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Abstract. We obtain an asymptotic formula for the number of GL2(Z)-equivalence classes of irreducible,
totally real binary quartic forms with integer coefficients with vanishing J-invariant. These results give a
case where one is able to count integral orbits inside a relatively open real orbit of a variety of degree at
least three which is closed under a group action. As a consequence, we give an asymptotic formula for the
number of GL2(Z)-classes of irreducible binary quartic forms with vanishing J-invariant and Galois group
C4, ordered by discriminant. Our method of proof introduces a new observation regarding taking powers
in the class group of quadratic forms of a given discriminant and lattices associated to representable primes
(see appendix by Erick Knight).

1. Introduction

Let

(1.1) F (x, y) = a4x
4 + a3x

3y + a2x
2y2 + a1xy

3 + a0y
4 ∈ R[x, y]

be a binary quartic form, and put V4(R) for the 5-dimensional vector space of real binary quartic forms. The
group GL2(R) acts on V4(R) via the substitution action, defined for T =

(
t1 t2
t3 t4

)
∈ GL2(R) and F ∈ V4(R)

by

(1.2) FT (x, y) = F (t1x+ t2y, t3x+ t4y).

It is well-known that the ring of relative polynomial invariants of the substitution action of GL2(R) on V4(R)
is a polynomial ring generated by two elements, commonly denoted as I and J . They are given by

(1.3) I(F ) = 12a4a0 − 3a3a1 + a2
2

and

(1.4) J(F ) = 72a4a2a0 + 9a3a2a1 − 27a4a
2
1 − 27a0a

2
3 − 2a3

2.

Both the quadric defined by I(F ) = 0 and the cubic defined by J(F ) = 0 are invariant under GL2(R); that
is, for all F ∈ VR and T ∈ GL2(R), we have J(F ) = 0 if and only if J(FT ) = 0.

Put

(1.5) V4(R) = {F ∈ V4(R) : J(F ) = 0}
for the real cubic threefold defined by the vanishing of J in V4(R). V4(R) \ {F : ∆(F ) = 0} consists of three
relatively open orbits under the substitution action of GL2(R), consisting of non-singular forms with 0, 2,
or 4 real linear factors respectively. We shall denote by V(i)

4 (R) the orbit of V4(R) consisting of forms with
4− 2i real linear factors. In particular,

V(0)
4 (R) = {F ∈ V4(R) : F has 4 real linear factors}.

The discriminant ∆(F ) of a binary quartic form F is expressible in terms of I and J as

(1.6) ∆(F ) =
4I(F )3 − J(F )2

27
.

Put
Wn(Z) = {GL2(Z)-orbits of integral binary n-ic forms}.

Since I(F ), J(F ) are GL2(Z)-invariants, for any class w ∈ W4(Z) and any F,G ∈ w we have I(F ) = I(G)
and J(F ) = J(G). Thus, the values of I, J are well-defined on the class w. Now put

(1.7) W4(Z) = {w ∈W4(Z) : J(w) = 0}.
The main goal of this paper is to establish asymptotic formulae for two subclasses ofW4(Z) with non-zero

discriminant, where we count the orbits by discriminant. This count is a priori finite by a well-known result
1
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of Borel and Harish-Chandra [7]. Since the number of real linear factors are preserved under GL2(R) action,
one can define the number of real linear factors for orbits in W4(R). Indeed, we shall put

W(i)
4 (Z) = {w ∈ W4(Z) : F ∈ V(i)

4 (R) for all F ∈ w}.

The first family we shall consider is W(0)
4 (Z). For a positive number X, put

(1.8) N(X) = #{w ∈ W(0)
4 (Z) : ∆(w) 6= 0,∆(w) ≤ X}.

We denote the set on the right hand side above by W(0,†)
4 (X). Further note that for all binary quartic forms

F with real coefficients and 4 real linear factors, we have ∆(F ) > 0.

The forms with vanishing J-invariant can be characterized by the fact that their Hessian covariants are
perfect squares in C[x, y]. The Hessian covariant of F , denoted as HF , is given by

(1.9) HF (x, y) = (3a2
3 − 8a4a2)x4 + 4(a3a2 − 6a4a1)x3y + 2(2a2

2 − 24a4a0 − 3a3a1)x2y2

+4(a2a1 − 6a3a0)xy3 + (3a2
1 − 8a2a0)y4.

Then F ∈ V4(R) if and only if there exists a quadratic form f with complex coefficients such that f2|HF

as elements in C[x, y]. Further, one can take f to be a form with co-prime integer coefficients and non-zero
discriminant when F ∈ V4(Z) and I(F ) 6= 0. Moreover when F ∈ V(0)

4 (R) we may take f to have real
coefficients and ∆(f) < 0 (see Lemma 5.1). Observe that if HF is divisible by the square of a reducible
quadratic form, then so will HFT

for any T ∈ GL2(Z). The next family we shall consider will be:

W?
4 (Z) = {w ∈ W4(Z) : for all F ∈ w,HF is divisible by the square of a reducible

quadratic form f}.
We now put

M(X) = #{w ∈ W?
4 (Z) : |∆(w)| ≤ X,w is irreducible.}

The main theorems of our paper are the following counting results for N(X) and M(X):

Theorem 1.1. The asymptotic formula

N(X) =
6 3
√

2ζ(2)

7ζ(3)
X1/3 logX +O

(
X1/3

)
.

holds.

Theorem 1.2. The asymptotic formula

M(X) =
ζ(2)

6 3
√

4ζ(3)
X1/3 logX +O

(
X1/3

)
holds.

We note that the methods introduced in this paper just barely fall short of being able to give the analogous
result in Theorem 1.1 for W(2)

4 (Z) and W(4)
4 (Z). This lacuna will be filled in in a future paper.

Since by definition elements in W(0)
4 we have J(w) = 0, and thus for any such orbit and any irreducible

F ∈ w, we have that the Galois group of the splitting field of F is a subgroup of D4 (see [20] for a full
treatment). We have the following:

Theorem 1.3. Let f be a positive definite, primitive integral binary quadratic form. Let F ∈ Vf (Z) be an
irreducible binary quartic form. Then Gal(F ) ∼= C4 if and only if −∆(f) is a square.

The proof of Theorem 1.3 relies on the fact that whenever −∆(f) = �, any form F ∈ Vf (Z) with square
discriminant is necessarily reducible. Thus, following the criteria determining all possible Galois groups of
quartic forms in [9], all irreducible elements must necessarily have Galois group C4. This fact is based on
the existence of a natural involution on V(0)

4 (R).
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Let F ∈ VR be as given in (1.1). It has a natural sextic covariant given by the Jacobian determinant of
F and the Hessian covariant HF of F . It has the following explicit formula:

F6(x, y) = (a3
3 + 8a2

4a1 − 4a4a3a2)x6 + 2(16a2
4a0 + 2a4a3a1 − 4a4a

2
2 + a2

3a2)x5y(1.10)

+ 5(8a4a3a0 + a2
3a1 − 4a4a2a1)x4y2 + 20(a2

3a0 − a4a
2
1)x3y3

− 5(8a4a1a0 + a3a
2
1 − 4a3a2a0)x2y4 − 2(16a4a

2
0 + 2a3a1a0 − 4a2

2a0 + a2a
2
1)xy5

− (a3
1 + 8a3a

2
0 − 4a2a1a0)y6.

In [24] we proved that F6 is always a Klein form (see [1]). Moreover, when F ∈ R[x, y] and J(F ) = 0 it
admits a factorization of the shape

F6(x, y) = f(x, y)GF (x, y),

where f(x, y) is a binary quadratic form with real coefficients such that f2|HF over C and J(GF ) = 0. Recall
that when F is totally real we will see that f has negative discriminant. We now choose f = fF such that
∆(f) = −4, and define GF as the quotient F6/f ∈ R[x, y]. We then have the following:

Theorem 1.4. The map Ξ : V(0)
4 (R)→ VR defined by

Ξ(F ) = GF

satisfies Ξ2(F ) = αFF for some αF ∈ R.

Of course the involution Ξ need not restrict to an involution from V(0)
4 (Z) to V(0)

4 (Z). However we will
see that there is a rational version ΞQ of Ξ such that Ξ2

Q(F ) = cF , for some c ∈ Z. This is enough to control
the reducible forms F ∈ Vf (Z) with ∆(F ) = � or −∆(F ) = �.

Theorem 1.3 and an easier case of Theorem 1.1 have the following attractive consequence. For w ∈W4(Z)
define the Bhargava-Shankar height to be

(1.11) HBS(w) = max{|I(w)|3, J(w)2/4}.
For a transitive subgroup G of the symmetric group S4, put

NG(X) = #{w ∈W4(Z) : HBS(w) ≤ X,Gal(w) ∼= G}
and

MG(X) = #{w ∈W4(Z) : |∆(w)| ≤ X,Gal(w) ∼= G}.
Let NG(X),MG(X) denote respectively the sub-count of NG(X),MG(X) restricted to orbits with J = 0.
We obtain the theorem:

Theorem 1.5. Let ε > 0. We have the asymptotic formulae

NC4(X) =
7

9
X1/3 +Oε

(
X1/3−ε

)
and

MC4(X) =
7

6 3
√

2
X1/3 +Oε

(
X1/3−ε

)
.

Theorem 1.5 then implies:

Corollary 1.6. There exist positive numbers c0, c1, c2 such that for any X > c0 we have

NC4
(X) > c1X

1/3

and
MC4

(X) > c2X
1/3.

