rectangles with base [#,7+ 1] and height n™* to get

1 @ dx
— =f - < ()
S—l 1 X

From these inequalities one obtains 1 < (s—1){(s) < s for real s and
Eq. (3) holds. This completes the proof of Proposition 2.1.

Let K be any algebraic number field and for each integral ideal U let A (2A)
denote a positive generator of the ideal (N, (%)). Equivalently A4 () =
number of elements in R/A. We shall write N for Ny,,.

Definition. The function (i (s) = 3o 1/A47(A)* is called the {-function of K. In
this (and all similar expressions) the sum is taken over all integral ideals of K.

This can also be written as

o

i) = > =,

1

where ag (1) is the number of integral ideals of K with norm exactly n. Notice
that the {-function of Q is the Riemann {-function.

It is useful to also consider more general types of {-functions. We describe
one such now.

Let 1n be a modulus for K and let k be a coset of i(K,,,,) in I". The {-function
of the class k is

1
{s,k) = D —o .
mze,/‘”(?‘)

Notice when m is the trivial modulus (empty product) then I" = I and

Cx(s) = 24 (s, k).
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It is necessary to compute the limit of (s—1) {(s, k) as s — 1. This is done by
using Proposition 2.1, Part (c). First write
a(n

L k)= > =2

n

Then s(n, k) = a(1)+ -+ a(n) is the number of integral ideals in k& with norm
< n. The above limit is the same as the limit of s(n, k)/n as n — co. Evaluation
of this limit ultimately depends upon the following idea:

Let V denote d-dimensional Euclidean space and I a solid in V, that is, a
bounded region. The points in V are d-tuples (x,, ..., x,) with real coordinates.
Let £ be the lattice of points with only integral coordinates. Fix a vector v and
let #, denote the set of translates v+ .%. The volume of I can be computed in
the following way. For a real number y > 0 consider the points of y.£, which
lie inside I". With each such point as center construct a d-dimensional cube
having side of length y and volume y“. Let T, (y) denote the number of such
cubes which lie entirely inside I'. Then I is approximated from the inside by a
polyhedron of volume y*T,(y). If T is a sufficiently nice solid—say one
described by analytic conditions on the coordinates—then the volume of I'
is the limit of y?T, (y) as y = 0.

In the same way approximate I" from the outside. Let T,(y) denote the
number of cubes with center at some point of y.&, and having some point in
common with I". Again for sufficiently nice I' one obtains vol (I') = lim y* T, ().

Finally let T(y) denote the number of points of y.#, in I'. Then T, (y) <
T () < Ty (y) so vol(I') = limy* T ().

Now change the point of view. The number of points of &£, which are in
971T is T(y). Change notation so M (1) = T (¢t~ 1).

2.2 Proposition. IfT", #,, M(¢) are as above then
vol(I) = lim M(1)/¢".
100

The plan for evaluating lims(n, k)/n is to identify s(n, k)/n with M (1)/¢* for
a suitable M(¢) as above and compute vol(I") in place of this limit. The
computation is rather long.

2.3 Lemma. Each class &k contains an integral ideal.

Proor. Since I"/i(K,, ,) is finite, each prime not dividing m has some
powerini(K,, ;). If % = A, A5 ! isanideal in k with 2, o, integral, then 2’
isin i(K,, ) for some 7 > 1 and so AW," is an integral ideal in kA," = k.

Let € be an integral ideal in the inverse class k! and 2 an integral ideal in
k. Our object is to compute the number of A with A4 (A) < n. If this holds
then A€ i (K,, ;) so

4 AC = (a), ae€n K, N (a) € nA (€).
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Conversely if o satisfies the last two conditions in Eq. (4) then the ideal
A = () € ! belongs to &, is integral and has norm < a.

2.4 Lemma. s(n k) is the number of principal ideals () such that x e € N
K, and A (a) < nA (€).

Now write in = g, with g an integral ideal and m, the product of the
infinite primes dividing m. Let «, be one solution of

oy = 1 modmy, oy = O mod (.
Such an a, exists because € € I implies € is relatively prime to .

2.5 Lemma. s(n,k)is the number of ideals («) such that
(a) a=oaymodm,C,
(b) a=1modm,,
(c) O0< A (x)<nA(Q).

This is clear in view of Lemma 2.4 because Conditions (a) and (b) are
equivalenttoae € N K, .

Let oy, ...,a, be a (free) Z-basis for the ideal my €. Here d is the dimension
(K : Q). The elements « which satisfy Condition (a) of Lemma 2.5 are those
which have the form

o = ao + Zn,-ot,-.

There exist rational numbers A; such that ag = Y A, a;.
In the d-dimensional euclidean space V let # be the lattice of d-tuples having
integer coordinates. Let v = (h,, ..., hy) and &, = v+ £, The correspondence

(X150 Xg) = in“i

gives a one to one correspondence between the points in %, and the elements
of K* which satisfy (a) of Lemma 2.5.

Next we consider how to select generators for the principal ideals we are
trying to count. If () and (f) are equal and also o, § satisfy (a), (b), (c) of
Lemma 2.5 then o = fu with v a unit of Rin K, ,.

It is necessary to digress and discuss this group of units. The full group of
units, Uy is a subgroup of K,, and so the finiteness of K, /K, ; implies
Ux/Ug n K., is finite.

Use the notation of Section 11, Chapter I. There we saw the function £ (a)
mapped Uy onto an (r+s— 1)-dimensional lattice in V, | ;, the space of (r +5)-
tuples over the reals. It follows that / (Ux ~ K,, ;) has finite index in 7/ (Uy)
and so it too is an (r+ s— 1)-dimensional lattice.

Let w,,...,w, s~ be elements in Ug n K, , such that the images give a
Z-basis for £ (Ug N K,, ;). The vectors W, = £ (w;) have the sum of the coordi-
nates equal to zero. (Chapter 1, proof of Proposition 11.13) and so the
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vector W= (l,...,1,2,...,2) is independent of the space /(Ux n K, ;). We
take W to have r ones and s twos. Summarize this discussion.

2.6 Lemma. The group Uy n K, is the direct product of a finite cyclic
group <{w) with a free abelian group {w,,...,w,,,_> of rank r+s—1. The
images W, = £(w;) along with the vector W give a basis for the (r +s)-dimen-
sional real spaceV, ;.

The map 7 sends all of K* into V, . so for any « there exist real numbers
¢, ¢; such that

() =W+ W,
Let u = w* ] w¥ be a unitin Ux n K., ;. Then £ (w*) = 0 and
£(om) = W + Y (c;+a)W,.

Clearly there is a unique selection of the g; such that 0 < ¢;+a; < 1 for each
i. This proves part of the next step.

2,7 Lemma. Let w, denote the number of roots of unity in Uy n K, ;.
Then w,,s(n,k) is the number points (x,,...,x,) € %, which satisfy the
conditions:

(a) a = inais

(b) a=1modm,,

() 0<AH(0) <nA(C),

(d) f@=cW+3eW, with 0<¢ <.

Just to be explicit here, we know there exist s(n, k) ideals () satisfying the
conditions in Lemma 2.5. Each such ideal can be generated by any of the
o' = au with u in Ug n K|, , and o’ will still satisfy (a), (b), (c) of Lemma 2.5.
From all these elements exactly w,, of them satisfy Condition (d) of Lemma 2.7.
Finally the correspondence with points in %, has already been described
above.

For the next step we shall extend the map # to an analogous one on part of
V,. We first adopt the convention of Section 11, Chapter I in which the
d-dimensional real vectors are written with r real coordinates and s complex
coordinates to give r+ 2s = d real dimensions. If (¥, ..., ¥Vrs Vet 152 Vrsg) =Y
is such a vector with each y; # 0, then we set

(YY) = (Inly, |, ...y, 210y - 2 Iy, 0D

Thus ¢/ maps certain vectors in V, into V, , ;. Recall also the map v(x) mapping
Kinto V, by

v(a) = (dl (a)a teey 0',._,_:(&))-
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These maps are consistent in that /[v(a)] = / («) for a € K*,
We also extend the norm map to V, by

N(yl’ ~'-9yr+s) = 'yll o IyrHyr+1|2 |yr+s|2'

2.8 Lemma. LetI denote the set of all points (x,, ..., x;) with x; real which
satisfy the following conditions:

(@ 0< N xv@)<l,

®) (Exv@)=cW+Yye,W, with 0<¢ <1,

(c) the first ry coordinates of 3° x; v(;) are positive where r, is the number

of real primes dividing .

Then

W . S(n,k)
——— lim
‘/V‘((S) n—w N

volume (I;) =

Proor. For each positive real number ¢, let M () denote the number of
points in I, which lie in %, (defined above). The volume of I} is given in
terms of M (z) by Proposition 2.2 so it is necessary to identify M () in terms of
s(n, k). Suppose (x,, ..., x,;) € [, and x;/ = tx;. Then

(@) 0< N x/v)) <t
) (Qx/v@) = (c+nHOW+Y W, 0<¢ <],
(¢’) the first ro coordinates of 3 x;'v(a;) are positive.

Now let us assume the first r, real imbeddings o, ..., 0,, of K are those
corresponding to the real infinite primes dividing m. If we set a = X x;'v(2;)
and assume (x,’,...,x,;') is in %, then Conditions (a)~(d) of Lemma 2.7 are
satisfied so longas ! = nA”(€). With this restriction on ¢ one finds w,, s(n, k) =
M. Thus

M(t)  w,s(n k)
# N (C)n

for = A (®)n.

The result follows.
The rest of the problem is to compute vol(Iy). This will require several
changes of the variables. Let

yl.=zxj0"-(aj) fOl‘ l Sisra
J
Vit iy =2 X0;(x%) for r<j<r+s.
k

2.9 Statement. The conditions of Lemma 2.8 are equivalent to

@ 0 <[y 12l G +Yired - Gl ¥i) < L
B £(isesdrrz) =W+ eW,, 0<c<l,
(©) y,....», are positive.
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Let I denote the space of all points (y,, ..., y,) which satisfy Conditions (a)
and (b) and also

(¢) »i...,y, are positive.
Let J = 8(»)/é(x) be the Jacobian of the transformation just defined. Then the
volumes of the regions are related by

vol(Ty) = f

r

dx = 2"'°fJ‘1dy.
] r

The coefficient 2"~™ appears because Condition (c) allows positive and
negative coordinates in r—r, positions where (¢’) requires positive terms.
The Jacobian J is the absolute value of the determinant with 7, jentry given by

dy;/ox; = Re(o;(a)), I<igr+s
=Im(o;_4(2)), r+s<i<r+2s.
By Corollary 11.7, Chapter I we find
J = 2754 (my ©)|A|13,
where A is the discriminant of R over Z.

2.10 Lemma

2r+rg+s

vol(Ty) = W

vol(I).

For the next change we use polar coordinates. Let
pi =i I<isr
prsj(cosO;+isind)) = y,y;+ iyV,sjus
Conditions 2.9 (a), (b), (¢') are equivalent to
Q1) @ O<P=p,.oppiis,...ph <1,

(b) Inp, = l—n:jf+ 8,y c;ln|oy(w))|
with
0<c; <1, 6,=1 if 1<i<gr
and
6; =2 if r<i<r+s

© 0<6,<2m

Here Condition (b) requires comment. In 2.9(b) there is an unrestricted con-
stant ¢ which can be computed. Recall that /(w) = W, has the sum of its
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coordinates equal to zero so the sum of the coordinates of £(y,, ..., y,+,) is
cd. The sum of the coordinates however is also

In|y,| - |yl (P21 + V149 - =InP.

This accounts for the In P term in (b) which is just a coordinate wise statement
of 2.9(b).

Let J = Jacobian of the transformation. The terms Jy;/dp; contribute an
r x r identity block in J. The remaining terms are grouped to give 2 x 2 blocks
of the form

cosf; sinf;
B, =
J . 0 9
—Pr+jSING;  ppy ;COSU;
SO
I,

J = det Bl . = Pr+1 Pres-

B

s

We now have

vel™) =f Prsr Prasdpy - dp,ysdby - db;
I'(p,8)

=(27t)sJv Pr+1°7 Prts dpl "'dpr+s'
r'(p)

Here ['(p) is the region in r+ s variables described by Eqs. (2.11) (a) and (b).
Finally the last change of variables is given by Egs. (2.11) (a) and (b) with
P, c,,...,Crys_; as the new variables. The restrictions on these variables are
0<P<1,0<¢< .
To compute the Jacobian of the transformation we differentiate Eq. 2.11(b):
0pi/OP = p;1/Pd
dpi/dc; = pid;In|o;(wy)|
Each column of J = |3(p)/d(P, c)| has a factor p and row one has 1/Pd so
1eer1 2.2

P pers| LW

I ="

f(wr+s—1)

The determinant which is left is exactly the determinant of the transformation
changing to the basis W,W,,...,W,,,_, of ¥, from the basis of unit vectors
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@, ...,1,0,...). In particular, the determinant is nonzero. We set
1-v1 2...2
£(wy)
] ' = 27°d reg(m)
{(Wr+s— 1)

and call the term reg(m) the regulator of m. Thus

vol(I') = (Zﬂ)sfp,+| pr+stP dcl "'dcr+s—1

= (2n)° reg(m)2"’fdP dey - de,y oy

= (2n)* reg(m)2™°.

Here we used the form of P to see that all the ps drop out of the integral.
Finally we can reassemble all these equations to get the desired result.

2.12 Lemma

2r7ro reg(im)(2m)°

volo) = i, CY 1A

Before writing this in its final form one more conventional change will be made.
For convenience we define A" (n) = 24" () when m is a modulus equal to
the product of the integral ideal m, and r, real infinite primes.

2.13 Theorem. If {(s, k) is the {-function of the class k for the modulus m
then

]lm(S— l)C(S, k) = YGm>
s—1
where g,, is a positive constant depending only upon K and m and not upon k.

The exact value is

_ 2°(2m)" reg(m)
" A (m)w, |A[Y2°

where

~
|

= number of real primes of X,
number of complex primes of K,
A = discriminant of K over Q,
w,, = number of roots of unity in Uy n K, |,
reg(im) = regulator of m.

N
il
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In case m = 1 this result is still interesting. In this case the ray class group
mod m is the usual class group I./i(K*). If we take the union of all the cosets
k we get all the K-ideals. So

X":C(s, k) = {x(s).

When this is multiplied by (s— 1) and the limit taken, each term in the sum has
the same limit.

2.14 Theorem

2'(2n)° reg(K)

hg,
W1<|A|1/2 K

lim(s—1){x(s) =
s—1
where

wx = number of roots of unity in X,
hy = class number of K, and the other symbols as above.

Here we have written reg (K) for the regulator of the units Ug. In the case
m =1 as in general the regulator has the following interpretation. We have
seen that /(Ugx n K, ) is an (r+s—1)-dimensional lattice contained in
(r+s)-dimensional space. It turns out that reg(m) is the (r+s—1)-dimen-
sional volume of the fundamental parallelopiped for this lattice. Thus reg(m)
depends only on m and not upon the choice of generators w;.

The result given by the last theorem is sometimes useful for computation of
the class number hy. For some explicit examples see Chapter 5 of Borevich
and Shafarevich [3].

We can obtain slightly better estimates for s(n, k) without any further
difficulty. Refer back to the proof of Lemma 2.8. There we had

M@ = wys(nk) if =N (C).

The d-dimensional cubes of side equal to one and having center at points
of £, n 1T, may not all lie entirely within I';. For some fixed ¢ all these cubes
will lie inside (¢ +&) T, and (—¢&) T}, will be contained in the union of these
cubes. It follows then that

(t—e)! vol(I,) < M(2) < (t+¢) vol(Iy).
Also
[vol (tTy) = M (D] < [(t+8) — (t—e)*] vol(Ip) < a, t*7!

for some constant a,. After making the substitutions indicated above, one
finds

2.15 Statement. s(n,k)<a,n+ayn'~ " forsome positive constants a,, as.
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Now consider the function

b
(k) = axl() = > 2,

We have at once from (2.15)

Y b(n)

n<x

< s, k)—ay x| < ayx' =,

This means the series converges for all s with Re(s) > 1 — 1/d by Proposition
2.1. We have already seen that {,(s) can be analytically continued into this
region except for the simple pole at s = 1. It follows the same must hold for

{(s, k).

2.16 Theorem. The function {(s,k) can be analytically continued to the
region Re(s) > 1 —1/d except for the simple pole at s = 1.

This is not the whole story. The functions {x (s) can be continued to the whole
plane except for the pole at s = 1. However we shall not discuss this matter
any further here.

3. CHARACTERS OF ABELIAN GROUPS

In this section, 4 denotes a finite abelian group.

Definition. A character of A is a homomorphism of 4 into the multiplicative
group of complex numbers of absolute value one. The collection of all
characters of 4 is denoted by A.

If x,, %, are characters of A, then their product is the function sending a to
x1(a) x2(a). Clearly y, x; is also a character. This operation makes A into an
abelian group. The identity is called the principal character and is usually
denoted by yo. One sees yo(a) = 1 forall a e A.

3.1 Proposition. A=~ A.

Proor. Useinduction on | 4|. Suppose 4 is cyclic of order m with generator
y. Then y™ =1 implies x(y) is an mth root of unity. If w is a fixed primitive
mth root of unity then the characters of A are determined by the equations
% (») = o". There are m choices for r and so m characters. They all are powers
of , so 4 is also cyclic of order m.

Now suppose 4 = 4, x 4, is noncyclic. We shall prove 4 4, x 4, and
the result will follow because 4; = 4, by induction.

Map 4 into 4, x 4, by sending x to (x|4;,x|4,). Then map 4, x 4, into
A by identifying (x,, x,) Wwith the character sending (a,,4a,) to ¥; (a,) xa2(as).
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One checks easily these two maps are inverses of one another so both are
isomorphisms.

3.2 Corollary. A is naturally isomorphic to A by letting the element g € 4
correspond to the character y — x(a) on A.

Proor. The indicated correspondence is a homomorphism of A into Alf
it is one to one, then the groups are isomorphic because they have the same
order by Proposition 3.1. Suppose the kernel of this homomorphism is the
subgroup B. Then for any character y of 4 we have x(b) =1 for b € B. This
means x can be viewed as a character on 4/B. Thus |4|=|4|<|A4|/|B|. It
follows B = 1 as required.

3.3 Proposition (Orthogonality relations)

0 if xn#x'
(n xi(@x (a)={ .
; 1 ’ |A] if x =x"
0 if ab# 1,
2 b) =
@ ;x(a)x() [l i ae

ProofF. Let y denote a nonprincipal character and b some element of A
with y(b) # 1. Then

Y xla) = Y x(ab) = x(b) Y x(a).
acA acA ac A

Since x(b) # 1 it must happen that Y y(a) =0. Now if y =y, x, the first
alternative of Eq. (1) is proved. The second alternative is obvious since
x1(@) x7 ! (a) = 1 for each a € A. To prove Eq. (2) just use the identification of
A with 4 and Eq. (1) with 4 in place of 4.

4. L-SERIES AND PRODUCT REPRESENTATIONS

We shall extend slightly the {-functions considered above. Let m be a
modulus for K and y a character of the finite group I/i(K,, ;). We view y as a
function on all of I by defining x(€) for an ideal € to be the value of x at the
coset i(K,, 1) C.

The L-series for y is

L(s,x) = X (WA (A,
(m,Ay=1
where the sum is taken over all integral ideals prime to m. Since x (2!) depends
only upon the class, k, of & we may express L(s, ) in terms of {-functions
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already introduced. Namely
(1 L(s,p) = ;x(k)-mZkJV(‘lI)"

= Eklx(k)C(S’k)-

4.1 Proposition
0 if ¥ # %o

hmgm if X = Xo

where h,, is the order of the ray class group mod i and g, is the constant in
Theorem 2.13.

Proor, By Eq. (1) the limit in the proposition is Y, x(k)g,, since the
functions (s—1){(s,k) all have the same limit g, at s=1. Now apply
Proposition 3.3.

lim(Gs—1)L(s, ) =
51

The next result expresses the L-functions in turns of primes rather than all
the ideals. This is the stepping off point to the investigation of primes and their
part in the groups mentioned so far.

4.2 Theorem. For all s with Re(s) > | the function L(s, ) can be repre-
sented as a uniformly convergent product

L(s,0) = l;[ A =x @)/ ))!
pim

taken over all primes of K not dividing m.

Proor. Let p denote any prime ideal. There is an absolutely convergent
series

-1 2
<1 x(p)> P ()R ()

TS oy T ey

Suppose p,, ..., p, are all the primes in I"™ having norm <¢. Then
H(' _x(p) >“ NG )
A () MACHREE 9
_ S @)
N (UY

where the * means the sum is taken over all integral ideals in I"™ divisible only
by primes with norm <. Now one sees that

-1
Len- ] (l - }((‘;?)) <

H(p)st

x(W)
N (WP

H(UY>t
The rightmost term is the remainder term for L{s,y). The convergence of
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L(s, y) is implied by that for { (s, k) when Re(s) > 1 so the remainder term must
have a zero limit as ¢ increases. The result follows.
Some special cases are worth recording. Take m =1 and y = y,; then

L(s, x) = Lk(s).
4.3 Corollary

@ k@) =[10-YA @),
() Lol =[TA-1/p)""
14

The uniform convergence of the infinite series that arise can be used to obtain
uniform convergence of the infinite product. In particular the product may be
taken in any order without changing the value.

Let log z denote the branch of the logarithm function having imaginary part
on (—mn/2,n/2) when Re(z) > 0. Then logz is real for real z and the function
has an absolutely convergent series representation

2 3

z
—1 —7) = 44
og(l—z) =z + 2+ 3+

for |z| < 1. We shall apply this to the infinite products but first we give a lemma
that allows us to change a product into a sum.

Lemma. Let {u;} be a sequence of real numbers all >2 and suppose the
function

fls) = lj](l —u; 97!
is uniformly convergent in each region D(l, §,¢). Then
log/f(s) = ;uf’ +g(s),

where g(s) is bounded in neighborhood of s = 1.

Proor. The uniform convergence allows the following manipulations:

logf(s) = —Zlog(l —u;*)

[
M
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Let o = Re(s) so we obtain

OIS D .

m=2

! SN
-—u - .
l—u"° u?°

1
lg(s)| < zu_f; .

1

Estimate the inner sum by using

- | S\ 1
Do < 2a(#) =3

2

Thus

The convergence of f(2g) for 26 > 146 implies the finiteness of |g(s)| at
o =1 ors = 1. In particular g(s) is bounded in a disk |s—1| < 4.
As an immediate consequence of this and Corollary 4.3 we have

1
@9 @ loglel) = D s 10

1
(b) loglo(s) ;}s +9:(9),
with g representing a function bounded at s = 1.

