
FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS: FROM
ALEXANDER TO KASHIWARA AND VERGNE

DROR BAR-NATAN AND ZSUZSANNA DANCSO

Abstract. w-Knots, and more generally, w-knotted objects (w-braids, w-tangles, etc.)
make a class of knotted objects which is wider but weaker than their \u sual" counterparts.
To get (say) w-knots from u-knots, one has to allow non-planar \virtual" knot diagrams,
hence enlarging the the base set of knots. But then one imposes a new relation, the \over-
crossings commute" relation, further beyond the ordinary collection of Reidemeister moves,
making w-knotted objects a bit weaker once again.

The group of w-braids was studied (under the name \welded braids") by Fenn, Rimanyi
and Rourke [FRR] and was shown to be isomorphic to the McCool group [Mc] of \basis-
conjugating" automorphisms of a free groupFn | the smallest subgroup of Aut( Fn ) that
contains both braids and permutations. Brendle and Hatcher [BH], in work that traces back
to Goldsmith [Gol], have shown this group to be a group of movies of 
ying rings inR3.
Satoh [Sa] studied several classes of w-knotted objects (under the name\w eakly-virtual")
and has shown them to be closely related to certain classes of knotted surfaces inR4. So
w-knotted objects are algebraically and topologically interesting.

In this article we study �nite type invariants of several classes of w-knotted objects.
Following Berceanu and Papadima [BP], we construct homomorphic universal �nite type
invariants of w-braids and of w-tangles. We �nd that the universal �nite type invariant of
w-knots is more or less the Alexander polynomial (details inside).

Much as the spacesA of chord diagrams for ordinary knotted objects are related to
metrized Lie algebras, we �nd that the spacesA w of \arrow diagrams" for w-knotted objects
are related to not-necessarily-metrized Lie algebras. Many questions concerning w-knotted
objects turn out to be equivalent to questions about Lie algebras.Most notably we �nd that
a homomorphic universal �nite type invariant of w-knotted foams is essentially the same as a
solution of the Kashiwara-Vergne [KV ] conjecture and much of the Alekseev-Torossian [AT ]
work on Drinfel'd associators and Kashiwara-Vergne can be re-interpreted as a study of
w-knotted trivalent graphs.

The true value of w-knots, though, is likely to emerge later, for we expect them to serve
as a warmup example for what we expect will be even more interesting | the study of
virtual knots, or v-knots. We expect v-knotted objects to provide the global context whose
projectivization (or \associated graded structure") will be the E tingof-Kazhdan theory of
deformation quantization of Lie bialgebras [EK].

This paper was split in two and became the �rst two parts of a four-part series ([WKO1]{
[WKO4]). The remaining relevance of this paper is due to the series of videotaped lectures
(wClips) that are linked here.

Date: �rst edition Sep. 27, 2013, this edition Feb. 17, 2015. ThearXiv:1309.7155edition may be older.
1991Mathematics Subject Classi�cation. 57M25.
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1. Introduction

1.1. Dreams. We have a dream1, at least partially founded on reality, that many of the
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wClips are
explained
in
Section 1.6.

di�cult algebraic equations in mathematics, especially those that arewritten in graded
spaces, more especially those that are related in one way or another to quantum groups [Dr1],
and even more especially those related to the work of Etingof and Kazhdan [EK], can be
understood, and indeed, would appear more natural, in terms of �nite type invariants of
various topological objects.

We believe this is the case for Drinfel'd's theory of associators [Dr2], which can be in-
terpreted as a theory of well-behaved universal �nite type invariants of parenthesized tan-
gles2 [LM2, BN3], and even more elegantly, as a theory of universal �nite type invariants of
knotted trivalent graphs [Da].

We believe this is the case for Drinfel'd's \Grothendieck-Teichmuller group" [Dr3] which is
better understood as a group of automorphisms of a certain algebraic structure, also related
to universal �nite type invariants of parenthesized tangles [BN6].

