Recall : Let X and Y be topological spaces; let $f: X \to Y$ be a bijection. If both the function f and the inverse function $f^{-1}: Y \to X$ are continuous, then f is called a *homeomorphism*.

§19 Product Topology (general case)

 $\begin{aligned} X_{\lambda \in \Lambda} \text{ be topological spaces, where } \Lambda \text{ is index set.} \\ \text{Caresian product } \prod_{\lambda \in \Lambda} X_{\lambda} = \{(x_{\lambda})_{\lambda \in \Lambda} : x_{\lambda} \in X_{\lambda}, \forall \lambda\} \\ &= \{\text{functions } h : \Lambda \to \bigcup_{\lambda \in \Lambda} X_{\lambda} \mid h(\lambda) \in X_{\lambda}, \lambda \in \Lambda \} \end{aligned}$

Projection maps $p_{\mu} : \prod_{\lambda \in \Lambda} X_{\lambda} \to X_{\mu} \ (\mu \in \Lambda)$ $(x_{\lambda})_{\lambda \in \Lambda} \to x_{\mu}$

If $X_{\lambda} = X$ for all λ , then $\prod_{\lambda \in \Lambda} X = \{f : \Lambda \to X\} = : X^{\wedge}$.

<u>Definition</u> The *product topology* on $\prod X_{\lambda}$ is the coarest topology such that all projection maps p_{μ} are continuous.

 p_{μ} for topology τ on $\prod X_{\lambda}$ continuous $\Leftrightarrow p_{\mu}^{-1}(U_{\mu}) \in \tau, \forall U_{\mu} \subset X_{\mu}$ is open.

If $f = \{p_{\mu}^{-1}(U_{\mu}) : \mu \in \Lambda, U_{\mu} \subset X_{\mu} \text{ open}\}$, then the topology generated by it, is the coarsest topology containing subbasis S. i.e. it is the product topology.

A subbasis of the product topology = $\{p_{\mu}^{-1}(U_{\mu}) : \mu \in \Lambda, U_{\mu} \subset X_{\mu} \text{ open}\}.$

To get a basis, take all finite intersections of elements os S.

i.e. basis =
$$\{p_{\mu_1}^{-1}(U_{\mu_1}) \cap p_{\mu_2}^{-1}(U_{\mu_2}) \cap \dots \cap p_{\mu_n}^{-1}(U_{\mu_n})\}$$
, where $\mu_i \in \Lambda$ and $U_{\mu_i} \subset X_{\mu_i}$ open.

If some μ_i 's are the same, we don't get a new basis element.

$$p_{\mu}^{-1}(U_1) \cap p_{\mu}^{-1}(U_2) \cap \ldots \cap p_{\mu}^{-1}(U_r) = p_{\mu}^{-1}(U_1 \cap U_2 \cap \ldots \cap U_r)$$
 for U_i open.

So we can assume μ_i 's are pairwise distinct.

Then
$$\bigcap_{i=1}^{n} p_{\mu_i}^{-1}(U_{\mu_i}) = \prod_{\lambda \in \Lambda} V_{\lambda}$$
, where $V_{\lambda} = \begin{cases} U_{\lambda}, & \text{if } \lambda \in \{\mu_1, \dots, \mu_n\} \\ X_{\lambda}, & \text{otherwise} \end{cases}$.

Another description is therefore

 $\{\prod_{\lambda \in \Lambda} V_{\lambda} : V_{\lambda} \subset X_{\lambda} \text{ open, } V_{\lambda} \subset X_{\lambda} \text{ for all but finitely many } \lambda' \text{ s.} \}$

<u>Definition</u> The box topology on $\prod X_{\lambda}$ is the topology generated by the basis { $\prod_{\lambda} V_{\lambda} : V_{\lambda} \subset X_{\lambda}$ open for all λ }. ("open boxes") This is clearly a basis.

<u>Remark</u> The box topology is finer than the product topology. If Λ is finite, they are the same! In general, they are different.

Example

Let $\mathbb{R}^w = \prod_{i=1}^{\infty} \mathbb{R}$. Then $\prod_{i=1}^{\infty} (-1, 1)$ is open in the box topology, but *not* in the product topology. The point $(0)_{i=1}^{\infty}$ has no basic open neighborhood $\subset \prod_{i=1}^{\infty} (-1, 1)$.

By default, on $\prod X_{\lambda}$ always take the product topology.

<u>Aside</u> $\prod_{i=1}^{n} X_i = X_1 \times X_2 \times \ldots \times X_n$ with basis $U_1 \times U_2 \times \ldots \times U_n$ for $U_i \subset X_i$ open, $\forall i$.

