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This book contains an exposition of the main theorems of the class field 
theory of algebraic number fields along with the necessary introductory 
material. An attempt is made to keep the exposition self-contained. The only 
material presupposed is that which would be used in elementary Galois 
theory. The structure theorem for finitely generated modules over a principal 
ideal domain is used, but a proof is included in an appendix. 

We use the direct approach to the subject by congruence subgroups of the 
ideal group rather than the more subtle description involving the cohomology 
of groups. This may be considered the historical approach to the subject, but 
we have presented it because it seems most useful for mathematicians who 
are specialists in other areas but wish to use it. From the student’s point of 
view, this approach seems to require less background preparation and so is 
desirable for them. 

The student who is not particularly interested in the theory of class fields 
can profitably read the first three chapters for an introduction to the study 
of arithmetic in fields, Dedekind domains, valuations, and general back- 
ground material necessary for further work in several directions. 

The first chapter contains an introduction to the algebra of number 
theory. The basic properties of Dedekind domains are presented using rather 
general riDg theoretic arguments as much as possible. Emphasis is placed 
upon local methods and proofs by localization. The results are given for 
rather general fields except in the last three sections. There we discuss 
cyclotomic extensions of the rational field and prove the unit theorem and 
finiteness of the class number for algebraic number fields. 

ix 
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Valuations and complete fields are discussed in the second chapter. This 
depends partly upon the previous chapter. 

Chapter three contains material connecting Galois groups and ramification. 
The last section introduces the Artin map, which is of fundamental importance 
for the rest of the book. 

In Chapter four the material becomes more specialized. We work ex- 
clusively with algebraic number fields and their completions. The analytic 
theorems proved include the Frobenius density theorem and Dirichlet's 
theorem on primes in an arithmetic progression. 

Chapter five contains the main results on class fields. A small amount of 
cohomology is developed here. We use only H o  and H' and then only for 
cyclic groups. In this case a concrete description of the cohomology groups 
is used so the reader is not carried far from the fields and Galois groups. The 
approach to the main theorems makes systematic use of the Artin map and 
the Artin reciprocity theorem. We close the chapter with a discussion of the 
Hilbert class field and Artin's reduction of the principal ideal theorem. 

The last chapter is intended primarily for illustration of the concepts 
introduced in the earlier chapters. We study mainly quadratic fields and 
prove a result which goes back to Gauss giving information about the class 
group of a quadratic number field. A few calculations are made to illustrate 
the use of the norm residue symbols. 

The material in this text was used in a year-long course at the University 
of Illinois in 1970-1971. The first three chapters were covered in the first 
semester and the balance in the second semester. 



Chapcer I 

SUBRINGS OF FIELDS 

1. LOCALIZATION 

Let R be an integral domain. This means R is a commutative ring with 
identity having no zero divisors. 

Let S be a subset of R which does not contain zero and which contains the 
product of any two elements in S .  A set satisfying these conditions is called a 
multiplicative set in R.  

1.1 Proposition. There is a ring R,  which contains R as a subring (up to 
isomorphism) and such that each element of S has a multiplicative inverse 
in R, .  

PROOF. Let us first consider the collection of all pairs ( r ,  s) in R x S. Call 
two such pairs ( r , s )  and (9, t )  equivalent if 9s = rt .  We leave as an exercise the 
verification that this is an equivalence relation. Let r / s  denote the equivalence 
class containing ( r , s ) .  By definition of the equivalence class we see that r / s  = 

rt/st for any t in S .  
Let R, = { r / s  I r E R, s E S } .  Addition and multiplication are defined for 

elements of R, by the rules 

r / s  + r'/s' = rs' + r's/ss' 

rls.r'ls' = rr'/ss'. 

One can check that these operations are well defined and R, is a ring. To imbed 

1 



2 1 SUBRINGS OF FIELDS 

R into R, we first fix a particular s E S and use the mapping 

r + rs/s. 

This is a ring homomorphism and is in fact one to one. If we identify r in R 
with any of the (equal) elements rs/s, then we d o  have R E R,. 

If t is in S ,  then l / t  is in R, and t .  l / t  = 1/1, which is the identity in R, .  This 
completes the proof. 

The ring R, constructed in the proof has the following universal property: 
If 4 is a homomorphism of R into a ring Tsuch that every element in $ ( S )  has 
an inverse in T,  then 4 has a unique extension to a homomorphism from R, 
into T. The extended map is defined by 4(r/s) = qb(r)4(s)-'. This kind of 
reasoning shows the ring R, is characterized as the smallest ring containing R 
and inverses for the elements of S.  

Definition. The ring R, is called the localization of R at  S. 

One may verify that R, is also an integral domain. 

EXERCISE 1. Let R and S be as above and let S* = { 1)  u S.  Prove S* is a 

This shows we may assume 1 is in S and the mapping of R into R, may be 

EXAMPLE 1. R = Z = integers, S = { 1, n, n2, . . .} for some fixed nonzero 

EXAMPLE 2. R = Z ,  S = {all positive integers not divisible by 3}, R, = 

EXAMPLE 3 .  R = any integral domain 

multiplicative set such that R, E R,, . 

taken as r -+ r / l .  We shall identify r with r/ l  so R c R, has this meaning. 

integer n. Then Z ,  is the collection of all rational numbers a/n'. 

{a/b I 3 does not divide b}.  

S = R - { O } .  

Then R, is a field (all nonzero elements have an inverse) and we call this the 

We next look for some relation between ideals in R and ideals in R,. 

quotientfield of R. It is the smallest field containing R. 

Definition. An ideal Cp of R is prime if whenever ab belongs to '+$I with a,  b in R ,  
then either a or b already belongs to Cp. We shall exclude the case Cp = R 
always. 

EXERCISE 2. Cp is a prime ideal of R if and only if the factor ring R/Cp is an  
integral domain. 

1.2 Proposition. Let R be an integral domain and S a multiplicative set in 
R.  There is a one-to-one correspondence between the prime ideals of R, and 
the prime ideals of R which have empty intersection with S .  Under the cor- 
respondence, a prime Cp of R is associated with the ideal CpR, in R,. 



1. Localization 3 

PROOF. Let 8 be a prime ideal in R,. From the definition it is immediate 
that 'p = Q n R is a prime ideal of R. Then 'pR, is an ideal of R, contained in 
Q. We show these are equal. Let q/s be any element in 8 with q in R and s in 
S .  Then q = (q /s)s  is in R n 8 = 'p. Thus q/s is in 'pR, since q ( l / s )  = q/s, q in 
'p, I/s in R,. So far we have proved that every prime ideal in R, has the form 
8 = 'pR, with 'p = 8 n R, uniquely determined by 8. Since every element in 
S has an inverse in R, we know 8 n S is empty. Thus 'p n S is empty. 

Now suppose we start with the prime ideal 'p of R which has no elements in 
S.  Let 8 = 'pR,. This is an ideal of R, which we shall prove is prime. Suppose 
a, b are elements in R, with ab in Q, then ab = xis with some x in 'p and some 
sinS.Supposea = r , /s , ,b  = r2/s2withrl ,r , in Rands , , s , i nS .  

We have r1 r2 s = xsl s2 belongs to 'p. Thus one of the elements r , ,  r2 or s in 
'p because 'p is prime. Also s is not in 'p by choice of 'p. Thus r l  or r2 belongs 
to  'p and so a = rl /sl  or b = r2/s2 is in 8. Thus 8 is prime. Now finally we 
prove 8 n R = 'p. If u is in Q n R then u = x/s with x in 'p because Q = 'pR,. 
But u also belongs to R and so x = us implies u or s is in 'p. Since s is not, we 
have u is in '$5. Hence the correspondences '$3 + 'pR, and 8 -+ 8 n R are 
inverses of one another and the proposition is proved. 

EXAMPLE 4. Let 'p be a prime ideal in the domain Rand let S = {r I r not in 
'p} = R- 'p. The definition of prime ideal is equivalent with the assertion that 
S is a multiplicative set. Then R, can be identified with {a/b I a, b in R, b not 
in 'p}. 

This is the most important example of localization. It will be encountered so 
frequently that we shall use the notation R, to denote the localization of R at  
S = R- 'p when '$3 is a prime ideal. Since a prime ideal can neuer be a multi- 
plicative set, this should not cause a conflict. 

Observe that the prime ideals of R which have empty intersection with 
S = R- 'p are those prime ideals contained in '$3. Hence the only prime ideals 
of R, are those contained in 'pR,. Maximal ideals are always prime so 'pR% 
is the only maximal ideal in R,. We summarize these facts. 

1.3 Proposition. If '1, is a prime ideal in R then R, has only one maximal 
ideal; namely P R Y .  

Let R be a domain and 'p a maximal ideal. Show there is an EXERCISE 3. 
isomorphism between the fields R/'p  and R,/'pR,. 

EXERCISE 4. If S is a multiplicative set in a noetherian domain R, then R, 
is also noetherian. 

Rings having only one maximal ideal occur frequently and we give them a 
special term. 



4 1 SUBRINGS OF FIELDS 

Definition. A ring having only one maximal ideal is called a local ring. 

A few properties of local rings will be developed here. 
Let R be a local ring (always with identity) and '$3 be the unique maximal 

ideal. 

Lemma. Every element in R which is not in '$3 has a multiplicative inverse. 
In particular for m in 'p, the element 1 + m is invertible. 

If x is not in 'p then Rxis not in '!$I. Since 'p is the only maximal ideal, 
it follows that Rx = R. There exists a y in R such that yx = 1. 

1.4 Proposition. Let M be a finitely generated R module such that ' p M  = M .  
Then M = (0). 

Corollary (Nakayama's Lemma). Let M be a finitely generated R-module, 
and L a submodule of M such that L +  ' p M  = M .  Then L = M .  

PROOF OF COROLLARY. The equality L+ ' p M  = M implies that every 
coset of L in  M has a representative in $PM.  This means $ l ( M / L )  = M / L .  By 
the Proposition 1.4 it follows M = L. 

Before giving the proof of Proposition 1.4 we recall some facts about 
matrices. 

Let A = [ail be a matrix (size n x n) with all at in some commutative ring. 
The ( iJ )  cofactor is (- 1)'+jccii = b j i ,  where aii is the determinant of the 
(n- 1) x (n- 1) matrix obtained from A by removing the ith row and the jth 
column. The matrix B = lbil is called the adjoint matrix o f A .  Then BA = A B  
= diag{d, ..., d }  with d = det(A). 

Rm, with m , ,  ..., rn, in M .  Since 
' pM = M there exist elements a" in 'p such that 

PROOF. 

PROOF OF PROPOSITION 1.4. Let M = 

m, = C a i r n j .  
j 

Let A be the matrix lavl-I. Then A ( m , ,  ..., m,Jr = 0 is just a restatement of 
(*). Let B =  adjoint of A so that by the above remarks B A ( m , ,  ..., m J =  
(dm,, ..., dmJ = 0 with d = det A .  It follows dM = (0). Now consider the 
expansion of det A .  The term d is a sum of a large number of terms each of 
which is a product involving certain a" except for one term which is (- 1)". 
Thus d = (- l)"+(sum of elements of  'p). By the lemma above, d has an 
inverse in R so that dM = 0 implies M = 0 as required. 

(*I 

2. INTEGRAL DEPENDENCE 

Let R be a subring of the commutative ring R' and assume the identity of  R 
is the identity of R'. 



2. Integral Dependence 5 

Definition. An element b in R' is integral ouer R if there is a monic poly- 
nomial J'(X) in R [ X ]  such that f ( b )  = 0. We say f ( X )  is the equation of 
integral dependence. 

2.1 Proposition. The following statements are equivalent : 

( 1 )  The element b of R' is integral over R.  
(2) R [ b ]  is a finitely generated R module. 
( 3 )  R [ b ]  is contained in a subring B of R' which is a finitely generated R 

(4) There exists in R' an R [b]-module M such that M is finitely generated 

PROOF. (1) --t (2). If  the monic polynomial satisfied by b has degree n+ 1 

(2) 4 (3). Take B = R [ b ] .  
( 3 )  4 (4). Take M = B. Since 1 is in B, y B  always contains y .  
(4) 4 ( I ) .  Let m, ,  . . ., m, be a set of R generators for M .  Let r, be elements 

module. 

over R and the only element y in R [b ]  for which y M  = 0 is y = 0. 

then R [ b ]  is generated by 1,b, ..., b". 

of R such that 

bm, = C r , m j .  
j 

This can be rewritten as 

0 = ~ ( r , - b 6 , ) m j ,  

where 6, = Kronecker delta. If A is the matrix of the coefficients in  these 
equations then (by the same method as the proof of Proposition 1.4) dM = 0 
when d = det(A). This forces d = 0. Consider the polynomial det(X. I -  Iriil) = 
f ( X ) .  The expansion of this determinant showsf(X) is a monic polynomial 
with coefficients in R. Moreover 0 = d = f ( b )  so b is integral over R. 

2.2 Proposition. Suppose b , ,  ..., b, are elements of R' which are integral 
over R.  Then R [b, ,  . . ., b,] is a finitely generated R module. 

Use induction on n. R [ b , ]  is finitely generated by Part (2) of 
Proposition 2.1. Assume that the ring R [b, ,  . . ., 6, - ,I = R" is finitely generated 
over R with generators a l , a 2 ,  ..., a , .  Then b, is integral over R" so R"[b,] is 
generated by 1, b,, ..., b,k (for some k )  over R". Thus the finite set a,b; of 
t ( k +  1) elements generates R [ b , ,  ..., b,,] over R .  

Corollary. The set of all elements of R' which are integral over R is a subring 
of R' containing R .  

PROOF. Suppose x , y  are in R' and are integral over R.  Then the proposition 
just proved says R [ x , y ]  = B is a subring which is finitely generated over R .  
Since x fy and xy  are in B we see by Part (3) of Proposition 2.1 that x f  y, xy are 

PROOF. 
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integral over R.  Thus the set of integral elements forms a subring. It is clear 
that R is integral over R.  

A situation frequently encountered involves an integral domain R contained 
in its quotient field K .  The set of all elements of K integral over R is a subring 
called the integral closure of R.  The domain R is said to be integrally closed if 
every element in the quotient field which is integral over R is already in R. 

One way to obtain integrally closed domains is to start with any domain R 
and let R' denote the integral closure of R (ia its quotient field). It follows 
from the next proposition that R' is integrally closed. 

2.3 Proposition. If R E R' E R" are rings with R' integral over R and R" 
integral over R', then R is integral over R. 

PROOF. Take any b in R". There is a polynomialf(X) = X " + r ,  X " - ' + . . .  
+rn with ri in R' such that f (b)  = 0. Then by Proposition 2.2 R [ r l ,  ..., rn] = B 
is a finitely generated R module and so B[b]  is also a finitely generated R 
module. By Part (3) of Proposition 2.1, b is integral over R. 

EXAMPLE 1. Let R be any unique factorization domain (UFD). Then R is 
integrally closed. 

To  prove this we suppose x , y  are in R and x / y  is an element in the quotient 
field which is integral over R. It is necessary to prove x / y  is in R.  There is a 
relation 

n -  1 

(x/YY = 1 ri(x/y)i  
0 

with ri in R.  Because R is a UFD we may suppose at the start that x and y 
have no common factor apart from units. 

Now multiply the equation above by y" and find 

This shows y divides X" and so y must be a unit of R for otherwise a prime 
divisor of y also divides x ,  contrary to assumption. So x / y  is in R since y -  ' is 
in R.  

EXAMPLE 2. Any PID (principle ideal domain) is integrally closed because 
it is a UFD. 

EXAMPLE 3. If R is integrally closed in its quotient field and if S is a multi- 
plicative set in R, then R,  is integrally closed. 

The proof of this uses computations similar to those above. We suppose u 
is an element of the quotient field which is integral over R,. Thus u is the root 
of a monic polynomial with coefficients in R, . We find a common denominator 
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for all these coefficients so that u is a root of 

X" + ( r , / s ) x " - l  + 1 . .  + (VJS). 

Multiply this by s" and discover that su is the root of a monic polynomial with 
coefficients in R.  Thus su is in R because R is integrally closed. Finally u = su/s 
is in R, as required. 

Prove that the integral closure of Z in the field Q(&) is just 

EXERCISE 2. Prove the ring Z[&]  is not integrally closed. In fact +( 1 + Js) 
is an integral element in the quotient field. 

EXERCISE 3. If K is a field and { R i }  is a family of integrally closed subrings 
of K ,  then the intersection n Ri is also integrally closed. 

The procedure for determining whether or not an element is integral over R 
might generally be a lengthy one since there is no clear way to select the poly- 
nomial which expresses the integral dependence. The next proposition shows 
a circumstance where this procedure is simplified. 

Suppose R is a domain with quotient field K .  

2.4 Let b be an element in an extension field of K. Letf(X) be 
a monic irreducible polynomial in K [ X ]  having b as a root. If b is integral 
over R then the coefficients off(X) are integral over R.  If R is integrally closed 
then b is integral over R if and only iff(X) E R [ X ] .  

PROOF. Extend the field from which b is taken to a splitting field off(X) 
over K .  Let b , ,  ..., b, be all the roots with b = b,, say. 

Suppose b is integral over R andg(X) is the equation of integral dependence. 
Sincef(X) is irreducible and has a root in common with g(X), it follows that 
f ( X )  dividesg(X) in K [ X ] .  Hence the roots b,, ..., b, off(X) are also roots 
o f g ( X ) .  Sob,,  .,.,b,, are all integral over R. I t  follows that the Coefficients of 
f ( X )  = ( X -  6, )  ... ( X -  b,) are integral over R .  

These coefficients belong to K so when R is integrally closed we seef(X) is 
in  R [ X ] .  

This shows that one can test for integral dependence of an element by looking 
at its minimum polynomial over the quotient field. 

EXERCISE 4. Let d be an integer not divisible by the square of any prime. 
Show that the integral closure of Z in Q($) is 

and 

EXERCISE 1. 
z+zJr. 

Proposition. 

Z [ J d ]  = z + Z J d  if d = 2 ,3  mod4, 

if d = 1 mod4. 
2 
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3. DISCRETE VALUATION RINGS AND DEDEKIND RINGS 

Definition. A ring is called a discrete valuation ring (DVR) if it is a principal 
ideal domain with only one maximal ideal. 

Let R be a DVR and let 7~ be an element such that 1, = Rn is the unique 
maximal ideal. 

3.1 Elementary Properties 
(i) R is a noetherian ring. (PIDs are noetherian.) 

(ii) Every nonzero element of R has the form unk for some nonnegative 
integer k and some unit u in R.  

This follows at once because R is a UFD and hence can contain only 
one prime element up to unit multiples. 

(iii) Every nonzero ideal has the form Rnk for some k .  This follows from 
(ii) and the fact that R is a PID. 

(iv) R is integrally closed (because it is a UFD). 
(v) R has only one nonzero prime ideal [immediate from (iii)]. 

Definition. A ring R is called a Dedekind ring if i t  is a noetherian integral 
domain such that R, is a DVR for every nonzero prime ideal 1, of R .  

If R is a PID then R is a Dedekind ring. EXAMPLE. 

3.2 Elementary Properties of a Dedekind ring R 
( I )  Every nonzero prime ideal of R is a maximal ideal. 

Suppose 13, c v2  are nonzero prime ideals, Fp, # !$I2. Then Proposition 
1.2 implies PI R,, G 'p2 R,, are distinct prime ideals. Since R,, is a DVR 
there can be only one prime ideal. It follows that no chain 1,, c g2 can exist 
in R.  

(2) If S is a multiplicative set in R then Rs is a Dedekind ring. 

A prime ideal of R, has the form V R ,  for some prime ideal 1, of R.  One 
can verify that 

so the localization of R, at ?)R, is also a DVR. 
The goal of this section is to obtain a factorization theorem for ideals in a 

Dedekind ring. It need not happen that elements have unique factorization but 
we will prove that ideals have unique factorization as a product of prime ideals. 

We begin with a very useful tool that can be applied in many situations. 

3.3 ChineseRemainderTheorem (CRT). Let B be a ring with identity, 
Q,, ...,Q, ase tof idea lssuchtha tB=Qi+Qjfor i# j .  L e t 5 =  nQ, .Then  

R,  2 ( R S ) , R s  

B / 3  S B/D,  0 ... 0 B/Qn. 
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PROOF. If we replace B and the Qi by 813 and Qi/3 it will be sufficient to 
prove the theorem under the assumption that 5 = (0). Suppose first n = 2 so 
Q, +Q, = Band Q, Q, = (0). We map B to the direct sum B/Q, 0 B/Q2 
by 

b -+ (b+Q,,b+Q,). 

This is a ring homomorphism with kernel Q, n Q, = (0). It must be shown 
that the map is onto the direct sum. Since Q, + 0, = B there exists elements 
qi in Qi such that q ,  +q2 = 1. Then 

41 4 ( q i + Q i , q i + Q J  = (O,l-q,+Qz) = ( O , l + Q d .  

Thus Bq, maps onto (0, B/Q,). Similarly Bq, maps onto (BIDC1,, 0) so the map 
is onto in the case n = 2.  

Now suppose n > 2 .  Let Q,-, n Q,, = QA- and let Qj = Qj' f o r j  < n-  1. 
The first step is to show that induction can be applied to the n- 1 ideals Qj'. 

Clearly n Qj' = Qi and Qi'+ Qj' = B if i , j  are both # n - I .  It is necessary 
to show 

Q A - , + Q j ' = B  for j # n - I .  

We have B = B. B = (Q,,+Qj)(Qn- +a,) c Q,,Q,- , +Qj .  It is always true 
that Q,,Q,- I G 8, n Q,,- , so 

B G Q;-l + Qj ' .  

Equality must follow so by induction we have 

B z B/Q1' @ *.. @ B/QA-l. 

In  the ring B/Q;- the two ideals Q,- ,/Qk- , and Q,,/Q;- have sum equal to 
the whole ring B/QA- , and intersection equal to zero. By the case n = 2 we 
get B/QA- I 2 B/Q,- , @ B/Q, and so the theorem follows. 

3.4 Theorem (CRT for modules). Let B, Q, , . . . , Q,, ,3 be as in Theorem 
3.3. If M is a B-module then 

M/3M Z M/QI M @ .*. 0 M / Q , M .  

PROOF. We may prove the theorem under the assumption that 3 M  = (0). 
Let ui  be some element of B which maps onto (0, ..., 0, l,O, .. ., 0) in the ;SO- 

morphism of Theorem 3.3. Here the 1 is in the ith position so ui is in Dj for 
j # i and ui-  1 is in  Qi .  Consider the homomorphism from M to u i M  which 
sends m to u,m. The kernel consists of all m for which uim = 0. For such an 
element we have m = (1  - ui) m is in Qi M .  On the other hand ui Qi M c 5 M  = 
(0). Thus ui M E MfQ, M .  To complete the proof it is only necessary to show 
u1 M +  ... + u, Mis a direct sum equal to M .  One easily sees the sum equals M 
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because u1 + .+. + u, = 1 modulo 3 and since 3 M  = (0) we have m = u1 m + ... 
+ u, m for all m in M. 

Now suppose C uimi = 0. We must show each uim, = 0. F o r j  # i we have 

U j U i M  s 3M = (O), 

so 0 = u j  C uimi = uj  uj m j .  From this equation it follows that 

u j m j  = ( 1  - u j ) u j m j  E Q j u j M  = (0). 

This completes the proof. 

following. 
A little more can be said in the context of Theorem 3.3. Namely we have the 

3.5 Proposition. Let B , Q , ,  ..., Q,,3 be as in Theorem 3.3. Then 3 = 
Q 1 Q 2 * * * Q , .  

PROOF. Use induction on n. Suppose n = 2. There exists ui in Qi with 
u,  + u, = 1. Now for q in Q, n Q2 we have q = qu, +qu,. The element qu, is 
in Q, Q, and qu, is in Q, Q, so q is in Q, Q,. Thus Q, n Q, E Q1 Q,. The 
reserve inclusion is immediate because the Qi are ideals so the result holds for 
two ideals. Now suppose n > 2. Let QA-, = Q,-, n Q,. By the case n = 2 
we have also QA-, = Q n - ,  Q,,. We saw in the proof of Theorem 3.3 that 
induction can be applied with the n- 1 ideals Q,, . . . , Q a - 2 , Q A - , .  Then we 
have 

n n 

1 1 
= Ql n n Q,-, n Q;-, = Q, ...Q,-,Q;-, = nQi 

and this completes the proof. 
Now let R be a Dedekind ring and 21 a nonzero ideal of R.  We shall study 

the factor ring R/2L 
Observe that the prime ideals in R/% are quotients '$I/% with 'p a prime ideal 

of R containing 21. Since nonzero primes in R are maximal ideals we see that 
all prime ideals in R/91 are maximal. Also R is a noetherian ring so R/W is also 
a noetherian ring. We shall prove some facts about rings satisfying these 
conditions. 

In what follows we let B denote a noetherian ring in which all prime ideals 
are maximal. The ring R/% = B satisfies this condition. 

3.5 Lemma. Every ideal in B contains a product of prime ideals. 

PROOF. This proof uses only the fact that B is noetherian. If the lemma is 
false there is an ideal J which is maximal with respect to not containing a 
product of prime ideals. In particular 3 itself is not prime so there exist elements 
x and y with xy in 3 but x,y  both outside J. Let U = B x + J ,  '1) = By+J. 
Then U and '1) are both ideals larger than 3 so each one contains a product of 
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prime ideals. But U'11 s 3 so 3 contains a product of prime ideals. This 
contradiction shows no such 3 can exist. 

Apply this to the zero ideal of B. 

3.7 Corollary. There exist distinct prime ideals P I ,  . . . , 'p, and positive 
integers a , ,  ..., a, such that 

+ 01 ... s an PI V n  = (0). 

Our next object is to apply CRT to these but first we must verify the 
hypothesis of Theorem 3.3.  

3.8 Lemma. If 'pl, Cp2 are distinct maximal ideals of B then PI"+ VUzb = B 
for any integers a, b > 0. 

V,"cannot becontained in (u2 unless 'pl = 'pz. Thus 'p,"+'p, = 

B.  Suppose for some integer c 3 1 we have 
PROOF. 

+ 132 '  = B. 

Then Cp2' = 'p2'B = 'p2'('pI"+Cp2) s l,l"+'pi". SO 

B = CpI"  + Cp2' E Cp1" + ('pI"+'p;") = 1 3 1 "  + 'p;". 
The result follows. 

3.9 Lemma. Let $3 , , . . . , Cp, be distinct prime ideals such that 

(0) = 'p;t ..' 'p:. 

Then 

B Z B/Cp;' Q ..* Q BlCp;". 

PROOF. Each 'p, is maximal so Lemma 3.8 implies that CRT can be applied 
to give 

B/,7 Z B/Cp;' Q ... Q B/?):' 

when 3 = n 

3.10 Corollary. 

We will be done if 3 = (0). 
By Proposition 3.5 we see 3 = n Cpf' = (0) so the proof is complete. 

The ideals 'pl, ..., V,, are all the prime ideals of B. 

One checks easily that 'p,/'$fi is the only prime ideal in B/'pf' and 
the only ideals in a direct sum B ,  @ ... Q B, are direct sums 2, @ ... 0 2, of 
ideals 2, in the ring B, = B/Cp:. The ideal 2, @ '.' Q 2, is prime if and only i f  
B,/Zl @ ... 0 B, /2 ,  is an integral domain. It follows that 2, = B, for all but 
one indexj and 2, = 'p, for the remaining index. 

It follows now that there exist only a finite number of prime ideals of R 

PROOF. 
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which contain 2f (namely the primes which map onto the 'pi in B) and also 2f 
contains a product of these primes. Our goal is to show in fact that 2f is equal 
to a product of primes. To get this it is necessary to use some additional 
information. Up to now we have used only that primes of R are maximal 
ideals but we have not used that R,  is a principal ideal domain when 'p is a 
nonzero prime of R. We shall bring this into consideration shortly. 

3.11 Lemma. Let 'p be a prime ideal of R and a be a positive integer. Then 

PROOF. The map f ( r + ' p " )  = r +  'p''R, from RIP" to R,/VR,  is a ring 
homomorphism which is one to one. We must showfis onto. Take any r / s  in 
R, with s not in  $1, but r in R .  Since Cp is a maximal ideal it follows that 
Rs+ 'p = R .  By the method of proof used in Lemma 3.8, one finds Rs+ 'pa = 

R .  Thus there exists c in  R and q in 'pa with cs+q = 1. Then f ( r c +  'pa) = 

rc+V"R,  = r (I / s -q /s )+'p"R,  = r/s+'paR, .  Thus,fis onto as required. 

3.12 Corollary. Every ideal of Rl?)" is a power of '$/'pa. Moreover 'p/'p" is 
a principal ideal. 

PROOF. In view of Lemma 3.1 1, we may replace R by R,  in order to prove 
these assertions. But R ,  is a DVR so the statements follow from Property 
3.1 (iii). 

3.13 Let PI be a nonzero ideal of R and let '$I,, ..., 'p, be all the 
prime ideals of R which contain V[. Then 91 = 'p';' ... 'p2 for some positive 
integers a,. 

... '$2 E 21 for some positive 
integers 4 .  

R/'p" E RqI(P"RI. 

Proposition. 

PROOF. We have seen above that 

In the factor ring 

B = R/Vpbl' ... V:n g R/v!l @ ... @ RIVb,, 

the ideal 91 has image which is necessarily of the form 

' p ' ; l / y q l  0 0 qp/'p>. 

for some positive integers a, because of Corollary 3.12. The ideal 'p;! ... 'p:" 
has the same image so PI = 'p';' ... '$2 because both contain 

3.14 Theorem. Let PI be a nonzero ideal in the Dedekind ring R. Then 
21 = 'p';' ... 'p: with 'p,, . . ., 'p, distinct prime ideals uniquely determined by 
2f and certain positive integers a,, ,..,a, uniquely determined by 'u. 

Every thing except uniqueness has already been done. The primes 
'+$I,, . .., 13, are uniquely determined by 21 because they are all the primes of R 

'$2. 

PROOF. 
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which contain PI. The integer ai is uniquely determined by the condition that 
ai  is the least power of the maximal ideal of R,,/2lR,, which is zero. That is . .  . .  
PIR,, = 'pY1RQi. 

As an application of Theorem 3.14, we can prove the next result. 

3.15 Theorem. 
ideals, then R is a principal ideal domain. 

If R is a Dedekind ring with only a finite number of prime 

PROOF. Let PI,  ..., 'p, be all the nonzero primes of R.  The first step is to 
find an element xi which is in 'pi but not in 'pi2 and also not in V j  fo r i  # i. To 
produce x 1  we let x, be an element of R which maps onto (n , l ,  1, . . . , I )  in 

where n is a generator of 'p,/'p12. Such an x1 exists by CRT. Clearly it satisfies 
the required conditions. Similarly select xi .  Now the ideal Rx,  is contained in 
Vi but not in any other prime. Moreover Rxi is not in Vi2. Hence the only 
factorization possible is Rx,  = 'pi. Thus every prime is principal. Since each 
ideal # O  is a product of primes, each ideal is also principal. 

EXERCISE. I f  2l is an ideal of R ,  we wr i t ex ry  mod91 to mean x-y is in PI. 
Let 'p,, ...,'p, be distinct prime ideals # ( O )  in  the Dedekind ring R ;  

a , ,  ..., a, are positive integers; y , ,  . . . ,y ,  are elements of R.  Show there exists an 
element x in R with x = y ,  mod 'pyl for i = 1,2, .. .,n. 

Now that the structure of ideals is known, it will be practical to have several 
ways of identifying Dedekind rings. We offer two alternate characterizations 
of these rings. 

3.16 Theorem. 
following are equivalent statements. 

Let R be an integral domain which is not a field. The 

(a) R is a Dedekind ring. 
(b) For each maximal ideal 'p, R,  is a DVR and for each element a # 0 

(c) R is noetherian, integrally closed and each prime ideal # (0) is a maximal 
there exists only a finite number of prime ideals containing a .  

ideal. 

PROOF (a) --t (b). If R is Dedekind, then R, is a DVR and by the remark 
following Corollary 3.10, there exist only a finite number of prime ideals 
containing Ra = PI. 

Let (0) # Q be a prime ideal. If Q is not maximal then c1 c '$ 
with 'p maximal. It follows that Q R ,  is a nonmaximal prime ideal in R ,  SO 

R,  is not a DVR. Thus Q is maximal. Next we show R is integrally closed. We 
need an elementary fact before proceeding. 

(b) -+ (c). 
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3.17 Lemma. Let R be any integral domain. Then 

R =  n R,, 
9, max 

where the intersection taken over all maximal ideals. 

PROOF. The inclusion of R into the intersection is immediate. Suppose x 
is in R, for every maximal ideal $. We may write x = a / b  with a, b in R.  Let 

2l = { Y E R I  Y a E R b ) .  

2l is an ideal of R. For any maximal ideal $ we can find r , s  in R with s not in 
$ such that x = a / b  = r/s.  In particular sa = rb so s is in 2l. This means 2l is 
not contained in $. Hence 2l is not contained in any maximal ideal and so 
(II = R.  Thus a belongs to Rb and a/b = x belongs to R.  

Now we return to the proof of (c). Each R, is a DVR, so R, is integrally 
closed. By Exercise 3 on page 7, R = n R,  is integrally closed. 

The last assertion to be proved is that R is noetherian. To prove this we shall 
need another lemma. 

3.18 Lemma. Let R be any domain and let 21 c 8 be two ideals of R such 
that 2lR, = dR, for all maximal ideals $ of R. Then PI = d. 

Let b be an element of b. For each maximal ideal '$3, we have 
bR, E 2lR,. So there is some a in 2l and some s in R with s not in $ such that 
b = a/s. The ideal of R defined by 

PROOF. 

{ Y E R I  b Y E W  

must contains and so it does not belong to g. This ideal is not in any maximal 
ideal so it is all of R .  Thus b is in 2l as required. 

Now to complete the proof of (c) it is necessary to prove each ideal is finitely 
generated. We can prove even more. Namely, each ideal requires at most two 
generators. 

3.19 Let R be a domain which satisfies Condition (b) of 
Theorem 3.16, and let PI be a nonzero ideal of R. For any a in PI with a # 0 
there exists b in 2l such that Ra+ Rb = 2l. 

Let $,, ..., $, be all the prime ideals of R which contain a. Each 

Proposition. 

PROOF. 
localization R,, is a PID, so there exists ci with 

WR,, = c iR, , .  

We can write ci = XIS with x in CU and s in R and observe that ci R,, = xR,, . 
So we shall assume that ci is in 21 to start with. We have enough information 
already to show 2l is finitely generated. Consider the ideal 6 = Ra+ Rc,  + ... 
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+ Rc, which is contained in 2l. If 'p is a prime ideal and a is not in 'Q then I/a 
is in R, so QR, = 2lR, = R,. If 'p is one of the 'pi which contain a, then ER, 
contains ci so again QR, = 2lR,. By Lemma 3.18 it follows that Q = 2l. To 
complete the proof we need to find b. Select b in 2l so that under the iso- 
morphism of Theorem 3.4 

2 l / ' p 1 . . .  'p,% E 2 l / ' p 1 %  @ .*. 0 %/q3"2lU, 

thecosetb+'p, .-.'p,'iXmapsonto then-tuple(c, +'p1 %, ..., c,+'Qn21).Then 
b- ci is in 'p i% and certainly Ra+ Rb c 2l. We show equality by the same 
technique as above. Let D = Ra+ Rb. For a prime 'p not containing a, 
DR,  = 2lR, = R,. If 'p is the prime '$Ii then DR,+'pP[R, contains 
b+(ci-b) = c i .  Thus this sum contains ci R, = %R,. On the other hand, 
3 c 91 so the sum is contained in %R,. It follows 

DR,  + 'p%R, = %R,. 

The hypothesis of Nakayama's Lemma (Corollary to Proposition 1.4) is 
satisfied: R, is local, 9IR, is a finitely generated module, DR,  is a submodule. 
The above equation implies DR,  = PIR,. By Lemma 3.18,% = D = Ra+ Rb. 

This completes the proof that (b) 4 (c) in Theorem 3.16. We begin the proof 
that (c) 4 (a). 

Let 'p be a maximal ideal of R.  Then R, is a noetherian local ring with 'pR,  
the only nonzero prime ideal (because primes in R are maximal). Moreover R,  
is integrally closed because R is integrally closed. It remains to show these 
conditions imply R,  is a PID. 

3.20 Proposition. Let R be a noetherian, local, integrally closed domain 
with 'Q its only nonzero prime ideal. Then R is a DVR. 

PROOF. Select any a # 0 in 'p and let M = R/Ra.  For each m in M let 

ann(m) = { r  E R I rm = O}. 

Since R is noetherian there is a maximal element in the collection 
{ann(m)l m # O ,  mE M } .  Let b be an element of R such that D = 

ann(b+ Ra) is such a maximal element. D is nonzero because a # 0 and a is 
in D. We show now D is prime. If D is not prime there exist elements x , y  not 
in D with xy in D. Now y(b+ Ra) # O+Ra because y is not in D. Then 
ann(yb+ Ra) contains both D and x which is against the maximal choice of D. 

Thus D is prime and since R has only one prime # O  it follows that the 
maximal ideal '$3 is the set of all elements which multiply b into Ra. That is 
q3b c Ra but b is not in Ra. 

We now carry through several steps which lead to the conclusion of the 
proof. 
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Step 1 ,  b/a is not in R. 
If it were then b is in Ra contrary to b+ Ra # O+ Ra. 

Step 2. 'p = R(a/b).  
The inclusion v b  c Ra means Vbla is an ideal in R. If v b / a  c 'p then by 

Part (4) of Proposition 2.1 it follows bla is integral over R. Since R is integrally 
closed we get bla is in R contrary to Step I .  Thus 'pb/a = R and 'p = Ralb. 

We now know the maximal ideal is principal. Let us write 'p = Rn for short. 

Step 3. 
Let 21 be a nonzero ideal. Consider the chain 

Every ideal is principal. 

c ax-1 c "n-2 E ...* 

If Q I X - ~  = %n-k-'  then n-' sends into itself so x-l is integral over R. 
But this is impossible since x-' cannot be in R.  

Since R is a noetherian ring, the part of the chain which falls into R must 
be finite. Let Birr-" c R, QIn-"-' $ R. If 'ux-" E 'p = Rx then QIn-"-' c R 
so it must be 'Iln-" = R. Thus 21 = %n" which completes the proof. 

4. FRACTIONAL IDEALS AND THE CLASS GROUP 

Throughout this section R denotes a Dedekind ring and Kits quotient field. 

DEFINITIONS. (1) A fractional ideal of R is a nonzero finitely generated 

(2) 

EXAMPLES. If y is a nonzero element of K ,  then Ry is a fractional ideal. The 

Any nonzero ideal of R is a fractional ideal. 

REMARK. 

R-submodule of K .  
If 91 is a fractional ideal, 9X-l is the set { x  E KI x91 c R}. 

inverse (Ry)-' is Ry- ' .  

If !Dl is a fractional ideal then so is 91-'. It is clear that 9 1 - '  is 
an R-submodule of K .  It is necessary to show it is finitely generated. Select any 
m in 'u1 with m # 0. Then !Dl-'m E R so 91-' c Rm-'. Certainly Rm-' is a 
finitely generated R module and because R is noetherian, the submodule W- ' 
is also finitely generated. 

Suppose 91 and % are fractional ideals. The product 9J% is the collection of 
all elements of the form Emmini  with mi in 91, n, in %. If { x j }  and { y k }  are sets 
of generators for 9JI and a, respectively, then '9JWl is generated over R by the 
products x j y k .  Hence !Dl% is also a fractional ideal. 

Definition. A fractional ideal W is invertible if 9PI.N- = R. 

because (Rx)(Rx)-' = Rxx- ' = R.  
EXAMPLE. The principal fractional ideal Rx is invertible for any x in K 
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EXERCISE. Multiplication and inversion behave properly with respect to 
localization. That is, if 'p is a prime ideal of R and (Xn a fractional ideal of R ,  
then !BIR, is a fractional ideal of R,  and ('33IR,)- = '331- ' R, . Also ("I) R,  = 

(91R,)(%R,) for '33331,% fractional ideals of R. 

4.1 Lemma. A prime ideal of R is invertible. 

PROOF. Let 'p be a nonzero prime of R.  Then '$'p-' = 'u is an ideal of R .  
For any maximal ideal Q we know R,  is a PID so 'p R ,  is principal and hence 
is invertible. Thus %n = ('p'p-')a = 'pne'pi' = R,. This holds for all 
maximal Q, so by Lemma 3.18, 'u = R as required. (In this proof we have 
written 21, for 2IR, .) 

When 'JJZ is a fractional ideal and n a positive integer, we shall write '331-" to 
mean (91- I)". 

4.2 Theorem. Any fractional ideal 9331 can be uniquely expressed as a 
product '$3:' 'p: with 'p,, ..., '$3, distinct prime ideals of R and a , ,  ..., a,, 
integers (positive or negative). 

PROOF. Let 9331 be a fractional ideal with generators m , ,  ..., m k .  Each mi is 
in K so there is a "common denominator" s in R such that mis is also in R .  It 
follows that '3ns E R. There exist factorizations of the ideals Rs and 9lls as 

RS = fl Qljhj, 9 1 s  = fl 'p;', 
where the 'pi and the Q, are the prime ideals of R.  It follows !JIIQ!l ... Q: = 
'pyl ... 'pu;". We have seen in Lemma 4.1 that prime ideals are invertible so we 
obtain 

$JJZ = fl ' p ? i .  fl QJ:bj. 

This establishes the existence of a factorization of !BI as a product of prime 
ideals with integral exponents. Now we obtain uniqueness as follows. Suppose 

91 = fl 'p?' fl QJYbJ = fl X f i  n gJyd-' 

where '$I, Q, X, 2) denote prime ideals and the a i ,  b j ,  c i ,  d j  are positive integers. 
Then we have fl 'p;' n +$J = n X f i  n Qp. This is a factorization of ideals in 
R so the uniqueness statement for ideals in R can be used to get the uniqueness 
of the expression for '331. 

The discussion to this point shows that the collection of all fractional ideals 
forms a group under the rule for multiplication of fractional ideals described 
at the beginning of the section. We denote this group by I ( R )  and call it simply 
the ideal group of' R.  The uniqueness statement of Theorem 4.2 implies that 
I (  R )  is a free abelian group with the collection of nonzero prime ideals as free 
generators. Generally, this is an infinitely generated group. 
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There is a subgroup of particular interest. Namely the collection of all 
principal fractional ideals Rx with x in K forms a subgroup of I (R)  which is 
denoted by P(R) .  While I (R)  and P ( R )  may be very large Abelian groups, the 
quotient can be very small. We let 

C ( R )  = I (R) /P(R)  

and call C ( R )  the class group of R. 
The class group is an invariant of the ring R. In many cases R itself is 

canonically selected from its quotient field K in which case C ( R )  may be 
viewed as an invariant of K. 

For example, let K be a finite dimensional extension of the rationals and let 
R denote the integral closure of Z in K. Then C ( R )  is an important invariant 
of K. We shall prove later that C ( R )  is a finite group in this case. We refer to  
C ( R )  as the class group of K and its order is the class number of K. 

It is not generally true that C ( R )  is finite for arbitrary Dedekind rings. 

EXERCISE 1. For a Dedekind ring R, C ( R )  has order one if and only if R 
is a PID. 

EXERCISE 2. Let R = Z + Z 6 5  = integral closure ofZ  in Q ( c 5 ) .  R is 
a Dedekind ring (by Theorem 6.1). Show that R is not a UFD (and so not a 
PID) because 

3.7 = (1 + 2J-5)(1 - 2 F 5 )  

gives two essentially different factorizations of 21. Prove this fact and then find 
an ideal of R which is not principal. (It happens in this case that C ( R )  has 
order 2.) 

5. NORMS AND TRACES 

Let K be a field and L a finite-dimensional extension of K. Each element 
x in L gives rise to a function 

rx : y -, yx 

sending L into itself. We may regard L as a finite-dimensional vector space over 
K and then rx is a linear transformation. If we select a basis u , ,  . . ., u, for L over 
K ,  then r x  has a matrix representation laU[, where the aii are in K and satisfy 

u i x  = C a U u j .  

The mapping of L defined by sending x to laUl is called the regular representa- 
tion of L over K. This is a monomorphisrn of L onto a subfield of the K-algebra 
of n x n matrices. The regular representation depends upon the choice of basis. 
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If another basis is selected and if U is the change of basis matrix, then the 
regular representation determined by the second basis sends x to U[aiil U - ' .  
The two functions trace (aii[ and det [ail are independent of the particular 
basis and depend only upon the linear transformation r,, and so only upon x .  
We use this observation to see that the maps in the following definition depend 
only upon L and K and not upon the particular basis. 

Definition. The trace map from L to K is the function TL/K ( x )  = trace (r,). 
The norm map from L to K is the function N L j K  ( x )  = det (rx) .  

5.1 Properties of the Norm and Trace. Let x,y E L and a E K. 

(9 TL,K(x+Y)  = TL/K(x)+TL/K(Y); 
(ii) T,./K (ax)  = aTL/K (XI ; 

(iii) N L / K  (w) = N L / K  ( X I  N L / K  ( Y )  ; 
(iv) N L / K  (ax)  = a" N L / K  (X I .  
These are easily verified if we simply observe rxy = r,ry and r x + y  = rx+ry 

along with the fact that for a in  K, ra has a scalar matrix with a on the diagonal. 
We shall also require the following transitivity property of the trace. Let 

K c E c L be a chain of finite-dimensional extensions. 

(v) 

PROOF. 

For x in L, TL/K(x) = TE/K(TL/E(x)). 

Let a,, ..., ak be a basis for E over K and b , ,  ..., b, a basis for L 
over E. For x in L and y in E let 

xbi = C B i i ( x ) b j ,  yn, = C c t i i ( y ) a j .  

Then 

TE/K(Y) = C " i i ( y ) ,  TL/E(x)  = CPi i (x ) *  

It follows that 

TE/K(TL/E(x)) = C C ~ i i ( P j j ( x > ) *  

The products ai bj give a basis for L over K and 

Thus TL/K(x)  = ~ ~ a i i ( P j j ( x ) )  as required. 

The corresponding property of the norm is more complicated to verify in 
this way so we shall postpone it until later when it can be proved using Galois 
theory. 
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The characteristic polynomial of the element x in L is defined to be 

f ( t )  = detItl-r,l. 

This is a monic polynomial and we know from matrix theory thatf(r,) = 0. 
This impliesf(x) = 0 becausef(r,) multiplies elements of L byf(x). The coef- 
ficient oft"-' is -TL/K(x) and the constant term is ( -  1)" NLIX(x). 

The trace map is used to define a bilinear form.from L x L to K by the rule 
(x, y) = TLIK(xy). The bilinear properties are easily verified and also the 
symmetric property ( x ,  y) = ( y ,  x). 

Recall that a symmetric bilinear form is called nondegenerate if (L ,  x) = 0 
implies x = 0. 

This idea is important because it characterizes separable extensions. 

5.2 Theorem. The finite-dimensional extension L of K is separable if and 
only if the bilinear form ( x , y )  = TLIK(xy) is nondegenerate. 

PROOF. Assume L / K  is separable. There is an element 0 in L such that 
L = K(0) .  Then 1,0,, , ., en-' is a basis for L over K and 

1 a, ei) = 1 a, (x, el). 

So (x, L) = 0 if and only if (x, 0') = 0 for i = 0,1, ..., n- 1. Our problem is to 
prove that x = 0 under these conditions. Let x = 1 b, 8'. Then 

(*I (x, ej) = 1 b, (ei, e j ) .  

Let D denote the matrix ldiil with dii = (0'-',@-'). The equation * and the 
assumption (x, L)  = 0 implies 

(bo,bl ,  ..., b,,-,) D = (O,O, ..., 0). 

We shall prove D is nonsingular so after one multiplies by D-' it follows that 
each bi = 0. Thus x = 0 as required. 

The separability of L is crucial in the proof that D-' exists. 
Letf(t) be the (monic) minimum polynomial of 0 in K .  Let E be any field 

containing L in whichf(t) splits. Then 

f ( t )  = (t-e ')(t-62). . .( t-e,)  

with 0 = 0 ,  and all 0, in E.  The separability of L implies 0, # O j  for i # j .  
The characteristic polynomial of 0 over K has degree n = [ L :  K ]  and is 

divisible by,f(t) because 0 is a root of its characteristic polynomial. It follows 
that f(t) is both the characteristic and minimum polynomial of 0. From the 
product decomposition off(t) we find the coefficient o f t - ' .  It follows that 

TLIK(@ = 81 + d 2  4- ... + 0,. 

We want a similar formula for TLI,(Ok). The linear transformation re has the 
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distinct characteristic roots O,, . . ., en in E. Hence the matrix for re (with respect 
to some basis of L over K )  can be diagonalized over E. So there exists U such 
that 

U - ' r 0 U  = diag{e,,8, ,..., en}. 

Raise this to the kth power and it follows that 

U-lrgkU = diag{OIk, ..., e,'}. 

Take traces to get T L / K  (0') = e l k  + + 8:. We shall return to this formula. 
Now let V = V(B,, . . ., 0,) denote the matrix 

1 1 * . a  1 

el e, ... e n  

el* e 2 2  ... e n 2  

e n - 1  e n - 1  ... e;-l 
1 2 

We have thus VV'  = D. Since V and V' have the same determinant, it follows 

det D = (det V)'. 

The matrix V is a van der Monde matrix and 

The ei are distinct so det V # 0 and this proves D-' exists and consequently 
shows the form is nondegenerate. 

For the converse we suppose L/K is not a separable extension. Then the 
characteristic of K is a prime p # 0 and there is a subfield F of L containing 
K such that 

(a) ( L : F ) = p " #  1, 
(b) for each x E L, x p  is in F .  

We prove ( L , x )  = 0 when x is an element in L but not in F. Start with any 
element y in L.  Suppose first xy 4 F. Then the minimum polynomial of xy over 
F is P- a for some a in F .  The characteristic polynomial of xy over F must be 

( t P  - - 1. 

This means TLIF(xy) = 0 and by transitivity of the dace, ( y ,  x )  = TL/K(xy) = 

TF/K (TL/F (xY) )  = 0. 
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Now suppose xy E F. Then 

TL/F(xY) = X.YTL,,(~) = P"W = 0 

and just as above ( y , x )  = 0. In all cases ( y ,  x) = 0 and the form is degenerate, 
as we had to show. 

We turn next to  the situation most frequently encountered: the case where 
a Galois group is used to describe the norm and trace. 

Assume L / K  is separable and F is a normal, separable extension of K con- 
taining L. Let G denote the Galois group of F / K  and H the subgroup which 
leaves L fixed element-wise. Suppose 

a1 H, ..., a,H 

are the distinct cosets of H in G. Notice that n = ( L :  K) and the ai are the 
distinct imbeddings over K of L into a normal extension of K. 

5.3 Theorem. For each 0 E L we have 

(a) TL,K (0) = a1 (e) + ..- + a,(e), 
(b) NL/K(@ = 61 (e)a,(e)..*a"(e). 

PROOF. Let q(t)  be the minimum polynomial of 0 over K. Then q( t )  is the 
characteristic polynomial of 0 acting upon K(0) .  Let 

( L : K ( 0 ) )  = d and ( K ( B ) :  K) = m. 

Then L is the vector space direct sum of dcopies of K(0)  and the characteristic 
polynomial of 0 acting on L must be q( t )d .  

Let 0 = O,,  . . , ,Om be the distinct roots of q(t)  in F so that 

s( t )  = n ( t - e i > *  

Since TLIK(0) is the sum of the roots of the characteristic polynomial of 6 on 
L, and NLiK(0) is the product of these roots, we have 

TL/K(d) = d(e1 +***+0, ) ,  

NLIK(e) = (el e, ... e,,,)d. 
(1) 

Now let HI be the subgroup of G fixing 0. Then H c_ H, and d = [H,  : H I ,  
m = [G : H , ] .  Make a choice of coset representatives so that 

T ,  H I  u .-. u z,H, = G, 

71 H u u Y ~ H  = HI. 

Then the products z iyj  represent the cosets of H in G and we may use these 
representatives in place of the as because they differ only by elements which 
leave 0 fixed. Notice that y j ( 0 )  = 0 for a l l j  and with suitable numbering we 
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may assume ri(0) = B i .  So finally 
n m d  m 

z a k ( 8 )  = c c T i y j ( 8 )  = d z T i ( 8 )  = d(O,+ . . .+O, ) ,  
1 1 1  1 

ngk(e) = (el e2 . -em)d.  
When these are combined with Eqs. ( I ) ,  Eqs. (a) and (b) are proved. 

Now the transitivity of the norm is easy to prove. 

5.4 Corollary. If K c E c L are finite-dimensional separable extensions of 
K then NL/K(O) = NEIK(NLlE(8)) for all 8 E L. 

Let F be a normal extension of K containing L.  Let yl, ..., Y k  be 
the distinct imbeddings of L into I; which are the identity on E and let 
T ~ ,  ..., 5, be imbeddings of L into F which give all the distinct imbeddings of E 
into Fover K. Then NL/E(O) = y1 (8 ) . . .Yk (0 )  

PROOF. 

NL/K(O> = n T i Y k ( 8 )  = nTi(NL/E(e)> = NE/K(NL/E(e)). 

We record for future use one consequence of Theorem 5.2. 

5.5 Theorem. Let L be a separable finite-dimensional extension of K and 
let u l ,  ..., u, be a basis of L over K .  Then there exists a second basis u I ,  ..., u, 
with the property TL/K(uiuj)  = 6, where 6, = 1 if i = j  and 6 ,  = 0 if i + j .  

PROOF. This is a standard result about vector spaces. Every K-linear 
function from L to K has the form x -+ ( x , y )  for some unique y in L. We let 
ui be the element with the property x -+ ( x ,  ui) is the function equal to zero at 
uj , , j  # i and I at u i .  It is easy to verify the ui give a basis of L over K .  

6. EXTENSIONS OF DEDEKIND RINGS 

The main theorem of this section shows the reason for concentrating on 
Dedekind rings instead of other kinds of integral domains. 

6.1 Theorem. Let R be a Dedekind ring with quotient field K and let L be 
a finite dimensional extension of K .  Then the integral closure of R in L is a 
Dedekind ring. 

The extension L can be viewed as a chain of extensions K c E c L 
with E separable over K and L purely inseparable over E. Let R' be the integral 
closure of R in E and R" the integral closure of R' in L.  Then R" is the integral 
closure of R in L so the proof of the theorem can be accomplished in two steps. 
We show R' is a Dedekind ring by using the separability of E over K and then 

PROOF. 
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show R" is a Dedekind ring by using facts about the purely inseparable 
extension L over E .  

We shall prove that R' satisfies Condition (c) of Theorem 3.16. 
R' is integrally closed by choice and the transitivity of integral dependence. 
To show R' is noetherian we begin by selecting a basis a,, ..., a, of E over 

K.  If necessary we may multiply this basis by a suitable common denominator 
to insure each ai is in R'. Let b , ,  ..., bn be a dual basis for E over K which 
satisfies (ai,bj) = T E I K ( a i b j )  = 6, (see Section 5). Let y be any element in R'. 
There exist elements c j  in K with y = c j  hi. We compute the c j  by using the 
inner product; that is 

( Y , U j )  = Cc,(b,,aj) = c j .  
k 

This element cj is TE,,(yaj) which in turn is a coefficient in the minimum 
polynomial of ya j .  It follows that c j  is in R because yaj is in R'. This proves 

R' c C R b j .  
i 

This means R' is contained in a finitely generated R module. Any ideal of 
the ring R' is also an R submodule of this finitely generated R module and so it 
is finitely generated over R .  It follows then that every ideal of R' is finitely 
generated over R'. This proves R' is noetherian. 