And we're optimistic, indeed we believe, that sooner or later the workof Etingof and
Kazhdan [EK] on quantization of Lie bialgebras will be re-interpreted as a construction of a
well-behaved universal �nite type invariant of virtual knots [Ka2] or of some other class of
virtually knotted objects. Some steps in that direction were takenby Haviv [Hav].

We have another dream, to construct a useful \Algebraic Knot Theory". As at least a
partial writeup exists [BN8], we'll only state that an important ingredient necessary to ful�l
that dream would be a \closed form"3 formula for an associator, at least in some reduced
sense. Formulae for associators or reduced associators were in themselves the goal of several
studies undertaken for various other reasons [LM1, Lie, Kur , Lee1].

1.2. Stories. Thus the �rst named author, DBN, was absolutely delighted when in January
2008 Anton Alekseev described to him his joint work [AT ] with Charles Torossian | Anton
told DBN that they found a relationship between the Kashiwara-Vergne conjecture [KV ], a
cousin of the Du
o isomorphism (which DBN already knew to be knot-theoretic [BLT ]), and
associators taking values in a space calledsder, which he could identify as \tree-level Jacobi
diagrams", also a knot-theoretic space related to the Milnor invariants [BN2, HM]. What's
more, Anton told DBN that in certain quotient spaces the Kashiwara-Vergne conjecture can
be solved explicitly; this should lead to some explicit associators!

So DBN spent the following several months trying to understand [AT ], and this paper
is a summary of these e�orts. The main thing we learned is that the Alekseev-Torossian
paper, and with it the Kashiwara-Vergne conjecture, �t very nicely with our �rst dream
recalled above, about interpreting algebra in terms of knot theory. Indeed much of [AT ] can
be reformulated as a construction and a discussion of a well-behaved universal �nite type
invariant Z of a certain class of knotted objects (which we will call here w-knotted), a certain
natural quotient of the space of virtual knots (more precisely, virtual trivalent tangles). And
our hopes remain high that later we (or somebody else) will be able to exploit this relationship

1Understanding the authors' history and psychology ought neverbe necessary to understand their papers,
yet it may be helpful. Nothing material in the rest of this paper relies on Section 1.1.

2\ q-tangles" in [LM2], \non-associative tangles" in [BN3].
3The phrase \closed form" in itself requires an explanation. See Section 7.1.
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in directions compatible with our second dream recalled above, on theconstruction of an
\algebraic knot theory".

The story, in fact, is prettier than we were hoping for, for it has the following additional
qualities:

� w-Knotted objects are quite interesting in themselves: as statedin the abstract, they are
related to combinatorial group theory via \basis-conjugating" automorphisms of a free
group Fn , to groups of movies of 
ying rings inR3, and more generally, to certain classes
of knotted surfaces inR4. The references include [BH, FRR, Gol, Mc, Sa].

� The \chord diagrams" for w-knotted objects (really, these are \arrow diagrams") describe
formulae for invariant tensors in spaces pertaining to not-necessarily-metrized Lie alge-
bras in much of the same way as ordinary chord diagrams for ordinary knotted objects
describe formulae for invariant tensors in spaces pertaining to metrized Lie algebras. This
observation is bound to have further implications.

� Arrow diagrams also describe the Feynman diagrams of topological BF theory [CCM,
CCFM] and of a certain class of Chern-Simons theories [Na]. Thus it is likely that our
story is directly related to quantum �eld theory4.

� When composed with the map from knots to w-knots,Z becomes the Alexander poly-
nomial. For links, it becomes an invariant stronger than the multi-variable Alexander
polynomial which contains the multi-variable Alexander polynomial as an easily identi-
�able reduction. On other w-knotted objects Z has easily identi�able reductions that
can be considered as \Alexander polynomials" with good behaviour relative to various
knot-theoretic operations | cablings, compositions of tangles, etc. There is also a certain
speci�c reduction ofZ that can be considered as the \ultimate Alexander polynomial" |
in the appropriate sense, it is the minimal extension of the Alexanderpolynomial to other
knotted objects which is well behaved under a whole slew of knot theoretic operations,
including the ones named above.