 $\prod_{i=1}^{\infty} X_i = X_1 \times X_2 \times \ldots = \{(x_i)_{i=1}^{\infty} : x_i \in X_i, \forall i\}$

basis for this product topology: $U_1 \times U_2 \times \ldots \times U_n \times X_{n+1} \times X_{n+2} \times X_{n+3} \times \ldots$ for each $U_i \subset X_i$ open.

Theorem 22 (continuous maps to a product)

Let $X_{\lambda \in \Lambda}$ and Y be topological spaces, a function $f: Y \to \prod_{\Lambda} X_{\lambda}$ is continuous $\Leftrightarrow p_{\mu} \circ f: Y \to X_{\mu}$ is continous for all μ . Declare $f_{\lambda} = p_{\mu} \circ f$. Then note $f(x) = (f_{\lambda}(x))_{\lambda \in \Lambda}$. This characterizes product topology.

Proof:

To check *f* is continuous, only need to check that all "coordinate functions" f_{λ} are continuous. Clearly, $p_{\mu} \circ f$ is continuous as a composition of two continuous functions. To demonstrate the reverse direction, continuity of $p_{\mu} \circ f$ implies $(p_{\mu} \circ f)^{-1} (U_{\mu})$ open in $Y = f^{-1}(p_{\mu}^{-1}(U_{\mu}))$. $(p_{\mu}^{-1}(U_{\mu}) \in \text{ product topology. Consider } \tau = \{A \subset \prod X_{\lambda} : f^{-1}(A) \text{ open in } Y\}$

1) τ is a topology (easy check)

2) The above shows that $p_{\mu}^{-1}(U_{\mu}) \in \tau$, for all open $U_{\mu} \subset X_{\mu}$, for all μ .

The projection maps $p_{\mu} : \prod_{\lambda} X_{\lambda} \to X_{\mu}$ is continuous, where $\prod X_{\lambda}$ has topology τ . But the product topology is the coarsest topology on $\prod X_{\lambda}$ such that all p_{μ} are continuous. \Rightarrow (product topology) $\subset \tau$, $f^{-1}(A)$ open in $Y \forall A$ open in the product topology i.e. *f* is continuous. \Box

<u>Remark</u> One can show that the product topology is the unique topology on $\prod X_{\lambda}$ such that this theorem is true.

Example

 $\prod_{\lambda \in \Lambda} X = X^{\wedge}$ The diagonal map $\Delta : X \to X^{\wedge}$, $(x \mapsto (x)_{\lambda \in \Lambda})$ is continuous. Since each "coordinate function" $x \mapsto x$ is continuous.

Some useful facts (proofs are as for $X \times Y$)

(1) If $Y_{\lambda} \subset X_{\lambda}$ subset $\forall \lambda$, then on $\prod Y_{\lambda}$ the two natural topology coincide

i) subspace topology in $\prod X_{\lambda}$.

ii) product topology of subspace topologies.

(2) X_{λ} is $T_2 \forall \lambda \Rightarrow \prod X_{\lambda}$ is T_2 .

(3) If \mathcal{B}_{λ} is a basis for $X_{\lambda} \forall \lambda$, then

$$\mathcal{B} = \left\{ \prod_{\lambda \in \Lambda} B_{\lambda} = \left\{ \begin{array}{l} B_{\lambda} \in \mathcal{B}_{\lambda} \text{ for finitely many } \lambda \\ B_{\lambda} = X_{\lambda} \text{ for all others} \end{array} \right\}$$

(4) Projection maps $p_{\mu} : \prod X_{\lambda} \to X_{\mu}$ are open (as in problem §16.4)

(5) Analogues (1)–(4) are true for the box topology, but in (3) we have to drop the condition " $B_{\lambda} = X_{\lambda}$ ".

Example

 $\mathbb{R}^{\mathbb{R}} = \{ f : \mathbb{R} \to \mathbb{R} \text{ (don't have to be continuous)} \}$

A basic open in the product topology in above basis:

 $\prod_{\alpha \in \mathbb{R}} V_{\alpha} : V_{\alpha} \in \mathbb{R} \text{ open, } V_{\alpha} = \mathbb{R} \text{ all but finitely many } \alpha' \text{ s.}$

i.e. $\{f : \mathbb{R} \to \mathbb{R} : f(\alpha_{\iota}) \in V_{\alpha_{\iota}}, 1 \le i \le n\}$

Check $f_n \to f$ as $n \to \infty \Leftrightarrow f_n(x) \to f(x), \forall x \in \mathbb{R}$.