In [20] we proved, along with Tsang, that the number of C4-forms with a fixed Cremona covariant and
bounded Bhargava-Shankar height X is Of,ε

(
X1/6+ε

)
. In fact the forms corresponding to C4-forms in a

fixed family parametrized by the quadratic form f are the rational points on a certain toric, singular del
Pezzo surface of degree 4. This leads us to conjecture the following:

Conjecture 1.7. Let ε > 0. Then

MC4(X) = MC4(X) +Oε

(
X1/6+ε

)
and NC4(X) = NC4(X) +Oε

(
X1/6+ε

)
.
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In [3], Bhargava and Shankar proved that

NS4
(X) =

44ζ(2)

135
X5/6 +Oε

(
X3/4+ε

)
,

which they used to obtain their magnificent theorem on the boundedness of average Mordell-Weil rank of
elliptic curves over Q. It remains a significant challenge to estimateMS4

(X) from above.

In [20] and [21] Tsang and I proved that

(1.12) ND4
(X)� X1/2 logX

and

(1.13) MD4(X)� X1/2(logX)2.

We also showed that

(1.14) NV4
(X),MV4

(X)� X1/3.

We expect that both (1.12) and (1.13) represent the true orders of magnitude. Comparing (1.14) and Corol-
lary 1.6, one has to wonder whether V4-forms or C4-forms are more numerous.

It remains a difficult challenge to estimate NA4(X),MA4(X).

Theorem 1.1 represents the first case where one can count integral G(Z)-orbits inside a relatively open
orbit G(R) · v, where v ∈ V (R) sits inside a proper subvariety of degree at least three which is closed under
the action of G(R). In our case, the group G is GL2(R) and the variety is the cubic threefold in V4(R) given
by J(F ) = 0. The methods we employ in this paper, while heavily inspired by the work of Bhargava, do not
directly involve his geometry of numbers method and the action of GL2(R) on V4(R) is not directly exploited.
Instead, we partition V4(R) into families indexed by GL2(Z)-equivalence classes of integral binary quadratic
forms, as we did in [20]. This reduces the problem of counting integral orbits in V4(R) to counting integer
points, sorted by discriminant, inside a countable collection of 2-dimensional vector spaces inside V4(R). We
then use a wide assortment of results regarding binary quadratic forms to help establish Theorem 1.1. Of
particular note is Proposition 5.9, which is a novel observation regarding the change in the SL2(Z)-class of
quadratic forms as one performs ‘Hensel lifting’ of lattices containing primitive solutions to the congruence
f(x, y) ≡ 0 (mod pk).

We remark that S. Ruth, in his thesis, gave an argument that essentially counts the number of GL2(Z)-
orbits of quartic Klein forms (see [1] for a modern treatment), that is, those quartic forms with I(F ) = 0.
However there is some doubt that his application of Heath-Brown’s circle method [14] is acceptable. In
January 2019 the author heard a lecture given by A. Alpoge on this matter, which resolved the issue by
giving an argument which circumvents the problematic application of Heath-Brown’s method. Therefore,
the asymptotic formula given for the number of quartic Klein forms of bounded discriminant given by Ruth
is correct.

Theorem 1.2, in comparison, is relatively straightforward. This is mostly because the class number of re-
ducible quadratic forms is very easy to understand, and that the set of discriminants of reducible quadratic
forms is equal to the set of square integers, which is a very thin set. We give the proof of Theorem 1.2 in
Section 9.

In view of Theorems 1.1 and 1.2, all that is needed to prove the full asymptotic formula for the number
of GL2(Z)-orbits of binary quartic forms F with vanishing J-invariant is to count the number of integral
orbits whose Hessians are divisible by the square of an irreducible, indefinite binary quadratic form. There
are significant barriers to carrying out the arguments in this paper to handle this case, but there is another
method to count such orbits. We wish to expand on this in future work.

Finally, Proposition 5.9 appears to be a new observation regarding taking powers in the class group of
quadratic forms of a given negative discriminant and may be of separate interest. The author thanks Erick
Knight for providing the proof in the appendix which is much more elegant than his own.
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2. Parametrizing quartic forms with J = 0 by the Hessian

In this section, we will refine our parametrization theorem in our work with Tsang in [20] to provide a
parametrization theorem for binary quartic forms with vanishing J-invariant. For a binary quadratic form
f with integer coefficients, put C(f) for its GL2(Z)-equivalence class, and put

Vf (R) = {F ∈ V4(R) : f2|HF },

and Vf (Z) for the subset of Vf (R) consisting of those forms with integer coefficients. We then put

Wf (Z) = {w ∈ W4(Z) : ∃F ∈ w s.t. f2|HF }

andW†f (Z) to be the subset consisting of irreducible elements. Notice that if f and g are GL2(Z)-equivalent,
then Wf (Z) =Wg(Z); hence Wf (Z) only depends on C(f), so we write WC(f)(Z) instead. We then have the
following result:

Proposition 2.1. We have that W4(Z) is given by the disjoint union

W4(Z) =
⋃
C(f)

WC(f)(Z),

where C(f) varies over all GL2(Z)-equivalence classes of primitive, integral binary quadratic forms with
non-zero discriminant.

Our goal is to obtain, for each C(f), a set of representatives in Vf (Z) for WC(f)(Z). We begin with the
following lemma:

Lemma 2.2. Let f, g be two binary quadratic forms with co-prime integer coefficients and let F,G ∈ VZ be
such that F ∈ Vf,Z, G ∈ Vg,Z. If F and G are GL2(Z)-equivalent, then f is GL2(Z)-equivalent to either g or
−g.

Proof. This follows from the fact that if F,G are GL2(Z)-equivalent then their Hessians HF , HG are GL2(Z)-
equivalent, since HF is a covariant of F . This implies that f2 is GL2(Z)-equivalent to g2. Taking square
roots shows that f is GL2(Z)-equivalent to ±g. �

We show that Vf (Z) has a natural structure as a 2-dimensional lattice, and we give an explicit embedding
of Vf (Z) into Z2 below. First note that from (1.4) we see that a2 ≡ 0 (mod 3). Put

(2.1) f(x, y) = αx2 + βxy + γy2, α, β, γ ∈ Z,

with

(2.2) A1 = 4γA− βB,

(2.3) A2 = 4βγA− (β2 − αγ)B,

and

(2.4) A3 = 4γ(β2 − αγ)A− β(β2 − 2αγ)B.

Define the lattice Lf,α by

(2.5) Lf,α = {(A,B) ∈ Z2 : A1 ≡ 0 (mod 2α),A2 ≡ 0 (mod α2),A3 ≡ 0 (mod 4α3)}.

We have the following result regarding the family Vf,Z:
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Proposition 2.3. Let f(x, y) = αx2 + βxy + γy2, α 6= 0 be a binary quadratic form with co-prime integer
coefficients and non-zero discriminant. The forms in Vf (Z) are of the form

(2.6)


Ax4 +Bx3y − 12γA− 3βB

2α
x2y2 +

(
−4βγA+ (β2 − αγ)B

α2

)
xy3

+

(
−4γ(β2 − αγ)A+ β(β2 − 2αγ)B

4α3

)
y4 : (A,B) ∈ Lf,α

 .

In particular, the map ν : Vf (Z)→ Lf,α given by ν(Ax4 +Bx3y+ · · · ) = (A,B) is a bijection between Vf (Z)
and Lf,α.

To prove Proposition 2.3, we shall require some results from [24] and [20] and recall some relevant notions.
For a given binary quartic form F with real coefficients, define the automorphism group of F (over R) as
(2.7) AutR F = {T ∈ GL2(R) : FT (x, y) = F (x, y)}.
For a subring F of R, define

AutF F = {T ∈ AutR F : ∃λ ∈ R s.t. λT ∈ GL2(F)}.
For a given binary quadratic form f(x, y) = αx2 + βxy + γy2 with real coefficients, define

(2.8) Mf =
1√
|∆(f)|

(
β 2γ
−2α −β

)
.

Put
Vf (R) = {F ∈ V4(R) : Mf ∈ AutR F}.

We can now prove the following, which identifies Vf (R) as a plane inside Vf (R):

Lemma 2.4. Let f be a binary quadratic form with real coefficients and non-zero discriminant. Then Vf (R)
is the plane inside Vf (R) defined by

12γA− 3βB + 2αC = 0.

Proof. By the results in [20], it follows that for any F ∈ Vf (R) we have f2 divides

F1(x, y) =
1

3
(HF (x, y) + 4Lf (F )F (x, y)) ,

where
Lf (F ) = −12γA− 3βB + 2αC

2α
.

It therefore follows that F ∈ Vf (R) if and only if Lf (F ) = 0 or F (x, y) is proportional to HF . The latter
implies that ∆(F ) = 0, so the former must hold. �

Proof of Proposition 2.3. By (3.1) of [20], it follows that whenever F ∈ Vf (R), the xy3, y4 coefficients of F
are given by linear forms in the coefficients of x4, x3y, x2y2. In particular, we have

F (x, y) = Ax4 +Bx3y + Cx2y2 + +

(
4βγA− (β2 + 2αγ)B + 2αβC

2α2

)
xy3

+

(
4γ(β2 + 2αγ)A− β(β2 + 4αγ)B + 2αβ2C

8α3

)
y4

for A,B,C ∈ R. Moreover we see that f2 is proportional to the quartic form
1

3
(HF (x, y) + 4Lf (F )F (x, y)) .

The condition that f2|HF implies that Lf (F ) = 0, or equivalently,

C =
−12γA+ 3βB

2α
.