1.3. The Bigger Picture. Parallel to the w-story run the possibly more signi�cant u-story
and v-story. The u-story is about u-knots, or more generally, u-knotted objects (braids,
links, tangles, etc.), where \u" stands for usual; hence the u-story is about ordinary knot
theory. The v-story is about v-knots, or more generally, v-knotted objects, where \v" stands
for virtual, in the sense of Kau�man [Ka2].

The three stories, u, v, and w, are di�erent from each other. Yetthey can be told along
similar lines | �rst the knots (topology), then their �nite type invaria nts and their \chord
diagrams" (combinatorics), then those map into certain universalenveloping algebras and
similar spaces associated with various classes of Lie algebras (low algebra), and �nally, in
order to construct a \good" universal �nite type invariant, in each case one has to confront
a certain deeper algebraic subject (high algebra). These stories are summarized in a table
form in Figure 1.

u-Knots map into v-knots, and v-knots map into w-knots5. The other parts of our stories,
the \combinatorics" and \low algebra" and \high algebra" rows of Figure 1, are likewise
related, and this relationship is a crucial part of our overall theme.Thus we cannot and will

4Some non-perturbative relations between BF theory and w-knotswas discussed by Baez, Wise and
Crans [BWC].

5Though the composition \u ! v ! w" is not 0. In fact, the composed mapu ! w is injective.
4



v-Knots w-Knotsu-Knots

Ordinary (u sual) knotted
objects in 3D | braids,
knots, links, tangles, knot-
ted graphs, etc.

Virtual knotted objects |
\algebraic" knotted objects,
or \not speci�cally embed-
ded" knotted objects; knots
drawn on a surface, modulo
stabilization.

Ribbon knotted objects in
4D; \
ying rings". Like v,
but also with \overcrossings
commute".

Chord diagrams and Jacobi
diagrams, modulo 4T, ST U,
IHX , etc.

Arrow diagrams and v-
Jacobi diagrams, modulo
6T and various \directed"
ST Us and IHX s, etc.

Like v, but also with \tails
commute". Only \two in one
out" internal vertices.

Finite dimensional metrized
Lie algebras, represen-
tations, and associated
spaces.

Finite dimensional Lie
bi-algebras, representations,
and associated spaces.

Finite dimensional co-
commutative Lie bi-algebras
(i.e., gn g� ), representations,
and associated spaces.

The Drinfel'd theory of asso-
ciators.

Likely, quantum groups and
the Etingof-Kazhdan theory
of quantization of Lie bi-
algebras.

The Kashiwara-Vergne-
Alekseev-Torossian theory
of convolutions on Lie
groups and Lie algebras.
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Figure 1. The u-v-w Stories

not tell the w-story in isolation, and while it is central to this article, we will necessarily also
include some episodes from the u and v series.
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1.4. Plans. Our order of proceedings is: w-braids, w-knots, generalities, w-tangles, w-
tangled foams. For more detailed information consult the \Section Summary" paragraphs
below and at the beginning of each of the sections. An \odds and ends" section follows on
page93, and a glossary of notation is on page95.

Section 2, w-Braids. (page 7) This sec-
tion is largely a compilation of existing liter-
ature, though we also introduce the language
of arrow diagrams that we use throughout the
rest of the paper. In 2.1 and 2.2 we de�ne v-
braids and then w-braids and survey their rela-
tionship with basis-conjugating automorphisms
of free groups and with \the group of (horizon-
tal) 
ying rings in R3" (really, a group of knot-
ted tubes in R4). In 2.3 we play the usual game
of introducing �nite type invariants, weight sys-
tems, chord diagrams (arrow diagrams, for this

case), and 4T-like relations. In2.4 we de�ne and
construct a universal �nite type invariant Z for
w-braids | it turns out that the only algebraic
tool we need to use is the formal exponential
function exp(a) :=

P
an=n!. In 2.5 we study

some good algebraic properties ofZ , its injec-
tivity, and its uniqueness, and we conclude with
the slight modi�cations needed for the study of
non-horizontal 
ying rings.

