
ON THE ζ3 PELL EQUATION

ERICK KNIGHT AND STANLEY YAO XIAO

Abstract. Let K = Q(ζ3), where ζ3 is a primitive root of unity. In this paper we study
the distribution of integers α ∈ OK for which the norm equation NK( 3√α)/K(x) = ζ3 is
solvable for integers x ∈ OK( 3√α). The analogous question for ζ2 = −1 is the well-known
negative Pell equation.

1. Introduction

A classical question in number theory is whether there is a solution to the Pell equation
x2 − Dy2 = 1 in integers x and y for D > 1 a square-free integer. While this has an af-
firmitave answer for all D, the standard proof of this fact actually first shows that there is
a solution to x2 − Dy2 = ±1 and then uses that to produce a solution to x2 − Dy2 = 1.
Thus, one is led to ask questions about the negative Pell equation x2 −Dy2 = −1. Many
partial results have been obtained (e.g. [5] and [1]). The question about the negative Pell
equation comes down to one about whether there is a unit in Q(

√
D) which has norm −1.

Viewed from this perspective, it becomes possible to generalize this question to other classes
of cyclic extensions. In this paper, we will be focusing on the next simplest case.

Let K = Q(ζ3). Then, by Kummer theory, all cyclic cubic extensions of K are of the
form K( 3

√
α) for α ∈ K∗. Motivated by the previous discussion, we are interested in whether

there is a unit in K( 3
√
α) with norm ζ3. One appealing thing about this problem is that

some of the structure in the negative Pell equation problem goes away, but there are still
many similarities. If one replaced 3 with a larger prime, issues about global units would
come up, and if the choice of prime was irregular, issues about relative class groups would
arise.

Readers familiar with the negative Pell equation know that there are local obstructions
that need to be satisified for there to be a chance of a solution to the equation; in particular,
every odd prime dividing D must be congruent to 1 mod 4. A similar issue arises here:
one needs that every prime π dividing α to have NK/Q(π) ≡ 1 (mod 9) or have π being
an associate of 1 − ζ3, the prime above 3. We will restrict ourselves to the set of all α
such that K( 3

√
α)/K is unramified at 1− ζ3, as the case where the ramification at 1− ζ3 is

like K1−ζ3(ζ9)/K1−ζ3 provides no local obstruction to there being a solution to the ζ3-Pell
equation but behaves very differently from the other cases. Put

(1.1) S(X) = {α|NK/Q(DK( 3√α)/K) < X,NK/Q(π) ≡ 1 (mod 9)∀π|α}

and let

(1.2) Sζ3(X) = {α ∈ S(X)|∃u ∈ K( 3
√
α|NK( 3√α)/K(u) = ζ3}.

We are interested in the size |S
ζ3 (X)|
|S(X)| as X →∞.To state the main theorem of the paper, let

(1.3) β =
∏
i≥0

(
1− 1

32i+1

)
=

∞∏
j=1

(
1 + 3−j

)−1
.

This constant is the limit of the probability that a random large symmetric matrix over F3

has full rank. Our main theorem is then the following:
1



2 ERICK KNIGHT AND STANLEY YAO XIAO

Theorem 1.1. One has that

β ≤ lim inf
X→∞

|Sζ3(X)|
|S(X)|

≤ lim sup
X→∞

|Sζ3(X)|
|S(X)|

≤ 3

4
,

where β is given as in (1.3).

The proof of this theorem is very simple if one believes some analytic estimates. The
proof is in Section 5. Following Stevenhagen, one might be tempted to make the following
conjecture:

Conjecture 1.2. One has that

lim
X→∞

|Sζ3(X)|
|S(X)|

= 2− 2β.

We believe this conjecture is false, even when one assumes that there is no ramification
at 1 − ζ3. We have no theoretical explaination for why this is but there are numerical cal-
culations that cast doubt on the underlying heuristic that produces this number.

This paper is in three parts. The first part will be algebraic criteria for having a solution
or no solution to the ζ3-Pell equation. The second part will be analysis to patch together
the algebraic criteria to get analytic results. The third part is then a discussion of why
conjectures are different from the negative Pell case.

Finally, the astute reader may notice that this theorem is very similar to the one in [4].
Indeed, the overarching strategy is the same, and the lower bound is argued in a similar
manner. The upper bound is made complicated by the lack of an analogue of the narrow
class group, and so we have to use techniques that were developed in [6] to get around this.

2. Genus theory and Rédei matricies

This section will discuss genus theory and especially how it applies to the case of extensions
of the form K( 3

√
α)/K. The main goal is to come up with algebraic criteria that characterize

whether there is a unit u ∈ OK( 3√α) with norm equal to ζ3.

2.1. The Cubic Residue Symbol and Cubic Reciprocity. Let Z[ζ3] be the ring of
Eisenstein integers. This ring is a principal ideal domain and it has the units ±1,±ζ3,±ζ6.
Up to units, the irreducible elements are λ = 1 + ζ3, the rational primes q ≡ 2 (mod 3), and
the elements π of Z[ζ3], such that ππ is a rational prime p ≡ 1 (mod 3). Denote by N the
norm function on Z[ζ3].