We then see that the condition F ∈ VZ is then equivalent to (A,B) ∈ Lf,α, as desired. �

Our aim now is to show that Vf (Z) is an n-cover for WC(f)(Z), where n is a positive integer which is
absolutely bounded. Typically we will have n = 1. We shall precisely describe when Vf (Z) fails to be in
one-to-one correspondence with WC(f)(Z). We shall need the following definition:
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Definition 2.5. Let f be a binary quadratic form with integer coefficients and non-zero discriminant. Then
f is said to be ambiguous if there exists a GL2(Z)-translate g = g2x

2+g1xy+g0y
2 of f such that g2|g1. We say

that f is opaque if there exists a GL2(Z)-translate g of f which takes the shape g(x, y) = g2x
2 +g1xy−g2y

2.

We summarize some results of [20] as follows:

Proposition 2.6. Let f = αx2 + βxy + γy2 be a primitive integral binary quadratic form with non-zero
discriminant. Then there exists a positive integer nf such that Vf (Z) is a nf -fold cover of WC(f)(Z), where

nf =


1 if f is neither ambiguous nor opaque;
6 if f is GL2(Z)-equivalent to x2 + xy + y2;

4 if f is ambiguous and opaque;
2 otherwise.

We note that if a quadratic form f is opaque, then its discriminant is positive; hence no positive definite
binary quadratic form f is opaque.

When f is positive definite, then the number of elements in Vf (Z) of bounded height is finite and in fact
lie in an ellipse. We shall enumerate these elements in Section 6.

3. Outer parametrization of binary quartic forms with J = 0

In [21], we obtained a new parametrization of binary quartic forms with small Galois groups. Let h be an
integral binary quadratic form given as

h(x, y) = h2x
2 + h1xy + h0y

2,

and analogous expressions for u(x, y) and v(x, y). Next put J (u, v) for the Jacobian determinant of u and
v, given by

(3.1) J (u, v)(x, y) =
1

2

∣∣∣∣∣∂u∂x ∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣ = (u2v1 − u1v2)x2 + 2(u2v0 − u0v2)xy + (u1v0 − u0v1)y2.

We say that a pair of integral binary quadratic forms (u, v) is primitive if the gcd of the coefficients of J (u, v)
is at most 2.

For a binary quartic form F , define its cubic resolvent to be the cubic polynomial

(3.2) QF (x) = x3 − 3I(F )x+ J(F ).

We obtained the following in [21]:

Proposition 3.1 (Tsang, Xiao). Let F be a binary quartic with integer coefficients and non-zero discrimi-
nant. Then QF (x) is reducible over Q if and only if there exists an integral binary quadratic form h and a
pair of primitive integral binary quadratic forms u, v such that

(3.3) F (x, y) = h(u(x, y), v(x, y)).

We further see that J(F ) = 0 with J (u, v)2|HF if and only if

(3.4) ∆(v)h0 −∆(u, v)h1 + ∆(u)h2 = 0,

where

(3.5) ∆(u, v) = 2u2v0 − u1v1 + 2u0v2

is the joint discriminant of the pair (u, v) of binary quadratic forms. We now give a brief overview of the
invariant theory of pairs of binary quadratic forms.
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3.1. The action of GL2(R)×GL2(R) on pairs of binary quadratic forms. We shall denote by U2,2(R)
to be the six-dimensional R-vector space of pairs of binary quadratic forms. That is,

(3.6) U2,2(R) =

{((
f2 f1/2
f1/2 f0

)
,

(
g2 g1/2
g1/2 g0

))
: f2, f1, f0, g2, g1, g0 ∈ R

}
.

The group G(R) = GL2(R)×GL2(R) acts on U2,2(R) as follows. For T =
(
t1 t2
t3 t4

)
and S ∈ GL2(R), with St

denoting the transpose of S, we have

(T, S) ? (A,B) =
(
t1SAS

t + t2SBS
t, t3SAS

t + t4SBS
t
)
.

The actions of the two copies of GL2(R) commute, and we refer to the action of the first copy of GL2(R) the
outer action and the action of the second copy the inner action.

We now have the following:

Lemma 3.2. Let T ∈ GL2(R) be such that detT = ±1. Put (U, V ) = (T, I2×2) ? (u, v). Then J (U, V ) =
J (u, v).

Proof. Simple numerical verification. �

We next define the invariant quadratic form of a pair of quadratic forms (f, g), which is given as

F(x, y) = F(u,v)(x, y) = −det

((
2u2 u1

u1 2u0

)
x−

(
2v2 v1

v1 2v0

)
y

)
= ∆(u)x+ 2∆(u, v)xy + ∆(v)y2,

We then have the following lemma:

Lemma 3.3. The polynomials ∆(u),∆(u, v),∆(v) are the generators of the ring of polynomial invariants of
the inner action of GL2(R) on the set of pairs of binary quadratic forms. In particular, F(x, y) is invariant
with respect to inner action.

This result is classical; see for example [16]. See also [2] for a modern view.

A simple calculation reveals the following:

Lemma 3.4. Let (u, v) be a pair of binary quadratic forms. Then

∆(F) = 4∆(J (u, v)).

Furthermore, it is easy to check that the outer action on the pair (f, g) induces the usual substitution
action of GL2(R) on F(x, y).

Our goal is to show that when f = J (u, v) is positive definite (hence, the invariant quadratic form F(x, y) is
necessarily positive definite by Lemma 3.4), there is essentially a unique choice of a pair of quadratic forms
(u, v) such that (3.3) holds and both J (u, v) and F(x, y) are reduced. We shall prove the following:

Proposition 3.5. Let F be a binary quartic form with integer coefficients, non-zero discriminant, and
J(F ) = 0. Then there exists a primitive pair of binary quadratic forms (u, v) such that J (u, v) and F(u,v)

are both reduced with positive leading coefficients and integers h2, h1, h0 such that (3.3) holds. Moreover, the
pair (u, v) is uniquely determined up to the action of AutZ(F(u,v))×AutZ(J (u, v)) ⊂ G(Z).

Proof. Given any pair (u, v) for which (3.3) holds, the outer action of GL2(Z) induces a change of variables
of the quadratic form h; so any outer translate produces another representation of the shape (3.3). Similarly,
inner action preserves the representability of F in the shape (3.3). Now suppose that both J (u, v) and F(u,v)

are fixed. Then the outer action is restricted to the subset of GL2(Z) which fixes F(u,v), in other words,
AutZ(F). Similarly, inner action is restricted to AutZ(J (u, v)). �

We make the trivial observation that for any A =
(
a b
c d

)
∈ GL2(Z), any binary quadratic form h and any

pair of quadratic forms (u, v), we have

(3.7) h(u, v) = hM−1(au+ bv, cu+ vd).
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4. SL2(Z)-classes of binary quadratic forms and the Picard group of quadratic orders

Since Vf (Z) is canonically isomorphic to Vg(Z) whenever f and g are GL2(Z)-equivalent, it is thus pertinent
to examine the properties of GL2(Z)-equivalence classes of binary quadratic forms. There is a rich history to
this subject, and we will only pick from it what we need for the present work. See [2] for a modern treatment.

For technical reasons, we shall deal with SL2(Z)-equivalence classes of binary quadratic forms. For a
binary quadratic form f , denote by [f ]Z its SL2(Z)-equivalence class, and denote by W∗2 (Z) the set of
SL2(Z)-equivalence classes of binary quadratic forms. Put

W∗2 (D) = {w ∈ W∗2 (Z) : ∆(w) = D}

and put OD for the unique quadratic order of discriminant D. It is well-known that the set of primitive
classes [f ]Z with discriminant D parametrize the ideal classes in the Picard group Pic(OD), the group of
ideal classes in OD (see [2] for a modern treatment). We put

(4.1) h2(D) = # Pic(OD).

We then have the following famous theorem, originally conjectued by Gauss in [13] and subsequently proved
by Mertens and Siegel [18]:

Proposition 4.1 (Gauss, Mertens, Siegel). The class number h2(−D) satisfies the following asymptotic
formulas:

(4.2)
∑

0<D≤X

h2(−D) =
π

18ζ(3)
X3/2 +O(X logX)

and

(4.3)
∑

0<D≤X
D≡0 (mod 4)

h2(−D) =
π

42ζ(3)
X3/2 +O(X logX).

For D > 0, we put RD = log εD for the regulator of the quadratic field Q(
√
D). We then have

(4.4)
∑

0<D≤X

h2(D)RD =
π2

18ζ(3)
X3/2 +O (X logX)

and

(4.5)
∑

0<D≤X
D≡0 (mod 4)

h2(D)RD =
π2

42ζ(3)
X3/2 +O (X logX) .

We remark that our class number (4.1) only counts primitive classes.

Recall that a positive definite binary quadratic form f(x, y) = αx2 + βxy + γy2 is said to be reduced if
its coefficients satisfy |β| ≤ α ≤ γ. Gauss proved that h2(−D) is exactly equal to the number of primitive
reduced forms of discriminant −D.

We now require the following lemma, which is useful when estimating the sum of the error terms as we
sum across SL2(Z)-classes over positive definite binary quadratic forms:

Lemma 4.2. Let g(x, y) = g2x
2 + g1xy+ g0y

2 be a positive definite and reduced binary quadratic form with
co-prime integer coefficients. Let

∑†
D≤Y denote the sum over positive definite, reduced, and primitive binary

quadratic forms g of discriminant up to Y . Then

(4.6)
∑†

D≤X2/3

1

(g2D)1/2
= O

(
X1/2

)
.

Proof. We note that the sum (4.6) is approximated by the integral

I(X) =

∫ X1/3

1

∫ X2/3/a

a

∫ a

−a

dbdcda

a
√
c
.
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We evalute I(X) by

I(X) =

∫ X1/3

1

∫ X2/3/a

a

2dcda√
c

=

∫ X1/3

1

4

(
X1/3

√
a
− a1/2

)
da

= O
(
X1/3 ·X1/6

)
= O

(
X1/2

)
,

as desired. �

Next we state a similar result to Proposition 4.1 for SL2(Z)-equivalence classes of reducible forms.