To illustrate the kind of reasoning to be used below, we show how the
expression 4.4(b) can be used along with Theorem 2.14 to prove the existence
of infinitely many primes.

If there were only a finite number of primes then log {, (s) would be bounded
near s = 1. By Theorem 2.14 the function (s~ 1) {, (s) has a finite positive limit
ats =1 so log(s—1){,(s) is also bounded near s = 1. It follows that

log(s—1) = log(s—1){g(s) — log{o(s)

is bounded at s = 1. This is impossible, of course, so there exist infinitely many
primes.

Since this idea will be used several times we shall use the following notation.
For functions f; (s) and £, (s) defined for Re(s) > 1 at least, we write.

J1(8) ~ f2(s)
to mean f; (s) —f, (s) has a finite limit at s = 1.

4.5 Proposition. Let X be an algebraic number field and S the set of primes
of K which have relative degree one over Q. Then S is an infinite set.
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Proor. If we exclude the finite number of ramified primes which may be
in S, then S is the set of primes P of K for which A" (P) = p is prime.
By Eq. 4.4(a) it follows that

1
loglx(s) ~ D ——=
3 Z/V(‘B)

with the sum taken over all primes of K. Estimate this sum by first taking it
over those primes outside S. Again ignore the ramified primes since the sum
over a finite set is bounded at s = 1. For P outside S, A (PB) = p’ = p? and at
most (K : Q) possible P have their norms equal to a power of the same prime.

Thus
s < Q) 2"
wmm) Z
This sum is bounded at ¢ = 1 so it follows that
1
log{x(s) ~ —_—
8o gsm(%)

By Theorem 2.14 it follows that log(s—1){x(s) is bounded at s =1 and
since log (s — 1) is not bounded at s = 1 it follows that

1
loglx(s) ~ —log(s—1) ~ —_—
gLk (9 gis—1) ;S ECD)
and S must be an infinite set which completes the proof.
This idea can be expanded.

Definition. Let S be a set of primes of the algebraic number field K. If there
exists a real number 4 such that

|
—— ~ —~dlog(s—1)
&N P
then we say 6 is the Dirichlet density of S and we write 6(S) = 6.

We have just proved that 6 (S) = | when S is the set of primes having relative
degree one over Q.

4.6 Properties of the Dirichlet Density
(4.6.1) If S has 6(S) # 0 then S is an infinite set.
Proor. If Sis a finite set then

D HWTE~0

PeS



132 IV ANALYTIC METHODS

(4.6.2) Let S, denote the set of primes of K having relative degree one
over Q. If S'is any set which has a Dirichlet density, then 6(S) =
o(Sn S).

ProoF. The estimates given in the proof of Proposition 4.5 can be used to
show

Z A (P)™* ~ 0.
PeS
BeS,

Then it follows
SHB®T~ D HB

Pes PeSn S,
(4.6.3) If S < S'then §(S) < d(S’) whenever both densities exist.

This follows from the observation that > A" (®B)”* cannot be negative for
real s sufficiently close to s = 1.

One sees from these remarks that 0 < 6(S) < 1 whenever S has a density.
Thus § provides a way of measuring the ratio of primes in S to all primes of K.

We shall make a computation of a density that will be important later.

Let it be a modulus for K and H a group such that

Ky HeI™
Let & denote the index of H in I™ (finite by Corollary 1.6).

4.7 Theorem. Let S be a set of primes contained in H. If S has density 5(S),
then 6(S) < 1/A.

ProOOF. Let y be a character of I"™/H viewed as 2 homomorphism on I"
with kernel containing H. Then

log L(s,7) = %‘, 1P A(B)* +g,05)

with g,(s) a convergent Dirichlet series for Re(s) > 4. In particular g, (s) is
bounded at s = 1.

For any B, 3. x(P) taken over all characters of I™/H is zero unless Pe H
in which case the value is 4. Thus

> AN (B =Y {logL(s,1)—g,()}
BeH X ¥ xo
+log(s—1) L(s, x0) — log(s— 1) — g,,(5).

By assumption we also have

mZ N (P)7F = —6(S) log(s—1) + g(s)
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with g(s) bounded at s = 1. The assumption S < H implies
P ACURES q;SJ‘”(‘JS)"

PeH

is nonnegative when s is real and > |. This means that

—(1/h—5(8)) log(s—1) + ). {log L(s,x)~g,(s)}

2# X0
+ log(s—1) L(s, X0) — 9y, (s)—g(s)

is positive when s is real and > 1. All the functions denoted by gs are bounded
at s = 1. The same is true of log(s— 1) L(s, xo) by Proposition 4.1.

The terms log L(s, ) are bounded at s = 1 unless L(1, ) = 0. [By Proposi-
tion 4.1 one can show that L(s, ) is continuous at s = 1 provided y # %,. So
it is permissible to write L (1, x).] In case L(l, x) = O for some y then the log
terms become negatively infinite at s = 1. We insist s > 1 so log(s— 1) is also
negative near s = 1. The only way for the expression to be positive is §(S) <
1/h as required.

REMARK. It is true that L(1,y) # O for yx # xo but this is fairly difficult
to prove and will not be done in this generality here. See Section 10, Chapter V
for a proof.

If we assume this result one obtains that the set of primes in H has density
exactly 1/h. The above proof does show the following result.

4.8 Proposition. In the above context if d(S) = 1/4 then L(1,yx)# 0 for
each nonprincipal character y of I™/H.

Proor. The function above now is positive for real s sufficiently close to
1 but the log(s—1) term has zero coefficient. The remaining terms are
bounded at 1 or become negatively infinite when L(1, x) = 0. Accordingly this
cannot occur.

5. FROBENIUS DENSITY THEOREM

In this section we let L denote a Galois extension of K with G = G(L/K).
The main idea here is to prove the existence of primes in K having certain
prescribed decompositions in L.

We prepare first with a purely group theoretic result.

Definition. Let ¢ be an element of order n in G. The division of ¢ is the col-
lection of all elements in G which are conjugate to some ¢™ with m relatively
prime to n.
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5.1 Lemma. Let o be an element of order » in G, H the cyclic group (o),
and ¢ the number of elements in the division of . Then t = ¢ (n)[G : Ng(H)]
with ¢ (n) the Euler function.

Proof. For m relatively prime to n we have Cg(6) = C;(6™). Thus ™ has
[G : C;(o)] conjugates. As m ranges over all integers between I and » relatively
prime to n we count ¢(n){G : C;(g)] conjugates this way. But these are not
all different. An element is counted ¢ times if it is conjugate to ¢ distinct
powers ¢™. Evaluate g by observing the number of conjugates of ¢” which are
also powers of ¢ is the number of distinct automorphisms of H induced by
conjugation; namely the index [Ng;(H) : C;(0)] = q. 1t follows that

| _ #0IG:Ce(@)]
[Ne(H) : Co()]

Now we can state the main result.

= ¢(m[G: Ng(H)].

5.2 Theorem (Frobenius Density Theorem). Let o be an element of G =
G (L/K) having ¢ elements in its division. Let .S; denote the set of primes of K
which are divisible by a prime of L whose Frobenius automorphism is in the
division of ¢. Then S, has Dirichlet density #/|G|.

Proor. The proof is done by induction on n, the order of ¢. Consider the
case n =1 first. Then ¢ = | and S, is the set of primes of K which split com-
pletely in L. Let S* denote the set of primes of L dividing some prime in S,.
Foreach pin S, there exists exactly (L : K) =|G| distinct primes in $* dividing
p and each of these has norm exactly p. Thus we find

su;s- ‘/V;_/Q(‘B)—s = Z ‘/V;(/Q('A/}./K(‘B))_s

PeS*

= |G Z Akiq(P) ™"
peS

The first sum can be evaluated. Let T denote the set of primes of L
which have relative degree one over Q. Then T< S* and the sum
Zpes-r A (P~ 0.

Now it has already been proved that 6 (T) = 1 so we have §(S*) = 1. This
means

Y, NP7~ -G log(s—1)
pesS;
and 4(S,) = 1/|G| as required for this case.

Now assume the order of ¢ is n and n > 1. For each divisor d of n let ¢,
denote the number of elements in the division of ¢“. Let S, denote the set of
primes of K divisible by some prime of L whose Frobenius automorphism
belongs to the division of ¢%. By induction we know 8(S,) = t,/|G| if d # 1.



5. Frobenius Density Theorem 135

Let E denote the subfield of L left fixed by (o). Let H denote the group {s).
We use the description givenin Chapter 111, Corollary 2.9 for the decomposition
of primes in E. The primes p of K which have at least one prime factor in E
having relative degree one are precisely those p divisible by a prime P of L
such that the Frobenius automorphism 7 of P has a cycle of length one on the
cosets of H. This occurs precisely when o;7¢; ! is in H for some ;. This means
7 is conjugate to some power of ¢ and so p is in S, for some 4.

Let S denote the set of primes of E having relative degree one over K. For
p € S, let n(p) denote the number of primes of E dividing p and having relative
degree one over K. Thus each p in S, is the norm of n(p) distinct primes in
Sg. Just as before 8(Sg) =1 because Sy contains the primes of E having
relative degree one over Q. Put these facts together to obtain

(1) —log(s—1) ~ Z -/Vx/Q(NE/K(“B))_s = Z Z np) A (p)~".
PeSE dln peSa

Next we evaluate n(p). Suppose p € S;. By Chapter 111, Corollary 2.9 this
is the number of distinct cosets Ho; such that Ho; 0" = Ha,. This holds if and
only if

o,0% ;' e H.
Since H is cyclic this only can happen if 6; € N5 ({s*}). So we have
n(p) = [NeKa»):H], peS,.

Using this equation and the induction hypothesis we write Eq. (1) as

[Ng<{a®> : H1¢,

[NG(H):HJvEZSlN(p)‘* ~{-1 +dz.n r log(s—1).
d#1

Next use Lemma 5.1 to evaluate 7, = ¢ (n/d)[G : Ng<a*>]. The coefficient
of log(s—1) on the right becomes

—1+ 2:74’(3) - —1- ¢(n)/n+%z¢'<§).

dln din
d#1

A well-known formula of elementary number theory asserts the summation
remaining here has the value n so the entire expression is just — ¢ (n)/n. Thus
finally
- —¢(n) —t

N (@) ~ e log (s — 1) = — log(s— 1),
u;sl [NG(H):H]n G|
again using Lemma 5.1 for the value of ¢. This completes the proof. We can
now prove an important property of the Artin map.
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5.3 Corollary. Assume L is an abelian extension of K and S is any finite set
of primes of K containing all the primes ramified in L. Then the Artin map
ok carries I,° onto G(L/K).

Proor. Given an element ¢ in G, the division of ¢ consists precisely of the
elements which generate the cyclic group {a). By the Frobenius density
theorem there exist infinitely many primes of L whose Frobenius auto-
morphism generates {a) so some ‘§ can be found with p=B ~ Knotin S
and ¢k (p) a generator of (o). Thus ¢, x maps 1,5 onto G.

5.4 Corollary. Assume G(L/K)is cyclic of order n, and let d be a divisor of
n. The set S, of primes of K having exactly 4 prime factors in L has Dirichlet
density ¢ (n/d)/n.

In particular there exist infinitely many primes of K which remain prime in L.

Proor. In Chapter 111, Proposition 2.8, take H =1 so E= L. A prime p
has d factors in L if and only if ¢ = ¢ (p) has d cycles in the representation
of G by permutations of its elements (the cosets of H). When G is cyclic o has
this property if and only if it has order n/d. There exist exactly ¢ (n/d) such
elements in a cyclic group so by the Frobenius density theorem, §(S,) =

¢ (n/d)/n.

5.5 Corollary. Let L,, L, be normal extensions of K and let S, S, denote
the sets of primes of K which split completely in L, L,, respectively. If
S, = S, (except possibly for a set of density 0) then L, = L, and conversely.

Proor. One direction is immediate. If L, « L, and p splits completely in
L, then it also splits completely in L,.

Now suppose §; = S, except for a set of density 0. Let L = L,-L, be the
least extension of K containing both L, and L,. By Chapter I1I, Corollary 2.7,
the primes of K which split completely in L are those in S, since they split
completely in both L, and L,. Now compute the densities of S; and §,. Use
Theorem 5.2 to get

(L:K)"' =46(S)=(L,:K)"".
This forces L =L, L, = L, and so L, = L, as required.

This seems like a theorem which classifies all normal extensions of K in
terms of objects in K alone; namely certain sets of primes. Unfortunately it is
not known yet which sets of primes can arise as the set of primes which split
completely in some normal extension of K. This problem is solved for abelian
extensions by class field theory in Chapter V.

Another application of Theorem 5.2 will give us the so-called first funda-
mental inequality of class field theory.
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5.6 Theorem. Assume L is normal over K and m is a modulus for K. Let
I,™ denote the subgroup of I, generated by all primes P of L for which p n K
is in I,™. Then

(™ : Ny g (I (K, )] < (L2 K).

Proor. Except for a finite set of primes, the primes that split completely
in L are found in Ny, (I.™). The density of this setis 1/(L : K) by Theorem 5.2.
If & is the index on the left above, then by Theorem 4.7, we obtain

1(L:K) < 1/h

which is equivalent with the desired conclusion.

Notice this first inequality holds for any modulus and any normal extension.
The reverse inequality will be proved later under very restrictive conditions.
The Galois group of L over K must be abelian and the modulus must be divisible
by all the primes of K which ramify in L. Some restriction is also necessary
upon the exponents of these primes. This theorem is called the second
inequality and the proof is entirely different from that of the first inequality.

As a final application of the Frobenius density theorem we shall prove
Dirichlet’s famous theorem on primes in an arithmetic progression.

Let m be a positive integer and m the modulus (m)p, for Q. We write
H=1i(Qn,)inIy"

Let § denote a primitive mth root of unity. We have seen already in Proposi-
tion 3.3 of Chapter 11l that the set of primes of Q which split completely in
L = Q(p) is the set of primes in H. The density of this set is (L: Q)™ " by
Theorem 5.2. Also by Theorem 4.7 this number is at most [I™: H] ' =
¢(m)~'. This index is computed using the results of Section 1. Thus (L: Q) >
¢ (m). On the other hand, # has at most ¢ (m) conjugates so its minimum
polynomial has degree < ¢ (m). Thus (L: Q) = ¢(m). [We have proved again
the cyclotomic polynomials are irreducible.] Now this information along with
Proposition 4.8 yields a useful fact.

5.7 Proposition. If y is a nonprincipal character of I"/i(Q, ;) then
L(1,x)#0.

This is the crucial step in the next theorem.

5.8 Theorem. Let k, be any coset of i(Q,, ,) in I,"™. Then the set of primes
in k, has density 1/¢ (m).

Proor. Let C™ denote I,"/i(Q,,,,). For any character y of C™ we have

logL(s, ) ~ Z%’) = kZ k) Y p7
14

eCm pek
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Now multiply this by (kg ') and sum over all characters y of C™ to obtain,
logL(s,x0) + Y. x(kg ) logL(s, ) = ;Zx(%‘k) Zklf‘.
4 pe

P £ 1)
The orthogonality relations for characters allow the evaluation of the sum over
X as

Yalks'k)y = (m) if k=ko
x
=0 if k # ko

Use the fact that L(1,x) # 0 if x # xo (Proposition 5.7) to see that the sum
over nonprincipal characters above is bounded at s = 1. We finally obtain
log L(s,x0) ~ ¢(m) ), p~*.
peko
The function L(s, x,) differs from {(s) only by a finite number of factors due
to primes dividing m. It follows then

log L(s, x0) ~ log{(s) ~ —log(s—1).

Finally we combine the last equivalences to get

Zk p ~ —1j¢p(m)log(s—1)
PEko
as required.

Now let m be a positive integer and @ an integer relatively prime to m.
Suppose p is a prime in the arithmetic progression mr+a, t € Z. Then clearly
p is in the coset aQ,, , since mt+a = a implies (mt+a)/a € Q,, ;. Conversely
if p belongs to aQ,, | then p = ax/y with x = y mod m. It follows x = mzt, +y
and p = mt+a for some t. So the primes p which are congruent to @ mod m
are precisely those generating a prime ideal in a fixed coset of i(Q,,,,). By the
above result there exist infinitely many of these so we have recovered
Dirichlet’s well-known theorem.

5.9 Theorem. For each positive integer m and each integer a relatively
prime to m, there exist infinitely many primes of the form m¢+ a.

The proof of this theorem depends upon the nonvanishing of L(1, x) which
in turn depends upon the existence of a certain field, Q(f) in this case. Appro-
priate generalizations of these facts will be seen later in Section 10 of Chapter V.

In the following exercises let /(X)) denote a monic polynomial with integer
coefficients, L the splitting field of f(X) over Q, E = Q(0) with 8 a root of
f(X), G = Gal(L/Q) and H = Gal(L/E). Regard G as a permutation group on
the roots of f(X). Assume f(X) is irreducible so that G is transitive.

Exercise 1. For an element ¢ in G, the cycles of ¢ on the cosets of H have
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the same length as the cycles of o when viewed as a permutation of the roots of
S(X). In fact the correspondence TH — 1(0) between cosets of H and roots of
S(X) is preserved by G.

EXERCISE 2. Let p be a rational prime, B a prime of L dividing p. Assume
p is unramified in L. Then f(X) is irreducible modulo p if and only if the
Frobenius automorphism of P has a single cycle on the cosets of H.

EXERCISE 3. If p is a rational prime which ramifies in L, then p ramifies in
E. Conclude f(X) is reducible modulo p.

Procedure. Let P be a prime of L dividing p. If p does not ramify in E then
the inertia group T'(P) is contained in H. Moreover p is not ramified in 7(F)
so T(P) is contained in tHt !. However the intersection of the conjugates
tHz ™! is the identity so T(‘B) has order one.

EXercise 4. Let f(X) have prime degree g. There exist infinitely many
primes p for which f(X) is irreducible modulo p.

Procedure. The prime g divides |G| but not | /|. Any prime p of Q divisible
by a prime B of L whose Frobenius automorphism has order ¢ satisfies the
requirements.

EXERCISE 5. Let f(X) have arbitrary degree. There exist infinitely many
primes p such that f(X) has no root modulo p.

Procedure. Any prime p divisible by a prime B of L whose Frobenius
automorphism has no cycle of length one will do. To show G contains such an
element observe that any element fixing a point must lie in some conjugate
tHt ™. The conjugates of H can account for at most

[G: HI(|H|-1)+1 < |G|
elements.

EXERCISE 6. Show that an irreducible polynomial f(X) can be reducible
modulo every prime.

First Procedure. Let f(X) be a polynomial such that G is abelian but
noncyclic.

Second Procedure. Let f(X) be a polynomial with even degree 2n whose
Galois group is isomorphic to the alternating group A4,,. There is no element
in A4,, consisting of a single cycle on all 2n symbols. Apply Problems 1-3.



Chapter V

CLASS FIELD THEORY

1. COHOMOLOGY OF CYCLIC GROUPS

Let G be a finite group. By a G-module we mean an abelian group A4 together
with a homomorphism ¢ — & of G into the automorphism group of A. The
action of ¢ upon an element a € 4 will be written as o(a).

The most frequently encountered examples of G-modules include the groups
associated with a normal extension field L of K and G is the Galois group.
Some G-modules are L*, I, , C, ; the multiplicative group of L, the ideal group,
and the ideal class group.

Consider now the case with G = (@), acyclic group of order n. The generator
o is fixed throughout the discussion. Let

A=1-o, N=1l+ag+ - +0"L

For each G-module 4, A and N act as endomorphisms on 4; A(a) =a—o(a)
if A is written additively, A(a) = a/o(a) if A is multiplicative. In case 4 = L*,
then N = Ny ¢ is the usual norm.

In general we write Aj4 and N|4 to emphasize the module upon which
these endomorphisms are acting.

Regardless of the module, the equations AN = NA = 0 always hold. This
means

ImN < kerA and ImA < kerN.

Equality need not hold here so we measure the difference by a pair of
abelian groups.

140
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Definition. For a G-module A, the cohomology groups of A are
kerA|A ker N|4
, HY(A) =
NG W ="3@
1.1 Lemma. If 4and Bare G-modulesandf: 4 —» Bisa G-homomorphism,

then there exist maps f;, f; induced by f such that f; is a homomorphism from
H'(A4) to H'(B).

HO(A) =

Proor. Since f is a G-homomorphism, it commutes with A and N. In
particular f(kerA|A4) € kerA|B and f(N(4)) € N(B). There is an induced
map f, from H°(A) to H°(B) by f,(a+N(4)) = f(a)+ N(B).

Similary one obtains f;.

1.2 Lemma (The Exact Hexagon). Let

g

0—>A—15sB-25Cc—>50

be an exact sequence of G-modules and G-homomorphisms. There exists maps
80,8, such that the hexagon is exact at each group:

HO(4) —»H°(B)

3 4o
HY(C) H°(C)

do

« H' (B)~—— H' (4)

Proor. We shall define d,,8,, the so-called connecting homomorphisms.
Once this is done, the verification of exactness is an elementary, but tedious
exercise using nothing but the exactness of the original sequence. This is left
to the reader.

Begin with ¢ € ker A|C. There exists b € B such that g(b) = c. Then Ag(b) =
g(Ab) = Ac = 0 implies Ab e kerg = Imf. So there exists a € A with f(a) =
Ab. The equation Nf(a) = f(Na) = NAb = 0 shows Na € kerf = (0). Finally
a € ker N. The map 9, is defined by the equation

So(c+N(C)) = a+ A(4)

and thus it is a map from H°(C) to H'(A). It must be shown that J, is well
defined. Suppose ¢+ N(C) = ¢'+N(C) and g(b') = ¢’. Then Ab’ = f(a’) and
it must be shown that a—a’ € A(A4). There exists b” € Bwithc— ¢’ = Ng(b") =
g(Nb"). We now have g(b— b’ —Nb") = Osothereisa” € A withb—b'—Nb" =
f(@"). It follows that Ab—Ab’' = f(a—a’) = f(Aa”). Since [ is one to one it
follows a—a’ € A(A) as required.

That 8, is a homomorphism follows easily since at each step an element
was selected using the homomorphisms in the sequence.
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The map §, is defined analogously. For c € ker N|C we set
S1(c+A(C)) = a+ N(4)
if g(b) = ¢ and f(a) = Nb. The remaining details of the proof are left as an
exercise.
Definition. For a G-module A we say the Herbrand quotient g(A) is defined
if H°(A4), H'(A) are finite groups. We set
q(4) = |H' (A)|/|H°(4)|
and call this the Herbrand quotient of A.