It remains to prove that prime ideals in R' are maximal ideals or equal to 
zero. To do this we need the following lemma. 

6.2 Lemma. Let A c E be integral domains with E integral over A and A 
integrally closed, If ?.I is a nonzero prime ideal of E ,  then '$ n A is a nonzero 
prime ideal of A.  

PROOF. Take an element x in 'v, x # 0 and let f(t) = C a i l i  denote the 
minimum polynomial of x over the quotient field of A. By Proposition 2.4 we 
know the coefficients ai belong to A .  Since,f(t) is irreducible we find a, # 0 
and 

a, = C a i x i  E '1J n A ,  
n 

I 

which proves the lemma. 

6.3 Corollary. 
B is a field. 

PROOF. 

If A is a field and E a domain which is integral over A ,  then 

If B were not a field, there would exist a prime ideal 13 which is 
nonzero (and not equal to B).  By the lemma, ?.I n A would be a nonzero 
prime ideal. Since A is a field, '$ n A = A so 1 is in P,  an impossibility. 

Now return to the proof of the theorem. Let ?.I denote a nonzero prime ideal 
in R' so by the lemma, ?.I n R = p is a nonzero prime ideal of R. Thus R / p  is a 
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field and R'/'$3 is a domain containing (an isomorphic copy of) R/p. Let 
X = x+ '$3 be any element in R'/Q. There is a monic polynomial 

f(t) = tm + r 1  tm- '  + + rm 

such that the r ,  come from R and,f(x) = 0. Let f ( f )  denote the polynomial 
obtained by reducing the coefficients off(t) modulo p = R n '$3. Thenf(F) = 

0 so X is integral over R/p. Now the hypothesis of Corollary 6.3 hold with 
A = R/p and B = R'/Q so R'/V is a field. That is '$3 is a maximal ideal of R'. 
This completes the proof in the separable case. 

We now make a change of notation. Let R be a Dedekind ring with quotient 
field E and let R' denote the integral closure of R in the purely inseparable 
extension L of E. 

One of the reasons why the proof is given in two steps is this time we cannot 
prove R' is contained in a finitely generated R-module. There exist examples 
where this fails. So the noetherian condition is more difficult to prove. We shall 
verify that R' satisfies Condition (b) of Theorem 3.16. 

Since L is purely inseparable over E and finite dimensional, L must have 
characteristic p and for some power p' = q it happens that x4 is in E for all x 
in L. If x is in R' then x4 is in E n R' = R (because R is integrally closed). 
Conversely if x is in L and x4 is in R, then x is integral over R so x i s  in R'. 

Now let 'u # (0) be a prime ideal in R'. Then '$3 n R = Q is a nonzero 
prime ideal in R so Q is a maximal ideal. Now for x E v ,  x4 E Q because x4 is 
in both R and '$3. Suppose x is an  element of L with x4 in Q. Then first of all 
x i s  in R' and also x4 is in Q.  This implies x is in '$3 because '$3 is prime. Thus x 
is in Q if and only if x4 is in Q, This sets up a one-to-one correspondence 
+$ - Q between nonzero primes of R' and of R. Now for a # 0 in R' we know 
there exist only a finite number of primes in R which contain u4 and hence 
only a finite number of primes of R' which contain a. This is half the proof. 
It remains to show R,' is a DVR for each nonzero prime '$3 of R'. 

We make a simplification by reducing to  the case where R is itself a DVR. 
Let Q = R n '$3 and S = R-Q, so Rs = R, is a DVR. S is a multiplicative 
set in R' so R,' has meaning. We want to assert that R,' = R,'. We clearly 
have R,' c R,'. Suppose x/y is in R,' with y not in 4v. Then y4 is in R but not 
in Q n R = Q. Thus y4 is in S so x/y = xy4-'/yq is in R,' proving equality. 
We know also that R,' is the integral closure of R, so the proof of the theorem 
reduces to the following situation. 

6.4 Lemma. Let R be a DVR with quotient field E, and R' the integral 
closure of R in an extension field L which satisfies Lq G E. Then R' is a DVR. 

Let Rn denote the maximal ideal of R and ill1 the maximal ideal of 
R'. Then !W is an  ideal of R which is # R so illP = Rn" for some positive 

PROOF. 
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integer n. Let a be an element of 9-1 such that a4 = 7"'. We shall prove Illz = R'a. 
Let x be any element of R' and let x4 = und with u = unit of R and d = integer. 
Write d = nt+ r with 0 G r < n and observe = ~ n ~ n - ~ ~  = un'. This is in 
R so xa-' is in R'. The choice of n insures that xa-'  is not in 9-l so xa-' is a 
unit in R'. Let w = xa-' and observe x = war = unit times a power of a. Now 
let CU be any ideal # O  in R' and let m be the least positive integer with am in CU. 
If x is in 91 then x = wa' for some t and t 2 m implies x is in R'a"'. Thus CU = 
R'am so R' is a PID, which proves the result. 

Now we return to the more general situation of R c R', two Dedekind 
rings with quotient fields K and L, respectively. We shall study the relation 
between the prime ideals in R and the prime ideals in R'. 

Let p be a nonzero prime ideal of R .  Then the ideal R'p of R' has a 
factorization, 

Cp: R'p = '$51 ... (*I 
with Cp,, ..., Cp, distinct prime ideals in R' and e l ,  ..., eg positive integers. 
Notice that the exponent ei of Cpi is completely determined by the prime 
ideal Cpi because 'pi determines the ideal p in R .  That is p = R n Cpi. 

Definition. The integer e, is called the ramijkation index of Cpi with respect to  
R.  We shall sometimes write e(Cp/R) or e ( v / p )  for the ramification index of 
Cp over R when Cp n R = p. 

EXERCISE 1. Let R c R' c R" be Dedekind rings and 13 a nonzero prime 
ideal in R". Prove 

e(CplR> = e(CplR')e(Cp n R'IR). 

It is sometimes useful to compare various factor rings of R and R'. Notice 
that R'/Cpi is a field which contains an isomorphic copy of Rlp.  The following 
result can be used to insure that R'/Cpi is finite dimensional over Rlp.  

6.5 Lemma. Suppose ( L :  K )  is finite. Let CU be an ideal of R' such that 
CU n R = p is prime and # ( O ) .  Then 

(R'/CU : R / p )  < ( L  : K). 

PROOF. The proof can be given most simply if we first reduce to the case 
where p is a principal ideal. Let S = complement of p in R so that Rs is a 
DVR. Then BZR,' n R, = pR, and Rs'/CURs' E R'ICU. Hence we may prove 
the lemma with R,,  R,', and so forth, in place of R ,  R', and so forth. In par- 
ticular we may suppose p = Rrt is principal. 

Let { x i }  be a finite set of elements of R' whose cosets x i + %  are linearly 
independent over R / p .  Suppose there is a relation x u i x i  = 0 with certain 
elements aj  in K .  W.e may multiply the a, by a suitable common denominator 
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to obtain such a relation in which the a, are in R .  Suppose not all the a, are 
zero. Then there is a highest power of n which divides all the a,. After we 
cancel this highest power we obtain a relation in which not all the a, are in Rn. 
It follows that 

p i x i  = 0 

is a relation of dependence in R'/% contrary to the assumed linear inde- 
pendence of the cosets Xi = x,+%.  Consequently the x,  are linearly 
independent over K and the inequality of the lemma follows. 

Definition. The dimensionf, = (R'/'$, : R / p )  is called the relative degree of '$, 
over p. We shall sometimes write f ('$,/R) or f ('$/p) for this relative degree. 

Let R c R' c R" be Dedekind rings and '$ a prime ideal # (0) 
in R". Then f ( '$ /R)  = f ( '$ /R' )  f('$ n R'IR). 

We shall now make a connection between the ramification indices, relative 
degrees, and the dimensions of the quotient field. 

6.6 Theorem. The integer eifi is the dimension of R'IpR' over Rlp. If the 
quotient field L of R' has finite dimension over the quotient field K of R,  then 
Xe, f ,< ( L :  K ) .  If S = the complement of p in R and if R,' is finitely generated 
over R, ,  then C e i f ,  = ( L  : K ) .  

PROOF. We use the factorization (*) of pR' and CRT to obtain 

R'IpR' r @ R'/'$;'. 

The first statement will follow if R'/'$;' has dimension e i f ,  over Rlp. This can 
be proved as follows. The ring R'/'$F is not a vector space over R ' l q ,  (unless 
e, = 1) but the quotients '$p/'$;" are vector spaces over R'IV,. If we show 
this space has dimension one over R ' / y j  then it will have dimensionf, over Rip 
and the result will follow. To show 'pi"/'$;+' is one dimensional over R'/Qi it 
is enough to show the space has one generator. By Proposition 3.19 the ideal 
'pi" can be generated by two elements x and y and y may be selected as nonzero 
element in '$7''. Thus 'pi"/'$;+' requires only one generator x over R' and so 
also over R'/'$,. This proves the first assertion. The second follows from 
Lemma 6.5. 

Now suppose R,' is a finitely generated module over R,. R,  is PID with 
maximal ideal nRS for some n in R.  Let x , ,  ... , x ,  be a minimal generating set 
of R,' over R,. Let us first show these elements are linearly independent over 
K .  If there is a relation 

EXERCISE 2. 

c a i x i  = 0 

with a, not all zero then the a, may be multiplied by a common denominator to 
obtain such a relation with all a, in R .  Since not all ai are zero, there is a highest 
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power of II which divides all the a,. After removing this highest power we find 
at  least one of the as, say a, ,  which is not in nR, .  Thus a ,  has an inverse in R, 
and 

XI = - l / q  c aixi.  
i # l  

This contradicts the choice of the xi  as a minimal set of generators. 

there would exist in L an element y such that 
Next we prove the xi  in fact give a basis for L over K. If this were not so, 

K y  n C K x i  = 0. 

However there is some elements # 0 in R such that sy is integral over R .  (This 
is so because y satisfies a monic polynomial over K and with the right choice 
of s, sy satisfies a polynomial over R ) .  Thus sy belongs to  R,' and to K y  which 
cannot be consistent with the above intersection unless y = 0. Hence R,' is 
generated by exactly n = ( L  : K )  elements. 

Now we have 

and the right-hand side is a vector space direct sum. From above we know the 
left-hand side has dimension e i f ,  and the right-hand side has dimension 
( L  : K ) .  This completes the proof. 

6.7 Corollary. Let L be a finite-dimensional, separable extension of K .  Then 
C e i f ,  = ( L  : K ) .  

In case L is separable over K we have proved Theorem 6.1 (proof) 
that R' is finitely generated over R .  In particular then Rs' is finitely generated 
over R, so the last result applies. 

Let R = 2 and R' = integral closure of R in Q(&) with d a 
square free integer. Let p denote a prime integer. Prove that pR' can have 
only the following factorizations : 

(a) pR'  = 'p, (b) pR' = 'p', (c) pR' = 'pQ, 

where 'p and Q are distinct primes of R'. In  each case compute (R' / 'p  : R / p ) .  

If it happens that L/K is normal as well as finite dimensional and separable, 
a little more precise information is available about the ei andf, .  Suppose G is 
the Galois group of L over K. For each 0 in G,  a(p)  = p and a ( R ' )  = R' so 
o ( p R ' )  = pR'.  It follows from the factorization (*) of pR' that ~ ( $ 3 ~ )  must be 
one of the ' p j  for each i = I ,  ...,g. We shall give an argument to show that 
every ' p j  is the image under G of 'p,. 

Suppose this is not the case. Let v,,  ..., qlr, r < g, be all the images of '$l, 
under G .  Then G must also permute the set ' $ l r + , ,  ...,qg. The product 

PROOF. 

EXERCISE 3. 
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'$I, 'p, is not contained in any 'pj with r +  1 < j < g. There must exist an 
element a in '$3, ... 'p, which is not in '$3,. Then .(a) is in 'pl ... 'p, for each o 
in G and 

n a(a) E R n 'pI ... '$3, E p. 

It follows that na(a)  is in 'p, since p is in 'p,. But 'p, is prime so some o(a) is 
in 'p,and thusa belongstoa-'('p,) which meansa-'('p,)isoneof'p),, ...,'p, 
contrary to assumption. Hence the assumption cannot stand and G is transitive 
on the pi. 
6.8 Let L be a normal, separable, and finite dimensional 
extension of K .  Then the factorization (*) of pR' has the form ('$Il ..- '$Je. 

Moreover, all the relative degrees are equal (tofsay) and efg = ( L  : K ) .  Also 
the Galois group permutes the ' p i  transitively. 

Let a be the automorphism of L which maps 'pl onto 'pi. Then 
o(pR' )  = pR' and the uniqueness of the factorization implies ~('$3;') = '$IF' so 
e ,  = e , .  I t  also follows that a induces an isomorphism of R'/'p,  onto R'/'pi so 
thatS, = f l .  The statement that efg = ( L  : K )  follows from Corollary 6.7. 

Definition. 
tion index > I or if the field R'/'p fails to be separable over R / R  n 'p. 

prime of R'. 

below there are only a finite number of them. 

a e G  

Proposition. 

PROOF. 

The prime 'p of R' is rumified with respect to R if 'p has ramifica- 

We say the prime p of R is ramijed in  R' if pR' is divisible by some ramified 

Our next goal is to determine which primes of R ramify in R'. We shall see 

7. DISCRIMINANT 

In this section R is a Dedekind ring with quotient field K ;  L is a finite- 
dimensional, separable extension of K ;  R' is the integral closure of R in L. Let 
T denote the trace map from L to K (see Section 5). 

Let xl, ..., x, be a basis of L over K .  The determinant A ( x , ,  ..., x,) = 

det IT(xixj)I is called the discriminant of the basis xI. .... x,. If we select the 
xiin R' ,  then x i x j  is in R ' s o T ( x i x j )  isin R.  As we let xI, ..., x, range over all 
possible bases of L / K  which lie in R', the discriminants generate an ideal of 
R which we shall call the discriminant ideal of R' over R .  We denote this ideal 
by A or A(R' /R) .  

We begin the study of the discriminant by showing it can be determined by 
localization. 

7.1 Let S be a multiplicative set in R.  Then A(Rs'/Rs) = A(R' /R)s .  Lemma. 



30 1 SUBRINGS OF FIELDS 

PROOF. If x I ,  . . ., x, is a basis of L over K contained in R' then the xi  are 
also in Rs' and of course are still a basis for L.  Thus A (  R'IR) is contained in 
A(Rs' /Rs) .  It follows that 

A (R' /R)s  c A (Rs' /Rs) .  

Now let y , ,  ...,y, be a K-basis for L with each yi in Rs'. There exists some s 
in S with syi in R'.  Since T(syisyj)  = s2T(yiyj)  one can compute 

A ( s , v ~ ,  . . . , s ~ n )  = s Z n A ( y l 9  . . . , ~ n ) *  

It follows that A ( s y , ,  ..., sy,) is in A ( R ' / R )  and so A ( y l ,  ...,y,,) is in A ( R ' / R ) , .  
This proves both inclusions. 

One further computation will be made before we get an application 

7.2 Lemma. If R' is a free R-module on the generators xl ,  ..., x,, then 
A ( R ' / R )  = R A ( x , ,  ... ,x,,). 

PROOF. Let y , ,  . . . ,y, be a K-basis of L in R'. Let 

yi  = x r i i x j ,  rii E R .  
J 

The existence of such equations is a consequence of the freeness of R' on the 
x i .  A simple matrix calculation yields 

(T(yiyj)l = (rijllT(xiXj)l(rijl' 
and so 

A(yl ,..., y,) = detlriiI2A(x ,,..., x,,). 

Thus every discriminant of a basis is in the principal ideal generated by 
A ( x , ,  ... ,x,) which proves the lemma. 

Now the connection can be made between the discriminant and the ramified 
primes of R .  

7.3 Theorem. The primes of R which ramify in R' are those which contain 
A ( R ' / R ) .  

PROOF. Let p be a nonzero prime ideal in R and S the complement of p in 
R .  Then p contains A ( R ' / R )  if and only if p R ,  contains A ( R ' / R ) s .  Moreover 
p is ramified in R' if and only if pRs  is ramified in Rs', The proof of the theorem 
will follow then if we can prove it for R s I  Thus since Rs is a D V R  we may as 
well assume at the start that R is a DVR. With this additional information it 
follows that R' is free over R .  Let x l r  ..., x, be free generators of R' over R .  
Then this set is also a basis for L over K .  Then , T I , .  , ., ,Tn is a basis for R'IpR' 
over Rlp (by the freeness of R' over R ) .  

It will be necessary to compare the regular representation of R' over R with 
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that of R'IpR' over Rlp.  For each y in R' the linear transformation 

ry : x + x y  

sends R' into itself and ry has a matrix (aii( with respect to the basis x I ,  ..., x ,  
with aii in R.  The equations which define the a" are 

x i y  = c u u x j .  

We reduce this modulo pR' and obtain 

X i j  = &xi. 
This means the linear transformation r j  of R'IpR' over Rlp has matrix (aii(. 
Let tr denote the linear function from R'IpR' to R'lp defined by t r ( j )  = 
trace ( rg) .  The above computation proves 

(7.4) For y in R', T,,,(y) = tr(y). 

Now we proceed to the proof of the theorem. By Lemma 7.2 we know the 
discriminant ideal is generated by A ( x l ,  ..., x,). Thus p 3 A ( R ' / R )  if and only 
if A ( x , ,  . , . , x n )  is in p. This holds if and only if 

(7.5) A ( ? , ,  ..., X,) = detltr(XiXj)l = 0 

in Rlp.  [For this we have used (7.4) and the definition of A(xl, ..., x,).] It 
remains to examine the structure of R'IpR' under the assumption that Equation 
(7.5) holds for the basis of R'IpR' over R / p .  

- 

Let 
pR' = '$;' '$2, 

so that by CRT it follows that 

R'IpR' Z R'/'$;' @ * * .  @ R'/'$2 

Consider first the case with p not ramified in R'.  Then each ei = 1 and R'/'$, 
is a separable extension of Rlp.  Let t i  denote the trace map from R ' / v i  to R l p  
Select a new basis for R'IpR' which is compatible with the direct sum decom- 
position. That is select u l ,  ..., uk a basis for R ' / Q 1  ; uk+ ..., uk+[ a basis for 
R'/'p2, and so forth. Then for j in R'IpR' we can write j = yI  + + y ,  with 
yi in R'/'$Ii. The matrix for rg has the block decomposition 

where A i  is the matrix for ry,  acting on R ' / Q i .  It follows that 

tr(J) = t l  ( Y l )  + ..* + t,(Y,). 
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More importantly the discriminant matrix has the block form 

where Ai = discriminant matrix of the basis of R'/Vi  over R / p .  We know from 
Section 5 that R ' / V i  separable over R / p  implies det Ai # 0. Thus 

A(Fl, ..., X,,) = u2(detAl)...(detA,) # 0, 

where u is the determinant of the matrix which represents the change of basis. 
This proves that p not ramified implies p does not contain A(x1, ..., x,,), by 

1.5.  
To complete the proof we must show that whenever some c, > 1 or some 

R ' / V i  is not separable over R / p ,  then A(X,, ...,in) = 0. 
Suppose ei > I .  Select a basis ulr ... ,uk for R'/vf i  such that u ,  is in vi/V;'. 

Then ( u l y i  = 0 so that r,, is a nilpotent linear transformation. Moreover u I  uj 
is also nilpotent so the characteristic polynomial of Y,,,, has only zeros for its 
characteristic roots. Thus 

ti(ul u,) = tracer,,,, = 0. 

It follows that the discriminant matrix for R ' / V i  over R / p  has a row of zeros 
and so detAi = O .  Since A(Fl, ..., X,,) is a product of the detAi we get 
A(X,, ..., X,,) = 0. 

Finally suppose all the e,  = 1 but R ' / V i  is not separable over R / p .  By 
Theorem 5.2 (proof) we know the discriminant of R ' / V ,  over R / p  is zero so 
again A ( X I ,  ..., X,,) = 0. 

In both of these cases it follows p must contain the discriminant ideal. 
Next we consider some means by which a factorization of pR' can be 

computed. This procedure will not cover all possible cases but is still rather 
general. 

7.6 Theorem. Let R' denote the integral closure of the Dedekind ring R in 
a finite-dimensional extension L of the quotient field K of R .  Let p be a nonzero 
prime ideal of R .  Suppose there is an element 6 such that the integral closure 
of R, in L is R,[B]. LetJ'(X) be the minimal polynomial of 0 over K .  Letf(X) 
denote the polynomial obtained by reducing the coefficients off'(X) modulo p. 
Suppose 

f ( X )  = g, ( X p  . * . g , ( X Y  

is the factorization off(X) as a product of the distinct irreducible polynomials 



7. Discriminant 33 

gi(X) over R / p .  Then 
pR' = v71 ... 

for certain primes y i  of R' and the relative degreef,equals the degree ofg,(X). 

The factorization of pR' is completely determined by local infor- 
mation so we may replace R by R,  and R' by Rs', S = R - p. In particular we 
assume R is a DVR. Then we have R' = RCO] and this is isomorphic to  
R[X]/(f(X)). Hence R'/pR' is isomorphic to R [ X I  modulo the ideal generated 
by p and ( f ( X ) ) .  If we first divide out by p we have finally 

PROOF. 

R'IpR' = R [ X l / ( J ( X ) ) ,  
where R = R / p .  The factorization of f (X)  and C R T  now yields 

R'/pR' z 1 0  RIX]/(gi(X)oi). 

The prime ideals in this ring are in one-to-one correspondence with the g i (X)  
and so it follows that 

'UP' pR' = 'i$!f ... 

with R'/'Ui E R[X]/(gi(X)). Thus Vi has a relative degree equal to the degree 
of gi(X) and the proof is done. 

This theorem is limited by the necessity that R' = R[O] (locally). I t  need not 
happen that such a 8 exists. We can give a criterion for this in case R is a DVR. 

7.7 Proposition. Let R be a DVR with maximal ideal p and let 8 be an  
element of R' such that L = K(8) .  If A( I ,  8, ..., en-') is not in p then R' = 

Since R is a PID, R' has a free basis wo, .. ., x , , - ~  over R. We have 

RC81. 

PROOF. 
R [O] c R' so each power of 8 can be expressed in terms of the basis. 

0' = C r i i a j ,  
i 

rii E R. 

Then 

A ( l , O ,  . . . , @ ' - I )  = detlTLIK(8'8')I 

= det Irii(' det ITL,K(aiaj)l. 

The elements here are all in R and the element on the left is not in p. Thus 
det Ir i i (  is not in p and since R is a DVR, det Ir"J has an inverse in R.  This means 
each a j  can be expressed as an R-linear combination of the 8'. Hence 
R' c R[0] so equality must hold. 

We consider K = Q = rationals and L = Q(8)  with O 3  = 2. 
One computes the discriminant first. We know TLIK(8) = sum of the roots of 

EXAMPLE. 
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X 3 - 2  so T,,,(0)=O+wO+w20=0 where o3 = 1 and o# 1.  Also 
TL,K(02) = 02+0202+w02  = 0. It follows that T(03) = 2T(l) = 6 and 
T(04) = 0. Then A ( 1 , 0 , 0 2 )  = - 2 2 . 3 3  = det IT(O'Oj)I. Let R' be the integral 
closure of Z in L. The factorization of pR' is determined by the factorization 
of pRs' with S = Z -  (p). That is if 

pR' = f l ' p : r  

then 
PR,' = (fl W > S  . 

Let p denote any prime # 2 , 3 .  By Proposition 7.7 the integral closure of Z ,  
is Z,[O]. By Theorem 7.6 the factorization of p in Z,[O] is determined by the 
factorization of X 3  - 2  in Z/p .  We consider a few cases. 

X 3 - 2  is irreducible modulo 7 so 7R' = 'p, is prime and we 
find R ' / P ,  z GF(7'). 

X 3  - 2 = ( X +  3 ) ( X 2  - 3 X + 9 )  modulo 29 and the second factor 
is irreducible. Thus 

29R' = 'p, 'p2 with R'/ 'p ,  z G F ( 2 9 )  

p = 7 

p = 29 

and R'/'p2 E G F ( 2 9 2 ) .  

X 3  - 2  = (X-4)(X- 7 ) ( X +  1 1 )  modulo 31 and 31 R' = 'p, 'p2 'p3 
with R'/'pi z G F ( 3 1 ) .  

Notice that these computations are possible without actually knowing R' 
explicitly. After a rather lengthy computation, it does follow that R' = Z[O] .  
Hence Theorem 7.6 can be applied also to the cases p = 2 , 3 .  

p = 31 

p = 2 

p = 3 

We will be able to do these calculations in Section 8 without first proving 
R' = Z[O] .  

EXERCISE. Let d be a square free integer and R' the integral closure of Z in 
Q(@).  As a continuation of Exercise 3 in Section 6 determine which of the 
three possible factorizations of pR' actually occurs. Prove the following. 

X 3  - 2  = X 3  modulo 2 so 2R' = 'p3 and R'I'p z G F ( 2 ) .  

X 3 - 2  = ( X +  modulo 3 so 3R' = 'p3 and R'/'p z G F ( 3 ) .  

(a) Suppose p divides A(R' /Z) .  Then pR' = 'p2. 
(b) Suppose p is odd and does not divide A ( R ' / Z ) .  Then pR' = 'pa with 

'p # c1 if and only if d is a quadratic residue modulo p .  That is X 2  - d 
has a root in Z/p .  
Suppose p = 2 and does not divide A ( R ' / Z ) .  Then necessarily d = 1 
mod4. S h o w 2 R ' = Q Q i f d = l  m o d 8 a n d 2 R = ' p i s p r i m e i f d = 5  
mod 8. 

(c) 
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8. NORMS OF IDEALS 

In this section R is a Dedekind ring with quotient field K ;  L is a finite- 
dimensional, separable extension field of K, and R' is the integral closure of 
R in L. 

Let N denote the norm function, N ( x )  = det(r,) where r, is the K-linear 
transformation on L given by r,(y) = yx (see Section 5). 

For any element x of L,  the characteristic polynomial of x is a power of its 
minimum polynomial. When x is in R', the coefficients of the minimum poly- 
nomial are in R (by Proposition 2.4) and so also the coefficients of the 
characteristic polynomial are also in R. In particular N ( x )  belongs to R. 

Let 2l be an ideal in R'. 

Definition. The norm of'?[, A'(%), is the ideal in R generated by all N ( a )  with 
a in 2l. 

8.1 Properties of the Norm: 

(i) N(ab) = N(a)N(b). 
(ii) N(R'u) = RN(a). 

(iii) If S is a multiplicative set in R, then N(2l), = N(81,) for any ideal 21 
in R'. 

(iv) N (2l23) = N (81) N (23) for ideals 21, 23 in R'. 

PROOF. (i) is just a statement about determinants. 
(ii) Since 1 is in R'and N ( l )  = 1 it follows that N(R') = R a n d  N(R'a) = 

RN (a). 
(iii) Any element in 'us has the form a/s with a in 21 and s in S. Thus 

N(a/s) = N(a)/s" i fn  = ( L :  K ) .  Thus N(%,) E N(PI),. 
Conversely the ideal N (PI), is generated over Rs by elements N (a) with a in 

2l. All such elements are in N(81,) so the other inclusion follows also. 
(iv) We shall use Lemma 3.18 to  get the equality. It is necessary to  prove 

equality a t  the localizations at  each maximal ideal. For any maximal ideal p 
of R, let S = R - p .  By Part (3) we know 

N(21), = N(Y[,), N(B),  = N(b,), N(%23), = N('L[,b,). 

The ring R, is a DVR and R,' has only a finite number of prime ideals. By 
Theorem 3.15 we obtain R,' is a PID. Thus BI, = aR,', 23, = bR,' for some 
a,b in R'. Then 

N(91,23,) = N(abR,') = N(ab)R, = N(a)R,.N(b)RS 

= N(21,) N (23,). 
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This Property (iv) shows that we can determine N ( 2 l )  if we can determine 
N('p) for each prime ideal 'p of R'. That is when 

CU = n'pp then N(2l) = nN('pj)BJ. 

The computation of N('p) is simplified if we first work in the situation where 
L is normal over K with Galois group G. We assume this is the case. 

Now let 'p denote a prime ideal of R' and let p'= 'p n R .  For an element a 
in 'p the product of all .(a) must also fall in 'p (because '$3 is an ideal) so 
N(a) E 'p n R = p .  We argue that N('p) must be a power of p. It is enough to 
show that no other prime of R can enter into the factorization of N ( ' p ) .  Clearly 
'p 3 pR' so 'p divides pR'. Thus N('p) divides N ( p R ' )  = N ( p )  R = p", n = 
( L  : K ) .  So it follows that N('p) is a power of p .  We shall now determine the 
exact power. This power will not be changed if we localize at S = R -  p. Thus 
we may work with R,, R,' in place of R, R'. Both of these rings are now PIDs 
so let 'pR,' = nR,' and pR, = zR, .  

The ramification numbers for the primes of R,' which divide z are all the 
same by Proposition 6.8. We may assume 

(8.2) pR,' = tRS' = ('pl 'pJe 

for certain primes 'pi of R,'. We may assume 'pl = nRS' = '$3R,'. Now we 
know the Galois group permutes the primes '$Ii transitively and IGI = efg with 
f = relative degree of 'p. Thus as CJ ranges over G, ~ ( ' $ 3 ~ )  ranges over 'pI, ..., 'p, 
with each 'pi counted eftimes. It follows that 

But also N(nR,') = psm for some m so N ( n )  R,' = p'"Rs' = ('$3, '$,)em in 
view of the factorization Eq.(8.2). It follows that m =f= relative degree of 'p 
over R and 

(8.3) N ( ' p )  = pJ. f = relative degree of 'p over R .  

Now we drop the assumption that L / K  is normal. Let E be a field containing 
L which is normal, separable, and finite dimensional over K .  Let R" be the 
integral closure of R in E and let Q be some prime of R" which appears in the 
factorization of 'pR".  Then E is normal over L,  so by Eq. (8.3) we find 

NE/L(Q) = Vf'? fl = f (Q/R ' ) .  

NE/K(Q) = Pf*, f 2  = f ( Q / R > .  

P f 2  = NL/K(NE/L(Q>) = NL/K('p)f ' .  

Also 

By the transitivity of the norm (Corollary 5.4), NEIK(x) = NL,K(NE/L(~)) ,  
and so 
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Exercise 2 of Section 6 states in this context that fi = f ; f ( v / R ) .  Hence Eq, 
(8 .3)  holds again. 

8.4 Proposition. For any nonzero prime ?, of R', the norm N (v) equals pf 
with p = R n 1, andfthe relative degree of '$ over R .  

8.5 Corollary. Let ?I = n 'p;' be an ideal of R' and,fi the relative degree of 
'pi over R.  Let p i  = q i  n R.  Then N (?I) = n pyif'. 

Consider now the case with K = Q = rational field and R = Z = rational 
integers. L and R' have the same meanings as above. For any ideal 91 of R', 
N (91) is an ideal in Z which is necessarily a principal ideal, say N (91) = Zm = 
(m) for some integer m. If we require that m 2 0 then m is uniquely determined. 
Let us denote the integer m by N(91) so that the norm of an ideal 91 # 0 is 
now a positive integer. We call .Af (91) the absolute norm of ?I. 

8.6 Proposition. For any nonzero ideal 'u in R' the integer .N(?I) is equal 
to the number of elements in the ring R'/21. 

Letf, denote the relative degree of vi over Z. By CRT we know 
PROOF. Let 'TI = n '$9' and pi the prime number such that ( p i )  = 'pi n Z. 

R'/'Tl 2 R'/'$'f' @ ... @ R ' / v p .  

We shall first compute the number of elements in each of these summands. 
In the proof of Theorem 6.6 we observed that each quotient ' p ~ / v ~ "  is a 

one-dimensional vector space over R'/ 'p i .  Thus R'/q:'  has I R' /v i lu4  elements. 
Since R ' / q i  has dimensionf, over Z / ( p i )  it follows that I R'/'pil = p". Thus the 
order of R'/'p;l is p; ' f i .  Consequently 

I R'/21 I = n p ; J i  

By Corollary 8.5 this number is N(2l). 
In  this same context we shall make a few remarks about computations. 
Suppose 'TI is an ideal with A'-(?[) = p = prime integer. It follows that R'/PI 

hasp elements so 91 is a prime ideal of relative degreeJ'= 1 .  I n  particular, if x 
is an element of R and N (x) = p is prime, then Rx is a prime ideal with relative 
degree equal to one. 

In  the last section we considered factorization of primes in the 
ring of integers in Q(0)  where 0' = 2.  The factorization of p could be easily 
obtained by Theorem 7.6 when p # 2 , 3 .  For p = 2 , 3  it was necessary to know 
that R = Z [ 0 ] .  We can avoid that last computation. Clearly N ( 0 )  = 2 because 
X 3  - 2  is the minimum polynomial of 0. Thus OR is a prime with relative degree 
equal to one. Moreover, 2 is in so (OR)' 2 2 R .  The sum of the e i f i  must 
equal three so 2 R  = 

For the prime p = 3 we proceed in a similar way. f ' ( X )  = X 3 - 2  is the 

EXAMPLE. 

= 'v3 gives the factorization of 2 R .  
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minimum polynomial for 8 so f ' ( X -  1) = ( X -  - 2 is the minimum poly- 
nomial for O +  1. It follows that N ( O +  1 )  = 3 so ( O +  1)  R is prime. It is slightly 
more difficult this time to show 3 is in ( 0 +  l ) 3 R .  

Let u = 0 + 1 and observe that the minimum equation for u is u3 - 3cr2 + 
3 u - 3  = 0. 

Suppose 3R = ( a R )  8 .  Then 3 = up and f l =  3/u = ct2 - 301 + 3. This belongs 
to crR so 3 is in a2R.  Now suppose 3 = u'p'. Then 

/ ? ' = 3 / a 2  = u - 3 + 3 / u = u - 3 + u 2 - 3 u + 3  

which also belongs to uR. Hence 3 is in u3R so 3 R  = ( N R ) ~  by the same reason- 
ing as before forp = 2. 

We shall use the information obtained 
about norms to prove the following theorem which tells precisely which 
integers can be expressed as the sum of two squares. 

Theorem. The positive integer n can be expressed in the form n = a2 + b2 
with a, b integers if and only if no prime of the form 4k + 3 appears in the 
factorization of n with an odd exponent. 

PROOF. Let i be a root of x 2 +  1 = 0.  The integral closure of Z in Q ( i )  is 
just Z [ i ]  = R .  If a+ib is in R then N ( a + i b )  = a 2 + b 2 .  

Conversely if n = a 2 + b 2  then n = N(a+ib) and a+ib  is in R .  So the 
integers we are trying to characterize are precisely the norms of elements in R. 
Consider an element x in R and let 

Application of Preceding Results. 

be the factorization of xR as a product of primes in R .  We select the notation 
so that 

'pi n Z = ( p i ) ,  

Qj n Z = (q j ) ,  

f'(Yi/Z> = 2; 

f ( Q , / Z )  = 1. 

By Proposition 8.4 we see N(Cp,) = pi2  and .N(Qj) = q j  and so 

We see from this that if a prime factor of N ( x )  has an odd exponent in the 
factorization, then the prime niust be one of the q j .  The integral primes q 
which are divisible in R by some prime with relative degree 1 are precisely 
those primes q for which X 2 +  1 is reducible modulo q. These in turn are the 
primes of the form 4k+ 1 or q = 2. This proves half the result. Namely the 
norm of an element of R cannot have a prime of the type 4k + 3 appear with 
an odd exponent in the factorization. 
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For the converse suppose n is a positive integer and 
2 n = m pI " . p S  

with p I ,  . . . , p s  distinct primes equal to 2 or numbers 4k+ 1.  Then p i R  is 
divisible by a prime 'p i  with N(\Ui) = ( p i ) .  We shall leave as an exercise the 
fact that R is a PID. Thus 'pi = w i R  for some wi in \Ui .  It follows that N(wi) 
generates ( p i )  so N(wi) = + p i .  However, for any w i n  R we have N(w) 2 0 so 
N ( w i )  = p i .  Now then 

N(mw, ... ws) = m2p, . . . p s  = n 

which proves n is a sum of two squares. 

EXERCISE. Let R = Z[J-]. Let a, b be nonzero elements in R .  Show that 
there exist q, r in R such that 

a = bq + r and 0 < N(r) < N(6). 

Conclude that R is a PID. 

9. CYCLOTOMIC FIELDS 

For a positive integer n7, the splitting field of the polynomial Xm- 1 over 
the rationals is called the cyclotomicjeld of mth roots of unity. If 6 is a root of 
Xm- I but not a root of X"- I for any n < m, then 6 is aprimitiue mth root of 
unity. If 6 is one primitive mth root of unity, then any other has the form Bk 
with k and m relatively prime. From this it follows that Q ( 6 )  is the splittingfield 
of Xm- I .  We shall study this field in some special cases first. 

Notation. 
denoted by 4(q) ,  the Euler function at q. 

We first fix some notation for later use. 

Let p be a prime and q = pa.  The number pa- '  ( p -  1)  will be 

XP"- 1 
- - t p - 1  + [P-2 + ... + f + 1, t = X P " - ' .  f(X> = X p a -  1 - 

6 = primitive qth root of unity. 
R = algebraic integers in Q(6) .  

(b) The polynomial f ( X )  is irreducible over Q and it is the minimum 
polynomial of 6. 

(c) The element c( = 1-6 is a prime element, c(R is a prime ideal and 
p R  = ( M R ) " ~ ' .  

(d) The prime p is the only ramified prime. 
(e) R = Z[O] .  

9.1 Theorem. (a) ( Q ( 6 )  : Q) = p a - '  ( p -  1). 
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PROOF. The element 0 is a root of X p " -  1 and not a root of Xp'- '  - 1 so it 
follows thatf(0) = 0. The other roots off(X) are the other primitive qth roots 
of unity, namely Bk for ( p ,  k )  = 1 .  We see that Bk is an algebraic integer for all 
k .  Notice also that 

belongs to R. If ( p ,  k )  = 1, then 0 is a power of ek so the same method implies 

This uk is a unit in R and 1 -dk = ( I  -8)uk. Since there are 4(q)  distinct Bk 
with ( p ,  k )  = 1 andf(X) has degree 4(q) it follows that 

From the definition off(X) it follows thatf( 1) = p so we find 

p = n ( 1  - ek) = ( I  - 0)4(9)(unit of R). 
( k ,  p ) =  1 

(1) 

Next we compute the norm N ( I  - 0). The field Q(0)  equals Q (  1 - 0) so the 
minimum polynomial and the characteristic polynomial of I - 0 are the same. 
Thus N (  I - 0) is the product of the distinct roots of the minimum polynomial. 
These roots are among the elements 1 -Bk ,  ( k ,p )  = 1 so N ( l - 0 )  divides the 
product of the 1 - O k .  So N(1-0)  = k 1 or fp .  If N(1-0) = f 1 then 1-0 
has an inverse in R and so by ( I )  p has an inverse in R-impossible. Thus 
N (  I - 0) = f p .  This proves 1 - 0 is a prime element and ( 1  - 0) R is a prime 
ideal with relative degree equal to one. Let a = 1-0. Equation (1) implies 
p R  E (UR)&(~).  By the general equality x e i f .  = ( Q ( 0 )  : Q) we find 

4 ( 9 ) f  = 4(4) G ( Q ( @  Q). 

(We have just seen the relative degreef= I . )  On the other hand, since 8 is a 
root off(X) we obtain 

( Q ( 0 )  : Q )  < degreef(X) = 4(d. 
It follows that ( Q ( 0 )  : Q) = 4(q) and this implies thatf(X) is irreducible over 
Q [otherwise the dimension of Q ( 0 )  would have to be smaller]. 

This completes the proof of (a), (b), and (c). The remaining parts require 
more calculation. It will be convenient to number the roots off(X) as 0 = 
0 , ,  O , ,  ..., 04(q) S O  that 

f ( X )  = n ( X - 0 , ) .  
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Differentiate this by the product rule to obtain 

j-ye,) = n (e i -e j ) .  
j + i  

(2) 

We shall make use of this formula to compute the discriminant 

A(l,O, ..., t lb (q) - l )  = A. 

By the results in Section 5 we know 

This is an integer which divides 

fl (e i -e j )2  = nj-yeiI2.  
i # j  i 

(3) 
all i .  j 

Now compute f ' ( X )  from the quotient rule using the definition of f ( X )  
given at the beginning of this section. One obtains 

fye,) = pae;i/(ep"-l - I). 

Use this to evaluate the expansion (3). Observe that Or" - '  is a primitivepth 
root of unity and as Oi ranges over the pa-'(p- 1) path roots of unity, each 
pth root of unity will arise pa- '  times. If is a primitive pth root of 1 then 
N (  1 -c) = p by the results already obtained. This means that the denomi- 
nators of the fractions forf'(Oi)' will contributep2p"-' to the product (3). Also 
N (0) = 1 so it turns out that 

n (ei-ej) = p 2 ( a d ( d - p a - 1 ) .  

a l l i # j  

We knew this expression was divisible by A so we finally obtain 

(4) A = ps  for some positive s. 

BecauseZisa PID, we know R has afreeZ-basisx,,  let U = Iuiil 
be the matrix with integral entries such that 

8'= & X j .  
j 

By a (now familiar) matrix calculation one finds 

( 5 )  A(l ,e  ,..., @ ' - I )  = (detU)'A(x ,,..., x$(~,).  

The three quantities here are integers and the one on the left is a power of p .  
It follows that A(x,, . . ., xbcq,) is also a power of p .  By Lemma 7.2 one finds 

A(R/Z) = z A ( ~ i , . . . , ~ b ( ~ ) )  = (PI'. 
So the only ramified prime is p since no other primes divide the discriminant 
ideal. This proves (d). 
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Equations ( 5 )  and (4) also yield the fact that det U is a power of p so that 
U-'  is a rational matrix with only powers o fp  appearing in the denominators. 
We can express the elements x j  as rational combinations of the 8' using 
coefficients with only powers of p in the denominators. Since all the 8' belong 
to Z [ 8 ] ,  there is some positive integer r such that prxi  is in 2[8] for all i. 
This implies 

( 6 )  p r ~  c z[el G R.  

Our goal is to prove Z [ 8 ]  = R.  The crucial part of the argument is the 
observation that R/uR is isomorphic to the field Z / ( p )  of p elements. This 
follows because we have seen above that uR is prime with relative degree one. 
Now 2[8]/2[8] n ctR must be isomorphic to a nonzero subring of R/aR. The 
only possibility is that 2 [ 8 ] / 2 [ 8 ]  n aR also hasp elements. Thus every coset 
of aR in R contains an element in 2 [ 8 ] .  This means 

(7) z[e] + c t ~  = R.  

z[ela + ~ Z R  = a ~ .  

Multiply by ct to get 

Since a =  1-8 is in 2 [ 0 ]  we may substitute this expression for aR into 
Eq. (7) to get 

z[e] + ~ Z R  = R.  

Continue this way and by induction one obtains 

(8) Z[8] + u'R = R,  for all t 2 1 .  

By Eq. (1) we seepR = ( U R ) ) ( ~ )  and by expression ( 6 )  

(PRY = ( a ~ ) r + ( q )  c Z[SJ 

So in Eq. (8) use r = r 4 ( 9 )  to get u'R 5 Z [ 8 ]  and finally 2[0] = R .  This 

EXERCISE. If 8 is a primitive p"th root of unity, then the discriminant 

Now we consider the cyclotomic field Q(8) with 8 a primitive mth root of 

completes the proof of Theorem 9.1. 

A (  1,0, ..., r3+(p")-1) is +p' with c = p m - '  (mp-m- 1). 

unity and m not necessarily a prime power. 

9.2 Theorem. (a) ( Q ( 8 )  : Q )  = 4(m), 
(b) I fp  is a prime integer which ramifies in Q ( 8 )  then p divides m, 
(c) If m = PamO with p a prime not dividing m,, then p has ramification 

number 4 ( p a )  in Q(8) .  

PROOF. Use induction on m-the theorem being true when m is a prime 
power. Assume m = pan withp a prime not dividing n. Let L, and L,. denote, 
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respectively, the fields obtained by adjoining to Q a primitive nth root and a 
primitive path root of unity. Then Q(0) = L, L,, . We argue next that 

L, n L,, = Q. 

For any subfield K of L,. , the ramification number of p in K equals ( K :  Q) 
because this holds in L,. . In any subfield of L,, p has ramification number one 
becausep does not divide n and the induction hypothesis can be applied. Thus 
Q is the only common subfield of L, and L,. . From Galois theory it follows 
that 

Gal<Q(o>lQ) = Gal(Q(O)/Ln) x Gal(Q(@lLpo) 

r Gal(L,./Q) x Gal(L,/Q). 

By induction, the order of Gal(Q(B)/Q) is 4 ( p " ) 4 ( n )  = 4(p"n)  = 4(m), which 
proves (a). 

Now let R denote the ring of algebraic integers in L,, S the algebraic integers 
in Q(0) and E a primitive path root of unity. Then 

RE&] c s 
and the discriminant ideal A (SIR) contains the discriminant A (  1, E ,  . . ., 

Observe that for x E L,. we have 

= TLp4/&). 

From the computations in the proof of Theorem 9.1 we see 

A ( I , E ,  ...,&'(Pa)-') = power of ( p ) .  

Hence A ( S / R )  2 power ofpR. The only primes of R which can ramify in S are 
the divisors of p R .  The transitivity of the Galois group implies every prime 
divisor of p R  ramifies in S if any one of them does. Since p has ramification 
number + ( p a )  in L,,, a prime '@ dividingpR ramifies in S with ramification 
number of V cannot exceed the dimension (Q(0): L,) = &(PO). Hence the 
ramification number of '@ and p in S is exactly 4(p" ) .  This proves both (b) 
and (c). 

If m is an odd integer then Q(cZrn) = Q(E,) so 2 does not 
ramify in Q(ezrn) even though 2 divides 2m. Show this is the only exception to 
the assertion "p ramifies in Q(E,,) wheneverp is a prime dividing n." 

The following exercises are given to show how Theorem 7.6 can be used to 
obtain the factorization of prime ideals of Z when extended to the ring of 
algebraic integers in a cyclotomic field. Let m be a fixed positive integer and 0 
a primitive mth root of unity. 

EXERCISE 1.  
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EXERCISE 2. Show ZCO] is the full ring of algebraic integers in Q(8). 
{Using the notation of the proof of Theorem 9.2 it is only necessary to show 
R [el = S .  This can be done by slightly modifying the proof ofTheorem 9.1 (e).} 

Let 9 be a prime integer not dividing m and let q be a prime 
ideal in Z[O]  containing q. If Bk-  1 is in  q then O k -  1 = 0. Conclude that 0 in 
Z [ e ] / q  is still a primitive mth root of unity. 

Let @,(x) be the minimum (monic) polynomial of 8 over Q .  
Then @,(x) has integer coefficients and we let m,(x) denote the polynomial 
after reduction modq, q as in Exercise 3. Show the splitting field of m, over 
GF(q) = Z / q  is the field GF(qr) where r is the least positive integer for which 
GF(qr) contains a primitive mth root of unity. This is the least r such that m 
divides 4'- 1 .  Conclude every prime factor of @, has degree r .  

EXERCISE 5 .  If q is an integral prime not dividing m then the ideal generated 
by q in the ring of algebraic integers in Q(8) has the factorization (4) = 
!$I, 0 .  pg, where the !$Ii are distinct primes, gr = 4, (m) and r is the least positive 
integer such that m divides q'- 1. 

EXERCISE 6. If m = pan with p a prime not dividing n then the factorization 
of p in Z [el has the form 

EXERCISE 3. 

EXERCISE 4. 

(p) = (!$I, ... p p " )  

where gr = 4, (n) and r is the least positive integer such that n divides pr - 1. 

Galois group of Q (8)/Q. 
EXERCISE 7. (Galois groups of cyclotomic fields). Let G,, denote the 

(a) If m has the factorization m = p:' . . .P;~ ,  then 

G, = G,, , ,  x * a *  x GPtag. 

(b) For p an odd prime G,, is cyclic of order ( p  - 1)p"- 

Procedure. G,. is isomorphic to the multiplicative group of units in Z/p" 
and is also (by Sylow decomposition) isomorphic to a direct product of a group 
of order ( p -  1) with a group of order p a - ' .  The group of order p -  1 is iso- 
morphic to the multiplicative group in Z / p  so it is cyclic. The element cor- 
responding to 1 + p  in Z/p" has multiplicative order pa-'  so G,. is the direct 
product of two cyclic groups of relatively prime orders. 

(c) The group G2.  (for 2" 2 8) is the direct product of a group of order 2 
and a cyclic group of order 2a-2 .  

Procedure. Show the group of units in 2/2a is generated as a direct product 
by the images of - 1 and 5. 
The groups, G, and G21 have orders 1 and 2, respectively. 
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Quadratic Reciprocity 

Now we turn to some special questions. Assume p is an odd prime and 0 a 
primitivepth root of unity. The Galois group of Q(6) over Q is cyclic of order 
p- 1 .  This number is even so there is precisely one subgroup of index two. 
Accordingly there is a unique quadratic extension of Q contained in Q(6). We 
can describe this quadratic subfield by studying the ramification of primes. 

9.3 Theorem. When p is an odd prime, the cyclotomic field of pth roots of 
unity contains exactly one quadratic subfield over Q and it is Q ( [ ~ ( p ) p ] ' / ~ )  
where ~ ( p )  = ( -  

PROOF. We have indicated above why the quadratic subfield is unique. 
Suppose Q(a) c Q(O), d square free. Any prime integer q which ramifies in 
Q(Jd) also ramifies in Q(6). Since p is the only prime which ramifies in Q(6) 
it follows that p is the only prime divisor of the discriminant of Q(@). This 
discriminant is either d or 4d depending upon d = 1 mod 4 or not. Since p is 
odd the discriminant is not 4d and so d = 1 mod4 and p is the only prime 
divisor of d .  Thus d = + p  and the sign is uniquely determined by the con- 
gruence modulo 4. An examination of the cases shows d = ~ ( p ) p  as required. 

This computation can be made the basis of one of the many proofs of the 
law of quadratic reciprocity. We shalI present the details. 

For an odd prime p ,  let U p  denote the multiplicative group of the field 
Z/(p) .  Then U p  is a cyclic group of orderp- I .  The collection of all squares of 
elements in U p  forms a subgroup, Up2,  of index two. Let { & 1) = Tdenote the 
multiplicative group of order two. There is a unique homomorphism of the 
group U p  onto T which has kernel U p 2 .  This homomorphism will be denoted 
by ( . / p )  and its value at u is written (u/p) .  We call ( u / p )  the Legendre symbol. It 
is usually convenient to define (alp) for a in Z to mean the value of ( . / p )  at the 
image of a in U p  when ( p ,  a) = 1 .  If p divides a, then (alp) is not defined. 

9.4 Elementary Properties. Let a, b be integers relatively prime top.  

( 1  1 (ab/p) = (a/p)(b/p). 
(2) (a lp)  = 1 if and only if a = x2 modp for some x in Z .  
(3) (a lp)  = 1 if and only if X 2  - a  is reducible modulo p .  

PROOFS. ( 1 )  Immediate because ( . / p )  is a homomorphism. 
( 2 )  (a lp)  = 1 if and only if the image of a in U p  falls into U p 2 .  
(3) X 2 - a  is reducible if and only if a E x2 modp for some x in Z .  

In  view of Property (3) and the exercise at the end of Section 7, one easily 
proves the following. 

9.5 Lemma. Let a be a square free integer. The odd prime p splits as a 
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product of two distinct primes in Q(&) if and only if p and a are relatively 
prime and (alp) = 1. 

The law of quadratic reciprocity gives a relation between ( p / 9 )  and ( 9 / p )  for 
distinct odd primes p and 9 .  We shall obtain this law by examining the decom- 
position of 9 in the cyclotomic field of pth roots of unity. 

Fix the odd primep; let B = primitivepth root of unity; E = Q([~(p)p]"~)  
is the unique quadratic subfield over Q contained in Q(0) as in Theorem 9.3. 
Let R = algebraic integers in E, R' = algebraic integers in Q(0) .  

9.6 Lemma. The prime 9 splits as a product of two distinct primes in R if 
and only if 9 splits as a product of an even number of primes in R'. 

PROOF. Let 9 R  = $3, v2  for distinct primes in R .  These prime ideals must 
be conjugate within the Galois group of E over Q (by Proposition 6.8) and so 
there is an automorphism c in the Galois group of Q(0) over Q such that 
a('pl) = (p2. Now let 'p, R' = G ,  Gk with Gi primes in R'. It follows that 

9R' = '$1 (p2R' = 6 1  *..Gjka(G;,).*.a(G,) 

and these must be distinct primes because q is not ramified. Thus 9 has an even 
number of factors in  R'. 

Conversely suppose 9R' = 6, 3.. G 2 & ,  Gi distinct primes in R'. Let G denote 
the Galois group of Q(B) over Q and H the subgroup of elements a for which 
a(G,) = 6,. Then (G : HI = 2k. Let GI  be the subgroup of G fixing Eelement- 
wise so that JG : G, 1 = ( E :  Q) = 2 .  Since G is cyclic, there can be only one 
subgroup with index 2. Since 1G: HI is even, it follows that H c G, and 
( G I  : H 1 = k .  Let 'p = G I  n R .  Then $3R' is divisible by 6, and moreover for 
c in G I  we see c(qR') = $3R' so c(Gl) also divides (pR'. This accounts for 
exactly k distinct primes of R' in the factorization of 'QR'. Since G, = Galois 
group of Q(0) over E, G I  is transitive on the primes of R' which divide PR'.  
Thus (pR' has exactly k prime divisors. Now 9R' has 2k prime divisors so 
9 R  = 'p is impossible. The only alternative is 9 R  = (p, V2 for some pair of 
primes in R. 

In the proof of the next lemma it is necessary to know the relative degree of 
a prime divisor of 9 in R' over 9.  This has been computed in the exercises just 
above. An alternate method based on the Frobenius automorphism is described 
in the exercises following Section 3 of Chapter 111. The relative degree of a 
prime G in R' dividing 9 is the least integerj'such that qf = 1 modp. 

9.7 Lemma. The prime 9 # p  splits as a product of two primes in 
Q([~(p)p]"~) if and only if (q /p)  = 1.  

6, be the factorization of q in R'. Then qR has 
two prime factors in R if and only if g is even (Lemma 9.6). By Proposition 

PROOF. Let 9R' = 6, 
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6.8 we have ejg = j g  = p -  1 = ( Q ( 0 )  : Q) .  Thusg is even if and only iffdivides 
( p -  l ) / 2 .  Because of the characterization of the relative degree mentioned just 
above, this holds if and only if 

q ( P - ' ) / '  = 1 modp. 

Now in the cyclic group U p ,  an element has order dividing ( p -  1)/2 if and only 
if that element lies in Up2.  Then q has two prime factors in R if and only if 
( d P )  = 1 .  

One last computation before we reach our goal. 

9.8 Lemma. ( -  I/p) = (-  l ) ( p - ' ) / 2  for any odd primep. 
PROOF. (- I/p) = 1 if and only if - 1 = u2 for some u in U p .  Necessarily 

this element u has order 4 so 4 divides p -  I .  Conversely if 4 divides p - I then 
there is an element u of order 4 and u2 = - 1 because - 1 is the only element in 
U p  with order 2. Thus ( -  l / p )  = 1 if and only if 4 divides ( p -  I )  which is 
equivalent to (- I ) (p- ' ) / '  = 1 .  