Proposition 4.3. Let n be a positive integer. The number of SL2(Z)-equivalence classes of primitive, integral
binary quadratic forms of discriminant n2 is equal to φ(n), and an explicit set of representatives is

{ax2 + nxy : 1 ≤ a ≤ n− 1, gcd(a, n) = 1}.

Therefore,

(4.7)
∑

n≤X1/2

h2(n2) =
∑

n≤X1/2

φ(n) =
3X

π2
+O

(
X1/2 logX

)
.

Finally, we have a similar proposition for forms GL2(Q)-equivalent to the form x2 + y2:

Proposition 4.4. Let n be a positive integer. The number of SL2(Z)-equivalence classes fo primitive, integral
binary quadratic forms of discriminant −4n2 is given by

h2(−4n2) = n
∏

p≡1,2 (mod 4)

(
1− 1

p

) ∏
p≡3 (mod 4)

(
1 +

1

p

)
.

We further have the asymptotic formula

(4.8)
∑

n≤X1/2/2

h2(−4n2) =
3

32

( ∞∑
n=0

(−1)n

(2n+ 1)2

)−1

X +O
(
X1/2 logX

)
.

Proof. The first statement is found in [8], pages 109-119. We now prove the asymptotic formula.

We denote by ρ(n) = h2(−4n2). Then ρ(n) is a multiplicative function and the Dirichlet series of ρ(n)
converges absolutely and is holomorphic for s > 2. It admits a factorization into the Euler product

(4.9) ζ(s− 1)
∏

p≡1,2 (mod 4)

(1− p−s)
∏

p≡3 (mod 4)

(1 + p−s).

This follows from the identities
∞∑
n=1

φ(n)

ns
=
ζ(s− 1)

ζ(s)
and

∞∑
n=1

ψ(n)

ns
=
ζ(s)ζ(s− 1)

ζ(2s)
,

where ψ(n) = n
∏
p|n(1 + 1/p). Let χ be the unique non-principal character of modulus 4. Then (4.9) can

be written as

(4.10) ζ(s− 1)L(s, χ)−1(1− 2−s) = ζ(s− 1)β(s)−1(1− 2−s),

where β(s) is Dirichlet’s beta series. The asymptotic formula (4.8) then follows from Perron’s formula. �

We will use the results in this section to allow us to sum over different error terms that arise in the proof
of Theorem 1.1.
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5. Some arithmetic and algebraic properties of binary quadratic forms

We will be counting with respect to the I-invariant. We now give the I-invariant of F for F given as in
Proposition 2.3. By (1.6), for all F ∈ V4(R) we have

∆(F ) =
4I(F )3

27
,

since J(F ) = 0. Therefore the condition |∆(F )| ≤ X is translated into

(5.1) |I(F )|3 ≤ 27X

4
.

We note that for ∆(F ) > 0 for all F ∈ V4(R), since the real quadratic form divisor of the Hessian is positive
definite. We may thus drop the absolute value in (5.1). We have the following lemma:

Lemma 5.1. Let f(x, y) = αx2 + βxy+ γy2 be a binary quadratic form with α∆(f) 6= 0. Then for F given
as in Proposition 2.3, we have

(5.2) I(F ) =
−3(αB2 − 4βAB + 16γA2)∆(f)

4α3
.

We now take

(5.3) I(F ) =
αB2 − 4βAB + 16γA2

4α3
.

Now put

(5.4) Nf (X) = #{F ∈ Vf (Z) : I(F ) ≤ X}.
Since Nf (X) = Ng(X) whenever f, g are GL2(Z)-equivalent, we shall assume from now on that f takes on
a convenient form. We shall now take a GL2(Z)-translate of f to be

(5.5) px2 +mxy + ny2,

Here p is the smallest odd prime representable by f not dividing D and n is the smallest positive integer
for which (5.5) holds, and then we choosem to be non-negative. This translate of f is then determined given p.

We now show, at least when f is given in (5.5), that whenever F ∈ Vf (Z) that I(F ) ∈ Z. We require the
following result, which is a special case of Theorem 2 in [19]:

Lemma 5.2. Let f = αx2 + βxy + γy2 be a primitive binary quadratic form with integer coefficients and
non-zero discriminant d, and let p be an odd prime which is representable by a quadratic form of discriminant
d which does not divide d. Then there exist linear forms L1, L2 with coefficients in the p-adic integers Zp
such that

f(x, y) = L1(x, y)L2(x, y)

over Zp. Further, for any positive integer k, the solutions to the congruence f(x, y) ≡ 0 (mod pk) with x, y
not both zero modulo p lie in exactly one of the two lattices

Lk1 = {(x, y) ∈ Z2 : L1(x, y) ≡ 0 (mod pk)}
and

Lk2 = {(x, y) ∈ Z2 : L2(x, y) ≡ 0 (mod pk)}.
.

We call the lattice Lki the k-th Hensel lift of the lattice Li. We now prove that the I(F )/∆(f) = I(F ) is
always an integer whenever F ∈ Vf (Z).

Lemma 5.3. Let f be given as in (5.5), and let I(F ) be given as in (5.3). Then I(F ) ∈ Z whenever
F ∈ Vf (Z).

Proof. With f in the form given in (5.5), the congruence condition (2.4) implies (2.3) and (2.2). The only
two primes that need to be considered are 2 and p itself. Note that since we assumed p - ∆(f), it follows
that p - m. Therefore examining A3 ≡ 0 (mod p) yields

4n(m2 − pn)A−m(m2 − 2pn)B ≡ m2(4nA−mB)

≡ 0 (mod p),
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hence
4nA−mB ≡ 0 (mod p)

or (2.2). Now reducing modulo p2 we get

(4m2nA−m3B +mnpB)− pn(4nA−mB) ≡ 0 (mod p2),

and the second term vanishes mod p2, hence the first term must vanish as well. However the first term is equal
to m(4mnA− (m2− pn)B), which implies (2.3). Moreover, we see that (2.4) is soluble with A 6≡ 0 (mod p),
whence Lf,p is contained in the 3rd Hensel lift of the lattice defined by (2.2), whence p3|pB2−4mAB+16nB2

whenever (A,B) ∈ Lf,p.

We now have to deal with the prime 2. If m is odd, then A3 ≡ 0 (mod 4) is equivalent to B ≡ 0 (mod 4)
and A1 ≡ 0 (mod 2) is equivalent to B ≡ 0 (mod 2). We then see at once this is sufficient for the numerator
of I(F ) to be divisible by 4. This proves the claim. �

We can now clear the denominator in (5.3) by restricting to the lattice Lf,p to get a new quadratic form
ν(f). A potential problem is that we do not know about the SL2(Z)-equivalence class of ν(f) given f . It
turns out that this would create problems when estimating the contribution of Nf (X) with D = −∆(f)
large. Therefore, we must resolve this issue.

5.1. Auxiliary quadratic forms w(f) and ν(f). We now define certain auxiliary quadratic forms w(f), ν(f)
for quadratic forms given in (5.5). Suppose that m is odd. Then for a quartic form F given by (2.6) to have
integer coefficients, we must have B ≡ 0 (mod 4). No congruence conditions modulo a power of 2 is imposed
if m is even. Thus, when m is odd we shall assume B ≡ 0 (mod 4), which changes (5.2) to

(5.6)
4(pB2 −mAB + nA2)∆(f)

p3
.

We then put

(5.7) w(f)(x, y) =

{
px2 −mxy + ny2 if m is odd
px2 − 4mxy + 16ny2 if m is even.

When m is odd, put

(5.8) L2(w(f)) = {(x, y) ∈ Z2 : mx ≡ ny (mod p)},

and L3
2(w(f)) for its 3rd Hensel lift. Likewise, when m is even, put

(5.9) L2(w(f)) = {(x, y) ∈ Z2 : mx ≡ 4ny (mod p)}

and L3
2(w(f)) for its 3rd Hensel lift. If

{(
u1

v1

)
,

(
u2

v2

)}
is a basis for L3

2(w(f)), then the matrix U = ( u1 u2
v1 v2 )

satisfies

(5.10) w(f)(u1x+ u2y, v1x+ v2y) = p3g(x, y)

for some primitive binary quadratic form g. We then have the following equality:

(5.11) {w(f)(x, y) : (x, y) ∈ L3
2(f)} = {p3g(u, v) : (u, v) ∈ Z2}.

Moreover, g is well-defined up to GL2(Z)-equivalence and ∆(w(f)) = ∆(g) by (51) in [19]. We shall denote
this g (or any GL2(Z)-translate of it) by ν(f).

We may now state the main proposition of this subsection:

Proposition 5.4. Let f be a positive definite binary quadratic form with co-prime integer coefficients and
discriminant −D, and let w(f) be given as in (5.7). Then there exists a quadratic form ν(f) which satisfies
(5.11) with ∆(w(f)) = ∆(ν(f)) and [w(f)]4Z = [ν(f)]Z. Moreover, for primitive g ∈ V2(Z) with discriminant
∆(f), we have w(f), w(g) are GL2(Z)-equivalent if and only if f, g are GL2(Z)-equivalent.

The proof of Proposition 5.4 relies on a refinement of Hensel’s lemma applied to prime ideals. We first
recall the following classical fact:
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Lemma 5.5. Let f be a positive definite binary quadratic form with co-prime integer coefficients and dis-
criminant −D, and let m be a positive integer. Then m can be represented by f if and only if the principal
ideal (m) admits a factorization as mm, where m is an ideal in O−D in the ideal class parametrized by [f ]Z.