Let π be an irreducible element in Z[ζ3], and let v ∈ Z[ζ3]. We define the cubic symbol(
v
π

)
3
by the formulas

(2.1)
( v
π

)
3

= ζj3 , π - v,

where j is the unique integer j ∈ {0, 1, 2} such that

v(N(π)−1)/3 ≡ ζj3 (mod π)

and ( v
π

)
3

= 0 if π|v.

Observe that if π, π′ are associates, then
( ·
π

)
3

=
( ·
π

)
3
and the function v 7→

(
v
π

)
3
is a

multiplicative character of the group (Z[ζ3]/πZ[ζ3])
∗. If q is a rational prime congruent to

2 mod 3, the restriction to Z of the corresponding cubic character is simply the principal
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character modulo q. We extend the definition of the cubic character to any element w ∈ Z[ζ3]
coprime to 3, by the formula ( v

w

)
3

=
∏
j

(
v

wj

)
3

,

where w =
∏
j wj is the unique factorization (up to associates) of w into irreducible elements.

2.2. Genus theory. Let L/F be a cyclic extension of number fields, with Gal(L/F ) = 〈σ〉.
Write IL to be the group of fractional ideals of L and PL to be the group of principal
fractional ideals of L, and similarly for F . There are two short exact sequences

0→ O×L → L× → PL → 0 and

0→ PL → IL → Cl(L)→ 0.

Taking cohomology, and using the facts that H1(〈σ〉, L×) = H1(〈σ〉, IL) = 0, we get three
long exact sequences

0→ O×F → F× → PL[σ − 1]→ H1(〈σ〉,O×L )→ 0,

0→ PL[σ − 1]→ IL[σ − 1]→ Cl(L)[σ − 1]→ H1(〈σ〉, PL)→ 0, and
0→ H1(〈σ〉, PL)→ H2(〈σ〉,O×L )→ H2(〈σ〉, L×).

The image of F× in PL[σ − 1] is just PF , so one gets H1(〈σ〉,O×L ) = PL[σ − 1]/PF .
Additionally, since 〈σ〉 is a cyclic group, one knows that H2(〈σ〉,O×L ) = O×F /NL/F (O×L )

and similarly for H2(〈σ〉, L×). Thus, one can replace H2(〈σ〉,O×L ) → H2(〈σ〉, L×) with
H2(〈σ〉,O×L ) → O×F /(NL/F (F×) ∩ O×F ) → 0. Dividing the first two terms in the second
sequence by PF , we can stitch everything together into one sequence:

0→ H1(〈σ〉,O×L )→ IL[σ−1]/PF → Cl(L)[σ−1]→ H2(〈σ〉,O×L )→ O×F /(NL/F (F×)∩O×F )→ 0.

More detailed analysis is possible in general, but at this point, we find it useful to switch
to the case that F = K(= Q(ζ3)) and L/K is cyclic and degree 3. Kummer theory says
that L = K( 3

√
α) for some α ∈ K. Every ideal of K is principal, so the second term in the

long exact sequence is IL[σ−1]/IK . Now, we can write IL =
⊕

p⊂OK
⊕

P|pOL P
Z. If p splits

or is inert in L, then a straightforward calculation shows that (
⊕

P|pOL P
Z)[σ − 1] = pZ,

and if p is ramified in L, then its easy to check that (
⊕

P|pOL P
Z)[σ − 1] = p

1
3
Z. Thus,

the second term becomes
⊕

p ramified in L p
1
3
Z/Z. The question that we are interested in is

whether there is an element u ∈ O×L such that NL/K(u) = ζ3, but that is exactly equivalent
to H2(〈σ〉,O×L ) = 0, which then can be seen to be equivalent to the two statements that
O×F /(NL/F (F×) ∩ O×F ) = 0 and that Cl(L)[σ − 1] is generated by the ramified primes in
L/K. At this point, we are prepared to produce the first algebraic criterion for the ζ3-Pell
equation to have a solution.

Theorem 2.1. Write L = K( 3
√
α) as above, and assume that α = πa11 · · ·πann with πi ≡ 1

(mod λ2) and ai = 1 or 2. Then there is a solution to the ζ3-Pell equation if and only if all
the πis satisfy πi ≡ 1 (mod λ3) and the primes Pi lying above πiOK generate Cl(L)[σ − 1].

Proof. Based on the discussion above, what is needed to be shown is that α has the specified
form if and only if O×F /(NL/F (F×) ∩ O×F ) = 0.

If α is divisible by a prime π with π 6≡ 1 (mod λ3) then, writing Kπ for the completion
of K at π and Lπ for L⊗K Kπ, one has that Lπ is a ramified cubic extension of Kπ. Thus,
NLπ/Kπ(O×Lπ) is the unique index three subgroup of O×Kπ . Since π 6≡ 1 (mod λ3), there is
no ninth root of unity in Kπ, and so ζ3 isn’t a cube in Kπ and consequently not a norm
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from O×Lπ . Thus, if the first condition is not satisfied, then there is a local obstruction to ζ3
being a norm of an element of L× and so O×F /(NL/F (F×) ∩ O×F ) 6= 0.