9.9 Proposition. Let p and q be distinct odd primes. Then 
p - 1  q - 1  

( P / d  (4/P) = ( - I F. 

PROOF. ( q / p )  = 1 if and only if y splits into two factors in Q ( [ ~ ( p ) p ] ' / ~ )  
by (9.7) and this holds if and only if 

( & ( P ) P / 4 )  = 1 

(dP) = ( d P ) P / d  = (E(P)/4)(P/d = (-  l / d T ( P / d  

by Lemma 9.5. It follows that 
P- 1 

For completeness in this matter we shall also evaluate (2/p). The 
arguments still apply to obtain the following. 

preceding 

9.10 Lemma. ( 2 / p )  = 1 if and only if 2R' has an even number of prime 
divisors in R'. This holds if and only if 2 R  has two distinct prime divisors in 

Now we are unable to proceed as in the odd case because the factorization 
of 2 R  in E is not determined by the polynomial X 2 - & ( p ) p .  Instead we have 
R = Z [ w ]  with 2w = 1 + ( ~ ( p ) p ) ' / ~ .  (For odd y we see R,,,, = Z , , , [ ~ ( p ) p ] ' / ~  
so the factorization of q was determined by X 2  - & ( p ) p . )  The minimum poly- 
nomial of w is 

Q(C&(p)p l  ' I 2 ) .  

1 -&(PIP 
4 '  

g ( X )  = x 2  - x+ 
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and so by Theorem 7.6 ,  2R has two prime divisors if and only if g ( X )  is re- 
ducible modulo2. This occurs if and only if ( 1  - ~ ( p ) p ) / 4  is even. This is 
equivalent to ~ ( p ) p  = 8mf 1 for some m. By an examination of the cases it 
follows that this is equivalent to the assertion (p2  - 1)/8 is even. Thus (2 /p)  = 1 
if and only if ( p 2  - l)/8 is even. It follows then 

( 2 / p )  = ( -  l ) (pz - I ) /* .  

SUMMARY. Let p and q be distinct odd primes: 

( I )  ( - l / p ) = ( - l ) ( p - l ) / 2  

(2 )  (2 /p)  = (-  l ) ( + 1 ) / *  

EXERCISE 1 .  Let m be an odd positive integer and 0, a primitive mth root 
of unity. Describe the quadratic subfields of Q(0,).  

Let m = 2" 2 8. Show Q(0,) has exactly three quadratic 
subfields, Q(Jq), Q($)  and Q(J-2). 

Let d be a square free integer. Show Q(@) is contained in 
Q(0,) for some primitive mth root of unity. Also determine the least m that 
will do for a given d. (This is a special case of the theorem of Kronecker-Weber 
which is proved in Chapter V.)  

EXERCISE 2. 

EXERCISE 3. 

10. LATTICES IN REAL VECTOR SPACES 

In this section W denotes the real field and 2 the ring of integers. Let V 
denote an n-dimensional W vector space. 

Definition. If u , ,  ... ,v, are linearly independent vectors in V ,  the abelian 
group Zv, + ... + Zv, = Y is called an r-dimensional lattice in V. 

In  case r = n, we then say Y is a full lattice in V. 

We shall refer to u , ,  ..., u, as a basis of the (full) lattice Y. Of course a lattice 
may have many different bases but any two of them compare in a nice way. 
That is, a second basis can be carried into the first by a matrix with integer 
coefficients and determinant equal to -t 1 .  

Let 9 be a full lattice with basis u , ,  ..., u, .  The set 

T =  { r , u , + . . . + r , v , l r i E ~ , O ~ r i <  1 )  

is called a fundamental parallelopiped of 9. Of course T depends upon the 
choice of basis for 9, 
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10.1 
pairwise disjoint. 

integer and 0 6 r i  < 1 .  Then 

Lemma. The translates I+T, ). E 9, cover all of V and they are 

For any u = Csivi with si E 9 we write si = n,+r ,  with n, an PROOF. 

u = C n i u i  + C r i u i  

expresses u as an element in A+ T with I E 9. 
Now suppose 1, + T and A, + T have a common point for I . , ,  I ,  E 9. Then 

T and ( I ,  - I l )  + T have a common point. Examine the coefficients of the ui in 
A 2 - A l  to get 1, = I , .  

Definition. A sphere of radius m in V is a set 

U(m)  = { r ,  u ,  + . - , + r , v n ( r l 2 + ~ . . + r n 2  < m’}. 

This depends upon the particular basis. 
We can now describe a criterion that applies to subgroups of V to determine 

whether or not the subgroup is a lattice. 

10.2 Theorem. An additive subgroup 9 of V is a lattice if and only if every 
sphere contains only a finite number of points of 9. 

Suppose 2‘ is a lattice with basis v,, ..., u,. Extend this set ( ifr  # n) 
to a basis u , ,  ..., u, of V. Any sphere of radius m‘ with respect to some basis is 
contained in a sphere of radius m with respect to u I ,  ..., u, ,  for some m. NOW 
if Cni ui is in 9 and in U(m)  then Ini[ < m so there exist at most a finite number 
of points in 9 and U ( m ) .  

Now suppose Y is an additive subgroup of V with only finitely many points 
in any sphere. Use induction on n. Suppose V = Wv, has dimension one. Let 
ru ,  be an element of 9 with r positive but as small as possible. Such an r exists 
because there are only a finite number of points in {sv l  1s’ < m2} for any m. 
Let u = r u , .  Then 9’ contains Zv and in fact Y = Zv. For we may select any 
su in 9 and write sv = nu + ru with n in Z and 0 < r < 1 .  By choice of v we see 
r = 0. 

Now suppose n > I .  Because of the induction, we may suppose Y is not 
contained in any proper subspace of V .  Select a basis u , ,  ..., u, of V in 9 and 
let V,  be the subspace of Vwi th  basis vl, ..., u, , - , .  By induction, 9, = 9 n V, 
isa  latticeofrankn-1. Le tu , ,  ..., u,-, beabas isof9 , .  Nowanyelementof 
Y can be expressed as 

PROOF. 

l l - 1  

I = C r i u i  + r,u,. 

If r, = 0 then the ri  are integers. There are only a finite number of i, having the 
r i  bounded so it is possible to select some A, having r, > 0 and minimal subject 

1 
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to lril < 1, for i # n. Let u, denote this particular A. Since r, # 0, u,, ..., u, is a 
basis for V .  Now for any element 1‘ in Y we may write 

A’ = C a j u j ,  aj E 9. 

From this subtract an integer multiple of u, to insure either a, = 0 (in which 
case A’ E Yo) or 0 < lanl -= 1. Then subtract a suitable element of Yo to insure 
)ail < 1 for all i # n. Now in this case return to the expression involving v, to 
see that the coefficient of v, in A‘ is a,r, which is smaller in absolute value than 
r,. This is against the choice of u, (and r,) so in fact this case does not occur. 
In the expression for A’, then, a, must be an integer. It follows that 

Y c Y o  + zu, c 9. 
This completes the proof. 

It will be necessary to consider volumes of certain sets in V.  We shall con- 
sider only “nice” sets for which there will be no question about the existence of 
volume. 

The next theorem gives a means of testing whether or not certain sets X will 
contain a nonzero point of some given lattice. 

10.3 Theorem. (Minkowski). Let Y be a full lattice in V and let A denote 
the volume of a fundamental parallelopiped of 9. Let X be a set in V which 
contains the point (xl - x2)/2 whenever x,, x2 are in X. If vol ( X )  > 2” A, then 
X contains a nonzero point in 2’. 

PROOF. Let T denote a fundamental parallelopiped of 0. We begin by 
proving the following assertion : 

10.4 Assertion. If Y is a bounded subset of V such that the translates 3,+ Y ,  
A E Y are pairwise disjoint, then vol ( T )  2 vol(Y). 

To  prove this first observe that there can be only a finite number of 3, in Y 
such that (A+T) n Y is nonempty. This follows from Theorem 10.2 and the 
fact that Y is contained in some sphere. By Lemma 10.1 the intersections 
(A + T )  n Y are pairwise disjoint and cover Y .  Thus 

vol(Y) = 1 vol((A+T) n Y ) .  
A e P  

It is easy to check that 

(A+T) n Y = [ T n  (Y-A)] + A, 

and since volume is not changed by translation we find 

vol((A+T) n Y )  = vol (Tn (Y-A)). 

The translates of Y are disjoint so the sets T n (Y-A) are disjoint for A E 9. 



10. Lattices in Real Vector Spaces 51 

These sets may not cover T so we obtain 

as required for Assertion 10.4. 
Now return to the set X .  Consider the set 

+x = { t x l x  E X } .  

We have vol(+X) = 2-" vol(X) > vol ( T )  = A. Thus the translates of +X by 
elements in 9 must not be pairwise disjoint in view of Assertion 10.4. There 
exists A ,  # 1, in Y such that 

+x + 21 = +y + 1 2 ,  x , y  E X .  

Then + ( x - y )  = A 2 - A 1  is in X and in 9 and is nonzero. 
The Minkowski theorem will be applied to prove that certain lattices must 

contain points satisfying various conditions. We will select various sets X 
having sufficiently large volume to force these conditions. We shall describe 
now two types of sets of X that will appear later. 

Let us fix a coordinate system in V so that points are represented by the 
usual n-tuple of real numbers. Write n = r + 2s for some nonnegative integers 
r , s  and let c , ,  ..., cr+, be positive real numbers. Consider the set 

(10.5) X = { ( X I ,  . . - , X r r Y l , Z l ,  ...,ys,zs)I lxil < ci, 
I < i < r, y j 2  +z j2  c cr+ j ,  1 < j < s}. 

This set X satisfies the condition, + ( x - y )  is in X whenever x , y  are in X .  The 
volume is easily computed since X is just a product of intervals of length 2ci 
with two-dimensional spheres of radius (cr+ j ) 1 ' 2 .  It turns out that 

(10.6) 

( I  0.7) 

vol(X) = 2rns(c1 c2 * a *  cr+,).  

Another set that will be useful is the set 

X ,  = {(Xlr. . . ,xr,YI,ZI , . . . r y s , Z s ) :  

C I X i l  + 2 c ( y j 2 + z j 2 ) 1 ' 2  < t } .  

Here t can be any positive real number. 
It follows (by the triangle inequality) that + ( x - y )  is in X whenever x , y  are 

in X .  The volume of X is somewhat more difficult to compute in this case. The 
reader may see the calculation in Artin [ I ]  or Lang [7]. We shall simply state 
the result. 

(10.8) vol(X,) = 2'(n/2)"t"/n!. 

The sets described here will play a role in the next section. 
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11. THE UNIT THEOREM AND FINITENESS OF THE CLASS NUMBER 

In this section let K denote an algebraic number field, that is, a finite- 
dimensional extension of the rational field Q, and R the ring of algebraic 
integers in K .  Our object is to determine the group of units in R and prove the 
class group of R,  C ( R )  defined in Section 4, is a finite group. The proofs of the 
two results are similar in spirit and so they are both discussed here. 

We must fix the notation very carefully. Let E be a normal extension of Q 
which contains K ,  G is the Galois group of E over Q, and H the subgroup of 
G which leaves K fixed elementwise. We shall regard E as a subfield of the field 
of complex numbers which we denote by V. 

Select representatives u,, ..., u, of the distinct cosets of H in G. Then 
n = ( K  : Q) and the oi are all of the possible imbeddings of K into V. Some of 
the fields a , ( K )  may actually lie in the field of reals W. Select the numbering so 
that u,, ... ,u, map K into W. (We allow r = 0 in case there are no imbeddings 
of K into 9.) Of the remaining us we can assert that no one of them is equal to 
its complex conjugate. [The conjugate of u is the map 5 which sends x to  
00 = complex conjugate of ~ ( x ) . ]  Hence there must be an even number of 
os remaining. Number them so that 

- - 
O r + 1 , . . . r u i + s , u r + l , . . . , 0 1 + s  

are all of the remaining imbeddings of K into V. Then we have n = r+2s  = 

( K :  Q). 
Consider the function u defined on K by 

(11.1) ~ ( x )  = ( u , ( x )  , . . . , u ~ ( x ) , . . . , O r + ~ ( ~ ) ) .  

The values of u lie in the space of (r+s)-tuples having the first r coordinates 
real and the last s coordinate complex. There is a natural identification of % 
as a two-dimensional vector space over 9 and so we may regard u ( x )  as an 
element of an (r + 2s)-dimensional space over W. Let V = 9' x Vs denote this 
space. 

11.2 Lemma. The map u of K into V is an additive monomorphism. 

PROOF. Obvious. 

The importance of this procedure can now be illustrated. 

11.3 Theorem. Let B be a nonzero ideal in R = algebraic integers of K .  
Then u(B) is a full lattice in V.  

Since Z is a PID there exists a free basis a,, ..., a, of 'L[ over Z .  
Necessarily these give a Q-basis for K .  The image u(%) has the elements u(ai) 
as a free basis over Z so the result will be proved if the elements u(a,) ,  .. ., ~(a , , )  

PROOF. 
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are linearly independent over W. This in turn will be the case if and only if the 
matrix with row i equal to u(ai) has a nonzero determinant. Let M denote this 
matrix with i,j entry equal to the j entry of u(ai) .  We shall evaluate det(M) by 
relating to a matrix that has appeared previously. 

Let D denote the matrix whose ith row is 

( 6 1  (ai), . . ‘ 9  o r  (a,), o r  + 1 (a,), 3 r  + 1 (ai), 

. . .) o r +  s(ai), z r +  s(ai)). 

Compute the product DD‘ by using Corollary 5.3 to obtain 

DD‘ = (T(aiaj)I, 

where T is the trace map from K to Q. Thus we know 

(1) A(al, ..., a,) = (detD)’ # 0 

because the discriminant of any basis of a separable extension is nonzero (see 
Section 5) .  

Now relate M and D. Column r +  1 of row i in M has entry Re(a,+ (a,)) = 
real part of a,, (ai). Column r + 2  of row i in M has entry Im(a,+ (ai))  = 

imaginary part of c,+ (ai) .  
In matrix D add column r + 2  to column r +  1 to obtain in row i the entry 

2 Re(o,+ (a,)). Now subtract one-half of column r +  1 from column r + 2  to 
obtain in row i the entry - i  Im(or+ (a,)). Repeat this procedure in each pair 
of conjugate columns of D and one transforms D into a matrix “almost” equal 
to M .  The only difference being a factor of 2 in s of the columns and a factor 
- i in s of the columns. Hence 

det M = (-2i)-’ det D # 0. (2) 

This proves the result. 

We can draw a few corollaries from this computation. 

11.4 Corollary. The discriminant A(a,, ..., a,) of the basis a , ,  ..., a, for K 
over Q is positive if and only if s is even. 

PROOF. A = A ( a , ,  ..., a,) = (detD)2 = (detM)2(-22i)2s. Since Mhas  only 
> 0. Thus A has the same sign as ( i ) 2 s  = (-  IT. 

It is also possible to compute the volume of the fundamental parallelopiped 
of u ( A ) .  Since the vectors u(a l ) ,  ..., u(a,) give a basis of the lattice u ( A ) ,  the 
fundamental parallelopiped is the set 

real entries we see (det 
The result follows at once. 

T = { ~ r i u ( a i ) I  0 < ri -= I}. 
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Recall how the volume of a parallelopiped i n  n-dimensional space is com- 
puted. We form the matrix whose ith row is the vector v(aJ expressed in terms 
of the canonical basis. Then the absolute value of the determinant of this 
matrix is the volume. Hence we have 

vol(T) = fdet(M). 

Of course, Tdepends upon the choice of basis for 9. If al’, ..., a,’ is another 
basis then there is a matrix with integer entries nu such that 

ai = Cniiaj’. 

Necessarily this transformation is invertible and maps 9 onto 9. It follows 
that det Inii( = & 1. This means vol(T) is not dependent upon the choice of 
basis for 9. 

Now combine Eqs. (1) and (2) of the proof of Theorem 11.3 and obtain 

vol(T) = 2-slA11’2, 

where A is the discriminant of (any) 2-basis for 2l. 

11.5 Corollary. Let 2l be a nonzero ideal of R and A the discriminant of 
some 2-basis for a. Then the fundamental parallelopiped of u(%) has volume 
2-” IAI 112. 

It will be useful to have an expression for vol(T) that depends only upon 
the discriminant of R rather than the discriminant of 2l. To obtain this we do 
the following. 

11.6 Lemma. Let 2l be a nonzero ideal of R.  Then 

A(%/Z) = J V ( P ~ ) ~ A ( R / Z ) .  

PROOF. It is sufficient to prove this equality holds after localization at  
every prime in 2. Let p be a prime, S = 2- ( p )  and let 21s = aR,  with a in 91. 
Since R, is a PID (by Theorem 3.15) such an element a exists. Then select a 
basis x , ,  ..., x, of R over Z and it follows that ax,, .... ax, is a 2, basis of as. 
Thus A(Vl,/Z,) is the principal ideal generated by 

A ( a x l ,  ..., ax,) = det/TLlQ(axiaxj)l. 

Let r, denote the matrix of the map y + ya with respect to the basis xl, . . ., x,. 
Then 

ITL/Q (axi ax j ) (  = ra IT(xixj) I ra’* 

But now N(a)  = det(ra) so we have 

A(ux, ,  ..., ax,) = N(u) ’A(x , ,  ..., x,). 
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N (PI,) = Zs  N (a) so we obtain 

A ( W Z d  = ./v- (WZ A (RS/ZS). 

After applying Lemma 7.1 the result follows. 

11.7 Corollary. If 2I is a nonzero ideal of R and AR the discriminant of R 
over 2, then the volume of the fundamental parallelopiped of ~(‘$4) is 
2 - ” ~ ( 2 I )  1 ~ ~ 1 ~ ’ ’ .  

We are now in a position to prove the main step along the way to proving 
the finiteness of the class group. 

11.8 Theorem. Let VI be a nonzero ideal in R.  There exists an element 
a # 0 in PI such that 

PROOF. 

(3) 

Consider the set X ,  = {(xl, ..., x,+,)} in which xI, ..., x, are real, 
x, + I ,  . . . , x, + are complex and 

1x1 I + ..* + Ix,I + 2 IX, + 1 1 + .. . + 2 lxr+sl c t .  

This is a subset of V whose volume is given by Eq. 10.8. We want to apply 
Theorem 10.3 (Minkowski’s) to obtain a nonzero point in X ,  and in u ( A ) .  We 
require vol(X,) > 2” vol(T), T = fundamental parallelopiped of u ( A ) .  This 
inequality holds if 

(4) t” = & + n!(2”-r/71S)./v-((”IA~11’Z 

and E is any positive real number. Assume that t is this number and then by 
Theorem 10.3 there exists a in 2I with a # 0 such that 

U ( U )  = (a l (a) , . . . ,ar+s(a))  = ( ~ 1 , . * . , x r + s )  

is in X , .  We can assume in fact that E = 0 in (4)  because there exist only a finite 
number of points in u(2I) in any sphere, and hence in any X , .  If we consider 
the sets X ,  with t given by Eq. (4)  and with E decreasing to zero, there must be 
some point u(a) in all of them. 

Now with this value o f t  we estimate N(a). By the results in Section 5 we 
have 

r + s  S 

IN(a)I = fl lai(a)l nl5r+j(a>l 
1 I 

= 1 0 1  (all ... Iar(a)I Jar+ 1 (a)]’ .*. Icr+s(a)I’ 

= 1x1 I * * *  IxrJIxr+ 1 I* ... IXr+sI’- 
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Now use the arithmetic-geometric mean inequality. It yields 

nn 1x1 I * .  . Ixr I * Ixr+ 1 I * * * I x r +  s I  < { 1x1 I + * *  * + Ixr I + 2 Ixr + 1 I 
+ . * *  + 2 lxr+sl}n.  

Use this equation along with Eqs. (3) and (4) where E = 0 to get I N(a)( < n-"t". 
Since n = r+2s the theorem now follows. 

Recall that the class group C ( R )  is the collection of equivalence classes [S] 
of fractional ideals S of R .  Two fractional ideals Sl and B2 are in the same 
class if and only if there is some x # 0 in K for which 23, = x S 2 .  

11.9 Theorem (The Minkowski bound). Let [a] denote a class in C ( R ) .  
There exists an ideal S, in [S] with Sl E R and 

PROOF. Let [S-'1 = [a]. If 2l is not in R ,  select an element y in % - I ,  

y # 0, and replace 2l by Vly. Then [2l] = [%y] and 2ly G R. So assume 
2l E R to start with. Let M denote the constant on the right of the inequality. 
According to Theorem I 1.8 there is an element a # 0 in '41 such that 

I N ( a ) N ( 2 l ) - ' l  < M .  

Set S, = aP1-l and observe bl is in [a] and 23, E R. Then 

lN(Sl)1 = I N ( U % - ' ) I  = I N ( a ) N ( Q [ ) - ' l  < M 

as required. 

The importance of this theorem lies in the fact that the bound depends only 
upon the field K and not upon the ideal class. This result makes it easy to prove 
the next result. 

11.10 Theorem. The class group C ( R )  is finite. 

Every class [a] in C ( R )  contains an integral ideal S1 with 
lN(S,)[  < M with M the bound given above. I t  is sufficient to prove there 
exist only a finite number of ideals in R having norms bounded by M. 

+$pt be a nonzero ideal, qi are distinct primes and the a, are 
positive integers. Let ( p i )  = $, n Z ,  p i  = prime integer. Then suppose 

PROOF. 

Let 23 = 'p'f' 

M ( S )  = npSZf1 < M 

withfi = relative degree of Pi (see Corollary 8.5). First, each prime p i  must be 
less than or equal to M. Thus only a finite number of p i  can arise this way. 
Next the exponent aiA is bounded and the number of Z p j  that can appear is 
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finite since there exist only a finite number of v j  which contain a given p i .  
These facts taken together imply there exist only a finite number of ideals 23,  
in R with N(23,) G M .  

This proof that C ( R )  is finite is not the shortest proof possible but it is very 
useful because the bound is good enough to be practical for computation. 

EXAMPLE. We return to the example K = Q(0) with O3 = 2 which was 
considered at the end of Section 7. There is one real root of X 3  - 2 and two 
complex roots. Hence in this case r = 1 and s = 1 .  The discriminant A = 
A ( R / Z )  = - 2 2 . 3 3  and n = 3. If one computes the bound in Theorem 11.9 we 
see that every ideal class [23] in C ( R )  contains an ideal b, with N(23,) < 4. 
Thus A’(%,) = 2 or 3 and in either case B, must be a prime ideal dividing 2R 
or 3R. We have already determined the structure of these last two ideals. 
Namely 2R and 3R are each the cube of a prime ideal which is principal; 
2R = 0’R and 3R = (1 +0)3R.  It follows that any ideal 23, with N(23,) < 4 is 
a principal ideal. Hence C ( R )  is the group of order one and R is a PID. 

We can obtain more information from Theorem 1 1.9. For any ideal 23 # 0, 
the norm N ( S )  is an integer no smaller than one. It follows that 

Let a, denote the right-most expression. We find 

a,+,/a, = (1~ /4 )”~(1+  l/n)”. 

This number is always > 1 so a,+ , > a,. Since a2 > 1 we see IARI > 1. This 
proves the following statement. 

11.11 Corollary (Minkowski). Let R be the ring of algebraic integers in 
an algebraic number field # Q. Then A ( R / Z )  # Z .  In particular some prime 
in Z must ramify in R .  

Next we apply the ideas above to solve another problem. Let U denote the 
multiplicative group of units in the ring R of algebraic integers in K .  ( K  is still 
an algebraic number field.) We shall apply the Minkowski lemma to determine 
the structure of U. 

Let a be a nonzero element of K .  Define the function [ ( a )  by 

[ ( a )  = (In lol (a)l, . . . , In  lcr(a)l, 2 In Ior+s(a)lr 

..’> 2 In lor+s(a)l). 

For convenience let [ , (a )  = In lai(a)l if 1 < i < r and f i ( a )  = 2 In loi(a)l if 
r t i < r + s .  
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Then in view of Theorem 5.3 we find 

(11.12) In IN(4I = C4(a>. 
Furthermore t (ub)  = t ( a ) + t ( b ) .  

11.13 Proposition. The function l‘ maps the units U into an ( r + s -  1)- 
dimensional lattice in the vector space V ,  of dimension r + s over 9. 

PROOF. Let V,, denote the space of (r+s)-tuples over the reals so [(U) c Vo 
Any element u E U must have norm N(u) = f 1 since N(u) N(u)-’ = I .  Thus 
(1 1.12) implies C d i ( u )  = 0. This means [(U) lies in the hyperplane 

{(xi, * * a ,  Xr+J  E V(Cxi = 0). 

The image t(U) is an abelian group (in fact / is a group homomorphism) so 
[(U) will be a lattice if every sphere in V contains only a finite number of 
points in [(U). It is certainly sufficient to show that any “cube” contains only 
a finite number of points in [(U). Let m be a positive constant and consider the 
set U,, of all elements u E U for which l l i(u)l i m. That is t ( u )  is in the cube 
with side m and center at the origin. Then di In lai(u)l < m implies 

lai(u)l < di = 1 or 2. 

It follows that the set U, is mapped by the function u,  defined in Eq. 11.1, to a 
bounded subset of v ( R )  in m-dimensional space. This means there can be only 
a finite number of points in v(U,). But u is a one-to-one function, so U, is a 
finite set and that proves the proposition. 

The main goal is to prove that [(U) is actually r + s -  1 dimensional (rather 
than just contained in a lattice of this dimension). 

We first work with the lattice u ( R )  in the n-dimensional real space V =  
W‘x V. Let y = (yl ,  . . . , y r + J  denote a vector in V and Y the linear trans- 
formation 

Y(x,, .**,xr+s) = ( ~ 1 ~ 1 ,  ***rxr+sYr+s). 

The matrix for Y is almost diagonal, namely, 

Y = diagIy,, ***,Yr,Yl*+li ...,Y:+~}, 

where y:+j is a 2 x 2 matrix which represents the linear transformation on the 
complex field determined by multiplication with yr+j .  If yr+ = a+ib, with 
a, b real, then 

a b  
y:+j = 1 I *  

- b  u 

It follows easily that 

IdetyI = I ~ l t  a * *  ty,IIyr+~12...Iyr+st2. 
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Select Y so that 

(11.14) detY = 1. 

Then Y is a volume preserving linear transformation on V. In particular the 
lattices u(R) and Yu(R) have fundamental parallelopipeds with the same 
volume. This volume is 

VOI(YU(R)) = 2-"1A1"2, 

where A = discriminant of R over Z .  

satisfy lxil < ci when 1 < i < r and Ixr+ j 1 2  < c , + ~  when 1 < j  < s. 
Let cl, ,.., c , + ~  be positive constants. Let X = { ( x ] ,  .. ., xr+J  E V }  which 

This is a set such as that described in Eq. 10.5. We have 

vol(X) = 2'7cSCI * * ' c r + s .  

The object is to apply Minkowski's Theorem 10.3 to obtain certain points 
in  Yu(R) .  For this it is necessary that vol(X) is large enough. We require 

vol(X) > 2"2-slA1"2. 

Since Yu(R) has only a finite number of points in any such X it follows that 
Yu(R) and X have a common nonzero point even if 

VOI(X) = 2"2-slA11'2. 

So we assume this holds for the choice of constants c l r  . . . , c r + " .  Suppose 
0 # a E R and Yu(a) E X .  Then 

Yu(a) = ( 6 1  ( a ) ~ l *  ...,a r+s(a)yr+s) 
and 

(11.15) Ioi(a)yiI < c i ,  i < r ;  

Iar+j(a)Yr+j12 < cr+j .  

In view of Eq. 1 1.14 we obtain 

IN(a)I = ( 6 1  (a)I 1 . .  Iar(a)I l o r +  1 (a)12 ... Iar+s(a)12 < ~1 ** .c r+s*  

Notice the element a depends upon Y but the bound for " ( a ) [  does not. It 
has been seen earlier that only a finite number of ideals of R have norms which 
lie below some bound. Let Ra, ,  ..., RaN be all the distinct principal ideals with 
norm < c I  . . . c ~ + ~ .  Then Ra must coincide with one of these so there exists a 
unit u in R and some index k such that a = Mak. It will be necessary to estimate 
the size of ai (u)  in terms of Y. Note that u depends upon Y since a does. From 
(1 1.15) one sees 

Iai(a)yiI = loi(u)Yiai(ak)l < Ci 

Jar+ j(a)yr+ jI = Iar+ j(u>yr+ j a r +  j(a,)12 < C r +  j .  
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Let bi = min { lgi(uk)l, k = 1,2, ..., N}. Then 

(11.16) Igi(u)llvil < CJbi, 1 < i < r 
lgr+j(u)Ilyr+jl < (cr+j) 112 / b r + j  

So far Y is arbitrary except for the restriction (11.14). Now let W be a 
constant and select the yi so that 

lyzl = ... = IYr+s l  = W,  ( ~ 1 1  = l / W r + s - ’ *  

The condition (1 1.14) still holds. Let u, denote the unit corresponding to this 
choice of Y. The condition (1 1.16) now reads 

lai(ul)l < ci/Wbi, i # 1, i < r 
lor+ j(ul)I < (Cj+r)”’/Wbr+ j 

(6, ( U l ) l  < W‘+S-Ic,/b, .  

We may select W so large that Igt(uI)I < 1 for all t # I .  Having done this we 
observe ti(ul) < 0 for i # 1. Moreover N ( u , )  = 1 because u, is a unit in R 
so by Eq. (1 1.12) we obtain 

8,(u,)  = - c t , ( u , )  > 0. 
irl 

In a similar way one produces units u2,  ..., u , + , - ~  in R which satisfy the 
following conditions : 

(1 1.17) (a) 8, (u j )  -= 0 if i # j ,  

r + s - 1  

i =  1 
(b) 1 ei(uj) > 0 for all i. 

The crucial point to notice is that 
r + s  

1 Ci(uj) = 0 by(11.12), 
i = l  

so by dropping the last term P,+,(uj) (which is negative) we obtain (b). 
This last statement produces units in R which are very ‘‘large’’ at the ith 

conjugate, a,(#,), but “small” at  all the other conjugates, g j  (uJ. They will be 
the important units needed to  show that the lattice G(U) has dimension 
r + s -  1. 

We first cut down the dimension of the space. Let pr denote the projection 
map from the ( r  +s)-dimensional space Vo to an ( r + s -  1)-dimensional space 
V ,  defined by 

p r ( x , ,  .*+ ,xr+s-1 ,xr+J = (XI, *. . ,xr+ , -1)*  
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Then d(U) in V ,  is projected onto a lattice prC(U) = 9. 

11.18 Proposition. Let u l ,  ... ,u , .+ , -~  be units of R which satisfy (11.17). 
Then the vectors prL(ui) are linearly independent over W. 

PROOF. To prove this we form the matrix M whose ith row is the vector 
prG(uj). The proposition will be proved if we show M is nonsingular. We 
simplify the notation. M = lmiil is ( r + s -  1) x ( r + s -  1) and 

We shall prove Y has dimension r + s -  1 .  

(a) mu < 0 if i # j ,  

(b) x m u  > 0 for each i .  
i 

If M is singular there exist real numbers x j  not all zero such that 

x m i i x j  = 0 for each i. 
j 

Select the index k so that l X k l  b I x , ~  all i and assume xk > 0. (Just multiply all 
the xs by - 1 if X k  < 0.) Now we have 

because of (b). This contradiction proves Proposition 1 1.18. 

11.19 Theorem (Dirichlet). The group of units in R is the direct product 
of a finite cyclic group and a free abelian group of rank r + s - 1 .  Equivalently 
there exists units u l ,  ..., in R such that every unit u in  R can be uniquely 
expressed as 

# = wul;' ... u,";+;--; 

for some root of unity w and integers a, .  

By Proposition 11.13 we know C(U) has dimension at most 
r + s- 1 and by Proposition 1 1 .  I8 it has dimension at least r + s - 1 so there 
must exist units u l ,  ..., u , + , - ~  such that C(U) has Z-basis C(u,). For any unit u 
in U there exist unique integers such that 

PROOF. 

/ ( u )  = Cu, / (u , )  

and so C(u = 0. 
The proof will be complete if we prove that any unit w for which /(w) = 0 is a 
root of unity. 

We have / ( w )  = 0 if and only if la,(w)l= 1 for all i. Thus 

~ ( w )  = (61 ( w ) ,  . * * ,  o r + s ( M ' ) )  

lies in a bounded subset of the lattice v ( R ) .  This means only finitely many w 
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can arise by Theorem 10.2 and the fact that u is one to one. This means that the 
kernel of P is a finite subgroup of U and hence is cyclic. (Every finite subgroup 
of the multiplicative group of a field is cyclic.) 

EXAMPLES. Let D > 0 be a square free integer and K = Q ( J 5 ) .  Then 
2 = n and r = 2,  s = 0 so the group of units in  the ring of integers of K is the 
direct product of a finite cyclic group and an infinite cyclic group. 

In case D = 2, the infinite cyclic group is generated by 1 +& 
If K = Q ( F D )  then s = 1 and r = 0 so the group of units in the ring of 

integers is a finite cyclic group. 

EXERCISE I .  Let D be a positive, square free integer and R the ring of 
integers in Q(J-D). Let U denote the group of units in R. Show U has order 
two except in the two cases D = 1, D = 3, where U has order four or six, 
respectively. (Hint : Use information about cyclotomic fields and their 
dimensions.) 

REMARK. If R is the ring of integers in Q ( @ )  with D a positive integer, 
then the unit group has the form ( k ek) where E is a generator of the infinite 
cyclic part of the unit group. Notice that E ,  - E ,  I/&, I /  - E are also generators 
of this subgroup. We are dealing here with real numbers and exactly one of the 
four generators is > 1. Suppose E > 1 .  Then E is called thefundamental unit of 
Q ( @ ) .  For any given D the fundamental unit can be calculated by methods 
using continued fractions. For more information see Chapter 11, Section 7.3 
of Number Theory by Borevich and Shafarevich. Also see the exercise following 
this section. We shall close this section with an example showing a field with 
class number two. 

Let K = Q ( 0 )  with O 3  = 1 I ,  R = ring of integers in K .  Then 
2[0] c R. In fact equality holds here but we shall not prove this here. One 
computes directly that A ( l , 0 , 0 2 )  = A = -33  11'. Then A(R/Z)  must divide 
A so we use A in the Minkowski bound. We find every ideal class [el] in C (R) 
contains an ideal 23 with J(%) < 17. This means we can generate C(R) by 
classes ['p] with 'u a prime ideal having norm J ( ' p )  < 17. So to find these 
primes, it is necessary to describepR when p is an integral prime < 17. For the 
primes p = 2 , 5 , 7 ,  13 we use Theorem 7.6 and Proposition 7.7. 

EXAMPLE. 

p = 2 

p = 5 

p = 7 X 3  - 1 1  is irreducible, mod7; 7R = 'p,, N('p,) = 73 
p = 13 

X 3  - 1 1  = (X-1)(X2+X+1)mod2 

X ' -  11 = (X-1)(X2+X+l)mod5 
2R = ' p 2  Yz', J ( ' u 2 )  = 2, J l r ( c P z ' )  = 4 

5R = ' p s ' p s ' ,  J l r ( ' p 5 )  = 5 ,  N('p5') = 52 

X 3  - 1 1  is irreducible, mod 13; 
N ( Y l 3 )  = 133. 

13R = (p ,3 ,  
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The remaining primes 3, 1 1  are ramified. Since N(O) = 1 1  (look at the mini- 
mum polynomial) we have 11R = V:,, !+Il1 = OR, J V ( ' $ ~ ~ ~ )  = 11. 

For the last case we make a general observation. For any integer k ,  O+k 
has minimum polynomial ( X -  k)3  - 11 and so 

(*) N ( O + k )  = k3 + 11. 

In particular N(B-2)  = 3 so ( 8 - 2 ) R  = )p3 is a prime with = 3. It is 
not difficult to show (as in the example on page 37) that 3R = 9.333. 

It follows now that C ( R )  is generated by the classes [ '$3 , ] ,  [ F p , ' ] ,  [ ( p 3 ] ,  [ ' $ 5 ] ,  

[vl J, since these represent all the primes with norm < 17. The class of a 
principal ideal is the trivial class in C ( R )  so at once we have ['p3] = , ]  = I ,  
since these are principal ideals. [We write 1 for the identity in C ( R ) . ]  Further- 
more, [!$12]['$s2'] = 1 since 2R is principal. Thus, C ( R )  is generated by "p,] 
and "$51. 

Now we must look for further relations. By (*) one finds N(O- 1) = 10 = 
2 . 5 .  Thus (by Corollary 8 .5 )  ( 0 -  1) R is the product of a prime with norm 2 
and a prime with norm 5. In each case the prime is unique. Hence 

(O-1 )R  = '$32135. 

This means [9.3,] = [ V 5 ] - '  in C ( R )  so C ( R )  is generated by ['$,I. 
To get additional relations it would be helpful to find an element with norm 

a power of two. The minimum polynomial of 8' is X 3  - 121 and by the method 
above one finds 

N ( d 2 + k )  = k 3  + 121. 

In particular N (02 - 5 )  = - 4  so (02 - 5 )  R is an ideal with norm 4. There are 
two possible ideals with norm 4;  namely, '$3,, or '$3,'. 

FIRST CASE. (0, - 5) R = 9,'. Then 2R = 1), 9.3,' = (0' - 5) '$3,. This means 
'$3, is the principal ideal generated by 2/ (02  - 5). However, we can prove this 
element is not in R. We describe a general method for deciding such a question. 

Suppose a is any element of R and 

f ( X )  = X 3 + a 1 X 2 + a , ~ + a 3  = O 

is the minimum equation for a. Then the minimum equation (over Q )  for l/a is 

X 3 f ( i / x )  = 1 + a ,  X +  a,  x 2  + a 3 X 3 .  

The monic equation for l / a  is ( l / a3 )  X 3 f (  l/X). The monk equation for 2/a is 

8/a3 + (4a , /a3 )X  + (2a2/a3)X2 + X 3 .  

So 2/a is in  R if and only if these coefficients are integers (Proposition 2.4). 

with 75/2  as the coefficient of X 2  so 2/(02 - 5) is not in R.  
In the case a = 0 , - 5  it turns out that 2/a  has minimum monic equation 
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SECOND CASE. ’p2’ = (0’- 5 )  R .  It now follows that “$J’ = 1 in  C ( R )  so 
C ( R )  has order 1 or order 2 depending upon whether g2 is a principal ideal or 
not. 

The task of proving ‘p2 is not principal is not at all an easy one. We shall use 
a method suggested by Artin [ I ]  p. 170 (used in a different example.) 

This method requires that we know the units in R.  By the unit Theorem 1 1.19, 
the unit group is the direct product of a finite group and an infinite cyclic 
group. Since R,  and Q(0) ,  can be imbedded into the reals by taking 0 to be the 
real cube root of 1 I ,  it follows that the finite group of units is ( f 1) and so all 
units in R have the form f uk for some fundamental unit u. 

We shall not describe how the unit u can be found although there exists an 
algorithm by which this can be done. It turns out that 

u = 89 + 400 + 1802. 

It is straightforward to verify that N(u)  = 1 so indeed u is a unit. Moreover, 
there are techniques for estimating the fundamental unit (Artin [l], p. 169). 
This enables one to verify that u is indeed a fundamental unit. 

Now suppose ’pz = crR is a principal ideal. Then 

‘$Z2 = u‘R = (0 ’ -5 )R .  

It follows that a’ = (0’- 5) w for some unit w in  R. Necessarily (0’- 5 )  w is a 
square in R and so certainly must be a square modulo any prime ideal in R.  
After we multiply (0’ - 5) w by a suitable square of a unit we obtain 

x = fud(0’ -5)  = (square) mod‘p 

where one of the signs is fixed and d = 0 or 1 .  We are able to make this assertion 
because w = fu“ for some k .  

We first take ‘$3 = ‘p3 = (0- 2) R. In  R/‘p3 we map 0 onto 2 since 0- 2 E Cp3. 
Thus using the form of u yields 

x = f(89+40(2)+ 18(2)’)‘(4--5) = r t ( l )d ( -  1) .  

We know x is congruent to a square in R / g ,  but R / V 3  has order three. Since 
- 1 is not a square mod 3, the negative sign must be the one. That is 

x = -ud(0 ’ -5 ) ,  d = 0 or 1 .  

Next use a calculation above to find 

N(0+9) = 740 = 2’.5*37. 

This means (0 + 9) R is divisible by a prime (u3, which has norm 37 and relative 
degree 1. In R/v3, we must have x map onto a square. Now compute with 0 
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mapping onto - 9 : 

x -(89-40.9+18.92)d(92-5) 

= -(3)d(2) mod 37. 

We know this is a square mod 37. 
However we shall see this is not the case by evaluating the Legendre symbol, 

((3)d(-2)/37) = (3/37)d(- 1/37)(2/37) = - 1.  

This follows because 

(3/37) = (37/3) = (1/3) = + I ,  

(- 1/37) = + 1 ,  (2/37) = - 1. 

This shows x is not a square modulo v3, and so is not a square in R .  This 
final contradiction proves vPz is not a principal ideal. Thus C( R )  has order two. 

EXERCISE 1 .  Let d > 0 be a square free integer and m the smallest positive 
integer such that one of the numbers dm2 -4, dm2 + 4  is a square. Let a be the 
least positive integer for which a2 = dm2 + 4.2, E = f 1. Then the fundamental 
unit in the field Q(J2) is u = (a+m,/;i)/2 and N(u) = E .  

For any unit u in the ring of integers of Q(Jd) the minimum 
polynomial of u over Q has the form X 2  - a X +  E ,  E = N (u)  = f 1.  Solve for u 
and use (a2 - 4 ~ ) ” ~  = m P f o r  some m. Now verify the least possible m does 
give the fundamental unit.} 

EXERCISE 2, Verify the following table, which gives the fundamental unit 

{Hint. 

in Q C @ > .  

d 2 3 5 6 7 10 

U I + &  2 + f i  (1+&)/2 5+2& 8 + 3 f l  3 + @  

EXERCISE 3. Imitate the procedure in the example above to show Q(Jfi) 
has class number 2. In fact the unique prime divisor of (2) is nonprincipal. 



Chapter II 

COMPLETE FIELDS 

1. VALUATIONS 

Let K be any field and x -+ 1x1 a function from K to the reals. 

Definition. The function 1x1 is called a valuation if 

(i) 1x1 > 0 except that 101 = 0, 
(ii) 1x1 I Y l  = IXY  I, 
(iii) (x+y l<  Ixl+lrl. 

If the valuation satisfies the stronger condition 

(iii)* (x+yl<max{lxl, ly(} 

then it is called nonarchimedean valuation. All others are called archimedean 
valuations. The valuation is nonrrivial if 1x1 # 1 for some x # 0. 

EXAMPLE 1. Suppose K is any subfield of the real field. Then the usual 
absolute value 1x1 is an archimedean valuation of K. 

EXAMPLE 2. Let R be a Dedekind ring with quotient field K and let ‘$3 be a 
nonzero prime ideal in R. For any nonzero x in R let u,(x) denote the power 
to which ‘p appears in the factorization of Rx. We may then write 

Rx = n (p”~(x), ‘$3 runs through the primes. 

We abuse the notation slightly and also let ’$ denote the maximal ideal in 
the DVR R,. We extend the definition of v, to all of R, using the same 

66 
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defining property. If y is in K but not in R,, then y - l  is in R,. We define 
v,(y) to be -v,(y- ' ) .  If we interpret y R ,  as a fractional ideal then v,(y) is 
still the power of 'p appearing in the factorization. In fact for all y # 0 in K ,  

y R ,  = 'p"D(Y). 

Let '$3 = (n) in R, so every nonzero element in K can be expressed as y = 

Observe that vg satisfies the following: 

I .  v,(y) is an integer for each y # 0 in K, 

un" for a unit u in R, and some integer n. Clearly v w ( y )  = n.  

2. V,(XY) = V , ( X ) + V , ( Y ) ,  

3. v,(x+y) 2 min{v,(x),v,(Y)l. 

The first two follow at once. We shall prove 3. Let x = u1 nm, y = u2 n", with 
ul, u2 units in R,. Suppose m 2 n.  Then 

x + y = (u;lul nm-"+ 1)u2n". 

The element in parenthesis belongs to R ,  so 

v,(x+y)  2 n = min{u,(x),v,(y)}. 

Definition. A function v(x)  which satisfies (1)-(3) is called an exponential 
valuation on K .  

Remark. For convenience let us set v,(O) = + 03 so that Statement 3 is 

One easily obtains a valuation of K from the exponential valuation v,. 

meaningful even if x + y  = 0. 

Select a real number c such that 0 c c < 1. Now define 

1x1 = c"D(X). 

That 1x1 is a nonarchimedean valuation follows from Statements 1-3. This 
valuation will be called the 'p adic valuation on K .  

There is much freedom here due to the choice of the constant c from the 
interval (0,l). If a second constant d were used to define a valuation [ X I l ,  we 
would have 1x1 and 1x1 I equivalent in the following sense : 

Definition. Two valuations 1x1, 1x1, on K are equivalent if whenever 1x1 < 1 
then also (xI1 c 1 for x in K.  

There is a very precise relation that holds between equivalent valuations on 
any field K .  

1.1 
K .  Then there is a real number a such that 1x1' = lxll for all x in  K .  

Proposition. Let 1x1 and JxI1 be nontrivial but equivalent valuations on 
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PROOF. Since the valuations are nontrivial, there exists an element y in K 
with IyI > 1 .  Let a denote the real number 

a = ~oglYll/~oglYl. 

1x1 = IYlb. 

Now let x be any nonzero element in K .  There is a real number b such that 

Now let mi/ni be a sequence of rational numbers (with n, > 0) converging to b 
from above. Then 

1x1 = J y l b  < lyl8i'"i 

IX"'/ymi I < 1. 

IX"'/ym'II < 1 

1x11 < ly(;ri'"i. 

and so 

It follows that 

and so 

This means lxll < ( y l Ib .  

below we can obtain the reverse inequality. Thus 
If we repeat this procedure with a sequence of rationals converging to b from 

1x1 = lylb implies 1x1, = Iyllb 

for all x # 0. 
This implies 

log Ixl/loglxl1 = ]/a 

and so 1x1' = JxJ1 as required. 

When we consider various questions about valuations, it is often necessary 
to consider archimedean and nonarchimedean valuations separately. We 
consider next one of the important features of nonarchimedean valuations. 

1.2 Proposition. Let 1x1 be a nonarchimedean valuation on K.  Let R = 

{ x  E Kllxl < I } ,  '$? = { X I  1x1 < I}. Then R is a local ring with Cp as its maximal 
ideal and K as its quotient field. 

R is a DVR if and only if the set of nonzero values IK*J is a multiplicative 
subgroup of the reals isomorphic to  the additive group of integers. 

PROOF. We first show that R is a ring. Whenever x,y E R then (ii) and 
(iii)* insure that xy and x f y  are in R.  Furthermore I - 1 l 2  = 11 1 = 11 l 2  by (ii) so 
111=1-11= ].Thus ly J=( -y l  and so X - Y E  R which shows R is a ring 
containing 1. For any z E K ,  z # 0 we have )z l )z- '1= 1 so either z or z-' 
belongs to R .  Thus K = quotient field of R.  
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Certainly 'p E R and by (iii)* Y is an ideal of R.  To see that 'p is the unique 
maximal ideal of R let y be any element of R not in Y. Then 1 yj = 1. Also it 
follows I y - l  I = 1 so y-  is in R.  Thus every element in R outside 'p is a unit. 
Hence 'p is a maximal ideal and is the only one. 

Now suppose R is a DVR so then 'p = RE.  Every element of K (nonzero) 
can be expressed as x = un" for some unit u in R and an integer n. If c = In( 
then 1x1 = c". The function 1xl-n now establishes an isomorphism of the 
group of nonzero values with the additive group of integers. 

Conversely let 4 denote the isomorphism of I K *  I with Z .  From the equation 
c$(lxl-') = -$(lxl) we conclude that #(IRI) or -b ( IRI )  contains all the 
positive integers. Replace Q, by -4  if necessary to assume 1 is in Q,((R(). Let 
n be an element of R such that 4(lnl)  = 1. For any x in R, 4(lxl) = n is a 
positive integer and 

f$(lxn-"l) = 0. 

Ixn- = 1. 

Since Q, is an isomorphism it must be that 

Thus xn-" = u is a unit in R so that x = un". Every nonzero element of R is a 
unit times a power of n. It follows at once that the only ideals in R are powers 
of Rn so R is a DVR as required. 

Remark. The ring R obtained from a nonarchimedean valuation ring as in 
Proposition I .2 is called a valuation ring. In the case where the value group is 
an infinite cyclic subgroup of the reals, the value group is necessarily a discrete 
subgroup and so the valuation ring is called a discrete valuation ring (DVR).  

Next we describe a useful test to determine if a valuation is archimedean or 
not. 

1.3 Proposition. 
values (rill are bounded as n runs through the rational integers 2. 

A valuation 1x1 of K is nonarchimedean if and only if the 

PROOF. If 1x1 satisfies (iii)* then 

In11 = 11+..*+11 < 111, 

so 11 I is a bound on the values In1 I. 

for any positive integer n, 
Conversely suppose In1 1 < N for all integers n. For any x,y in K we have 

Now if 1x1 2 ( y (  then IxIrIyI"-'< 1x1". Since (:) is an integer and 1x1 = 
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max{IxI, IyI}, it follows that 

Ix+yln G N ( n +  1) max{lxl, Iyl}". 

I x + y (  < N'/"((n+ max{lxl, lyl}.  

Since this is true for all positive n it must be that the nonarchimedean axiom 
(iii)* holds. 

It follows from this result that a field of characteristic p has only non- 
archimedean valuations. 

We shall now determine all the (nonequivalent) valuations of Q. 
Let 1x1 be a nontrivial valuation of Q. Let m and n be integers > 1. We may 

Now then 

write 

r n = a , + a , n + ~ ~ ~ + a , n '  

with a, an integer, 0 < a, < n and n' 6 m. Let N = max (1, Inl}. By the triangle 
inequality , 

Iml < Cla,llnl' < Elail N'. 

The number r satisfies r < logm/logn and the numbers a, are less than n, so 

la,/ = ( I + . . . + l I  < a , ( l J  < n. 

Substitute this information into the previous inequality to get 

* Jml < (1 +logm/logn)nN'o~m/'o~" 

In this inequality replace m by ms and takes roots on both sides (san integer). 

Iml < (1 +s l ogm/ logn) '~snn'~SN'o*m~'o~n  

Now let s increase without bound. The terms in the inequality involving s 
converge to 1. It follows 

** Iml 6 NlogmIhn 

We now consider two cases. 

Case 1.  n > 1 implies In1 > 1. 
In this case we always have N = In1 and the condition (**) now yields 

Imll/logm < ( ,I l / logn.  

We may reverse the roles of m and n to obtain the inequality in the reverse 
direction also. Thus 

= ImI l / l ogm = (n l l / losn  
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and we have In1 = clog" for all integers n > 1. Since 1 - n l =  In1 and la/bl= 
lal/lbl we find that 

1x1 = c'ogx 

for all positive rational x. When c = e the valuation is the usual absolute value 
on Q. Any constant c has the form e' for some a so the valuation is just the 
usual absolute value raised to the power a. 

In Case 1 only the usual absolute value arises (up to equivalence). 

Case 2. For some n > 1 we have In( < 1. In this case N = 1 and by (w) we 
have Iml< 1, for all integers m > 1. It follows from Proposition I .3 that the 
valuation is nonarchimedean. Let R = {XE QllxlG l} denote the valuation 
ring and 'p is maximal ideal as in  Proposition 1.2. Then 2 c R and '$3 # (0) 
because the valuation is not trivial. In fact '$ n Z is nonzero because Iml= 1 
for all m in Z, m # 0 would imply the valuation is trivial. Thus '$3 n Z = (p)  
is a prime ideal. If m is in Z but not in (p) then m is a unit in R and Iml= 1. Thus 
Imp'l= (pIr and this valuation on Q is equivalent to the padic valuation. 

1.4 Proposition. A nonarchimedean valuation of Q is equivalent to a padic 
valuation for some prime p. An archimedean valuation of Q is equivalent to 
the usual absolute value. 

We have proved the next statement. 

We shall introduce some'new terminology. 

Definition. An equivalence class of valuations on a field K will be called a 
prime of K .  We shall use letters 'p, p to denote primes of K .  If we want to select 
a particular valuation from $3 we may denote it by a symbol such as Ixlv. 

For the rational field Q the primes are in one-to-one correspondence with 
the prime integers except that the class of archimedean valuations is not 
obtained this way. In order to have a consistent terminology we shall call the 
equivalence class of archimedean valuations on Q the infinite prime of Q. All 
others will be calledfinite primes. 

We shall now make some normalizations. From each prime of Q we shall 
select a particular valuation. 

Let p be a prime integer and '$3 the prime of Q corresponding to the padic 
valuation. Let IxJp be the valuation in 'p which satisfies 

lPlp = l/P. 

Let 'p, denote the infinite prime of Q and let 1x1, denote the usual absolute 
value. 

The collections of valuations defined here will be called the normalized 
valuations of Q. 

The reason for making these choices can be seen (in part) from the following. 
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Product Formula. If 1 
?, on Q then for each nonzero x in Q we have 

denotes the normalized valuation in the prime of 

where the product is taken over all primes of Q. 

PROOF. The function 

is well defined because there exist only a finite number of primes '$3 such that 
lxla # 1 for any given x. To prove the formula, it is first useful to observe that 
n(xy)  = ~ ( x )  ~ ( y )  because each valuation is multiplicative. Thus it is sufficient 
to prove r c ( ~ ) ~  = I for each prime integer p .  But this is trivial because 
Ip = 1 unless ?, is the infinite prime or the padic prime. But then 

IPlpIPlm = 1 

by definition of the normalized valuations. 
One of our goals will be to prove a product formula theorem for finite 

extensions of Q. This will require detailed information about extending a 
valuation from Q to some finite extension field. It will turn out that the exten- 
sions of nonarchimedean valuations can be described by using the information 
in Chapter I .  However some new ideas are required to discuss the extensions 
of archimedean valuations. We shall return to this after some preliminary 
work. 

2. COMPLETIONS 

Let K be a field with a valuation 1x1. A sequence of elements {a,} in K is 

lim Ja,,-a,J = 0. 

Notice that the limit makes sense because the values la,,-a,l are real 

A sequence {a,,} converges to a if 

called a Cauchy sequence if 

m , n + m  

numbers. 

lim la-a,,l = 0. 

It may or may not happen that a Cauchy sequence in K converges to an 
element of K.  For example a Cauchy sequence of rationals with respect to the 
usual absolute value need not converge to a rational number. 

n-tm 
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Definition. The field K is complete with respect to the valuation if every 
Cauchy sequence converges to an element of K. 

Our object is to start with a field K and valuation and imbed K into a com- 
plete field having a valuation which extends the one on K .  The process is a 
generalization of the familiar procedure of obtaining the reals from the 
rationals. 

We begin by defining an equivalence relation on the collection of all Cauchy 
sequences in K .  Say {a,}  - {b,} if 

limIa,-b,I = 0. 

By using the properties of valuations and the fact that we are dealing with 
Cauchy sequences, one proves this is indeed an equivalence relation. Let {a,}* 
denote the equivalence class of the CS {a,}  and let k denote the collection of 
all such equivalence classes. 

We leave for the reader the verification of the following statements. 

(2.1) Let {a,} and {b,} be Cauchy sequences in K. 