Note that for a prime p, the principal ideal (p) is either inert in O−D or splits into p1p2. Then p is
representable by f if and only if it splits in O−D and either p1 or p2 lies in the ideal class parametrized by
[f ]Z. Note that the ideal class of p1 is the inverse of p2 in the ideal class group, since their product is a
principal ideal. We thus have the following corollary to Lemma 5.5:

Corollary 5.6. Le D be a positive integer and let p be a prime not dividing D. Then p is represented by
exactly two SL2(Z)-classes of primitive quadratic forms of discriminant −D up to multiplicity, and these
ideal classes are inverses of each other in the ideal class group.

Now note the following simple observation: if f(x, y) = ax2 +bxy+cy2, then a representative of its inverse
class [f ]−1

Z is given by ax2 − bxy + cy2. In particular, the classes [f ]Z and [f ]−1
Z are GL2(Z)-equivalent.

We now show that the forms w(f) given in (5.7) are distinct, which proves one part of Proposition 5.4.

Lemma 5.7. Let f, g be two binary quadratic forms with co-prime integer coefficients and equal discriminant.
Then the forms w(f), w(g) given in (5.7) are GL2(Z)-distinct if and only if f and g are GL2(Z)-distinct.

Proof. It is clear that if f and g are GL2(Z)-equivalent, then so are w(f) and w(g). For the converse, first
suppose that m is odd. Then w(f) is GL2(Z)-equivalent to f via

(
1 0
0 −1

)
, hence the statement is clear. Now

suppose that m is even. Put g = g2x
2 + g1xy + g0y

2, where g2 is an odd prime. Note that g1 is even, since
∆(f) = ∆(g) and the parity only depends on the middle coefficient. It then follows that

w(g) = g2x
2 − 4g1xy + 16g0y

2.

We suppose that w(f) is equivalent to w(g), and let T =
(
t1 t2
t3 t4

)
∈ GL2(Z) be such that

w(f)T (x, y) = p(t1x+ t2y)2 − 4m(t1x+ t2y)(t3x+ t4y) + 16n(t3x+ t4y)2 = w(g)(x, y).

Since g2 is odd, it follows that t1 is odd. Moreover, the middle coefficient of w(f)T is equal to

2(pt1t2 − 2mt2t3 − 2mt1t4 + 16nt3t4).

We need this to be divisible by 8, since 8|4g1. This implies that 2pt1t2 ≡ 0 (mod 8). However p, t1 are odd,
so t2 ≡ 0 (mod 4). It then follows that

T ′ =

(
1 0
0 4

)
T

(
1 0
0 1/4

)
=

(
t1 t2/4
4t3 t4

)
∈ GL2(Z),

which shows that f and g are equivalent. �

5.2. Hensel lifting of lattices and SL2(Z)-classes of binary quadratic forms. We shall treat forms f
given in the shape (5.5) (note that w(f) is also of the shape (5.5)). Put

(5.12) Λ1(f) = {(x, y) ∈ Z2 : y ≡ 0 (mod p)}
and

(5.13) Λ2(f) = {(x, y) ∈ Z2 : mx+ ny ≡ 0 (mod p)}.
Following the notation of Lemma 5.2, we put Λki (f) for the k-th Hensel lift of the lattice Λi(f).

For each i and k, we assign a class w ∈W2(Z) to Λki as follows. There exists a quadratic form gi,k, unique
up to GL2(Z)-equivalence, such that

(5.14) {f(x, y) : (x, y) ∈ Λki } = {pkgi,k(x, y) : (x, y) ∈ Z2}.
The form gi,k has the same discriminant as f and hence [gi,k]Z is in the same ideal class group as [f ]Z.

Lemma 5.8. Let f be given as in (5.5). Then for each k ≥ 1 one can choose an integral binary quadratic
form gi,k satisfying (5.14) such that [g1,k]Z = [f ]k−1

Z and [g2,k]Z = [f ]k+1
Z .

We shall state a slightly more general result, which may be of separate interest. From here on, f shall
not be assumed to take the form (5.5). We hence return to the notation (2.1) for f .
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Proposition 5.9. Let f be a binary quadratic form with co-prime integer coefficients and non-zero discrim-
inant. Suppose that p is an odd prime such that

(
∆(f)
p

)
= 1, and let p1, p2 be the two prime ideal divisors of

(p). Suppose further that there exists a non-negative integer s for which [f ]Z = [ps1]. Let L1,L2 be as given
in Lemma 5.2. For all k ≥ 1, there exists integral quadratic forms g1,k, g2,k such that

{f(x, y) : (x, y) ∈ Lki } = {pkgi,k(x, y) : (x, y) ∈ Z2}
for i = 1, 2 and

[g1,k]Z = [p1]s−k, [g2,k]Z = [p1]s+k.

Proof. See the Appendix by Erick Knight.
�

We then have the following corollary, which a crucial component of our proof:

Corollary 5.10. Let f be given as in (5.5), w(f) as given in (5.7). Then ν(f) can be chosen so that
[ν(f)]Z = [w(f)]4Z.

The proof of Proposition 5.4 then follows from Corollary 5.10 and Lemma 5.7.

6. Enumerating the elements in Vf (Z) for a fixed positive definite quadratic form f

In this section we shall give an asymptotic formula for Nf (X).

Theorem 6.1. Let f(x, y) = αx2 + βxy + γy2 be a positive definite reduced binary quadratic form with
co-prime integer coefficients. Put D = |∆(f)|. Then

(6.1) Nf (X/D) =


πX

3D3/2
+O

(
X1/2

D1/2

)
if β is odd;

4πX

3D3/2
+O

(
X1/2

D1/2

)
if β is even.

The following lemma illustrates the importance of having f as a positive definite form.

Lemma 6.2. Let f be a primitive, positive definite binary quadratic form with integer coefficients. Then the
I-invariant of F is a positive definite binary quadratic form and hence the set of F ∈ Vf (R) with I(F ) ≤ X1/3

lie in the ellipse defined by

(6.2) Ef (X) =

{
(A,B) ∈ R2 : αB2 − 4βAB + 16γA2 ≤ 4α3

3|∆(f)|
X1/3

}
.

Proof. The fact that the I-invariant is a positive definite binary quadratic form follows from (5.2), namely
the observation that the I-invariant is a positive multiple of the quadratic form αx2 − 4βxy + 16γy2, which
is equal to f(x,−4y); hence positive definite. �

Since Nf (X) only depends on the class C(f) of f , we may pick a convenient representative of f . Indeed,
we may suppose that α is odd and co-prime to ∆(f), which implies that gcd(α, β) = 1.

It follows from Lemma 6.2 and Proposition 2.3 that

{F ∈ Vf,Z : I(F ) ≤ X} = Ef ∩ Lf,α.
We then need to compute the determinant det(Lf,α), which we do so in the following proposition.

Proposition 6.3. The determinant detLf,α is equal to 4α3 if β is odd and α3 otherwise.

Proof. Let k be the exponent of p dividing α. For p ≥ 3, the congruence (2.4) implies

β(4βγA− (β2 − αγ)B)− αγ(4γA− βB) ≡ 0 (mod p3k).

It follows that
4βγA− (β2 − αγ)B ≡ 0 (mod pk),

which is equivalent to
4γA− βB ≡ 0 (mod pk),
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or A1 ≡ 0 (mod pk). This then implies that

β(4βγA− (β2 − αγ)B) ≡ 0 (mod p2k),

or A2 ≡ 0 (mod p2k). Thus (2.4) implies (2.3) and (2.2), so that

detL(p)
f,α = p3k.

We now deal with the case when p = 2. If 2 - β then the argument proceeds as before, but the congruences
modulo pk, p2k, p3k are replaced by 2k+1, 22k, 23k+2 respectively. �

We may now prove Theorem 6.1.

Proof of Theorem 6.1. We wish to count the number of points in the intersection Ef (X) ∩ Lf,α. We apply
Davenport’s lemma, which asserts that

#Ef (X) ∩ Lf,α =
Vol(Ef (X))

|det(Lf,α)|
+O

(
max

{
Vol(Ef (X)), 1

})
.

The volume of Ef (X) is given by

Vol(Ef (X)) =
4α3

3|∆(f)|3/2
X1/3,

whence

N
(0)
f (X) =


πX1/3

3|∆(f)|3/2
+O

(
X1/6

|∆(f)|1/2

)
if β is odd;

4πX1/3

3|∆(f)|3/2
+O

(
X1/6

|∆(f)|1/2

)
if β is even,

since α ≤ γ since f is reduced.
�

The task now, given Theorem 6.1, is to obtain uniformity estimates for the error term that appears. We
will need the following lemma, essentially Lemma 3.1 in [6].

Lemma 6.4. Let f(x, y) = αx2 + βxy + γy2 be a positive definite integral binary quadratic form which is
reduced. Then the set of integer pairs (x, y) satisfying f(x, y) ≤ X is given by

2πX√
4αγ − β2

+O

(√
X

α

)
.

7. Two ways to count quartic forms with vanishing J-invariant

In Section 6 we showed how to estimate the quantities Nf (X). By summing over SL2(Z)-classes of f
having discriminant −D bounded by X, we will be able to prove Theorem 1.1. However, this is infeasible:
as soon as D > X2/3 the main term in (6.1) will be less than one. It then becomes un clear how continuing
to sum Nf (X) past that point will contribute to a main term.

We put N(X;Y ) for the quantity (1.8), with the additional stipulation that we are only counting contri-
butions from those Nf (X) with |∆(f)| ≤ Y . Using the theory introduced in Section 3, we will introduce a
different way to enumerate elements in W(0)

4 (Z)(X), via the outer form h(x, y) in (3.3). In particular, put
(7.1)
Sh(X) = #{w ∈ W(0)

4 (Z) : 0 < |∆(w)| ≤ X,∃ primitive quadratic forms u, v s.t. h(u(x, y), v(x, y)) ∈ w}

Recall (3.4) the relation
∆(u)h2 −∆(u, v)h1 + ∆(v)h0 = 0.