As for the other direction, assume that α is of the form described. Classical calcu-
lations (see for example (tbc)) show that h2/1(〈σ〉,O×L ) = 1/3, and thus one gets that
dimF3(Cl(L)[σ− 1]) = n− 1− dimF3(O×F /(NL/F (F×)∩O×F )) as there are n primes ramified
in L/K. But one also has that dimF3(Cl(L)[σ − 1]) = dimF3(Cl(L)/(σ − 1)). Moreover,
L( 3
√
π1, . . . , 3

√
πn−1) is a degree 3n−1 extension of L that is unramified everywhere (the total

extension is unramified at λ because all of cuberoots are of elements that are 1 (mod λ)3).
Further, it is abelian over K and thus corresponds to a σ − 1 invariant quotient of Cl(L).
One has then that n − 1 ≤ dimF3(Cl(L)[σ − 1]) = n − 1 − dimF3(O×F /(NL/F (F×) ∩ O×F ))

and so O×F /(NL/F (F×) ∩ O×F ) = 0, which is what was needed. �

The proof of this theorem also proves the following:

Corollary 2.2. With L, α, and πi as above, and assuming that πi ≡ 1 (mod λ3) for all i,
one has that the maximal unramified σ− 1 cotorsion extension of L is L( 3

√
π1, · · · , 3

√
πn−1).

2.3. Rédei matricies. Fix L = K( 3
√
α), and assume that α = πa11 · · ·πann with πi ≡ 1

(mod λ3). The goal now is to undestand the group Cl(L)σ−1, which is all of the (σ − 1)-
power torsion in the class group. We will not come to a complete description, but we will
be able to say more than just what was said in the previous subsection.

The main trick is the following: if M is an Rσ = Z[σ]/〈σ2 + σ + 1〉-module which is
finite as a group, then one may consider the map from M [σ − 1] → M/(σ − 1). This is a
map from F3-vector spaces of the same dimension, and so is given by a matrix. One can
compute this rank by appealing to the fact that every Rσ-module that is finite as a group
is of the form ⊕πi ⊕aij Rσ/π

aij
i where the first sum runs over some primes in Rσ and aijs

are positive integers. Assuming that π1 is the prime σ− 1, then one has that the dimension
of the spaces M [σ − 1] and M/(σ − 1) are the number of a1js, and the rank is the number
of a1js that are equal to one. Finally, it is actually useful to think of this not as a map but
rather as a pairing M [σ − 1]×M∨[σ − 1]→ F3, where now the left kernel of this pairing is
(σ− 1)M [(σ− 1)2]. This is obviously equivalent, but in the case of class groups, its simpler
to write down the pairing than the actual map.

To apply this idea to the setup here, let Pi be the prime lying over πi. While it is not clear
if the primes Pi generate Cl(L)[σ−1], we can still consider the the subgroup of Cl(L)[σ−1]
generated by these primes. There is the relation Pa1

1 · · ·Pan
n = 3

√
αOL which says that we

only need to consider the subgroup generated by Pi for i running from 1 to n − 1. Addi-
tionally, we know by corollary 2.2 that Cl(L)/(σ− 1) = Gal(L( 3

√
π1, · · · , 3

√
πn−1)/L). Thus,

one has that Cl(L)∨[σ − 1] is generated by characters χi with χi(Pj) =
(
πj
πi

)
for i 6= j and

by using the fact that χi(Pa1
1 · · ·Pan

n ) = 1 to compute χi(Pi).

To write down the actual matrix, we will write log
((

β
π

)
3

)
= a for a ∈ F3 if

(
β
π

)
3

= ζa3 .

Then if we let bii = a−1i log
((

π
ai
i /α
πi

)
3

)
and bij = log

((
πi
πj

)
3

)
, one has that the matrix

ML = (bij) represents the pairing the subgroup of Cl(L)[σ − 1] generated by the primes Pi

with Cl(L)∨[σ − 1].

Theorem 2.3. Assume that ML has full rank. Then there is a unit u ∈ O×L such that
NL/K(u) = ζ3.
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Proof. Let V be the free n − 1-dimensional F3 vector space with basis vectors ei. Saying
ML has full rank is the same thing as saying that the composite map V → Cl(L)[σ − 1]→
Cl(L)/(σ − 1) has full rank (where the first map sends ei to Pai

i and the second map is the
natural one). But these are all maps between n− 1-dimensional vector spaces over F3 and
so if the composite map has full rank, so too does the first one. But that just says that
the ramified primes generate Cl(L)[σ − 1], which by theorem 2.1 shows that there is a unit
u ∈ O×L such that NL/K(u) = ζ3. �

This condition is not necessary for the ζ3-Pell equation to be solvable. Indeed, playing
around with fields of the form K( 3

√
π1π2), one sees that roughly 2/3s of such fields satisfy

the condition, but an additional roughly 1/36 don’t satisfy the condition but nevertheless
have a solution to the ζ3-Pell equation.