1.3 Lemma. If0— A - B— C—0isan exact sequence of G-modules and
if two of the objects g(A4), g(B), g(C) are defined, then all three are defined and

q(4)q(C) =q(B).

Proor. Use the exact hexagon above. Suppose q(A4) and g(B) are defined.
Then
|[H(C)| = |ker§;||Im ;| = |Img;|[Im 5.

Now g, is defined on a finite group and Im§; is contained in a finite group so
g(C) is defined. Similar arguments work if two others are assumed to be
defined.

For the second assertion we prove the equation

|HO (DI HON|H (B)| = |[H (D] H' (O)||H(B)|
by observing both sides are equal to
|ker fo||Im fy| [ker 8,|[Im &o|[ker g, |[Im g, .
The equality g(4) g(C) = g(B) now follows.

1.4 Corollary. If A = B are G-modules and C = B/A is finite, then g(4) =
q(B) whenever either one is defined.

Proor. The result follows immediately if we show ¢(C) =1 when C is
finite. For this case we find

_ [kerN:ImA] _ |kerN||ImN| |C|

) = _ll
9C) = [kerd  ImN] _ |kera[[ImA] _ [C|

so we are done.
Toillustrate these ideas as well as for later use we shall consider an example.

Let d be any divisor of n = |G| and let

d
A=Y Zy
1



2. Preparations for the Second Inequality 143

be a free Z-module on the 4 generators u;. Let G operate on A according to
the rules:

OU; = Uity i<d,
OU; = Uy,

Clearly o generates the subgroup which acts like the identity on 4. Let
G, = (o).

1.5 Proposition. When Z is the ring of integers then g(A) is defined and
q(A)=|G,|™'. When Z is a commutative ring with characteristic zero, then
q(A) = [Z :mZ]™ !, md = n, provided this is finite.

Proor. One simply computes all the groups involved. The calculations are
not difficult so we shall only state the relevant facts:

(a) kerN = {Zaiuilzai =0},
(b) ImA = kerN,

(€) kerA = Z(u,+ - +uy),
(d) ImN =mZ{u,+-+uy).

This yields H°(A4) = Z/mZ and H'(A4) = 1 and the result is proved.

2. PREPARATIONS FOR THE SECOND INEQUALITY

Assume L/K is normal with a cyclic Galois group G = {o).

Definition. Let p be an infinite prime of K. We say p is ramified in L if p is
real (on K) but p extends to a complex prime of L. In this case we set the rami-
fication index e, = 2 and formally set f, = 1. For unramified infinite primes p
wesete, =f, = L.

Let m be a modulus for K containing at least the primes of K which ramify
in L (finite and infinite).

Each prime p of K may be viewed also as a product of primes in L. In this
way m is also considered a modulus for L. Thus I;,™ has meaning and in fact
this is a G-module. That is if P is a prime of L not dividing m, then o (PB) does
not divide m either.

We begin by computing some groups.

2.1 Proposition
(@ H'A™ =H'(L*Y =1,
(b) HO(L*) = K*/N(L¥),
(© H O(ILm) = L"/NI™).
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PrOOF. The statement H!(L*)=1 is just a restatement of Hilbert's
Theorem 90. Statement (b) is clear because ker A consists of the elements left
fixed by G. In the same way ker A|I,™ is the set of fractional ideals U of I,™
left fixed by G. Suppose P* divides U for a prime P of L. Then o' (B)* also
divides U and so the product of the distinct conjugates of P divides U (with
exponent k). Now if B n K = p, then p +1n so p is unramified in L. Thus p is
the product of the distinct conjugates of P so W = p* A, with A, also
G-invariant. It follows in this way that U € I,™ and then (c) is obvious.

We have left to prove H'(I,™) = . Take A e I,™ with N() = 1. Let ‘P&
be the exact power of the prime P, appearing in 2. Let P, = '(P,) for
I € i< g~1and suppose 6?(P,) = B, with g minimal. Let P be the power
of B, dividing . Set

B = Pl Pl Py
so that

AB = PP - i B,
where b= —ag—---—a,_,. Let N(P,) = p’. Since N() =1 and since the
p-part of N(U) must come from the terms N(P,) we see

N([TB5) = pfeot=ran-n = 1,

It follows that 3" a; = O and so b = a,_,. Thus A is the part of U contributed
by the B,;. After this procedure is repeated with the other primes dividing U
we are left with W € ImA and so ker N = Im A as was to be proved.

The next step is to define some maps that will be used frequently in this and
the next few sections.

The homomorphism

AR el i
is defined on primes by

P, Prm,
B =
1, B|m.
Evidently j maps an ideal A onto the part of A relatively prime to m.
Recall that the map i carries an element « in L* to its principal ideal in I, .
We denote by fthe composite ji so that

(n fiL* s

Notice that all the groups mentioned are G-modules and the maps i, j, f are
G-homomorphisms.

Now let S denote the set of primes of L which divide m. Let [} = kerf.
One easily sees

Q) [’ = {o € L*|i(«) is divisible only by primes in S}.
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In the case that § € S, the set of infinite primes, then I’ = U, is the group
of (absolute) units of L. For this reason one says (for any S) I? is the group of
S-units. One must keep in mind that I? is the set of elements which are units
locally outside S.

We begin a series of calculations to determine the Herbrand quotient of
several G-modules.

2.2 Lemma. If q(U,) and g(kerj) are defined, then q(I’) = q(U.) g(ker ).
Proor. The equation 1 = f(I°) = ji(L) gives rise to an exact sequence
1 = i(I%) > kerj—» C—1
for some group C. In fact C is finite because
 kerj _i(L*)kerj
Ty T 0™
which is a subgroup of the class group of L. We are assuming g (ker j) is defined

so by the results in Section 1 we obtain g(i(L®)) = q(kerj). Next use the exact
sequence

C

1-U, »EF-i(l¥)-1

to conclude (L) = q(U) ¢(i(L))) = g(Up) g (ker)).

The next task is the computation of ¢(U,) and g(kerj). The first is done by
finding a suitable subgroup with finite index in U, so that Corollary 1.4 can
be applied.

Let L have r real primes B,,..., B, and s complex primes P, .4, ..., Brss.
Let | X |, denote a valuation in ;. When B = P, we also write | X |y for |X|;.

2.3 Theorem. There exists units wy,...,w,;, in U, in one-to-one cor-
respondence with the infinite primes of L such that

(a) G permutes cyclically the w; corresponding to the P, which extend an
infinite prime p of K;

(b) 1 =T]w,is the only relation between them;

(c) the subgroup W generated by all the w; has finite index in U,.

Proor. For each infinite prime p of K select one prime 9§ of L which
extends p. For each such P select a unit wg of U; such that (wy|; < 1 whenever
P # P,. Such a unit exists as one sees from the proof of the Dirichlet unit
theorem (Chapter 1, Section 11).

Let G(*B) denote the decomposition group of B and set

w,' = [] t(wg)
1e G(P)
Then wy’' is still in Uy, and

[wg'l; = H'T(W@u)li = H'Wmlr(ms)-
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When 7 e G(PB) and B; = B, then 7(P;) = P so it follows that |wy'|; < 1
if P, #P.

The point of changing to wy’ is that } and wy’ are left fixed by exactly the
same subgroup of G. Now if Q is a prime of L also extending p and if 1(P) = Q
with 7 € G then we define

WD' =7 (an,).

We now have a one to one correspondence between the images of wy’ and
the primes of L above p. When all the infinite primes are used, we obtain a set
of r+s units in U,. The conditions of (11.17), Chapter I are satisfied by the
wg' in place of the u; used there. Set W’ equal to the group generated by all
wy’ and apply Proposition 11.18 of Chapter I to conclude ¢ (W) is a lattice of
rank r+s—1 and in fact any r+s—1 of the elements £ (wy’) give a basis.

For each infinite prime p of K let

v, =[] wy'.
Bl

Notice v, € Uy because v, is fixed by G. Let '+’ be the number of infinite
primes of K. There are r’ +s’ elements v, of which r'+s"—1 are independent.
There exist integers a, (not all zero) such that

1 = []oie.
¥

In fact none of the g, are zero because there cannot be a relation between
fewer than r+s~—1 of the /(w,’). Finally set w;, = (wg,)* if B;|p. Then the
product of the w; equals 1 and there is no other relation between them. Let
W denote the group generated by the w;. Then /(W) has rank r+s—1 and so
[£(U,):£(W)] is finite. Since ker / is also finite it follows [U, : W] isfinite and
the proof is complete.

This group W is useful because we are able to evaluate g(W). Proceed as
follows. For each infinite prime p of K and prime ¥ of L extending p, let
d, =[G : G(*P)] and set

dp
AO = Zzui,p.
1

This is a free Z-module on d, generators upon which G acts by permuting the
basis elements cyclically. We now have an exact sequence

0———)2—”—)2AP—L>W——>1,
vl

where g(z) =z 3,2, u;,, and k is defined so that the d, basis elements u; ,
map onto those w; corresponding to the divisors P; of p in such a way that & is
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G-homomorphism. The exactness follows at once from (b) of Theorem 2.3.
Now compute

aqW)q(Z) = q(} 4,) = [19(4,).
The action of G upon Z is the trivial action so ¢(Z) = 1/|G| by Proposition
1.5. The same proposition gives g(4,) =|G(B)| ! if P|p. The groups G(P)
are easily calculated. If p is an unramified infinite prime then there exist (L : K)
extensions to L so G(B) = 1. When p is ramified there exist (L : K)/2 extension

to Lso |G(B)|=2.
Now use g(W) = q(U_) to get the end of the computation.

2.4 Theorem. Let r, be the number of infinite primes of K which ramify in
L. Then

q(Uy) = (L:K)/2".

To complete the evaluation of g(L¥) we need now to determine g(ker ).

The group ker j is the free abelian group on the primes in S. For each prime
p of K with p divisible by primes in S set /(p) = subgroup of ker; generated
by the divisors of p. We see at once that

kerj = [TI(p),  q(kerj) = [[q(Z(p))-
Let p = (P, --- B,)* and Ny x(P) = p’. We know G is transitive on the P;
so one easily verifies

(8) kerN|I(p) = {JI B2 a, =0},

(b) ImA|I(p) = ker N[I(p),

(c) kerA|l(p) = <Q), Q=P B,

(d) ImN|I(p) = (p') = <Q).
Thus g(I(p)) = l/ef = 1/e, f,. Finally apply Lemma 2.2 and these last cal-
culations to compute g(L).
2.5 Theorem
(L:K)
L= ——L.
q( ) nvlmeva

3. A NORM INDEX COMPUTATION

As before L/K has cyclic Galois group G = (o). For a modulus m for K
we set

a(m) = [K* : N(L) K, 1]
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Our goal is to evaluate this at least under the assumption that the prime
divisors of i have sufficiently large exponents. This will be made more precise
later.

3.1 Lemma. Ifmandnarerelatively prime moduli,thena(mn) = a(in)a(n).
Proor. The approximation theorem implies that the map
o = (@K, 1, 0K, 1)
induces an isomorphism

K* K* K*
- X .
Kmn,l Km,l Kn,l

This induces a homomorphism
K* K* K*
4 X
Kmn.l N(L*)Km.l N(L*)Kn,l

which is onto the direct product. The lemma will be proved if we show the
kernel of this map is exactly N(L*) K., /Ky, 1-
Suppose aK,,, , is in the kernel. There exist §,, 8, in L such that

o = N(,) modm, a = N(B,) modn.

View i and n as moduli for L. They are still relatively prime and so there is
a solution fin L to

B =B, modm, B = B, modn.
From this it follows that

N(BN@B)™" € K n Nyjg(Ly,1)

NBN(@B)™" € K 0 Nyi(Ly, ).

Next we show K N N k(L. 1) € K,,,1. Let p® be the power of the prime p
of K dividing m and let p = (B, - P,)° be the factorization of p in L. If
y = a/b in L with @ and b algebraic integers and y = 1 mod m, then

a = bmod(PB, --- B,)*.
Since the product B, --- P, is ¢ invariant for any ¢ in G(L/K), we have

o(a) = a(b) mod (P, -+ B,)*

and so

NL/K (@) = NL/K (b) mod (B, - ‘Bg)ne'
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These norms lie in K so the congruences may be read modulo K n
(B, - B = p°. It follows that N (@) = N (b) and so Ny x(y) =1 mod
p“. Since this holds for each divisor of m, the stated inclusion follows.

We already have aN (8,) ' in K, ; and aN, x(8,)"'in K, ,, so

o‘NL/K(B)_1 € Kt 0 Ky1 = Kot
which is enough to prove the lemma.

This lemma reduces the calculation of a(m) to the case m = p” for a prime
p and n = 1. The case p infinite is easy so we take care of it at once.

3.2 Lemma. Ifp isan infinite prime of K then a(p) = e, = the ramification
index.

PROOF. Suppose m = p is real and is ramified in L. Let P, --- P, be the
(complex) primes of L extending p. Then for « € L¥,

NL|K(°‘) = l_l NL,,,,QKF(“)-

Since Ly, is the complex field and K, the real field, all the norms on the right
are positive. Hence N(L*) = K,, , and K*/K, ; hasorder 2 =¢,.

The reader can verify in all other cases [K*:N(I¥) K, ,]=1=¢, as
required.

For the rest of the section we work with a finite prime p and m = p". P
denotes a prime of L dividing p. As usual, e,, f, denote the ramification number
and relative degree of P over p.

3.3 Lemma

(@) [K*:NUIMK,]=/;

(b) d(ﬂl) =jp [Km : (Km m N(L*))Km,l]'

PROOF. Since i = p” it follows that K, = units in the valuation ring R, of
p. Let 7 be a generator for the maximal ideal so every element in K* has the
form n°u, u e K,,.

We know N(B) = (n/)so elements in N (L*) have the formn/*wwithw € K,,,.
It follows

K*/K N(L¥) = (nyKaly

which has order f = f, as required for Part (a).
A factorization of a(m) can be obtained from the successive indices of
subgroups in the chain

K* > NUMK, > NI} K, ..
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The first index is f, by Part (a). To get the second index in the stated form
one need only observe there is a natural isomorphism

K, _ NUMK,
(K. AN(I*)K,,, ~ NUIMK,.,

induced by the inclusion of K, into N(L*) K,,,.

The procedure from this point is to express this last-mentioned group purely
in local terms. For this we need some additional notation. As usual K,, Ly
denote the completions at the primes p and PB. Let U, denote the units in the
valuation ring of K, and Ug the units in the valuation ring of Ly. The maximal
ideals in the valuation rings are just denoted by p and . For each positive
integer n we set

U» =1 +p"

which is the set of units in U, congruent to 1 modulo p”. Finally we write N,
for the norm from Ly to X,

3.4 Lemma. For m = p"there is an isomorphism
K, - U,
(Kn " NI*) K1 ~ Ny (Ug) UP

Proor. The group U,/U{" is the image of the units in R, = K, and so the
map

v: o - aN (Ug) UM

maps K,, onto the given group and the kernel contains K, ; since this is the
set mapping onto U{”. Now suppose « is in the kernel. For some f € Ug we
have aN,(8)"' e UP. Let P = P,,..., P, be all the primes of L dividing p.
There is an element y € L such that

y = B mod B*
y=1modB, j#1 e=e(B/p)
Now for 7 € G(L/K) but 7 ¢ G(B) we have 171 (P) = B, # P, and so
7{y) = | mod P}
Let 7; G(B) denote the cosets of G(P) in G. Then
Nux@® =1 [l wt@ = [] t(») = Ny(y) mod P
i teG(B) reG(M)

i tE

Thus N, x(y) =N, () mod B and so e N(p) X, ,. Since a € K,, we see
N(y) is in (K, n N(L*))K,,,;. We have already seen K,, , is in the kernel. It
is trivial that norms from L are mapped into N, (Ug) so the stated isomorphism
is proved.
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The computation of a(p”) is now reduced to a problem about the units in
the complete fields. This is carried out in two steps, each of which requires a
number of preliminary calculations. Roughly one must show Uf,"’ e N,(Uy)
if n is sufficiently large. Then the problem is to compute [U, : N, (Ug)] which
is done using the Herbrand quotient, g(Ug).

We work only in the complete fields K, L, now.

Consider the series

exp(x) = 3 %fn,
[

log(1+x) = i(— )" x"/n.
i

This will be used for x in Ly and K, . It is necessary to determine the region
of convergence. Let vy denote the exponential valuation. An infinite series
¥ a, x" converges in Ly if and only if vy(a, x") - 0 as n - co.

Let ¢ be the prime integer in P and set e, = vy(g). Suppose n! = gt with
(g,1) =1. Then

SN I
=} - pu— n = .
q q° -7 g—1

Thus vy (x"/n!) = nog(x)—vg(n!) > n(vg(x)—eo/(g— 1)). It follows that exp(x)
converges if vy (x) > eo/(g—1).

Similarly vg(x"/n) = n(vy(x)—vg(n)/n) so log(l+x) converges whenever
vg(x) = 1. Finally the two familiar relations

logexp(x) = x,  explog(l+x) =1+ x
can be verified formally. We use the properties at once.

3.5 Proposition. For sufficiently large n, the function log gives an iso-
morphism of U™ with the additive group p”.

Proor. Take n large enough so that exp(x) converges for x in p". Then
exp(x) = [ +x+- is in U™ and for 1+y in U™, log(1+y) = y+- is in
p". Moreover these are group homomorphisms and are inverses of each other.

3.6 Proposition. Let d be a positive integer. For n sufficiently large, every
element of U™ is the dth power of an element in U,. In particular with
d = (Lg : K,) and n sufficiently large, U, = N, (Ug).

PrOOF. Let v,(d) = k and take n large enough so exp(x) converges for x
in p" %, Take any 1 +x in U, and set y = log(l+x). Then y is in p" and
y/d is in the region of convergence of exp. When we set z = exp(y/d), then
zeUjand z* = 1 +x.
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To prove the statement about norms notice that for uin X, N, () = #* and
so all dth powers are norms. In particular U™ consists entirely of norms.

3.7 Corollary. For n sufficiently large, we have

a(pn) = .f;[Ug) : Np (U‘D)]

The index remaining here is equal to |H°(Ug)| which is equal to
q(Ug) ™! |H* (Ug)|. We shall evaluate these.

3.8 Lemma. |H'(Ug)|=e,=rramification index of p.

Proor. By Hilbert’s Theorem 90, ker N{Uy = Uy n A(Ly*). Let n be a
generator of the ideal B so that any x in Ly has the form n°u with u in Uy,
Let o be a generator of G(P) = G(Ly/K,). Then o (n) = 7w, we U, 50 A(x) =
n’u/nw’ is in Ug. Thus ker N|Uy = A(Lg*). This enables us to write

H'(Ug) = A(Lg*)/A(Uy) = Ly*/K,* Uy

with the last isomorphism induced by the map x — A(x) of Lg* onto A(Lg*).
Let 7, be a generator for p so that n, = n° for some unit u and e = e,,.
Then
Ly* = (n) x Ug,

K,*Ug 2 (n®) x Uy

and so the quotient has order e, as we wished to prove.
Finally we come to the last term remaining.

3.9 Lemma
q(Ug) = 1.

Proor. Lemma 1.3 and Corollary 1.4 will be used repeatedly.

For any positive integer n, Uy/Uy™ is finite since it is the unit group of the
finite ring Ry/P". Thus ¢(Ug) = g(Ug™).

Take n large enough so that Proposition 3.5 can be used. Then log gives an
isomorphism of Uy™ with the additive group P". Moreover this is a G(B)-
isomorphism so ¢(Ug™) = q(P"). This in turn equals g(Rg) because Ry/PB" is
finite.

Next apply the normal basis theorem. There is an element « in Ry such that
the distinct images under G (%) are linearly independent over K. This means
M= )Y R,1(®

Te G(P)
is a free R,-module with the same rank as Ry over R,. This forces Ry/M
finite and g(R,) = q(M). Now M is a module upon which G (B) merely per-
mutes the basis elements. By Proposition 1.5 we find ¢(9%) =1 because no
elements of G(P) act trivially (except 1).
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Now combine the results of this section to finish the original problem.

3.10 Theorem. Let m be a modulus for K. If the finite primes dividing m
have sufficiently high exponents, then
[K* N(IHK, ] = ]'_[e,,f,.
pim

In the course of obtaining this result some other facts of interest were proved
for cyclic extensions.

3.11 Proposition. If p is unramified then every element in U, is a norm
from Ug.

Proor. By Lemmas 3.8 and 3.9 it follows H®(Ug) = 1 so U, = N, (Ug).
3.12 Proposition. The quotient K,*/N,(Ly*) has order (Ly : K,).

Proor. We have G (*B)-modules Uy < Ly* with quotient (), the infinite
cyclic group generated by the image of the prime element n. Then (&) is also
a G (B)-module with trivial action.

It follows that g(<@))=|G(P)| ™' and so g(Ly*)=|G(P)| ™ follows also
because q(Uy) =1. Use the definition of g and Hilbert’s Theorem 90 to
conclude H°(Lg*) has order |G ().

In the first four exercises below, we sketch a proof of Proposition 3.11 which
avoids the logarithmic function. Let Ly be an unramified finite-dimensional
extension of the completion K| of an algebraic number field; Ry and R, are
the respective valuation rings and bars denote passage to the residue class
fields.

Exercise 1. Let N denote the norm from Rg to R, and N the norm from
Ly to K,. For x in Ry we have N(x) = N(%).

EXERCISE 2. Anelement u of R, is a norm of an element w € Ry if and only
if the characteristic polynomial of w over K, has constant term (—1)"u,
n= (Lg : Kp)

EXERCISE 3. Suppose (Ly : K,) = nis prime and u is a unit in R,. Let w be
an element of Ry with N(#) = ii. The minimum polynomial of w over R, is
the reduction mod p of a monic polynomial f(X) e R,[X] for which f(0) =
(— D)"u. Conclude u is a norm from Ug.

Exercise 4. Use induction and the above problems to prove Proposition
3.11.

Exercise 5. The multiplicative group K,*/N(Lg*) is cyclic of order
(Ly: K,).
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4. THE FUNDAMENTAL EQUALITY FOR CYCLIC EXTENSIONS

We assume L/K is normal with cyclic Galois group G = {o). For a modulus
m for K we let

"= Ixm/NL;x Im i(Km, 1)
This is a finite group whose order is denoted by 4,,,(L/K). Our object is to prove
this order equals (L : K) for suitable choice of m. The calculations of the

previous sections play a crucial part.
Start with the exact sequence

) |l — > —spLeym sy —1,

where fis defined in Section 2 and I in Eq. (2) of Section 2. From f we obtain
the induced map f, sending H°(L*) into H°(I,™). These groups are described
in Proposition 2.1, Using these one constructs the following diagram:

1 — ketf, ——> K¥N(I*) —2> IL"/N(@,™) —> cokfy —> 1

l I Lo

| —> kerg —> K*N(LMK,, —> C" ——> cokg—> 1

Here 8 is the natural projection and all other vertical maps are induced by
0. The map g is the unique map that makes the square (and the whole diagram)
commute. All the groups in the lower row are finite so using the exactness, we
obtain a formula for the order of C™.