Using the fact that −D = ∆(J (u, v))/4, we see that we can express −D as a function of the quadratic form
h(x, y) = h2x

2 + h1xy + h0y
2 and ∆(u),∆(u, v),∆(v), namely by setting

∆(v) = −h2∆(u)− h1∆(u, v)

h0
.
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This gives

(7.2) −D =
h2∆(u)2 − h1∆(u)∆(u, v) + h0∆(u, v)2

h0
=
h(∆(u),−∆(u, v))

h0
.

Thus, we have the key equation

(7.3) I(F ) =
−3h(∆(u),−∆(u, v))

h0
·∆(h).

Thus we can formulate the question as finding pairs (x, y) ∈ Z2 for which

(7.4) h(x, y) ≡ 0 (mod h0)

and such that

(7.5)
∣∣∣∣h(x, y)

h0

∣∣∣∣ ≤ X

∆(h)
.

The caveat is that not all such pairs (x, y) are admissible: indeed, we shall only take those pairs (x, y)
satisfying the congruence condition (7.4) and such that one can find a primitive pair of quadratic forms
(u, v) such that ∆(u) = x,∆(u, v) = −y. Luckily such a criterion is already known, due to Morales [16]:
such a pair exists if and only if x is a square modulo −D. We state Morales’ result for convenience:

Proposition 7.1 (Morales [16]). The number of inner equivalence classes of pairs (u, v) of integral binary
quadratic forms with prescribed invariant form F(x, y) = δ1x

2 + 2δ1,2xy + δ2y
2 is equal to

(7.6)
∑

c|δ21,2−δ1δ2
c>0,c square-free

(
δ1
c

)
.

Note that since h is indefinite, the number of solutions to (7.5) is a priori infinite. Thus to make sense
of the counting problem we must account for the action of the unit group of Oh = OQ(

√
∆(h))

on h, so
that at most a bounded number of points from each orbit is counted. To do so we must define such an
action, but unfortunately both the inner and outer actions introduced in Section 3 do not have an immediate
interpretation in terms of the expression introduced in (7.2). Fortunately, with respect to the unit group
action, the outer action induces the correct action on (7.2). Therefore, Proposition 7.1 implies the following:

Proposition 7.2. Let h(x, y) be a primitive integral binary quadratic form such that ∆(h) > 0. Then

(7.7) Sh(X) =
∑∗

−Xh0<h(x,y)<0
h2x−h1y≡0 (mod h0)

∑
c|h(x,y)

c>0,c square-free

(x
c

)
,

where the summation
∑∗

denotes summing over a suitable fundamental domain D for the action of the

unit group in Q(
√

∆(h)) on h.

What will be important for us is the following. PutN (X;Y ) for the sum of Sh(X) over SL2(Z)-equivalence
classes of h with E = ∆(h) ≤ Y . We then have:

Proposition 7.3. For any positive number Y we have

N(X) = N (X;Y ) +N
(
X;XY −1

)
.

Proof. If w ∈ W(0)
4 (Z) is such that w is counted by both Nf (X) and Sh(X), then

I(F ) = −3∆(f)∆(h).

Thus, if |I(F )| ≤ X, then F is counted by either Nf (X) with |∆(f)| ≤ Y or Sh(X) with |∆(h)| ≤ XY −1.
This completes the proof. �

Therefore to complete the proof of Theorem 1.1, we need to estimate N (X;X1/3). To do so, we need to
estimate Sh(X) with reasonable precision.
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Indeed a suitable choice of fundamental domain is crucial for the necessary estimates: for this we follow a
construction due to Schmidt [17]. Recall that for E = ∆(h), we denote by RE the regulator of the quadratic
order OE of discriminant E. Following [17], we put

tE = bREc+ 1, u = exp(RE/tE).

Then we have
utE = εE and 1� log u ≤ 1,

where εE is the fundamental unit of OE . Instead of considering sublattices of Z2, we instead consider, for
points α ∈ KE = Q(

√
E), the put

α̂ = (α, α) ∈ R2,

where α is the conjugate of α in OE . Note that the set of α̂, α ∈ OE gives a sub-lattice of R2 of discriminant
E1/2. When α is restricted to a non-zero ideal a ⊂ OE , then α̂ runs over a lattice Λ(a) satisfying det Λ(a) =
E1/2N(a), where N(a) refers to the norm of the ideal a. Further, for C an ideal class in OE and c1, c2, · · ·
the integral ideals in C ordered by norm, put

N(C) =

 2t∑
j=1

N(cj)

−1/2

.

Put v = u1/2, so that 1� log v, and v − 1� 1. Put

τ : R2 → R2, τ(α, α) =
(
v−1α, vα

)
.

Put Λ(a, j) for the image of Λ(a) under the map τ j , where the exponent refers to functional composition.
Then Λ(a, j) is again a lattice in R2, since τ is a linear map. Moreover we have det Λ(a, j) = det Λ(a).

What we gain is that Schmidt shows in [17] that we have a very nice expression for the first successive
minimum of Λ(a, j), given by

(7.8) λ1 (a, j) = min
α∈a\{0}

(
v−2j |α|2 + v2j |α|2

)1/2
.

Now put, for α ∈ KE ,

ψ(α) =
|α|
|α|

.

By explicit calculation we see that ψ (εE · α) = ε2
Eψ(α) for all α ∈ OE . This shows that for each such α

there exists uniquely an integer s such that

ε−1
E < ψ(εsEα) ≤ εE .

A key observation made by Schmidt is that the interval

ε−1
E < x ≤ εE

may be partitioned into 2t intervals uj−1 < x ≤ uj with −t < j ≤ t. Using Schmidt’s notation, put
Z1(a, j,X) for the number of non-zero α ∈ OE ∩ a satisfying |αα| ≤ XN(a) and uj−1 < ψ(α) ≤ uj . Lemma
6 in [17] gives the estimate

(7.9) Z1(a, j,X) =
2REX

tE · E1/2
+O

(
X1/2N(a)1/2

λ1(a, j)

)
.

Schmidt’s Lemma 8 provides a key estimate, namely

(7.10)
t∑

j=1−t
λ1(a, j)−1 = (N(Ca)N(a))

−1/2
,

where Ca is the ideal class containing a.

We note that for any positive integer k and integer x that∑
c|k
c≤
√
k

(x
c

)
=
∑
c|k
c≥
√
k

(x
c

)
.
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Using this observation, we may essentially apply Dirichlet’s hyperbola trick to (7.1) to obtain

(7.11) Sh(X) = S(1)
h (X) + 2

∑]

2≤c≤X1/2

∑∗

−Xh0<h(x,y)<0
h(x,y)≡0 (mod c)
h2x≡h1y (mod h0)

(x
c

)
,

where the sum
∑]

in (7.11) refers to the restriction to square-free c. Denote this sum by S]h(X).

To proceed, we note that, by Proposition 5.9, we may find a binary quadratic form h such that

(7.12) {h(x, y) : (x, y) ∈ Z2, h2x− h1y ≡ 0 (mod h0)} = {h0 · h(x, y) : (x, y) ∈ Z2}.

After replacing h with h, the congruence condition modulo h0 then disappears, and the sum S]h(X) becomes

(7.13) S]h(X) =
∑]

2≤c≤X1/2

∑∗

−X<h(x,y)<0
h(x,y)≡0 (mod c)

(
`(x, y)

c

)

for some primitive linear form `.

We break the inner sum of (7.13) into a summation over values b of `, and then summing values of x, y
on the line defined by `(x, y) = b. By the preceding discussion, x, y are constrained in 2t domains each with
diameter O

(
X1/2N(Ch)−1/2

)
(see Lemma 6 and Lemma 11 in [17]) . In particular, we have∑∗

−X<h(x,y)<0
h(x,y)≡0 (mod c)

(
`(x, y)

c

)
=

∑
b�X1/2N(Ch)−1/2

(
b

c

) ∑
(x,y)∈D(X)
`(x,y)=b

h(x,y)≡0 (mod c)

1

�
√
c log c ·

(
X1/2

cN(Ch)1/2
+O(1)

)
2ω(c)

�ε X
1/2N(Ch)−1/2c−1/2+ε

Feeding this back into (7.11), and noting that c only runs over norms of Q(
√

∆(h)), and such integers are
bounded by O((X/∆(h))1/2), we see that

S]h(X)�ε X
1/2N(Ch)−1/2

∑
c≤X1/2

c a norm in Q(
√

∆(h))

c−1/2+ε

�ε X
1/2N(Ch)−1/2 · X

1/4+ε

∆(h)1/2

= Oε

(
X3/4+ε(N(Ch)∆(h))−1/2

)
.

The sum corresponding to the value c = 1, which we denoted by S(1)
h (X) in (7.11), is readily seen to be

equal to
S(1)
h (X) = #{(x, y) ∈ D : −Xh0 < h(x, y) < 0, h(x, y) ≡ 0 (mod h0)}

where D denotes a fundamental domain of the action of the unit group on the ring of integers of Q(
√

∆(h)).
By the proof of Theorem 1 in [17], and putting E = ∆(h), we see that

(7.14) S(1)
h (X) =

2XRE√
E

+O
(

(X(logX)RE)
1/2
)
.

This leads to the following conclusion:

Lemma 7.4. Let h be an ntegral binary quadratic form with discriminant E > 0, and let RE be the regulator
of Q(

√
E). Then

Sh(X) =
2XRE√

E
+Oε

(
(X(logX)RE)

1/2
+X3/4+ε(RE/E)1/2

)
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8. Proof of Theorem 1.1

By Proposition 7.3, it suffices to give N(X;Y ) and N (X;XY −1) for any 0 < Y < X. We shall do so for
Y = X2/3 exp

(
−4 logX
log logX

)
.