3. Govenrning fields

The goal of this section is to produce a negative criterion for the ζ3-Pell equation, allowing
us to bound above the number of fields which solve the equation.

Theorem 3.1. Keeping notation as above, if one has that dim(ker(ML)) > dim((σ −
1) Cl(L)/(σ − 1)2), then there is not a solution to the ζ3-Pell equation.

Proof. As discussed above, if there is a solution to the ζ3-Pell equation, one has that ML

is the actual Rèdei pairing and not just the pairing restricted to a subgroup of the σ − 1-
torsion. Thus, one would have dim(ker(ML)) = dim((σ − 1) Cl(L)/(σ − 1)2) in this case,
contradicting the assumption in the theorem. �

Before constructing the governing fields in full generality, we find it nice to focus on one
simple case. We will look at fields of the form L = K( 3

√
17π). Observe that there is a

diagram of fields with the field corresponding to Cl(L)/(σ − 1) on top:

K(
3
√

17, 3
√
π)

L K(
3
√

17)

K

As discussed before, the story is over if
(
π
17

)
3
6= 1: under this assumption we have that

all of the σ − 1-power part of the class group is σ − 1-torsion. Thus, we will assume
that

(
π
17

)
3
6= 1. We want to know if there is a an unramified extension L2/L such that

Gal(L2/L) = Rσ/(σ − 1)2. Writing F = K( 3
√

17) and τ for the generator of Gal(F/K),
we have any such field is also abelian over F with Galois group Rτ/(τ − 1)2, ramified only
at π. But now class field theory intervenes and we can compute the maximal extension of
F , unramified away from π, with Galois group killed by τ − 1. Denoting this field by Fπ,
we have that Gal(Fπ/F ) is surjected onto by Vπ := (OF /π)× ⊗Z F3, and the kernel of this
surjection is generated by Vπ[τ − 1] and the image of O×L . Thus, there is a field L2/F if and
only if O×L ⊂ Vπ[τ−1], which happens if and only if (O×F )τ−1 all reduce to cubes mod π. But

that is tantamount to saying that π splits in F ( 3

√
(O×F )τ−1). One can easily compute that

ζ9 is in this field, and that the degree of the extension F ( 3

√
(O×F )τ−1)/F (ζ9) is 3. Thus, one
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gets that, among all primes π ≡ 1 (mod λ3), two-thirds of them don’t have
(
π
17

)
3

= 1 and
thus have a solution to the ζ3-Pell equation, two-thirds of the remainder do have

(
π
17

)
3

= 1

but don’t split in F ( 3

√
(O×F )τ−1) and so don’t have a solution to the ζ3-Pell equation. The

authors as of right now have no ideas for how to get deeper into this set.

To set up the full generality, we will consider fields of the form Lπ = K( 3
√
απ) with α =

πa11 · · ·πann . Let F = K( 3
√
π1, . . . , 3

√
πn), and write Gal(F/K) = 〈τ1, . . . τn〉 with τi( 3

√
πi) =

ζ3 3
√
πi and τi( 3

√
πj) = 3

√
πj for i 6= j. Choose a matrixM = (bij) such that bij = log

((
πi
πj

)
3

)
for i 6= j. Writing Mπ for the matrix associated to the pairing as constructed in subsection
2.3, one has that there is an element τ in Gal(F/K) such that Frobπ = τ if and only if
Mπ = M . The main theorem is as follows:

Theorem 3.2. There is a field Fα/F (ζ9) of degree dim(ker(M)) such that Fα is Galois over
K, and, for all π with Mπ = M , one (equivalently any) prime P lying over π in F splits in
Fα if and only if dim((σ − 1) Cl(Lπ)[(σ − 1)2]) = dim(ker(M)).

Proof. What follows will be essentially the same argument, with a lot more notation. Let
r1 : F3〈e1, . . . , en〉 → Cl(L)/(σ − 1) sending ei to the class associated to the prime over πi.
The assumptions on π imply that the cokernel of r1 is independent of i, and so we may view
W := coker(r1) as a fixed subgroup of Gal(F/K). Let R = F3 +W , a ring where one defines
multiplication by setting ττ ′ = 0 for any two τ, τ ′ ∈ W . R is naturally a quotient of the
group ring F3[Gal(F/K)].

Define Vπ := (OF /π)× ⊗Z F3 and V ′π = Vπ ⊗F3[Gal(F/K)] R. The assumptions on π imply
that V ′π is isomorphic to R as an R-module. Write L2 to be the maximal abelian extension
of L unramified everywhere and whose Galois group is (σ − 1)2-torsion. One has then that
L2/F is abelian and unramified outside of π, and Gal(L2/F ) is an R-module. Class field
theory gives a map from V ′π → Gal(L2/F ) which is surjective, and whose kernel is the image
of global units. However, one has that dimF3(Gal(L2/F )) = dim((σ−1) Cl(Lπ)[(σ−1)2])+1,
so one has dim((σ − 1) Cl(Lπ)[(σ − 1)2]) = dim(ker(M)) if and only if there is no kernel
in the map from V ′π → Gal(L2/F ). Asking that the image of O×F in V ′π is trivial is just
asking that r · u is a cube for all r ∈ ker(F3[Gal(F/K)] → R) and u ∈ O×F . This gives the
existence of the field Fα/F by taking the corresponding Kummer extension; all that’s left is
to compute the degree.