Section 3, w-Knots. (page 23) In 3.1 we
de�ne v-knots and w-knots (long v-knots and
long w-knots, to be precise) and discuss the map

5
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v ! w. In 3.2 we determine the space of \chord
diagrams" for w-knots to be the spaceA w(" )
of arrow diagrams modulo

�!
4T and TC relations

and in 3.3 we compute some relevant dimensions.
In 3.5 we show that A w(" ) can be re-interpreted
as a space of trivalent graphs modulo STU- and
IHX-like relations, and is therefore related to
Lie algebras (Sec.3.6). This allows us to com-
pletely determine A w(" ). With no di�culty at
all in 3.4 we construct a universal �nite type in-
variant for w-knots. With a bit of further dif-
�culty we show in Sec. 3.7 that it is essentially
equal to the Alexander polynomial.

Section 4, Algebraic Structures, Projec-
tivizations, Expansions, Circuit Algebras.
(page 48) In this section we de�ne the \projec-
tivization" (Sec. 4.2) of an arbitrary algebraic
structure (4.1) and introduce the notions of \ex-
pansions" and \homomorphic expansions" (4.3)
for such projectivizations. Everything is so gen-
eral that practically anything is an example. The
baby-example of quandles is built in into the sec-
tion; the braid groups and w-braid groups ap-
peared already in Section2, yet our main goal
is to set the language for the examples of w-
tangles and w-tangled foams, which appear later
in this paper. Both of these examples are types
of \circuit algebras", and hence we end this sec-
tion with a general discussion of circuit algebras
(Sec.4.4).

Section 5, w-Tangles. (page 56) In Sec. 5.1
we introduce v-tangles and w-tangles, the obvi-
ous v- and w- counterparts of the standard knot-
theoretic notion of \tangles", and brie
y discuss
their �nite type invariants and their associated

spaces of \arrow diagrams",A v(" n ) and A w(" n ).
We then construct a homomorphic expansionZ ,
or a \well-behaved" universal �nite type invari-
ant for w-tangles. Once again, the only alge-
braic tool we need to use is exp(a) :=

P
an=n!,

and indeed, Sec.5.1 is but a routine extension of
parts of Section 3. We break away in Sec.5.2
and show that A w(" n ) �= U(an � tdern n trn ),
where an is an Abelian algebra of rank n and
where tdern and trn , two of the primary spaces
used by Alekseev and Torossian [AT ], have sim-
ple descriptions in terms of words and free Lie
algebras. We also show that some functionals
studied in [AT ], div and j , have a natural inter-
pretation in our language. In 5.3 we discuss a
subclass of w-tangles called \special" w-tangles,
and relate them by similar means to Alekseev
and Torossian's sdern and to \tree level" ordi-
nary Vassiliev theory. Some conventions are de-
scribed in Sec.5.4 and the uniqueness ofZ is
studied in Sec.5.5.

Section 6, w-Tangled Foams. (page 69)
If you have come this far, you must have no-
ticed the approximate Bolero spirit of this arti-
cle. In every chapter a new instrument comes
to play; the overall theme remains the same,
but the composition is more and more intricate.
In this chapter we add \foam vertices" to w-
tangles (and a few lesser things as well) and ask
the same questions we asked before; primarily,
\is there a homomorphic expansion?". As we
shall see, in the current context this question is
equivalent to the Alekseev-Torossian [AT ] ver-
sion of the Kashiwara-Vergne [KV ] problem and
explains the relationship between these topics
and Drinfel'd's theory of associators.