%) ha(L/K) = [K*: N(I*) K] |cokg]/|kerg].
4.1 Lemma. The groups kerf;, cokf, are finite and

jeokg] _ leokfol
fkerg] ~ kerfy "

where n(m) = [K,,; n i '(NA™): K,,; 0 N(IH].

Proor. By simply applying a standard isomorphism theorem one finds
cokf, = cokg.

From the exact sequence Eq. (1) and the exact hexagon theorem we find
ker f; is a subgroup of H°(L¥). This group is finite since q (L) is defined.

Again using exactness we see that

|kerg| = [kerf, : kerf, m kerd].

The elements in the intersection on the right are the cosets N (L*) for which
ae K, ; and f(a) e N(I,™). The condition « € K, , implies i(«) is relatively
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prime to m so f(«) = i(a). The number of such cosets «N (L*) equals the number
of cosets of N(L*) with representatives in K, ; » i~ '(N(I,™). This is the
number n{m) given above.

4.2 Lemma

q(LS) — ICOkal

|ker fo| '
ProoF. From the exact sequence (Eq. (1)) we extract two short exact
sequences,
1 —> -1 ¥ 25 f(1¥) —> 1,
| —> I " 2 v— 1.
We shall write the exact hexagon for each of these sequences. They are
simplified by Conditions (a) of Proposition 2.1:

L — H' (1) —> HO(I) —> HO1) —> H(f1) —> H' () —> 1

—
—
fo
—
—

| —— H'(V) =2 HO(I¥) 2> HO@™ -2 HO(V) 2> H'(fI¥) —> 1

We are able to pass from the upper sequence to the lower because they have
a common group. Notice that f = i, a,.

We shall make a rather long calculation of orders of groups in these
sequences. At each step we use nothing but the exactness of the rows and the
following result whose proof is left to the reader.

Lemma. Let 8 be a homomorphism defined on an abelian group 4. Let B
be a subgroup of finite index in A. Then

[4:B] = [B(A): B(B)][kerS: B n kerf].
Now we begin with
lcok fo| = [H°(@,™) : Im By ag]
= |cok Bo| [Im By : Im By 0]
= |Im A¢| [Im B, : Im By o]
_ HOW) [H @)
[H (/L) |H (V)]

where the last step is made with the help of the preceding lemma using
A=H°(fL*), B=1Ima, and 8 = B,.

[Tmag N ker B),
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Now do a similar calculation:
|kerf| = |ker B ag| = |kerog||Imag A ker Bo|
= |Imy,| [Imay N ker By
|H° (%)
RERGE]
Combine these two equations and get

|cok fol s
o = 4L)q().
[kerfq|
The group V is finite since it is isomorphic to the class group of L (Section 1
of Chapter IV). Thus g(¥) =1 and the lemma is proved.

|Imoag N ker Bol.

This finally brings us to the main result.

4.3 Theorem (Fundamental Equality). Let L/K have a cyclic Galois
group and let i be a modulus for K divisible by sufficiently high powers of
every prime of K which ramifies in L. Then 4,,(L/K) = (L : K).

Proor. The results of this section yield the equation
ho(LIK) = q(L)[K*: N(L¥) K,, (]n(m).

When m is sufficiently large Theorem 2.5 and Theorem 3.10 combined give
h(L/IK) =(L: K)n{m).

The first fundamental inequality says 4,,(L/K) < (L : K) so the theorem
follows. In addition we obtain n(m) = 1. We state this separately.

4.4 Corollary. With the same assumptions as in the theorem it holds that
Kp1 N iTH(NAM) = Ky 0 N(I¥).

This corollary says that any element in K, ; which generates an ideal that
is a norm must itself be a norm. We shall use the corollary to prove an elegant
theorem originally proved by Hasse.

Anelementain Kis a Jocal norm at p if for some prime B of L dividing p, x is
a norm from Lg.

4.5 Theorem (Hasse Norm Theorem). Let L/K be a cyclic extension. An

element in K is a norm from L if and only if it is a local norm at every prime
of K.

Proor. Itiselementary to see that a norm from L to Kis a local norm at all
primes of K.

Suppose the element a« € K* is a local norm at all primes of K. We show first
the ideal (&) is the norm of an ideal from L. Let p“ be the exact power of the
prime p dividing () and let B be a prime of L dividing p. If N, x(P) = p/
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then p“is a norm if and only if f divides a. To see this is the case let f € Ly, be
an element such that N, (f) = «. Then () = P’ (in Ly) and

N, (B) = p/* = (), = p~.
We have written (), for the ideal in K, generated by «. This last equation

shows fdivides a.
Now let m be a modulus such that n(m) = 1. Suppose

m = []pf
Let B, be one prime of L dividing p; and let e; denote the ramification index.

There is an element B;€ Ly, with a = N, (8,). Use the approximation
theorem in L to obtain an element y € L which satisfies

y = By mod B b
y = 1 mod P if Blp;,, B # B
For ¢ € G(L/K) but ¢ ¢ G(PB;) one has
y=1mode ' (B)* and  o(y) = 1 mod P2
This implies
NL/K()’) = H l—[ Tjo'()’) = 1_[ ' o(y) = Np()’) = Np(ﬂi)’

t; o€ G(P) ae G(P:)

all congruences modulo P2, After combining these for all i one sees that

o = Npg(y) modm
and so
aNL/K(V)_l €K, .

This implies aN, x(y)™ ' is in K,, ; ni7!(N,(I/™) and so the element is a
norm. It follows that « is also a norm.

It will be seen later that A,,(L/K) = (L : K) for L an abelian extension of K
not necessarily cyclic. It is tempting to guess the Hasse norm will also hold in
this case. It does not however. Counterexamples are discussed in Cassels and
Frohlich [4, p. 360]. For example one takes K = Q, L = 0(/13,/17) so the
Galois group is noncyclic of order four. One can check easily that any prime
of Q must split completely in one of the three quadratic subfields and so
(Lg: K,) =1 or 2. Thus every square of a rational number is a local norm at
all primes. However (the hard part) 5% is not a global norm from L.

5. THE RECIPROCITY THEOREM

For a cyclic extension L/K we have seen that the group NI, i(K,, ;) has
index (L : K) in I;™ for suitable m. Also the Artin map ¢, x maps I;™ onto the
Galois group G(L/K) so ker ¢« has index (L : K) in Iy™. Our object here is
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to show these two subgroups are actually equal. In fact this will be the case
for L/K any abelian extension.

We say the reciprocity law holds for the triple (L, K, m) if G(L/K) is abelian
and i(K, ;) S kero .

5,1 Lemma. If m contains all the primes which ramify in L and the reci-
procity law holds for (L, K, m) then ker ¢ x = NI ") i(Ky, ).

Proor. By Corollary 3.2 of Chapter 111 we know
NI™ < kergy
so the reciprocity law implies
NA™i(K,,1) < keroyx < Ig™

By the first inequality the first group has index at most (L : K) in I,™ whereas
ker ¢, x has index exactly (L : K) in I,™ This forces the first inclusion to be an
equality.

There are several important situations in which the reciprocity law is
already known to hold.

(5.1.1) If B1s a primitive mth root of unity, and m is the modulus (m) p,
then the reciprocity law holds for (Q(B), O, m).
This was proved in Chapter 111, Proposition 3.3.

(5.1.2) If the reciprocity law holds for (L, K, m) and E is any finite-
dimensional extension of K, then the reciprocity law holds for
(LE,E, m).

PROOF. We know ¢, p = @1 x Ng i by Chapter I11, Proposition 3.1, Then
forae E, , it follows Ng () € K, ; s0

"PEL/E(O‘) € (PLfK(i(Km.l)) = 1.
Thusi(E, ) € kerog,g.

(5.1.3) If the reciprocity law holds for (L, K, m) then it also holds for
(L, K, mn).
This is evident because K., ; &

m, 1t

(5.1.4) If B is a primitive nth root of unity and m is a modulus for K
divisible by (n)p., (the modulus on @ extended to K) then the
reciprocity law holds for (K(f), K, m).

This just combines the last three assertions.

(5.1.5) With the same assumptions as in (5.1.4) and with K(f) 2 E2 K,
the reciprocity law holds for (E, K, m).
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Proor. By Property 2.4, Chapter III of the Artin map we see @z =
Tes Pypyx With res denoting the restriction of automorphisms to E. If
i(Kun,1) S ker kg x then also i(K,, ) € ker ¢k and so the reciprocity law
holds.

Any field extension K(B) of K with § a root of unity is called a cyclotomic
extension. These fields seem to be crucial to the proof of the reciprocity law.
It is necessary to construct cyclotomic extensions having some very delicate
properties. We begin with two numerical lemmas.

5.2 Lemma. Letaand r beintegers >2 and g a prime integer. There exists
a prime p such that a has order ¢" modulo p.

PrROOF. We shall use the polynomial

Xi—1i
s =X XTI 4+ X+

(1) g(X) =

= (X-1)1" e (‘t’)(x—l)"‘ + o+ g.

Let p be a prime divisor of g(a¥ ") = g. If p does not divide the denominator
at Tl =1,
then r must be the least integer such that
a” = 1 modp,

so this choice of p works.

Now suppose p| @ '—1. Then (with X = a? ') we see that p=g¢ by
Eq. (1). We shall prove g is not a power of g so that some choice of p can be
made covered by the first case.

Suppose first ¢ > 2. Then every term

(X—1)"1, (3)(X—l)’“‘, t# 1

is divisible by ¢ since ¢ divides the binomial coefficient. It follows from
Eq. (1) that g2 +g. But also a > 2 implies ¢ # g so some suitable p can be
selected.

Finally suppose g = 2. Then

g=@¥ "= +2=a""+1

It is necessary to show this is not a power of 2. Clearly a cannot be even if g
is a power of 2. But with a = 2k + | we see

g = 2mod4
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because r—1 > 1. So g is not a power of 2 and all cases have been considered.
Two elements o, T is an abelian group are independent if () N (1) = 1.
Two integers a, b relatively prime to m are independent mod m if they are
independent in the multiplicative group of integers mod m.

53 Lemma. Let n=gq} - ¢ be the factorization of n as a product of
distinct primes ¢;, and let a > | be an integer. There exist infinitely many
square free integers

m=p, "'P:Pl""Ps’

such that the order of @ mod m is divisible by n. Also there exists an integer b
whose order mod m is divisible by n and such that a and b are independent
mod m. Furthermore the smallest divisor of » can be selected arbitrarily large.

Proor. For any r 2 r; and r > 2 there is a prime p; such that 4 has order
g mod p;. As r increases, also p; increases and the order of a is still divisible
by ¢".

Now find (large) distinct primes p,, ..., p, such that a has order ¢ mod p;
with r;/ > r;. Find still larger primes p;’ such that a has order ¢} mod p;’ with
r”>r;. Then

m=p-ppps

is square free and n divides the order of a mod m. Select b an integer > 1 such
that

b=amodp,--p;, b=Ilmodp, - p/.

Also n divides the order of & mod m. To show a and b are independent suppose
u and v are positive integers for which

a'bh’ = 1 modm.

Then | = a“b® = a* modp,’ -+ p, so that ¢*"|u. This forces a* = 1 mod m and
so also b’ = 1 modm. Thus a and b are independent.

Now we consider an abelian extension L/K of algebraic number fields and
translate these lemmas into results about cyclotomic extensions of K.

5.4 Proposition. Let n= (L : K) and s = positive integer. Select a prime p
of K'which is unramified in L. There exists a positive integer m relatively prime
to p and s with the following properties:

(i) For a primitive mth root of unity, #, and E = K(B), the element
©g x (P) has order divisible by n;
(i) LNnE=K;
(iii) there is an automorphism 7 in G(E/K) whose order is divisible by »
and which is independent of ¢k (p).
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ProOF. We shall apply Lemma 5.3 using a = A%,o(p). The field L has
only a finite number of subfields so there exists an Mth root of unity §,, such
that Q () contains every cyclotomic subfield of L. In Lemma 5.3 arrange that
m has no prime divisor less than Ms. Then Q(8y) N @(f,) = Q and L n
Q(B,) = Q. With E = K(f,,) it follows that Property (ii) holds.

Let 0 = @g x(p). The defining property of the Frobenius automorphism
insures

6(Bw) = Ba® = Ba’,
so Property (i) holds. Finally take b as in the lemma and set
T(Bn) = B’
Then Property (iii) holds and the lemma is proved.

5.5 Artin’s Lemma. Let L/X be a cyclic extension, s an integer, p a prime
of K unramified in L. There exists an extension field F of K and an integer m
such that

i) LnF=K,
(i) LnK(B,) =K,
(i) L(Bn) = F(B,),
(iv) p splits completely in F.

PROOF. Select m and f = §,, as in the last proposition. Then L(f) = LE
and L n £=Kso

G(L(P)/K) = G(L/K) x G(E/K).

Let ¢ be a generator for G(L/K) and t the element in G(E/K) defined in
Proposition 5.4 (iii).
Let H be the subgroup generated by

agXxX1 and oLik(P) X @k (P),
and let F be the subfield of LE fixed by H:

LE = L(B)

SN
N

The Property 2.4, Chapter 111, of the Frobenius automorphism yieids

E = K(B)

‘PLﬂx(P) = (leK(P) X (PE;K(P)-
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This element generates the decomposition group of p in G(LE/K) (that is
the decomposition group of a prime of LE over p) and so the decomposition
group is in H. Now Proposition 2.7, Chapter III and the fact that G(LE/K)
is abelian implies p splits completely in the fixed field F of H.

The field F(8) = FE is the fixed field of

H n (G(L/K)x1).
We shall argue this is the identity to prove Property (iii). Suppose

(0 x 7" (eLik(P) X 051k (P))" € G(L/K) x 1.

Then 1" is in {@gx(p)> and so * =1 by the independence. This means n
divides u and so ¢ =1 because ¢ has order (L : K) = n. This implies also
©gk(P)” = 1 and ndivides ». Once again ¢ ¢ (p)® = 1 to complete the proof of
this point.

To finish the lemma we observe L n F'is the subfield of L fixed by H. Since
o x tis in H, this is the field fixed by o, namely K.

5.6 Theorem. Let L/K be a cyclic extension with group G and let m be a
modulus for K divisible by all the ramified primes. Suppose also the funda-
mental equality A, (L/K) = (L : K) holds. Then the reciprocity law holds for
(L,K, m).

PrROOF. We shall prove ker ¢, |Iz™ < i(K,,,;) N(I.™). Then equality must
hold here because both groups have index (L : K) in I.,™.
Take an ideal U in I;™ and suppose ¢ x (W) = 1. Factor U as

W=UW

The primes p; are unramified in L because all ramified primes divide m.
Apply Artin’s lemma to each prime p; in turn to obtain for each a root of unity,
B, such that the integers m; are relatively prime in pairs. According to the
choices made in Proposition 5.4 we can also insure K n Q(8,,) = Q. Then the
group

G; = G(K(B.)/K) = G(Q(B,)/Q)
Furthermore the group of L(B,,,, ", B,,,) over K is the direct product
GxG, x-xG,.

Let G = (o) and let 7, be the element in G| selected as above and let H, be the
subgroup of G x G, generated by

oXT and ‘PL|K(P:) X ‘Px(p,,.,nx(Pi)-
Let F;denote the fixed field under H;x];;;G;and F= F, F, - F,.



5. The Reciprocity Theorem 163

Assertion, L n F= Kand G(L/K) = G(LF|F).
The intersection of the groups G(LF/F;) fixes £ and contains

X Ty X XT,.

The field L n Fis fixed also by this element and also by 1 x 7, x .- x 7,. Thus
L n Fisfixed by ¢ and L n F = K which proves the assertion.

Now let ¢k (pf") = o* for some integer d; > 0. Then ¢ x (W =0’=1
with

d=d + - +d,.

Necessarily n|d, n = (L : K) =|G].

The Artin map ¢, r|r maps 1™ onto G (LF/F)for a sufficiently large modulus
m’, So there is an ideal B, relatively prime to m and to all the integers
my, ..., m, such that

(pLHF(%O) = 0.

Let N x (B,) = B € I;™. By the proof of Statement 5.1.2 we see ¢ (B) =
o. Each prime p; splits completely in F; so is a norm. There is then an ideal
€, prime to m and all m; such that

Np & (€) = pi B~
By the choice of d; one obtains
(pLFi|F4((£i) = ‘Pux(me((si)) =L
The extension LF; of F;satisfies
F; s LF, < Fi(B,)

by Property (iii) of Artin’s lemma. By Statement 5.1.5 the reciprocity law
holds for (LF;, F;,m’)so long as m’ is divisible by m; p .. By choice €; is prime to
m; and so we may select m’ in such a way that €; e I;™. Thus there exists
y,€ F;, 7, =1 modm’ and an ideal D, € I, ;™ such that

€ =) NLF,|F,(Di)-
Take norms into K to obtain
P?lfB_d" = (me(?i)) Nme(bi)-

The modulus m’ could have been selected so that m|m’ because €, is prime
to m. Thus with this choice

o; = Np, k(1) € Kin,1-
Now take products over all subscripts i to get
AB ¢ = [[pB % = [Te [I N, (D)
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Write D, = Ny,.(D,) and observe that D, is prime to m. Finally
A= B2, ) Ny (®y - D).

We saw above that n|d so B? is a norm from L; finally ¥ e i(K,, ;) Ny (1)
as required.

We now have good results for cyclic extensions. The step up to abelian
extensions is not difficult.

5.7 Theorem (Artin Reciprocity Theorem). Let L/K be an extension with
abelian Galois group G. Let m be a modulus for K divisible at least by all
primes which ramify in L and assume the exponents of the prime divisors of
m are sufficiently large. Then the Artin map ¢, x maps I, onto G and the
kernel is Ny (I,™)i(K,,, 1)

Proor. Express the group G as a direct product
G=Cyx- xC,, C; cyclic.

Let H; be the direct product of all C; with i # j so that G = C;x H;. Let E,
denote the subfield fixed by H;. Then E; is a cyclic extension of K with group
C;. There is a modulus m; such that the reciprocity law holds for (E;, K, m;).
It is possible to arrange m;|m so the reciprocity law holds for (£;, K, m). This
means

i(Kn,1) € n ker ¢g, k-
4

For any ideal %[ we have from Property 2.4, Chapter III of the Frobenius
automorphism

(PLIK(QI)IEJ‘ = ¢E,|K(QI)
and so for A e i(K,,,,) we see
oux(W|E; =1  foreach j.

But E, --- E; = L because the group fixing all the E; is the intersection of the
H; which is trivial. Any automorphism trivial on each E; is the identity on all
of L. Thus i(K,,, ) € ker ¢, and the reciprocity law holds for (L, K, m). This
implies the desired conclusion because of Lemma 5.1.

As an illustration of the scope of this result one obtains the following results
as corollaries.

5.8 Theorem. Let L/K be an abelian extension and m a modulus such that
the reciprocity law holds for (L, K, m). Let E/K be a normal extension such
that

Ngix(Ig™ € Ny I™ (K, 1)
Then L < E.
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Proor. Except for a finite number of primes dividing m, the primes of K
which split completely in E are in N g (Ig™). These must also split completely
in L because they lie in ker ¢, k. Thus L < E by Corollary 5.5, Chapter IV.

5.9 Theorem (Kronecker-Weber). If L is an abelian extension of Q, then
L < @(B) for some root of unity f.

Proor. The reciprocity law holds for (L, Q, m) for some modulus m. We
may suppose nm = (m)p,, for some positive integer m. Take § a primitive mth
root of unity. Then from the calculation in Proposition 3.3 of Chapter 111 we
have E = Q(B) and i(Q,,, ) = ker ¢gq so

Q) = i(Qm,l)NEIQ(IEm) < i(Qm,l)NLlQ(ILm) = ker‘PuQ-

The previous theorem applies to give L = E.

Because of its scope and the simplicity of the statement, this must be
regarded as one of the really elegant theorems in mathematics. The result was
first stated by Kronecker and a complete proof was given by Weber in 1886.
There are proofs which are more elementary than the one given here. For
example Speiser [10] gives a proof using only ramification theory.

An explicit classification of all abelian extensions of Q(\/ﬁ), D <0, can
also be given. This requires the study of *“‘complex multiplications” and is
discussed by J. P. Serre in [4, Chapter XIII]. This description, as well as
Kronecker-Weber, classifies the abelian extensions by explicitly giving
generating elements for the extension fields. This is not possible for general
algebraic number fields with the present state of knowledge. We shall give a
classification of all the abelian extensions of a number field X in other terms;
they are classified by certain subgroups of the ideal group I . This is the main
goal of the rest of the chapter.

EXERCISEl. Let K= Q(\/;) # Q. Show K has an abelian extension which
is not contained in K(f) for any root of unity, 0.

Procedure. Find u in K such that K(\/;) is not normal over Q. Since K(6)
is abelian over Q, every subfield must be normal over Q; thus \/Z is not in
K(6).

EXErCISE 2.  An element 0 in the Galois extension L of Q is said to give an
integral normal basis if the ring of algebraic integers in L is 3. Zo (f) with ¢ in
G(L/Q).

a. Let n be a square free positive integer and 6 a primitive nth root of unity.
Show 6 gives an integral normal basis for Q(0).

b. Let K be any intermediate field between Q and Q(60). Show Ty, (0)
gives an integral normal basis for X.
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c. Let K be an abelian extension of @ which is tamely ramified at every
prime; that is, for each prime p of Q, p does not divide the ramification number
e(PB/p) in K. Show that K has an integral normal basis.

6. IDEAL GROUPS, CONDUCTORS, AND CLASS FIELDS

In this section we consider the groups which eventually will be the objects
by which all abelian extensions of a number field are classified.

A subgroup H of I is called a congruence subgroup if there is a modulus m
such that

i(K,,) SHcI™

We will say H is defined mod m in this context. Suppose n is a modulus and
n/m. Then I"™ is a subgroup of I". There may (or may not) be a congruence
subgroup H" defined mod n such that H = I"™ n H". When this does hold we
say H is the restriction of H" to I''. The first lemma shows H" is uniquely
determined by H and n.