Now, the structure of O×F ⊗Z F3 = m as an F3[Gal(F/K)]-module where m is the unique
maximal ideal in F3[Gal(F/K)]. Asking that (O×F ⊗Z F3)⊗F3[Gal(F/K)] R maps to 0 in V ′π is
imposing dim(W ) different conditions, as m⊗F3[Gal(F/K)] R = W . That gives the degree of
Fα and completes the proof of the theorem. �

At this point, one can imagine how the proof of the main theorem goes. Firstly, one
wants to show that the matricies ML look like large random symmetric matricies over F3.
This gives the lower bound on the number of fields that solve the ζ3-Pell equation. This also
gives a distribution on the dimension of the kernels of the matricies ML, and the next step
is to show that for fields L with dim(ker(ML)) = d, there is a 3d−1

3d
chance that Theorem

3.1 applies. This gives the upper bound.

4. Distribution of the 3-rank

This section splits up into two parts. First, we compute the ranks of the matricies ML

for varying L, and then we use that to compute the dimensions of (σ − 1)(Cl(L)[(σ − 1)2])
for varying L.
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4.1. Ranks of Matricies. For an element s ∈ Z[ζ3], we denote by N(s) its norm. We will
require the following lemma regarding cubic character sums:

Lemma 4.1. Let {αm}, {βn} be two complex sequences indexed by the Eisenstein integers
such that |αn|, |βm| ≤ 1 for all n,m ∈ N. Let µ be the natural extension of the Mobius
function to Z[ζ3]. Put

Ξ(M,N,α, β) =
∑

N(m)≤M

∑
N(n)≤N

αmβnµ
2(m)µ2(n)

(m
n

)
3
,

and

S1(M,N) = N−1/2 +M−1/4N1/2, S2(M,N, ε) = M ε
(
N−1/8 +M−1/4N1/8

)
.

Then for all ε > 0

(4.1) Ξ(M,N,α, β) = Oε (MN min {S1(M,N), S1(N,M), S2(M,N, ε), S2(N,M, ε)}) .

Proof. See Proposition 9 in [5] and Remark 6.3, as well as [2]. �

We put

(4.2) S(X) = {L = K( 3
√
α) : |∆L| ≤ X,π|α⇒ N(π) ≡ 1 (mod 9)}

and for n ≥ 1, n ∈ Z,
(4.3) Sn(X) = {L ∈ S(X) : dim kerML = n}.
We wish to show that the limit

lim
X→∞

|Sn(X)|
|S(X)|

exists and is equal to the corresponding limit for random F3-matrices. Precisely, one defines
βn := β∏n

j=1(3
j−1) , and we wish to show

Theorem 4.2. One has that

lim
X→∞

|Sn(X)|
|S(X)|

= βn.

That βn gives the right distribution is classical, and can be seen directly from Proposition
9 in [9]. To wit, we decompose Sn(X) as

Sn(X) =
⋃
r≥0
{L : |∆L| ≤ X,dim kerML = n, ω(α) = r + 1}

=
⋃
r≥0

S(r)
n (X)

=
⋃
r≥0

⋃
M symmetric r×r F3 matrix

rkM=n−r

{L : |∆L| ≤ X,ML = M,ω(α) = r + 1}.

We denote by S(r)
n (M ;X) a term in the last line.

We wish to write down the condition ML = M in terms of cubic symbols. For a fixed
aij ∈ F3, we have that the indicator function for aij = mij is given by

(4.4) uij =
1 + ζ

−aij
3

(
πi
πj

)
3

+ ζ
−2aij
3

(
πi
πj

)2
3

3
.

We may assume going forward that the number of prime factors is bounded by

(4.5) log logX − (log logX)3/4 < r < log logX + (log logX)3/4.
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This follows from an appropriate application of the Selberg-Delange method, and a corre-
sponding refinement to Theorem 5 in [10]. From here, we shall estimate S(r)

n (A;X) individ-
ually, being careful to produce error terms that depend explicitly on r and otherwise uniform.

We put
A = (aij) , aij ∈ F3, aij = aji, 1 ≤ i, j ≤ r

for a fixed r × r symmetric F3-matrix. Recall from (4.4) that we can write

Ind(ML = A) =
∏
i≤j

uij .

Expanding, we see that we are left to deal with sums of the shape

(4.6)
∑

N(π1···πr)≤X

3−
r2+r

2

∏
i≤j

(
πi
πj

)bij
3

,

where bij ∈ {0, 1, 2}. Observe that the term with bij = 0 for all i, j is expected to be the
main term.