1.5. Acknowledgement. We wish to thank Anton Alekseev, Jana Archibald, Scott Carter,
Karene Chu, Iva Halacheva, Joel Kamnitzer, Lou Kau�man, PeterLee, Louis Leung, Dylan
Thurston, Lucy Zhang, and Jean-Baptiste Meilhan for comments and suggestions.
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1.6. wClips. Alongside this paper there is a series of video clips explaining parts of it. The
series as a whole can be found at [WKO0]; references to speci�c clips and speci�c times within
clips appear at the margin of this paper. We thank Peter Lee for contributing wClip:120201
and Karene Chu for contributingwClip:120314.
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2. w-Braids

Section Summary. This section is largely a compilation of existing literature,
though we also introduce the language of arrow diagrams thatwe use throughout
the rest of the paper. In 2.1 and 2.2 we de�ne v-braids and then w-braids and
survey their relationship with basis-conjugating automorphisms of free groups and
with \the group of (horizontal) 
ying rings in R3" (really, a group of knotted tubes
in R4). In 2.3 we play the usual game of introducing �nite type invariants, weight
systems, chord diagrams (arrow diagrams, for this case), and 4T-like relations.
In 2.4 we de�ne and construct a universal �nite type invariant Z for w-braids |
it turns out that the only algebraic tool we need to use is the formal exponential
function exp(a) :=

P
an =n!. In 2.5 we study some good algebraic properties ofZ ,

its injectivity, and its uniqueness, and we conclude with the slight modi�cations
needed for the study of non-horizontal 
ying rings.
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2.1. Preliminary: Virtual Braids, or v-Braids. Our main object of study for this sec-
tion, w-braids, are best viewed as \virtual braids" [Ba, KL , BB], or v-braids, modulo one
additional relation. Hence we start with v-braids.

It is simplest to de�ne v-braids in terms of generators and relations, either algebraically or
pictorially. This can be done in at least two ways | the easier-at-�rst but philosophically-
less-satisfactory \planar" way, and the harder to digest but morally more correct \abstract"
way.6

2.1.1. The \Planar" Way. For a natural number n set vB n to be the group generated by
symbols� i (1 � i � n � 1), called \crossings" and graphically represented by an overcrossing
! \between strand i and strand i + 1" (with inverse " )7, and si , called \virtual crossings"
and graphically represented by a non-crossing,P , also \between strandi and strand i + 1",
subject to the following relations:
� The subgroup ofvB n generated by the virtual crossingssi is the symmetric groupSn ,

and the si 's correspond to the transpositions (i; i + 1). That is, we have

s2
i = 1; si si +1 si = si +1 si si +1 ; and if ji � j j > 1 then si sj = sj si : (1)

In pictures, this is

... ...

i i +2i +1 i i +2i +1
i i +1 i i +1 i i +1 i i +1 j j +1j j +1

= = = (2)

Note that we read our braids from bottom to top.
� The subgroup ofvB n generated by the crossings� i 's is the usual braid groupuB n , and

� i corresponds to the braiding of strandi over strand i + 1. That is, we have

� i � i +1 � i = � i +1 � i � i +1 ; and if ji � j j > 1 then � i � j = � j � i : (3)

6Compare with a similar choice that exists in the de�nition of manifolds, as either appropriate subsets
of some ambient Euclidean spaces (module some equivalences) or as abstract gluings of coordinate patches
(modulo some other equivalences). Here in the \planar" approach of Section 2.1.1 we consider v-braids
as \planar" objects, and in the \abstract approach" of Section 2.1.2 they are just \gluings" of abstract
\crossings", not drawn anywhere in particular.

7We sometimes refer to! as a \positive crossing" and to " as a \negative crossing".
7
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In pictures, dropping the indices, this is

... ...and == (4)

The �rst of these relations is the \Reidemeister 3 move"8 of knot theory. The second is
sometimes called \locality in space" [BN3].