6.1 Lemma. Letn|mand H™, H" be congruence subgroups defined mod m
and n. Suppose H™ = I" n H". Then

(a) I"/H™ ~ I"/H", (b) H"=H"i(K,,).
Proor. We show first that I" = I"™i(K,, ;). Take an ideal A in I" and write
U, = AA, with A, in I™ and
A = []p"

with p; a divisor of m but not n. By the CRT we can find elements n; which
satisfy

€ P — P

7; = 1 modn.
Then the element « = ' -+ belongs to K, , and Wa ™" is relatively prime to m.
It follows that W, € I™i(K,,, ;) as claimed.

Now H" is a congruence subgroup modn so I"=I"H". Now use the
assumption about H™ to obtain

I I I"H"_ I
H" H"'nI"~ H" ~ H"

[

This proves (a).
It is clear from definitions that H"=2 H™ and H"2i(X, ) so H"2
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H™i(K,_,). This implies H"i(K, ;) n I" = H™,
" "

~

H" =~ H"i(K, ,)

and so H" = H™i(K,, ;) because both have the same index in I" and one is
contained in the other. This proves (b).

We now define a relation between congruence subgroups. Say H, ~ H, if
there is a modulus m such that

H nI"=H, nI™

Observe that whenever this condition holds for a modulus 1, it also holds
for any modulus divisible by m.

It is easy to see this relation is an equivalence relation. The next lemma
shows that equivalent congruence subgroups are obtained as the restriction of
a single congruence subgroup.

6.2 Lemma. Let H,,H, be congruence subgroups defined modm,,m,,
respectively, which have a common restriction Hy = H; n I™, i = 1,2. Let m
be the greatest common divisor of m,,m,. Then there is a congruence sub-
group H defined mod m suchthat H~I™ =H;,i=1,2,

Proor. Since H, and H, have equal restrictions in I"™* the same holds for
any larger modulus. There is no harm then in assuming m; is divisible by m,
and m,. If the lemma is correct, then H is uniquely determined so we set

(1) H = H;3i(K,.,)
and try to verify it has the required properties. If we show
) H AN I™ =H,

then H; and H n I™ both restrict to H; so by uniqueness H; = H n I™.
Same reasoning applies to H,. The lemma will be proved then if equation (2)
is verified.

Suppose A(x) €e H n I, By (1) we may suppose N € Hy, a € K, ;. Then
A and A («) are prime to my so («) is also. Now find an element f € K which
satisfies

ﬁ € Kml.lv aﬂ—l € Km;.b (ﬂ) € Ims‘

To show such an element exists we shall list a set of congruences, one for each
prime divisor of m, m, m,, to be satisfied by .

Let p?*/m, and p??|m, and assume these are the exact powers of p dividing
the moduli.

If a, > a, the congruence at p for ff is

f = 1 mod p*.
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In this case p*? is the power of p dividing m so f = a = | mod p*2.
If a, = a, then the congruence at p for f is

f = amod p™.

This time p“* divides m and f = a = 1 mod p®'.
For a prime p dividing m; but not m; m, we require

B = 1 modp.

This f satisfies our requirements.
Thus

AP € Hyi(K,, ;) = H,.
But A () is prime to m, so
AP) e H n I™ = H,.
Then AP~ ') = () € H3 i (K,p,, ;) = H, as well as W(x) e I, Thus
(@) e Hy n I™ = H,
as we wished to prove.

An equivalence class of congruence subgroups is called an ideal group. If H
denotes an ideal group and m a modulus for which some congruence subgroup
mod m belongs to H, we shall denote that (unique) subgroup by H™.

Lemma 6.2 shows us whenever H™ and H" belong to the ideal group H, then
also H™ € H for m’ = greatest common divisor of m and n. This implies there
is a unique modulus f such that

H'eH and H"eH implies flm.

Clearly f is the g.c.d. of all m for which H™ € H. This modulus is called the
conductor of H.

Now suppose L/K is an abelian extension. Let i be a modulus such that the
reciprocity law holds for (L, K, m). Then the kernel of ¢, acting on I" is a
congruence subgroup which we shall denote by H™(L/K).

If m’ is another modulus such that the reciprocity law holds for (L, K, m’)
then H™(L/K) and H™(L/K) have a common restriction in I™™, This is
immediate because ker (g, x|I™) N I™™ = ker (@, x]I™) = ker (¢, x|T™) »
| L

This implies there is a unique ideal group—denoted by H(L/K )—containing
H™(L/K). This ideal group is called the class group to L and L is called the class
field to H(L/K). The conductor of H(L/K) is denoted by f(L/K).

The main goal of the next few sections will be to show the correspondence
between ideal groups and abelian extensions of K is in fact a one-to-one
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correspondence between all ideal groups and all abelian extensions of K. In
other words we shall obtain a classification of all abelian extensions of K
purely in terms of objects defined directly in terms of K.

With regard to the conductor we see at once that {(L/K)|m whenever the
reciprocity law holds for m but we do not know at this point that the reci-
procity law holds for (L, K,f(L/K)). The main point of concern is that a
ramified prime might fail to divide the conductor. However this does not
actually happen and in fact all ramified primes divide f as we shall see later.

7. REDUCTION STEPS TOWARD THE EXISTENCE THEOREM

Consider an ideal group H. Our object is to produce an abelian extension
L/K which is class field to H. The construction of L is indirect and is performed
by a series of reductions, The first shows it is enough to produce a class field
for a subgroup between i(X,, ;) and H™.

7.1 Proposition. Suppose there is a chain of groups
Ky )EHy s H, ™

such that the ideal group containing H, is class group to the abelian extension
L/K. Suppose m contains all primes of K which ramify in L. Then the ideal
group containing H is class group to the subfield of L fixed by the subgroup
o x(H,) of G(L/K).

REMARK. The assumption about the ramified primes is necessary so that
@1 is defined on I™. If the first choice of m does not contain all the ramified
primes, enlarge i so that it does and then take restrictions of the groups
involved. This does not change the ideal groups so the conclusion is unchanged.

Proor. Let G, = ¢, x(H,) and E the subfield of L fixed by G,. Let res
denote the restriction map from G(L/K) to G(E/K) so that resG, = 1. For
any U in I'"™ we have

¢E|K(QI) = IS (Ple(Q[)

so in particular @g k() =1 when W e H,. Thus H, < ker¢g k. Since H, is
a congruence subgroup we see the reciprocity law holds for the triple (E, K, m)
and so

[I": kerpgx] = [G(L/K):G,] = [I": H,].
It follows that H; = ker @y . The reciprocity theorem describes this and so

E is class field to the ideal group of H,.
The next reduction shows how the ground field can be changed.
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7.2 Proposition. Suppose E/K is a cyclic extension and H™ is a congruence
subgroup modm. Let Hy denote the subgroup {W e I."| Ny x (W) e H™}. If
the ideal group of H has a class field over E, then the ideal group for H™ has
a class field over K.

ProOF. Let L|E be an abelian extension such that
HE = NLIE(ILm) i(Em,l)'

We first show L is normal over K. Let ¢ be an isomorphism (over K) of L
into some normal field over K. Then a(£) = E because E/K is normal. From
the equations

c(H™) = H™, oc(Hp) = Hg
we deduce o(L) and L have the same norm groups, Hg. By Theorem 5.8 we
have L = (L) and so L is normal over K.
Next we prove L/K has an abelian Galois group. Let ¢ be an element in

G (L/K) whose restriction to E generates G(E/K). To prove G(L/K) is abelian

it is sufficient to show 16 = o1 for each 7 in G(L/E). For such an element 1

take an ideal U in I." such that ¢, ;(A) = 1. Then 016 ™" = gz (Wo ™' =

@s1i0E(0U) = @1 (). The ideal A/a (A) has norm 1 so in particular
Nex(Us (W)™ ) e H"  and U/o(A) e Hy.
But Hy = ker ¢ 50 @ (U/o (A)) = 1. It follows that
016" = @y p(cW) = @y (W) = 7.
This shows L/K is abelian. Now we have
Np (") € Hg  andso Np (") € H"
by transitivity of the norm. Since H™ is a congruence subgroup we have
Ny ™i(K, ) € H™ < I™

It follows from Proposition 7.1 that the ideal group for H™ has a class field
which is a subfield of L.

These two reductions are used in the following way. Select an ideal group H
and let H™ € H. Suppose I"/H™ has exponent n. Select a primitive nth root of
unity £ and form a chain

K=KV cK®c..cK®=K@®).
Let H, = H™ and inductively define
Hi+l = {QIEI?(;‘H)'N(QI)EH,-}

where N means the norm from XY+ to K,
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Assume KU* /KD is cyclic. If we show the ideal group of H, has a class
field over K(f) then the same is true of H, over K by repeated application of
Proposition 7.2.

Furthermore the quotient I¥ 4 /H, has exponent n. This can be seen by
induction in the chain. It was given that I,"/H, has exponent n. For U € I},
we see

Ny (U") € ™" € H,

so A" € H,. This shows 1%.,/H, has exponent n and the procedure can be
repeated.

We summarize now.

Reduction Step. Let H be an ideal group for K. The assertion that H is
class group to some abelian extension of K is true provided it can be proved
under the additional assumption that K contains a primitive nth root of unity
where n is the exponent of I"/H™ for H™ ¢ H.

This result will be proved in the next sections along with some facts about
abelian extensions of K when K contains the nth roots of unity.

8. KUMMER EXTENSIONS AND THE S-UNIT THEOREM

A finite, abelian extension L of K is called a Kummer n-extension if G (L/K)
has exponent »n and K contains the ath roots of unity. The word exponent is
used in the sense that ¢" =1 for all ¢ in G(L/K) but n need not be the least
such positive integer.

The Kummer n-extensions are classified by the finite subgroups of K*/K"
where K" is the multiplicative group of nonzero nth powers of elements of K*.

8.1 Theorem. There is a one-to-one correspondence between the Kummer
n-extensions L of K and the subgroups W such that K" < W < K* and W/K"
is finite. The correspondence associates W with the field L = K (Q/ W). In this
case the Galois group G (L/K) is isomorphic to W/K".

ProoF. Let L be a Kummer n-extension of K with group G. We show first
L has the form asserted in the theorem. Let
M = {ae L*]| o" € K*}.
Each o in M is a root of an equation X" —a with a in K so for ¢ € G it follows

that ¢ () = Bo with § an nth root of unity in K. For each « in M let y, be the
function from G to K* defined by

Yo(0) = o(0)/ar.
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The values of i, are nth roots of unity and ¥, is the principal character
precisely when o is fixed by all of G; that is when a is in K*. One easily checks
that a — y, is a homomorphism of M into the character group G and so we
have an imbedding

Y: M/K* - G.

We shall prove this is an isomorphism. If ,, is a proper subgroup of G then
there must exist a non-principal character of G with i, in the kernel—that is,
a character of G/y,,. Since the character group of G is known to consist of
the evaluation maps at elements of G (Chapter 1V, Corollary 3.2) there must
exist an element ¢ # 1 in G such that y,(¢) =1 foralla € M.

We will obtain a contradiction to this by using Hilbert’s Theorem 90. By
the decomposition theory for abelian groups we may write

G=<T>XGo, U¢Go

and g = 1%y with 7° # 1 and y € G,,. Let E denote the subfield of L fixed by G,
so that G(E/K) = () is cyclic of order d with d|n. Let f be a primitive dth
root of unity in K. Then Ngx(f) = B* =1 so by Theorem 90 there is an
element a in E with § = t(a)/a. It follows that o is invariant under () and
so o is in K. Also then a is in M. Our assumption about ¢ implies ,(c) = 1.
But i, maps {t) onto {8 is a one-to-one way and maps G, onto {1). Thus
T # 1 and y € G, imply 1 # (1% = ¥, (%) = ¥,(0) which gives the required
contradiction. This proves M/K* is isomorphic to G and this in turn is
isomorphic to G.

Since no element of G fixes all of M, it must be that L = K(M).

Now let W= M". The nth power mapping gives a homomorphism of
M/K* onto W/K™". This is in fact an isomorphism because two elements of M
having equal nth powers must differ by a factor from K—an nth root of unity.

This proves the part of the theorem showing all Kummer n-extensions arise
as indicated. Now suppose W is a subgroup of K* containing K" and with
W/K" finite. Let «,, ..., % be elements such that the cosets o; K" independently
generate W/K". Then the field L = K(¥/W) is equal to the finite extension
K& a,, ...,{/as) so (L : K) is finite. Let ¢ belong to the Galois group of L/K.
Then o ¥/«; = ;¥ «; with B; an nth root of unity. Since g, is in K, one easily
computes that ¢"=1 and G(L/K) is abelian. Thus L/K is a Kummer
n-extension,

All that remains is to show the group W is uniquely determined by L =
K(YW). Let M be the group defined above for this field L. Then M" 2 W and
M"/K" has order equal to (L : K) by what has been proved above. If we prove
(L:K) < [W:K"] then the equality M" = W must follow.

Let o, K" have order d; in W/K" so that [W : K"] = d, ---d,. Then «f is an
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nth power so (K(V ;) : K) < d; and it follows that:
(K ey .., Va):K) < d,--d, = [W:K"].
This completes the proof.

Before we take up the existence theorem, a result about S-units will be
proved. (See the definition in Section 2 of this chapter.) This next result makes
no assumptions about the roots of unity in K and is valid for any algebraic
number field.

8.2 Theorem. (Dirichlet-Chevalley~Hasse Unit Theorem). Let S be a
finite set of primes containing all the infinite primes and let K5 denote the
group of S units of K. Then K is the direct product of the finite cyclic group of
roots of unity in K and a free abelian group of rank | S| —1.

Proor. Let S, denote the collection of finite primes in S and I(S,) the
group of ideals divisible only by primes in S,. There is an exact sequence

i

1 — Uy —> K5 —> I(S,).
in which i maps an element to the principal ideal it generates. Let h = Ay
denote the class number of K. For each p € S,, p" is in the image of i so
I(S,)" < i(K5) = I(S,).
The first and last groups in this chain are free abelian of rank |S,| and so

i(K5) is also free of rank |S,|. By the elementary properties of free abelian
groups (projective modules) it follows that

KS = Uy x i(K5).

Since the structure of the units is known by Dirichlet’s Theorem, the result
follows.

8.3 Corollary. Assume /1 € K and that Sis a finite set of primes containing
all the infinite primes of K. Then
[KS: (K5y] = n'S\,

ProoF. We may write K5 = (w)>x T with (w) a finite group of order
divisible by n and T of free abelian of rank |S|—~1. Then {w>/{w") has order
n and T/T" has order n!S! =1 so the result is true.

9. THE EXISTENCE THEOREM (proof completed)

Assume K contains the nth roots of unity.
Let S, be a finite set of primes of K and m, a modulus divisible by the
primes in S, (and no others) to sufficiently high powers. The proof of the
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existence of a class field to a given ideal group has been reduced to showing
the ideal group containing
(K, )A™Y

has a class field. Rather than prove this directly, a slightly more general result
will be proved for later use when the conductor is considered.

Keep S, and n; fixed and let S, be a finite set of primes (possibly empty)
such that S, and S, are disjoint and the union S = §, U §, contains all primes
p such that

(i) vpln,
(i) p|oo,
(iii) p|¥U; where {U;} is a finite set of ideals of K whose images cover the
class group Cy.

The significance of (iii) is that any ideal U can be expressed A = A;(a) for
some o € K and ¥, divisible only by primes in S.

Let m, be a modulus divisible by the primes in S, (and no others) to suf-
ficiently high powers.

Consider the congruence subgroups

H, = (K, )A™)"1(S)),
H, = i(K,,, ) A™)I(S))

where I(S)) is the group of ideals divisible only by finite primes in S;. Because
S, and §, are disjoint we have

HicI™ =12
Next we consider the subgroups of K* defined by
W, = KSK" Ky, 4
W, = K5K" 0 K,
and let
L= K&wW) j=1.2
Notice that (L, : K) is finite because
W,K"|K" = KSK"|K"
which is finite by Corollary 8.3. Our object is to prove the following theorem.

9.1 Theorem. The field L; is class field over K to the ideal group containing
H

j*
The proof will require quite a few steps. We begin by recording some
properties of the fields L;.
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9.2 Property. The primesin S, split completely in L, ; the primes in S, split
completely in L,.

ProoF. Let pe S, and B a prime of L, which divides p. We can show p
splits completely by proving (L,5:K,) = ¢f = 1. For any a € W,, we have
also a € K,,,, ;. This means o € U\’ where p' divides m,. For sufficiently large

t we know by Proposition 3.6 that
UM < (U,)
so o is an nth power. Thus K| ({‘/&) = K, . It follows then

K, (VW) = K,,
which implies the desired conclusion.
9.3 Property. L,/Kisunramified outside S;.

Proor. We first argue that any prime ramified in L;is in S. Let p be a
prime of K with p ¢ S.

The field L; is obtained by adjoining to K the roots of certain equations
X"—a with « in K. The extension of K, determined by this polynomial is seen
to be unramified by the following reasoning. The conditions (1) and (2) upon
S imply # and « are p-units so that modulo p, X" —« has distinct roots. Thus
the irreducible factors of X" —« over K, have the same degrees as the irre-
ducible factors modulo p. This uses Hensel’s Lemma—Chapter 11, Proposition
3.5. It follows that p is unramified in the splitting field of X" —a over K, and
so p is unramified in L;. The primes of S, U S, are the only primes which can
ramify in L, but those in S, split completely in L,. Hence only primes in S,
can ramify in L,. The same argument applies to the primes in S, and the field
L, so Property 9.3 is proved.

9.4 Property G(L;/K)=W,/W,n K"
This is a consequence of Theorem 8.1.
Now let

Hj* = P.]L_,"K (IIEJJ) i(ij' ])-

The modulus m; contains all the primes ramified in L; to high powers so
the reciprocity theorem applies to show

9.5 Property I™/H* =~ G(L;/K)=W,/W;n K"

Our object is the proof of the equality H; = H;*. An inclusion can be easily
proved.

The groups in Property 9.5 have exponent n so H;* contains the nth powers
of I".. The primes in S;, i # j, split completely in L; so the finite primes in
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S; are norms from L;. This shows I(S;) € H;*. Both H; and H;* are con-
gruence subgroups mod ; so we have

The equality will be proved by showing both groups have the same index in
1", From the last two statements it follows
[(I™:H;]>[W,;:W;nK"]
with equality only if there is equality in Eq. (9.6). The actual method of proof
is to show
e H,[I™: H,]

0.7) W R W AR

98 Lemma
I™/H; ~ 55 A H;.

Proor. Since all the primes dividing m; are in S, this follows from the
property of congruence subgroups proved in Lemma 6.1.

99 Lemma
K* B
K'K’K,,,  FnH;

Proor. Let fdenote the composite of the maps
K* 1, i1

where the second map is the identity on primes outside S and maps primes in
S to 1. We first show fis onto. Let U be any ideal relatively prime to S.
Property 3 defining S allows us to write A = B(a) with B divisible only by
primes in S. Then f(a) = j(AB ') = A as required. Next we determine the
subgroup of K* mapped by fonto I’ n H;. We do this for H,.

Suppose a« € K, and f(«) € H,. Write i(a) = A, N, with A, divisible only
by primes in S and ¥, € I5. Then f(x) = ¥,. Since this is in H, we may write

A = B P)C, Belm, BekKy i € e I(S,).
We can also write B in the form:
B = B,(0), B, divisible only by primes in S.

Then (@8~ "f") = A, B,"C is divisible only by primes in S so af™ "' € K°
and thus w € K" KS K, . Now leta € K,,, , and

(o) = UB, B € I(S;) Ae 52,
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Since () is prime to m,, no primes of S, divide . Thus A € I* and f(a) = Y.
Now («) e H, and B e H; so f(«) = () B~ ! = Wisin H, and also in I°. This
shows f (K, 1) € H,. It is now easy to see that

f(K"KSKm,,l) =TI n H,
and the isomorphism of the lemma now follows.

We begin the index computation now. At one point the following fact is
used.

9.10. Lemma. Suppose A, B, and C are abelian subgroups of some larger
group and A o B. Then

[A:B] =[AC:BC][ANn C:Bn C]
if these numbers are finite.

The proof is straightforward and is left to the reader.
In the next few lines we shall write K, for K, ;. Now we find
[K*:K"K,]
[K"KSK, : K"K,]
[K*:K"'K]_ . "
:—[?"KS—K;'j[K KsﬁKl 1K ﬁKl]

_ [K*:K'K,]
= 1T

[K*:K"KSK,] =

[W,: W, n K"].

To obtain the second equality use Lemma 9.10 with 4 = K"K®, B= K", and
C = Kl'

Now combine Lemmas 9.8 and 9.9 with the symmetric version of this
calculation to obtain

(™ : H,][I": H,] _ [K*:K"K,, J[K*:K"K,,, ]
(W, W, K1[W,: W, K"l n? 151

©.11)
It is necessary to show the numerator on the right is n2!5'.
For any modulus m let

c(m) = [K*: K"K, 1.

By making trivial changes in the proof of Lemma 3.1 one shows c(im) is
multiplicative on relatively prime moduli. This reduces the problem to cal-
culating ¢(m) when m is a prime power.

The case for an infinite prime is easy. If m is a complex prime then K, , = K*
soc(m)=1.
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If m is a real prime then our assumption that v/1 € K forces n = 2. Then
K"K,, | contains only elements positive at m so c(m) = 2.

Now let m = p', p a finite prime. The computation of ¢(m) is very similar
to the computation of a(im) in Section 3. We shall provide the statements of the
results needed and leave to the reader the relatively simple exercise of trans-
lating the proofs from Section 3 to the present situation.

©.12) (a) [K*:K"K,]=n
() c(m) = n[K,: (Kn)"Kyy, 1]

K., _ U

9.13) KK, = T U0

Here of course U, is the unit group in the completion K,,.
For 1 sufficiently large we have U, = U," and so

c(m) = n[U,: U]

To keep the analogy with Section 3 we let G denote the cyclic group of order
n which operates trivially on all the groups associated with K. For M a
G-module we now have for xe M

Nx)=x" Ax)=1
and
H°(M) = M/M", H'(M)=nth rootsof 1 in M.
In particular the computation of ¢(in) depends upon
[H°(UY)| = [U, : U,"].
Notice that Q/T € K implies
|[H'(U,)| = n.

We now have

9.14) c(m) = n[U,:U,"] = n?/q(U,).

The Herbrand quotient g(U,) is determined by making successive reductions
as in Lemma 3.9. With R, the valuation ring in K, we obtain q(U,) = q(R,)
with G operating trivially upon the additive group of R,. The additive version
of the cohomology groups above now yields

H°(R,) = R,/nR,, H'(R,) =0.