Put

(4.7) Tr(D;X) = {α = π1 · · ·πr ≤ X : N(πi) > D,N(πi) ≡ 1 (mod 9) for 1 ≤ i ≤ r}.
In other words, Tr(D;N) is the set of elements in OK having exactly r prime factors (up to
multiplicity) and norm bounded by X, such that the norm of each prime factor exceeds D
and is congruent to 1 (mod 9).

For an element n = p1 · · · pr ∈ Tr(D;X), put

d2,r = d2,r(n) =
∏

2≤i≤r
N(πi).

Let Tr(D;X) denote the subset of Tr(D;X) having the property that

d2,r > Xe− exp(
√
log logX).

We require:

Lemma 4.3. Let
∑†

r
denote summating over the range

log logX − (log logX)3/4 < r < log logX + (log logX)3/4.

Then

lim
N→∞

∑†

r
|Tr(D;X)|∑†

r
|Tr(D;X)|

= 0.

Proof. By the arguments given in Section 5 of [7], we have the estimate

k1
rX(log logX)r−1

6r logX
< |Tr(D;X)| < k2

rX(log logX)r−1

6r logX

for some positive numbers k1, k2 and sufficiently large X. Indeed, we can even take D to be
a slowly increasing function of N ; taking D = log log logX suffices.

Using the bound

|Tr(D;X)| ≤
exp(exp(

√
log logX))∑

p1=1
p1≡1 (mod 9)

Tr−1(D;X),
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we then see that

(4.8) |Tr(D;X)| ≤
∑
p1

k2r(X/p1)(log logX)r−2

6r logX
� rX(log logX)r−2

6r logX

exp(exp(
√
log logX))∑
p1

1

p1
.

By Dirchlet’s theorem applied to primes congruent to 1 mod 9, we find that

exp(exp(
√
log logX))∑

p1=1
p1≡ (mod 9)

1

p1
=

(log logX)1/2

6
+B0 +O

(
(logX)−1

)
,

where B0 is an absolute constant. It therefore follows that

(4.9) |Tr(D;X)| = O
(
r6−rX(log logX)r−3/2(logX)−1

)
,

and thus we see that
|Tr(D;X)|
|Tr(D;X)|

= O
(

(log logX)−1/2
)
,

which tends to 0 as X →∞, as desired. �

We may thus restrict our attention to the set:

(4.10) T ∗r (D;X) =
{
m ∈ Tr(D;X) : p|m⇒ p > exp

(
exp

(√
log logX

))}
.

Put

(4.11) X† = exp
(

exp
(√

log logX
))

,

and consider the contribution from those sums (4.6) such that there exist two indices u, v
for which buv ∈ {1, 2} and such that Bu, Bv � X†. Denote this subset by S†(B;X). Put

(4.12) Ξ(u, v) =
∏
w 6=u,v

(
πu
πw

)buw
3

.

We then have the bound

(4.13)
∣∣∣S†(B;X)

∣∣∣ ≤ ∑
πw:w 6=u,v

∏
w 6=u,v

3−(r
2+r)/2

∣∣∣∣∣∑
πu

∑
πv

Ξ(u, v)Ξ(v, u)

(
πu
πv

)buv
3

∣∣∣∣∣ ,
and buv ∈ {1, 2}. The upshot is that |Ξ(u, v)| ≤ 1 so Lemma 4.1 applies. We thus obtain
the bound, for all ε > 0,∣∣∣S†(B;X)

∣∣∣�ε

 ∏
w 6=u,v

Bw

(BuBv (B−1/8+εu +B−1/8+εv

))
�ε X

(
X†
)−1/8+ε

,

which gives the bound

(4.14)
∣∣∣S†(B;X)

∣∣∣� X exp
(
−c exp

(√
log logX

))
for some c > 0. This is smaller than X(logX)−A for any A > 0, which is enough for us.

We have thus shown that all sums of the form (4.6) with at least one pair of indices {i, j}
with bij 6= 0 contributes a negligible amount to S(r)

n (A;X), and hence only the main term
where bij = 0 for all i, j contributes.
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4.2. Dimensions of Parts of Class Groups. Our goal is to translate Theorem 3.2 into
a statement about the distribution of 3-ranks of L = K( 3

√
α) over K, as α ranges over OK

with bounded norm.

We first extract a probabilistic consequence of Theorem 3.2:

Proposition 4.4. Let α ∈ OK with α = π1 · · ·πr. Put Lπ = K( 3
√
απ). Fix a symmetric

r × r F3-matrix M = (mij), and suppose that

mij = log

(
πi
πj

)
3

for i 6= j.

Fix a coset c ∈ (OK/(α))∗ such that π ∈ c if and only if MLπ = M . Let m = dim ker(M).
Let Lc(X) be the set of primes π ∈ OK with N(π) ≤ X and N(π) ≡ 1 (mod 9), with π ∈ c.
Then

lim
X→∞

∣∣π ∈ Lc(X) : dim(σ − 1) Cl(Lπ)[(σ − 1)2] = m
∣∣

|Lc(X)|
= 3−m.