(1) {a,+b,} and {a,b,} are CS in K. 
( 2 )  If lim lanl # 0 then a, # 0 for all n 2 no for some no.  

I n  this case {a,-'} n 2 no is a CS in K. 

We use these facts to define addition and multiplication in l?. 
Define 

{an>* + {bnl* = {an+bnl *  

{an 1 * {bn} * = {an bn>* 

{a,}*- '  = {a,-'}* when a;' defined. 

One checks that these operations are well defined and that k becomes a 
field. The original field K is imbedded in l? by identifying an element x in K 
with the constant sequence {x}. The valuation 1x1 on K is extended to k by 
defining 

I{a,}*l = limlu,l. 

One easily verifies this function is actually a valuation on k which agrees with 
the original valuation on K. 

The heart of the matter is to prove k is complete with respect to this valua- 
tion. Let [a,] denote a CS in l?. This means each a, is a CS, say a, = {a:'}*, 
in K.  Let CY be the sequence {a im)}* .  

In  order for this to make sense, { u ~ ~ ) }  must be a CS in K. This follows 
because 

Ial"-ayI < [ a y ) - a y  + lajs'-ai"'l. 
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For fixed s, {a:)} is CS so the second term on the right converges to zero. The 
sequence [a,,] is Cauchy so la,'")-a,'"')l converges to zero as n, m, t get large. 
Thus the first term on the right also goes to zero. Thus a = {a,(")}* is in I?. 
Moreover we claim [a,] converges to u. This follows from 

limIa,,-uI = limlim lan(")--a,,,("')l = 0. 

Thus {a,) has a limit in R and R is complete. 
We shall now establish the uniqueness of this construction. In fact a slightly 

more general result is useful. 
The phrase "(KO, I lo) is a completion of ( K ,  I I)'' will mean K is a field 

with valuation I 1 and KO is a field which is complete with respect to a valuation 
I lo  and K is a subfield of KO such that I l o  agrees with I 1 on K .  Moreover 
we require that every element in KO be a limit of a sequence of elements in K .  

2.2 Theorem. Let K be a field with a valuation I 1, and L a field with a 
valuation I 1,. Suppose there is an imbedding o of K into L such that 1x1 = 
Io(x)I1 for all x in  K .  Let (R ,  1 I) and (L, 1 I ,) be completions of (K ,  I I) and 
(L ,  I 1 1), respectively. 

Then there exists a unique imbedding 6' of into L such that 1x1 = 16'(x)ll 
for all x in R ,  and a(x) = ~ ( x )  for all x in K .  

PROOF. Take {a,,}* in R with each a,, in K.  Since {a,} is a CS with respect 
to  I I, it follows that {o(a,)} is CS in L with respect to I l l .  We define 6'{a,,}* = 
{a(a,,)}*. One can verify that 8 is well defined and gives an imbedding of R 
into .&which preserves the valuations. 

If 6' is another imbedding of R into &which preserves the valuation and also 
agrees with o on K we can show 0 = 6'. Take a = {a,,}* in K. Then a = lim A,, 
where A,, is the constant sequence {a,,, a,,, , . .}. Since 0 preserves the valuation 
we may compute e(a) by exchanging it with the limit sign. Then since 6' agrees 
with cr on K (constant sequences) we have 

e(a) = limO(A,,) = lima(A,,) = a(.). 

This proves the uniqueness. 

2.3 Corollary. The completion ( R ,  1 1 )  of ( K ,  1 I) is unique up to an 
isomorphism which preserves the valuation on K.  

PROOF. Take L = K ,  o = identity in the theorem. If ( R ,  I I) and ( R , ,  I 1 1 )  
are two completions then there exists a valuation-preserving monomorphisms 
6, of R ,  into R and o2 of R into R ,  such that the compositions u1 o2 and 
cr2 6, are identity on K and preserve the valuation, The identity map of R ,  
also has this property so by the uniqueness statement we have 0201 = 1. It 
follows that cr2 and 0 ,  are both isomorphisms. 
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When K = Q and 1x1 denotes the usual absolute value then Q,, the com- 
pletion, is isomorphic to the real field. 

If I 1, is apadic valuation on Q we shall write Q, to denote the completion 
with respect to this valuation. 

We shall require some additional information about Q,. It is most convenient 
to adopt a more general point of view. 

Let R be a DVR with maximal ideal 'p = Rn and quotient field K .  Let J 1 
denote the Vadic valuation on K and KV the 'padic completion of K .  The 
valuation is nonarchimedean on K and so by Proposition 1.3 it is nonarchi- 
medean on Kv.  So we may speak of the valuation ring in K V .  Let 

fl = { X  E KvI 1x1 6 11, 

'$ = { x E K V ~ I X ~ < I } .  

We assume at the start that the valuation on R has values lun"l= cn with 
c = 1x1 some positive constant less than one. 

Let us show l? is a DVR. This can be accomplished if we show the set of 
values of elements from Kg is an infinite cyclic group (Proposition 1.2). If a is 
in  KV then la1 is a limit of terms lan[ with a, in K .  Thus la1 is a limit of sequence 
of powers cmi. For c 1 f  0 this sequence of powers of c must have a nonzero 
limit. The only finite limit of a sequence containing infinitely many different 
powers of c is zero. Since this is not allowed for a # 0 it must be that only 
finitely many distinct powers of c appear and the sequence lanl is eventually 
constant-say with value ck .  Then la1 = ck and so every value (a1 is already a 
value lan[ with a, in K .  Thus it follows from Proposition 1.2 that fl is a DVR 
and '$ = xf l  for some x .  

1 so n 2 1. Now 
1x1 = c so (n"/x(  = 1 implies nn/x  is in l? and is a unit in fl. Then i?nn = 
(n"/x)  '$ = '$. This implies n = 1 and '$ = nl?. We summarize this. 

2.4 Proposition. If 1x1 is a nonarchimedean valuation on K whose valuation 
ring R is a DVR, then the valuation ring fl of the completion K g  is also a 
DVR. Moreover the maximal ideals of R and fl can be generated by the same 
element. 

Suppose 1x1 = C" for some integer n. Necessarily 1x1 

One more fact can be gleaned from the discussion above. 

2.5 Corollary. In the context above, every element a in Kv can be repre- 
sented by a class a = {a,}* in which (a,[ is constant. 

We have seen above that a = {a,}* and the collection of values 
la,, is finite. Thus la,l is constant for all n 2 N for some sufficiently large N .  
If we drop the first N terms from {a,} we will not change the equivalence class 
{a,}* so the result follows. 

PROOF. 
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2.6 Corollary. The units of fi are the elements {a,}* in Kv for which 
la,, = 1 for all n. 

(and even K,) is {a,}* with la,( constant. For 
this to be in ff the constant must be < 1 and must = 1 if the element is a unit 
of R .  

2.7 Corollary. R/V E A/($)" for any positive integer n. 

PROOF. Take 'p = Rn so that $ = An. Select any a in R with a not in $. 
By Corollary 2.6 we may assume a = {a,}* with (a,l= 1 for all n. Since this 
is a Cauchy sequence, there is some N such that 

PROOF. Every element of 

Ian+,-anI < 3 9  n 2 N .  

If we drop the first N terms from the sequence a, we will not change a so 
assume N = 0. Then a,+ , -a, has value < 1 so is not a unit in R.  We have 

a,+ , = a, mod Rn for all n 

and so 

Thus 

a,, , = a ,  mod Rn. 

{a,}* = {a}*  modnfi 

where {a }  is the constant sequence with all terms equal to a,. Now {a}*  is in 
R so the coset u + $ is in R + $. Since a was an arbitrary element of l? outside 
of $ it follows that fi = R +  (8. Now multiply this by n and make the appro- 
priate substitutions to get fi = R+($)* .  By induction one obtains = 

R + ($>" for any positive integer n. One more observation is required. By con- 
sidering the values we find 'p" = R n ($>". Thus 

A/($>" E R + ($>"/($>" E R/R n ($Y 

and so we obtain the desired result. 
Next we describe an alternate form for the elements in R. Let S be a set of 

representatives of the cosets of $I in R .  Assume 0 E S. Let Isi} be any sequence 
of elements in S. For a fixed integer r and any n 2 0 let 

a, = n'(s,+s, n+.**+s,n"). 

Then a,-a, is divisible by n r f '+ '  with t = min{n,m} so it follows that {a,} 
is a Cauchy sequence in K .  The class {a,}* in I? may be considered as a power 
series 

n'(s,+s, 7c+*.*) 

and the a, are the partial sums. 
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2.8 
a power series, 

Proposition. Every element a # 0 in K,  has a unique representation as 

a = 7T'(s0+s1 TC+...) 

with the si in S a n d  so # 0. 

We know 8 is a DVR with quotient field K ,  so every element # O  
of K ,  has a unique expression as d u  with r some integer and u a unit in 8. It is 
sufficient to show u can be expressed by a unique power series. 

The coset u + 718 contains a unique element so of S and so # 0 because u is 
a unit. Thus u -so = nxo for some xo in 8. Assume we have found so, sl . .  . , , sk 

in S a n d  xk in R such that 

PROOF. 

u - so - s, 7T - *.. - Sk7rk = 7 T k + l X k .  

Then there is a unique s k +  , in S and some xk in 8 such that 
A 

xk - s k +  1 = xk+ I E Rn. 

This gives the next s and x.  This method of successive approximation enables 
us to  obtain the sequence of partial sums 

n 

6, = Csin i  
0 

which converges to  u because the "remainder" ~ T " + ' X , , +  converges to zero. 
To show the uniqueness of the expression first observe that the integer r is 

determined from la1 = c'. The uniqueness for units of 8 follows easily. 
It is possible to  do  calculations with these power series representations by 

imitating the procedures for the more familiar power series encountered in 
calculus. 

Let R = Z ( 3 )  and R = Q 3  = 3adic completion of Q. The EXAMPLE. 
elements in Q3 can be expressed as series 

3'(So+Sl 3+s,  3,+ ...), 

where si E (0, I ,  2). The rational number - Q has the form 

-Q = 1/(1-32) = 1 + 3, + 34 + .... 
Similarly 

- 1  = 2/1 - 3 = 2(1+3+3,+*.*) .  

EXERCISE 1. In Q 3 ,  1 + 2 . 3 + 3 2 + . . . + 3 2 n + 2 . 3 2 n + 1 + . . .  converges to  a 

More generally show that a periodic series x u i p i  with 

rational number. Find it. 

EXERCISE 2. 
ai = for some fixed m, converges in Q p  t o  a rational number. 
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EXERCISE 3. Show the usual Taylor series in powers of z for the function 
f(z) = (1 - 42)"' has integer coefficients. Use this to show 1 - 4kp has a square 
root in Q p  for any k in Z ( p ) .  

Let Up denote the multiplicative group of units in the valuation 
ring of Q p .  Show the group of nonzero elements in Q p  is isomorphic to the 
direct product ( p )  x Up. 

EXERCISE 5. Let p be an odd prime and u an element in Up. Let U denote 
the image of u in GF(p) under the natural map of the valuation ring onto the 
field o fp  elements. Show u is the square of an element Up if and only if U is a 
square of an element in GF(p). 

EXERCISE 6. Let U denote the image of u under the mapping of the valuation 
ring in Qz onto Z/(8) .  The units in Z/ (8 )  have square equal to 1. Show that 
u E U2 is a square if and only if U = T. 

EXERCISE 7 .  Show QP*/(Qp*)' has order 4 when p is odd and order 8 when 
p = 2. Here Qp* means the multiplicative group of nonzero elements in Q,. 

EXERCISE 4. 

3. EXTENSIONS OF NONARCHIMEDEAN VALUATIONS 

Let Kbe a field with a nonarchimedean valuation IxIp. Let R be the valuation 
ring and assume R is a DVR with maximal ideal p = nR. Let up denote the 
exponential valuation defined by up (un") = n when u is a unit of R .  

Let L denote a finite-dimensional, separable extension of K and R' the 
integral closure of R in L. 

We shall consider the problem of finding all valuations on L which, when 
restricted to K, give a valuation equivalent to I 

It is not difficult to describe some valuations on L which are closely related 
to I I p .  In the ring R' we factor n as 

I p .  

(1) pR' = nR' = v:' . a .  'p,'g 

with the Fpi distinct primes in R. Let I t i  denote the 'piadic valuation of L. 
We shall now show that the restriction of I I i  to Kgives a valuation equivalent 

The valuation ring of 1 1, is the localization R&. Let the generator of the 
maximal ideal be T .  The factorization of nR' above now yields n = UP for 
some unit u of R;Oi. That is 

nRh, = ('piRh,)". 

to I I P .  

Now for any wn" in K with w a unit in R we have 

IWn"li = IWU"T"Ql, = ITl;ei. 
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If we evaluate the original valuation at wn" we have 

If a is some real number such that Itei(: = /n(, then it follows 1x1: = 1x1, for all 
x in  K .  Thus I I i  and I 1, are equivalent on K .  

Next we prove the converse of this result. Namely if I I is a valuation on L 
which is equivalent to I 1, on K, then I I = I  I i  for one of the I I i  defined 
above. 

Let R,  = (x E LJ 1x1 < I}. R ,  is a local ring with maximal ideal 101 and 101 n 
R = p. We shall first show R' E Ro. Suppose there is an x in R' with x not in 
Ro. Then 1x1 > 1. Hence lx - l I<  1 so x - l  is in 91. 

The element x is integral over R so there is a relation 

x" + a,x"- '  + ..- + a, = 0 

with ai in R.  From this we obtain 

which means 1 is in 91. This is impossible because 11 I = 1.  Thus R' E R,. Let 
v = R' n !Ill. "$I is a prime ideal of R' which contains p. The localization R,' 
is also in R ,  because all elements in R' outside !Ill are units in R,. Let the maxi- 
mal ideal of R,' be generated by T. Every element in L has the form UT" for 
some unit u in R,'. This element u is also a unit in R, so IuI = 1.  Thus I U T " I  = 
1 ~ 1 " .  It follows that I 
3.1 Theorem. Let R be a DVR with maximal ideal p and quotient field K .  
Let R' denote the integral closure of R in a finite dimensional separable exten- 
sion L of K .  Let pR' have the factorization (1) above. Then the inequivalent 
valuations of L which give the padic valuation on K are the Viadic valu- 
ations. The exponential valuations are related by ei u,(x) = u,,(x) for x in K 
where e,  is the ramification index. 

All parts of this have been done except that we must show the Viadic valua- 
tions on L are mutually inequivalent. This is immediate however because 
equivalent valuations have the same valuation ring. For 'pi # "$I j  we have 

Rhi # Rbj 

I is the padic valuation on L. 

so the "$Iiadic valuation is not equivalent to the vjadic one if 'pi  # v j .  
The relation between the exponential valuations was proved above when it 

was observed thatlTeili = 1x1,. 
We have seen that the nonarchimedean valuations of Q are in one-to-one 

correspondence with the prime integers p .  The valuation of Q corresponding 
t o p  is the padic valuation. 
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If K is any algebraic number field, then a nonarchimedean valuation on K 
must restrict to some padic valuation on Q. Then Theorem 3.1 is used to deter- 
mine the possible extensions to K .  Thus all the nonarchimedean valuations of 
K are known once the factorization of primes from Q are known. 

This theorem can be made more precise if we impose further conditions 
upon K .  We shall prove that when K is complete there is only one extension 
of the valuation to L. This is equivalent to the assertion that g = I in the 
factorization (1 )  of pR'. The proof of this will be accomplished by considering 
some more general properties of complete fields. 

Now keep the same notation and assumptions given at the beginning of the 
section and assume further that K is complete with respect to the padic 
valuation. 

We shall temporarily adopt a more general point of view. 
Let A be an algebra over R. That is A is a ring with identity and R is in the 

center of A .  We shall say A is complete if every Cauchy sequence in A converges 
to an element of A .  Here the terms Cauchy sequence and convergence are 
interpreted as follows. The sequence {a,,} is Cauchy if there is a function 
N (n, m) with integer values such that 

a,, - a,,, E ~ n ~ ( ~ * ~ )  

and N(n,m) goes to infinity with n and m. The sequence converges to the 
element a if 

a, - a E AnN(") 

where N(n) is an integer valued function that goes to infinity with n. 

3.2 Theorem. Let A be an R-algebra which is complete. Suppose e is an 
idempotent element in A / A n .  Then there exists an idempotent element E in A 
such that e = E+ An.  If e ,  and e, are idempotents in AIAn such that e, e2 = 
e, e ,  = 0 then we may select E , ,  E,  idempotent in A such that E i + A n  = ei and 
E ,  E,  = E2 El  = 0. 

PROOF. The proof requires some very formal manipulations at the start. 
For each positive integer n, 

Let 

Thenj; ( X )  has integral coefficients and 

(3) f , ( X )  E 0 modX", f , ( X )  = 1 mod(1 -A')". 
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The second congruence requires that Eq. (2) be used for 1 - f , ( X ) .  If we 
square both sides of the congruences (3) we see they both hold whenf,(X) is 
replaced byf,(X>,. It follows then 

(4) f n ( X )  E ~ , ( X ) ~  modX"(1-X)". 

We may also observe that (3) holds whenf,(X) is replaced byS,, , ( X )  so 
by the same reasoning one obtains 

( 5 )  f,, ( X )  = f , ( X )  mod X " (  1 - X)". 

Now we turn our attention to the theorem. Let e be an idempotent element 
in A/An  and let a be any element of A such that e = a+An. Since e = e2 we 
must have a'- a E An. Thus 

(6) a"(1 -a>" E An" for all n. 

It follows from ( 5 )  that 

f n +  1 (a)  - /"(a)  E Ann* 

Since A is complete, the sequence a,, =f.(a) must converge to an element 
E in A .  The congruence (4) shows E = E2 so E is idempotent. Finally we 
observe,f, ( X )  = X mod A'( 1 - X )  so from ( 5 )  again 

f , ( a )  ~ f , - ~ ( a )  = 1 . -  = f 1 ( a )  3 a m o d A n  

and it follows that E+An = e as required. 
Now consider the two idempotents e l ,  e2 .  First note that e l  + e2 is idem- 

potent in A/An so there is an idempotent E in A with E+An = e l  +e2. Take 
any element a in A with a+ An = e l .  Let b = EuE. Then 

6 = EiiE = e l ,  

where the bars indicate cosets of An. Thus b2 - b is in An and limf,(b) = E ,  
is an idempotent in A such that El +An = e l .  We look at the definition of b 
to see that b = bE = Eb so we also obtainf;,(b) =f,(b) E = Efn(b). Passing to 
the limit shows El = E,  E = EE,. It follows now E, = E - E l  is an idem- 
potent and E ,  E, = E ,  El  = 0,  ,!?, = e,. 

We shall obtain a number of consequences from this result. 

3.3 Proposition. Let K be a complete field with respect to a nonarchi- 
medean valuation whose valuation ring, R ,  is a D V R .  Let L be a finite- 
dimensional separable extension field of K and R' the integral closure of R. in 
L. Then R' is a D V R  and L is complete in the valuation induced by R'. 

factorization (1). 
PROOF. Let p denote the maximal ideal of R and suppose pR' has the 
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We intend to apply Theorem 3.2 with R' = A so let us first show R' is 

R' is a finitely generated free R-module so let xi, ..., x, be an R-basis. Let 
complete. 

{a,} be a Cauchy sequence in R' in the sense defined for A above. Write 

a, = a,(l)x,  + * + a  + ad")x, 

with the ad') in R. For each i ,  
{a,,} has a limit in R'. 

is CS in R so has a limit in R. It follows that 

Now we compute R'IpR' by CRT to get 

RIpR' Z R'I(P:' @ @ RIP?'. 

If g > 1 there is an idempotent element e = ( l ,O,  . . ., 0) and e # 1. By 
Theorem 3.2 there is an idempotent E in R' in the coset corresponding to e. 
But R' is an integral domain so E = 0 or E = 1, since E(1-  E) = 0. It follows 
that g = 1. Thus R' has only one maximal ideal '$3 and since R' is a Dedekind 
ring, it must be a DVR. 

3.4 Corollary, Let K be complete with respect to a nonarchimedean 
valuation 1x1, and let L be a finite dimensional extension field of K. Then 
there is a unique extension of the valuation on K to L and it is given by the 
formula 

1.4 = INL/K(Y)I;/" 

for ally in L where n = (L : K ) .  

PROOF. The existence and uniqueness have already been proved. It remains 
to verify the formula is correct. Let R, R' denote the valuation rings in K and 
L, respectively with maximal ideals nR, rR', respectively. We have rrR' = 
T ~ R ' .  Let c = so for any element y = UT"' of L we have lurml= cm when u is 
a unit in R'. In particular 

1x1 = 17c1, = ce. 

Now let f denote the relative degree of rR' over R. We have 

NLIK(rR') = d R  

by Chapter I, Proposition 8.4. Thus 

N(T) = w d  
with w a unit of R. We now have 

IN(y)l, = IN(ut")l, = lunit.nfm), = cefm.  

From Theorem 6.6 of Chapter I we obtain ef = (L : K )  = n so the formula 

follows at once. 
")I;/" = Iyl 
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This formula for the extension of valuations will be useful in the last section 
of this chapter. 

As another corollary to Theorem 3.2 we obtain a result about polynomials 
over R.  

3.5 Proposition (Hensel's Lemma). Assume R (and K )  as in Proposition 
3.3, and let R denote the residue field of R. Suppose F ( X )  is a monk poly- 
nomial in R [ X ]  which factors as F ( X )  = g ( x ) h ( x )  modulo p with g ( X )  and 
h ( X )  relatively prime polynomials in R[A']. Then F(X) = G ( X )  H ( X )  with 
polynomials G ( X ) ,  H ( X )  in R [ X ]  which satisfy G ( X )  = g(X), R ( X )  = h ( X )  
and degree G ( X )  = degree g ( X ) .  

PROOF. Let A denote the A-algebra R [ X ) / ( F ( X ) ) .  Then A is a finitely 
generated free R-module [because F ( X )  is monic]. The argument in the proof 
of Proposition (3.3) shows A is complete so Theorem 3.2 can be applied. We 
can identify A / p A  with R [ X ] / ( F ( X ) )  and since g(X) and h ( X )  are relatively 
prime it follows from CRT that 

= A / p A  Z w [ X l l ( g ( X ) )  0 R C X l / ( h ( X ) ) .  

Let e , ,  e2 denote the identity elements in the first and second factors, respec- 
tively. There are idempotents El, E,  in A whose sum is I and whose product 
is zero and which satisfy Ei + A p  = e i .  It follows that 

A = AEl  @ AE,. 

Let x denote the image of X in A .  The characteristic polynomial of x on A is 
F ( X )  since A = R [ X ] / ( F ) .  Also by direct computation, the characteristic 
polynomial of x is a product G ,  ( X )  HI ( X )  with G ,  ( X )  the characteristic 
polynomial of x on A E ,  and H , ( X )  the characteristic polynomial of x on 
A E 2 .  Here G , ,  HI may be taken as monic polynomials. After we pass to the 
residue field R and compare the two decompositions of A, it can be seen that 
the characteristic polynomial of x on A E ,  is g ( X )  except that it need not be 
monic. Thus C , ( X )  is a scalar multiple of g ( X ) .  The scalars in R are the 
images of units in R so we may multiply G ,  by a unit and H ,  by the inverse 
to get polynomials G,  H such that G = g and F = G H  = G ,  H , .  

3.6 Corollary. Same notation as just above. Suppose F ( X )  has a root in R 
with multiplicity one. Then F ( X )  has a root in R with multiplicity one. 

If F ( X )  = ( X - a ) h ( X )  and h(a)  # 0 then these factors are rela- 
tively prime. Thus F ( X )  has a monic factor of degree one which is relatively 
prime to the other factor. 

3.7 Corollary. In the padic field Q,,, the polynomial X P - '  - 1 has p -  1 
distinct roots. 

PROOF. 
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PROOF. The polynomial X p -  - 1 is in R [ X ]  and has p -  1 distinct roots 
in K because is the field of p elements. Hence the polynomial splits in R by 
Corollary 3.6. 

We close this section by describing the relation between ramification 
numbers for primes in a number field and in the completions. 

Let K be an algebraic number field which is the quotient field of the DVR 
R with maximal ideal p .  Let L be a finite dimensional extension of K, R' the 
integral closure of R and 

pR' = '$3;1 ... '$32, Qi distinct primes in R'. 

Let 1x1, and IyI, denote the padic valuation on K and the vadic valuation on 
L, respectively, with '$3 = 'pl. Assume 1x1, = 1x1, for x in K .  

Now complete both fields. Let K , ,  L, denote the completions; 8, 8' the 
valuation rings, 8, $ the maximal ideals. 

3.8 Proposition. The following equations hold : 

(a) fi  = p8, $ = '$38', 
(b) BB' = ($F, 
(c) et$/R> = e ( Y / R )  = e,  

( 4  f($l@ =f ( '$3 /R)  ="L 
(e) (L,:  K,) = ef. 

PROOF. Proposition 2.4 says p and f i  can be generated by the same element 
of R and that '$3 and $ can be generated by the same element of R'. Thus 
Statement (a) holds. 

The ideals V 2 , .  . ., $3, each contain elements of R' outside of '$3 so vi  8' = 

8' because 8' is a valuation ring with 138' as maximal ideal. Now we have 

08' = (pR)A' = ('$;I ... v?)R' = ('$I1 f i r ) e l  = $ e l .  

This proves (b) and (c) is simply a restatement of this. The equality of the 
relative degrees is a consequence of Corollary 2.7 which implies 

(RI$ : mfi) = (R ' IV  : R/P). 

Finally (e) follows from Theorem 6.6 of Chapter 1. 

EXERCISE 1. Let 8 denote a primitive pa root of unity, p a prime, and let 
L = Q(8). Use the facts about the ramification of ( p )  in L to conclude 
(Q,(Q : Q,) = ( L  : Q). 

EXERCISE 2. Conclude from Exercise 1 that the only roots of unity in 
Q,(O) havingp power order are those in the cyclic group (8). 

Show the group of roots of unity in Q,(@ has orderp"(p- 1). EXERCISE 3. 
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4. ARCHIMEDEAN VALUATIONS 

In this section we determine all the fields which are complete with respect 
to an archimedean valuation. This information is necessary to determine how 
archimedean valuations on noncomplete fields extend to finite-dimensional 
field extensions. 

4.1 Theorem (Ostrowski). Let K be a field which is complete with respect 
to an archimedean valuation 1x1. Then K is isomorphic to either the real or 
complex field and the valuation is equivalent to the usual absolute value. 

PROOF. Since the valuation is archimedean, the values In1 for n in Z are 
unbounded. Thus K has characteristic zero and the restriction of 1x1 to the 
rationals, Q, must be an archimedean valuation on Q. We know all the 
valuations on Q so we may replace the original valuation by an equivalent one 
to obtain that 1x1 is the usual absolute value of x when x is in Q .  

The field K is complete, so the completion of Q must be contained in K .  Let 
W denote this completion. We know W is isomorphic to the field of reals and 
the valuation on W is the usual absolute value. 

It may happen that K contains an element i such that i z  + 1 = 0. If so then 
% = 9 ( i )  is isomorphic to the complex field. 

If K does not contain a root of X z  + 1 we adjoin one to K to obtain a field 
K ( i ) .  The valuation on K is extended to K ( i )  by the rule 

la+ibI = a,b E K. 

It is straightforward to check that this does give a valuation on K ( i )  and 

The result of this argument is simply that we may assume %? E K since a 

We have arranged a normalization of the valuation so that on 3%’ it is the 

K ( i )  is complete under this valuation. 

proof of the theorem for K ( i )  will also prove the theorem for K.  

usual absolute value. Next we show it is the usual absolute value on %? also. 

4.2 Lemma. 
absolute value on W. Then Ja+ihl= (aZ 

Let 1x1 be a valuation on %? which coincides with the usual 
for a, b E W. 

PROOF. Write Ila+ibll for ( ~ ’ + b ’ ) ~ / ’ .  
Now first notice that i 4  = 1 implies l i )  = 1 .  So for a = a f i b  E %? we have 

la1 = la+ibl < lal+lbl < v’Z(az+b2)1/2 = JzIIcll. 

The functionf(cc) = lcll/\lclll for a # 0 is bounded by A. Sincef(a”) = f ( c r ) ”  it 
follows thatf’(a) < 1. Howeverf(a-’) =f(n) - ’  impliesf(a) 2 1 for all CI # 0. 
Thusf(a) = 1 as required. 
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Now we come to the main part of the proof. We have W c K and it is neces- 
sary to show equality. Suppose there is some z E K but z 4 W. Let 

m = glblz-a[. 
a e Y  

Let us prove first there is some a. in W for which m = Iz-aol. 

m + E is contained in the set 
For any positive number E ,  the set of complex numbers a for which Iz-a1< 

v E ~ l I B I Q m + & + l z I l .  

This is a disc and the functionf(/3) = Iz-pI is a continuous function from the 
disc into the reals. The minimum of this function is attained at some a. in %. 
The assumption that z was not in W implies z-a. is not in W. We may now 
replace our original z with z - a. to obtain 

(a) z 4 W and (b) m = 1zI < Iz-al,  a E W. 

Notice that m = IzI # 0 because z is not in %. The next step shows Iz-a1= nt 
whenever a is in % and IaJ < m. 

Let n denote any positive integer and w a primitive nth root of unity in '3. 
The factorization 

z" -a" = (z-a)(z-wa).. .(z--W"-la) 

implies 

(z--QIIz--WC((...(z--W"-'Q( = Iz"-a"I < (21" + Ial". 

Each term Iz--Wial 2 m so 

Iz-alm"-' < Izl"(1 +lal"/lzl") = m"(1 +lal"/m"). 

This implies 

Iz-al < m(l +Ial"/m"). 

This holds for any integer n so if la1 < m we let n increase without bound. Then 
it follows Iz-a1< m. 

The minimal choice of m forces Iz-aI = m. If we now replace z by z-a,  for 
any a in W with la1 < m, then conditions (a) and (b) above are satisfied. We 
may repeat the above procedure and obtain Iz-a-pI = m whenever /3 E % 
and 1/31 < m. In particular Iz-2al= m. Repeat this and by induction we obtain 
for any positive integer n, 

Iz-nal = m, a E W, I Q I  < m. 

But any complex number /3 can be written as 

/3 = na, IaJ < m, n = positiveinteger 
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because m # 0. Thus (z-a1= m for all ct E W. This implies for any a, j? E $5', 

la-PI < Iz-al+lz-PI = 2m 

which is clearly not the case if a = 3m, p = 0. This contradiction is a result of 
the assumption that K # V .  Hence K = %? and by the Lemma 4.2, the valuation 
is uniquely determined. 

This theorem allows one to describe all the archimedean valuations of an 
algebraic number field. 

Let K be an algebraic number field and 1x1, an archimedean valuation on 
K .  The completion, I?,  of K with respect to the valuation must be a copy of 
the reals or complexes with the usual valuation. This means there is an 
isomorphism, 4, of I? with W or V such that 

1x11 = ld(x)l 

for all x in I? and where Ic$(x)l denotes the usual absolute value on 92 or V. 
We compose 4 with the natural imbedding of K into I? to see that 1x1, is 
determined by the imbedding of K into W or V .  So far we have proved the 
following: 

4.3 Lemma. Every archimedean valuation of K is equivalent to one 
obtained by the formula JxII = I+(x)J for all x in K where (p is an imbedding of 
K into 92 or V and I$(x)l is the usual absolute value. 

We shall next determine which of these are inequivalent. The notation of 
Section 11, Chapter I will be used. Namely let a,, . . . , a, be the distinct imbed- 
dings of K into &' and let a,+ ..., 0,+~,5,+ ,, ..., c?,+~ be the 2s distinct 
imbeddings of K into $5'. Here 5 means the map defined by taking the complex 
conjugate of a(x) for the value of 5(x). 

Since a complex number and its conjugate have the same absolute value we 
find 

lm)l = la(x)l 
for all x. So the imbedding C?,+ gives rise to the same valuation as the imbedding 

It will be seen that these are the only relations between the valuations. 
Let lxli = lai(x)l for 1 < i < r + s .  Each archimedean valuation of K is 

equivalent to one of the ( x i i  and these are inequivalent. This has been proved 
already in the proof of the Dirichlet Unit Theorem (1  1.19). It was seen there 
that for each i there exists ui in K such that 

(uiIi  > 1 and (u i I j  < I i # j .  

This means I I i  is not equivalent to any other I I j .  We summarize these 
calculations. 

4.4 Theorem. Let K be an algebraic number field; g,, ..., or the real 
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imbeddings of K ;  or+ ,, . . ., cr+s one member of each conjugate pair of complex 
imbeddings. Each archimedean valuation is equivalent to one and only one of 
the valuations defined by lxli  = l e i (x ) l .  

The terminology introduced for the rationals will also be used in the case 
of an algebraic number field, K .  A prime of K is an equivalence class of valua- 
tions. A prime is called an injiniteprime if it contains an archimedean valuation. 
The other primes are calledjnire. An infinite prime is called a real prime of K 
if the completion at that prime is the real field. The other infinite primes are 
complex. 

If we now consider a finite-dimensional extension L of K and an archi- 
medean valuation on K ,  then the valuations of L which restrict to the given 
one on K are easily described. 

Let c be an imbedding of K into 92 or W such that the valuation on K is 
lxll  = lo(x) l .  We may regard D as an imbedding into a field containing an 
algebraic closure of K .  By Galois theory there exist ( L  : K )  = n extensions of 
c to imbeddings of L into V. (Even though a ( K )  c %? we cannot assert the 
extended map will carry L into 9.) 

We shall not try to describe any more precisely what the extensions are but 
at least we see extensions to L can be described by Galois theory. In the next 
section a method will be described. 

5. LOCAL NORMS AND TRACES AND THE PRODUCT FORMULA 

Let K denote any field and L = K(0)  a finite-dimensional, separable exten- 
sion. Let f ( X )  be the minimum polynomial of 0 over K.  Take p either an 
archimedean prime of K or a prime whose valuation ring R is a DVR. Let 
'$3,. ..., '$3, denote the primes of L which extend p and let Li denote the com- 
pletion of L at Cpi. 

5.1 Theorem. Letf(X) =f, ( X ) . . . f , ( X )  be the factorization off(X) as a 
product of irreducible polynomials over K, .  If the.fi(X) are suitably numbered 
then g = r and 

We also have L Q K  K ,  2 L ,  0 ... 0 L,. 

Li g Kp [XI/(h(x))* 

PROOF. Sincef'(X) is a separable polynomial we obtain (by CRT) 

@ K p  = K p  [ x l / ( f ( x ) )  @ KQ [X1/(h(X))* 
We show the Li are the direct summands of L Q K Q .  
Let x -, x i  denote the imbedding of L into L i .  Then the map on L 0 K,  

determined by 
q i : x  Q k + x i k  
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is a homomorphism into L i .  This is in fact onto Li as one easily verifies by 
examining the Cauchy sequences in L , .  The only fields which are homo- 
morphic images of L O  K ,  are the direct summands. So each Li is a direct 
summand. No two of the 'pi have the same image because the composite map 
sending x to cpi(xO 1) is the natural imbedding of L into Li and the Li are 
distinct completions of L. Thus the direct sum L ,  0 ... @ L, is a direct sum- 
mand of L @ K , .  But now 

c ( L i :  K,) = x e i f ,  = ( L :  K )  = ( L O  K,,: K,)  

by Proposition 3.8 and Corollary 6.7 of Chapter 1. Thus L. 0 K ,  = L ,  0 
0 L,. 

various completions LJK,, .  

5.2 Theorem. For each element y in L we have 

Next we establish a further connection between the extension L/K and the 

(i) C ~ ~ ~ P O ~ Y L / K ( Y )  = JlicharPolY,i/n,(Y) 

(ii)  NL/K ( Y )  = J l i  NL~/K,  ( Y )  

(iii) T,/,(Y) = XiTLi/K,(Y) 

PROOF. Let x,, . . ., x,, be a K-basis for L. For y in L let ry denote the matrix 

Now x ,  @ I ,  .. ., x, @ 1 is a K ,  basis for L 0 K ,  and multiplication by y 0 1 

Use a basis for L. @ K, which is compatible with the decomposition 

laiil defined by x i y  = z a i i x j .  

induces a linear transformation with matrix laii[ also. 

L ,  0 ... 0 L,.  It follows that a matrix for rY 8 1 has the form 

diag{r,, . . . , r  ,Ir 

where ri is a matrix for the regular representation of y on Li over K,. NOW it 
follows that 

char poly,,, ( y )  = det ( X I -  r,,) 

= n det ( X I -  Ti) 

= n char POlY,,/,, (Y ) .  

The statements (ii) and (iii) follow by examining the coefficients of the charac- 
teristic polynomials. 

Now assume p is a nonarchimedean prime on K so it may be considered as 
an ideal in the valuation ring R. Let R' be the integral closure of R in  L and 
pR' has the factorization 

pR' = !&3:1... (p?. 
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If L, is the 'piadic completion of L then (L ,  : K,) = eifi. We have seen that the 
valuation on Li can be given in the form 

lyli = lNL~/Kp(y)l~'eif'* 

We consider this for y in L and observe that 

n IYle'/' = r I l ~ L , / K , ( ~ ) I ,  = lNL,K(Y)lp. 
i 

If we replace the valuation I 1, on L, by its eifi power we then obtain the 
following. 

5.3 Lemma. If the valuations 1 I i  on L are suitably normalized, the 
following formula holds : 

n lyli = I N L / K ( Y ) I ~ *  
i 

A similar normalization can be obtained for archimedean valuations. 
Assume 1x1, is the valuation on Kwhich is obtained by a particular imbedding 
(i of Kinto 9 or % by the formula 1x1, = la(x)J, where the last denotes the usual 
absolute value. All the extensions of 1x1, to L are determined by imbeddings 
(ii of L into 'iB which agree with (i on K .  The valuations on L are normalized 
as follows : 

I. u(K) c 9 so p is a real infinite prime. Then 

( y ( i  = lai(y)l if ai(L) E g 

= (0,(y)1~ if ai(L) $ g. 

In this case the term lai(y)12 can be written as la , (y)Z(y) l .  So 

n I Y I i  = n I ~ ~ ( Y ) I  
where (ik runs through all extensions of (i to imbeddings of L into %. These 
images may be regarded as landing in a normal extension of K so the product 

11. 

is INL,K(Y)lp. 
a(K) $ W so p is a complex infinite prime. 

Then lyli = lai(y)l where (ii runs through all extensions of (i. As above, 

n 1.4, = INL/K(y)Ip. 

These normalizations enable us to prove a product formula for algebraic 
number fields. 

Product Formula. Let K be an algebraic number field. For each prime 'p of 
K (finite or infinite) there is a valuation IxlCp in 1, such that for each x # 0 in 
K the formula holds 
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PROOF. Let p be any prime of the rational field Q and 'p,, .. ., 'pg the 
distinct primes of K which extend p .  We may select valuations Ixlv, in 'p i  such 
that 

ll 14vi  = INK/Q(x)lp 

where lylp is the normalized valuation on Q defined in Section 1. Let us write 
' p J p  to denote that 'p i  is a prime extending p .  Then 

I 

by the product formula for Q. 

EXAMPLES. Let K = Q(0)  with O3 = 2. 
There is one real imbedding of K obtained by taking o1 (0) = real cube root 

of 2 = 2'13. The pair of complex imbeddings are found by o2 (0) = ~ 0 2 ' ' ~  and 
if,(@ = W21'3 where o is a primitive cube root of unity. Thus K has two 
archimedean primes, one real and one complex. 

To discuss the nonarchimedean primes of K it is necessary to know either 
how X 3  - 2 factors over Qp, the padic completion of Q or how the prime p 
factors in the ring of algebraic integers in K .  This latter information has been 
given for some primes p in Chapter I ,  Section 7. 

For example the primep = 7 remains prime. That is there is a unique prime 
of K ,  say 'p, containing 7. Hence the 7adic valuation on Q has a unique exten- 
sion to K .  After taking completions we find (K ,  : Q,) = 3 by Proposition 
3.7(d) and (e). 

The prime p = 29 is contained in two primes 'p,, 'p2 of K having relative 
degrees f l  = 1 and f 2  = 2 .  Thus the completions satisfy 

( K P ,  : Q29) = ( K P 2  : Q29) = 2* 

This gives an example where K # Q but K,, = Qzs. This will happen, ofcourse, 
whenever ef = 1. 

The ramified primes p = 2 and p = 3 are each contained in unique primes 
'p2, 'p3 of K with relative degrees equal to one and ramification numbers equal 
to three. The completions Kv2, Kv3 have dimension three over Qz, Q3, 
respectively. 

We can compute the extended valuations by the formulas obtained in this 
section. For example NK'42/Q2 = NK,Q on K since 2 has a unique prime of K over 
it. Thus the valuation on Kv2 is given by 

1x1 = I N K ~ , / Q ~ ( X ) I : / ~ ,  x in ~ 9 ~ .  

When we restrict x to lie in K we obtain 

1x1 = I N ~ / ~ I : / ~ .  
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For example, if we normalize I I z  so that 1212 = 4 then 

181 = INK,P(8)Ii/3 = 1211/3 = (+)‘I3. 

EXERCISE 1. Let K be an algebraic number field, L = K(8) an extension 
generated by an element 8 with minimum polynomialf(X). Let p be a prime 
of K and supposef(X) factors asf, (X) ...f,( X) over the completion K,  . Then 
the prime p of K has exactly g extensions to primes F p l , .  .., Fp, of L and with 
suitable numbering e(Fpi /p) f (Fpi /p)  = degreef, (X). 

EXERCISE 2. Let L = Q(8) where 0 is a root of X4- 14 = 0. 

(i) Show the prime 5 of Q has two factors Q l ,  Fp2 in L and (Lv, : Q,) = 2 

Procedure. Use Exercise 5 following Chapter 11, Section 2 to see that 14 is 

(ii) Show that the prime 11 has three factors Fp, ,Fp2,Fp3 in L and L,, = 

(iii) The prime 13 has four prime factors in L. 

Let k = GF(q), q a prime power, and K = k(x) the field of rational functions 

EXERCISE 3. For each monic irreducible polynomial p(x) in k [XI there is 

for i = 1,2. 

a square but not a fourth power in Q,. 

L,, = Q, while (L,, : Q, = 2. 

in one indeterminant. 

a prime of K containing the valuation defined by 

lylp = q - ” ( y )  

where u is the exponential valuation 

u(p(x)‘dx)/b(x)) = t degp(4 

if a(x), b(x) are polynomials not divisible by p ( x ) .  
There is a prime p on K containing the valuation 

l a  (x)/b(x)l, = q d e g N x )  -degb(x) 

Show that these primes are mutually inequivalent and every prime of K is 
equivalent to one of these. 

 EXERCISE^. With the valuations of K normalized as above show the 
product formula holds; that is y # 0 in K implies 

n lYlP  = 1 .  
all p 

EXERCISE 5. Let p be the prime of K corresponding to the irreducible 
polynomial p(x) = x. The completion K p  is naturally isomorphic to the 
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Laurent series field k ( x )  consisting of all elements 

x" (ao + a ,  x + . .-) 
with n any integer and the a, E k .  

If p is the prime corresponding to an irreducible polynomial 
of degree f then K,, is isomorphic to the Laurent series field F ( x )  with 
F = GF(q'). 

EXERCISE 7. The completion of K with respect to the remaining prime is 

EXERCISE 6. 

isomorphic to k ( y )  with y = I /x .  



Chapter III 

DECOMPOSITION GROUPS AND THE ARTIN MAP 

1. DECOMPOSITION AND INERTIA GROUPS 

We want to study the decomposition of primes of an algebraic number field 
Kin  a finite-dimensional Galois extension L with Galois group G. There are 
connections between ramification numbers, relative degrees of a prime and 
certain subgroups of G. Parts of the discussion work equally well for finite and 
infinite primes so we shall make the appropriate definitions. 

Let p be an infinite prime of K and 'p,, . . ., 'p, the distinct primes of L which 
extend p. We say 'pi is unramijied if the completions L,, and K ,  are equal; 
that is if 'pi and p are both real or both complex. In this case we set e( 'p i /p)  = 

f ('pi/p) = 1. In the remaining case p is real and 'pi complex. We set e ( ' p i / p )  = 

2, f ( ' p I / p )  = 1. We then have 

just as in the case of finite primes. These definitions are the same whether L 
is Galois over K or not. Just as in the finite case the Galois group is transitive 
on the 'pi and all the e, are equal. 

Now let p denote any prime of K, finite or infinite, and let its decomposition 
in L be 
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Set Cp = Cpl and 
G ( W  = ( 0  E G l w N  = 'PI. 

We call C('p) the decomposition group of 'p. 

1.1 Lemma. IG('p)I = ef'withf= relative degree of ')3 over p. 

PROOF. The Galois group G is transitive on the 'Pi so the subgroup fixing 
one of them has index [G : G(Cp)] = g .  The result now follows from the 
relation IGl= ( L  : K )  = efg. 

Let K, and L,  denote the completions at the indicated primes. Each element 
CJ in G ( V )  leaves fixed the 'padic valuation on L and so there is a unique 
element CT* in G(L,/K,,) with the property o* = CT on L (by Chapter 11, Theorem 
2.2 applied to CT : L + L). 

This shows that the correspondence o+o* is one to one. It is a group 
homomorphism because of the uniqueness property. That is CT*T* and (or)* 
are both extensions of GT and hence are equal. Finally we recall (L ,  : K,)  = 
e j  = (G('$)( so G( %) maps onto the full Galois group of L,  over K,  . 

From now on we shall identify G ( P )  with G(L, /K, ) .  
Now assume p is a jn i te  prime of K .  
Let R ,  R' denote the valuation rings in K, and L,, respectively; the maximal 

ideals are p and 'p; the residue fields are R and R'. These are finite fields with 
(R' : R )  =f. For CT E G ( V )  let ii denote the automorphism of R' defined by 

Lqx+'P)  = a(x) + 'P. 

The mapping CT + 6 is evidently a homomorphism of G(?)) into G(R' /R) .  
The kernel of this map is denoted by T('$) and is called the inertiagroup of v.  
Clearly T(Cp) reflects the ramification of v. We shall describe T('$) more 
precisely and make this connection clear. First the following definition is 
needed. 

Definition. A finite prime p of K is totally ramified in L if p has only one prime 
divisor 'p in L and the relative degreef(v/p) equals one. 

When this situation holds it necessarily follows that the ramification number 
of 'p over p equals the degree of the field extension. 

Let K c E c L be a tower of algebraic number fields and let p 
be a prime of K which is totally ramified in L. Then p is totally ramified in E. 

EXERCISE. 

Now we describe some properties of T('$) and G(Cp). 

1.2 Theorem 

(a) The map 0 + ii carries G ( P )  onto G ( R ' / R ) ;  
(b) Im)I = e(CP/p) = e ;  
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(c) the subfield E of L, left fixed by T('$) is an unramified extension of 
Kp and 

f ( E / K p )  = ( E  Kp) = f (L , /Kp)  = f'; 

(d) the extension L,/E is totally ramified having e(L, /E)  = (L ,  : E )  = e .  

PROOF. Let R g GF(q),  R' z GF(qf )  and let d = qf - 1. Consider the 
polynomial 

A ( X )  = X d -  1 ER[X]. 

When we pass to R, A ( X )  splits in R' and in fact the roots of A ( X )  are precisely 
the nonzero elements in R'. One of the elements in R' has degree f over R so 
A(X)  must factor as 

A ( X )  = b(X)c(X) 

with b ( X )  irreducible of degree f over R.  The polynomials b ( X )  and c ( X )  are 
relatively prime because A ( X )  has no repeated roots. Hensel's lemma (Chapter 
11, Proposition 3.5) may be applied to obtain the factorization 

A ( X )  = B ( X )  C ( X )  

with B ( X )  in R [ X ]  irreducible of degree f and B ( X )  = b(X) .  By Chapter 11, 
Corollary 3.6 a simple root of b ( X )  in R' is the image of a root 8 in R' of B ( X ) .  

Now let E = Kp(8) and S = valuation ring in E. Since 0 is a dth root of unity 
all roots of B ( X )  are powers of 8. Thus E is the splitting field of B ( X )  so E is 
normal over K p .  Moreover ( E :  K,) = f = degreeB(X). Any element r~ in 
G(Cp) permutes the roots of B ( X )  in exactly the same way as 5 permutes the 
roots of B ( X )  since the roots correspond one to one. Thus cr fixes 8 if and only 
if 5 fixes 8. It follows that T(Cp) is exactly the subgroup fixing E because any 5 
fixing 8 is the identity on R'. Now 

[G(Cp) : wP)I = ( E :  Kp) = f 
and so IT(Cp)I = e because IG((P)( = ef. 

Statements (a), (b), and (c). 
Since IG(R'/R)I =f i t  follows that G(Cp) maps onto G(K' /R) .  This proves 

To prove Statement (d) we observe that 

R' 2 s 2 R(e) = R' 

so in fact s = R'. Thusf(L,/E) = 1 and (La : E )  = e(L, /E)  as required. 
We now translate this local data into global data. 
The chain of subgroups 

1 < T(Cp) < G('$) < G = G ( L / K )  



2. The Frobenius Automorphism 97 

corresponds by Galois theory to the chain of subfields 

L > KT(") > KG(*) > K.  

We call KT(*) and Kc(*)  the inertiafield and decomposition field of 'p over K .  
Let the primes in these fields be denoted by 

(PT = 'p n KT(*), 'pz = 'p n Kc(*) .  

1.3 Theorem 

(a) '!& is unramified in KT("'. The only divisor of 'pz in K T @ )  is 'pT and 

(b) 'pT is totally ramified in L. 'p is the only divisor in L of 'pT and 

PROOF. The group G('p)  is the Galois group of L over Kc(*)  and so G('p)  
is transitive on the divisors in L of 'pz. However 'p is one of those divisors and 
G('p) leaves 'p fixed. Hence 'pz has only one divisor in L. Now we complete all 
the fields at the primes above 'pz.  The statements about relative degree and 
ramification hold in the complete case by Theorem 1.2 and so they hold also 
in the global case. 

The group G ( Y )  need not be normal in G so this complicates the discussion 
of the factorization of p in Kc('@). We shall be able to describe the situation 
shortly but for now we give the easier case. We shall refer to this in the case 
where G is abelian. 

1.4 Proposition. Suppose G('p) is normal in G. Then p has the factorization 
p = p ,  ... p e  in Kc(*)  where e (p , /p )  = f ( p , / p )  = 1. 

From above we see e('p/'pz) = e('$/p) andf('p/'pz) =f('p/p) SO 

the multiplicative property of the es andfs implies 

f ( V T / ' P Z )  =f(Y/p)* 

e ( w ( P T )  = e( 'p /p) .  

PROOF. 

e((Pz/P) = f('pPzh) = 1. 

Our additional hypothesis that G('p) is normal in G means Kc(*)  is Galois 
over K so all prime divisors of p in  Kc(*)  have the same ramification number 
and same relative degree as 'pz over p .  

2. THE FROBENIUS AUTOMORPHISM 

We continue in the context of the previous section except that we suppose 
p is unramified in L. 

In this case the inertia group T('$) has order e = 1 so in particular G ( V )  
G(R'/R). This last group is the Galois group of a finite field and so it is cyclic 
of orderf. Then the decomposition group G('p) is cyclic of orderf. 
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Even more can be said. The Galois group of 8' = GF(qf)  over 8 = GF(q) 
is generated by a distinguished automorphism 

j? -9 9. 

This means there is a unique automorphism o E G(Fp) which satisfies 

(2.1) ~ ( x )  = x4 modFp, x E R' 

the dependence upon Fp, L, and K we denote it by 
This automorphism is called the Frobenius automorphism of Fp. To indicate 

0 =[YE]. 
This notion plays an important part in the sequel. 

EXERCISE. Show there is a primitive q f -  1 root of unity, 8, in L ,  and the 
Frobenius automorphism o is uniquely determined by the condition ~ ( f l )  = f i g .  

We shall make a number of calculations to  determine the behavior of the 
Frobenius automorphism as a function of y, K ,  L. 

Suppose Fpj is another prime of L dividing p. There exists 7 E G ( L / K )  with 
T('@) = Fpj. If o is an element of G(Fp) then 7ct-l is in G(Fpj) and conversely. 
So we have 

G ( y j )  = G ( T ( ~ ) )  = TC((U)T-'.  

2.2 Property 

PROOF. Any element in the ring of algebraic integers of L can be written as 
T-'(x) with x an algebraic integer. By (2.1) we obtain 

Apply 7 to this and obtain 

The uniqueness of the Frobenius automorphism gives the desired result. 

Suppose L 3 E 2 K and Fp n E = po, Since p is unramified in L, po is also 
unramified in L .  There is defined then a Frobenius automorphism of Fp for the 
extension LIE. It is related to that for L / K  as follows. 
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2.3 Property 

PROOF. The residue fields of the rings of integers in L,  E, Kmodulo 'p, po, p 
are related by 

G F ( q f )  2 GF(qfo) 3 GF(q)  

with f o  =f(po/p). The generating automorphism for the Galois group of 
G F ( q f )  over GF(qfo)  is 

and this is thef, power of the generating automorphism when CF(q) is the 
ground field. The property now follows from the definitions of the Frobenius 
automorphism of 'p over E and over K .  

x --f x4'0 

Suppose we also know E is normal over K .  Thus the expression 

is defined. 

2.4 Property r:] = [%]I E (restriction to  E ) .  

PROOF. For an algebraic integer x in E, a congruence of the type 

a(x) = x4 mod 'p 

is equivalent to a congruence 

a(x) = xq modp, 

because 'p n E = p, is sent to itself by G(Cp) when E is normal over K .  Thus 
with 

we have 

Next suppose El and E2 are normal over K and L = El E,.  Let n Ei = pi 
for i = 1,2. The expressions 
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are defined but they lie in different groups. Consider the mapping 

G(LIK) + G ( E , / W  x G(E2IK) 

c7 + (4E,,c7lE2). 

defined by 

This is a one-to-one mapping because any automorphism which is the 
identity on both El and E, is the identity on L = El  E2. Identify G ( L / K )  with 
its image in the direct product of G ( E , / K )  and G(E, /K) .  Property 2.4 implies 
the next statement. 

2.5 Property 

Definition. A prime p of K is said to split completely in L if p has ( L  : K )  
distinct prime divisors in L. 

An equivalent statement is that p splits completely in L if for each prime 
Fp of L dividing p we have e('$/p) = f ( ' $ / p )  = 1 .  

2.6 Property. The prime p splits completely in  L if and only if 

[F] = 1. 

PROOF. The definition of 

implies that it generates the decomposition group G('$). However p splits 
completely if and only if IG(Fp)I= ef = 1. 

2.7 Corollary. Let El and E,  be normal extensions of K and L = El El .  
The prime p of Ksplits completely in L if and only if p splits completely in both 
E,  and E l .  

PROOF. By Property 2.5, 

= I if and only if r$] = 1 [?I 
for i = 1 and 2, 
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Factorization in Nonnormal Extensions 

In the case L/K is a normal extension, the Frobenius automorphism carries 
all the information about the factorization of unramified primes. That is 

has order f [because it generates G(Cp)] and the number of prime factors in L 
of p isg = (L : K)/J 

We shall now consider how the Frobenius automorphism can be used to 
describe the factorization of p in some nonnormal extension. 

Consider a tower K c E c L with E / K  not necessarily normal. Let H be the 
subgroup of G ( L / K )  fixing E elementwise. Consider a coset decomposition of 
G = G ( L / K )  given by 

G = Ha, v * * a  v Ha,. 