Since the quotient R, /nR, is isomorphic to the same quotient with R,
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interpreted as the localization at p of the algebraic integers in K, we may make
this replacement. We then have

(9.15) ¢(m) = n*[R,:nR,], R, = localization at p of the algebraic
integers in K.

Now return to the computation of Eq. (9.11). The term of interest is
c(my)e(my) = c(m; m,). Let S; denote the finite primes in S= S, U §,. We
calculate first the contribution from S, ; namely

[T »*[R, :nR,] = n*S°I[R : nR].
peSo
We have used here the fact that all prime divisors of n are in S and the
isomorphism
R/nR = []R,/nR,.
pln

Now by Chapter I, Proposition 8.6, we find
[R:nR] = ./V‘K'Q(’IR) = H(K:Q).

Let r and s denote the number of real and complex infinite primes of K so
r+2s=(K:Q). Also r+s+|So| =|S]|.
Consider the case with r = 0. Then

2150l 2s 2)s]

c(mym,) =n =n

If r > O then as observed earlier, n = 2. In this case
c(im,my) = 2r221Selgr+2s — 22181 — 2181,

Thus in all cases we have proved the index quotient in Eq. (9.11) is equal to
1 and this is enough to complete the proof of Theorem 9.1.

As a corollary we also obtain the rest of the existence theorem which we
shall state completely as the classification theorem.

Let K be any number field and H, J two ideal groups for K. We say H c J if
for some modulus 1, we have H™ < J™. Notice that this inclusion for one
modulus m implies the same inclusion for any modulus divisible by the
conductor of H and the conductor of J.

9.16 Theorem (The Classification Theorem). Let K be any algebraic
number field. The correspondence L — H(L/K) is a one-to-one inclusion
reversing correspondence between the collection of finite dimensional abelian
extensions L/K and the collection of ideal groups of K.

PrOOF. We show first that any ideal group H is a class group to some
abelian extension. Take H™ € H and suppose I"/H™ has exponent n. The
reduction step in Section 7 allows us to assume K contains the nth roots of
unity.
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Let S, be a finite set of primes containing all the primes dividing m and all
primes satisfying the conditions (i)—(iii) at the beginning of this section for S.
We take S, empty so S = §,. We also take the modulus 1, large enough so
that m|m,. Now the group H; defined at the beginning of this section is
contained in

H™ = H" A ™

By Theorem 9.1 there is an abelian extension L, with H, = ker(¢,x/I"™"). By
Proposition 7.1 there is a subfield of L, which is class field to the ideal group
H containing H™.

Thus every ideal group is a class group. If H(L/K) < H(E/K) for abelian
extensions L, E of K, then E = L by Theorem 5.8. On the other hand £E< L
implies

kerg, x < ker gk

so H(L/K) € H(E/K). This shows the correspondence is one-to-one and
completes the proof.

This is the main theorem in class field theory. It gives the classification of all
abelian extensions of K in terms of objects defined by the internal structure
of K.

10. SOME CONSEQUENCES OF THE CLASSIFICATION THEOREM

We consider now a normal extension E/K whose Galois group G is not
necessarily abelian. The theory in the preceding sections can be applied to give
information in the nonabelian case.

Begin with a modulus m divisible by high powers of all the primes of K
which ramify in E. The group

H™(E/K) = NgixIg") i(Ky,1)

is a congruence subgroup and the ideal group containing it has a class field.
Let L/K be an abelian extension such that H"(E/K) e H(L/K). Then for a
suitable modulus n divisible by m (and containing all the primes ramified in L)
we have

Ngjx (Ig") = H'(L/K).

By Theorem 5.8 we obtain L < E. (So the modulus m could have been used
after all in place of n.) We know then H"(E/K) = H™(L/K) and so

(1) I"/H™(E/K) = I"/H™(L/K) = G(L/K).

It is necessary to identify these groups in a more direct way with G(E/K).
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10.1 Theorem. The field L is the largest subfield of E with an abelian
Galois group over K. Thus G(L/K) = G/G’ with G’ denoting the commutator
subgroup of G. Moreover, the isomorphism of I"/H™(E/K) with G/G’ is
induced by the “Artin-map” ¢g k. (The Artin map for this nonabelian exten-
sion is defined in the course of the proof.)

PrRoOF. Suppose L < L, = E with L,/K an abelian extension. Then by the
transitivity of the norm one finds

N x Mg (K, 1)

In

NL||K(IL,m) i(Km, 1)
N UL i(K, 1)

However, the first and third groups are equal and so the ideal groups for L
and L, are equal and so L = L, since both are abelian extensions. This means
G(L/K) is the largest homomorphic image of G which is abelian; necessarily
this is G/G".

We can give a rather explicit description of the isomorphism (1) with G/G'.
Let B be a prime in I;™ and p = B »~ K. We know that the primes above p in
E are all conjugate under G and that p determines the conjugacy class con-
taining the Frobenius automorphism of ‘B. Now we observe that since G/G’ is
abelian, conjugate elements in G have the same image in G/G’. Thus p uniquely
determines an element in G/G’. We define the Artin map by

E|K
Opx(P) = [‘lT] G'.

This map extends to a homomorphism of I'™ to G/G’. We can also determine
the kernel. By a property of the Frobenius automorphism we see

EIK]|, _[LIK Q. —
[‘B]L‘[‘BL} Po=¥nl

In

and so

(P£|K(P) = Qrix PG

Thus, anything in the kernel of ¢,k is in the kernel of ¢ . But kerg, x =
H™(E|K) which has index in I" equal to [G : G']. It follows that H"(E |K) =
ker ¢k and the proof is complete.

The first inequality insured that [I™ : H"(E|K)] was at most (E : K) = |G|.
We have now shown this index to be exactly [G : G'] so the first inequality is
always a strict inequality for nonabelian normal extensions.

We turn to another consequence of the existence theorem which generalizes
the earlier results proved for K = Q in Chapter 'V, Section 6.
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10.2 Proposition. Let y be a nonprincipal character of I"/i(K,, ;). Then
L, #0.

Proor. There is a class field L to the ideal group containing i(K,, ,) and
the set of primes which split completely in L are in i(K,, ) except for a finite
number. Thus the density of the set of primes in i(K,, ;) is (L: K) by the
Frobenius density theorem and this number equals [I™:i(K, ;)] by the
reciprocity theorem. Thus L(1, y) # 0 by Chapter 1V, Proposition 4.8.

This is the main step in the proof of the generalized theorem of Dirichlet on
primes in arithmetic progressions.

10.3 Theorem. LetI," 2 H™ 2i(K,, ) be a chain of subgroups. Then any
coset of H™ in I.™ contains infinitely many primes. In fact this set of primes
has density [I™: H™] !,

The proof is almost word for word the same as that of Chapter 1V, Theorem
5.8 and so will not be repeated.

One can refine the Frobenius density theorem now. We deal with an abelian
extension L/K having Galois group G. Any element ¢ in G is the image of a
unique coset of H™(L/K) under ¢, ¢ and so by Theorem 10.3 the density of
the primes p in this coset for which ¢, (p) = o is 1/|G|. This improves the
earlier result for abelian extensions because previously we only knew the
density of the primes which mapped onto some ¢ for d relatively prime to |o].

There is also a generalization to the nonabelian case.

10.4 Theorem (Tchebotarev Density Theorem). Let E/K be a normal
extension with Galois group G. Let g € G and suppose ¢ has ¢ conjugates in
G. The set of primes p of K which have a prime divisor *} in £ whose Frobenius
automorphism is ¢ has a density ¢/|G|.

Proor. Let L denote the subfield fixed by (a) and S’ the set of primes P
of L for which ¢g, (B) = 0. By the remarks just above, S" has density 1/|o]
because G(E/L) = (o) is abelian. When densities are considered we may
restrict our attention to primes with relative degree one over K (or over Q
even). Let S denote the subset of primes in S’ having relative degree one over K.

For P e S and p = P n K we now count the number of P, € S containing
p. First take a prime Q of E which divides P and has ¢ as Frobenius auto-
morphism over L. Let {a)7; be the distinct cosets of (¢} in G. The primes
dividing p in E are 7,(Q) (and these are distinct) and the primes dividing p in
L are P; = 1;(Q) n L. By Chapter IlI, Corollary 2.8, we see B; has relative
degree one over K if and only if {6)1;0 = {(a)1;. Assuming this to be the

case then
E|L E|L] _ _
P (B)) = I:E:l = le:“s-:l’j =0t

J
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It follows that R ; € S'if and only if

— -1
g = TI'O'Tj .

The distinct P; which arise this way correspond to the distinct cosets (o) 1;
so the number of primes in S dividing p is

d = [Cg(a) : {a}].
If T denotes the set of primes of K divisible by a prime in S then there arise

exactly 4 primes P € S for which N () = p for each p € T. This means
dé(T) = 6(S) = 1/|o|. From the form of d it is immediate that

8(T) = 1/|Cg(0)| = ¢/|G].

11. PRELIMINARIES FOR THE NORM RESIDUE MAP
AND THE CONDUCTOR THEOREM

Our object in the next two sections is to get precise information about the
conductor {(L/K). We take a rather general approach that will yield con-
siderable information in other directions also. The abelian extension L/K is
fixed for this section.

We begin with a simple but useful result.

11.1 Theorem (Translation theorem). Let £/K be any finite dimensional
extension and m a modulus for K divisible by f(L/K). Then the class group to
the abelian extension LE/E is the ideal group for £ which contains the con-
gruence subgroup

{Ael™| Ngx(UA)e HY(L/K)}.
ProofF, By Chapter 11, Lemma 3.1, we have

PrLeie = PLik NE/K-

m

Thus the kernel of ¢ g acting on I;™ is the subgroup mapped by Ng into
the kernel of ¢, acting upon I, This kernel is H™(L/K) since the conductor
divides m. The result follows.

Now we consider a prime p of K and a modulus
n = p’m, pfm.

Suppose n is divisible by f(L/K) and all ramified primes. Eventually we will
see that all the ramified primes already divide {(L/K).
Let 6 denote the composite of the maps

(1 Kp i —> Ip —— I 5 G(L/K)
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where j is the identity on primes not dividing n and sends to 1 any prime
dividing n. It would be more precise to write 8, x but we shall only use the
simpler notation.

In the following, we write G (p) for the decomposition group of a prime of
L dividing p.

11.2 Theorem
0(Kw,1) = G(p).

Proor. The first step is to show 8(K,, ;) € G(p). Let Z be the fixed field
under G (p). The prime p splits completely in Z so in particular it is not ramified.
This means p does not divide {(Z/K). The conductor of Z/K divides n and so
it divides m. In particular this means

ker oz x| Ig™ = Nzjx (I;™) i(Kym, 1)

Suppose p is a finite prime. Then this kernel contains p because p splits. For
a € K, we write () = p’ W with A prime to p. Then

Ji(e) = A = p~'(x) € ker gz .

If p is an infinite prime then ji(«) = i(«) so again ji(a) € ker ¢ x. In either case

1= ‘sz(ﬁ(Km.l)) = ¢L|K(ff(Km,1))|Z= O(Km,l)lz'

This shows 0(K,,,,) is trivial on Z and so is a subgroup of G(p).

The proof of equality for these two groups requires some subtle moves. We
suppose on the contrary that (K, ;) is not all of G(p). Then there is a sub-
group G, with

0(K,1) = Go < G(p)
and
[G(»):G,o)] = g = a prime.

Let E be the field fixed by G,. A contradiction will be obtained by examining
the extension E/Z. Let § be a primitive gth root of unity, Z(f) = Z', E(f) = E’.
The procedure is to apply the Existence Theorem 9.1 (which required roots of
unity) to Z' in order to deduce certain primes are split in £’. This information
is translated down to deduce p splits completely in E. This will be contradictory
to properties of the decomposition field.

Let S, be the set of primes of Z’ which divide p; S, is a sufficiently large
set of primes of Z’ so that § =S, u §, satisfies the conditions of Section 9
(for Z' in place of K). Let m; = p“ be viewed as a modulus for Z' and m, a
product of the primes in S, with sufficiently high exponents. We may assume

njmym,, .
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Let H, = (I5?)%(Z,,,. 1) I(S,) and L, the class field over Z’ to H,.
AsserTiON: H, n L, < HYE'/Z").

To prove the assertion we first need a description of the group on the right.
Apply the translation theorem to the extension E/K translated by Z'. It
follows

HYW(E'/Z") = {H e 1."|Ng () € H'(E/K)}.

We shall also use the fact that ji(K,, ;) is contained in H"(E/K). This
inclusion follows because ¢, maps ji(K,,, ) into the group G fixing E.
Now suppose X = B?(«) € is in H, and also prime to n. We may assume

B e I72, aeZy, s € e I(S)).
To prove the assertion we must show N, (X) is H(E/K).
Suppose p is finite. Perform factorizations:
B =B,B,, Boprimeton, Np(B) =¥,
() = AUy Ay, A, prime ton, Nz k(W) = p°.
We know also N (€) = p'. Since X is prime to n, Nz ¢ (¥X) is prime to p.
This implies gr+ s+t = 0 and
Nz k(%) = Nz g (Bo)? Ny (Up).
We can prove each factor here is in H"(E/K). Firstly observe that H*(Z/K) =2
H"(E/K) and the index is g. Since
Nzlx(Nz'|z(%o)) € H"(Z/K)
it follows that N x(B,)? € H"(E/K). Next we note that Ny x(a) € K,y
because m|m,. Thus
NZ'lx(QIo) = Nz',x(a)‘B" =jiNZ'|x(°‘) € Jji(Kn,1)-

This is known to be in H"(E/K) so the assertion is proved in the case p is
finite.

Now for p infinite, the assumption G(p) s 1 forces p to be real and ramified
in L and moreover |G(p)|= 2. Thus Z already contains a gth root of unity
sinceq=2and Z = Z', E= FE’, With X as above we have B¢ H"(£/Z) and
@€ =1 because I(S,) = 1. We need only show (a) e H"(E/Z). It is enough to
show iNgx(x) e H(E|K). We already know Ny x(«) € K, ; because m|m,.
This means 6(Ng (@) =1 for 6(K,, ;) =1 when {G(p)|=2. However this
assertion implies

1 = (Ple(iNllK(a)) = (PE|x(iNZ|k(°‘))-

We have used the equality E = L which follows because (L:Z) = 2. This
shows i Ny x (¢) belongs to H"(E/K) and completes the proof of the assertion.
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As an immediate consequence we have
H™™(L,/Z') = Hy n 134" = (H; n 1) » I3™ ¢ HM™(E'(Z").

By the Classification Theorem 9.16 it follows that £’ = L,. Then by
Property 9.2 we know every prime in S, splits completely in L,. Let p, be a
prime of Z dividing p and P a prime of Z' dividing p;. We have P € S, so
P splits completely in L,. Let e, f denote the ramification index and relative
degree of B over p, because there is no change when passing from Z' to E’
since P splits completely in E' = L,. Now (E' : Z’) divides ¢ — 1 and so

e\q_ls f‘q—'l'

Now consider the ramification and change of relative degree of p; in E. The
ramification number e, must divide e, the ramification number in E' and also
e, divides (E : Z) = q. This forces ¢, = | since g— 1 and g are relatively prime,
In the same way the relative degree is one so p; splits completely in E.

Now there can be only one prime divisor of p; in L by Proposition 11.2 and
so there is only one prime divisor of p; in E. In view of the complete splitting
this forces E = Z contrary to our assumption. This completes the proof.

We shall describe how the map 8 is related to the computation of the con-
ductor. Some additional notation will make the description easier. Let

Vp',m) = K, if b>0,
= {e € K, |(a) prime to p} if »=0 and p finite,
=K,, if b=0 and p infinite.

11.3 Proposition. The power of p dividing {(L/K) is p® if b is the smallest
nonnegative integer such that V' (p®, n) < ker 6.

ProoF. First notice that ¥ = V(p®,1n) is a subgroup of K, , and ji(V) =
i(V) because the elements of V' are prime to p. It follows that ¥ < ker 6 if and
onlyifi(V) < ker ¢, x. Now use the observation that f (LK) divides a modulus
nifand only if i(K, ) < ker ¢ k. An examination of the cases easily gives the
result.

We shall refine this further in the next section and compute the exponent of
p in terms of local data.

12. NORM RESIDUE SYMBOL

This is a continuation of the last section and the notation there carries over.
The main object here is to define a map 0, on the completion K, which serves
as the “local Artin map”. We use the following notation:



12.  Norm Residue Symbol 187

U® =1+p"inK, ifb > 0and p is finite;
=U, ifb = 0and p is finite;
= positive reals if 5 > 0 and p is real;
= K,* if b = 0 and p is real or if p is complex.

121 Lemma. K,*/U® =K, ,/V(p’m).

Proor. The natural inclusion of K, , into the completion K,* induces a
map of K, , onto the quotient K,*/U,®. This is onto because any element of
K,* can be approximated modulo p® by an element in X* which is congruent
to 1 modulo m. One now compares the definitions of the V’s and U’s to see
that ¥ (p®, m) is the kernel.

Now select the integer b so that V' (p®, ) < ker 0. Then @ induces a map (also
denoted by 0) of K, ,/V(p’, m) onto G(p). Now compose several maps:

0 K*—> 2o o Kni
4 14 Up(b) V(pb, m)

[

—5 Gp)

The composite 0, is a homomorphism of K,* onto G(p). We call 0, the
p-local Artin map. We shall see later that the kernel of 0, is the group of
p-local norms from L,*. For this reason 0, is sometimes called the norm
residue symbol at p.

The actual computation of 0,(x) for x in K,* is often very difficult. For
emphasis we point out the procedure. We approximate the given x by an
element y in K* such that

y=1lmodm, y= xmodpd
Then 8, (x) = 8(y) = @1k Ji(y)-
122 Lemma. N (Ly*) < kerd,.
ProoF. For B e Ly*, there is an element y € L* such that
Nyx(y) = I modm, Nk (y) = Ny (B) mod p°.

For example, this was done in the proof of Hasse’s Norm Theorem 4.5. This
allows the equation

0, Np(ﬂ) = 9NL|K()’) = (PL|xjiNL|K(')’)~

When iN, «(y) is factored as a product of prime powers one sees that each
prime power is the norm of an ideal from L. In particular jiN x (y) is the norm
of an ideal and so belongs to ker ¢, x. Thus 6, N, (f) = 1 as required.
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We know now a part of the kernel of 8, . The group U, is in the kernel as
seen from the definition so the local Artin map induces a homomorphism

K,

[
(12.3) N (L 0®

— G(p) (onto).

We can calculate the order of the first group.
124 Lemma
[Kp* : Np (LSD*)] S (L‘I.l . Kp)

Proor. Use induction on the dimension (L : K). If this dimension is prime
then G(L/K) is cyclic. By Proposition 3.12 the lemma is true and equality
holds. If (L : K) is not prime there is a chain

KcEclL
with proper inclusions. Let p’ be a prime of E divisible by ¥ in L. Thus
K, S E/ < Lg.
Let NL,IE.,' = N;, Ng_x, = Nz so N; N; = N,. Then
[K,* 1 N, (Ly")] = [K,* : Np(B,*)] [N, (E,*) : N, N, (Lg*)].

By induction [K,*:N,(£,*)] <(E, :K,). The second factor is at most
(Lg : E,) because the group

N, (E,*)/N, N, (Lg*)
is a homomorphic image (under N,) of
E,*IN; (Lg*).
After combining the two estimates, the lemma follows.
This inequality tightens the situation. We now have from (12.3)
[K*: N, (Lg*) U, P] 2 |G(p)| = (Ly: K,) > [K,* : Ny (Lg¥)).

Clearly the first index is no larger than the last so in fact equality holds
throughout. We can draw two conclusions at once.

12,5 Corollary. If L/K is an abelian extension and p a prime of K, then the
p-local Artin map 6, maps K,* onto G(p) and the kernel is the group of
p-local norms from Lg. (See comments at the end of this section.)

12.6 Corollary. The power of the prime p dividing {(L/K) is the least non-
negative power p® such that U® = N, (Lg*).
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ProOF. It is easy to check that U® < ker6, if and only if V(p?,m) <
ker 6. We have just seen these conditions are equivalent to

Ny (Lg*) U = N, (Lg*)
so the result follows from Proposition 11.3.

In the classical terminology p® is called the p-local conductor, written Ty, if
b is the least non-negative integer such that U,® = N (Ly*). The last corollary
can be restated as

f(L/K) = []f,.

We shall prove now f, =1 if and only if p is unramified. This will prove
finally that every ramified prime divides the conductor.
Iff, = 1then U, < N, (Lg*). For finite primes p we then have p is unramified.
On the other hand suppose p is finite and unramified. In case L/K is cyclic
we have from Proposition 3.11 that U, € N, (Lg*) so in fact

U, = N, (Uy).

One now uses induction on (L : K) to see this equality holds when L/K is an
abelian extension. Thus

U, = U, 9 = N, (Ly*)

and f, = 1.
For p real and unramified Ly, = K, = reals and so

Uv(O) = K,* = Ny (Ly*)
and again f, = 1. This proves the result.

12.7 Theorem. The conductor f(L/K) is the product of all the ramified
primes with positive exponents determined by the local conductors.

As the last theorem of this section we prove a property of the local Artin
maps which is often called the Artin-reciprocity law.

If € K* and p is a prime we shall write 8, («) for 8, («,) where o, is the image
of « under the imbedding K — K,

12.8 Theorem (Product formula for the local Artin maps). For each
o € K* we have

16, =1.

Proor. First note the product is actually a finite one because 8, (x) = 1
whenever p is unramified and o € U,. That is every element of U, is a norm
from Ly* if p unramified. Secondly the values 0, () lie in an abelian group so
the product may be taken in any order.
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Let S denote the set of primes p such that either p is ramified in L or p
divides («). Suppose p, ..., P, are the primes in S. Take

m = [[p}
t

with the ¢, large enough so that f(L/K) divides m.
Suppose also («) = [T p{" and that ¢, is selected so that ¢; > a;. Let m; be the
modulus so that m = pi*m;. For each i select an element w; in K* to satisfy

w; = o mod p¥
w; = 1 modm,.
Then for each j, 0, --- @, = « mod p and so
) e o0, € Ky g
We use these elements to evaluate the 6, (¢). Write

(w) = p{'B,

with B, not divisible by any prime in §. Then
0,(0) = 8(w) = @ xj(PIB) = 0 x(B).
Now
]:[9.,(0!) = HB,,(a) = k(B - By

Since B, -+ B, = (¢ 'w, -+ w,) € i(K,,,,) it follows that OLk(B;-B) =1
and the theorem is proved.