Likewise,

lim
X→∞

∣∣π ∈ Lc(X) : dim(σ − 1) Cl(Lπ)[(σ − 1)2] 6= m
∣∣

|Lc(X)|
= 1− 3−m.

Proof. This follows from Theorem 3.2 and Chebotarev’s density theorem applied to the field
F (α). �

In order to obtain the analogous result where we allow more variation than one prime at
a time, we follow the strategy in [6]; in particular, a stronger form of Chebotarev’s density
theorem is needed. To obtain such a version we simply apply GRH.

Proposition 4.5 (Effective Chebotarev’s density theorem conditioned on GRH). Let L/K
be a finite Galois extension of number fields. Let C ⊂ Gal(L/K) be a union of conjugacy
classes and

ψ(C,X) =
∑

N(p)≤X
Frobp∈C

logN(p).

If GRH holds for Artin L-functions, then for X ≥ 2

ψ(C,X) =
|C|X

|Gal(L/K)|
+O

(
X1/2

∑
ρ

|cρ| log
(
Xdeg(ρ)[K:Q]q(ρ)

))
where the sum runs over all irreducible representations of Gal(L/K), cρ is given by

cρ =
1

|Gal(L/K)|
∑
x∈C

Tr(ρ(x)),

and q(ρ) is the conductor.

In order to apply Proposition 4.5, we will need to bound the conductor of F (α). This
follows from the fact that F (α) is unramified over K( 3

√
α) and degree 3r+m over K( 3

√
α).

In particular, the conductor of F (α) is at most

N(α)3
r+m

.

Applying Proposition 4.5 to Proposition 4.4 then gives

(4.15)
∑

π∈Lc(X†)

1 =
Li(X†)

3r+1
+O

(
(r +m)(X†)1/2 logX†

)
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and

(4.16)
∑

π∈Lc(X†)
dim(σ−1)Cl(Lπ)[(σ−1)2]=m

1 =
Li(X†)

3m+r+1
+O

(
(r +m)(X†)1/2 logX†

)
.

Both follows from Proposition 4.5. Note that the error terms in (4.15) and (4.16) are
independent of α, whence we may sum both uniformly across α to obtain the following:

Theorem 4.6. Suppose that GRH holds for Dedekind zeta functions, so that Proposition
4.5 holds. Then

lim
X→∞

∣∣{α ∈ Sm(X) : dim(σ − 1) Cl(K( 3
√
α)[(σ − 1)2] = m}

∣∣
|Sm(X)|

= 3−m.

We will find it useful to name the set {α ∈ Sm(X) : dim(σ − 1) Cl(K( 3
√
α)[(σ − 1)2] =

m} := S′m(X).

5. Proof of Theorem 1.1 and Heuristics Behind Conjecture 1.2

Now, we put together all of the previous discussion into a proof of Theorem 1.1.

Proof of Theorem 1.1. The upshot of the disussion in Section 4 is that

lim
X→∞

|Sm(X)|
|S(X)|

= βm,

and

lim
X→∞

|S′m(X)|
|S(X)|

=
βm
3m

.

If α ∈ S0(X), then the ζ3-Pell equation for K( 3
√
α) has a solution by Theorem 2.3, and if

K( 3
√
α) has a solution to the ζ3-Pell equation, then α ∈ S′m(X) for some m by Theorem

3.1. One clearly has β0 = β, which gives the lower bound in Theorem 1.1. To get the upper
bound, we need to compute the sum

∑∞
m=0

βm
3m . Following [5], we expand the sum as follows:

∞∑
m=0

βm
3m

= β

∞∑
m=0

3−m

(3− 1)(32 − 1) · · · (3m − 1)

= β
∞∑
m=0

3−m3−
m(m+1)

2

(1− 1/3)(1− (1/3)2) · · · (1− (1/3)m)

= β
∞∏
m=0

(1 + (1/3)m+1)

=
∞∏
m=0

(1 + (1/3)m+1)

(1 + (1/3)m)

=
3

4
.

The third equality is just Lemma 4 of [5]. This gives the upper bound in Theorem 1.1. �

Additionally, here are the considerations that lead one to make Conjecture 1.2. The
analogous prediction to Stevenhagens in [8] is that, for α ∈ Sm(X), there is a 2

3m+1−1 chance
that there is a solution to the ζ3-Pell equation for K( 3

√
α). Thus, one computes

∞∑
m=0

2β

(3m+1 − 1)
∏m
j=0(3

j − 1)
= 2

∞∑
m=1

β∏m
j=0(3

j − 1)
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= 2

(( ∞∑
m=0

β∏m
j=0(3

j − 1)

)
− β

)

= 2

(( ∞∑
m=0

βm

)
− β

)
= 2(1− β).

6. Differences between the ζ3-Pell equation and the negative Pell
equation

The goal of this section is two-fold. Firstly, we wish to convince the reader that naievly
generalizing Stevenhagen’s conjecture may not be correct. Secondly, we wish to explain that
things behave differently when we allow λ to ramify.