Any element a in G permutes these cosets by right multiplication : 

Hai,  Hai 0,  Ha, a2, . . . , Hai a'- ' 
in which the t cosets are distinct and Ha, = Haid. This coincides with the 
usual notion of a cycle for permutations. The collection of all cosets is par- 
titioned into disjoint cycles of 0. 

We want to describe how the prime p of K factors into a product of primes 
of E .  We still assume p is unramified in L and Cp is a prime factor of p in L. 

2.8 Proposition. Let a be the Frobenius automorphism of Cp in L/K.  
Suppose a has cycles of length t , ,  . . ., t ,  when acting upon the cosets of H in G. 
Then p is the product of s distinct primes in E having relative degrees t , ,  . . . , t , .  

Let Hr be a representative of a cycle of length t for a. Set po = 
T ( P )  n E.  Then po is a prime of E dividing r(Cp) n K = p. The relative degree 
f(po/p) = f can be computed in the following way: 

The relative degree of r ( q )  over po is the order of the decomposition group 
H(r('$))- the subgroup of H = G ( L / E )  fixing ~('$3). This subgroup is clearly 
given by 

Hai + Ha,a. By a cycle of length t for a we mean a sequence 

PROOF. 

H ( T ( 9 ) )  = H n G(T(Cp)). 

Now G(T('$)) = rG(Cp)r-' = ( T O T - ' )  because the Frobenius auto- 
morphism a generates C(Cp). It takes just one step to show 

H n (tar-') = ( T Q ' T - ' )  
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when t is the least positive integer for which H t  = H d .  So we have H(t ( ' $ ) )  = 
(toft-I). Now finally 

f'(Po/P) = f (+@/P>/ ! f ( 'P /Po)  

= IG('$)l/lH(T('$))l 

= \ (0 ) \ / l ( tCT 'T- l ) l  = f. 

Thus a cycle for a of length t corresponds to a prime of E dividing p and 

Suppose HT and HA are cosets of H for which 
having relative degree t. Next we prove this correspondence is one to one. 

po = A('$) n E = ~ ( ' $ 3 )  n E. 

Then A('$) and t(Q) are primes of L dividing p o  and by transitivity properties 
of the Galois group H ,  there is some y in H with yA(+@) = t('$). It follows 
T -  ' y l  is in G ( P )  = (a) so y A  = toi  for some i. Hence 

Hta' = HyA = HA 

and so H T ,  HA belong to the same cycle. 
The last step requires that we show every prime divisor in E of p has been 

obtained by this procedure. Each of the s cycles corresponds to a prime p i  of 
E having relative degree ti =f(p,/p). But now 

I t i =  [ G : H ] = ( E : K )  

along with Corollary 6.7, Chapter I ,  implies that all the prime divisors of p in 
E have been counted. 

2.9 Corollary. The number of primes in E dividing p which have relative 
degree one over p is equal to the number of coset representatives at which 
satisfy oiG('$>a;' E H .  

PROOF. The stated condition is equivalent to Haia = Hai when (a) = 

G('$). This gives a cycle of length one so the result follows from the last 
proposition. 

This corollary is important in the next chapter. 

3. THE ARTIN MAP FOR ABELIAN EXTENSIONS 

In this section it is assumed that L is normal over K and G = G ( L / K )  is 
abeliun. For an unramified prime p of K and two prime divisors +@ and T ( ' $ )  in 
L, t in G, we have by Property 2.2 
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This shows the Frobenius automorphism does not really depend on !# but 
only upon p. Accordingly we change notation and write 

[y] for [TI, 
and call this the Frobenius automorphism of p. 

In this way the Frobenius automorphism may be considered a corre- 
spondence between unramified primes of K and elements in the abelian Galois 
group. This can be extended further. 

The ideal group I, of K is the group of fractional R-ideals, R = algebraic 
integers in K (Chapter I ,  Section 4). Let S denote a finite set of primes of K 
including all the primes which ramify in L.  Then I,’ or simply I’ denotes the 
subgroup of I, generated by all the primes outside S .  For each element 2l in 
Is we shall define an element qLJK(21) in G.  First factor 21 as 

P 

and then set 

The product is well defined because G is abelian. The function qLIK is a homo- 
morphism from Is into G and is called the Artin map for the extension L / K .  
We emphasize that qLIK is defined only for ideals whose factorization involves 
only unramified primes. 

Of course when p is a prime unramified in L ,  q L I K ( p )  is the Frobenius 
automorphism of p. 

Suppose E is any finite-dimensional extension of K .  We may translate the 
abelian extension L / K  by E to obtain an abelian extension EL/E with Galois 
group H. The restriction of H to L naturally identifies H as a subgroup of G .  
The next lemma relates the Artin maps for ELIE and L/K.  Let I,’ denote the 
part of the ideal group of E, generated by primes of E which do not divide any 
prime in S .  We could equally well say I,’ is generated by primes of E having 
norms in I,’. 

3.1 Proposition. When G ( E L / E )  is identified (by restriction) with a sub- 
group of G ( L / K )  we have 

( P E L I E  = ( P L I E : . N E I K  on 1,’- 

Let $3 denote a prime of EL and let OL = $3 n L ,  ‘pE = ’p n E, 
(u, = ‘p n K .  Let N K I Q ( q K )  = q = prime power and N E / K ( ’ p E )  = ‘pKf. Set 
13 = 

a(x) = X4’mod’p. 

PROOF. 

For each algebraic integer x in EL we have 
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When x also lies in L then 

a(x) 3 x4'modVL. 

Here we use the fact that a('$) = '$ and ~~(13,) = EpL.  Now let T = ( P L I K ( \ P K ) .  

For x as just above 

~ ( x )  3 x4 mod !$lL and T~ (x) = xq' mod (UL.  

By the uniqueness property, d = LJ on L. Thus 

( P E L p J & J  = c P L , K ( P K Y  = ( P L , K N E , K ( ? ) E ) .  

This proves the equation for primes in IEs and the equation must hold on all of 
1,' because all maps are multiplicative. 

3.2 Corollary. 

NL/K(ILS) c ker(~L/K. 

PROOF. 

This result describes a part of the kernel of the Artin map. One important 
goal is the description of the kernel and image of the Artin map. In the next 
chapter it is proved that the Artin map is always onto G ( L / K ) .  Later the kernel 
will be described explicitly. For now we shall work an example which will 
illustrate the ideas and which will also be important later on. 

Let m be a positive integer, 0 a primitive mth root of unity, K = Q = 
rationals, L = Q ( Q .  The Galois group G of L over K consists of auto- 
morphisms 6, uniquely determined by the condition 

In Proposition 3.1 take E = L to get (PL/K NL/K =: (PL/L = 1. 

LJ,(e) = 0'. 

Here t must be a positive integer relatively prime to n7. Let p denote a prime 
integer not dividing m. Then ( p )  is unramified in L and the automorphism rsp 
satisfies the requirement (2. I )  placed upon the Frobenius automorphism of 
(p ) .  Thus 

(PL/Q (P) = b p s  

For a positive integer a = n p f 4  relatively prime to rn we have 

For a positive integer b relatively prime to m there is a positive integer b* such 
that 

bb* = I modm. 

We then find 

V L / Q ( l l b )  = (PL/Q(b*) = LJb*? 
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and more generally 

cpL/Q(a /b>  = Orrb** 

It is now an easy matter to describe the kernel and image of ( p L I Q .  

3.3 Proposition. Let S denote the set of prime ideals containing (m). The 
Artin map qL/p carries 1,' onto G ( L / Q )  and the kernel is the set of fractional 
ideals (a/b) with a, b positive integers satisfying a E b mod m. 

PROOF. We see from the discussion above that qLIK maps onto G(L/Q) .  
The ideal (a /b)  is in the kernel precisely when cab. = c, ; that is when a = b 
mod m. 

An important part of the theory to be developed later will give a generaliza- 
tion of this theorem to the case of an abelian extension of an arbitrary algebraic 
number field rather than an abelian extension of Q as given here. 

Use the theory of the Frobenius automorphism to describe the 
factorization of primes of Q in Q(0) ,  19" = 1. (This gives an alternate approach 
to the results in Section 9, Chapter I about factorization.) 

EXERCISE 2. (a) The Galois group of Q(0JQ is generated by 0 2 ( 8 5 )  = 
(0,)' when 0, is a primitive fifth root of unity. Show o2 has order four and 
conclude the ideal (2) remains prime in Q(0, )  with relative degree four. Show 
the same assertion holds for any prime ideal ( p )  with p = k 2 mod 5 .  

(b) The prime 19 and any primep =_ - 1 mod 5 has Frobenius automorphism 
of order 2 and so ( p )  has two prime factors in Q(I9,) each with relative degree 
two. 

(c) The primes p = 1 mod 5 have trivial Frobenius automorphism and ( p )  
splits completely in Q(0 , ) .  

(d) Let E be the subfield of Q(0,)  fixed by c4. Use the formula cpEJQ = 
res EcpQces)iQ to compute the factorization of rational primes in E (res E means 
restriction to E ) .  

EXERCISE 3. (a) Let 0 = 0 2 5  and on(@ = 8". Compute the order of on for 
each integer n not divisible by 5. For a primep # 5 ,  describing the factorization 
of ( p )  in Q(0)  in terms of the congruence class ofp  mod 25. 

(b) Let E be the subfield of Q(0)  left fixed by a,; ( E :  Q) = 5 .  Use the 
restriction of qQce,lQ(p) to E to show that p splits completely in E if and only 
if  p = + 1, + 7  mod 25 where as p splits completely in Q ( 0 )  only when p = 1 
mod 25. 

(c) There is a unique subfield of Q(0)  properly between E and Q(0) .  Find 
its Galois group and determine which rational primes split completely in it. 

EXERCISE 1.  



Chapter IV 

ANALYTIC METHODS 

Nil sapientiae odiosius acumine nimio. 

Seneca 

In this chapter we begin to study rather delicate properties of primes in 
number fields. Many results in earlier chapters hold in much more general 
fields. However we shall use in several ways the assumption that our field is 
a finite extension of the rationals. The main idea involves the use of infinite 
series to prove results about the distribution of prime ideals. The Frobenius 
density theorem shows, roughly speaking, that infinitely many primes have 
the same Frobenius automorphism. This is the result needed to prove that 
the Artin map is onto. Other results proved by analytic techniques include 
Dirichlet’s famous theorem about primes in an arithmetic progression. 

Much has been written about procedures to avoid the analysis in this alge- 
braic subject. Chevalley and others did accomplish this by introducing ideles 
and the machinery of cohomology of groups. It is this approach that is called 
the modern treatment of class field theory. The use of Dirichlet series to prove 
algebraic theorems goes back more than a century and so it can hardly be 
called modern. However the approach presented here benefits from Artin’s 
ideas involving the systematic use of the Artin map. Historically the existence 
theorem was proved by Tagaki before the reciprocity theorem of Artin. The 
reversal of the order here simplifies the development. 

It seems that the analysis required by the student in this treatment is far less 
than the corresponding amount of material he would have to know before 
attacking the development of the subject by cohomology of groups and the 
method of ideles. For this reason I prefer to think of this as the direct approach 
to class field theory. 

106 
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1. MODULI AND RAY CLASSES 

We consider an algebraic number field K and its ring of algebraic integers 
R. For a prime p of K, Kp denotes the completion of K with respect to a 
valuation in p. 

The ideal group 1, of K is the group of fractional R-ideals of K .  It is the free 
abelian group with the finite primes (integral ideals) as generators. 

The multiplicative group of nonzero elements in K is denoted by K*.  There 
is a natural map i which sends K* into I, by mapping an element a in K onto 
the principal ideal (a) = aR = i(a).  The kernel of i is the group U, of units in 
R. The structure of UK is given in Chapter I, Theorem 11.19. The cokernel of 
i is by definition the class group of K, denoted by C,. We saw in Chapter I,  
Section 1 1  that CK is a finite group. We summarize these facts with an exact 
sequence 

1 + U K + K * + I K + C K - + l .  

It is fair to say that our main interest for most of what follows in this book 
is in the study of certain subgroups of the groups in this sequence and how 
they relate to the problem of describing, in terms of K, all the abelian extensions 
of K .  

Definition. A modulus for K is a formal product 

m = ,p"(p) 

P 

taken over all primes p of Kin which n (p) is a nonnegative integer and n(p)  > 0 
for only a finite number of p. Furthermore n ( p )  = 0 or 1 when p is a real 
infinite prime and n ( p )  = 0 when p is a complex infinite prime. 

A modulus in may be considered a product in, in, with in, the product of 
the finite primes appearing with positive exponent in in and in, the product 
of the real primes in 111. Then in, is identified with an integral ideal; that is an 
ideal in R. 

Our intention is to extend the notion of congruence between two elements 
of R modulo an ideal to a notion of congruence between elements of K* 
modulo a modulus. 

Let p denote a real prime of K so Kp is isomorphic to the real field. Let 
x -+ xp denote the imbedding of K into Kp. For elements a, p in K* we write 

a = p m o d p  

to mean a p  and pp have the same sign; equivalently we could say (a/& > 0. 

ci = a/c, p = b/d, a,  b , c ,d  E R. 

Now let p be a finite prime, a, p elements in  K* and suppose that 
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Then we write 

a 3 p mod p" 

if L Y / ~  = ad/bc is in the valuation ring R, of p and this element is congruent to 
1 modulo p"; that is, (ad- bc)/bc E p". 

Some care must be taken with congruences defined for elements of K* 
because they can be multiplied but not added. By this we mean 

a l  E p1 and L X ~  = f12.modp" 

a1 a2 3 p2 modp" 

a1 + u2 = P I  + p2 modp". 

For example, with K = Q and p a prime integer we take a = l/p, p = ( p  + 1)/p. 
Then 

implies 

but it need not follow that 

/?/a = p + 1 = 1 modp and so a 5 B modp. 

However we do not have 

a - c l z p - a r n o d p  

because /?-a = 1 f 0 modp. 

given in the definition. For LX, p in  K* we write 
Now we extend in the expected way to congruences for a modulus in as 

if 

for all primes p with n(p) > 0. 

Definition 

We now define two subgroups of K* associated with a modulus m = m, m,. 

K ,  = { a / b  1 a, b E R ,  aR, bR relatively prime to in,}, 

Km,l = { G L E  K,,I LX = I modm}. 

Notice that K ,  depends only upon the finite primes dividing in, and not 

The group K,, is sometimes called the "ray modm." 
Recall that for a set S of primes, Is (or 1,') denotes the part of the ideal group 

IK generated by primes outside S.  We shall also use the symbol I" (or IKm) to 
denote Is where S is the set of primes dividing in,. Thus I" does not depend 
upon the exponents of the primes dividing m. 

upon their exponents. 
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Clearly the image under i of K ,  or K,, lands in I". The quotient 

Iml~(~nl, 1 )  

is called the ray class group modin and the cosets of i(Km,l) in this quotient 
are the ray classes mod in. The study of the ray class group requires approxima- 
tion techniques. We shall see momentarily the ray class group is finite. 

1.1 Theorem (Approximation Theorem). Let I 1 1 ,  ..., I I n  be nontrivial 
pairwise inequivalent valuations on K and let PI ,  ..., 8, be nonzero elements in 
K .  For any positive real E ,  there is an c1 in  K such that I c l - j l i l i  < E for all 
i = 1, ..., n. 

PROOF. The first step is to show there exists elements y l ,  ..., y ,  in  K such 
that 

lyili > 1, lyilj < 1, i Z j .  

Use induction on n. For n = 2 the definition of equivalence implies the 
existence of elements w, z such that 

lwl,  > 1, 

IZI, < 1, 

lYll > 1 3  

lwl2 < 1, 

lzl2 > 1. 

IYl2 < 1. 

Now set y = w/z  to get 

Suppose we have an element y which satisfies 

l y l l  > 1, l y l j  < 1 ,  j = 2 ,..., n -  1. 

By the case n = 2 there is an element t which satisfies Itl, > I and 1 1 1 ,  < 1. 
Now select y 1  in the following way: 

Y l  = Y  if lyl ,  < 1, 

Y l  = Y'f if lyln = 1, 

In the last two cases r is an integer yet to be determined. If the second case 
holds, 

l Y l l j  = I Y l j r l ~ l j ?  2 < j  G 

and this can be made < 1 with sufficiently large r for a l l j  # 1 .  
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In the third case we reach the same conclusion because 

IY‘lj < 1 

I l+Y’ l j  I ~ - ‘ l , - l  

and this has limit =O as r -+ 00. 

In all cases we have the element y ,  which is “large” at I 1, and “small” at 
the other valuations. By symmetry we can obtain y , ,y2 ,  . . . , y ,  to satisfy our 
requirement. 

Now to finish the proof let 

with r an integer to be determined. The triangle inequality implies 

For r sufficiently large this expression will be less than the given E and the 
theorem is proved. 

Before recording some consequences of this approximation theorem it is 
helpful to see how we can pass from statements about valuations to congruences. 

When p is a real prime of K ,  the statement up # 0 and Iu-pl ,  < E for small 
E means cc,/p, is positive. That is c1 = p mod p. 

Suppose p is a finite prime and up # 0. The p-adic valuation satisfies Iu1, = 

c“(”) where ~ ( u )  is the power of p appearing in i(u) and c is some real number 
O < c < l .  

The condition [a-p l ,  < E is equivalent to IN//?- I 1, < E / I P I ,  = E ’ .  When E’ 

is sufficiently small, say E‘ < c“ with n a positive integer, then u(u /p -  1) > n. 
In particular alp- 1 is in the valuation ring and moreover 

./p = 1 modp”. 

In the extended sense of congruences defined above we also have 

c1 E p modp”. 

To summarize then for up # 0 and sufficiently small E ,  the inequality Icc-PI, < 
E implies u = p mod p ” .  

This idea is extended in the proof of the next result. 
When in, and in2 are moduli for K such that no prime appears with positive 

exponent in both in, and in2 we say in, and iii2 are relativelyprime. 

1.2 Proposition. Let in,, ..., in, be relatively prime moduli (in pairs) and let 
in denote the product in = in, ..in,. The natural map from K,,, into the 



I. Moduli and Ray Classes 111 

Cartesian product n KIni induces an isomorphism 

PROOF. By the natural map we mean the one sending a in K,,  to (a, a, . . , , a). 
The induced map is the one 

aKm, 1 --* (..., UKni,, 1,  . . .>. 

The kernel of this map is the collection of cosets a K , , ,  with u in all of the 
K,,, I .  However the intersection of these is just K,,,, because the in, are relatively 
prime. So the induced map is one-to-one. To show it is onto, we select pi in 
K,, and find an a in  K to satisfy 

Iu-Pilp < E 

where p runs through the divisors of in, and i = 1,2, ..., n. For E sufficiently 
small, we saw just above that this implies 

./Pi = 1 mod in,. 

Thus ./Pi E Kmi.  , and aK,,,, , = Pi K,,,,, 
and the proof is complete. 

1.3 Corollary. 

So aK,,  , maps onto ( . . . , p i  K,,, ,, ...) 

For any modulus in ,  the group K, , /K, , ,  is finite. 

PROOF. The Proposition I .2 shows the result is true provided we can prove 
it true in  the special case with in  the power of a single prime. 

Suppose in is a real prime of K .  Then Kln/Kn, , ,  is the full group K *  modulo 
the subgroup of positive elements at in. This quotient has order two. 

Now suppose in = p" with p a finite prime. Then K ,  is the group of units in 
the valuation ring R, and K,, , is the subgroup of units congruent to 1 modulo 
p". It follows that K,/K, , ,  is the group of units in the ring R,/p". Since this is 
a finite ring with NK,Q(p") elements, the unit group is also finite. 

EXERCISE. I f  in = ino in, then K,,/K,, , has order 

where Y is the number of real primes dividing in? and N means NKIQ. 
Proposition 1.2 will be frequently used in a slightly different way which is 

nothing but a restatement. Namely, given the relatively prime moduli 
nt ,, ..., in, and Pi E Kmi we can find a in K ,  to solve the congruences 
u = pi mod i n i .  



112 Iv ANALYTIC METHODS 

1.4 Corollary. Each coset of K,n,l in K,, contains an element relatively 
prime to any given ideal. 

Let the given ideal be n qy = V I  and let PK,,  I be some coset in 
K , .  Select y such that 

PROOF. 

y = pmodin, y = 1 modqj, 

where qj runs through those q not dividing in. Then y and p lie in the same 
coset of K,, and y is prime to 2l. 

1.5 Corollary. For any finite set of primes S,  there is a natural isomorphism 

CK Is/Is n i ( K * ) .  

PROOF. The inclusion Is -, I, gives an inclusion 

Is/Is n i ( K * )  -+ I,/i(K*) = C,. 

To show this map is onto, it is necessary to prove each ideal class contains a 
representative not divisible by any prime in S.  Let 23 be any ideal in I, and 
23 = 23, d2 with 23, prime to Sand  

Let rrp be an element which generates p in R p  (the localization at p) and which 
satisfies 

np E 1 modq for all q # p in S.  

Such elements exist by CRT. Let 

Then by localization one sees the power of p dividing (a) is precisely n(p).  It 
may be that (a) is divisible by primes outside S but this is no matter. Now 
23-' is not divisible by any primes in S .  The ideal class containing 23 is the 
same as that containing Ba-' so each class has a representative in Is as 
required. 

1.6 Corollary. Let 111 be any modulus. Then the ray class group Im/i(Km,l) 
is a finite group. 

PROOF. One sees at once that I"' n i ( K * )  is the collection of principal 
ideals relatively prime to in so 

I" n i ( K * )  = i(K,,,). 

So then 

[I" : i ( K , , , l ) ]  = [I'": i ( K m ) ] [ i ( K m ) :  i ( K m , , ) 1 .  
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The first factor is the class number, IC,I by Corollary 1.5 and the last remark 
and the second is a divisor of [K,, : K m , , ]  which is finite by Corollary 1.3. 
Since the class number is finite, the result follows. 

We shall use h,, to denote the order of the ray class group mod in. In case in 
is the trivial modulus, that is, the empty product, then the ray class group is 
just the class group whose order is denoted by h, .  We extract one fact from 
the above proof. 

1.7 Proposition. hK divides h, for any modulus 111. 

2. DIRICHLET SERIES 

A Dirichlet series is a function of the type 
OD 

f ( s )  = 2 9  
n = l  

with a(n)  complex and s = o+it  a complex variable. A special case is the 
Riemann [:function defined by 

(2) 

Series of this form will be used to study properties of primes in number fields. 
We begin by studying questions about convergence. 

Denote by D (b, 6, E )  the region of the complex plane 

{s l  Re(s) >, b+6, Iarg(s-b)I < 7r/2--&}. 

2.1 Proposition. Letf(s) have the form ( 1 )  and let s(x) = x a ( n )  taken over 
n < x .  Suppose there exist positive constants a,b such that Is(x)l< axb for all 
x 2 1. Then the following hold : 

(a) The series f ( s )  is uniformly convergent for s in D ( b , 6 , ~ ) ,  with any 
positive 6, 8; 

(b) f ( s )  is analytic in the half-plane Re(s) > b ;  
(c) if 

then 
lim(s-l)f(s) = a,, s E D ( 1 , 0 , ~ ) .  
s+ 1 
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PROOF. 

Recall that JnsI = nu when s = a+ it. 

behind the summation can be rewritten with the use of the identity 
The estimate of Is(x)l allows us to rewrite the first two terms. The expression 

1 1 dt 

Thus far we see 

We can further change this expression by noting the term involving the 
summation is less than 

Also u > u so finally 

2a Is1 a + 
Z F 1 G F  (a - b) 2l-h 

Now Is(/a-b 6 ( / s - b ] +  b)(o-b)- '  6 I/cosO+b/S, with 8 = arg(s-6). The 
number b/S is constant and the restriction 181 < 4 2 - c  means l/cos 8 6 M for 
some constant M .  Thus given any number E,, we can find a sufficiently large 
integer u to insure 

2a lsla < 2a + M + b/S 
U ~ - h  '0. 

U u - b  + (a - b) M U  - 

This implies the uniform convergence of.f(s) in D(b, S, E ) .  

To prove (b) first note that any point s in the half-plane Re@) > b lies in 
some D(b,S,e). Thus at this s the series is a uniformly convergent series of 
analytic functions and hence is analytic. 
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Now assume (c) holds. This means s(x) = a,x+e(x)x with lime(x) = 0 as 
x--r 00. Necessarily e(x) is bounded and so there is some constant a2 with 
Is(x)l< a, x. By Part (a)f(s) is uniformly convergent in  D( 1, 6, E )  for positive 
6, E .  

The proof of (c) is carried out by showing (s- l)f(s) has the same limit at 
s = 1 as ao(s- I)[($) with [(s) defined in Eq. (2), and then evaluating the limit 
for [(s). Notice by Part (a), the [-function [(s) is uniformly convergent in 
0 (1 ,6 ,~ ) Jus t  asf(s) is. 

Begin with the same sort of computation as used in the proof of (a). Namely, 

Select any E~ > 0 and N so large that le(n)l< E,  if n 2 N .  Take Mas  a bound 
on le(n)l for all n. Also notice 

n + l  dt n + l  t dt 

After all these estimates are combined, one sees 

1s - 1 I If(4 - a, C(s)I 

The first term involving an integral can be evaluated and as s +  1 with 

The second term involving the integral is 
s E D(  l,O, E )  the limit is zero. 

The restriction that s E D( I ,  0, E )  means 
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Thus for s near 1 in D ( l , 0 , ~ )  we have 

Is- 1 I If(4 - a0 T(s)l < Eo To. 

Since E,, was arbitrary we find 

lim{(s- l)f(s)-ao(s- I)[($)} = 0 if s E D(l,O,c). 
s+ 1 

The proof will be complete if we show 

( 3 )  lim(s- l)[(s) = 1 .  
s-’ 1 

This will be done by first showing that (s- I)[@) can be continued to a 
function analytic in the disk Is- 1 I < 3 and so the limit can be taken along any 
convenient path to s = 1 .  The convenient path is the real axis to the right of 1. 
Consider the function 

1 

ns * 

m 

[z(s) = C ( - l ) n + l -  
1 

The sum of the first n coefficients is 0 or 1 so by Part (a) this is uniformly 
convergent in D(O,6, E). In particular it is analytic in the disk Is- 1 I < 3. Next 
observe 

2 
r 2 w  + +s) = [(s) 

in the common region of convergence. It follows 

The function on the right is the quotient of analytic functions and the 
denominator is zero only at points where 2”-’ = 1 ; namely s = 1 +2kni/ln 2 
with k an integer. Clearly the only real pole of [(s) can occur at s = 1 .  We shall 
verify the other points are not poles. 

Consider the function 

1 1 2  
1 2s 3s 

C3(s) = s + - - - + ... 

+ . ‘ a .  

1 1 2 +-+--- 
(3n+1)” (3n+2)” (3n+3)” 

For this the sum function s(x) has values 0, 1 ,  or 2 and so T3(s) is uniformly 
convergent in D (0,6, E). As above we find 
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and so the only possible poles of [(s) are the points where s = 1 + 2mxi/ln 3. 
If this is in fact a pole then 1 + 2nmi/ln 3 = 1 + 2nki/ln 2 and so 3k = 2". Since 
k, m are integers we must have k = m = 0 and the pole of [(s) must be s = 1. 
One easily checks that it is a pole of order 1 because 2'- - 1 has only zeros of 
order 1.  Finally we obtain (s- 1) [(s) is analytic at s = 1 and in the half-plane 
Re(s) > 0. The limit at 1 can be evaluated by approaching 1 on the real axis 
from the right. 

Approximate the area under the curve y = x-' (s real) by rectangles with 
base [n,n+ 13 and height I/(n+ ly. The area of the rectangles summed from 
n = 0 to 03 is [(s) so 

1 
[(s) < 1 +lrnfi = 1 +- 

x" s-1 

In a similar way use rectangles with base [n, n + 13 and height n-' to get 

From these inequalities one obtains 1 < (s- I)I(s) < s for real s and 
Eq. (3 )  holds. This completes the proof of Proposition 2.1. 

Let K be any algebraic number field and for each integral ideal W let N(W) 
denote a positive generator of the ideal (NK,Q((tU)). Equivalently N(%)  = 

number of elements in R/QL We shall write N for NKIQ. 

Definition. The function CK(s) = xa l/N((tU)s is called the I-function of K .  In 
this (and all similar expressions) the sum is taken over all integral ideals of K .  

This can also be written as 

where aK(u) is the number of integral ideals of K with norm exactly n. Notice 
that the [-function of Q is the Riemann [-function. 

It is useful to also consider more general types of [-functions. We describe 
one such now. 

Let in be a modulus for K and let k be a coset of i (K,",  ,) in I". The [-function 
of the class k is 

Notice when in is the trivial modulus (empty product) then I" = ZK and 
C K  (s) = x k  I (s, k). 
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It is necessary to compute the limit of (s- 1) [(s, k )  as s -+ 1. This is done by 
using Proposition 2.1, Part (c). First write 

Then s(n, k )  = a( l )+ ... +a(n)  is the number of integral ideals in k with norm 
<n. The above limit is the same as the limit of s(n,  k) /n  as n -+ 00. Evaluation 
of this limit ultimately depends upon the following idea: 

a solid in V ,  that is, a 
bounded region. The points in Vare d-tuples (xl ,  .. ., xd) with real coordinates. 
Let Y be the lattice of points with only integral coordinates. Fix a vector v and 
let Yo denote the set of translates v +  9. The volume of can be computed in 
the following way. For a real number y > 0 consider the points of yY, which 
lie inside I-. With each such point as center construct a d-dimensional cube 
having side of length y and volume y d .  Let TI (y) denote the number of such 
cubes which lie entirely inside r. Then l- is approximated from the inside by a 
polyhedron of volume ydTl (y). If r is a sufficiently nice solid-say one 
described by analytic conditions on the coordinates-then the volume of r 
is the limit of ydT, (y) as y -+ 0. 

In the same way approximate r from the outside. Let T2(y) denote the 
number of cubes with center at some point of yY, and having some point in 
common with r. Again for sufficiently nice r one obtains vol (I-) = lim y d  T, (7). 

Finally let T ( y )  denote the number of points of yY, in r. Then TI (y) < 
~ ( y )  < T, (y) so vol (r) = lim y d  ~ ( y ) .  

Now change the point of view. The number of' points of 9, which are in 
y - l  

2.2 Proposition. If r, 9,, M ( t )  are as above then 

Let V denote d-dimensional Euclidean space and 

is T(y) .  Change notation so M(r) = T ( t - ' ) .  

d ( r )  = lim M ( t ) / t d .  
I - 5 2  

The plan for evaluating lims(n, k) /n  is to identify s (n ,k) /n  with M(r)/td for 
a suitable M ( t )  as above and compute vol(T) in place of this limit. The 
computation is rather long. 

2.3 Lemma. Each class k contains an integral ideal. 

Since I'"/i(Klll,,) is finite, each prime not dividing in has some 
power in i(K,,,, If Bl = ?ll '21;' is an ideal in k with !XI, '21, integral, then B[,' 
is in i(K,,,, I )  for some t > 1 and so 'u'2[,' is an integral ideal in k212' = k .  

Let K be an integral ideal in the inverse class k - '  and 2l an integral ideal in 
k .  Our object is to compute the number of 9t with N('21) < n.  If this holds 
then 2lK E i (K,, 

PROOF. 

so 

(4) 2l6 = (a), a E K n K,, I ,  N ( a )  < n N ( K ) .  
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Conversely if ct satisfies the last two conditions in Eq. (4) then the ideal 
'2l = (a )K - '  belongs to k ,  is integral and has norm < n. 
2.4 Lemma. s (n ,k )  is the number of principal ideals (a) such that CI E 6 n 
Km,,  and N ( a )  < n N ( 6 ) .  

Now write in = in,  in, with ino an integral ideal and in, the product of the 
infinite primes dividing in. Let a. be one solution of 

a, E 1 mod in,, a. = 0 mod6.  

Such an a, exists because 6 E I" implies 6 is relatively prime to in,. 

2.5 Lemma. s(n,  k )  is the number of ideals (a )  such that 
(a) GL = a. mod in, 6, 
(b) a = 1 modin,, 
(c) 0 < N ( a )  < nM(6) .  

This is clear in view of Lemma 2.4 because Conditions (a) and (b) are 
equivalent to CL E 6 n K,, I .  

Let a I ,  . . . , c(d be a (free) Z-basis for the ideal in, 6. Here d is the dimension 
( K :  Q) .  The elements a which satisfy Condition (a) of Lemma 2.5 are those 
which have the form 

a = CLO + c n i a i .  

There exist rational numbers hi such that a, = xhict i .  
In the d-dimensional euclidean space V let 9 be the lattice of d-tuples having 

integer coordinates. Let v = (h,,  . . . , h d )  and 9" = v + 9. The correspondence 

. . . ,xd)  + C x i a i  

gives a one to one correspondence between the points in 9" and the elements 
of K* which satisfy (a) of Lemma 2.5. 

Next we consider how to select generators for the principal ideals we are 
trying to count. If (a )  and (p)  are equal and also a , p  satisfy (a), (b), (c) of 
Lemma 2.5 then GL = flu with u a unit of R in K,, I .  

It is necessary to digress and discuss this group of units. The full group of 
units, U, is a subgroup of K,, and so the finiteness of K,/K, , ,  implies 
UK/U, n Km,, is finite. 

Use the notation of Section 1 I ,  Chapter I .  There we saw the function t ( a )  
mapped U, onto an ( r + s -  I)-dimensional lattice in Vr+s ,  the space of ( r + s ) -  
tuples over the reals. It follows that /(U, n K,, ,) has finite index in /(U,) 
and so it too is an ( r + s -  I)-dimensional lattice. 

Let w I ,  ..., wr+s- l  be elements in UK n K,, , such that the images give a 
Z-basis for /(U, n Kmq1) .  The vectors Wi = G(wi )  have the sum of the coordi- 
nates equal to zero. (Chapter 1, proof of Proposition 11.13) and so the 
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vector W = ( I ,  ..., 1,2, ..., 2) is independent of the space /(UK n K, , l ) .  We 
take W to have r ones and s twos. Summarize this discussion. 

2.6 The group UK n K,,L is the direct product of a finite cyclic 
group ( w )  with a free abelian group ( w l ,  ..., w,+,-~) of rank r + s - I .  The 
images Wi = / ( w i )  along with the vector W give a basis for the (r+s)-dimen- 
sional real space 

The map e sends all of K *  into Vr+s so for any a there exist real numbers 
c,  ci such that 

Lemma. 

Let u = w" n wf' be a unit in U, n Km,l .  Then [ ( w " )  = 0 and 

t ( au )  = c W +  C ( C i + U i ) W i .  

Clearly there is a unique selection of the ai such that 0 < ci +ai < 1 for each 
i. This proves part of the next step. 

2.7 Lemma. Let w, denote the number of roots of unity in U, n K , , l .  
Then w,s(n,k) is the number points (xl ,  ..., x,) E 9, which satisfy the 
conditions : 

(a) a = C x i a i ,  
(b) a = 1 modin,, 
(c) 0 -= M ( a )  < nN(Q 
(d) ~ ( c c )  = c W + C c i W i  with 0 < ci c 1. 

Just to be explicit here, we know there exist s(n, k )  ideals (a) satisfying the 
conditions in Lemma 2.5. Each such ideal can be generated by any of the 
a' = au with u in U, n Km,l and a' will still satisfy (a), (b), (c) of Lemma 2.5. 
From all these elements exactly w, of them satisfy Condition (d) of Lemma 2.7. 
Finally the correspondence with points in 9" has already been described 
above. 

For the next step we shall extend the map G to an analogous one on part of 
vd. We first adopt the convention of Section 11,  Chapter I in which the 
d-dimensional real vectors are written with r real coordinates and s complex 
coordinates to give r+2s  = dreal dimensions. If ( y , ,  ..., y r , y r +  l , .  . . ,yr+, )  = Y 
is such a vector with each yi # 0, then we set 

[(Y) = (In I .Y, 1, . . ., In I YrI, 2 In 1 yr+ 1 1 . . ., 2 In 1 . Y ~ + ~ \ ) .  

Thus e maps certain vectors in v d  into Vr+s.  Recall also the map u(a) mapping 
K into Vd by 

~ ( a )  = (a1 (a), . . * , c r + s ( a ) ) .  
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These maps are consistent in that &[u(a)]  = [ ( a )  for 01 E K * .  
We also extend the norm map to v d  by 

N ( y l , . . . , y r + s )  = I Y ~ I . . . I Y ~ I I Y ~ + ~ I ~ . I Y ~ + ~ I ~ .  
2.8 Lemma. Let ro denote the set of all points ( x , ,  ..., xd) with xi  real which 
satisfy the following conditions : 

(a) 0 < N ( C x i u ( a i ) )  < 1, 
(b) & ( x x i u ( a i ) )  = c W +  C c i W i  with 0 < ci < 1, 
(c) the first ro coordinates of x x i  u(ai) are positive where ro is the number 

of real primes dividing in,. 

Then 

s (n, k )  lim - . volume(r,) = - Wm 

J v ( f x ) " + r n  n 

PROOF. For each positive real number t ,  let M(r)  denote the number of 
points in fro which lie in 9u (defined above). The volume of ro is given in 
terms of M ( t )  by Proposition 2.2 so it is necessary to identify M ( t )  in terms of 
s(n,k) .  Suppose ( x l ,  ..., xd)  E ro and xi' = t x i .  Then 

(a') 0 < N ( C x i ' u ( a i ) )  < td, 
(b') i ( c x i ' u ( a i ) )  = (c+Int)W+ C c i W i ,  0 < ci < 1, 
(c') the first ro coordinates of Z x i ' u ( a i )  are positive. 

Now let us assume the first ro real imbeddings o,, ..., uro of K are those 
corresponding to the real infinite primes dividing m. If we set 01 = x x i ' u ( a i )  
and assume ( x , ' ,  ..., xd') is in LYU then Conditions (a)-(d) of Lemma 2.7 are 
satisfied so long as td = nN((5). With this restriction on tone finds wms(n,  k )  = 

M ( t ) .  Thus 

The result follows. 

changes of the variables. Let 

i 

The rest of the problem is to compute vol(ro). This will require several 

yi = C x j o i ( a j )  for 1 < i < r ,  

y j  + i y j + s  = C x k b j ( a k )  for r < j < r + s. 
k 

2.9 Statement. The conditions of Lemma 2.8 are equivalent to 
(a) 0 < Iy,I...IyrI(y,2+1+y12+l+s)...(y,2+s+y,2+zs) 1, 
(b) & ( y l , . . . , y r + z s )  = c W +  C c i W i ,  0 < ci < 1, 
(c) y , ,  . . . ,yro  are positive. 
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Let r denote the space of all points (yl ,  . . . , y d )  which satisfy Conditions (a) 
and (b) and also 

Let J = d(y) /d(x)  be the Jacobian of the transformation just defined. Then the 
volumes of the regions are related by 

(c') y , ,  . . . ,yr  are positive. 

The coefficient 2'-'O appears because Condition (c) allows positive and 
negative coordinates in r-ro positions where (c') requires positive terms. 

The Jacobian J i s  the absolute value of the determinant with i,jentry given by 

dyi/dxj = Re(ai(ccj)), 1 < i < r + s  

= Im(ai-s(ccj)), r + s < i < r + 2s. 

By Corollary 1 1.7, Chapter I we find 

J = ~ - " J V ( ~ , ~ ) J A J ' ~ ~ ,  

where A is the discriminant of R over Z .  

2.10 Lemma 
q r  + r o  +s 

For the next change we use polar coordinates. Let 

p i = y i ,  l < i < r  

p,+j(cos8j+isinBj) = J J , + ~  + i y r + j + s .  

Conditions 2.9 (a), (b), (c') are equivalent to 
2 2 (2.11) (a> 0 < P = pi,  - . . , p r ~ , + i ,  < 1 ,  

In P 
d (b) In pi = - + di 1 c j  In lai(wj)l 

with 

O < c j < l ,  d i = l  if l < i < r  

and 

d i = 2  if r < i < r + s .  

(c) o < ej  G 2 R .  

Here Condition (b) requires comment. In  2.9(b) there is an unrestricted con- 
stant c which can be computed. Recall that l ( w i )  = Wi has the sum of its 
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coordinates equal to zero so the sum of the coordinates of t ( y , ,  . . . , Y ~ + ~ ~ )  is 
cd. The sum of the coordinates however is also 

lnIylI...IyrI(y,2+1+ylZ+,+s) 1nP. 

This accounts for the In P term in (b) which is just a coordinate wise statement 
of 2.9(b). 

Let J = Jacobian of the transformation. The terms ayi/dpj contribute an 
r x r identity block in J .  The remaining terms are grouped to give 2 x 2 blocks 
of the form 

cos e j  sin U j  

- p r + j  sinej pr+jcostlj 
Bj  = 1 

so 

I Ir I 

We now have 

Voi(r) = 1 Pr+1 .*.pr+sdpi ...dpr+sdu1 * * *dus  
u p ,  8) 

= (2s)”s Pr+1 “ ‘ P r + s  dp, *.*dpr+s* 
m) 

Here T ( p )  is the region in r + s  variables described by Eqs. (2.11) (a) and (b). 
Finally the last change of variables is given by Eqs. (2.11) (a) and (b) with 

P ,  c I ,  ..., as the new variables. The restrictions on these variables are 

To compute the Jacobian of the transformation we differentiate Eq. 2.1 l(b): 
0 < P < 1 , 0 <  C i <  1. 

ap,laP = pii/pd 

dpi/dcj = p i h i  In la i (wj) l  

Each column of J =  la(p) /d(P,c) l  has a factor p and row one has 1/Pd so 

I l . . . l  2 - 2 1  

I e(wr+s-l) I 
The determinant which is left is exactly the determinant of the transformation 
changing to the basis W ,  W , ,  . . ., Wr+s-  of Vr+,  from the basis of unit vectors 
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(0, ..., I ,O ,  ...). In particular, the determinant is nonzero. We set 

and call the term reg(m) the regulator of in. Thus 

Here we used the form of P to see that all the ps drop out of the integral. 
Finally we can reassemble all these equations to get the desired result. 

2.12 Lemma 

2’-’” reg(in)(2n)” 
N ( m o  C) 1AI1/’ 

voi(ro) = 

Before writing this in its final form one more conventional change will be made. 
For convenience we define N(m) = 2‘”.N(ino) when in is a modulus equal to  
the product of the integral ideal ino and ro real infinite primes. 

2.13 Theorem. If [(s, k )  is the [-function of the class k for the modulus in 
then 

lim(s- 1)5(s,k) = gm, 
s- 1 

whereg, is a positive constant depending only upon K and m and not upon k .  
The exact value is 

2‘(2n)” reg (m) 
’In = .N(in)w,~A/1~2’ 

where 

r = number of real primes of K ,  
s = number of complex primes of K, 
A = discriminant of K over Q,  

w, = number of roots of unity in UK n K, , , ,  
reg(m) = regulator of m. 
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In case in = 1 this result is still interesting. In this case the ray class group 
mod in is the usual class group IK/i(K*).  If we take the union of all the cosets 
k we get all the K-ideals. So 

[(s, k, = [ K  (s)* 
h 

When this is multiplied by (s- 1) and the limit taken, each term in the sum has 
the same limit. 

2.14 Theorem 

2’(2n)” reg(K) 
lim(s- 1)cK(s) = h,  9 
s-+ 1 W ,  161’/2 

where 

w, = number of roots of unity in K ,  
h ,  = class number of K ,  and the other symbols as above. 

Here we have written reg(K) for the regulator of the units U,. In the case 
m = 1 as in general the regulator has the following interpretation. We have 
seen that t(U, n K m , , )  is an ( r + s -  1)-dimensional lattice contained in 
(r+s)-dimensional space. It turns out that reg(in) is the ( r+s-  1)-dimen- 
sional volume of the fundamental parallelopiped for this lattice. Thus reg(in) 
depends only on m and not upon the choice of generators w i .  

The result given by the last theorem is sometimes useful for computation of 
the class number h, .  For some explicit examples see Chapter 5 of Borevich 
and Shafarevich [3]. 

We can obtain slightly better estimates for s(n, k )  without any further 
difficulty. Refer back to the proof of Lemma 2.8. There we had 

M ( t )  = w,,s(n,k) if td = n&’(K). 

The &dimensional cubes of side equal to one and having center at points 
of 9” n KO may not all lie entirely within r,. For some fixed E all these cubes 
will lie inside (t+E)ro and (t-E)r, will be contained in the union of these 
cubes. It follows then that 

( r - & ) d ~ ~ ~ ( r O )  G ~ ( t )  G ( ~ + E ) ~ v o I ( ~ , ) .  

lvo l ( r r , ) -~( r )J  G [ ( r + ~ ) ~ -  ( r - e ) d ]  VOI(~ , )  < a, i d - ’  

Also 

for some constant a, .  After making the substitutions indicated above, one 
finds 

2.15 Statement. s (n ,k )  G a,n+a,nl-(’’d’forsomepositiveconstantsa,,a,. 
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Now consider the function 

We have at once from (2.15) 

n) < Is(x,k)-a,xl  < a 3 x  1 - ( l / d ) .  1 
This means the series converges for all s with Re(s) > I - I/d by Proposition 

2.1. We have already seen that can be analytically continued into this 
region except for the simple pole at s = 1. It follows the same must hold for 

2.16 Theorem. The function c(s ,k)  can be analytically continued to the 
region Re@) > 1 - l/d except for the simple pole at s = 1. 

This is not the whole story. The functions CK(s) can be continued to the whole 
plane except for the pole at s = 1.  However we shall not discuss this matter 
any further here. 

r 0, k) .  

3. CHARACTERS OF ABELIAN GROUPS 

In this section, A denotes a finite abelian group. 

Definition. A character o f A  is a homomorphism of A into the multiplicative 
group of complex numbers of absolute value one. The collection of all 
characters of A is denoted by A. 

If x,, x2 are characters of A ,  then their product is the function sending a to 
x I  (a )x2(a ) .  Clearly x1 x2 is also a character. This operation makes A into an 
abelian group. The identity is called the principal character and is usually 
denoted by xo. One sees xo(a) = 1 for all a E A .  

3.1 Proposition. A 2 A. 

Use induction on J A  I. Suppose A is cyclic of order m with generator 
y.  Then y" = 1 implies x ( y )  is an mth root of unity. If o is a fixed primitive 
mth root of unity then the characters of A are determined by the equations 
x,(y) = or. There are m choices for r and so m characters. They all are powers 
of x, so A  ̂ is also cyclic of order m. 

Now suppose A = A ,  x A ,  is noncyclic. We shall prove A  ̂ z 2, x 2, and 
the result will follow because Ai z A i  by induction. 

Map Â  into A^, x 2, by sending x to ( x I A , , x I A 2 ) .  Then map 2,  x Â , into 
Â  by identifying (x,, x2) with the character sending (al, a,) to xr  (al) xz (a,). 

PROOF. 
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One checks easily these two maps are inverses of one another so both are 
isomorphisms. 

3.2 Corollary. A is naturally isomorphic to A" by letting the element a E A 
correspond to the character x -+ x(a) on A^. 

PROOF. The indicated correspondence is a homomorphism of A into 2. If 
it is one to one, then the groups are isomorphic because they have the same 
order by Proposition 3.1. Suppose the kernel of this homomorphism is the 
subgroup B. Then for any character x of A we have x(b )  = 1 for b E B. This 
means x can be viewed as a character on AIB. Thus IA 
follows B = I as required. 

3.3 Proposition (Orthogonality re1 a ti o n s) 

PROOF. Let x denote a nonprincipal character and b some element of A 
with ~ ( b )  # 1. Then 

c x ( 4  = c x(ab) = X(b) 1 x ( 4 .  
R € A  R E A  a e A  

Since ~ ( b )  # I it must happen that C x ( u )  = 0. Now if x = x I  x2 the first 
alternative of Eq. (1) is proved. The second alternative is obvious since 
x ,  (a)x; ' (a)  = 1 for each a E A .  To prove Eq. (2) just use the identification of 
A with A* and Eq. (1) with A  ̂ in place of A .  

4. L-SERIES AND PRODUCT REPRESENTATIONS 

We shall extend slightly the [-functions considered above. Let 111 be a 
modulus for K and x a character of the finite group I"'/i(Km, ]). We view x as a 
function on all of I"' by defining ~ ( 6 )  for an ideal CS to be the value of x at the 
coset i(K,", l )C.  

The L-series for x is 

L(s,x)  = X ( W / J v ( W ,  
(m,Vl)= 1 

where the sum is taken over all integral ideals prime to in. Since ~('3) depends 
only upon the class, k,  of rU we may express L(s,x)  in terms of [-functions 
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already introduced. Namely 

4.1 Proposition 

where h,  is the order of the ray class group mod in and gm is the constant in  
Theorem 2.13. 

By Eq. ( I )  the limit in the proposition is Ckx(k)gm since the 
functions (s- I ) [ ( s , k )  all have the same limit gm at s = 1. Now apply 
Proposition 3.3. 

The next result expresses the L-functions in turns of primes rather than all 
the ideals. This is the stepping off point to the investigation of primes and their 
part in the groups mentioned so far. 

4.2 Theorem. For all s with Re(s) > 1 the function L(s,x)  can be repre- 
sented as a uniformly convergent product 

PROOF. 

L(s,  XI = JJ (1 -x(P)/"PY)- ' 
PXm 

taken over all primes of K not dividing m. 

series 
PROOF. Let p denote any prime ideal. There is an absolutely convergent 

- 1  

Suppose p I ,  . . . , p r  are all the primes in I" having norm < t .  Then 

x (Pi) 

91 

where the * means the sum is taken over all integral ideals in I" divisible only 
by primes with norm < t .  Now one sees that 

The rightmost term is the remainder term for t ( s , x ) .  The convergence of 
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L(s,  x) is implied by that for ((s, k )  when Re@) > 1 so the remainder term must 
have a zero limit as t increases. The result follows. 

Some special cases are worth recording. Take itt = 1 and x = xo; then 
L (3, x) = ( K  (s)* 

4.3 Corollary 

(a) C K ( s )  = n(l - l /M(p)? - l ,  
P 

(b) C Q G )  = nu - l / P s ) - ’ .  
P 

The uniform convergence of the infinite series that arise can be used to obtain 
uniform convergence of the infinite product. In particular the product may be 
taken in any order without changing the value. 

Let logz denote the branch of the logarithm function having imaginary part 
on (-n/2,  n/2) when Re(z) > 0. Then logz is real for real z and the function 
has an absolutely convergent series representation 

z2 z3 
2 3  

-log(l -z) = 2 + - + - + ..- 

for IzI < 1. We shall apply this to the infinite products but first we give a lemma 
that allows us to change a product into a sum. 
Lemma. Let {uj} be a sequence of real numbers all 2 2  and suppose the 
function 

f ( s )  = n(l -U,:s)- l  

I 

is uniformly convergent in each region D( 1,6, E ) .  Then 

where g(s)  is bounded in neighborhood of s = I .  

PROOF. The uniform convergence allows the following manipulations : 

logf(s) = -Clog(l  --U,:s) 
i 

“ 1  

j m = l  
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Let g = Re($) so we obtain 

Estimate the inner sum by using 

Thus 

The convergence of f(2a) for 20 2 1 +6 implies the finiteness of Ig(s)l at 
0 = 1 or s = 1. In particular g(s) is bounded in a disk Is- 1 I < 4. 

As an immediate consequence of this and Corollary 4.3 we have 

with g representing a function bounded at s = 1. 
To illustrate the kind of reasoning to be used below, we show how the 

expression 4.4(b) can be used along with Theorem 2.14 to prove the existence 
of infinitely many primes. 

If there were only a finite number of primes then log CQ(s) would be bounded 
nears = 1. By Theorem 2.14 the function (s- 1) CQ(s) has a finite positive limit 
at  s = 1 so log(s- 1)rQ(s) is also bounded near s = 1. It follows that 

log(s-1) = log(s- l)CQ(s) - logCQ(s) 

is bounded at s = 1.  This is impossible, of course, so there exist infinitely many 
primes. 

Since this idea will be used several times we shall use the following notation. 
For functionsf, (s) andf; (s) defined for Re($) > 1 at least, we write. 

1; (4 - f z  (8) 

to meanf, (s) - fi (s) has a finite limit at s = 1. 

4.5 Proposition. Let K be an algebraic number field and S the set of primes 
of K which have relative degree one over Q. Then S is an infinite set. 
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PROOF. If we exclude the finite number of ramified primes which may be 

By Eq. 4.4(a) it follows that 
in S,  then S is the set of primes ‘$ of K for which N(‘$) = p is prime. 

with the sum taken over all primes of K.  Estimate this sum by first taking it 
over those primes outside S .  Again ignore the ramified primes since the sum 
over a finite set is bounded at s = 1. For ‘$ outside S,  N (9) = p’ > p2 and at 
most (K : Q) possible ‘$ have their norms equal to a power of the same prime. 
Thus 

This sum is bounded at c7 = 1 so it follows that 

By Theorem 2.14 it follows that log(s- l)rK(s) is bounded at s = 1 and 
since log(s- 1) is not bounded at  s = 1 it follows that 

1 

C m  logr,(s) - -log@-1) - 
BES 

and S must be an infinite set which completes the proof. 
This idea can be expanded. 

Definition. Let S be a set of primes of the algebraic number field K.  If there 
exists a real number 6 such that 

then we say 6 is the Dirichlet density of S and we write 6(S)  = 6. 

degree one over Q. 

4.6 Properties of the Dirichlet Density 

(4.6.1) If S has 6 ( S )  # 0 then S is an infinite set. 

We have just proved that 6 ( S )  = 1 when S is the set of primes having relative 

PROOF. If  S is a finite set then 

7’ N(‘$)-s - 0. 
‘pES 
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(4.6.2) Let S ,  denote the set of primes of K having relative degree one 
over Q. If S is any set which has a Dirichlet density, then 6 ( S )  = 
6 ( S  n S,) .  

PROOF. The estimates given in the proof of Proposition 4.5 can be used to 
show 

Then it follows 

(4.6.3) If S c S' then 6 ( S )  Q S ( S ' )  whenever both densities exist. 

This follows from the observation that CJV(~$~)-" cannot be negative for 
real s sufficiently close to s = 1. 

One sees from these remarks that 0 Q 6 ( S )  Q 1 whenever S has a density. 
Thus 6 provides a way of measuring the ratio of primes in S to all primes of K. 

We shall make a computation of a density that will be important later. 
Let in be a modulus for K and H a group such that 

i ( K , n , l ) ~  H E Im. 

Let h denote the index of H in I" (finite by Corollary 1.6). 

4.7 Theorem. Let S be a set of primes contained in H .  If S has density 6 ( S ) ,  
then 6 ( S )  < I/h.  

PROOF. Let x be a character of Im/H viewed as a homomorphism on I" 
with kernel containing H .  Then 

with g,(s) a convergent Dirichlet series for Re(s) > +. In particular g,(s) is 
bounded at s = 1 .  

For any 'p, Cx('p) taken over all characters of Im/H is zero unless 'p E H 
in which case the value is h. Thus 

By assumption we also have 
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with g(s) bounded at s = 1. The assumption S c H implies 

is nonnegative when s is real and > 1. This means that 

-(W-d(S)) log(#- 1) + c {logL(s,x)-g,(s)I 
x + x o  

+ b ( s -  1)L(s,xo) -gxo(s)-g(s) 

is positive when s is real and > 1. All the functions denoted by gs are bounded 
at s = 1. The same is true of log (s- 1) L(s,  xo) by Proposition 4.1. 

The terms log L (s, x )  are bounded at  s = 1 unless L ( I ,  x) = 0. [By Proposi- 
tion 4.1 one can show that L(s, x )  is continuous at s = 1 provided x # xo. So 
it is permissible to write L(l,x).] In case L(1,x) = 0 for some x then the log 
terms become negatively infinite at s = 1. We insist s > 1 so log@- 1) is also 
negative near s = 1. The only way for the expression to be positive is 6 (S) f 
I/h as required. 