This form of the reciprocity law has the following consequence.

12,9 Proposition. If L/K is an abelian extension and an element o in K* is
a p-local norm from L for all primes p with the possible exception of one par-
ticular prime, then « is a local norm at that prime also.

PrOOF. Let p, be the exceptional prime. Then 8, («) = 1 for every p except
po because 0, is trivial on p-local norms. Thus

1=1]0,() =6,,(®

and so a is in the kernel of 8, ; a is a local norm at p, also.

We close this section with a few comments on Corollary 12.5. This is the
local version of the Artin reciprocity theorem and it can be made the basis of
local class field theory. We shall not carry out this project but it seems worth
the time to at least state the relevant facts. The main theorem classifies all
abelian extensions of the local field K.
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12.10 Theorem. The abelian extensions of K, are in one-to-one (inclusion
reversing) correspondence with the subgroups of K,* which contain some
U,@. The abelian extension Ly/K, corresponds to the subgroup N, (Lg*). In
this case we have G(Ly/K,) = K, */N, (Ly*).

The interested reader may want to provide a proof using the global theory.
1t is necessary to show that the local map 8, depends only on the extension
Ly/K, and not upon any algebraic number fields L/K used to obtain them.
Further one shows that any abelian extension Lgq4/K, can be obtained by
completion of an abelian extension of number fields L/K.

The local theory can be developed on its own without reference to the global
results. Consult Serre’s article in Cassels—Frohlich, Algebraic Number
Theory.

13. THE HILBERT CLASS FIELD

The group i(K*) of principal ideals is a congruence subgroup defined for
the modulus 1 containing no prime divisors. The class field to the ideal group
containing i(K*) is called the Hilbert class field (or absolute class field) of K.
We shall denote it by K.

13.1 Theorem. The Hilbert class field K"’ of K is an abelian unramified
extension of K which contains every abelian unramified extension of K. The
Galois group G(K‘"V/K) is isomorphic to the class group Cg. In particular
(KD : K) is the class number Ay of K.

PrOOF. The conductor f(K‘V/K) = 1 so no prime of K ramifies in K"’ by
Theorem 12.7. Conversely if L/K is abelian and unramified, then f(L/K) =1
sO

H(KM/K) = H(L/K).

By the Classification Theorem 9.16 L < K'V. The remaining statements
follow from the reciprocity isomorphism of G(K‘"/K) with I/i(K*) = Cy.

This shows, for example, that a field K with class number 1 cannot have an
abelian unramified extension larger than K itself. Of course the case K= Q is
covered here but we already know that Q has no unramified extensions abelian
or otherwise. There do exist examples of fields with class number 1 which have
unramified extensions (non-abelian of course). If L/K is such an example then
there cannot be a subfield not equal to K which is abelian over K. This means
G(L/K) has no abelian homomorphic image not equal to 1 and G(L/K) is
non-solvable. From finite group theory it follows (L: K) > 60.

Natural unramified extensions occur by considering the class field tower of
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K. Namely K" is the Hilbert class field of X and inductively K¢*") is the
Hilbert class field of K. Then the chain

KSKVck®c..

is the class field tower over K.

It was not known until 1965 that the class field tower could be infinite. The
work of Golod and Shafarevich proved that when *“‘enough” primes of Q
ramified in K, the class field tower of K would be infinite. A specific example
occurs with K = Q(,/d), where d is the product of eight or more distinct
primes.

Notice that X?/K is always unramified. It is also easy to see that K?/K is
a normal extension. In fact a slightly more general statement holds.

13.2 Proposition. Let F be algebraic number field and K/F a normal exten-
sion. Then every term K@ in the class field tower of K is normal over F.

Proor. If we prove KV/F is normal the general result follows. Let ¢ be
isomorphism of K" into a field normal over F and assume ¢ is the identity
on F. Then o(K) = K because K/F is normal. Also ¢(K‘") is an abelian
unramified extension of ¢(K) = K and so a(K‘"") = K by Theorem 13.1.
This proves normality.

One of the most elegant properties of the Hilbert class field is the following.

Principal Ideal Theorem. Every ideal in K becomes principal when extended
to an ideal in KV,

This theorem was conjectured by Hilbert and its proof was reduced to a
purely group theoretic problem by Artin after he proved the reciprocity
theorem. The group theoretic question was then resolved by Furtwangler.

We shall describe the group theoretic result and then show Artin’s reduction.

Let G be a finite group and H a subgroup. Let

Ht,, ..., Hr,

be the distinct cosets of H in G. For ¢ € G and each index i, there is a unique
element ¢,(6) in H which satisfies

1,0 = ¢i(0)7; for some j.

The transfer from G into H is the function V defined on G with values in
H/H’ which satisfies

V(o) = H'$,(0) - §,(0).

Of course H' is the commutator subgroup of H and so H/H' is an abelian
group. The product then is independent of the order of the factors. One shows
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that V(o) is independent of the choice of coset representatives and is a homo-
morphism from G into H/H’. In case H is abelian, V is a homomorphism
into H.

The transfer map is often used to prove the existence of normal subgroups
of G. Here one selects a suitable / and shows V(G) # 1. Then kerV # G. The
application to the Hilbert class field however is different. We shall select
H = G’ and it is required to show V' (G) = 1. Because of the connection to the
principal ideal theorem this result has been called the Principal Ideal Theorem
of Group Theory.

Theorem. If G is a finite group then the transfer from G into G’ is the trivial
map.

For a proof see Artin-Tate, Class Field Theory, Chapter 13,
Now to apply this result to the Hilbert class field we use the first two terms
above K in the class field tower:

K< KW c k@,

Let G = G(K'¥/K). Since K'¥/K is unramified, every abelian extension of K
inside K must in fact be inside K. Thus K!/K is the maximal abelian
extension of K and

G(KPY/KMD = &, G(KWIK) = G/G'.

We shall use the following notation: If 9 is an ideal in I, then A" denotes
the ideal A extended to Iy, ; [U] denotes the image of U in

Li/i(K*) = Cy

and [UM] is the class of AN in Cy(i).

The principal ideal theorem states in this notation [2"] =1 for every %
inI.

Now bring in the Artin maps: @ x maps I onto G/G’ with keri(K*) and
so induces an isomorphism

¢, :Cx = G/G".
@k in the same way induces an isomorphism
(PZ . CK(I) ; G,.

This gives rise to a chain of maps

(*) G —_— = > CK > CK(;) G’
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where the first arrow is the natural projection of G onto G/G’ and the third
arrow is the map [] — [A")].

We now verify that the composite map is the transfer from G into G'.

For any ¢ in G there is a prime p of K such that ¢, [p] = G’'c (by Theorem
10.3). Let the factorization of p in K®) be

p= %l "'%q'

a_[K(z)‘K]
LB

Now use Proposition 2.8 of Chapter 111 to describe the factorization of p in
K™, The factors of p{*) are in one-to-one correspondence with the cycles of
o on the cosets of G'. The length of the cycle is the relative degree of the
corresponding factor. In this case all the relative degrees are equal (to f, say)
so the cosets of G’ can be described as

G't,,G'1,0,...,G't,0/ 7!

We may suppose

G't, G't,0, ...,G'7,0/ !
The prime factors of p‘*) are q; = 7;(P;) n K" and

p(l) =qy Q.

[K(Z)lK“) [K(2)|K S
—_— == —— = a’f
Py :l Py :l

$0 @k xw (0) = Ty @k (a,) 7,7 = 1;677;71. Finally we can evaluate the
composition of the maps above:

o - G'o - [p] > [»"] = [a; -] > [[7;077,7"

A brief check of the coset representatives shows this product is precisely the
value V(o) with V the transfer into G'. By the principal ideal theorem of group
theory this value V() = 1. An inspection of the maps in (*) shows the first
two maps are onto the indicated groups and the last is an isomorphism. Since
the composite is trivial, the map [U] — [A!?] must be trivial. This completes
the proof.

Notice that

The close connection between the Hilbert class field and the class number
can be useful in many situations. We describe here a rather simple one.

13.3 Theorem. Let E be a finite dimensional extension of K such that
E n KM = K, Then hy divides k.
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Proor. The extension EK!) of E is abelian and unramified and so is
contained in E. Thus &y = (K'Y : K) = (EK'V : E) divides hy = (EV) : E).

One case where this result can be applied occurs if there is a prime of K
which is totally ramified in E. In this case every subfield of E which is strictly
larger than K is ramified over K and so En K'Y = K since En K™ is
unramified over K.

If B is a primitive p"th root of unity for some prime integer p, then the prime
p is totally ramified in Q(B). If

Qs KsEc QP
then a divisor B of p in K is totally ramified in E so hy divides hg.



Chapter V1

APPLICATION OF THE GENERAL THEORY TO QUADRATIC FIELDS

This chapter contains examples to illustrate the ideas of the earlier chapters.
We are mainly concerned with K = Q(\/Z) and its class number, Hilbert class
field, etc. The case d = — 5 is worked out in detail. We use local Artin maps to
make some calculations that could also be made in other ways but our purpose
is mainly illustration rather than the end result of the calculation. One example
is given with a cubic field.

1. THE CONDUCTOR OF Q(/d)

Let d be a square free integer and K = Q(\/ d). We shall compute §(K/Q)
using Corollary 12.6 of Chapter V. The case for p,, can be settled at once
because p,, is ramified if and only if d < 0. Thus p,, divides the conductor if
and only if d < 0.

Now let p be a prime integer; Q,, U, as usual denote the completion of Q at
p and the group of units in @, respectively.

It is necessary to determine the p-local norms from K, in Q,. (We write K|
for the completion of K at some prime dividing p.) Since we are only interested
in those p which ramify in K we have (K, : Q,) = 2. This means that all squares
in O, are norms. To see what is left we consider U,/U,2. By the calculation in
Section 9, Chapter V we have

Ly 27 . _ 2if p odd
(U,:U,]1=2[Z,:2Z,] = 4ifp = 2.
We consider p odd first.

196
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Let u be an integer prime to p and not congruent to a square modulo p. Such
a u exists for p odd because the units in Z/(p) have order p—1 (even) and so
not all elements can be squares. Then the multiplicative group generated by u
and U,? is larger than U,? and

Up = (u,Up2>.
Now let we UV, Then either w = v or w = wv? for some v in U,. In the
second case we have
l=w=wuw?modp

and so u is congruent to a square mod p.

This is impossible (by choice) so w is a square. This shows U," is contained
in the group of p-local norms. Since every ramified prime divides the conductor
we have the following:

For odd p, the p-local conductor is f,(K/Q) = p.
Now we take p = 2. In this case U,? has index 4 in U, and we assert
U, = <{3,5,U,*.
To verify this one observes that all squares of units are =1 mod 8 and that
3 # 5 mod 8 implies 3 ¢ <5, U,*>.

It is necessary to determine for which aU, contained in the group of
2-local norms. If w € U,*® (so w = 1 mod 8) then

w=3fsjvz, velU,, ij=0orl.

Examine the possible cases with various i,j and read this as a congruence
modulo 8. It turns out that i = j = 0 is the only possibility. Thus U,® consists
of squares and so these are 2-local norms.

Notice that U, = U,!*? so U,!" is contained in the norm group only when
2 is not ramified. We are left to decide in the ramified case whether U, is
contained in the norm group or not.

We must have

Uz(z) = (5, U22>

and so the 2-local conductor is 22 if and only if 5 is a norm.
The field K, consists of all elements x+yﬁwith x,yin @, so 5is a norm
if and only if

N,(x+yd) = x2 —dy* = 5
can be solved with x, y € Q,. Since all squares are norms this is equivalent to
solving

x? — dy* = 5z%.



198 V1 APPLICATION OF THE GENERAL THEORY TO QUADRATIC FIELDS

But this implies dy? is a norm from Q,(v/5); that is:
N(x+z+/5) = dy.
This is equivalent, with the condition that 4 is a norm from Q,(v/5).

The norms from this extension are easily determined because 2 is not
ramified. This means that every unit is the norm of a unitin Q, (,/5) by Proposi-
tion 3.11 of Chapter V. Furthermore the index in Q,* of the norm group is 2
by Corollary 3.15, Chapter V so the group of norms from QZ(\/g) is precisely
(2% U,.

This means the 2-local conductor of K/Q is 2% if and only if de U, (d is
square free). In other words 4 must be odd. If 4 is even the 2-local conductor
is 23. (All of this is under the assumption that 2 is ramified in K.)

Recall (from Chapter 1) that 2 is ramified if and only if d = 2,3 mod 4 and
the odd ramified primes are the divisors of d.

Now combine the above remarks and examine the powers of the prime
divisors of d and §(K/Q) to get the result in the following form.

1.1 Theorem. The conductor of Q(\/c—i)/Q is

f=(d) d>0 d=1mod4,
)y, d<0 d = 1 mod4,
(4d) d>0 d = 2,3mod4,

4d)p, d<0 d = 2,3mod4.

We know by the Kronecker—-Weber Theorem that Q(\/ c_i) must be contained
in Q(p,) for some primitive nth root of unity §,. The least n that will suffice is
the one such that Q(f,) has the same conductor as Q(\/E).

1.2 Corollary. Q(+/d) < Q(By). Here D=|d| if d=1 mod4 and D = |4d]|
if d=2,3mod4.

ProoF. With the indicated D we have D > 0 and the conductor of O (v/ c_i)/ Q
is (D) or (D) p,. By Proposition 3.3, Chapter 1], the kernel of the Artin map
for Q(Bp)/Q is the congruence subgroup for the modulus (D)p,, and so

H(Q(8)/0) = H(Q(/d)/Q).
The result follows by the Classification Theorem 9.16, Chapter V.

2. TWO EXAMPLES

ExamPLE I. LetK = O(v/—5). Weshallprove K" = K(y/— 1)and K@ =
K™, The decomposition of rational primes in K is also described by
explicitly giving the decomposition groups.
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The first step is to show Ay = 2. The Minkowski constant is small here and
by Theorem 11.19, Chapter I, every ideal class [8] in Cy contains an ideal B,
with N o(B,) < 2. The prime 2 is ramified in K so (2) = B? and P is the
only nontrivial integral ideal having norm <2. This implies at once Ay < 2
since ['B] is the only possible nontrivial class. By Exercise 2, Section 4, Chapter
I, hgisnot 1 s0 hy = 2.

This gives dimension formulas

(KD:K)y=2 (KV:0) =4

Since K‘"/Q is normal it has an abelian Galois group—all groups of order 4
are abelian. Thus K is contained in some cyclotomic extension of Q (by
Kronecker-Weber) and to know which one we calculate the conductor. It
turns out that f(X"/Q) = {(K/Q) and the following argument proves this in
a more general setting.

2.1 Lemma. Let F be an algebraic number field, K/F an abelian extension
and E a subfield of K'Y which contains K and is abelian over F. Then
f(E/F) = F(K[F).

ProoF. Let p be a prime of F and P a divisor of p in K. Since E/K is
unramified, every B-adic unit in Ky is the local norm of a unit in Ey (the com-
pletion of E at some prime over P) by Proposition 3.11 of Chapter V. Now
apply Corollary 13.6, Chapter V to calculate the p-local conductors. The
group U,®’ in F, consists of local norms from K if and only if it consists of local
norms from E. Thus the same power of p divides both conductors and they are
equal.

In our example the conductor is (20) p,, so

K" = Q(B20).

This field Q(f,,) has dimension 8 over Q so it would be easy to list all the
subfields and find K"). Rather than do this, we take a more systematic
approach that applies in more general circumstances.

The 20th root of unity, B,,, is a product i, f5 and the Galois group G of
Q(B,,) is the direct product of the groups of Q(B,)and Q(f;) over Q. We may
write

G = (1) x (o)
T(fa) = ﬂZ] c(Bs) = Pa
(Bs) = PBs c(Bs) = ﬁsz-

Then 12 =¢* = 1.
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We compute the group fixing K. We have

\/_—5 = ﬁ‘t \/_5.’
where f, is a suitable 4th root, and \/g € Q(B5). Thus ¢ and 7 both send \/——5
to —,/—S and ot fixes K. Since {o7) has order 4 it is the full group fixing K.
Now K ") must be left fixed by the subgroup of index 2in {67); thisis (¢212) =
{o?). Since o? fixes both K and B, (which we now write as i) it follows that

K = K@) = 0(/=5,i).

It is not difficult to work out the decomposition of primes in K(!). We
consider a few cases. The procedure (for unramified primes) is to evaluate the
Artin map. This is done most conveniently by the formula

Preri(P) = 1€8 Po(p,0)10(P)

where “res” means restriction to K. The Artin map for the extension
QO (B10)/0Q is easily evaluated and has been done in Section 3, Chapter III.
A prime p of Q splits completely in K if
res Poponel(P) = 13

that is, if the automorphism § — 7 is the identity on K"’ where 8 = f,,. This
occurs precisely when either

fP=p8 and p=20k+1, or B =P
This means

BsP =B, and PP = 5%

Thus p =1 mod4 and p = 4 mod 5. Equivalently p = 20k +9.
In a similar way one determines the primes which are unramified and have
a specific decomposition group. The full Galois group of K‘V/Q is

(1,03|K" = (x,0)/Ka®).
This has three subgroups of order 2 generated by
7|k, alK™, 0| K™,

A prime p has decomposition group generated by t if the automorphism
B — B” is the same as t or 7o, It must happen that

= ﬁ4-1 and Bs" = Bs or 55_1-

Thus p = —1 mod4 and p = +1 mod 5. Equivalently p has one of the forms
207+ 11 or 20t + 19. The remaining cases are summarized in the table below.

The decomposition groups for the ramified primes 2, 5 can be discussed in
a similar way except the p-local Artin maps must be used for p = 2, 5 in place
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of the global Artin map. Just as above the p-local Artin map for the extension
K™M/Q is the restriction to K) of the p-local map for Q(B)/Q. Let 0,,0,
denote these maps; we have to compute the restrictions to XV of
02(Q,*) and 05(Qs*).
Take p = 2 first. The 2-conductor for Q(B)/Q is 22 so
az(Uz(Z)) =l
The group Q,*/U,? is generated by the cosets containing 2 and 3 so the
decomposition group of (2) in Q(f) is
G(2) = (6,(2),6,(3)).
The procedure in Section 12, Chapter V shows how to evaluate these maps.
Namely 8, (2) = ¢ji(y) where
27y = 1 mod4
y = 1 modSp,,.
The choice y =26 (or 40:—14) will do and ¢ji(26) = ¢(13) is the map
B— B'* = BsBs>. Thus
02 (2) = 0'3.
Similarly 0, (3) = @ji(51) = .

Thus G(2) = {t,¢>) is the full Galois group and on K the decomposition
group of (2) has order 4. We know 2 has ramification number 2 = e in K and
so also in K. Thus (2) has one prime factor in K with relative degree
S = 2. This holds of course because the decomposition group has order ef = 4.

In a similar way G(5) = {16*>. We summarize the decomposition theory of
primes in K!) in the table.

Rational Decomposition e, f
prime group
20+ 1 1 1,1
200+9
20:+3 K 1,2
20¢+7
20:+11 | K™ 1,2
20:+19
200413 KM 1,2
200417

2 {T,o0| K 2,2

5 (1e?)| K 2,1
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We close this example by showing K has class number one and so k¥ =
KV, The discriminant of X!’ can be estimated. Use the elements

L 1+5 1+V5
’ b 2 b} 2

i

as a free Z-basis and find the discriminant of this basis is —2* 52, The Min-
kowski constant can be calculated using this for A. One finds every ideal class
for K'Y contains an ideal whose norm is <3. It is necessary to look at the
factors of (2) and (3). We saw above that both (2) and (3) are divisible by primes
with relative degree 2 so their norms are 22, 32, So there are no ideals with
norm < 3 except the unit ideal. Hence the class group is trivial for KV,

ExaMPLE 2. By way of contrast to the previous example we consider the
non-normal extension of @, K = Q(6), 8 = 11. In Section 11, Chapter I we
saw 2, = 2 and that (2) was the product 8, $8,’ of two primes in K. Moreover
P, was not principal but

Po? = (02-5).

The group of units in K is (£ 1) x (u) where we may assume u > 0 (and § is
the real cube root).

The problem of describing K‘*? is not conveniently solved by using the class
field theory of Q because K is not normal over Q. The problem is solved by
appealing directly to the technique used in the proof of the existence theorem.
Since K*) has dimension 2 over K it is a Kummer 2-extension and KV can
be found as a subfield of the extension of K obtained the square roots of all
the S-units for a suitable S. The requirements in Section 9, Chapter V, placed
upon S are satisfied if we take

S = {‘Boo’ "Bw” ‘Bz: “BZ’}

with B, B,  denoting the two infinite primes. The S units can be found now.
Suppose « € K* and («) is divisible only by primes in S. For suitable integers
a and b, () has the factorization

@ = B ($,) = (P2 P B30 = 2)P5"
Only even powers of B, are principal, so a—b = 2k and
(@) = (2")(0*-9)".
This implies « is a unit times 2°(6% — 5)*. It follows

KS = (£1)> x (ud x (2> x (B =5D.
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If we adjoin to K a root of X2 —a with a a product of distinct generators listed
above then B, will ramify whenever 2 or 6% — 5 divides a. To get an unramified
extension it is necessary to take o = +u. But K has a real prime so we select
o = u > 0 to prevent ramification at infinity. Finally then

KO = K(/u).

The decomposition of primes in K is completely described by their orders
in C (asis always the case for any K in KV). That is, a prime P of K is divisible
by a prime of K" having relative degree 2 if and only if [8] has order 2 in
Cy. For example B, remains prime in K.

3. THE EXTENDED CLASS GROUP

It is possible that an algebraic number field K has class number k¢ = 1 and
still has an abelian extension that is unramified at all finite primes. For example
take K = Q(\/§) and consider the extension K(\/ji). This is easily seen to be
unramified except at the real primes of K.

We consider for any algebraic number field K, the modulus m = product of
all the real primes of K. Set i1 = 1 if there are no real primes. In the real case
the elements of K,, , are called rotally positive because they map onto positive
elements in every real imbedding of K. The extended class group is the quotient

Cx" = L/i(K, 1);

the ideals modulo the principal ideals with a totally positive generator.
The congruence subgroup i(K,, ,) belongs to an ideal group with conductor
mt. The class field to this ideal group is called the extended Hilbert class field

and is denoted by K",
The inclusion i(K*) 2 (K,,.,) implies K"’ = K*). The difference between
these two fields can be measured in terms of K.