By Lemma 6.4, we see that the error term in Nf (X/D) can be taken to be

O

(
X1/2

(ν2D)1/2

)
,

where ν2 is the leading coefficient of ν(f) is the smallest positive intege representable by ν(f). Lemma 4.2
then shows that

(8.1)
∑†

D≤Y

X1/2

(ν2D)1/2
= O

(
X exp

(
−2 logX

log logX

))
.

However, we note that the set of possible classes for ν(f), by Proposition 5.9, is not all possible classes of
discriminant −D but rather restricted to those which are 4-th powers in the class group of forms of discrim-
inant −D. For each 4-th power, we then need to multiply by the size of the 4-torsion subgroup of the group
of forms of discriminant −D to recover all possible classes of f . The size of the 4-torsion subgroup is at most
the square of the size of the 2-torsion subgroup, which by genus theory is at most 2ω(D), where ω(·) is the
number of distinct prime divisor function. Therefore, we need to multiply (8.1) by the largest possible size
of the divisor function of a positive integer smaller than X, which is of size O

(
X2/ log logX

)
. We chose our

Y to balance this contribution, so that the overall contribution is O(X).

Next, we need to sum over the complementary error terms coming from Lemma 7.4. Examining Schmidt’s
proof of Lemma 9 in [17] reveals that the geometry of the fundamental domain D is affected by the norm of
the ideal associated to the norm form h, and we see that the first error term in Lemma 7.4 can be handled
as

∑
E≤Z

(X(logX)h2(E)RE)1/2

E1/2
≤ (X logX)1/2

∑
E≤Z

E−1

1/2∑
E≤Z

h2(E)RE

1/2

by Cauchy-Schwarz

� (X logX)1/2(logZ)1/2Z3/4.

Taking Z = X1/3+1/100 > X1/3 exp
(
4(logX)(log logX)−1

)
, we see that this gives a negligible contribution.

Now we sum the second error term in Lemma 7.4. Similarly, summing over the classes of discriminant E
has the effect of giving the inclusion of the square-root of the class number h2(E), giving the error term

O
(
X3/4(logX)(h2(E)RE/E)1/2

)
.

Summing, we obtain

∑
E≤Z

X3/4 logX

E3/4

(
h2(E)RE

E

)1/2

≤ X3/4 logX

∑
E≤Z

E−1

1/2∑
E≤Z

h2(E)RE
E3/2

1/2

� X3/4 logX · logZ,

by Cauchy-Schwarz and partial summation. Again, by taking Z = X1/3+1/100 say, we easily obtain an
acceptable error term.

It thus remains to sum over the main terms in Theorem 6.1.

Remark 8.1. Theorem 1.1 is stated with an error term which is O(X), and this is likely not removable.
Indeed, akin to the problem of estimating the sum over the divisor function there is likely a secondary main
term of size exactly X. Examining the estimation of the summation of errors from Lemmas 6.4 and 7.4
above we see that both cases in fact do give power-saving error terms with a suitable choice of Y , it is in
principle possible to obtain the secondary main term. We wish to return to this problem in future work.
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8.1. Summing the main terms. We now consider the two sums

(8.2)
∑
D≤Y

D≡3 (mod 4)
w∈W∗2 (−D)

πX

3nwD3/2

and

(8.3)
∑
D≤Y

D≡0 (mod 4)
w∈W∗2 (−D)

4πX

3nwD3/2
,

where nw is given as in Proposition 2.6. Put

h]2(−D) =
∑

w∈W∗2 (−D)
nw=1

1.

We shall then prove the following:

Lemma 8.2. The equalities

(8.4)
∑
D≤Y

D≡3 (mod 4)

h]2(−D)πX

3D3/2
=

∑
D≤Y

D≡3 (mod 4)

h2(−D)πX

3D3/2
+O(Y log Y )

and

(8.5)
∑
D≤Y

D≡0 (mod 4)

h]2(−D)4πX

3D3/2
=

∑
D≤Y

D≡0 (mod 4)

h2(−D)4πX

3D3/2
+O(Y log Y ).

Proof. We have that nw > 2 if and only if w = [x2 + xy + y2]Z, and it is not possible for a positive definite
binary quadratic form f to be opaque. Therefore it suffices to count the number of ambiguous classes with
D ≤ Y and to show that the number of such classes is small. This requires the estimation of the sum∑

D≤Y

2ω(D).

We use the fact that 2ω(n) =
∑
d|n µ

2(d) to obtain∑
D≤Y

2ω(D) = Y
∑
d≤Y

µ2(d)

(
1

d
+O(1)

)
=

8

27π2
Y log Y +O(Y ).

Hence the number of ambiguous classes with D ≤ Y is O(Y log Y ), as desired. �

Lemma 8.2 shows that it suffices to estimate the sum

(8.6)
∑
D≤Y

D≡3 (mod 4)

h2(−D)πX

3D3/2
+

∑
D≤Y

D≡0 (mod 4)

h2(−D)4πX

3D3/2
.

We can evaluate (8.6) via Proposition 4.1. Indeed, we note that

∑
D≤Y

D≡0 (mod 4)

h2(−D)

D3/2
= Y −3/2

∑
D≤Y

D≡0 (mod 4)

h2(−D) +
3

2

∫ Y

1

t−5/2

 ∑
D≤t

D≡0 (mod 4)

h2(−D)

 dt

=
3

2

∫ Y

1

π

42ζ(3)
t−1dt+O(1)

=
π log Y

28ζ(3)
+O(1).
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It thus follows that

(8.7)
∑
D≤Y

D≡0 (mod 4)

h2(−D)4πX

3D3/2
=

π2

21ζ(3)
X log Y +O(X).

Similarly, we evaluate

∑
D≤Y

D≡3 (mod 4)

h2(−D)

D3/2
= Y −3/2

∑
D≤Y

D≡3 (mod 4)

h2(−D) +
3

2

∫ Y

1

t−5/2

 ∑
D≤t

D≡3 (mod 4)

h2(−D)

 dt

=
3

2

∫ Y

1

2π

63ζ(3)
t−1dt+O(1)

=
π

21ζ(3)
log Y +O(1),

whence

(8.8)
∑
D≤Y

D≡3 (mod 4)

h2(−D)πX

3D3/2
=

π2

21ζ(3)
X1/3 log Y +O(X).

Thus, (8.6) evaluates to

(8.9)
2π2

21ζ(3)
X log Y +O(X).

Setting Y = X2/3 exp
(
−4(logX)(log logX)−1

)
, we obtain the term

(8.10)
4π2

63ζ(3)
X logX +O(X).

We must perform the same analysis for summing over classes of real quadratic forms. Due to the similarity
in calculation, we note that the analogue of (8.6) is

(8.11)
∑
E≤Z

E≡0 (mod 4)

4Xh2(E)RE
3E3/2

+
∑
E≤Z

E≡1 (mod 4)

Xh2(E)RE
3E3/2

,

and by the second half of Proposition 4.1, we obtain the same conclusion as in the positive definite case. It
thus follows that

(8.12) N(X) = N(X;Y )+N (X;XY −1) =

(
4π2

63ζ(3)
+

2π2

63ζ(3)

)
X logX+O(X) =

2π2

21ζ(3)
X logX+O(X).

Finally, by replacing X with 3X1/3/ 3
√

4, we complete the proof of Theorem 1.1.

9. Proof of Theorem 1.2

Compared with the proof of Theorem 1.1, the proof of Theorem 1.2 is much simpler, since the reduced
classes of reducible binary quadratic forms are particularly simple. Here we find that a typical reducible and
reduced binary quadratic form takes the shape

(9.1) f(x, y) = αx2 + βxy, gcd(α, β) = 1.

This then implies that the lattice Lf,α takes a particularly simple shape, namely

Lf,α = {(x, y) ∈ Z2 : y ≡ 0 (mod 4α3)}.
We thus replace B with 4α3B, so that the generic element F ∈ Vf (Z) takes the form

(9.2) F (x, y) = Ax4 + 4α3Bx3y + 6α2βBx2y2 + 4αβ2Bxy3 + β3By4.

It then follows that I(F ) is given by
I(F ) = 4B(4α7B − βA).

We then have:
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Lemma 9.1. We have

Nf (X) =
X1/3

3β3
log

(
X1/3

3β2

)
+ (2γ − 1)

X1/3

3β3
+O

(
X1/6

β

)
.

Proof. By symmetry, either B or (4α7B − βA) is less than X1/3/(12β2) in absolute value. We shall assume
that B, 4α7B − β ≥ 1. For convenience, we shall put Y = X1/3/(12β2). We then look at the three sums

S1(X) =
∑

m≤Y 1/2

∑
n≤Y/m

n≡4α7m (mod β)

1,

S2(X) =
∑

m≤Y 1/2

∑
n≤Y/m

m≡4α7n (mod β)

1

and
S3(X) =

∑
m≤Y 1/2

∑
n≤Y 1/2

n≡4α7m (mod β)

1.

It is then clear that
Nf (X) = S1(X) + S2(X)− S3(X).

We evaluate S1(X). The inner sum is equal to Y
βm +O(1). Thus, we have

S1(X) =
1

2β
(Y log Y + 2γY ) +O(Y 1/2).

Here γ is the Euler-Mascheroni constant. The evaluation of S2(X) is the same, and we have that S1(X) =
S2(X) +O(Y 1/2). It is easy to see that

S3(X) =
Y

β
+O(Y 1/2).