REMARK. It is true that L(1,x) # 0 for x # xo but this is fairly difficult 
to prove and will not be done in this generality here. See Section 10, Chapter V 
for a proof. 

If we assume this result one obtains that the set of primes in H has density 
exactly l/h. The above proof does show the following result. 

4.8 Proposition. In the above context if 6(S) = I/h then L(1,x) # 0 for 
each nonprincipal character x of Im/H. 

PROOF. The function above now is positive for real s sufficiently close to 
1 but the log(s- 1) term has zero coefficient. The remaining terms are 
bounded at 1 or become negatively infinite when L (  1, x) = 0. Accordingly this 
cannot occur. 

5. FROBENIUS DENSITY THEOREM 

In this section we let L denote a Galois extension of K with G = G ( L / K ) .  
The main idea here is to prove the existence of primes in K having certain 
prescribed decompositions in L. 

We prepare first with a purely group theoretic result. 

Definition. Let 0 be an element of order n in G. The division ofa is the c01- 
lection of all elements in G which are conjugate to some 0”’ with rn relatively 
prime to n. 
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5.1 Lemma. Let a be an element of order n in  G, H the cyclic group (o), 
and r the number of elements in the division of a. Then t = c+(n)[G : NG(H)] 
with 4 ( n )  the Euler function. 

For rn relatively prime to n we have Cc (a) = CG (a"'). Thus a"' has 
[G : CG (a)] conjugates. As m ranges over all integers between 1 and n relatively 
prime to n we count (P(n)[G : C,(a)] conjugates this way. But these are not 
all different. An element is counted q times if it is conjugate to q distinct 
powers d". Evaluate q by observing the number of conjugates of a"' which are 
also powers of CT is the number of distinct automorphisms of H induced by 
conjugation; namely the index [N,(H) : C,(a)] = q. It follows that 

PROOF. 

Now we can state the main result. 

5.2 Theorem (Frobenius Density Theorem). Let a be an element of G = 
G ( L / K )  having t elements in its division. Let S1 denote the set of primes of K 
which are divisible by a prime of L whose Frobenius automorphism is in the 
division of a. Then S1 has Dirichlet density t/lGl. 

PROOF. The proof is done by induction on n, the order of 0. Consider the 
case n = 1 first. Then CT = 1 and S, is the set of primes of K which split com- 
pletely in L. Let S* denote the set of primes of L dividing some prime in S , .  
For each p in S ,  there exists exactly ( L  : K )  = [GI distinct primes in S* dividing 
p and each of these has norm exactly p, Thus we find 

The first sum can be evaluated. Let T denote the set of primes of L 
which have relative degree one over Q. Then T c S* and the sum 

Now it has already been proved that 6 ( T )  = 1 so we have 6(S*)  = 1. This 
C g E S * - T . / l r ( V ) - S  - 0. 
means 

C &(p)-' -1GI-I lOg(s- 1) 
P E S l  

and 6(Sl) = l/lGl as required for this case. 
Now assume the order of a is n and n > 1. For each divisor d of n let t d  

denote the number of elements in the division of ad. Let S,  denote the set of 
primes of K divisible by some prime of L whose Frobenius automorphism 
belongs to the division of ad. By induction we know 6(&) = t,,/[Gl if d # 1. 
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Let E denote the subfield of L left fixed by (a}. Let H denote the group (a). 
We use the description given in Chapter 111, Corollary 2.9 for the decomposition 
of primes in E.  The primes p of K which have at least one prime factor in E 
having relative degree one are precisely those p divisible by a prime Q of L 
such that the Frobenius automorphism T of ?# has a cycle of length one on the 
cosets of H .  This occurs precisely when a,ta;' is in  H for some aj. This means 
r is conjugate to some power of a and so p is in sd for some d.  

Let S,  denote the set of primes of E having relative degree one over K .  For 
p E Sd let n ( p )  denote the number of primes of Edividing p and having relative 
degree one over K .  Thus each p in Sd is the norm of n ( p )  distinct primes in 
S,. Just as before S(S,) = 1 because S,  contains the primes of E having 
relative degree one over Q. Put these facts together to obtain 

Next we evaluate n ( p ) .  Suppose p E sd. By Chapter 111, Corollary 2.9 this 
is the number of distinct cosets Hai such that H a i a d  = H a , .  This holds if and 
only if 

aiada,r' E H .  

Since H is cyclic this only can happen if ai E N, ((a')). So we have 

n(p) = ",((ad>) : p s d .  

Using this equation and the induction hypothesis we write Eq. (1) as 

CNG (ad )  : 
IGI 

td log@- 1). [ N G ( H ) : H ]  1 N ( P ) - ~  - 
P E S I  

d # I  

Next use Lemma 5.1 to evaluate td = c$(n/d)[G : NG(ad)]. The coefficient 
of log(s- 1) on the right becomes 

A well-known formula of elementary number theory asserts the summation 
remaining here has the value n so the entire expression is just - 4 (n)/n. Thus 
finally 

again using Lemma 5.1 for the value o f t .  This completes the proof. We can 
now prove an important property of the Artin map. 
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5.3 Corollary. Assume L is an abelian extension of K and S is any finite set 
of primes of K containing all the primes ramified in L. Then the Artin map 
qLl, carries 1,’ onto G ( L / K ) .  

PROOF. Given an element a in G, the division of D consists precisely of the 
elements which generate the cyclic group (a). By the Frobenius density 
theorem there exist infinitely many primes of L whose Frobenius auto- 
morphism generates (6) so some can be found with p = ’p n K not in S 
and rpLIK(p) a generator of (D}. Thus qLIK maps 1,’ onto G. 

5.4 Corollary. Assume G ( L / K )  is cyclic of order n, and let d be a divisor of 
n. The set s d  of primes of K having exactly d prime factors in  L has Dirichlet 
density +(n/d)/n.  

In particular there exist infinitely many primes of Kwhich remain prime in L.  

PROOF. In Chapter 111, Proposition 2.8, take H = I so E = L. A prime p 
has d factors in  L if and only if D = qLIK(p) has d cycles in the representation 
of G by permutations of its elements (the cosets of H ) .  When G is cyclic D has 
this property if and only if it has order n/d. There exist exactly +(n /d )  such 
elements in a cyclic group so by the Frobenius density theorem, a(&) = 

5.5 Corollary. Let L , ,  L ,  be normal extensions of K and let S,, S, denote 
the sets of primes of K which split completely in L , , L , ,  respectively. If 
S, c S ,  (except possibly for a set of density 0) then L ,  c L, and conversely. 

PROOF. One direction is immediate. If L ,  c L ,  and p splits completely in 
L ,  then it also splits completely in L,.  

Now suppose S ,  c S2 except for a set of density 0. Let L = L ,  . L ,  be the 
least extension of Kcontaining both L, and L,. By Chapter 111, Corollary 2.7, 
the primes of K which split completely in L are those in S ,  since they split 
completely in both L ,  and L,.  Now compute the densities of S ,  and S, .  Use 
Theorem 5.2 to get 

4 (n/d)/n.  

( L  : K ) - ,  = S(S,) = ( L ,  : K ) - ’ .  

This forces L = L ,  L ,  = L, and so L ,  c L ,  as required. 

This seems like a theorem which classifies all normal extensions of K in 
terms of objects in K alone; namely certain sets of primes. Unfortunately it is 
not known yet which sets of primes can arise as the set of primes which split 
completely in some normal extension of K. This problem is solved for abelian 
extensions by class field theory in Chapter V. 

Another application of Theorem 5.2 will give us the so-called first funda- 
mental inequality of class field theory. 
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5.6 Theorem. Assume L is normal over K and tn is a modulus for K .  Let 
I," denote the subgroup of I, generated by all primes 'u of L for which n K 
is in IK". Then 

CIKm : NLIK(lLm)i(Km,l)] < ( L  I K ) .  

PROOF. Except for a finite set of primes, the primes that split completely 
in L are found in NLIK((ILm). The density of this set is 1/(L : K )  by Theorem 5.2. 
If h is the index on the left above, then by Theorem 4.7, we obtain 

I/(L : K) < l/h 

which is equivalent with the desired conclusion. 
Notice this first inequality holds for any modulus and any normal extension. 

The reverse inequality will be proved later under very restrictive conditions. 
The Galois group of L over Kmust be abelian and the modulus must be divisible 
by all the primes of K which ramify in L. Some restriction is also necessary 
upon the exponents of these primes. This theorem is called the second 
inequality and the proof is entirely different from that of the first inequality. 

As a final application of the Frobenius density theorem we shall prove 
Dirichlet's famous theorem on primes in an arithmetic progression. 

Let nz be a positive integer and m the modulus (m)p ,  for Q. We write 
H = i(Qm, ,) in IQ". 

Let /?denote a primitive mth root of unity. We have seen already in Proposi- 
tion 3.3 of Chapter I11 that the set of primes of Q which split completely in 
L = Q(/?) is the set of primes in H .  The density of this set is ( L  : Q)-' by 
Theorem 5.2. Also by Theorem 4.7 this number is at most [I": H1- l  = 
$J(m)-'. This index is computed using the results of Section 1 .  Thus ( L  : Q) 2 
$J(m). On the other hand, j3 has at most $(m) conjugates so its minimum 
polynomial has degree < 4 ( m ) .  Thus ( L  : Q) = 4 ( m ) .  [We have proved again 
the cyclotomic polynomials are irreducible.] Now this information along with 
Proposition 4.8 yields a useful fact. 

5.7 
L(1 ,x )  # 0. 

Proposition. If x is a nonprincipal character of I"/i(Q,,,,l) then 

This is the crucial step in the next theorem. 

5.8 Theorem. Let k ,  be any coset of i(Q,,,. ,) in IQ"'. Then the set of primes 
in k ,  has density 1/4(m). 

PROOF. Let C" denote IQ"/i(Ql,l, ,). For any character x of C"' we have 
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Now multiply this by ~ ( k ; ' )  and sum over all characters x of C" to obtain, 

logL(s,x,) + c X K ' )  logL(s,x) = CCx(k,'k) C P-". 
X * X O  k x  P E L  

The orthogonality relations for characters allow the evaluation of the sum over 
x as 

xx(k ; 'k )  = 4(m) if k = ko 

= o  if k # k,. 
x 

Use the fact that L(1, x )  # 0 if x # xo (Proposition 5.7) to see that the sum 
over nonprincipal characters above is bounded at s = 1. We finally obtain 

lOgL(sYx0) dJm c P-'. 
pEko  

The function L(s, x,) differs from ( ( 8 )  only by a finite number of factors due 
to primes dividing m. It follows then 

logL(s, #yo) - log((s) - -log(s- 1). 

1 p-' - - 1/4(m)  log(s- 1) 

Finally we combine the last equivalences to get 

P E k o  

as required. 

Now let m be a positive integer and a an integer relatively prime to m. 
Suppose p is a prime in the arithmetic progression mt + a, t E Z .  Then clearly 
p is in the coset aQ,, since mt +a = a implies (mt+ a)/a E Q,, Conversely 
if p belongs to uQ,,' then p = ax/y with x 3 y modm. It follows x = mt, + y  
and p = mt f a for some t.  So the primes p which are congruent to a mod m 
are precisely those generating a prime ideal in a fixed coset of ice,, '). By the 
above result there exist infinitely many of these so we have recovered 
Dirichlet's well-known theorem. 

5.9 Theorem. For each positive integer m and each integer a relatively 
prime to m, there exist infinitely many primes of the form rnt+a. 

The proof of this theorem depends upon the nonvanishing of L(1, x) which 
in turn depends upon the existence of a certain field, Q ( p )  in this case. Appro- 
priate generalizations of these facts will be seen later in Section 10 of Chapter V. 

In the following exercises letf'(X) denote a monk polynomial with integer 
coefficients, L the splitting field off(X) over Q,  E = Q(0)  with 6 a root of 
f ( X ) ,  G = Gal(L/Q) and H = Gal(L/E). Regard G as a permutation group on 
the roots o f . f ( X ) .  Assumef(X) is irreducible so that G is transitive. 

EXERCISE 1. For an element u in G, the cycles of u on the cosets of H have 
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the same length as the cycles of D when viewed as a permutation of the roots of 
f ' ( X ) .  In fact the correspondence 7 H  3 z(0) between cosets of H and roots of 
f ( X )  is preserved by G. 

EXERCISE 2. Let p be a rational prime, '$3 a prime of L dividing p. Assume 
p is unramified in L. Then f ( X )  is irreducible modulo p if and only if the 
Frobenius automorphism of 'p has a single cycle on the cosets of H. 

EXERCISE 3. If p is a rational prime which ramifies in L, then p ramifies in 
E. Concludef(X) is reducible modulo p. 

Let '$3 be a prime of L dividingp. Ifp does not ramify in E then 
the inertia group T(Cp) is contained in H. Moreover p is not ramified in z ( E )  
so T ( 9 )  is contained in z H t - ' .  However the intersection of the conjugates 
zH7-l is the identity so T('$3) has order one. 

Let f ( X )  have prime degree q. There exist infinitely many 
primes p for whichf(X) is irreducible modulo p. 

Procedure. The prime q divides (GI but not 1 H 1. Any primep of Q divisible 
by a prime '$3 of L whose Frobenius automorphism has order q satisfies the 
requirements. 

EXERCISE 5. Let f ( X )  have arbitrary degree. There exist infinitely many 
primes p such thatf(X) has no root modulo p. 

Procedure. Any prime p divisible by a prime '$3 of L whose Frobenius 
automorphism has no cycle of length one will do. To show G contains such an 
element observe that any element fixing a point must lie in some conjugate 
THz-'. The conjugates of H can account for at most 

Procedure. 

EXERCISE 4. 

[G: H ] ( I H J - l ) +  1 < JGJ 

elements. 

EXERCISE 6. Show that an irreducible polynomial f ( X )  can be reducible 
modulo every prime. 

First Procedure. Let f(X) be a polynomial such that G is abelian but 
noncyclic. 

Letf(X) be a polynomial with even degree 2n whose 
Galois group is isomorphic to the alternating group A z , .  There is no element 
in A,, consisting of a single cycle on all 2n symbols. Apply Problems 1-3. 

Second Procedure. 
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CLASS FIELD THEORY 

1. COHOMOLOGY OF CYCLIC GROUPS 

Let G be a finite group. By a G-module we mean an abelian group A together 
with a homomorphism a 4 5 of G into the automorphism group of A .  The 
action of 0 upon an element a E A will be written as o(a). 

The most frequently encountered examples of G-modules include the groups 
associated with a normal extension field L of K and G is the Galois group. 
Some G-modules are L*, I,, C,; the multiplicative group of L, the ideal group, 
and the ideal class group. 

Consider now the case with G = (a), a cyclic group of order n. The generator 
a is fixed throughout the discussion. Let 

A =  1-0, N =  I + a + - * * + d " "  

For each G-module A ,  A and N act as endomorphisms on A ;  A(a)  = a-o(a) 
if A is written additively, A(a)  = a/a(a) if A is multiplicative. In case A = L*, 
then N = NLIK is the usual norm. 

In general we write A J A  and NIA to  emphasize the module upon which 
these endomorphisms are acting. 

Regardless of the module, the equations AN = NA = 0 always hold. This 
means 

ImN E kerb  and I m b  E kerN. 

Equality need not hold here so we measure the difference by a pair of 
abelian groups. 

1 40 
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Definition. For a G-module A, the cohomology groups of A are 

1.1 Lemma. If A and Bare G-modules and f : A + B is a G-homomorphism, 
then there exist mapsf,,fl induced byfsuch thatf, is a homomorphism from 
H'(A) to  H i ( @ .  

PROOF. Since f is a G-homomorphism, it commutes with A and N .  In 
particular f(kerA1A) E kerAlB and f(N(A)) E N(B). There is an induced 
mapf, from Ho(A) to  Ho(B) byfo(u+N(A)) =f(u)+N(B). 

1.2 Lemma (The Exact Hexagon). Let 

Similary one obtains fl. 

I O----+A-BAC-O 

be an exact sequence of G-modules and G-homomorphisms. There exists maps 
do, 6 ,  such that the hexagon is exact at each group : 

yHo(A) f"Ho(B) 

\ leHo(C) 

d H 1 ( C )  

\ H' ( B ) y  H 1 ( A )  

PROOF. We shall define 6,, 6,, the so-called connecting homomorphisms. 
Once this is done, the verification of exactness is an elementary, but tedious 
exercise using nothing but the exactness of the original sequence. This is left 
t o  the reader. 

Begin with c E ker AlC. There exists b E B such that g(b) = c. Then Ag(b) = 
g(Ab) = Ac = 0 implies Ab E kerg = Imf. So there exists a E A with f(u) = 
Ab. The equation Nf(u) =f(Nu) = NAb = 0 shows Nu E kerf= (0). Finally 
a E ker N. The map 6 ,  is defined by the equation 

so(c+N(C))  = a + A(A) 

and thus it is a map from H o ( C )  to H'  ( A ) .  It must be shown that 6, is well 
defined. Suppose c + N ( C )  = c ' + N ( C )  and g(b') = c'. Then Ab' =f'(a')  and 
it must be shown that a-a' E A(A). There exists 6" E B with c- c' = Ng(b") = 

g(Nb"). Wenowhaveg(b-b'-Nb") = 0 s o t h e r e i s u " ~ A  withb-b'-Nb" = 

f(u"). I t  follows that Ab-Ab' =f(u-a') =f(Aa"). Sincef is  one to  one it 
follows a-  a' E A ( A )  as required. 

That 6, is a homomorphism follows easily since at  each step an element 
was selected using the homomorphisms in the sequence. 
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The map 6, is defined analogously. For c E ker N(  C we set 

S,(c+A(C)) = a + N ( A )  

if g(b) = c andf(a) = Nh.  The remaining details of the proof are left as an 
exercise. 

Definition. For a G-module A we say the Herbrand quotient q ( A )  is dejned 
if H o ( A ) ,  H ' ( A )  are finite groups. We set 

q ( A )  = IH'(A)I/IHO(A)I 

and call this the Herbrand quotient o f A .  

1.3 Lemma. If 0 + A 4 B + C + 0 is an exact sequence of G-modules and 
if two of the objects q ( A ) ,  q (B) ,  q ( C )  are defined, then all three are defined and 

PROOF. Use the exact hexagon above. Suppose q ( A )  and q ( B )  are defined. 

q ( A ) q ( C )  = q(B) .  

Then 
IH'(C)l = lker6ilIIm6il = IImgilIIm6,1. 

Now gi  is defined on a finite group and Im di is contained in a finite group so 
q(C)  is defined. Similar arguments work if two others are assumed to be 
defined. 

For the second assertion we prove the equation 

IH0(A)I IHO(C)l IH (Ell = IH (A)l I H1 (C>l IHO(B)l 

lkerfol I Imfo I lker 601 IIm 60 I Ikerg, I IImg, I .  
by observing both sides are equal to 

The equality q ( A ) q ( C )  = q ( B )  now follows. 

1.4 Corollary. If A c B are G-modules and C = B / A  is finite, then q ( A )  = 

q(B)  whenever either one is defined. 

PROOF. The result follows immediately if we show q ( C )  = 1 when C is 
finite. For this case we find 

so we are done. 

To illustrate these ideas as well as for later use we shall consider an example. 

Let d be any divisor of n = (GI and let 
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be a free Z-module on the d generators ui .  Let G operate on A according to 
the rules : 

= u ~ + ~ ,  i < d ;  

= UI. 

Clearly ad generates the subgroup which acts like the identity on A.  Let 
GA = ( ud).  

1.5 Proposition. When Z is the ring of integers then q ( A )  is defined and 
q ( A )  = IGAl- ' .  When Z is a commutative ring with characteristic zero, then 
q ( A )  = [Z : rnZ]-', md = n,  provided this is finite. 

PROOF. One simply computes all the groups involved. The calculations are 
not difficult so we shall only state the relevant facts : 

(a) kerN = { ~ a i u i l ~ a i  = 01, 
(b) ImA = kerN, 
(c) kerb = Z(u, + +ud), 
(d) ImN = mZ(u ,  +" '+ud) .  

This yields H o ( A )  E ZjmZ and H ' ( A )  = 1 and the result is proved. 

2. PREPARATIONS FOR THE SECOND INEQUALITY 

Assume L / K  is normal with a cyclic Galois group G = (G). 

Definition. Let p be an infinite prime of K. We say p is ramiJed in L if p is 
real (on K) but p extends to a complex prime of L. In this case we set the rami- 
fication index ep = 2 and formally set f,, = 1 .  For unramiJied infinite primes p 
we set e,, = f, = 1. 

Let in be a modulus for K containing at least the primes of K which ramify 
in L (finite and infinite). 

Each prime p of K may be viewed also as a product of primes in L. In this 
way in is also considered a modulus for L.  Thus I," has meaning and in fact 
this is a G-module. That is if 'p is a prime of L not dividing in, then a(Y) does 
not divide in either. 

We begin by computing some groups. 

2.1 Proposition 

(a) H1(ILm) = H ' ( L * )  = 1, 
(b) H o ( L * )  = K*/N(L*) ,  
(c) H0(ILm) = IKm/N(ILm). 
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PROOF. The statement H ' ( L * )  = 1 is just a restatement of Hilbert's 
Theorem 90. Statement (b) is clear because kerA consists of the elements left 
fixed by G. In the same way kerAII,'" is the set of fractional ideals 2I of I," 
left fixed by G. Suppose Qk divides 2I for a prime 'p of L. Then ~ ' ( ' p ) ~  also 
divides 21 and so the product of the distinct conjugates of '$3 divides 91 (with 
exponent k).  Now if '$3 n K = p, then p f i n  so p is unramified in L. Thus p is 
the product of the distinct conjugates of '$ so 2I = pk21,, with BI, also 
G-invariant. It follows in this way that (LI E IK'" and then (c) is obvious. 

We have left to prove H 1  (IL") = 1. Take 2I E I," with N(2I) = 1. Let 'pu;;O 
be the exact power of the prime Cpo appearing in 21. Let Cpi = ai(!$3,) for 
1 < i ,< g- 1 and suppose a#('$,) = Cpo with g minimal. Let ' p y  be the power 
of 'pi dividing 2l. Set 

23 = Fpu;;~'py+a~ ... qyo+"'+(lg-2 
so that 

8 - 2  

A23 = Cp;lo'p~'.-*'p~--~!J.l~-l, 

where b = -a,-...-a,-,. Let N('po) = pf. Since N(2I) = 1 and since the 
p-part of N (PI) must come from the terms N ('pi) we see 

It follows that aj  = 0 and so b = a,- Thus A23 is the part of 2I contributed 
by the 13,. After this procedure is repeated with the other primes dividing 91 
we are left with 2I E ImA and so kerN = ImA as was to be proved. 

The next step is to define some maps that will be used frequently in this and 
the next few sections. 

The homomorphism 

is defined on primes by 

j : I, -+ I," 

Evidentlyj maps an ideal '21 onto the part of 2l relatively prime to M. 

Recall that the map i carries an element a in  L* to its principal ideal in I,. 
We denote by f the composite ji so that 

(1) f: L* -+ ILm. 

Notice that all the groups mentioned are G-modules and the maps i , j , fare 

Now let S denote the set of primes of L which divide lit. Let Ls = kerJ 
G-homomorphisms. 

One easily sees 

(2) Ls = {a  E L*li(ct) is divisible only by primes in S}. 
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In the case that S c S, the set of infinite primes, then Ls = U, is the group 
of (absolute) units of L. For this reason one says (for any S )  Ls is the group of 
S-units. One must keep in mind that Ls is the set of elements which are units 
locally outside S .  

We begin a series of calculations to determine the Herbrand quotient of 
several C-modules. 

2.2 Lemma. If q(UL) and q(kerj) are defined, then q(Ls) = q(U,)q(kerj). 

PROOF. The equation 1 =f (Ls )  = ji(Ls) gives rise to an exact sequence 

I --f i(Ls) -+ kerj  --t C -+ 1 

for some group C. In fact C is finite because 

kerj  i(L*) kerj  
C g - z  

- i(L*) 

which is a subgroup of the class group of L. We are assuming q(kerj) is defined 
so by the results in Section 1 we obtain q(i(Ls)) = q(kerj). Next use the exact 
sequence 

1 UL 4 Ls + i(Ls) 3 1 

to conclude q(Ls) = q(U,)q(i(Ls)) = q(U,)q(kerj). 
The next task is the computation of 4(U,)  and q(kerj). The first is done by 

finding a suitable subgroup with finite index in U, so that Corollary 1.4 can 
be applied. 

Let L have r real primes 'pl, ..., 'p, and s complex primes ' ] P I +  ..., 'pr+,. 
Let JXli denote a valuation in !$ I i .  When 'p = 'pi we also write 1x1, for IXli. 

2.3 Theorem. There exists units w l ,  ..., w,+, in U, in one-to-one cor- 
respondence with the infinite primes of L such that 

(a) C permutes cyclically the wi corresponding to the 'pi which extend an 
infinite prime p of K ;  

(b) 1 = n wi is the only relation between them; 
(c) the subgroup W generated by all the wi  has finite index in UL. 

PROOF. For each infinite prime p of K select one prime 'p of L which 
extends p. For each such 'p select a unit wg of UL such that lwBli c 1 whenever 
'p # 'pi. Such a unit exists as one sees from the proof of the Dirichlet unit 
theorem (Chapter 1, Section 11). 

Let C(!$I) denote the decomposition group of 'p and set 

Then wg' is still in UL and 
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When t E G(Fp) and pi = Fp, then t(Fpi) = 'p so it follows that (w9'l i  < 1 
if 'pi # Fp. 

The point of changing to w9' is that Fp and w9' are left fixed by exactly the 
same subgroup of G. Now if Q is a prime of L also extending p and if r(Fp) = 0 
with t E G then we define 

WQ' = r(wv'). 

We now have a one to one correspondence between the images of wV' and 
the primes of L above p. When all the infinite primes are used, we obtain a set 
of r + s  units in U,. The conditions of (1 1.17), Chapter I are satisfied by the 
w9' in place of the uj  used there. Set W' equal to the group generated by all 
wv' and apply Proposition 11.18 of Chapter I to conclude [ ( W ' )  is a lattice of 
rank r + s -  1 and in fact any r + s -  1 of the elements [ (w, ' )  give a basis. 

For each infinite prime p of K let 

up = JJ w$'. 
VIP 

Notice up E U, because up is fixed by G. Let r' +s' be the number of infinite 
primes of K .  There are r'+s' elements up of which r'+s'-  1 are independent. 
There exist integers ap (not all zero) such that 

1 = JJq. 
P 

In fact none of the a, are zero because there cannot be a relation between 
fewer than r + s -  1 of the [ (w, ' ) .  Finally set wt = (wQ,)'~ if Fpi(p. Then the 
product of the wi equals 1 and there is no other relation between them. Let 
W denote the group generated by the w i .  Then [ ( W )  has rank r + s -  1 and so 
[[(U,) : G(W)] is finite. Since ker G is also finite it follows [U,: W ]  isfinite and 
the proof is complete. 

This group W is useful because we are able to evaluate q(W).  Proceed as 
follows. For each infinite prime p of K and prime Fp of L extending p, let 
d, = [G : G('p)] and set 

dP 
A ,  = c Zui , , .  

1 

This is a free Z-module on d, generators upon which G acts by permuting the 
basis elements cyclically. We now have an exact sequence 

0 - Z 8_ 1 A ,  - W + 1, 

where g ( z )  = z zixp ui,, and h is defined so that the d, basis elements ui,, 
map onto those w j  corresponding to the divisors 'pi of p in such a way that h is 

h 

P l m  



3. A Norm Index Computation 147 

G-homomorphism. The exactness follows at once from (b) of Theorem 2.3. 
Now compute 

The action of G upon Z is the trivial action so q ( Z )  = 1/IGI by Proposition 
1.5. The same proposition gives q ( A , )  = lG('$)l-' if '$31~.  The groups C(Cp) 
are easily calculated. If p is an unramified infinite prime then there exist (L : K) 
extensions to L so G('$) = 1. When p is ramified there exist (L : K ) / 2  extension 
to L SO IG('$)l= 2. 

Now use q ( W )  = q(UL) to get the end of the computation. 

2.4 Theorem. Let r,, be the number of infinite primes of K which ramify in 
L. Then 

q(UJ = ( L  K)/2". 

To complete the evaluation of q(Ls) we need now to determine q(kerj). 
The group kerj  is the free abelian group on the primes in S. For each prime 

p of K with p divisible by primes in S set I ( p )  = subgroup of kerj  generated 
by the divisors of p. We see at once that 

Let p = ('$3, 5 . .  pg)e and NLIK((Pi) = p'. We know G is transitive on the 'pi 
so one easily verifies 

(a) kerNlz(p) = {n'$3?11ai = 01, 
(b) ImAII(p) = kerNlI(p), 
(c)  kerAlI(p) = (-a>, Q = Fol P,,, 
(d) ImNJZ(p) = (p') = (aef). 

Thus q ( Z ( p ) )  = I/ef = l/e, f,. Finally apply Lemma 2.2 and these last cal- 
culations to compute q(Ls). 

2.5 Theorem 

3. A NORM INDEX COMPUTATION 

As before L / K  has cyclic Galois group G = (a). For a modulus m for K 
we set 

~ ( t n )  = [K* : N(L*)K,,,]. 
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Our goal is to evaluate this at  least under the assumption that the prime 
divisors of in have sufficiently large exponents. This will be made more precise 
later. 

3.1 Lemma. Ifmandnarerelativelyprimemoduli, thena(inn) = a(in)a(n). 

PROOF. The approximation theorem implies that the map 

induces an isomorphism 

This induces a homomorphism 

which is onto the direct product. The lemma will be proved if we show the 
kernel of this map is exactly N(L*) Kmn, l /Kmn,  1. 

Suppose clKmn, is in the kernel. There exist pl, p2 in L such that 

a 3 N(P,) modin, c1 = N (P2 )  modn. 

View tn and n as moduli for L. They are still relatively prime and so there is 
a solution in L to 

3 p1 modin, /1 = p2 modn. 

From this it follows that 

N(P)N(p,)-'  E K NLIK(Lm.1) 

N(p)N(82)-1 N L / K ( L n , l ) *  

Next we show K n NL/K(Lm, 
of K dividing nt and let p = ( ! $ I ,  
y = a/b in L with a and b algebraic integers and y = 1 mod in, then 

c K,", Let p a  be the power of the prime p 
'$J be the factorization of p in L. If 

a = b mod('$l p,)ae. 

Since the product vl Cp, is (r invariant for any a in G ( L / K ) ,  we have 

a(a) = a(b) mod('$, p,)'e 

and so 

NL/K (a) NL/K (b) mod (!$I 1 ' * '  '$g)I'* 
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These norms lie in K so the congruences may be read modulo K n  
(v1 ... Cpg)crp = p". It follows that NL/,(a) = NL,K(b) and so N,/K(y) = 1 mod 
p a .  Since this holds for each divisor of m, the stated inclusion follows. 

We already have C L N ~ / ~ ( / ? ~ ) - '  in Km,l and uNLIK(f i2) - '  in KnSl,  so 

aNL/K(P)-' E G . 1  n Kn.1 = K n n . 1 9  

which is enough to prove the lemma. 

This lemma reduces the calculation of a(m) to the case in = p" for a prime 
p and n 2 1. The case p infinite is easy so we take care of it at once. 

3.2 Lemma. If p is an infinite prime of K then a(p)  = ep = the ramification 
index. 

Suppose in = p is real and is ramified in L. Let 'p, ... 'pN be the PROOF. 
(complex) primes of L extending p .  Then for CL E L*, 

N L l r n ( 4  = n N L r p , ( r , ( 4 .  
i 

Since L,, is the complex field and Kp the real field, all the norms on the right 
are positive. Hence N(L*) = K,,l and K*/K,,, has order 2 = ep. 

The reader can verify in all other cases [K* : N(L*)K,,,] = 1 = e,, as 
required. 

For the rest of the section we work with a finite prime p and m = p".  '$ 
denotes a prime of L dividing p .  As usual, e p ,  f, denote the ramification number 
and relative degree of Cp over p .  

3.3 Lemma 

(a) [K*  : N(L*)K,] = fp; 

(b) 44 =f;,[K, : (K, n N ( L * ) ) ~ , , l l .  

PROOF. Since in = p" it follows that K,, = units in  the valuation ring R, of 
p .  Let 7c be a generator for the maximal ideal so every element in K* has the 
form ~ " u ,  u E K,. 

We know N ( ' p )  = (d)soelementsin N(L*) have theformdbwwithwE K,. 
It follows 

K*/K,, N(L*)  2 <7c>/(nf)  

which has orderf=fp as required for Part (a). 

subgroups in the chain 
A factorization of a(in) can be obtained from the successive indices of 

K* 3 N(L*)K,  3 N(L*)K,,l.  
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The first index isf, by Part (a). To get the second index in the stated form 
one need only observe there is a natural isomorphism 

induced by the inclusion of K,  into N (L*) K,  . 
The procedure from this point is to express this last-mentioned group purely 

in local terms. For this we need some additional notation. As usual K,, L, 
denote the completions at  the primes p and Cp. Let Up denote the units in the 
valuation ring of K, and U, the units in the valuation ring of L,. The maximal 
ideals in the valuation rings are just denoted by p and ‘p. For each positive 
integer n we set 

which is the set of units in Up congruent to I modulo p”. Finally we write N, 
for the norm from L,  to K,  . 
3.4 Lemma. For m = p” there is an isomorphism 

up’ = 1 + p” 

PROOF. The group U,/Up) is the image of the units in R, = K,  and so the 
map 

v : ct + aN,  (U,) Up) 

maps K ,  onto the given group and the kernel contains Kn,,l since this is the 
set mapping onto Up). Now suppose a is in the kernel. For some /3 E U, we 
have ctN,(/3)-’ E Up). Let ‘$3 = Cpl, ..., Cp, be all the primes of L dividing p. 
There is an element y E L such that 

y = /3modCpy 

y = 1 mod’$?, j # 1, e = e(Cp/p) 

Now for T E G ( L / K )  but T 4 G(Cp) we have ~ ~ ‘ ( ‘ $ 3 )  = Cpj # q1 and so 

r ( y )  = 1 modCp7. 

Let ziC(Cp) denote the cosets of G(Cp) in G.  Then 

Thus NLIK(y) =N,(b) mod Cpne and so ct E N(y) Km,’ .  Since c( E K ,  we see 
N(y) is in ( K ,  n N(L*))K, , , , .  We have already seen K, , ,  is in the kernel. It 
is trivial that norms from L are mapped into N, (U,) so the stated isomorphism 
is proved. 
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The computation of a(p") is now reduced to a problem about the units in 
the complete fields. This is carried out in two steps, each of which requires a 
number of preliminary calculations. Roughly one must show UF) E ND(U,) 
if n is sufficiently large. Then the problem is to compute [Up : N,(U,)] which 
is done using the Herbrand quotient, q(U,). 

We work only in the complete fields K,, L, now. 
Consider the series 

W 

exp(x) = Cx"/n! ,  
0 

m 

This will be used for x in L,  and K , .  It is necessary to determine the region 
of convergence. Let v, denote the exponential valuation. An infinite series 
1 a,? converges in L, if and only if u,(a,x") -+ co as n -+ co. 

Let q be the prime integer in !$l and set e, = u,(q) .  Suppose n! = iff with 
(4, t) = 1.  Then 

Thus u,(x"/n!) = nu,(x)-u,(n!) > n(v,(x)-eo/(q- 1)). It follows that exp(x) 
converges if u,(x) > eo / (q -  1). 

Similarly u,(x"/n) = n(v,(x)-v,(n)/n) so log(1 +x) converges whenever 
u,(x) 2 1. Finally the two familiar relations 

log exp(x) = x, explog(1 +x) = I + x 

can be verified formally. We use the properties at once. 

3.5 Proposition. For sufficiently large n, the function log gives an iso- 
morphism of Up(") with the additive group p". 

PROOF. Take n large enough so that exp(x) converges for x in p". Then 
exp(x) = 1 + x + . . -  is in Up(") and for 1 + y  in  Up("), log(1 +y)  = y+.. .  is in 
p". Moreover these are group homomorphisms and are inverses of each other. 

3.6 Proposition. Let d be a positive integer. For n sufficiently large, every 
element of Up(") is the dth power of an element in Up. In particular with 
d = (L ,  : K,) and n sufficiently large, Up(") E NP(U,). 

Let u,(d) = k and take n large enough so exp(x) converges for x 
in p"-keo. Take any 1 + x  in Up(") and set y = log(] +x). Then y is in p" and 
y/d is in the region of convergence of exp. When we set z = exp(y/d), then 
z E U p a n d z d =  l + x .  

PROOF. 
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To prove the statement about norms notice that for u in K , ,  N, (u)  = ud and 
so all dth powers are norms. In particular UB(") consists entirely of norms. 

3.7 Corollary. For n sufficiently large, we have 

a (P") = f, [Up N, (U,)l. 

The index remaining here is equal to IHo(U,)I which is equal to 
q(U,)-l lH1(U,)l. We shall evaluate these. 

3.8 Lemma. 

PROOF. By Hilbert's Theorem 90, ker N(U, = U, n A(L,*). Let n be a 
generator of the ideal '$ so that any x in L,  has the form nau with u in U,. 
Let c be a generator of G('$) = G(L,/K,).  Then a(.) = w, w E Up so A(x) = 
n"u/n'w' is in U,. Thus ker NIU, = A&,*).  This enables us to write 

H'(U,) z A(L,*)/A(U,) r L,*/K,*U, 

with the last isomorphism induced by the map x -+ A(x) of L,* onto A(L,*). 
Let no be a generator for p so that no = neu for some unit u and e = e,. 

Then 

I H (Up)[ = ep = ramification index of p .  

L,* E (n) x u,, 
KP*U, z (ne) x u, 

and so the quotient has order ep as we wished to prove. 

3.9 Lemma 

Finally we come to the last term remaining. 

qW,) = 1. 

PROOF. Lemma 1.3 and Corollary 1.4 will be used repeatedly. 
For any positive integer n, U,/U,'") is finite since it is the unit group of the 

finite ring R,/!#". Thus q(U,) = q(U.0'")). 
Take n large enough so that Proposition 3.5 can be used. Then log gives an 

isomorphism of UJ") with the additive group 13". Moreover this is a G((P)- 
isomorphism so q(U.0'")) = q('p"). This in turn equals q(R,) because R,/'$" is 
finite. 

Next apply the normal basis theorem. There is an element t~ in R, such that 
the distinct images under G('$) are linearly independent over K, .  This means 

is a free R,-module with the same rank as R, over R,. This forces R,/fUI 
finite and q(R,) = q(%Jl). Now fUI is a module upon which G('$) merely per- 
mutes the basis elements. By Proposition 1.5 we find y(9J) = 1 because no 
elements of G('$) act trivially (except 1). 
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Now combine the results of this section to finish the original problem. 

3.10 Theorem. Let in be a modulus for K. If the finite primes dividing in 

have sufficiently high exponents, then 

In the course of obtaining this result some other facts of interest were proved 

Proposition. If p is unramified then every element in Up is a norm 

for cyclic extensions. 

3.11 
from U,. 

PROOF. By Lemmas 3.8 and 3.9 it follows Ho(U,) = 1 so Up = NP(U,). 

3.12 Proposition. The quotient K,*/N,(L,*) has order (L, : K,). 

PROOF. We have G(?))-modules U, c L,* with quotient (E), the infinite 
cyclic group generated by the image of the prime element 7r. Then ( E )  is also 
a C(v)-module with trivial action. 

It follows that q( (? f ) )  = lG('$)l-' and so q(L,*) = lG('$)l-' follows also 
because q(U,) = 1. Use the definition of q and Hilbert's Theorem 90 to 
conclude Ho(L,*) has order IC(v)l. 

In the first four exercises below, we sketch a proof of Proposition 3.1 1 which 
avoids the logarithmic function. Let L, be an unramified finite-dimensional 
extension of the completion K,, of an algebraic number field; R, and R,  are 
the respective valuation rings and bars denote passage to the residue class 
fields. 

EXERCISE 1. Let FI denote the norm from R, to R, and N the norm from 
L, to K, .  For x in Rs, we have 

EXERCISE 2. An element u of R,  is a norm of an element w E R,  if and only 
if the characteristic polynomial of w over K,  has constant term (- lyu, 
n = (L, : K,). 

EXERCISE 3. Suppose (L ,  : K,) = n is prime and u is a unit in R , .  Let i7 be 
an element of i?, with w ( W )  = i i. The minimum polynomial of F over R ,  is 
the reduction mod p of a monic polynomial f ( X )  E R,  [ X I  for which f ( 0 )  = 
(- 1 ) " ~ .  Conclude u is a norm from U,. 

Use induction and the above problems to prove Proposition 

= N(Z). 

EXERCISE 4. 
3.11. 

EXERCISE 5 .  The multiplicative group K,*/N (L,*) is cyclic of order 
(L, : K,). 
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4. THE FUNDAMENTAL EQUALITY FOR CYCLIC EXTENSIONS 

We assume L / K  is normal with cyclic Galois group G = ( 0 ) .  For a modulus 
m for K we let 

C" = IKm/NtjK(Itm) i ( K m ,  1). 

This is a finite group whose order is denoted by h,(L/K) .  Our object is to prove 
this order equals ( L  : K )  for suitable choice of m. The calculations of the 
previous sections play a crucial part. 

Start with the exact sequence 
f 

(1) 1 - LS - L* + ILrn + v 4  1, 

wherefis defined in Section 2 and Ls in Eq. (2) of Section 2. Fromfwe obtain 
the induced mapf, sending Ho(L*)  into Ho(ILm). These groups are described 
in Proposition 2.1. Using these one constructs the following diagram: 

f o  
1 - kerfo __f K*/N(L*) + IKm/N(ILm) 4 cokf, + 1 

1 1. 1 i 
1 - kerg + K * / N ( L * ) K , , , ,  2 C" - cokg __f 1 

Here d is the natural projection and all other vertical maps are induced by 
3. The mapg is the unique map that makes the square (and the whole diagram) 
commute. All the groups in the lower row are finite so using the exactness, we 
obtain a formula for the order of C". 

h,(L/K)  = [ K *  : N(L*)K,,,,] Icokgl/(kergl. (2) 

4.1 Lemma. The groups kerf,, cokf, are finite and 

wheren(1n) = [K,,,, n i-'(N(ILm)): 

cokfo cokg. 

kerf, is a subgroup of Ho(Ls). This group is finite since q(Ls) is defined. 

n N(L*)]. 

PROOF. By simply applying a standard isomorphism theorem one finds 

From the exact sequence Eq. (1) and the exact hexagon theorem we find 

Again using exactness we see that 

Ikerg) = [kerf, : kerf, n kerd]. 

The elements in the intersection on the right are the cosets crN (L*) for which 
ct E K,, and f (a)  E N (IL"). The condition ct E K,,, implies i(a) is relatively 
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prime to in so f (a )  = i(a).  The number of such cosets ctN(L*) equals the number 
of cosets of N(L*) with representatives in K , , , l  n i-'(N(ILm)). This is the 
number n(in) given above. 

4.2 Lemma 

PROOF. 
sequences, 

From the exact sequence (Eq. (1)) we extract two short exact 

1 __+ LS Y\ L* A f(L*) - 1, 
1 +f(L*) - ILrn - v- 1. 

P A 

We shall write the exact hexagon for each of these sequences. They are 
simplified by Conditions (a) of Proposition 2.1 : 

a0 62 
1 4 H'(fL*) dl_ HO(LS) -% HO(L*) __f HO(fL*) __f H'(LS) - 1 

I 
I / 

.lo 64 
1 - H ' ( V )  2 H"fL*)'L HO(1,") __+ HO(V)  + H'CfL*) - 1 

We are able to pass from the upper sequence to the lower because they have 
a common group. Notice thatf, = Po a,. 

We shall make a rather long calculation of orders of groups in these 
sequences. At each step we use nothing but the exactness of the rows and the 
following result whose proof is left to the reader. 

Lemma, Let p be a homomorphism defined on an abelian group A. Let B 
be a subgroup of finite index in A. Then 

[A : B] = [b(A) : p(B)] [kerb : B n kerp]. 

Now we begin with 

Icokfol = [Ho(ILm) : I m ~ o a , ]  

= Icokpol CImbo ImBoaol 

= IImA,I[Imp,: Imfi,rx,] 

where the last step is made with the help of the preceding lemma using 
A = Ho(fL*), B = Im 01, and /I = Po. 
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Now do a similar calculation : 

Combine these two equations and get 

---= I cokfo I 
q ( LS)/q ( V )  . I kerf0 I 

The group V i s  finite since it is isomorphic to the class group of L (Section 1 

This finally brings us to the main result. 

of Chapter IV). Thus q ( V )  = 1 and the lemma is proved. 

4.3 Theorem (Fundamental Equality). Let L/K have a cyclic Galois 
group and let in be a modulus for K divisible by sufficiently high powers of 
every prime of K which ramifies in L. Then h,(L/K) = ( L  : K ) .  

PROOF. The results of this section yield the equation 

h,(L/K) = q(LS) [K*:  N(L*)K, , , ]n(m).  

When m is sufficiently large Theorem 2.5 and Theorem 3.10 combined give 
h,(L/K) = ( L :  K)n(m). 

The first fundamental inequality says h,(L/K) < ( L  : K )  so the theorem 
follows. In addition we obtain n(m) = 1. We state this separately. 

4.4 Corollary. With the same assumptions as in the theorem it holds that 

Km, 1 n i-'(N(I,<'")) = Km,l  n N(L*). 

This corollary says that any element in K,, , which generates an ideal that 
is a norm must itself be a norm. We shall use the corollary to prove an elegant 
theorem originally proved by Hasse. 

An element a in K is a loculnorni at p if for some prime '$3 of L dividing p ,  CL is 
a norm from L, , 

4.5 Theorem (Hasse Norm Theorem). Let LIK be a cyclic extension. An 
element in K is a norm from L if and only if it is a local norm at every prime 
of K. 

PROOF. It is elementary to see that a norm from L to K is a local norm at all 
primes of K.  

Suppose the element a E K* is a local norm at all primes of K. We show first 
the ideal (u) is the norm of an ideal from L. Let pa be the exact power of the 
prime p dividing (a) and let Cp be a prime of L dividing p .  If NLIK(v) = p' 
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then p" is a norm if and only iffdivides a. To see this is the case let jl E L, be 
an element such that Np(P) = u. Then (jl) = '$lr (in L,) and 

N,('p') = pf' = ( u ) ~  = pa. 

We have written (u), for the ideal in Kp generated by u. This last equation 
shows f divides a. 

Now let m be a modulus such that n(m) = 1. Suppose 

in = n p f i .  

Let 'pi be one prime of L dividing p i  and let e, denote the ramification index. 
There is an element j l i  E L,, with u = Npi(Pi). Use the approximation 

theorem in L to obtain an element y E L which satisfies 

y = Pi mod 'p !iei 

y = 1 mod'pbiel if ' p l p i ,  'p # 'pi. 

For u E G ( L / K )  but u 4 G('pi) one has 

y = 1 modu-l((Pi)bler and u(y) = 1 mod 'pfiel. 

This implies 

all congruences modulo 'pfiei. After combining these for all i one sees that 

and so 

This implies u N ~ , ~ ( ~ ) - '  is in K,n,l n i-'(NL(ILm)) and so the element is a 
norm. It follows that u is also a norm. 

It will be seen later that hm(L/K)  = ( L  : K )  for L an abelian extension of K 
not necessarily cyclic. It is tempting to guess the Hasse norm will also hold in 
this case. It does not however. Counterexamples are discussed in Cassels and 
Frohlich [4, p. 3601. For example one takes K = Q, L = Q(J13, J17)  so the 
Galois group is noncyclic of order four. One can check easily that any prime 
of Q must split completely in one of the three quadratic subfields and so 
(L9 : K,) = 1 or 2. Thus every square of a rational number is a local norm at 
all primes. However (the hard part) 5' is not a global norm from L.  

CI = NL,K(y) mod i n  

UNL,K(Y)-l E Kln.1. 

5. THE RECIPROCITY THEOREM 

For a cyclic extension L/K we have seen that the group N (ILm) i(K,,  I )  has 
index ( L  : K )  in IKm for suitable tn. Also the Artin map qLIK maps IKm onto the 
Galois group G ( L / K )  so ker qLIX has index ( L  : K )  in JKm. Our object here is 
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to  show these two subgroups are actually equal. In fact this will be the case 
for LIK any abelian extension. 

We say the reciprocity law holds for the triple (L ,  K, in) if G(L/K) is abelian 
and i(K,,,) E kercp,/,. 

5.1 
procity law holds for (L, K, m) then ker qLIK = N(1L"') i(K,, 

Lemma. If m contains all the primes which ramify in L and the reci- 

PROOF. By Corollary 3.2 of Chapter 111 we know 

NU,"') E k e r ~ L / ~  

so the reciprocity law implies 

N (ILm) i (K, , E ker (PL/K E IKm. 

By the first inequality the first group has index at most (L : K) in IKm whereas 
kercpLIK has index exactly(L : K )  in I,".This forces the first inclusion to be an 
equality. 

There are several important situations in which the reciprocity law is 
already known to hold. 

(5.1 . I )  If P is a primitive mth root of unity, and in is the modulus (m)p,,  
then the reciprocity law holds for (Q(P) ,  Q, in). 

This was proved in Chapter 111, Proposition 3.3. 

(5.1.2) If the reciprocity law holds for (L,  K,m) and E is any finite- 
dimensional extension of K, then the reciprocity law holds for 
(LE, E, in). 

PROOF. We know ( P E L / E  = ( P L / K N E / K  by Chapter 111, Proposition 3.1. Then 
for c( E Ern,] it follows NE/K(a) E K,, so 

( P E L , E ( ~ )  E (PL/K(~(K~,  1 )) = 1. 

Thus i(E,,,, 1) E ker q E L I E .  

(5.1.3) If the reciprocity law holds for (L, K,m) then it also holds for 
(L, K, mn). 

This is evident because K,,,, E K,, 1. 

(5.1.4) If P is a primitive nth root of unity and in is a modulus for K 
divisible by ( n ) p ,  (the modulus on Q extended to K )  then the 
reciprocity law holds for (K(P),  K ,  in). 

(5.1.5) With the same assumptions as in (5.1.4) and with K ( p )  2 E 2 K, 
the reciprocity law holds for (E, K, m). 

This just combines the last three assertions. 
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PROOF. By Property 2.4, Chapter 111 of the Artin map we see pEIK = 
'es(PK(p)lK with res denoting the restriction of automorphisms to E. If 
i(Km,l) c ker(PK(p)lK then also i ( K , , , , )  E kerqEIK and so the reciprocity law 
holds. 

Any field extension K ( P )  of K with P a root of unity is called a cyclotomic 
extension. These fields seem to be crucial to the proof of the reciprocity law. 
It is necessary to construct cyclotomic extensions having some very delicate 
properties. We begin with two numerical lemmas. 

5.2 Lemma. Let a and r be integers 2 2 and q a prime integer. There exists 
a prime p such that a has order 4 modulo p .  

PROOF. We shall use the polynomial 

xq- I 
x- 1 (1) g ( X )  = - - - xq-' + X q - 2  + .*. + x+ 1 

Let p be a prime divisor of g(aq'-')  = g. If p does not divide the denominator 

1, &- ' - 

then r must be the least integer such that 

aq' = 1 modp, 

so this choice of p works. 
Now suppose pI a@-' -  1. Then (with X = a @ - ' )  we see that p = q by 

Eq. (1). We shall prove g is not a power of q so that some choice of p can be 
made covered by the first case. 

Suppose first q > 2. Then every term 

( X -  1)Q- l ,  t # l  

is divisible by q2 since q divides the binomial coefficient. It follows from 
Eq. ( I )  that q2 fg. But also a 2 2 implies q # g so some suitable p can be 
selected. 

Finally suppose q = 2. Then 

g = ($-'- 1) + 2 = azr-* + 1. 

It is necessary to show this is not a power of 2. Clearly a cannot be even if g 
is a power of 2. But with a = 2k+ 1 we see 

g = 2mod4 
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because r - 1 2 1. So g is not a power of 2 and all cases have been considered. 
Two elements a,z is an abelian group are independent if (a) n (T) = 1. 
Two integers a, b relatively prime to m are independent mod m if they are 

independent in the multiplicative group of integers mod m. 

5.3 Lemma. Let n = 4;' ... q: be the factorization of n as a product of 
distinct primes q,,  and let a > 1 be an integer. There exist infinitely many 
square free integers 

m = p, .-.pspl'...ps' 

such that the order of a mod m is divisible by n. Also there exists an integer b 
whose order modm is divisible by n and such that a and b are independent 
mod m. Furthermore the smallest divisor of m can be selected arbitrarily large. 

PROOF. For any r 2 r,  and r 2 2 there is a prime pi such that a has order 
q: modp,. As r increases, also pi increases and the order of a is still divisible 
by q". 

Now find (large) distinct primes p, ,  ...,ps such that a has order qy' modp, 
with ri' 2 r i .  Find still larger primes p[ such that a has order @" modp,' with 
ri)r > r,'. Then 

m = pi ...psp,'...ps' 

is square free and n divides the order of a modm. Select b an integer > 1 such 
that 

b = a modp, -.-ps. b z 1 modp,'...p,' . 
Also n divides the order of b modm. To show a and b are independent suppose 
u and u are positive integers for which 

aUbU = 1 modm. 

Then 1 3 aUbU E a' modp,' ...ps' so that @"lu. This forces a" = 1 modm and 
so also b" z 1 mod m. Thus a and b are independent. 

Now we consider an abelian extension L / K  of algebraic number fields and 
translate these lemmas into results about cyclotomic extensions of K. 

5.4 Proposition. Let n = (L : K) and s = positive integer. Select a prime p 
of Kwhich is unramified in L. There exists a positive integer m relatively prime 
to p and s with the following properties: 

(i) For a primitive mth root of unity, 8, and E = K(/?), the element 
pPEIK(p) has order divisible by n ;  

(ii) L n E = K; 
(iii) there is an automorphism T in G ( E / K )  whose order is divisible by n 

and which is independent of pEIK(p). 
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PROOF. We shall apply Lemma 5.3 using a = sS,,,(p). The field L has 
only a finite number of subfields so there exists an Mth root of unity By such 
that Q(py) contains every cyclotomic subfield of L. In Lemma 5.3 arrange that 
m has no prime divisor less than Ms. Then Q(py) n Q(p,,,) = Q and L n 
Q(&) = Q. With E = K(&) it foIlows that Property (ii) holds. 

Let cr = qEIK(p).  The defining property of the Frobenius automorphism 
insures 

c(PnJ = PZ(') = Pma, 

so Property (i) holds. Finally take b as in the lemma and set 

T ( B m )  = B m b .  

Then Property (iii) holds and the lemma is proved. 

5.5 Artin's Lemma. Let L / K  be a cyclic extension, s an integer, p a prime 
of K unramified in L. There exists an extension field F of K and an integer m 
such that 

(i) L n F =  K ,  
(ii) L n K(Q,,,) = K, 

(iv) p splits completely in F. 

PROOF. 

(iii) L ( P m )  = F(P,n), 

Select m and /? = p, as in the last proposition. Then L(B) = LE 
and L n E =  K s o  

G(L(P)IK) = G ( L / K )  x G ( E / K ) .  

Let cr be a generator for G ( L / K )  and z the element in G ( E / K )  defined in 
Proposition 5.4 (iii). 