To the first end, we will discuss some ramifications of the considerations that Stevenhagen
made in making his conjecture, and show that these don’t port directly to the ζ3-Pell case.
Consider fields L of the form Q(

√
pq) with p, q ≡ 1 (mod 4). Stevenhagen predicts that

one half of the time, Cl(L)2 = Z/2Z and there is a solution to the negative Pell equation.
One half of the remaining time, Cl(L)2 = Z/2Z but there is no solution to the negative Pell
equation. One half of the remaining time, Cl(L)2 = Z/4Z and there is a solution to the
negative Pell equation, and so on.

Moving over to the case where L = K( 3
√
π1π2), the story starts off the same: two-thirds

of the time, Cl(L)σ−1 = Rσ/(σ − 1) and there is a solution to the ζ3-Pell equation, and
two-thirds of the remaining time Cl(L)σ−1 = Rσ/(σ − 1) but there is no solution to the
ζ3-Pell equation. However, we have the following fact that causes everything to go off the
rails:

Proposition 6.1. Assume that
(
π1
π2

)
3

= 1 and there is a solution to the ζ3-Pell equation in

L. Then Cl(L)[(σ − 1)3] = Rσ/(σ − 1)3.

This proposition implies that the case “Cl(L)σ−1 = Rσ/(σ − 1)2, ζ3-Pell has a solution”
is skipped. Numerical calculations seem to suggest that this is literally the only case that is
skipped.

Proof. Since there is a solution to the ζ3-Pell equation, one has that Cl(L)[σ−1] is generated
by P1, the prime lying over π1. Letting L1 = K( 3

√
π1, 3
√
π2) so that Gal(L1/L) = Cl(L)/σ−

1, one sees that the first Rèdei map is zero. Thus, there is a field L2/L as in the middle of
section 3 replacing 17 with π1 and π with π2. Letting F = K( 3

√
π1), τ generate Gal(F/K),

and V = (OF /π2)× ⊗Z F3, we have that Gal(L2/F ) = Vπ/Vπ[τ − 1]. Now, we need to
compute the image of the Frobenius of the prime lying over π1 in Gal(L2/L). But this
is zero if and only if that’s the case for L2/F . But then we know what that is: we can
write V = ((OK/π2)× ⊗Z F3)

3 with τ permuting the factors. Choosing an element a such
that a3 ≡ π1 (mod ()π2), we get that the Frobenius is just the image of (a, ζ3a, ζ

2
3a) in

Gal(L2/F ). By our long-running assumption on primes in K, we have that ζ3 is a cube, so
this lies in the diagonal of V . But V [τ − 1] is exactly equal to the diagonal, so the image of
the Frobenius of the prime lying over π1 in Gal(L2/L) is 0, showing the proposition. �

Now, we will discuss what can happen when we allow λ to ramify. Consider fields now of
the form L = K( 3

√
ζ3π). There is now a difference in what generates the σ−1 torsion in the

class group: since one has that the prime over π is just ( 3
√
ζ3π), we have that the natural

candadite to check is only the prime over λ, which we will denote by p. One has that p
splits in L( 3

√
π) if and only if

(
λ
π

)
3

= 1, which by cubic reciprocity is equivalent to π ≡ 1
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(mod λ4). As above, we may ask if there is a field L2/L unramified everywhere, which is the
same as asking if there is a field L2/K(ζ9) unramified outside of π. Letting F = K(ζ9) and
τ generate Gal(F/K), the exact same considerations as before show that such a field exists

if and only if π splits in F ( 3

√
(O×F )τ−1. But O×F is generated by −ζ9,

1−ζ49
1−ζ9 , and

1−ζ79
1−ζ9 . An

easy calculation shows that ζτ−19 = ζ3,
(
1−ζ49
1−ζ9

)τ−1
= λ

(1−ζ49 )3
, and

(
1−ζ79
1−ζ9

)τ−1
= λ

(1−ζ79 )3
, so

the only conditions on having such an extension are that ζ3 and λ are cubes, something that
is already imposed. Thus, one skips now the case where “Cl(L)σ−1 = Rσ/(σ − 1), ζ3-Pell
has no solution.” Again, numerical calculations seem to suggest that this is the only case
that is skipped.

What’s going on here seems to be a bit more straightforward, and is probably actually
closer to typical. In the negative Pell case, one is not allowed to have ramification like
Q2(i)/Q2 at 2, because that provides a local obstruction to −1 being a norm. But that is
entirely specific to 2; for odd p, NQ(ζp2 )/Q(ζp)(ζp2) = ζp in contrast to NQ(i)/Q(i) = 1. Other

numerical calculations suggest that local ramification of the form Kλ( 3
√
λ)/Kλ at λ seems

to fit into the earlier framework.

In summary, more calculations are needed, and there very well might need to be a pair
of conjectures about the ζ3-Pell equation: one in the case where the ramification at λ is of
the form Kλ(ζ9)/Kλ and one that covers every other case.
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