It thus follows that

Nf (X) =
Y log Y + (2γ − 1)Y

β
+O(Y 1/2)

=
X1/3 log(X1/3/(12β2) + (2γ − 1)X1/3

12β3
+O

(
X1/6

β

)
.

Multiplying by 4 to account for the signs of B and 4α7 − βA, we obtain the result. �

We may now prove Theorem 1.2.

Proof of Theorem 1.2. The error term in the estimate for Nf (X) provided by Lemma 9.1 is sufficiently sharp
that we may evaluate the sum directly using the class number formula given by Proposition 4.3. We are
then left to evaluate the sum

1

3

∑
n≤X1/6

φ(n)

(
X1/3

n3
logX − X1/3

n3
log(12n2) + (2γ − 1)

X1/3

n3
+O

(
X1/6

n

))
.

We have the well-known identity ∑
n≥1

φ(n)

ns
=
ζ(s− 1)

ζ(s)
,<(s) > 2,

Hence
X1/3

3
((logX)/3 + 2γ − 1)

∑
n≤X1/6

φ(n)

n3
=
X1/3 ((logX)/3 + 2γ − 1)

3

(
ζ(2)

ζ(3)
+O(X−1/6)

)
.

By partial summation, we see that

X1/3

3

∑
n≤X1/6

φ(n) log(12n2)

n3
= O(X1/3).
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Since φ(n) ≤ n− 1 for all positive integers n, it follows that∑
n≤X1/6

φ(n)

n
= O(X1/6).

Finally, we need to address the issue of ambiguous and opaque classes. By Proposition 4.12 in [20], we see
that the number of classes of discriminant n2 which are opaque or ambiguous is at most 2ω(n)+1. We then
note that ∑

n≤X1/6

2ω(n)

n3
= O(1).

Therefore, very few classes are ambiguous or opaque, and the proof is complete. �

10. Proof of Theorems 1.3 - 1.5

10.1. Proof of Theorem 1.3. Let F be given by (1.1). Consider its cubic resolvent polynomial given by

RF (x) = a3
4X

3 − a2
4a2X

2 + a4(a3a1 − 4a4a0)X − (a2
3a0 + a4a

2
1 − 4a4a2a0).

It is well-known that for irreducible F , RF (x) has a rational root if and only if Gal(F ) is isomorphic to a
subgroup of D4. In [24] we showed that RF (x) has a rational root if and only if F has a rational Cremona
covariant. For F ∈ Vf (Z), f is a rational Cremona covariant of F , hence RF (x) has a rational root and
Gal(F ) is D4, C4, or V4.

We first suppose that −∆(f) is not a square. Suppose that F ∈ Vf (Z). If ∆(F ) is itself a square then
Gal(F ) cannot be isomorphic to C4, so we assume that ∆(F ) 6= �. RF (x) has a unique root rF ∈ Q precisely
when ∆(F ) 6= �, in which case we define

θ1(F ) = (a2
3 − 4a4(a2 − rFa4))∆(F ) and θ2(F ) = a4(r2

Fa4 − 4a0)∆(F ).

It is well-known (see [9]) that Gal(F ) ∼= C4 precisely when ∆(F ) 6= � and θ1(F ), θ2(F ) are rational squares.
Writing a4, · · · , a0 as in (2.6) we find that

θ1(F ) =
−∆(f)3(αB2 − 4βAB + 16γA2)4

16α10

and

θ2(F ) =
−∆(f)3(αB2 − 4βAB + 16γA2)4

64α12
.

Thus, it is apparent that both θ1(F ), θ2(F ) are squares modulo −∆(f). Since −∆(f) is not a square by
assumption, neither are θ1(F ), θ2(F ).

Now suppose that −∆(f) is a square. By the same argument as above, we see that whenever F is
irreducible and ∆(F ) is not a square, we have that Gal(F ) ∼= C4. It thus remains to show that whenever
∆(F ) is a square, that F is reducible.

10.2. Proof of Theorem 1.4. Since all elements in V(0)
4 (R) lie in a single GL2(R)-orbit, it suffices to

consider the statement for a single element in V(0)
4 (R). We take

F = xy(x2 − y2).

It is easily verified that J(F ) = 0 and F is totally real. Moreover, we have I(F ) = 3. We compute

F6(x, y) = x6 − 5x4y2 − 5x2y4 + y6 = (x2 + y2)(x2 − 2xy − y2)(x2 + 2xy − y2).

We then find that
GF = (x2 − 2xy − y2)(x2 + 2xy − y2).

Note that J(GF ) = 0 and GF is also totally real. We then find that

(GF )6(x, y) = 2(16− 144)x5 − 2(16− 144)xy5 = 256xy(x2 + y2)(x2 − y2).

Therefore,
GGF

= 256xy(x2 − y2),

which is proportional to F as claimed.
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10.3. Proof of Theorem 1.5. Observe that if −∆(f) is a square, then it is necessarily even. Hence for
each such f we have, by Theorem 6.1,

Nf (X) =
4π

3(4n2)3/2
X1/3 +O

(
X1/6

n

)
=

π

6n3
X1/3 +O

(
X1/6

n

)
.

The error term from Theorem 6.1 is not sufficient for our purposes. However, by the same argument given
in Section 8 we may first consider all classes of ν(f), then multiply by the size of the 4-torsion subgroup of
the class group. This wins us an extra factor of ν2, the x2-coefficient of ν(f), in the denominator.

We now consider reduced classes of ν(f), that is, the set

R′(X) = {(a, b, c) ∈ Z3 : |b| ≤ a ≤ c, ac > 0, b2 − ac = −n2, 1 ≤ n < X1/6/2}.

Let ε > 0. We consider the subset R′′(X) of R′(X) with a ≤ nε. For each n ∈ [1, X1/6/2) put h]2(−4n2)
for the classes counted by h2(−4n2) which correspond to an element in R′′(X). There are nε choices for a,
2a = O(nε) choices for b, and d(n2 + b2) = Oε(n

ε) choices for c. Finally, for each such n there are at most
Oε(n

ε) elements in the 4-torsion subgroup of the Picard group of O−4n2 . Thus, adjusting ε if necessary, we
have h?2(−4n2) = Oε (nε). Otherwise we have the bound h2(−4n2) � n log log n. Combining these bounds
we obtain that summing the error term over all classes counted R′(X) gives an error term of∑

n≤X1/6/2

Oε

(
X1/6

n1−ε +
X1/6 log log n

nε

)
= Oε

(
X1/3−ε

)
.

We now sum over the main term. The sum over all such SL2(Z)-classes of f gives the sum∑
n≤X1/6/2

h2(−4n2)π

6n3
X1/3 = X1/3π

6

7ζ(2)

8β(3)
= X1/3π · π2 · 28

6 · 6 · π3
=

7X1/3

9
.

It thus follows that

NC4
(X) =

7X1/3

9
+Oε

(
X1/3−ε

)
,

and the estimate for MC4
(X) follows by replacing X with 4X/27.

Finally, we show that all irreducible elements in Vf (Z) have Galois group C4. We have already ruled out
D4, so it suffices to show that all elements F ∈ Vf (Z) with square discriminant are in fact reducible. Since
−∆(f) = �, it follows that f is GL2(Q)-equivalent to x2 + y2. Therefore, F is GL2(Q)-equivalent to a form
of the shape

F = Ax4 +Bx3y − 6Ax2y2 −Bxy3 +Ay4, A,B ∈ Q.
By the same argument as in the proof of Theorem 1.4, we find that

GF (x, y) = (16A2 +B2)(Bx4 − 16Ax3y − 6Bx2y2 + 16Axy3 +By4).

We now suppose that ∆(F ) is a square, which is a necessary condition for Gal(F ) ∼= V4. By the proof of
Theorem 1.1 in [20], we find that GF is necessarily reducible. Moreover ∆(GF ) is a square, so then it follows
that GGF is necessarily reducible. But GGF is proportional over Q to F . Hence F is reducible, as claimed.

Appendix: A Coordinate-free Perspective on the Hensel Lifts
By Erick Knight

This appendix is an alternative perspective on the discussion in Section 5; in particular it is a coordinate-
free perspective on Proposition 5.9. In this discussion, we will restrict ourselves to considering the class
group of a single field K.

To fix some notation, let K be a quadratic extension of Q, with ring of integers OK . Additionally, let p be
a prime of Z that splits in K, and write (p) = p1p2. We will denote by OK,pi to be the pi-adic completion of
OK . Because p splits in K, the natural inclusion Zp ↪→ OK,pi

is an isomorphism. Additionally, one has that
OK ⊗Z Zp ∼= OK,p1

⊕OK,p2
. Using these isomorphisms, one has that the norm form NK/Q : OK ⊗Z Zp → Zp

is just the composition OK ⊗Z Zp → OK,p1
⊕OK,p2

→ Zp ⊕ Zp → Zp where the first two maps are just the
isomorphisms mentioned earlier, and the last map is just (x, y)→ xy.
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Now, let f be a quadratic form such that [f ] is equal to [p1]. This means that there is an identification
of Z2 with p1 such that f is equal to the function NK/Q(·)

p in this basis. Tensoring up to Zp, we get that
p1⊗ZZp ∼= pOK,p1

⊕OK,p2
as an ideal in OK⊗ZZp, and f sends an element (α, β) of pOK,p1

⊕OK,p2
to αβ/p.

This means that the lattices constructed in Section 5 are given by taking the intersection OK∩ps+1OK,p1
⊕

OK,p2
inside of OK ⊗Z Zp. But this is just ps+1

1 , as can be seen from the Chinese remainder theorem.
Moreover, the form g2,k is just given by restriciting f to this lattice and then dividing by ps, which means
that [g2,k] is equal to the class of [ps+1

1 ], which is what was wanted.
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