Let H be the subgroup generated by 

cr x 7 and ~ P L ~ K ( P )  x ( P E ( K ( P ) ~  

and let F be the subfield of LE fixed by H: 

The Property 2.4, Chapter 111, of the Frobenius automorphism yields 

P L E , K ( P )  = PLIAP) x PE,K(P).  
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This element generates the decomposition group of p in G(LE/K)  (that is 
the decomposition group of a prime of LE over p) and so the decomposition 
group is in H .  Now Proposition 2.7, Chapter 111 and the fact that G ( L E / K )  
is abelian implies p splits completely in the fixed field F of H .  

The field F(p)  = FE is the fixed field of 

H n ( G ( L / K )  x 1). 

We shall argue this is the identity to prove Property (iii). Suppose 

(0 x T ) ” ( c p L l K ( P )  x ( P E I K ( P ) ) v  E G ( L / K )  x 1. 

Then 7’‘ is in (cpEIK(p)) and so 7’’ = 1 by the independence. This means n 
divides u and so 0” = 1 because c has order ( L  : K )  = n. This implies also 
cpEIK(p)D = 1 and n divides v. Once again pLIK (p)” = 1 to complete the proof of 
this point. 

To finish the lemma we observe L n F is the subfield of L fixed by H .  Since 
n x T is in H ,  this is the field fixed by u, namely K .  

5.6 Theorem. Let L / K  be a cyclic extension with group G and let in be a 
modulus for K divisible by all the ramified primes. Suppose also the funda- 
mental equality h,(L/K) = ( L  : K )  holds. Then the reciprocity law holds for 
(4 K, m). 

PROOF. We shall prove ker cpLIKIIKm c i (K , , , , )  N (ILm). Then equality must 

Take an ideal 2I in IKm and suppose qLlK(21) = 1. Factor ‘$I as 
hold here because both groups have index ( L  : K )  in IKm. 

The primes pi are unramified in L because all ramified primes divide nt. 
Apply Artin’s lemma to each prime pi in turn to obtain for each a root of unity, 
p,,, such that the integers mi are relatively prime in pairs. According to the 
choices made in Proposition 5.4 we can also insure K n Q(p,,) = Q. Then the 
group 

Gi = G(K(PmJ/K) G<Q(pm,>/Q>* 

Furthermore the group of L(/?,,, ...,p,,) over K is the direct product 

G x GI x x G,. 

Let G = ( D )  and let 7, be the element in G,  selected as above and let H i  be the 
subgroup of G x G, generated by 

0 x Ti and q L I K ( P i )  x V K ( p r n i ) l K ( P i ) *  

Let F, denote the fixed field under H i  x n,, G j  and F = F, F, . F,, 
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Assertion. L n F = K and G ( L / K )  = G(LF/F) .  
The intersection of the groups G(LF/F,) fixes Fand contains 

u x TI x - . a  x 7,. 

The field L n F is fixed also by this element and also by 1 x T~ x ... x T,. Thus 
L n F is fixed by D and L n F = K which proves the assertion. 

0. Then q L I K ( ' 2 I )  = ad = 1 
with 

Now let qLIK(pq') = udi for some integer di 

d = d1 + + d,. 

Necessarily nld, n = ( L  : K) =\GI. 
The Artin map (PLFIF maps IFm' onto G(LF/F)  for a sufficiently large modulus 

m'. So there is an ideal 23, relatively prime to m and to all the integers 
m,, . . ., m, such that 

(PLFIF(%)  = 0. 

Let NFI, (b,) = b E I,"'. By the proof of Statement 5.1.2 we see qLIK (23) = 
u. Each prime p i  splits completely in Fi so is a norm. There is then an ideal 
Bj prime to in and all mi such that 

NF,lK(Ki) = P ~ ' B - ~ ' .  

By the choice of di one obtains 

( P L F , I F i ( c i )  = ( P L I K ( N F , [ K ( a i ) )  = 

The extension LF, of Fi satisfies 

Fi C LFi G l $ (P , , )  

by Property (iii) of Artin's lemma. By Statement 5.1.5 the reciprocity law 
holds for (Mi, Fi ,  m') so long as nt' is divisible by mi p , .  By choice Ci is prime to 
mi and so we may select in' in such a way that K i  E IF:'. Thus there exists 
y i  E 4, y i  = 1 mod m' and an ideal Bi E ILF,'"' such that 

Ki = ( r i )  N L F , l F i ( B i ) *  

Take norms into K to obtain 

# B - d i  = (NF,lK(yi))NLFilK(Bi). 

The modulus in' could have been selected so that mlm' because ai is prime 
to in. Thus with this choice 

" i  = N F , I K ( Y i )  Km,l- 

Now take products over all subscripts i to get 
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Write 3,' = NL,,IL(BJ and observe that 3,' is prime to m. Finally 

2I = Bd(al * * a  a,) NLIK(B1' * * *  Bi). 

We saw above that nldso 23' is a norm from L ;  finally '94 E i(K,",JNLIK(ILm) 
as required. 

We now have good results for cyclic extensions. The step up to abelian 
extensions is not difficult. 

5.7 Theorem (Artin Reciprocity Theorem). Let L/K be an extension with 
abelian Galois group G. Let in be a modulus for K divisible at least by all 
primes which ramify in L and assume the exponents of the prime divisors of 
m are sufficiently large. Then the Artin map pLIK maps IKm onto G and the 
kernel is NLIK(ILm) i(Km, l). 

PROOF. Express the group G as a direct product 

G = C1 x x C,, C, cyclic. 

Let Hi be the direct product of all Ci with i # j  so that G = C, x H i .  Let Ej 
denote the subfield fixed by Hi. Then E j  is a cyclic extension of K with group 
C j .  There is a modulus mi such that the reciprocity law holds for ( E j ,  K ,  inj). 
It is possible to arrange milin so the reciprocity law holds for ( E j ,  K, in). This 
means 

W ~ , J  E nkerp,,,K. 
j 

For any ideal 2l we have from Property 2.4, Chapter I11 of the Frobenius 
automorphism 

VLIK(a)IEj = P E , I K ( W  

and so for 2I E i(K,,,, 1) we see 

pLlK(21)IEj = 1 foreach j .  

But E ,  E, = L because the group fixing all the Ej is the intersection of the 
Hi which is trivial. Any automorphism trivial on each Ej is the identity on all 
of L. Thus i(K,,,, l )  c ker pLIK and the reciprocity law holds for (L, K, m). This 
implies the desired conclusion because of Lemma 5.1. 

As an illustration of the scope of this result one obtains the following results 
as corollaries. 

5.8 Theorem. Let L/K be an abelian extension and m a modulus such that 
the reciprocity law holds for (L, K, m). Let E/K be a normal extension such 
that 

Then L c E. 
NEIK @Ern) = N'lK (ILm) i ( K m ,  1). 
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PROOF. Except for a finite number of primes dividing in, the primes of K 
which split completely in E are in NEIK(IKrn). These must also split completely 
in L because they lie in kerqLIK. Thus L c E by Corollary 5.5, Chapter IV. 

5.9 Theorem (Kronecker-Weber). If L is an abelian extension of Q ,  then 
L c Q ( p )  for some root of unity p. 

PROOF. The reciprocity law holds for (L, Q ,  in) for some modulus m. We 
may suppose m = (m)p ,  for some positive integer m. Take p a primitive mth 
root of unity. Then from the calculation in Proposition 3.3 of Chapter I11 we 
have E = Q (p)  and icern, = ker qEIQ so 

i ( Q r n . 1 )  = i ( Q r n , , ) N E I Q O E r n )  E ~ ( Q ~ , I > N L ~ Q ( I L ” )  = ~ ~ ~ ( P L I Q .  

The previous theorem applies to give L s E. 
Because of its scope and the simplicity of the statement, this must be 

regarded as one of the really elegant theorems in mathematics. The result was 
first stated by Kronecker and a complete proof was given by Weber in 1886. 
There are proofs which are more elementary than the one given here. For 
example Speiser [lo] gives a proof using only ramification theory. 

An explicit classification of all abelian extensions of Q ( @ ,  D < 0, can 
also be given. This requires the study of “complex multiplications” and is 
discussed by J. P. Serre in [4, Chapter XlII]. This description, as well as 
Kronecker-Weber, classifies the abelian extensions by explicitly giving 
generating elements for the extension fields. This is not possible for general 
algebraic number fields with the present state of knowledge. We shall give a 
classification of all the abelian extensions of a number field Kin  other terms; 
they are classified by certain subgroups of the ideal group IK . This is the main 
goal of the rest of the chapter. 

EXERCISE 1. Let K = Q(& # Q .  Show K has an abelian extension which 

Find u in K such that K(&) is not normal over Q .  Since K(8) 
is abelian over Q ,  every subfield must be normal over Q;  thus & is not in 
K ( 0  

EXERCISE 2. An element B in the Galois extension L of Q is said to give an 
Za(8) with a in 

a. Let n be a square free positive integer and 8 a primitive nth root of unity. 

b. Let K be any intermediate field between Q and Q(0) .  Show Toce,,K(8) 

is not contained in K ( 0 )  for any root of unity, 8. 

Procedure. 

integral normal basis if the ring of algebraic integers in L is 
WLIQ) .  

Show 0 gives an integral normal basis for Q(B). 

gives an integral normal basis for K. 
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c. Let K be an abelian extension of Q which is tamely ramified at every 
prime; that is, for each primep of Q , p  does not divide the ramification number 
e ( v / p )  in K. Show that K has an integral normal basis. 

6. IDEAL GROUPS, CONDUCTORS, AND CLASS FIELDS 

In this section we consider the groups which eventually will be the objects 

A subgroup H of I, is called a congruence subgroup if there is a modulus m 
by which all abelian extensions of a number field are classified. 

such that 

i ( K r n , J  c H c I". 

We will say H is defined mod in in this context. Suppose n is a modulus and 
nlm. Then I" is a subgroup of I". There may (or may not) be a congruence 
subgroup H" defined mod n such that H = I" n H". When this does hold we 
say H is the restriction of H" to I". The first lemma shows H" is uniquely 
determined by H and n. 

6.1 Lemma. Let nlm and H", H" be congruence subgroups defined modm 
and n. Suppose H" = I"' n H". Then 

(a) Im/Hm z I"/H", (b) H" = H"i(K,,,). 

PROOF. We show first that I" = Imi(KnSl). Take an ideal No in I" and write 
2fo = %'+Xu, with Nl in I" and 

with p i  a divisor of in but not n. By the CRT we can find elements xi which 
satisfy 

2 xi E P i  - Pi 
x i  = 1 modn. 

Then the element a = 7~:' 
It follows that 2fo E I"i(K,,, I )  as claimed. 

assumption about H" to obtain 

belongs to Kn,, and Plcr-' is relatively prime to in. 

Now H" is a congruence subgroup modn so I" = 1"H". Now use the 

This proves (a). 
It is clear from definitions that H" 2 H" and H" 2 i (Kne1)  so H" 2 
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H"i(K,,, ,). This implies Hmi(Kn,,) n I" = H". 

I" I" 
H" - Hmi(Kn,l) 

and so H" = H"i(K,,,) because both have the same index in I" and one is 
contained in the other. This proves (b). 

We now define a relation between congruence subgroups. Say H ,  - H2 if 
there is a modulus in such that 

--2: 

H ,  n I" = H, n I". 

Observe that whenever this condition holds for a modulus in, it also holds 
for any modulus divisible by rn. 

It is easy to see this relation is an equivalence relation. The next lemma 
shows that equivalent congruence subgroups are obtained as the restriction of 
a single congruence subgroup. 

6.2 Lemma. Let H I ,  H, be congruence subgroups defined mod m,, in,, 

respectively, which have a common restriction H3 = Hi n I"), i = 1,2. Let 111 

be the greatest common divisor of in,,in,. Then there is a congruence sub- 
group H defined mod in such that H n I"' = Hi, i = 1,2. 

Since HI and H, have equal restrictions in Im3 the same holds for 
any larger modulus. There is no harm then in assuming in3 is divisible by in, 

and 111,. I f  the lemma is correct, then H is uniquely determined so we set 

PROOF. 

(1) H = H, i(Km, 1 )  

and try to verify it has the required properties. I f  we show 

(2) H n I"' = H, 

then H ,  and H n I"' both restrict to H, so by uniqueness H ,  = H n I"'. 
Same reasoning applies to H,. The lemma wiil be proved then if equation (2) 
is verified. 

Suppose %(a) E H n 1'"). By (1) we may suppose CU E H,, a E K , , , , .  Then 
21 and '2I(a) are prime to 1113 so (a) is also. Now find an element fl E K which 
satisfies 

To show such an element exists we shall list a set of congruences, one for each 
prime divisor of in, in2 ln,, to be satisfied by /?. 

Let p"']rn, and poZlrn2 and assume these are the exact powers of p dividing 
the moduli. 

If a, 2 a2 the congruence at p for P is 

B E K m l , , ,  aB-' E K m 2 . 1 ,  (PI E Im3. 

f i  = 1 modp"'. 
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In this case paz is the power of p dividing in so /3 = ci = 1 mod pa2. 
If a2  2 a,  then the congruence at p for p is 

p = ci mod paZ. 

This time p"' divides m and /3 = ci = I mod pa'. 
For a prime p dividing in3 but not in, in2 we require 

p = 1 modp. 

This /3 satisfies our requirements. 
Thus 

E H3i(Krnl,I) == HI. 

But '%(/I) is prime to m, so 

%(p) E HI Im3 = H,. 

Then 'U(/3)(p-'ci) = a(@) E H, i (Krn2J = H, as well as %(a) E Im3. Thus 

a(@) E H, n I"' = H, 

as we wished to prove. 

An equivalence class of congruence subgroups is called an ideal group. If H 
denotes an ideal group and in a modulus for which some congruence subgroup 
mod in belongs to H, we shall denote that (unique) subgroup by H". 

Lemma 6.2 shows us whenever H" and H" belong to the ideal group H, then 
also H"' E H for in' = greatest common divisor of in and n. This implies there 
is a unique modulus f such that 

HI E H and H'" E H implies fltn. 

Clearly f is the g.c.d. of all i n  for which H" E H. This modulus is called the 
conductor of H. 

Now suppose L/K is an abelian extension. Let in be a modulus such that the 
reciprocity law holds for (L ,  K ,  in). Then the kernel of qLIK acting on I" is a 
congruence subgroup which we shall denote by Hm(L/K). 

If in' is another modulus such that the reciprocity law holds for (L, K,  in') 
then H"'(L/K) and H"(L/K) have a common restriction in I""'. This is 
immediate because ker(cpIlK)Im) n 1'""' = ker(cpLIKIIntm') = ker(cpLIK/I"') n 
Imm'  

This implies there is a unique ideal group-denoted by H(L/K)-containing 
H"(L/K). This ideal group is called the classgroup to L and L is called the class 
field to H(L/K). The conductor of H ( L / K )  is denoted by f(L/K). 

The main goal of the next few sections will be to show the correspondence 
between ideal groups and abelian extensions of K is in fact a one-to-one 
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correspondence between all ideal groups and all abelian extensions of K .  In 
other words we shall obtain a classification of all abelian extensions of K 
purely in terms of objects defined directly in terms of K .  

With regard to the conductor we see at once that f ( L / K ) l m  whenever the 
reciprocity law holds for m but we do not know at this point that the reci- 
procity law holds for ( L , K , f ( L / K ) ) .  The main point of concern is that a 
ramified prime might fail to divide the conductor. However this does not 
actually happen and in fact all ramified primes divide f as we shall see later. 

7. REDUCTION STEPS TOWARD THE EXISTENCE THEOREM 

Consider an ideal group H. Our object is to produce an abelian extension 
L/K which is class field to H. The construction of L is indirect and is performed 
by a series of reductions. The first shows it is enough to produce a class field 
for a subgroup between i (Km, ,) and H"'. 

7.1 Proposition. Suppose there is a chain of groups 

i ( K m , l )  c H, c H, G I" 

such that the ideal group containing H, is class group to the abelian extension 
L / K .  Suppose iit contains all primes of K which ramify in L. Then the ideal 
group containing HI is class group to the subfield of L fixed by the subgroup 

REMARK. The assumption about the ramified primes is necessary so that 
qLIK is defined on I". If the first choice of tit does not contain all the ramified 
primes, enlarge in so that it does and then take restrictions of the groups 
involved. This does not change the ideal groups so the conclusion is unchanged. 

PROOF. Let G, = q L I K ( H , )  and E the subfield of L fixed by G, .  Let res 
denote the restriction map from G ( L / K )  to G ( E / K )  so that resG, = 1. For 
any U in I"' we have 

(PLIK(HI) Of G ( L / K ) .  

( P E , R ( W  = res C p L l K ( W  

so in particular ( ~ ~ ~ ~ ( 2 0  = 1 when 9 1 ~  HI.  Thus HI E kerqEIK.  Since HI is 
a congruence subgroup we see the reciprocity law holds for the triple (E,  K ,  in) 
and so 

[I" : kerqEIK] = [ G ( L / K ) :  GI] = [I" : HI]. 

It follows that H I  = kerqEIK.  The reciprocity theorem describes this and so 
E is class field to the ideal group of HI.  

The next reduction shows how the ground field can be changed. 
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7.2 Proposition. Suppose E / K  is a cyclic extension and Hm is a congruence 
subgroup modin. Let HE denote the subgroup {% E IE"(NEIK(%) E H"}. If 
the ideal group of H E  has a class field over E, then the ideal group for H" has 
a class field over K .  

PROOF. Let LIE be an abelian extension such that 

H E  = N L ~ E ( I L ~ )  i ( L ,  1). 

We first show L is normal over K .  Let o be an isomorphism (over K )  of L 
into some normal field over K .  Then a ( E )  = E because E/K is normal. From 
the equations 

o(H") = H", a(H8) = HE 

we deduce a(L)  and L have the same norm groups, HE. By Theorem 5.8 we 
have L = a ( L )  and so L is normal over K. 

Next we prove L / K  has an abelian Galois group. Let o be an element in 
G ( L / K )  whose restriction to E generates G ( E / K ) .  To prove G ( L / K )  is abelian 
it is sufficient to show to = ot for each T in G ( L / E ) .  For such an element t 
take an ideal % in IEm such that qLIE(Vl) = t. Then ow-' = oqLIE(%)o-' = 

qqLlaE(021) = qLIE(o%). The ideal %/o(%) has norm 1 so in particular 

NEiK('&(%)-') E H" and %/a(%) E HE. 

But HE = ker qLIE so qLIE(Vl/o(21)) = 1. It follows that 

oto-l = (PLIE(b%) = VLIE(%) = T. 

This shows L / K  is abelian. Now we have 

NL\E(IL") 5 HE and so NLlK(IL") E H" 

by transitivity of the norm. Since H" is a congruence subgroup we have 

N L I K ( I L m ) i ( K m , , )  c H" c I". 

It follows from Proposition 7.1 that the ideal group for H" has a class field 
which is a subfield of L. 

These two reductions are used in the following way. Select an ideal group H 
and let H" E H. Suppose Im/Hm has exponent n. Select a primitive nth root of 
unity /l' and form a chain 

K = K(') c K ( 2 )  c ... c K( ' )  = K(/l'). 

Let HI = H" and inductively define 

Hi+ I = {Vl E I ~ ~ i + ~ ~ l N ( % )  E H i }  

where N means the norm from K( '+  ') to W .  
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Assume K ( " +  "/K"' is cyclic. If we show the ideal group of H, has a class 
field over K ( P )  then the same is true of HI over K by repeated application of 
Proposition 7.2. 

Furthermore the quotient IF,@,/H, has exponent n. This can be seen by 
induction in the chain. It was given that I,"/H, has exponent n. For rU E IF(*, 
we see 

N K ( 2 ) 1 R ( T )  E (I,"')'' _C HI 

so %" E H,. This shows 1FC2)/H2 has exponent n and the procedure can be 
repeated. 

We summarize now. 

Reduction Step. Let H be an ideal group for K .  The assertion that H is 
class group to some abelian extension of K is true provided it can be proved 
under the additional assumption that K contains a primitive nth root of unity 
where n is the exponent of Im/Hm for H" E H. 

This result will be proved in the next sections along with some facts about 
abelian extensions of K when K contains the nth roots of unity. 

8. KUMMER EXTENSIONS AND THE S-UNIT THEOREM 

A finite, abelian extension L of K is called a Kummer n-extension if G(L/K) 
has exponent n and K contains the nth roots of unity. The word exponent is 
used in the sense that CT" = 1 for all CJ in G(L/K) but n need not be the least 
such positive integer. 

The Kummer n-extensions are classified by the finite subgroups of K*/K" 
where K" is the multiplicative group of nonzero nth powers of elements of K*. 

8.1 Theorem. There is a one-to-one correspondence between the Kummer 
n-extensions L of K and the subgroups W such that K" c W c K* and W/K" 
is finite. The correspondence associates W with the field L = K ( Y W ) .  In this 
case the Galois group G ( L / K )  is isomorphic to WjK". 

Let L be a Kummer n-extension of K with group G .  We show first 
L has the form asserted in the theorem. Let 

PROOF. 

M = {U E L* I a" E K * } .  

Each u in M is a root of an equation X" -a with a in K so for CT E G it  follow^ 
that a(u)  = pa with be the 
function from G to K *  defined by 

an nth root of unity in K .  For each u in M let 

$.(a> = d u ) / u .  
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The values of $a are nth roots of unity and $a is the principal character 
precisely when u is fixed by all of G; that is when u is in K * .  One easily checks 
that a -, is a homomorphism of M into the character group G and so we 
have an imbedding 

$ :  M/K* -, G. 

We shall prove this is an isomorphism. If $M is'a proper subgroup of G then 
there must exist a non-principal character of e with $M in the kernel-that is, 
a character of Since the character group of G is known to consist of 
the evaluation maps at elements of G (Chapter IV, Corollary 3.2) there must 
exist an element u # I in G such that $a(a) = 1 for all a E M .  

We will obtain a contradiction to this by using Hilbert's Theorem 90. By 
the decomposition theory for abelian groups we may write 

G = ( 2 )  x Go, u $ Go 

and u = z"y with z" # 1 and y E Go. Let E denote the subfield of L fixed by Go 
so that G(E/K) E (z) is cyclic of order d with dln. Let /I be a primitive dth 
root of unity in K .  Then NEIK(/I) = / Id = I so by Theorem 90 there is an 
element a in E with f l =  z(a)/a. It follows that ad is invariant under (z) and 
so ad is in K .  Also then a is in M .  Our assumption about u implies $,(o) = 1. 
But $a  maps (z) onto (/I) is a one-to-one way and maps Go onto (1). Thus 
2" # 1 and y E Go imply 1 # = $,(.ray) = $a(u) which gives the required 
contradiction. This proves M/K* is isomorphic to e and this in turn is 
isomorphic to G. 

Since no element of G fixes all of M ,  it must be that L = K ( M ) .  
Now let W =  M".  The nth power mapping gives a homomorphism of 

M / K *  onto WIK". This is in fact an isomorphism because two elements of M 
having equal nth powers must differ by a factor from K-an nth root of unity. 

This proves the part of the theorem showing all Kummer n-extensions arise 
as indicated. Now suppose W is a subgroup of K* containing K" and with 
W/K" finite. Let a,, ...,a, be elements such that the cosets ai K" independently 
generate WIK". Then the field L = K(VI/) is equal to the finite extension 
K ( V a , ,  . . . ,du, )  so ( L  : K )  is finite. Let cr belong to the Galois group of LIK. 
Then aqui = &;/ai with /Ii an nth root of unity. Since /I, is in K,  one easily 
computes that on= 1 and G ( L / K )  is abelian. Thus L / K  is a Kummer 
n-extension. 

A11 that remains is to show the group W is uniquely determined by L = 

K ( q  W). Let M be the group defined above for this field L. Then M" 2 Wand 
M"/K" has order equal to ( L  : K )  by what has been proved above. If we prove 
( L  : K )  6 [W : K"] then the equality M" = W must follow. 

Let ai K" have order di in W/K" so that [W : K"] = d,  d,. Then a!( is an 
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nth power so (K(Ycl i )  : K )  < di and it follows that: 

(K(!$'a l , . . . , q c l s ) : K )  < d , . . - d s  = [ W : K n ] .  

This completes the proof. 

Before we take up the existence theorem, a result about S-units will be 
proved. (See the definition in Section 2 of this chapter.) This next result makes 
no assumptions about the roots of unity in K and is valid for any algebraic 
number field. 

8.2 Theorem. (Dirichlet-Chevalley-Hasse Unit Theorem). Let S be a 
finite set of primes containing all the infinite primes and let K S  denote the 
group of S units of K .  Then K S  is the direct product of the finite cyclic group of 
roots of unity in K and a free abelian group of rank IS I - 1. 

PROOF. Let So denote the collection of finite primes in S and I(So) the 
group of ideals divisible only by primes in So. There is an exact sequence 

i 
1 UK * KS __t I(So), 

in which i maps an element to the principal ideal it generates. Let h = hK 
denote the class number of K. For each p E So, p h  is in the image of i so 

I(s,)' _c i ( P )  E I(&). 

The first and last groups in this chain are free abelian of rank ISo( and so 
i ( K s )  is also free of rank ISo[. By the elementary properties of free abelian 
groups (projective modules) it follows that 

K S  z U, x i ( K S ) .  

Since the structure of the units is known by Dirichlet's Theorem, the result 
follows. 

8.3 Corollary. Assume 1 E K and that S is a finite set of primes containing 
all the infinite primes of K .  Then 

[ K s  : (K')"] = nls'. 

PROOF. We may write K S  = (w) x T with (w) a finite group of order 
divisible by n and T of free abelian of rank IS 1 - 1. Then (w)/( w") has order 
n and T/Tn  has order r 1 1 ~ I - l  so the result is true. 

9. THE EXISTENCE THEOREM (proof completed) 

Assume K contains the nth roots of unity. 
Let S ,  be a finite set of primes of K and in,  a modulus divisible by the 

primes in S ,  (and no others) to sufficiently high powers. The proof of the 
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existence of a class field to a given ideal group has been reduced to showing 
the ideal group containing 

i (Krn1.I) (Iml)n 

has a class field. Rather than prove this directly, a slightly more general result 
will be proved for later use when the conductor is considered. 

Keep S ,  and in, fixed and let S,  be a finite set of primes (possibly empty) 
such that S ,  and S,  are disjoint and the union S = S ,  u S ,  contains all primes 
p such that 

(i) PI4 
(ii) plw, 

(iii) p121i where {Zl,} is a finite set of ideals of K whose images cover the 
class group CK . 

The significance of (iii) is that any ideal 2l can be expressed '91 = mi(.) for 

Let in2 be a modulus divisible by the primes in S ,  (and no others) to suf- 

Consider the congruence subgroups 

some tl E K and 21i divisible only by primes in S.  

ficiently high powers. 

H, = i ( K m 1 ,  1)(Im1)"1(S2)9 

H, = ~ ~ K l 1 2 , 1 ~ ~ ~ m 2 Y ~ ~ ~ l ~  

where I(Sj) is the group of ideals divisible only by finite primes in S j .  Because 
S, and S2 are disjoint we have 

Hj E I"' j = 1,2. 

Next we consider the subgroups of K *  defined by 

W ,  = K S K "  n K,,,2,1 

W, = KSK" n K,,, , , ,  

and let 

L~ = K(;/w,) j = 1,2. 

Notice that ( L j  : K )  is finite because 

W j  K"IK" 5 KSK"IK" 

which is finite by Corollary 8.3. Our object is to prove the following theorem. 

9.1 Theorem. The field Lj is class field over K to the ideal group containing 

The proof will require quite a few steps. We begin by recording some 

Hj. 

properties of the fields L j .  
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9.2 Property. The primes in S ,  split completely in L, ;  the primes in S ,  split 
completely in L , .  

PROOF. Let p E S ,  and '$3 a prime of L ,  which divides p. We can show p 
splits completely by proving (LZ9  : K,) = ef = I .  For any a E W,, we have 
also a E K,,, , This means a E U,,(" where p' divides in , . For sufficiently large 
t we know by Proposition 3.6 that 

(I,,((' E (Up>" 

K P ( r n )  = K p 7  

so a is an nth power. Thus K,(!&) = K , .  It follows then 

which implies the desired conclusion. 

9.3 Property. L, /K is unramified outside Si. 

PROOF. We first argue that any prime ramified in Li is in  S. Let p be a 
prime of K with p 4 S .  

The field Lj is obtained by adjoining to K the roots of certain equations 
X " -  a with a in K S .  The extension of K p  determined by this polynomial is seen 
to be unramified by the following reasoning. The conditions ( I )  and ( 2 )  upon 
S imply n and a are p-units so that modulo p, X "  - a has distinct roots. Thus 
the irreducible factors of X " - a  over K p  have the same degrees as the irre- 
ducible factors modulo p. This uses Hensel's Lemma-Chapter 11, Proposition 
3.5. It follows that p is unramified in the splitting field of X " - a  over K p  and 
so p is unramified in L j .  The primes of S ,  LJ S,  are the only primes which can 
ramify in L , ,  but those in S ,  split completely in L,.  Hence only primes in S ,  
can ramify in L,.  The same argument applies to the primes in S ,  and the field 
L ,  so Property 9.3 is proved. 

9.4 Property G(L, /K)  E Wj/Wj  n K". 
This is a consequence of Theorem 8.1. 
Now let 

The modulus m j  contains all the primes ramified in L, to high powers so 
the reciprocity theorem applies to show 

9.5 Property I"J/H,* z G ( L j / K )  s' W j / W j  n K". 
Our object is the proof of the equality H j  = Hi*. An inclusion can be easily 

proved. 
The groups in Property 9.5 have exponent n so Hj* contains the nth powers 

of Im'. The primes in Si, i # j ,  split completely in L j  so the finite primes in 



176 v CLASS FIELD THEORY 

Si are norms from L j .  This shows I(Si) E Hj*. Both H, and Hj* are con- 
gruence subgroups mod inj so we have 

(9.6) Hi c Hj* j = 1 or 2. 

Im'. From the last two statements it follows 
The equality will be proved by showing both groups have the same index in 

[I"j : Hj] 2 [Wj : W j  n K"] 

with equality only if there is equality in Eq. (9.6). The actual method of proof 
is to show 

(9.7) 
[I"' : HI]  [Im* : H,] 

[W, : W, n K"][W, : W, n K"] 
= 1. 

9.8 Lemma 

I"'/Hj z Is/Is n Hi. 

PROOF. Since all the primes dividing inj are in S, this follows from the 
property of congruence subgroups proved in Lemma 6. I .  

9.9 Lemma 

PROOF. Letfdenote the composite of the maps 

i j K* - IK --+ Is 

where the second map is the identity on primes outside S and maps primes in 
S to 1. We first show f is onto. Let 91 be any ideal relatively prime to S. 
Property 3 defining S allows us to write CU = B(a) with 23 divisible only by 
primes in S. Then f ( a )  =j(9lB-') = 91 as required. Next we determine the 
subgroup of K* mapped by f onto Is n Hi. We do this for HI .  

Suppose a E K, and f ( a )  E H , .  Write i ( a )  = CU, 21, with 210 divisible only 
by primes in Sand  '+XI E Is. Thenf(a) = CU1. Since this is in H I  we may write 

21, = B"(p)C, B E Im', p E K,,,,,,, cs. E I(S,). 

We can also write 8 in  the form : 

23 = Z30(0), Bo divisible only by primes in S .  

Then ( a K " p - ' )  = CU,b,"C is divisible only by primes in S so aO-"p-' E KS 
and thus a E K" K S  K,, ,. Now let a E Km,,l and 

(a) = CUB, 23 E I(&) CU E IS'. 
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Since (a) is prime to m,, no primes of S ,  divide 2I. Thus rU E Is andf(a) = 2I. 
Now (a) E HI and 6 E H I  s o f ( a )  = (a) 6- = 21 is in HI and also in Is. This 
showsf'(K,,,,) E H,.  It is now easy to  see that 

f ' ( K " K S K m , , , )  = Is n H, 

and the isomorphism of the lemma now follows. 

We begin the index computation now. At  one point the following fact is 
used. 

9.10. Lemma. Suppose A ,  B, and C are abelian subgroups of some larger 
group and A 2 B.  Then 

[ A  : B ]  = [AC:  B C ] [ A  n C :  B n  C ]  

if these numbers are finite. 

The proof is straightforward and is left to the reader. 
In  the next few lines we shall write K ,  for K m l ,  ,. Now we find 

[ K *  : K " K , ]  
[ K " K S K ,  : K"K, ]  

[ K *  : K " K S K , ]  = 

[ K *  : K " K , ]  
[ K " K S  : K"] 

- - [ K " K S  n K ,  : K" n K , ]  

[ K *  : K " K , ]  
nlSl  

- - [Wz : W ,  n K " ] .  

To obtain the second equality use Lemma 9.10 with A = K"KS,  B = K", and 
C =  K , .  

Now combine Lemmas 9.8 and 9.9 with the symmetric version of this 
calculation to  obtain 

[ K *  : K " K , , , , ]  [ K *  : K"Km,,,I 
n2 IS1 

- - [I"' : H , ]  [I"' : H,] 
[ W ,  : W ,  n K " ] [ W ,  : Wz n K"1 

(9.1 I )  

It is necessary to  show the numerator on the right is n21s1. 
For any modulus in let 

c(in) = [ K *  : K"K, , , ] .  

By making trivial changes in the proof of Lemma 3.1 one shows c(m) is 
multiplicative on relatively prime moduli. This reduces the problem to  cal- 
culating c ( m )  when in is a prime power. 

The case for an infinite prime is easy. If in is a complex prime then K,,,, , = K* 
so c ( m )  = 1. 
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If m is a real prime then our assumption that vl E K forces n = 2. Then 
K n K m , ,  contains only elements positive at in so c(m) = 2. 

Now let in = p', p a finite prime. The computation of c(m) is very similar 
to the computation of a(m) in Section 3. We shall provide the statements of the 
results needed and leave to the reader the relatively simple exercise of trans- 
lating the proofs from Section 3 to the present situation. 

(9.12) (a) [K* : K"Krn] = n 

(b) c(1n) = n C K m  : (KrnY'Km, 11 

(9.13) 

Here of course Up is the unit group in the completion K , .  
For t sufficiently large we have U:') G Up" and so 

c(in) = n[Up : Upn]. 

To keep the analogy with Section 3 we let G denote the cyclic group of order 
n which operates trivially on all the groups associated with K. For M a 
G-module we now have for x E M 

N ( x )  = X", A(x) = 1 

and 

H o ( M )  = M / M " ,  H ' ( M )  = nth rootsof 1 in M .  

In particular the computation of c(in) depends upon 

IHO(U,)I = [Up : Up"]. 

Notice that qT E K implies 

/ H 1 ( U p ) l  = n. 

We now have 

(9.14) c(m) = n[U, : Up"] = n2/q(U,).  

The Herbrand quotient q(Up) is determined by making successive reductions 
as in Lemma 3.9. With R ,  the valuation ring in K p  we obtain q(U,) = q ( R J  
with G operating trivially upon the additive group of R , ,  The additive version 
of the cohomology groups above now yields 

H o ( R , )  = R, /nR, ,  H 1 ( R p )  = 0.  

Since the quotient R,/nR,  is isomorphic to the same quotient with R ,  
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interpreted as the localization at p of the algebraic integers in K,  we may make 
this replacement. We then have 

(9.15) c(in) = nz [ R ,  : nRp] ,  R, = localization at p of the algebraic 
integers in K .  

Now return to the computation of Eq. (9.11). The term of interest is 
c(in,)c(in,) = c(m, in2). Let So denote the finite primes in S = S ,  u S,. We 
calculate first the contribution from So; namely 

n n 2 [ R p : n R , ]  = n2IS"I [R:nR] .  

We have used here the fact that all prime divisors of n are in S and the 
isomorphism 

RInR E n R,/n R, . 
P i n  

P E S O  

Now by Chapter I ,  Proposition 8.6, we find 

Let r and s denote the number of real and complex infinite primes of K so 
r+2s  = ( K :  Q).  Also r+s+lS,I =IS[. 

Consider the case with r = 0. Then 

c ( i n , m 2 )  = n2Is01n2s = n2ISl. 

If r > 0 then as observed earlier, n = 2. In this case 
c(in, inz) = 2r221S012r+Zs = 221SI = n2ISI. 

Thus in all cases we have proved the index quotient in Eq. (9.1 1) is equal to 
1 and this is enough to complete the proof of Theorem 9.1. 

As a corollary we also obtain the rest of the existence theorem which we 
shall state completely as the classification theorem. 

Let K be any number field and H, J two ideal groups for K .  We say H !z J if 
for some modulus in, we have H" c J". Notice that this inclusion for one 
modulus in implies the same inclusion for any modulus divisible by the 
conductor of H and the conductor of J. 

9.16 Theorem (The Classification Theorem). Let K be any algebraic 
number field. The correspondence L + H(L/K) is a one-to-one inclusion 
reversing correspondence between the collection of finite dimensional abelian 
extensions L / K  and the collection of ideal groups of K .  

We show first that any ideal group H is a class group to some 
abelian extension. Take H" E H and suppose Im/Hm has exponent n. The 
reduction step in Section 7 allows us to assume K contains the nth roots of 
unity. 

PROOF. 



180 v CLASS FIELD THEORY 

Let S ,  be a finite set of primes containing all the primes dividing in and all 
primes satisfying the conditions (i)-(iii) at the beginning of this section for S .  
We take S,  empty so S = S, .  We also take the modulus in, large enough so 
that mlin,. Now the group H ,  defined at the beginning of this section is 
contained in 

H"' = Hm n Iml. 

By Theorem 9.1 there is an abelian extension L ,  with H ,  = ker((pLIIKIIm'). By 
Proposition 7.1 there is a subfield of L ,  which is class field to the ideal group 
H containing H m l .  

Thus every ideal group is a class group. If H ( L / K )  c H ( E / K )  for abelian 
extensions L, E of K ,  then E E L by Theorem 5.8. On the other hand E E L 
implies 

ker V L l K  ker ( P E I K  

so H ( L / K )  E H ( E / K ) .  This shows the correspondence is one-to-one and 
completes the proof. 

This is the main theorem in class field theory. It gives the classification of all 
abelian extensions of K in terms of objects defined by the internal structure 
of K. 

10. SOME CONSEQUENCES OF THE CLASSIFICATION THEOREM 

We consider now a normal extension E / K  whose Galois group G is not 
necessarily abelian. The theory in the preceding sections can be applied to give 
information in the nonabelian case. 

Begin with a modulus in divisible by high powers of all the primes of K 
which ramify in E .  The group 

H m ( E / K )  = NElK(IEm)~(Km91) 

is a congruence subgroup and the ideal group containing it has a class field. 
Let L / K  be an abelian extension such that H m ( E / K )  E H ( L / K ) .  Then for a 
suitable modulus n divisible by in (and containing all the primes ramified in L )  
we have 

NEIKKIE") E H"(L/K) .  

By Theorem 5.8 we obtain L c E. (So the modulus in could have been used 
after all in place of n.) We know then H m ( E / K )  = H"(L/K)  and so 

(1) Im/Hm(E/K)  z I m / H m ( L / K )  G ( L / K ) .  

It is necessary to identify these groups in a more direct way with G ( E / K ) .  
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10.1 Theorem. The field L is the largest subfield of E with an abelian 
Galois group over K .  Thus G ( L / K )  2 G/G' with G' denoting the commutator 
subgroup of G. Moreover, the isomorphism of Im/Hm(E/K) with G/G' is 
induced by the "Artin-map" qEIK. (The Artin map for this nonabelian exten- 
sion is defined in the course of the proof.) 

PROOF. Suppose L E L ,  G E with L J K  an abelian extension. Then by the 
transitivity of the norm one finds 

NElK(IErn)i(Krn,1) N ~ l ~ ~ ~ I ~ l m ) ~ ( ~ ~ ~ , ~ )  

G NL~K(~L") i(Krn, 1). 

However, the first and third groups are equal and so the ideal groups for L 
and L ,  are equal and so L = L ,  since both are abelian extensions. This means 
G ( L / K )  is the largest homomorphic image of G which is abelian; necessarily 
this is G/G'. 

We can give a rather explicit description of the isomorphism (1) with G/G'. 
Let 'p be a prime in IEm and p = 'p n K .  We know that the primes above p in 
E are all conjugate under G and that p determines the conjugacy class con- 
taining the Frobenius automorphism of '$3. Now we observe that since G/G' is 
abelian, conjugate elements in G have the same image in GIG'. Thus p uniquely 
determines an element in G/G'. We define the Artin map by 

This map extends to a homomorphism of I" to G/G'. We can also determine 
the kernel. By a property of the Frobenius automorphism we see 

and so 

(PElK(P) = (PLIh'(P)G'* 

Thus, anything in the kernel of qLIK is in the kernel of (pEIK.  But kerqLIK = 

H"(E1 K )  which has index in I" equal to [G : G']. It follows that Hm(E IK) = 
ker 'pEIK and the proof is complete. 

The first inequality insured that [I" : H m ( E I K ) ]  was at  most ( E :  K )  = \GI. 
We have now shown this index to be exactly [G : G'] so the first inequality is 
always a strict inequality for nonabelian normal extensions. 

We turn to another consequence of the existence theorem which generalizes 
the earlier results proved for K = Q in Chapter IV, Section 6 .  
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10.2 Proposition. Let x be a nonprincipal character of I '" / i (Km, l ) .  Then 

PROOF. There is a class field L to the ideal group containing i ( K m , l )  and 
the set of primes which split completely in L are in i(K,", except for a finite 
number. Thus the density of the set of primes in i ( K , " , ] )  is ( L  : K )  by the 
Frobenius density theorem and this number equals [I" : i (K, ,  by the 
reciprocity theorem. Thus L (  I ,  x) # 0 by Chapter IV, Proposition 4.8. 

This is the main step in the proof of the generalized theorem of Dirichlet on 
primes in arithmetic progressions. 

10.3 Theorem. Let IKm 2 H" 2 i (K, ,  ,) be a chain of subgroups. Then any 
coset of H" in Ixm contains infinitely many primes. In fact this set of primes 
has density [I" : H"'1-I. 

The proof is almost word for word the same as that of Chapter IV, Theorem 
5.8 and so will not be repeated. 

One can refine the Frobenius density theorem now. We deal with an abelian 
extension L / K  having Galois group G. Any element a in G is the image of a 
unique coset of H m ( L / K )  under qLIK and so by Theorem 10.3 the density of 
the primes p in this coset for which q L I K ( p )  = a is l/IGI. This improves the 
earlier result for abelian extensions because previously we only knew the 
density of the primes which mapped onto some ad for d relatively prime to 1a1. 

10.4 Theorem (Tchebotarev Density Theorem). Let E / K  be a normal 
extension with Galois group G .  Let a E G and suppose a has c conjugates in 
G. The set of primes p of K which have a prime divisor v in E whose Frobenius 
automorphism is a has a density c/IGl. 

PROOF. Let L denote the subfield fixed by (a) and S' the set of primes Fp 
of L for which qEIL(Fp) = a. By the remarks just above, S' has density l/lal 
because G ( E / L )  = (a) is abelian. When densities are considered we may 
restrict our attention to primes with relative degree one over K (or over Q 
even). Let S denote the subset of primes in S' having relative degree one over K .  

For '$3 E S and p = 'p n K we now count the number of '$3, E S containing 
p. First take a prime Q of E which divides '$3 and has a as Frobenius auto- 
morphism over L. Let (a)z j  be the distinct cosets of (a) in  G. The primes 
dividing p i n  E are zi(Q) (and these are distinct) and the primes dividing p i n  
L are Fpj = z j ( Q )  n L .  By Chapter 111, Corollary 2.8, we see ' p j  has relative 
degree one over K if and only if (a)rja = (a).rj. Assuming this to be the 
case then 

W , x )  # 0. 

There is also a generalization to the nonabelian case. 
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It follows that P j  E S if and only if 

d = Zjazi-'. 

The distinct V j  which arise this way correspond to the distinct cosets (a)sj 
so the number of primes in S dividing p is 

d = [ C G ( a )  : (a)]. 

If T denotes the set of primes of K divisible by a prime in S then there arise 
exactly d primes Fp E S for which N L I K ( ' p )  = p for each p E T. This means 
dS(T) = 6 ( S )  = l / lal .  From the form of d i t  is immediate that 

6 ( T )  = l/lCG(4I = CllCl. 

11. PRELIMINARIES FOR THE NORM RESIDUE MAP 

AND THE CONDUCTOR THEOREM 

Our object in the next two sections is to get precise information about the 
conductor f ( L / K ) .  We take a rather general approach that will yield con- 
siderable information in other directions also. The abelian extension L / K  is 
fixed for this section. 

We begin with a simple but useful result. 

11.1 Theorem (Translation theorem). Let E/K be any finite dimensional 
extension and in a modulus for K divisible by f ( L / K ) .  Then the class group to  
the abelian extension LE/E is the ideal group for E which contains the con- 
gruence subgroup 

I a r  IE" I N E / K ( a )  H m ( L / K ) } *  

PROOF. By Chapter 111, Lemma 3.1, we have 

( P L E I E  = ( P L / K  ' E I K .  

Thus the kernel of ( P L E I E  acting on I$,, is the subgroup mapped by N E , K  into 
the kernel of qLIK acting upon 12. This kernel is H " ( L / K )  since the conductor 
divides in. The result follows. 

Now we consider a prime p of K and a modulus 

n = pain, p fiii. 

Suppose n is divisible by f ( L / K )  and all ramified primes. Eventually we will 
see that all the ramified primes already divide f ( L / K ) .  

Let 6' denote the composite of the maps 
i i 

(1) K,r,,i + 1, + I K n  * G ( L / K )  
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where j is the identity on primes not dividing n and sends to 1 any prime 
dividing n. It would be more precise to write OLIK but we shall only use the 
simpler notation. 

In the following, we write G(p) for the decomposition group of a prime of 
L dividing p .  

11.2 Theorem 

O(Km, 1) = G(P) -  

PROOF. The first step is to show O(Km,,) E G(p). Let 2 be the fixed field 
under G(p). The prime p splitscompletely in Z s o  in particular it is not ramified. 
This means p does not divide f ( Z / K ) .  The conductor of Z / K  divides n and so 
it divides in. In particular this means 

kerq~1KIIK”’ = N.ZIK(IZ~) i(Krn,1)* 

Suppose p is a finite prime. Then this kernel contains p because p splits. For 
a E K,, , we write (a) = p ‘ 2 l  with 2l prime to p. Then 

ji(a) = = p-‘(a) E kerqZlK.  

If p is an infinite prime then ji(a) = i(a) so again ji(a) E ker ‘pzlK. In either case 

1 = qzlK(ji(Km.l)) = PLiK(ji(Km,l))IZ= O(Km,, ) lZ-  

This shows O(K,,,, ,) is trivial on Z and so is a subgroup of C(p). 
The proof of equality for these two groups requires some subtle moves. We 

suppose on the contrary that O(K,, ,) is not all of G(p). Then there is a sub- 
group Go with 

O(Km,,) E GO < G(P) 

and 

[C(p) : Go] = q = a prime. 

Let E be the field fixed by Go. A contradiction will be obtained by examining 
the extension E/Z. Let p be a primitive yth root of unity, Z(p) = Z ’ ,  E(P) = E ’ .  
The procedure is to apply the Existence Theorem 9.1 (which required roots of 
unity) to 2’ in order to deduce certain primes are split in E’.  This information 
is translated down to deduce p splits completely in  E.  This will be contradictory 
to properties of the decomposition field. 

Let S, be the set of primes of Z ’  which divide p ;  Sz is a sufficiently large 
set of primes of 2‘ so that S = S, u S, satisfies the conditions of Section 9 
(for Z’  in place of K ) .  Let in, = p a  be viewed as a modulus for 2’ and lit2 a 
product of the primes in S ,  with sufficiently high exponents. We may assume 

n[inlinz,  inlin,. 
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Let H, = (I;?)qi(Z;,, l )I(Sl)  and L ,  the class field over Z' to H,. 

ASSERTION: H, n Iz? c H"(E'/Z'). 

To prove the assertion we first need a description of the group on the right. 
Apply the translation theorem to the extension E/K translated by Z'. It 
follows 

H"(E'/Z') = ('u E Iz,"lNz,~K('u) E H"(E/K)}. 

We shall also use the fact that j i ( K r n , ] )  is contained in H"(E/K). This 

Now suppose X = Sq (a) (5 is in H, and also prime to n. We may assume 
inclusion follows because 'pL IK mapsji(K,,,, into the group Go fixing E.  

23 E 19, a E z;*,l, (5 E I(Sl). 

To prove the assertion we must show Nz,lK(X) is H"(E/K). 
Suppose p is finite. Perform factorizations : 

23 = Bo231, Bo prime ton ,  Nz*/K(Bl) = pr, 

(a) = 'uo'u1, 'u, prime ton ,  Nz,lK('ul) = p". 

We know also Nz,lK((5) = p'. Since X is prime to n, Nz,lK(X) is prime to p. 
This implies qr+s+t = 0 and 

We can prove each factor here is in H"(E/K). Firstly observe that H"(Z/K) 2 
H " ( E / K )  and the index is q. Since 

it follows that NZ,IK(230)' E H " ( E / K ) .  Next we note that NZ,lK(a) E Km,] 
because in)in,. Thus 

Nz*lK(%o) = N.~,lK(a)\p-~ =jiN.~,,K(a) ~ j i ( K ~ , i ) .  

This is known to be in H " ( E / K )  so the assertion is proved in the case p is 
finite. 

Now for p injinite, the assumption G(p) # 1 forces p to be real and ramified 
in L and moreover IG(p)I = 2. Thus Z already contains a qth root of unity 
since q = 2 and Z = Z', E = E'. With X as above we have Bq E H"(E/Z) and 
(5 = 1 because I(S,) = 1. We need only show (a) E H"(E/Z). It is enough to  
show iNzIK(a) E H"(E1K). We already know N,IK(a) E Km,l because mlin,. 
This means t9(NZIK(a)) = 1 for t9(Krn,,) = 1 when (G(p)( = 2 .  However this 
assertion implies 

1 = vLlK(iNZIK(a)) = (~.qa(iNz(K(a)). 

We have used the equality E = L which follows because ( L  : 2)  = 2. This 
shows iNzlK(~1) belongs to H"(E/K) and completes the proof of the assertion. 
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As an immediate consequence we have 

Hmlm2(L2/Z’)  = H ,  n Iy>m* = ( H 2  n IT”) n E Hmtm2(E’ /Z’ ) .  

By the Classification Theorem 9.16 it follows that E’ -c L2.  Then by 
Property 9.2 we know every prime in S, splits completely in L2. Let p z  be a 
prime of Z dividing p and ‘p a prime of 2’ dividing p z .  We have ‘p E S1 so 
‘p splits completely in L,. Let e, f denote the ramification index and relative 
degree of ‘p over p z  because there is no change when passing from Z ’  to E’ 
since ‘p splits completely in E‘ c L2.  Now (E‘  : Z ’ )  divides q-  1 and so 

ejq- 1, f l q -  1. 

Now consider the ramification and change of relative degree of p z  in E. The 
ramification number e, must divide e,  the ramification number in E’ and also 
eo divides ( E  : 2 )  = q. This forces e ,  = 1 since q- 1 and q are relatively prime. 
In the same way the relative degree is one so p z  splits completely in E. 

Now there can be only one prime divisor of pz in L by Proposition 1 1.2 and 
so there is only one prime divisor of p z  in E. In view of the complete splitting 
this forces E = Z contrary to our assumption. This completes the proof. 

We shall describe how the map 8 is related to the computation of the con- 
ductor. Some additional notation will make the description easier. Let 

V(pb, ln)  = Kpbm,, if b > 0, 

= {E E Km,l I(a) prime to p >  if b = 0 and p finite, 

= K m . 1  if b = 0 and p infinite. 

11.3 Proposition. The power of p dividing f ( L / K )  is pb if b is the smallest 
nonnegative integer such that V ( y b ,  in) E ker 0. 

First notice that V = V(pb,in) is a subgroup of Km,l and j i ( V )  = 
i (V)  because the elements of V are prime to p .  It follows that V s ker 0 if and 
only if i ( Y )  E ker qLIK.  Now use the observation that f ( L / K )  divides a modulus 
n if and only if i(K,,, ,) c ker q L I K .  An examination of the cases easily gives the 
result. 

We shall refine this further in the next section and compute the exponent of 
p in terms of local data. 

PROOF. 

12. NORM RESIDUE SYMBOL 

This is a continuation of the last section and the notation there carries over. 
The main object here is to define a map 0, on the completion K, which serves 
as the ‘‘local Artin map”. We use the following notation: 
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Up(b) = 1 + pb in K,  if b > 0 and p is finite; 

= U p  

= positive reals if b > 0 and p is real; 

= Kp* 

if b = 0 and p is finite; 

if b = 0 and p is real or if p is complex. 

12.1 Lemma. K,*/U,"' E K,, JV(pb, m). 

PROOF. The natural inclusion of K,, , into the completion Kp* induces a 
map of K,,, l  onto the quotient K,* /Uib ) .  This is onto because any element of 
K,* can be approximated modulo pb by an element in K* which is congruent 
to 1 modulo 111. One now compares the definitions of the V's and U's to see 
that V(pb, m) is the kernel. 

Now select the integer b so that V ( p b ,  in) c ker 0. Then 8 induces a map (also 
denoted by 0) of K,, l / V ( p b ,  in) onto C ( p ) .  Now compose several maps: 

The composite 0, is a homomorphism of Kp* onto G(p). We call 0, the 
p-local Artin map. We shall see later that the kernel of 0, is the group of 
p-local norms from L,*. For this reason 0, is sometimes called the norm 
residue symbol at p. 

The actual computation of 0,(x) for x in K,* is often very difficult. For 
emphasis we point out the procedure. We approximate the given x by an 
element y in K* such that 

y = 1 mod in, y = x modpb. 

Then 0,(4 = W Y )  = vLIKjW. 

12.2 Lemma. N, (LFo*) c ker 0,. 

PROOF. For p E L,*, there is an element y E L* such that 

NLIK(7) = I modm, NLIK(y) = N,(p) modpb. 

For example, this was done in the proof of Hasse's Norm Theorem 4.5. This 
allows the equation 

o,N,(p) = "K(Y) = v L I K j i N L I K ( Y ) .  

When iNLIK(y) is factored as a product of prime powers one sees that each 
prime power is the norm of an ideal from L. In particularjiNLIK(y) is the norm 
of an ideal and so belongs to ker qLIK. Thus 0, N,(b) = 1 as required. 
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We know now a part of the kernel of 8,. The group Up(b) is in the kernel as 
seen from the definition so the local Artin map induces a homomorphism 

(12.3) 

We can calculate the order of the first group. 

12.4 Lemma 

[K,* : N,(L,*)] Q ( L y  : K J  

PROOF. Use induction on the dimension (L : K). If this dimension is prime 
then C ( L / K )  is cyclic. By Proposition 3.12 the lemma is true and equality 
holds. If (L  : K )  is not prime there is a chain 

K C E C L  

with proper inclusions. Let p’ be a prime of E divisible by ‘$3 in L. Thus 

Kp c E,’ C L,. 

Let NL,IE,r = N , ,  NEPtIR, = N, so N, N,  = N,. Then 

[K,* : N, (L,*)] = [K,* : N,(E,*’)] [N2(Ep*’) : N2 N,  (Lo*)].  

By induction [Kp* : N2(Ep.*)] < (Ep’ : Kp) .  The second factor is at most 
( Lg : E,,) because the group 

N2 (Ep,*)/N, N,  (L,*) 

E,.*IN, (L,*). 

is a homomorphic image (under N,) of 

After combining the two estimates, the lemma follows. 