3.1 Theorem. Let r be the number of real primes of K; Uy, U™ the group
of units and totally positive units of K respectively. Then

(K KDYy = 27[Ug s Ut 17
Proor. The Artin maps induce isomorphisms
G(K™WK) = Xyfi(Ky, ),
G(KWPV/K) = Ifi(K*)
and so G(K‘V/KV) = i(K*)/i(K,,, ).
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Now consider the diagram below to compute the order of this group.

15 U™ = Koy = i(Kpy) > 1
l | |

1 - Ug - K*¥ - i(K*) -1

l l l

Uk K* i(K*)

T - - — - 1
UK Km,l l(Km.l)

[N

The bottom row is exact so it follows
(K(+) . K(l)) = [K* :Km,l][UK : UK+]—1'

To finish the proof we need to compute [K* : K,, ,]. Let ¢;(«a) denote the sign
of a at the ith real imbedding of K. Then

o — (e, (a),...,e,())

is a homomorphism of K* to a group of order 2", The map is. onto by the
approximation theorem and the kernel is precisely K,, , so [K*: K, ,]=2'
as required.

Incase K = Q(ﬁ) there is a criterion that is quite easy to state although in
practice it may be difficult to apply.

If d > 0 then Uy has the form
Uy = (£1) x ()
where we may assume ¥ > 0.
3.2 Theorem. Let K= Q(\/ c7), d square free. Then
KM =K"Y if d<0 or
d>0 and Ngpu) = -1
(K KMy =2  if d>0 and Ny = 1.

Proor. The case d < 0 requires no argument. For 4 > 0 the dimension
(K : K™Y is 1 or 2 depending upon the two cases Ug* = (u®) or U™ =
{u). Evidently u is totally positive if both u and its conjugate i are positive.
This is equivalent to

NK'Q(u) = Uil = +1.

The alternative uii = — 1 occurs if i# < 0; in other words u? generates Uy *.
In practice this result may be difficult to apply because there is no general

formula to tell us (in terms of d) when —1 is the norm of a unit. It is not

difficult to determine when — [ is a norm from Q (\/ d) but this is not sufficient.
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For example with d = 34 the element (5+ 3 V 34)/3 has norm —1 but no unit
has norm —1.

There is a procedure by which u can be found. A method using the continued
fraction expression of \/d can be found in the book by Borevich-Shafarevich,
Number Theory, Chapter 2, Section 7. Also see the exercises following Section
11, Chapter L.

We shall use the close connection between K* and KV to study the class
group of K. In the first example of Section 2 it was very convenient to have
KM/Q normal and abelian. We always have K> and K*? normal over Q but
not necessarily abelian. We consider the next best case—look at the largest
subfield which is abelian over Q.

Definition. For any abelian extension K/Q, the genus field of K over Q is the
largest abelian extension E of Q contained in K. The extended genus field is
the largest abelian extension £ of Q contained in K*),

The main object we want to study is Cx. This is isomorphic to G(K")/K)
so we look at K". The genus field is introduced to describe at least a part of
K by using the class field theory of Q. The remaining problem is to describe
the part of the extension from the genus field to K*’. The field K'*? is intro-
duced only for technical reasons. It turns out to be slightly easier to describe
the extended genus field and from it obtain the genus field.

1t is necessary to look closely at a number of groups, subgroups, fields and
subfields so we fix some notation that will be used for the rest of this section.

K= Q(\/E) with d a square free integer and ¢ is an element of G* =
G(K'*/Q) which is not the identity on K; that is, o| K generates G(K/Q). We
first describe the extension K ")/E in terms of K.

3.3 Theorem, (a) G(K/E) = subgroup of Cx generated by the ideal
classes of the form [c() A~ 1], We L.
(b) GK'V/E) = (Cy)

Proor. Let G = G(K/Q) so that E is the field left fixed by the com-
mutator subgroup (G, G) generated by all commutators

(u,v) = uou" ‘o1,
The Artin map gives an isomorphism
p: Ck>CcC
in such a way that for each ideal ¥ of K we have
e[oA] = cp[A)s™".
It follows that
p[e(MA'] = (0,0), = ¢[A].
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Thus ¢ maps the group in part (a) into (G, G) and we must show every com-
mutator in (G, G) has the form (¢,a) withae C,

We know C is a normal subgroup of G of index 2 and G/C = G(K/Q). It
follows that every element in G has the form a or oa with a € C. If we use the
abelian property of C the following commutator identities can be proved:

(6a,a,) = (9,ay)

(ca,6a,) = (0,4,;), a, =oa 'a;67 .

It follows that every commutator is in the image of ¢ and part (a) holds.

To prove (b) we begin with a prime ideal B of K and suppose p = P n Q.
There are three cases to consider:

() p=PBsoP=c(P)and [¢(P)P~']=1;

(i) p = P? same as above;

(i) p=PP, B =P, PP I=[F, P I=[pP =[BT~

This shows that every class [a(W)A~'] is a square in Ci. Conversely if
[A] = [B*] then o(B)B ' = Bo(B)B % = Ng o (B) B2 Since Nio(B) is
principal it follows [U] = [¢(B ') B] proving (b). This provides two descrip-
tions of G(K*")/E). Next we clarify the relation between E and E*),

3.4 Theorem. (K'Y :K")=(E™ :E),

Proor. This is proved by purely group theoretical tricks. It is clear that
E=E™) when K" = K*) s0 we may suppose (K*?: K"y = 2. Let

G*" = G(K'™Q)
Ct = G(K™M/K)

sothat G* = (g,C*Yand G = (o, C). Let 1 be the automorphism (of order 2)
which leaves K!? fixed. Then t € C* and the group (z) is normal in G*. This
forces T to commute with every element in G*. Also the natural restriction
map to KV establishes

G /(x> = G
C*iK) = C.
If we show (G*,G™) = (G, G) then it follows that
(K(+) . E(+)) = (K(l)  E),

which is enough to prove the result.

The arguments above show (G*,G*) = (s, C ™) using only the fact that C*
is abelian with index 2. One can verify the identity (o,a,a,) = (0,4,)(0,a;)
for a,,a, in C* so the function a — (6,a) is a homomorphism of C* onto
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(G*,G™*). Under this map the image of 7 is (g, 1) = 1 because 1 is in the center
and so the image can be identified with the image C* /(1) = C—(0,C) =
(G, G) and the result follows.

Now we show how to construct £(*,

3.5 Lemma. Except possibly for infinite prime factors we have f(E*)/Q) =

T(K/Q).

This follows from the proof of Lemma 2.1.
Let D be the positive integer such that the “finite” part of {(K/Q) is (D).
Thus
D =|d| d=1mod4

D =4|d| d=2,3mod4.
Let B be a primitive Dth root of unity.

3.6 Lemma. E'is the largest subfield of Q(B) which contains K and has
the property that for each prime p of Q the ramification number of p is the
same in K asitisin E*),

Proor. By the conductor calculation and the classification theorem we
find £4*? < Q(B). On the other hand a field F having the same ramification
for each p as K must be unramified over K at every finite prime. This implies
f(F/K) contains only real primes and so { (F/K)|T(E'*/K). Itfollows F = E*).

Let us factor D as

D=pyprp

where each p; is an odd prime when D is odd and when D is even p, is either
2% or 2% and p,, ..., p, are odd primes. Let §, denote a primitive p;th root of
unity. We may select these roots so that

B =115,

piD

Let I denote the Galois group of Q(f)/Q and T, the Galois group of Q(8,)
over Q. There is a natural isomorphism

r=JIr,

which may be described explicitly as follows. Each element in T is described by
an automorphism

g-p (r,D)=1

and we let this correspond to the same map on each Q(8,). This is then a map
onto the direct product because for any map

T: ﬂp—vﬂp’
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in T, there is an integer y such that
y = rmodp
=lmodg 4|D,q #p.

Then f — ¥ maps onto 1.

We shall regard the isomorphism above as an identification. The key idea
of this section is to describe the ramification of a prime p in a subfield of Q(f)
by using the [,.

3.7 Theorem. Let F be a subfield of Q(f) and p a prime divisor of D. The
ramification index of p in F is the number

[T,: T,nT]
where T5 is the subgroup of I' which leaves F fixed.

ProoF. Let 8, denote the p-local Artin map for the extension Q(f)/Q and
let
res: I' » I'/I;

denote the restriction homomorphism onto G (F/Q). Then res6, is the local
Artin map for F/Q and

lres0,(Q,*)| = ef

with e and f'the ramification index and relative degree, respectively, of a prime
divisor of pin F.

We know Q,* = {p> x U, and the order of res 6,(p) is f because the smallest
power of p that is a local norm from F, is p’. 1t follows that

[res@,(U,)| = e.
Now we prove 0,(U,) = I,. Once this is done we then have
e =lres0,(U,)| = [res(I)| = [[,: T, n [}]

to complete the proof.
Take ue U, and write D = pD,. We evaluate 0,(u) by first selecting an
element y (an integer, say) such that

y =umodp
y = 1 mod D,
y>0

and then 6,(u) = @(y), ¢ = global Artin map for Q(B)/Q. This is the map
f — B” and because of the congruences satisfied by y we see p(y) e T,. Con-
versely for any map 7 in I, there is an integer y such that 7(f,) = 8,” and
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y =1mod D,. Thus 8,(y) = ¢(y) = 1. This proves 6,(U,) = I, and finishes
the proof of the theorem.

This result will help us determine E‘*). We have Iy, the subgroup of I’
fixing K and the unknown group I, which is the group fixing E*). We
translate Lemma 3.6 into group theoretic language as

[[,: T,ATJ=(L,: T~
Since K € E'*), it holds that I, = T so in fact
Lnly=I,nl.

Now E*) is the largest field for which this holds so I, must be the smallest
subgroup of I' for which this holds. Evidently I; must contain each inter-
section I, n Iy and so the minimal property insures that

=[]l nTk.

p|D
This is a direct product because [T, is a direct product. From this we get next

I
GEe =T, = [ [
P K

pID

The number [T}, : T, n I] is the ramification index of p in K—namely 2. We
have proved so far the foliowing:

3.8 Theorem. (£ :Q) =2, where ¢ is the number of prime divisors of
the discriminant of K/Q.

There is a nice consequence of this calculation.

39 Theorem. Let K= Q(\/E) and suppose the discriminant of K/Q has ¢
prime divisors. Then the group Cy/(Cx)? has order 2~ 'if d < 0 orif d > 0 and
a unit of K has norm —1; it has order 2~ 2 if d > 0 and all units of K have
norm |.

Proor. By Theorem 3.3 we find G(E/K) = Cy/(C)*. The order of G(E/K)
is easily found using Theorems 3.2, 3.4, 3.8.

We can go a little farther without any additional effort. Explicit generators
for E(*) can be given from the knowledge of the Galois group T, given above.
Since Iy N T, has index 2 in T,, it follows that E*) contains a quadratic
subfield of Q(B,). When p is odd T, is cyclic so there is only one quadratic
subfield—namely

1 mod 4
—1 mod4.

OWp c EM if p
oW -p c EM  if p
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In case D is even but not divisible by 8 then again there is only one quadratic

subfield of Q(8,)—namely Q(/—1) = Q(B,).

When D is divisible by 8 then Q(f,) contains three quadratic subfields
generated by \/—1, \/2, \/=2. One could work out congruence conditions to
tell which case arises but it is simpler to just use the following device. Since 8
divides D, d must be even and

|dl =2p, Py

Suppose p,, ...,p, are the primes =1 mod4 and p,,,,...,p, are the primes
= — 1 mod4. Then

Vi = VERn N N

and so the ambiguous sign is uniquely determined. We can avoid cases by
stating the result in the following way.

3.10 Theorem. Let K= Q(\/;) have discriminant A and suppose |A| =
Py P2 peWith p,, .., p, 0odd primes and p, either an odd prime or a power of
2. The extended genus field of K is

E(+) = Q(\/a’a23 ---aa!)
where
% =pi if p;, = 1mod4,
u=+—p if py=—1mod4.

In the case d < 0, E = E‘*) is part of K. If d > 0 and some unit of K has
norm —1 in Q then again E = E'*). Notice this case can only occur when d
has no prime factor of the shape 4n— . This follows because K has no complex
prime and so £ must not have one either since E/K is unramified. In this case
there are no primes for which \/ —pisin E.

In the case d > 0 and all units of K have norm + 1 then E is the maximal real
subfield of £*). We can list generators for E by inspection of those for E¢*
in the theorem.

Suppose p,, ..., p, are the primes =1 mod4 in case A is even and that also
p = 1 mod4in case A is odd. Then

E=0Wday, . %_,) and
W) o =vp, i<r

o =\pp,  r<i<t if r#i-I;
(i) o =Vp, i<t—1

oy =\/2p,, incase r=1t—1.
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We give a few examples in the table below. Notice that the field E determines
the order 2° of Cy/(Ck)?. This means that Cy has exactly s cyclic direct factors
of even order appearing in a direct product decomposition. For certain small
values of 4, E determines completely the structure of Ci. For example with
K=0Q(/—=5-13), hy =8 and s = 2 so Cg is the direct product of a cyclic
group of order 4 and one of order 2.

d hx Generators for E
-21 4 NN NEY
21 1 V21
—-42 4 VA2 /=37
42 2 2, 21
—65 8 —1,4/5, {13
65 2 NEAVIE]
- 130 4 —2,4/5, 413
130 4 V2, 45, /13
—55 4 N=T, 45 /1
55 2 5, |11
—110 12 =2,4/5, 411
110 2 V5,422




APPENDIX

In the two sections which follow we present some results which were used
several times in the text. Since these are not universally taught in courses
prerequisite to one in which this text might be used, complete proofs are given.
We prove only the versions of the theorems actually required in the main body
of the text. More complete results on these matters can be found in several
books; for example see “Algebra” by Lang.

APPENDIX A. NORMAL BASIS THEOREM
AND HILBERT’S THEOREM 9%0

Assume L/K is a normal extension with Galois group G. Let L = K(0) and
S(X) the minimum polynomial of 6 and K. Let

F00 = T1(x-0)

be the factorization of f(X)in L[X].

Propositionl. L @i L=L,® @ L, (ring direct sum) with L; = L. If G
acts on L® L by the rule 6(a®b)=0(a)® b, then G permutes the L;
transitively.

Proor. Let G act on L[ X] by operating on the coefficients of a polynomial.
Then the ideal (f(X)) is left invariant (as a set) because f(X) has coefficients

212
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in K and G permutes transitively the ideals (X —6,) containing f(X). (G per-
mutes the roots transitively.) By CRT we find

LIX] << L[X]
(f(x)) T & (X-6)

with L 2 L,. Clearly the action of G permutes the L, transitively. Now to get
the statement of the propasition we observe the isomorphisms

K[X] _ L[X]
(f(X) T (f(X))

=) oL

LRsL=L

are consistent with the action of G.

Theorem. (Normal Basis Theorem in Cyclic Case). Assume G = (o) is
cyclic of order n. There is an element « in L such that a,0(2), ..., 6" '(a)is a
K-basis of L.

PROOF. View the automorphism ¢ as a K-linear transformation on the
K-space L. If x; is a K-basis for L, then x;®l is a (1 ® L)-basis for L® L.
This means o has the same minimum equation over Kaso ® | hasover | ® L.
By Proposition 1, ¢ ® 1 is a permutation matrix and so has minimum equation
X"— 1. Thus the minimum and characteristic equation for ¢ coincide. By linear
algebra there is a “‘cyclic vector”, That is there exists an element a € L whose
images under powers of ¢ span L over K.

REMARK. This theorem holds for any G with the conclusion that an
element exists in L whose images under G give a basis of L over K. We shall
not require this more general result.

We introduce some further notation. Let § be the map L ® L — L defined
by B(a® b) = ab. This is a K-algebra homomorphism onto L. All but one of
the L; in Proposition 1 must be in the ker f. Let L, be one that is not and let
¢, denote the identity element of L,. We still assume G = {g) is cyclic and set

o (L) =1L, o' (e)=¢
so that e, is the identity of L, and
Bley=1, Ble)=0 j#1L

Proposition 2. If the elements 4,, ..., 4, in L are not all zero then the K-linear
transformation

a— Y Ae'(a), ael

is not the zero transformation.
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Proor. Consider maps
ALY Y LA i L

where h(e) =2 ® 1, f(a®7y) = Yo' (®) ® y4, and B as above. The composite
of the maps, Bfh is the transformation we want to show is nonzero. We see
that #(L) generates L ® L as a vector space over | ® L. Sincefisa | ® L-linear
map we see fifh is zero if and only if the image of fis in ker 8. To prove this is
not the case first take an index & such that 4, 3¢ 0. Then

Bf(en—yx+1) = ﬁzﬁi ® tle,—r+1)1 @ 4
= Zﬁ(en—k+l+i)’1i
=X #0,
and this proves-the result.

Corollary (Hilbert’s Theorem 90). Let L/K have cyclic Galois group
G = (o) fae Land Ny (a) =1, then « = f/o(B) for some f & L.

PrOOF. Let A; =ao(a) o'~ '(a) for i=1,2,...,n. Notice 1, = N(a) =1
and ag(4;) = 4;,,. By the last result there is an element y € L such that

B=340c(p)+#0.
It is easily checked that o (f) = «~ '8 and the result follows.

APPENDIX B. MODULES OVER PRINCIPAL IDEAL DOMAINS

Let R be a principal ideal domain. We shall prove some facts about finitely
generated modules over R. For the sake of completeness, we shall first record
some definitions. Let M be a (left) R-module. M is torsion free if x in R, m in
M and xm = 0 implies either x = 0 or m = 0. M is finitely generated if there
exist elements m,, ...,m, in M such that M = Rm, +---+ Rm,. The elements
my,...,m, are a generating set. If the equation x, m, +---+x,m, = 0, with x;
in R, implies x; = 0 for each i then M is free of rank n. In this case M is
isomorphic to the direct sum of # copies of R. We shall also write

R(")=R@"'@R=ZR"u‘
1

where ;= (0,...,1,...,0), 1 in the jth coordinate, for the free module of
rank ».

Theorem 1. Any R-submodule of R™ is a finitely generated free module
with rank at most ».
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PrROOF. Let M be a submodule of R™ and set
Mk = M N (Rel + + Rek).

We shall prove by induction on k that M, is (0) or is free of rank at most k.

For k = 1 we find M, = We, with A some ideal of R. Since A is principal,
it is either (0) or free of rank I. The same is then true of M,. Now suppose
k=2 and M,_, is free of rank at most k—1. Let 2, denote the set of all
elements x in R such that

(]) m=b1€,+'“+bk_1ek_1+xek
is in M, for some b, in R. Then A, = Ra,. Now let
mo =a;e, + -+ a.e

be an element in M, having the generator of U, as the coeflicient of ¢,. For
any m in M, we have m in the form (1) with x = ba, for some b in R. Then

m = bmg + (m—bmy)

shows M, = Rmg+M,_,. If my is already in M,_,, so a, =0, then M, =
M, _, so the inductive step holds. If a, # 0, then inspection of the kth coordi-
nates shows M, is the direct sum of Rmy and M, _,. Furthermore Rmy is free
of rank 1 so it follows that M, is free of rank <k.

Corollary. If 0 < m < n are integers and
R® ~ R™ gy
for some module V, then V is free of rank n—m.

PROOF. By the theorem, V = R™ for some integer t. If R happens to be a
field, then ¢ = n—m by dimension counting. When R is not a field, take any
maximal ideal 2 of R so that R/ = F is a field. Now use the observation

R®W/QARM = F™
to count dimension again and complete the proof.
The result about modules most frequently used in the text is the following.

Theorem 2, Let M be a finitely generated, torsion free R-module which can
be generated by n elements but no fewer. Then M is free of rank » and any
generating set with # elements gives a free basis for M.

Proor. The proof is by induction on n. Let m,, ..., m, be a generating set.
If n=1, then M = Rm, = R so the result holds. Assume the theorem is
correct for torsion free modules on n—1 generators. Define an R-homo-
morphism ¢ from R™ to M by

G(xyy. Xy = XMy + -+ x,m,.
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This is onto M because the m; generate M. The theorem will be proved if we
show ¢ is one-to-one. We shall reach a contradiction by assuming now
W=ker¢ #0.

Assertion 1. W = R(y,,...,»,) for some y;€ R.
To prove this we consider the projection map
(W, W) & W,

defined on W with values in R. This map is an isomorphism of W with a non-
zero ideal of R because any element in the kernel of m has the form
Wiy ...y Wy—1,0) and

wimy + -+ Wy 1My = 0.

However the induction hypothesis can be applied to Rm; + --- + Rm,_, to
obtain this is free on the n—1 generators my,...,m,_,. Thus w; =..- =
Wo—1 = 0. Nowif n (W)= Ry,then W = R(y,,...,y,) where (y,...,p,)isin W.

Assertion 2. There is a basis fi, ..., f, for R™ and a nonzero element b in R
such that bf, = (¥, ..., Vn)-

Notice that the proof of this assertion is independent of the rest of the
proof of the theorem and is valid so long as (v, ...,»,) # 0.

Let Ry, +--+ Ry, = Rb and let z; be an element of R such that z;b = y,.
Then

Rz, + -+ Rz, = R
and
azy+ - +a,z,=1

for some a;in R.
Consider the homomorphism @ from R™ to R defined by

0(xy,...0%,) = X8, + - + x,a,.
Then 8(z,, ...,z,) = |. Write (z) = (zy, ..., z,). For any v in R™ we have
v =0()(2)+ [v-0()(2)]

and this shows R™ = R(z)+ker0. It is easy to see the sum is direct and that
R(z)isfree of rank 1. Thus ker 8 is free with a basis f}, ..., f,_;. If we set f, = (2)
then bf, = (y,, ..., »,) as required.

Now we complete the proof of the theorem. The element (y) = (yy,..., V)
isin W so

0=19( = ¢ = bp(/))
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Since M is torsion free and b # 0 it follows that ¢(f,) = 0. But then M is
generated by ¢(f}),...,¢(f,-,) since R™ =3 Rf;. This means M can be
generated by fewer than n elements contrary to our assumption.

Corollary. Let R have quotient field K and let L be a field containing K. If
M is finitely generated R-submodule of L, then M is free with rank at most the
dimension of L over K.

Proor. Since L is a field containing R, M must be torsion free. By the
theorem, M is free with rank »n for some n. An easy common denominator
argument shows that any minimal generating set for M is a linearly inde-
pendent set over K.

EXERCISE. Prove the Unimodular Row Lemma: If R isa PID, and y,, ..., »,
are elements in R such that Ry, +---+ Ry, = R then there exists an nxn
matrix ¥ with entries in R such that the first row of Y'is (y,, ..., y,) and det ¥ =
unit in R. If n > 2, then in fact, there is such a Y with detY = 1.
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