This inequality tightens the situation. We now have from (12.3) 

[K,* : Np(LIP*)Up(b)] 2 IC(p)l = ( L V :  K,) 2 [K,* : Np(LV*)]. 

Clearly the first index is no larger than the last so in fact equality holds 
throughout. We can draw two conclusions at once. 

12.5 Corollary. If L/K is an abelian extension and p a prime of K ,  then the 
p-local Artin map 8, maps K,* onto C(p) and the kernel is the group of 
p-local norms from L,. (See comments at the end of this section.) 

12.6 Corollary. The power of the prime p dividing f ( L / K )  is the least non- 
negative power p b  such that Up(*) E NP(L,*). 
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PROOF. It is easy to check that Up(b) z ker B, if and only if V(pb,nt )  E 
ker8. We have just seen these conditions are equivalent to 

N, (L,*) U,'b' = N, (Lcp*) 

so the result follows from Proposition 1 1.3. 

In the classical terminology p b  is called the p-local conductor, written f ,  , if 
b is the least non-negative integer such that Up(*) c Np(Lc4*). The last corollary 
can be restated as 

f ( L / K )  = nf,. 
P 

We shall prove now f, = 1 if and only if p is unramified. This will prove 
finally that every ramified prime divides the conductor. 

Iff, = 1 then U, E N, (Lv*). For finite primes p we then have p is unramified. 
On the other hand suppose p is finite and unramified. In case L / K  is cyclic 

we have from Proposition 3.1 1 that Up c N, (LV*) so in fact 

up = NP(U,). 

One now uses induction on ( L  : K )  to see this equality holds when L / K  is an 
abelian extension. Thus 

up = u p (0) E Np(Lc4*) 

and f, = 1. 
For p real and unramified L, = K, = reals and so 

Ug(O) = K,* = N,(L,*) 

and again f ,  = 1. This proves the result. 

12.7 Theorem. The conductor f ( L / K )  is the product of all the ramified 
primes with positive exponents determined by the local conductors. 

As the last theorem of this section we prove a property of the local Artin 
maps which is often called the Artin-reciprocity law. 

If a E K* and p is a prime we shall write 8,(a) for 8,(a,) where a, is the image 
of ct under the imbedding K -, K,, 

12.8 Theorem (Product formula for the local Artin maps). For each 
u E K * we have 

n B P ( a )  = 1. 
P 

PROOF. First note the product is actually a finite one because B,(a) = 1 
whenever p is unramified and a E Up. That is every element of Up is a norm 
from L,* if p unramified. Secondly the values O,(cc) lie in an abelian group so 
the product may be taken in any order. 
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Let S denote the set of primes p such that either p is ramified in L or p 
divides (a). Suppose p 1, . . ,, p, are the primes in S .  Take 

in = n p i i  
i 

with the t i  large enough so that f ( L / K )  divides in. 

Suppose also (a) = n pq' and that f i  is selected so that t i  2 a,. Let l it i  be the 
modulus so that in = p:'iiii. For each i select an element wi in K *  to satisfy 

w i  = a modp? 

w ,  = 1 mod liti. 

Then for each j ,  o, ... o, = a mod py and so 

(1) a- lw l  0 s  E Krn.1. 

We use these elements to evaluate the Op,(a). Write 

(0,) = pq'bi 

op,(a) = @(mi) = q,lKj(Pq'bi) = ? ~ l K ( b i ) .  

with bi not divisible by any prime in S .  Then 

Now 

ne,(a) = nop,(.) = %II((bl ...a, 1. 
P i 

Since b, ...23, = ( a - l w ,  ..em,) E i (Krn , , )  it follows that qLIK(lls, .-.b,) = 1 
and the theorem is proved. 

This form of the reciprocity law has the following consequence. 

12.9 Proposition. If L / K  is an abelian extension and an element a in K *  is 
a p-local norm from L for all primes p with the possible exception of one par- 
ticular prime, then a is a local norm at that prime also. 

Let po be the exceptional prime. Then O,(a) = 1 for every p except 
po because 0, is trivial on p-local norms. Thus 

PROOF. 

1 = n 0, (a) = OP&) 
P 

and so c1 is in the kernel of tl,,,; a is a local norm at po also. 

We close this section with a few comments on Corollary 12.5. This is the 
local version of the Artin reciprocity theorem and it can be made the basis of 
local classfield theory. We shall not carry out this project but it seems worth 
the time to at least state the relevant facts. The main theorem classifies all 
abelian extensions of the local field Kp , 
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12.10 Theorem. The abelian extensions of K,  are in one-to-one (inclusion 
reversing) correspondence with the subgroups of K,* which contain some 
Up('). The abelian extension L,/K, corresponds to the subgroup NP(L,*). In 
this case we have G(L, /K, )  2 K,*/N,(L,*). 

The interested reader may want to provide a proof using the global theory. 
It is necessary to show that the local map Op depends only on the extension 
L,/Kp and not upon any algebraic number fields L / K  used to obtain them. 
Further one shows that any abelian extension L,/K, can be obtained by 
completion of an abelian extension of number fields L / K .  

The local theory can be developed on its own without reference to the global 
results. Consult Serre's article in Cassels-Frohlich, Algebraic Number 
Theory. 

13. THE HILBERT CLASS FIELD 

The group i ( K * )  of principal ideals is a congruence subgroup defined for 
the modulus 1 containing no prime divisors. The class field to the ideal group 
containing i ( K * )  is called the Hilbert clussjeld (or absolute class field) of K .  
We shall denote it by K ( ' ) .  

13.1 Theorem. The Hilbert class field K ( ' )  of K is an abelian unramified 
extension of K which contains every abelian unramified extension of K. The 
Galois group G ( K ( ' ) / K )  is isomorphic to the class group C,. In particular 
( K " )  : K )  is the class number h,  of K .  

PROOF. The conductor f ( K ( ' ) / K )  = 1 so no prime of K ramifies in K ( ' )  by 
Theorem 12.7. Conversely if L / K  is abelian and unramified, then f ( L / K )  = 1 

H ( K " ) / K )  c H ( L / K ) .  

By the Classification Theorem 9.16 L G K ( ' ) .  The remaining statements 
follow from the reciprocity isomorphism of G ( K ( " / K )  with I,/i(K*) = C K .  

This shows, for example, that a field K with class number 1 cannot have an 
abelian unramified extension larger than K itself. Of course the case K = Q is 
covered here but we already know that Q has no unramified extensions abelian 
or otherwise. There do exist examples of fields with class number 1 which have 
unramified extensions (non-abelian of course). If L / K  is such an example then 
there cannot be a subfield not equal to K which is abelian over K. This means 
G ( L / K )  has no abelian homomorphic image not equal to 1 and G ( L / K )  is 
non-solvable. From finite group theory it  follows ( L :  K )  2 60. 

Natural unramified extensions occur by considering the class field tower of 

so 
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K .  Namely K ( ' )  is the Hilbert class field of K and inductively K ( ' + ' )  is the 
Hilbert class field of K ( i ) .  Then the chain 

K E K'' )  c K(z) c ... 
is the class field tower over K .  

It was not known until 1965 that the class field tower could be infinite. The 
work of Golod and Shafarevich proved that when "enough" primes of Q 
ramified in K ,  the class field tower of K would be infinite. A specific example 
occurs with K = Q(,/d),  where d is the product of eight or more distinct 
primes. 

Notice that K") /K  is always unramified. I t  is also easy to see that K("/K  is 
a normal extension. In fact a slightly more general statement holds. 

13.2 Proposition. Let F be algebraic number field and K/F a normal exten- 
sion. Then every term K") in the class field tower of K is normal over F. 

PROOF. If we prove K(' ' /F is normal the general result follows. Let a be 
isomorphism of K ( ' )  into a field normal over F and assume a is the identity 
on F.  Then o ( K )  = K because K/F is normal. Also a(K(')) is an abelian 
unramified extension of a ( K )  = K and so a(K'")  E K ( ' )  by Theorem 13.1. 
This proves normality. 

One of the most elegant properties of the Hilbert class field is the following. 

Principal Ideal Theorem. Every ideal in K becomes principal when extended 
to an ideal in K ( ' ) .  

This theorem was conjectured by Hilbert and its proof was reduced to a 
purely group theoretic problem by Artin after he proved the reciprocity 
theorem. The group theoretic question was then resolved by Furtwangler. 

We shall describe the group theoretic result and then show Artin's reduction. 
Let G be a finite group and Ha subgroup. Let 

HTj, ..., H7" 
be the distinct cosets of H in G. For a E G and each index i, there is a unique 
element 4i(a) in H which satisfies 

ria = $ ~ ~ ( o ) t ~  for some j .  

The transfer from G into H is the function V defined on G with values in 
H / H '  which satisfies 

V ( O )  = Hr4l(o)*..4,(~). 

Of course H' is the commutator subgroup of H and so H/H'  is an abelian 
group. The product then is independent of the order of the factors. One shows 
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that V(a) is independent of the choice of coset representatives and is a homo- 
morphism from G into H I H ‘ .  In case H is abelian, V is a homomorphism 
into H .  

The transfer map is often used to prove the existence of normal subgroups 
of G. Here one selects a suitable H and shows V(G)  # 1 .  Then ker V # G. The 
application to the Hilbert class field however is different. We shall select 
H = G’ and it is required to show V ( G )  = 1 .  Because of the connection to the 
principal ideal theorem this result has been called the Principal Ideal Theorem 
of Group Theory. 

Theorem. If G is a finite group then the transfer from G into G‘ is the trivial 
map. 

For a proof see Artin-Tate, Class Field Theory, Chapter 13. 
Now to apply this result to the Hilbert class field we use the first two terms 

above Kin the class field tower: 

K c K(’) E K(’)) .  

Let G = G(K(2)/K). Since K ( 2 ) / K  is unramified, every abelian extension of K 
inside K ( ’ )  must in fact be inside K‘”.  Thus K “ ) / K  is the maximal abelian 
extension of K and 

G(K‘” /K‘ ’ ’ )  = G‘, G ( K ‘ ” / K )  = G/G‘. 

We shall use the following notation : If ill is an ideal in I,, then ill(’) denotes 
the ideal 2l extended to IK(l);  [a] denotes the image of 2l in 

IK/i(K*) = CK 

and [ill(’)] is the class of % ( I )  in CK(1). 

in I,. 

so induces an isomorphism 

The principal ideal theorem states in this notation [%(‘)I = 1 for every 91 

Now bring in the Artin maps: qK( I ) ,K  maps I, onto GIG‘ with keri(K*) and 

q 1  : C, z GIG’. 

q K c z ) i K ( t )  in the same way induces an isomorphism 

(p2 : CKCI, E G’. 

This gives rise to a chain of maps 

(*> 
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where the first arrow is the natural projection of G onto G/G' and the third 
arrow is the map [?I] -+ ['V(')]. 

We now verify that the composite map is the transfer from G into G'. 
For any a in G there is a prime p of K such that q l  [p] = G'a (by Theorem 

10.3). Let the factorization of p in K f 2 )  be 

% *  p = cpI ... 
We may suppose 

Now use Proposition 2.8 of Chapter 111 to describe the factorization of p in 
I?'). The factors of p ( l )  are in one-to-one correspondence with the cycles of 
a on the cosets of G'. The length of the cycle is the relative degree of the 
corresponding factor. In this case all the relative degrees are equal (tof, say) 
so the cosets of G' can be described as 

G'7,, G't ,  a, ..., G't ,  a/ -' 
G'q, Grit., ..., G'tt'aS-' 

The prime factors of p ( ' )  are qj = t j ( ' p l )  n K ( ' )  and 

' 11  ' " 4 t -  p ( l )  = 

Notice that 

K ( ? ) ( K ( l )  K ( ~ ) (  K f [ PI ] = [ T I  = O f  
so qK(2)lK(1)(qj) = ~ ~ q ~ ( ~ ) , ~ ( ~ ) ( q , ) t ~ - '  = 
composition of the maps above: 

Finally wecan evaluate the 

0 3 G'a + [ p ]  -+ [p"'] = [ql . * * q I ]  + n ~ ~ d ~ ~ - ~  
A brief check of the coset representatives shows this product is precisely the 
value V(a) with V the transfer into G'. By the principal ideal theorem of group 
theory this value V(a) = 1. An inspection of the maps in (*) shows the first 
two maps are onto the indiched groups and the last is an isomorphism. Since 
the composite is trivial, the map [%] + [%(')I must be trivial. This completes 
the proof. 

The close connection between the Hilbert class field and the class number 
can be useful in many situations. We describe here a rather simple one. 

13.3 Theorem. Let E be a finite dimensional extension of K such that 
E n K(') = K. Then h, divides hE.  
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PROOF. The extension EK(" of E is abelian and unramified and so is 
contained in E(". Thus h,  = (K")  : K )  = (EK") : E )  divides h, = (E") : E ) .  

One case where this result can be applied occurs if there is a prime of K 
which is totally ramified in E .  In this case every subfield of E which is strictly 
larger than K is ramified over K and so E n  K ( ' )  = K since E n K ( ' )  is 
unramified over K .  

If p is a primitivep"th root of unity for some prime integerp, then the prime 
p is totally ramified in Q@). If 

Q c K c E c Q ( B )  

then a divisor 'i)3 of p in K is totally ramified in E so h, divides h,. 



Chapter VI 

APPLICATION OF THE GENERAL THEORY TO QUADRATIC FIELDS 

This chapter contains examples to illustrate the ideas of the earlier chapters. 
We are mainly concerned with K = Q($) and its class number, Hilbert class 
field, etc. The case d = - 5 is worked out in detail. We use local Artin maps to 
make some calculations that could also be made in other ways but our purpose 
is mainly illustration rather than the end result of the calculation. One example 
is given with a cubic field. 

1. THE CONDUCTOR OF Q($) 

Let d be a square free integer and K = Q(Jd). We shall compute f(K/Q) 
using Corollary 12.6 of Chapter V. The case for p, can be settled at once 
because p, is ramified if and only if d < 0. Thus pm divides the conductor if 
and only if d < 0. 

Now letp be a prime integer; Q,, U p  as usual denote the completion of Q at 
p and the group of units in Q,,, respectively. 

It is necessary to determine the p-local norms from Kp in Q,. (We write K p  
for the completion of K at some prime dividingp.) Since we are only interested 
in thosep which ramify in Kwe have ( K ,  : Q,) = 2.  This means that all squares 
in Q p  are norms. To see what is left we consider U,/UP2. By the calculation in 
Section 9, Chapter V we have 

2 if p odd 
4 i f p  = 2. 

[Up : U,2] = 2 [Z, : 2Z,] = 

We consider p odd first. 

196 
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Let u be an integer prime top  and not congruent to a square modulop. Such 
a u exists for p odd because the units in Z/(p)  have order p - 1 (even) and so 
not all elements can be squares. Then the multiplicative group generated by u 
and Up2 is larger than Up2 and 

up = (u ,  Up,). 

Now let w E Ud”. Then either w = u2 or w = uuz for some u in Up. In the 
second case we have 

1 = w = uu2 modp 

and so u is congruent to a square modp. 
This is impossible (by choice) so w is a square. This shows Ud’) is contained 

in the group ofp-local norms. Since every ramified prime divides the conductor 
we have the following: 

For odd p ,  the p-local conductor is f p ( K / Q )  = p .  

Now we take p = 2. In this case U2’ has index 4 in U ,  and we assert 

u2 = (3,5,Uz2). 

To verify this one observes that all squares of units are E 1 mod 8 and that 
3 f 5 mod 8 implies 3 $ ( 5 ,  U,’). 

It is necessary to determine for which uUZ(‘) contained in the group of 
2-local norms. If w E U i 3 )  (so w E 1 mod 8) then 

w = 3’5ju2, u E U,, 

Examine the possible cases with various i,j and read this as a congruence 
modulo 8. It turns out that i = j  = 0 is the only possibility. Thus U i 3 )  consists 
of squares and so these are 2-local norms. 

Notice that U, = U,”) so U i ’ )  is contained in the norm group only when 
2 is not ramified. We are left to decide in the ramified case whether UJ2) is 
contained in the norm group or not. 

i , j  = 0 or 1. 

We must have 

ui2) = (5,u,’) 

and so the  2-local conductor is 2, if and only if 5 is a norm. 

if and only if 
The field K ,  consists of all elements x+y$with x, y in Q ,  so 5 is a norm 

N,(x+y&) = x2 - dy2 = 5 

can be solved with x, y E Q,. Since all squares are norms this is equivalent to 
solving 

x2 - dy2 = 5 ~ ‘ .  
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But this implies dy2 is a norm from Q2(&); that is: 

N(x+zJS) = dy2. 

This is equivalent, with the condition that d is a norm from Q2(J?). 

The norms from this extension are easily determined because 2 is not 
ramified. This means that every unit is the norm of a unit in Q2($) by Proposi- 
tion 3.1 1 of Chapter V. Furthermore the index in Q2* of the norm group is 2 
by Corollary 3.15, Chapter V so the group of norms from Q2(J3) is precisely 

This means the 2-local conductor of K/Q is 22 if and only if d E U, (d  is 
square free). In other words d must be odd. If d is even the 2-local conductor 
is 23. (All of this is under the assumption that 2 is ramified in K . )  

Recall (from Chapter 1) that 2 is ramified if and only if d = 2,3 mod4 and 
the odd ramified primes are the divisors of d. 

Now combine the above remarks and examine the powers of the prime 
divisors of d and f(K/Q) to get the result in the following form. 

1.1 Theorem. The conductor of Q(&)/Q is 

(22) u2. 

f = ( 4  d > O  d =  1mod4, 

( d ) p ,  d < 0 d = 1 mod4, 

( 4 4  d > 0 d = 2,3mod4, 

(4d)p, d < 0 d = 2,3 mod4. 

We know by the Kronecker-Weber Theorem that Q(@) must be contained 
in Q(&) for some primitive nth root of unity 8,. The least n that will suffice is 
the one such that Q(P,) has the same conductor as Q(@). 

1.2 Corollary. Q ( 4 )  c Q(Po). Here D = Id1 if d = 1 mod4 and D = 14dl 
if d = 2,3 mod4. 

PROOF. With the indicated D we have D > 0 and the conductor of Q(&)/Q 
is (D) or (D) pm. By Proposition 3.3, Chapter 111, the kernel of the Artin map 
for Q(/?,)/Q is the congruence subgroup for the modulus ( D ) p ,  and so 

H(Q(P,)/Q) E H(Q(&)/Q). 
The result follows by the Classification Theorem 9.16, Chapter V. 

2. TWO EXAMPLES 

EXAMPLE 1. Let K = Q(J-5). We shall prove K ( ' )  = K(J-1) and K(')  = 
K ( ' ) .  The decomposition of rational primes in K(') is also described by 
explicitly giving the decomposition groups. 
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The first step is to show h, = 2.  The Minkowski constant is small here and 
by Theorem 1 1.19, Chapter I, every ideal class [B] in C, contains an ideal 23 
with NKIQ(B1) < 2.  The prime 2 is ramified in K so ( 2 )  = 'p2 and 'v is the 
only nontrivial integral ideal having norm $ 2 .  This implies at once h, < 2 
since ['PI is the only possible nontrivial class. By Exercise 2 ,  Section 4, Chapter 
1, hK is not 1 S O  h, = 2.  

This gives dimension formulas 

(K'" : K )  = 2,  (K"' : Q) = 4. 

Since K " ) / Q  is normal it has an abelian Calois group-all groups of order 4 
are abelian. Thus K ( ' )  is contained in some cyclotomic extension of Q (by 
Kronecker-Weber) and to know which one we calculate the conductor. It 
turns out that f(K'"/Q) = f(K/Q) and the following argument proves this in 
a more general setting. 

2.1 Lemma. Let F be an algebraic number field, K / F  an abelian extension 
and E a subfield of K ( ' )  which contains K and is abelian over F. Then 
f (EIF) = f ( K / F ) .  

PROOF. Let p be a prime of F and a divisor of p in K .  Since E / K  is 
unramified, every 'P-adic unit in K9 is the local norm of a unit in E9 (the corn- 
pletion of E at some prime over '$) by Proposition 3.1 1 of Chapter V. Now 
apply Corollary 13.6, Chapter V to calculate the p-local conductors. The 
group U i b )  in F, consists of local norms from Kifand only if it consists of local 
norms from E .  Thus the same power of p divides both conductors and they are 
equal. 

In our example the conductor is (20) p, S O  

K'" E Q ( P 2 0 ) .  

This field Q ( P z o )  has dimension 8 over Q so it would be easy to list all the 
subfields and find K ( * ) .  Rather than do this, we take a more systematic 
approach that applies in more general circumstances. 

The 20th root of unity, p20, is a product P4p5 and the Galois group G of 
Q(Pzo)  is the direct product of the groups of Q(p4) and Q ( B 5 )  over Q. We may 
write 

G = (7) x (a) 

T(B4) = 84' 

. r ( P s )  = 8 5  

d84) = P4 

d P s >  = P S 2 .  

Then T~ = a4 = 1. 
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We compute the group fixing K. We have 

4-5 = p 4 J 5  

where p4 is a suitable 4th root, and & E Q(p,) .  Thus u and T both send 4-5 
to - and ot fixes K. Since (at) has order 4 it is the full group fixing K. 
NowK(')must beleftfixed bythesubgroupofindex2in(at); thisis(u2r2) = 

(a2). Since o2 fixes both K and p4 (which we now write as i )  it follows that 

K ( ' )  = K ( i )  = Q ( J T 5 , i ) .  

It is not difficult to work out the decomposition of primes in K ( ' ) .  We 
consider a few cases. The procedure (for unramified primes) is to evaluate the 
Artin map. This is done most conveniently by the formula 

( P K ( ~  ) I Q ( P )  = res ' P Q ( ~ ~ ~ ) ~ Q ( P )  

where "res" means restriction to K ( ' ) .  The Artin map for the extension 
Q(p2,) /Q is easily evaluated and has been done in Section 3, Chapter 111. 

A prime p of Q splits completely in K(') if 

'es(PQ(Pro)lQ(P) = 1 ; 

that is, if the automorphism p -+ p p  is the identity on K ( ' )  where p = p2,. This 
occurs precisely when either 

f i p  = p and p = 20k+ 1, or p p  = a2(p). 

This means 

p4p = p4 and / I s p  = pS4. 
Thus p = I mod 4 and p = 4 mod 5. Equivalently p = 20k+ 9. 

a specific decomposition group. The full Galois group of K ( ' ) / Q  is 
In a similar way one determines the primes which are unramified and have 

(T, u)[K(') z (t, a)/(02). 

This has three subgroups of order 2 generated by 

t lK(" ,  u1 K ( ' ) ,  zalK('). 

A prime p has decomposition group generated by T if the automorphism 
p-+ pP is the same as T or T a 2 .  It must happen that 

p 4 p  = D4-' and p 5 p  = p5 or 8;'. 
Thus p = - 1 mod 4 and p = k 1 mod 5. Equivalently p has one of the forms 
20t+ 1 1  or 20t+ 19. The remaining cases are summarized in the table below. 

The decomposition groups for the ramified primes 2,5 can be discussed in 
a similar way except the p-local Artin maps must be used for p = 2,5 in place 
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of the global Artin map. Just as above the p-local Artin map for the extension 
K ( ' ) / Q  is the restriction to K") of the p-local map for Q(P)/Q. Let &,0, 
denote these maps; we have to compute the restrictions to K( ' )  of 

02 ( Q 2 * )  and 05 (Q5*) .  

Take p = 2 first. The 2-conductor for Q(p) /Q is 2, so 

The group Q2*/U,'2) is generated by the cosets containing 2 and 3 so the 
decomposition group of (2) in  Q(P) is 

e ,(up) = I .  

G(2) = (0.2 (2),02 (3)). 
The procedure in Section 12, Chapter V shows how to evaluate these maps. 

Namely 0, (2) = (pji(y) where 

2-'y = 1 mod4 

y = 1 mod5pm. 

The choice y = 26 (or 40t- 14) will do and (pji(26) = ~ ( 1 3 )  is the map 
f i - + P ' 3  = j ? 4 j ? 5 3 . T h ~ ~  

e,(2) = n3. 

Similarly 8,(3) = cpji(51) = T. 

Thus G(2) = ( r , 0 3 )  is the full Galois group and on K ( ' )  the decomposition 
group of (2) has order 4. We know 2 has ramification number 2 = e in K and 
so also in K ( ' ) .  Thus (2) has one prime factor in K ( ' )  with relative degree 
f = 2. This holds of course because the decomposition group has order ef = 4. 

In a similar way G(5) = (to3). We summarize the decomposition theory of 
primes in K ( ' )  in the table. 

Rational Decomposition e ,  f 
prime grow 
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We close this example by showing K(')  has class number one and so K',) = 
K('). The discriminant of K(') can be estimated. Use the elements 

I+JJ I + J J I  
1, i, - - 

2 ' 2  

as a free Z-basis and find the discriminant of this basis is - Z4 5'. The Min- 
kowski constant can be calculated using this for A. One finds every ideal class 
for K ( ' )  contains an ideal whose norm is < 3 .  It is necessary to look at the 
factors of (2) and (3). We saw above that both (2) and (3) are divisible by primes 
with relative degree 2 so their norms are 2', 32. So there are no ideals with 
norm < 3  except the unit ideal. Hence the class group is trivial for K ( ' ) .  

EXAMPLE 2. By way of contrast to the previous example we consider the 
non-normal extension of Q, K = Q ( Q ,  O 3  = 11. In Section 11, Chapter I we 
saw hK = 2 and that (2) was the product 'p, 'p2' of two primes in K. Moreover 
'p2 was not principal but 

'pZ2 = (ez-5). 

The group of units in K is (k 1) x ( u )  where we may assume u > 0 (and 0 is 
the real cube root). 

The problem of describing K(') is not conveniently solved by using the class 
field theory of Q because K is not normal over Q. The problem is solved by 
appealing directly to the technique used in the proof of the existence theorem. 
Since K(') has dimension 2 over K i t  is a Kummer 2-extension and K(') can 
be found as a subfield of the extension of K obtained the square roots of all 
the S-units for a suitable S.  The requirements in Section 9, Chapter V, placed 
upon S are satisfied if we take 

with 'pa, 13,' denoting the two infinite primes. The S units can be found now. 
Suppose a E K* and (a) is divisible only by primes in S.  For suitable integers 
a and b, (a) has the factorization 

Only even powers of '$3, are principal, so a - b = 2k and 

(a) = ( 2 b ) ( P - 5 ) k .  

KS = ( f i )  x ( u )  x (2) x ( e 2 - 5 ) .  

This implies a is a unit times 2'(02 - 5)k .  It follows 
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If we adjoin to K a root of X 2  - a  with a a product of distinct generators listed 
above then p2 will ramify whenever 2 or 0' - 5 divides a. To get an unramified 
extension it is necessary to take c( = +u.  But K has a real prime so we select 
ct = u > 0 to prevent ramification at infinity. Finally then 

K ( ' )  = K ( J i ) .  

The decomposition of primes in K"' is completely described by their orders 
in CK (as is always the case for any Kin K ( ' ) ) .  That is, a prime 'p of Kis divisible 
by a prime of K ( ' )  having relative degree 2 if and only if ['p] has order 2 in  
C,. For example p2 remains prime in K ( ' ) .  

3. THE EXTENDED CLASS GROUP 

It is possible that an algebraic number field K has class number h,  = 1 and 
still has an abelian extension that is unramified at all finite primes. For example 
take K = Q($) and consider the extension K ( G ) .  This is easily seen to be 
unramified except at the real primes of K .  

We consider for any algebraic number field K ,  the modulus in = product of 
all the real primes of K .  Set in = 1 if there are no real primes. In the real case 
the elements of K,, are called totally positiue because they map onto positive 
elements in every real imbedding of K .  The extended classgroup is the quotient 

CK+ = k / i (K , , , , 1 ) ;  

the ideals modulo the principal ideals with a totally positive generator. 
belongs to an ideal group with conductor 

m. The class field to this ideal group is called the extended Hilbert classfield 
and is denoted by K ( + ) .  

implies K ( ' )  G K ( + ) .  The difference between 
these two fields can be measured in terms of K .  

3.1 Theorem. Let r be the number of real primes of K ;  U,, UK+ the group 
of units and totally positive units of K respectively. Then 

The congruence subgroup i(K,,,, 

The inclusion i ( K * )  2 (K,,,, 

(K"' : K"') = 2'[UK : UK+]-' 

PROOF. The Artin maps induce isomorphisms 

G ( K ( + ' / K )  E I,/i(Km, 

G ( K ( ' ) / K )  r I , / i (K*)  

and so G ( K ( + ) / K ( ' ) )  z i(K*)/ i (K, , , ,  l). 
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Now consider the diagram below to compute the order of this group. 

1 -+ UK + K *  i ( K * )  -+ 1 

1 1 1 

The bottom row is exact so it follows 

(K'" : K'") = [ K *  : K m , , ] [ U K  : UK'1-I. 

To finish the proof we need to compute [K* : K m , l ] .  Let ei(a) denote the sign 
of a at the ith real imbedding of K .  Then 

a + (e ,  (4, . . .1 e,(a)) 

is a homomorphism of K *  to a group of order 2'. The map isonto by the 
approximation theorem and the kernel is precisely K m , l  so [K* : Km,]J = 2' 
as required. 

In case K = Q(@) there is a criterion that is quite easy to state although in 
practice it may be difficult to apply. 

If d > 0 then UK has the form 

u, = < + I >  x ( u )  

where we may assume u > 0. 

3.2 Theorem. Let K = Q(Jd), d square free. Then 

K ( + )  = K ( ' )  if d < 0 or 

d > 0 and NKlQ(u) = - 1  

( K " ) :  K"))  = 2 if d > 0 and NK~Q(u) = 1. 

PROOF. The case d < 0 requires no argument. For d > 0 the dimension 
(K") : K")) is 1 or 2 depending upon the two cases UK+ = ( u 2 )  or UK+ = 
( u ) .  Evidently u is totally positive if both u and its conjugate U are positive. 
This is equivalent to 

NKlQ(u) = UU = + l .  

The alternative u6 = - 1 occurs if U -= 0; in other words u2 generates UK+. 
In practice this result may be difficult to apply because there is no general 

formula to tell us (in terms of d) when - 1 is the norm of a unit. It is not 
difficult to determine when - 1 is a norm from Q ( J d )  but this is not sufficient. 
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For example with d = 34 the element (5  + 3 @)/3 has norm - 1 but no unit 
has norm - 1. 

There is a procedure by which u can be found. A method using the continued 
fraction expression of J d  can be found in the book by Borevich-Shafarevich, 
Number Theory, Chapter 2, Section 7. Also see the exercises following Section 
1 I ,  Chapter I. 

We shall use the close connection between K +  and K ( ' )  to study the class 
group of K .  In the first example of Section 2 i t  was very convenient to have 
K"'/Q normal and abelian. We always have K ( ' )  and K ( + )  normal over Q but 
not necessarily abelian. We consider the next best case-look at the largest 
subfield which is abelian over Q .  

Definition. For any abelian extension K / Q ,  the genusfield of K over Q is the 
largest abelian extension E of Q contained in K ( ' ) .  The extended genusfield is 
the largest abelian extension E ( + )  of Q contained in K ( + ) .  

The main object we want to study is C,. This is isomorphic to G ( K ( ' ) / K )  
so we look at K ( ' ) .  The genus field is introduced to describe at least a part of 
K f ' )  by using the class field theory of Q. The remaining problem is to describe 
the part of the extension from the genus field to K ( ' ) .  The field K ( + )  is intro- 
duced only for technical reasons. It turns out to be slightly easier to describe 
the extended genus field and from it obtain the genus field. 

It is necessary to look closely at a number of groups, subgroups, fields and 
subfields so we fix some notation that will be used for the rest of this section. 

K = Q($) with d a square free integer and cr is an element of G +  = 
G ( K ( + ) / Q )  which is not the identity on K ;  that is, olK generates G ( K / Q ) .  We 
first describe the extension K ( ' ) / E  in terms of K .  

3.3 Theorem. (a) G ( K ( ' ) / E )  E subgroup of C K  generated by the ideal 
classes of the form [.(a) %-'I, 'u E I,. 

(b) G ( K ( ' ) / E )  E (C,)'. 

PROOF. Let G = G ( K ( ' ) / Q )  so that E is the field left fixed by the com- 
mutator subgroup (G, G) generated by all commutators 

(u,u)  = u u u - l u - l ,  

The Artin map gives an isomorphism 

c p : C , - t C G G  

in such a way that for each ideal 2l of K we have 

cp[.2l] = ocp[(2[]o-'. 

It follows that 

p[cr(%)91-1] = @,a),  a = 40[2l]. 
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Thus cp maps the group in part (a) into (G, G) and we must show every com- 
mutator in (G, G) has the form (a, a) with a E C. 

We know C is a normal subgroup of G of index 2 and G/C r G ( K / Q ) .  It 
follows that every element in G has the form a or nu with a E C. If we use the 
abelian property of C the following commutator identities can be proved : 

(oa,a,) = (a,a,) 

(au,aa,) = (a,u2), a, = ou-'a,a-'. 

It follows that every commutator is in the image of cp and part (a) holds. 

There are three cases to consider: 
To prove (b) we begin with a prime ideal '$3 of K and suppose p = 'p n Q .  

(i) p = 'p so rp = n ( V )  and [a(V) V - ' ]  = 1 ; 
(ii) p = 'p2 same as above; 

(iii) p = W.h, 'vI = a(?), [a(Y)V-'I = [VIV-'I  = [ u V - ~ I  = C'$3-'12. 
This shows that every class [a(2l)Pl-'] is a square in C K .  Conversely if 

[a] = [S2] then a(S)S-' = Sa(S)S-* = N K 1 , ( S ) 9 - 2 .  Since N K I Q ( S )  is 
principal it follows [a] = [a(S-') S] proving (b). This provides two descrip- 
tions of G(K"' /E) .  Next we clarify the relation between E and E ( + ) .  

3.4 Theorem. (K"' : K"') = (E'" : E ) .  

E = E ( + )  when K ( ' )  = K ( + )  so we may suppose (K" )  : K " ) )  = 2. Let 
PROOF. This is proved by purely group theoretical tricks. It is clear that 

Gf = G(K'+ ' /Q)  

C +  = G(K'+ ' /K)  

so that G +  = (a, C') and G = (a, C). Let T be the automorphism (of order 2) 
which leaves K ( ' )  fixed. Then T E C + and the group ( T )  is normal in G+.  This 
forces T to commute with every element in G'. Also the natural restriction 
map to K ( ' )  establishes 

C'/(T)  E G 

C+/(T> E c. 

(K'f' : E'+')  = (K'" : E ) ,  

If we show (G', G+) z (G, G) then it follows that 

which is enough to prove the result. 
The arguments above show (G+,  G+) = (a, C') using only the fact that C +  

is abelian with index 2. One can verify the identity (a,a, a2)  = (u,a,)(a,a,) 
for a,, a2 in C +  so the function a -+ (a, a) is a homomorphism of C +  onto 



3. The Extended Class Croup 207 

(G', C'). Under this map the image of T is (a, T) = 1 because T is in the center 
and so the image can be identified with the image C '/(T) z C-+ (a, C )  = 

(G, C) and the result follows. 

Now we show how to construct E ( + ) .  

3.5 Lemma. Except possibly for infinite prime factors we have f(E")/Q) = 

f (KIP). 
This follows from the proof of Lemma 2. I. 

Let D be the positive integer such that the "finite" part of f(K/Q) is (D). 
Thus 

D = Id1 

D = 41dl 

d = 1 mod4 

d = 2 ,3  mod4. 

Let p be a primitive Dth root of unity. 

3.6 Lemma. E ( + )  is the largest subfield of Q(P) which contains K and has 
the property that for each prime p of Q the ramification number of p is the 
same in K as it is in E' ' ). 

By the conductor calculation and the classification theorem we 
find E ( + )  c Q(P). On the other hand a field F having the same ramification 
for each p as K must be unramified over K at every finite prime. This implies 
f(F/K)contains only real primes and so f(F/K)lf(E'+' /K).  It follows F G 

PROOF. 

Let us factor D as 

D = PI P 2  ' " P I  

where each p i  is an odd prime when D is odd and when D is even p ,  is either 
2' or 23 and p z ,  . . . ,p,  are odd primes. Let p,, denote a primitive pith root of 
unity. We may select these roots so that 

P I  D 

Let r denote the Galois group of Q(P)/Q and I-, the Galois group of Q(Pp)  
over Q. There is a natural isomorphism 

B = nP,. 

which may be described explicitly as follows. Each element in r is described by 
an automorphism 

p -+ p' ( r , D )  = I 

and we let this correspond to the same map o n  each Q(P,), This is then a map 
onto the direct product because for any map 

T : P p  -+ Pp' 
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in rp there is an integer y such that 

y = r m o d p  

y = I modq q J D ,  q # p. 

Then p+ By maps onto z. 
We shall regard the isomorphism above as an identification. The key idea 

of this section is to  describe the ramification of a prime p in a subfield of Q(p)  
by using the rp. 
3.7 Theorem. Let F be a subfield of Q ( p )  and p a prime divisor of D.  The 
ramification index of p in F is the number 

Crp : rp rFl 

where r, is the subgroup of r which leaves F fixed. 

let 
PROOF. Let 0, denote the p-local Artin map for the extension Q(p) /Q and 

res:  r -, r/r, 
denote the restriction homomorphism onto G(F/Q).  Then res0, is the local 
Artin map for F/Q and 

IresO,(Qp*)l = ef 
with e andfthe ramification index and relative degree, respectively, of a prime 
divisor of p in  F.  

We know Qp* = ( p )  x Up and the order of res O,(p) isfbecause the smallest 
power of p that is a local norm from Fp is p J .  It follows that 

lresO,(U,)( = e .  

Now we prove O,(U,) = r,. Once this is done we then have 

to complete the proof. 

element y (an integer, say) such that 
Take u E Up and write D = pDo. We evaluate 0,(u) by first selecting an 

y = u modp 

y = 1 modD, 

Y > O  

and then eP(u) = cp(y), cp = global Artin map for Q(p)/Q.  This is the map 
p -, by and because of the congruences satisfied by y we see ~ ( y )  E r,. Con- 
versely for any map T in rp there is an integer y such that ~ ( p , )  = p/ and 
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y E 1 mod Do. Thus O,(y) = cp(y) = T. This proves O,(U,) = rp and finishes 
the proof of the theorem. 

This result will help us determine I?'). We have r,, the subgroup of r 
fixing K and the unknown group ro which is the group fixing E('). We 
translate Lemma 3.6 into group theoretic language as 

[r, : r, n r,] = [r, : r, n r,]. 

rp n r, = rp n r,. 
Since K G E ( + ) ,  it holds that ro -c r, so in fact 

Now E(+)  is the largest field for which this holds so ro must be the smallest 
for which this holds. Evidently r, must contain each inter- subgroup of 

section r, n r, and so the minimal property insures that 

r, = n r, n r,. 
PID 

This is a direct product because n I-, is a direct product. From this we get next 

G ( E ( + ) / Q )  = r/ro = n 2 .  
PID rp 

The number [r, : r, n r,] is the ramification index of p in K-namely 2. We 
have proved so far the following: 

3.8 Theorem. (E"' : Q)  = 2', where t is the number of prime divisors of 
the discriminant of KIP. 

There is a nice consequence of this calculation. 

3.9 Theorem. Let K = Q(&) and suppose the discriminant of K / Q  has t 
prime divisors. Then the group C,/(C,)2 has order 2'- if d < 0 or if d > 0 and 
a unit of K has norm - I ; it has order 2'-2 if d > 0 and all units of K have 
norm 1.  

PROOF. By Theorem 3.3 we find G(E/K) 2 C,/(C,)2. The order of G ( E / K )  
is easily found using Theorems 3.2, 3.4, 3.8. 

We can go a little farther without any additional effort. Explicit generators 
for E(') can be given from the knowledge of the Galois group ro given above. 
Since r, n r, has index 2 in r,, it follows that E(+)  contains a quadratic 
subfield of Q(p,) .  When p is odd r, is cyclic so there is only one quadratic 
su bfield-namely 

a(&) c E ( ' )  

Q(Jq) c E(+) 

if p = 1 mod4 

if p = - I mod4. 
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In case D is even but not divisible by 8 then again there is only one quadratic 
subfield of Q(&)-namely Q (Jq) = Q (&I. 

When D is divisible by 8 then Q(P2) contains three quadratic subfields 
generated by v, fl One could work out congruence conditions to  
tell which case arises but it is simpler to just use the following device. Since 8 
divides D, d must be even and 

[d l  = 2/12 * * * p , .  

Suppose p 2 ,  ..., pr are the primes = 1 mod4 and p r +  ..., pI are the primes 
= - I mod4. Then 

- -  
Jd = J d P I  ..* Ji&zz*.* J-P, 

and so the ambiguous sign is uniquely determined. We can avoid cases by 
stating the result in the following way. 

3.10 Theorem. Let K = Q(Jd) have discriminant A and suppose 1A1 = 
p1 p 2  " ' p ,  with p 2 ,  . . . , p ,  odd primes and p ,  either an odd prime or a power of 
2. The extended genus field of K is 

Q (42, g2,  . . . , aI) E ( + )  = 

where 
- 

x i  = JPi if p i  =- 1 mod4, 

ai = J - p i  if p i  = - 1  mod4. 

In the case d < 0, E = E ( + )  is part of K ( ' ) .  If d > 0 and some unit of K has 
norm - 1 in Q then again E = E ( + ) .  Notice this case can only occur when d 
has no prime factor of the shape 4n - 1. This follows because K has no complex 
prime and so E must not have one either since E / K  is unramified. In this case 
there are no primes for which ,,&is in E.  

In the case d > 0 and all units of K have norm + 1 then E is the maximal real 
subfield of E ( + ) .  We can list generators for E by inspection of those for E ( + )  
in the theorem. 

Suppose p 2 ,  . . . ,pr  are the primes = 1 mod4 in case A is even and that also 
p1 E 1 mod4 in case A is odd. Then 

E = Q(Jd,a,', and 

(i) ail = Jz, i < r 

cli l = J p i p I ,  r < i < t if r z t - I ;  
- 

(ii) ail = Jpi,  i < t - I 

= J 2 p , ,  incase r = t -  1 .  
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We give a few examples in the table below. Notice that the field Edetermines 
the order 2s of CK/(CK)*. This means that CK has exactly s cyclic direct factors 
of even order appearing in  a direct product decomposition. For certain small 
values of h K ,  E determines completely the structure of CK . For example with 
K = Q ( d n 3 ) ,  h K  = 8 and s = 2 so cK is the direct product of a cyclic 
group of order 4 and one of order 2 .  

d 12 K Generators for E 

- 21 
21 

- 42 
42 

65 
- 130 
I30 
- 55 

55 
-110 

I10 

- 65 

4 
1 
4 
2 
8 
2 
4 
4 
4 
2 

12 
2 



In the two sections which follow we present some results which were used 
several times in the text. Since these are not universally taught in courses 
prerequisite to one in which this text might be used, complete proofs are given. 
We prove only the versions of the theorems actually required in the main body 
of the text. More complete results on these matters can be found in several 
books; for example see “Algebra” by Lang. 

APPENDlX A. NORMAL BASIS THEOREM 

AND HILBERT’S THEOREM 90 

Assume L/K is a normal extension with Galois group G. Let L = K(8)  and 
f ( X )  the minimum polynomial of 0 and K .  Let 

i 

be the factorization off(X) in L [ X ] .  

Proposition 1. L OK L 2 L ,  0 ... 0 L, (ring direct sum) with L, z L. If G 
acts on L @ L by the rule o(a@b)  = o(a) b, then G permutes the Li 
transitively. 

PROOF. Let G act on L [ X ]  by operating on the coefficients of a polynomial. 
Then the ideal ( f ( X ) )  is left invariant (as a set) becausef(X) has coefficients 

212 
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in K and G permutes transitively the ideals ( X -  Oi) containingf(X). (G per- 
mutes the roots transitively.) By CRT we find 

with L z L i .  Clearly the action of G permutes the Li transitively. Now to get 
the statement of the proposition we observe the isomorphisms 

are consistent with the action of G. 

Theorem. (Normal Basis Theorem in Cyclic Case). Assume G = (a) is 
cyclic of order n. There is an element a in L such that a, a(a), ..., a"-'(a) is a 
K-basis of L. 

PROOF. View the automorphism 6 as a K-linear transformation on the 
K-space L. If xi is a K-basis for L, then xi 8 1 is a (1 0 L)-basis for L 8 L. 
This means 6 has the same minimum equation over K as 6 @ 1 has over 1 8 L. 
By Proposition 1, 6 @ 1 is a permutation matrix and so has minimum equation 
X"- 1. Thus the minimum and characteristic equation for 6 coincide. By linear 
algebra there is a "cyclic vector". That is there exists an element a E L whose 
images under powers of a span L over K. 

REMARK. This theorem holds for any G with the conclusion that an 
element exists in L whose images under G give a basis of L over K. We shall 
not require this more general result. 

We introduce some further notation. Let p be the map L @ L -, L defined 
by P(a 6 6 )  = ab. This is a K-algebra homomorphism onto L. All but one of 
the Li in Proposition 1 must be in the kerp. Let L ,  be one that is not and let 
e l  denote the identity element of L,.  We still assume G = (6) is cyclic and set 

O " - ' ( L ~ )  = L ~ ,  ai- '(el) = e, 

so that e, is the identity of Li and 

P(e,)  = 1, B(ej) = 0 j # 1. 

Proposition 2. I f  the elements 11, ..., I ,  in  L are not all zero then the K-linear 
transformation 

a -, CAiai(a), a E L 

is not the zero transformation. 
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PROOF. Consider maps 
h I B L - - - t L Q L - - - t L @ L + L  

where h(a) = ct 0 I ,  f ( c t  0 y )  = a'(.) 0 y l ,  and B as above. The composite 
of the maps, p' is the transformation we want to show is nonzero. We see 
that h(L) generates L 0 L as a vector space over 1 0 L. Sincefis a 1 0 L-linear 
map we see bfh is zero if and only if the image offis in ker p. To prove this is 
not the case first take an index k such that Ak # 0. Then 

Bf(e,-ktI) = b c a i  0 l(en-ktl)l  8 Ai 

= x a ( e n - k + l  t i ) l i  

= 2, # 0, 

and this provesthe result. 

Corollary (Hilbert's Theorem 90). Let L/K have cyclic Galois group 
G = (a). [f ct E L and N,,,(a) = I ,  then ct = P/a(B) for some p E L. 

PROOF. Let Ai=aa(a). . .a '- ' (ct)  for i =  l , 2 ,  ..., n. Notice A,= N ( a ) =  1 
and cta(li) = By the last result there is an element y E L such that 

p = p i o ' ( y )  # 0. 

It is easily checked that a(8) = a - ' b  and the result follows. 

APPENDIX B. MODULES OVER PRINCIPAL IDEAL DOMAINS 

Let R be a principal ideal domain. We shall prove some facts about finitely 
generated modules over R. For the sake of completeness, we shall first record 
some definitions. Let M be a (left) R-module. M is forsion free if x in R, rn in  
M and xrn = 0 implies either x = 0 or nz = 0. M is finitely generated if there 
exist elements m , ,  .... m, in M such that M = Rm, +...+ Rrn,. The elements 
m , ,  ..., rn, are ageneratingset. I f  the equation x I  rn ,  +...+ x,m, = 0, with xi 
in R, implies xi = 0 for each i then M is free of rank n. I n  this case M is 
isomorphic to the direct sum of n copies of R. We shall also write 

where e, = (0, ..., 1, ..., 0), I in the ith coordinate, for the free module of 
rank n. 

Theorem 1. Any R-submodule of R(") is a finitely generated free module 
with rank at most n. 
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PROOF, Let M be a submodule of R'") and set 

Mk = M 17 (Re,  + ... -k Re,). 

We shall prove by induction on k that Mk is (0) or is free of rank at most k .  
For k = I we find MI = %el with 91 some ideal of R. Since 9l is principal, 

it is either (0) or free of rank I .  The same is then true of M I .  Now suppose 
k > 2 and M , - ]  is free of rank at most k -  1 .  Let 91, denote the set of all 
elements x in R such that 

m = b l e ,  + ... + hk- ,  e k - ]  + xek ( 1 )  

is in M ,  for some b, in R. Then 91, = Ra,. Now let 

mo = a l e l  + ... + a,e, 

be an element in  Mk having the generator of 81, as the coefficient of e, .  For 
any m in Mk we have m in the form (1) with x = ba, for some b in R. Then 

m = bm, + (m-bm,) 

shows Mk = Rm, + Mk- If m, is already in M , -  so a, = 0, then Mk = 
M , - ,  so the inductive step holds. I f  a, # 0, then inspection of the kth coordi- 
nates shows M ,  is the direct sum of Rm, and h f k - ,  . Furthermore Rm, is free 
of rank I so it follows that MI, is free of rank <k.  

Corollary. I f  0 < m < n are integers and 

R(") 2 R("') @ p' 

for some module V,  then V is free of rank n-m.  

PROOF. By the theorem, V 2 R(') for some integer r .  If R happens to be a 
field, then t = n-m by dimension counting. When R is not a field, take any 
maximal ideal 91 of R so that R/91 = F is a field. Now use the observation 

R(n)/'$IR(n) N - F(n) 

to count dimension again and complete the proof. 

The result about modules most frequently used in the text is the following. 

Theorem 2. Let M be a finitely generated, torsion free R-module which can 
be generated by n elements but no fewer. Then M is free of rank n and any 
generating set with n elements gives a free basis for M .  

The proof is by induction on n.  Let m , ,  .. ., m, be a generating set. 
If n = 1 ,  then M = Rm, z R so the result holds. Assume the theorem is 
correct for torsion free modules on n -  1 generators. Define an R-homo- 
morphism (b from R(") to M by 

PROOF. 

$(xl, ..., x,) = X l r n ,  + ... + x,m, .  
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This is onto M because the mi generate M .  The theorem will be proved if we 
show 4 is one-to-one. We shall reach a contradiction by assuming now 
W = ker$ # 0. 

Assertion 1 .  

To prove this we consider the projection map 

W = R(y,, ..., y,) for some yi E R.  

7f : ( w l ,  ..., w,) -+ w, 

defined on W with values in R. This map is an isomorphism of W with a non- 
zero ideal of R because any element in the kernel of n has the form 
( w , ,  . .., w,- ,, 0) and 

wlml  + ... + w,,-lmn-l = 0. 

However the induction hypothesis can be applied to Rm, + + Rm,-,  to 
obtain this is free on the n - 1  generators m,,...,m,-,. Thus w ,  = = 

w,-~ =O.Nowifn(W)= Ry,thenW= R(y, ,..., y,)where(y, ,..., y,)isin W. 

Assertion 2. There is a basisf,, ...,A for R(") and a nonzero element b in R 
suchthat bf ,=(y , ,  ...,y,,). 

Notice that the proof of this assertion is independent of the rest of the 
proof of the theorem and is valid so long as ( y , ,  ...,y,) # 0. 

Let Ry, + + Ry, = Rb and let zi be an element of R such that zib = y,. 
Then 

Rz, + . * *  + Rz, = R 

and 

a ,  z ,  + *.. + a,z, = 1 

for some ai in R.  
Consider the homomorphism 0 from R(") to R defined by 

q x , ,  ..., x,) = x, a,  + ... + x,a,. 

= o ( v ) ( Z )  + [u-e(v)(z)l 

Then 8(z,, . . .,z,) = 1. Write ( 2 )  = (z,, . .., z,). For any u in R'") we have 

and this shows R(") = R(z)+ ker0. It is easy to see the sum is direct and that 
R(z)isfreeofrank 1.Thuskereisfreewitha basisf,, ...,f,-,. Ifwesetf, = ( 2 )  

then bf, = ( y l ,  ...,y,) as required. 

Now we complete the proof of the theorem. The element ( y )  = (yl ,  ...,y,) 
is in W s o  

0 = 4 ( Y )  = $(bf,) = b 4 m .  
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Since M is torsion free and b # 0 it follows that 4cfn) = 0. But then M is 
generated by 4 (fi), . . ., 4 ( fn-  ,) since R'"' = C Rfi . This means M can be 
generated by fewer than n elements contrary to our assumption. 

Corollary. Let R have quotient field K and let L be a field containing K .  If 
M is finitely generated R-submodule of L, then M is free with rank at most the 
dimension of L over K .  

Since L is a field containing R, M must be torsion free. By the 
theorem, M is free with rank n for some n. An easy common denominator 
argument shows that any minimal generating set for M is a linearly inde- 
pendent set over K .  

EXERCISE. Prove the Unimodular Row Lemma: If R i s  a PID, and y l ,  ...,y, 
are elements in R such that Ry, + ... + Ry, = R then there exists an n x n 
matrix Ywithentriesin Rsuch that thefirst rowofYis(y, ,  ...,y,) anddetY= 
unit in R. If n > 2, then in fact, there is such a Y with det Y = 1.  

PROOF. 
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Dirichlet series, 1 I3  
Dirichlet unit theorem, 61 
Discrete valuation ring (DVR), 8, 69 
Discriminant 

group, 95 

173 

of a basis, 29 
of an ideal, 29 

Division, I33 

E 
Exact hexagon, 141 
Exponential valuation, 67 
Extended class group, 203 
Extended genus field, 205 

F 
First fundamental inequality, I37 
Fractional ideal, 16 
Frobenius automorphism, 98 
Frobenius density theorem, 134 
Full lattice, 48 
Fundamental equality, 156 
Fundamental parallelopiped, 48 
Fundamental unit, 62, 65, 204 
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G 
Genus field. 205 

H 
Hasse norm theorem, 156 
Hensel’s lemma, 83 
Herbrand quotient, 142 
Hilbert class field, 191 
Hilbert’s theorem, 90, 214 

I 
Ideal group, 17, 103, 168 
Inertia field, 97 
Inertia group, 95 
Integral closure, 6 
Integral dependence, 5 
Integral element, 5 
Integral normal basis, 165 
Invertible ideal, I6 

K 
Kronecker-Weber theorem, 48, 165 
Kummer nxxtension. 171 

L 
Lattice, 48 
Laurent series field, 93 
Legendre symbol, 45 
Local Artin map, 187 
Local norm, 156 
Local ring, 4 
Localization, 2 
L-series, 127 

M 
Minkowski bound, 56 
Modules over a PID, 214 
Modulus, 107 
Multiplicative set, 1 

N 
Nakayama’s lemma, 4 
Norm, 19, 35, 37 
Norm residue symbol, 187, 201 
Normal basis, 165 
Normal basis theorem, 213 

0 
Orthogonality relations, 127 

P 
PID, 6, 214 
Prime 

finite, 71, 88 
infinite, 71, 88 
split completely, 100 

Prime ideal, 2 
Primitive root, 39 
Principal character, 126 
Product formula 

for local Artin maps, 189 
for valuations, 72, 90 

Q 
Quadratic reciprocity, 45 
Quotient field, 2 

R 
Ramification index, 26 
Ramified prime, 29,94,95 
Ray class group, 109 
Reciprocity law, 158 
Regular representation, 18 
Relative degree, 27 
Riemann zeta-functions, I I3 

S 
S-units, 145, 173 

T 
Tchebotarev density theorem, 182 
Totally positive, 203 
Totally ramified, 95 
Trace, 19 
Translation theorem, 183 

U 
UFD, 6 
Units, 61, 62, 65, 145, 173 

V 
Valuation, 66 
Valuation ring, 8, 69 

Z 
Zeta function, 1 13 

of a number field, I 17 
of a ray class, 117 
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