� Some \mixed relations",

si � � 1
i +1 si = si +1 � � 1

i si +1 ; and if ji � j j > 1 then si � j = � j si : (5)

In pictures, this is

... ...= , = =and (6)

Remark 2.1. The \skeleton" of a v-braid B is the set of strands appearing in it, retaining
the association between their beginning and ends but ignoring all thecrossing information.
More precisely, it is the permutation induced by tracing alongB, and even more precisely
it is the image ofB via the \skeleton morphism" &: vB n ! Sn de�ned by &(� i ) = &(si ) = si

(or pictorially, by &( ! ) = &( P ) = P ). Thus the symmetric groupSn is both a subgroup and
a quotient group ofvB n .

Like there are pure braids to accompany braids, there are pure virtual braids as well:

De�nition 2.2. A pure v-braid is a v-braid whose skeleton is the identity permutation; the
group PvBn of all pure v-braids is simply the kernel of the skeleton morphism&: vB n ! Sn .

We note the sequence of group homomorphisms

1 �! PvBn ,�! vB n
&�! Sn �! 1: (7)

This sequence is exact and split, with the splitting given by the inclusionSn ,! vB n men-
tioned above (1). Therefore we have that

vB n = PvBn o Sn : (8)

2.1.2. The \Abstract" Way. The relations (2) and (6) that govern the behaviour of virtual
crossings precisely say that virtual crossings really are \virtual" | if a piece of strand is
routed within a braid so that there are only virtual crossings around it, it can be rerouted
in any other \virtual only" way, provided the ends remain �xed (this is Kau�man's \detour
move" [Ka2, KL ]). Since a v-braidB is independent of the routing of virtual pieces of strand,
we may as well never supply this routing information.

8The Reidemeister 2 move is the relations� i � � 1
i = 1 which is part of the de�nition of \a group". There

is no Reidemeister 1 move in the theory of braids.
8



1 2 3

Thus for example, a perfectly fair verbal description of the (pure!) v-braid
on the right is \strand 1 goes over strand 3 by a positive crossing then likewise
positively over strand 2 then negatively over 3 then 2 goes positivelyover 1". We
don't need to specify how strand 1 got to be near strand 3 so it can go over it |
it got there by means of virtual crossings, and it doesn't matter how. Hence we
arrive at the following \abstract" presentation of PvBn and vB n :

Proposition 2.3. (E.g. [Ba])

(1) The group PvBn of pure v-braids is isomorphic to the group generated by symbols � ij

wClip
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for 1 � i 6= j � n (meaning \strand i crosses over strandj at a positive crossing"9),
subject to the third Reidemeister move and to locality in space (compare with (3)
and (4)):

� ij � ik � jk = � jk � ik � ij whenever jf i; j; k gj = 3;

� ij � kl = � kl � ij whenever jf i; j; k; l gj = 4:

(2) If � 2 Sn , then with the action� �
ij := � � i;� j we recover the semi-direct product decom-

position vB n = PvBn o Sn . �

wClip
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2.2. On to w-Braids. To de�ne w-braids, we break the symmetry between over crossings
and under crossings by imposing one of the \forbidden moves" virtual knot theory, but not
the other:

� i � i +1 si = si +1 � i � i +1 ; yet si � i +1 � i 6= � i +1 � i si +1 : (9)

Alternatively,

� ij � ik = � ik � ij ; yet � ik � jk 6= � jk � ik :

In pictures, this is

yet

i j k i j k i j ki j k

6== (10)

The relation we have just imposed may be called the \unforbidden relation", or, perhaps
more appropriately, the \overcrossings commute" relation (OC). Ignoring the non-crossings10

P , the OC relation says that it is the same if strandi �rst crosses over strandj and then
over strandk, or if it �rst crosses over strandk and then over strandj . The \undercrossings
commute" relation UC, the one we do not impose in (9), would say the same except with
\under" replacing \over".

De�nition 2.4. The group of w-braids iswB n := vB n=OC. Note that &descends towB n and
hence we can de�ne the group of pure w-braids to bePwBn := ker &: wB n ! Sn . We still have
a split exact sequence as at (7) and a semi-direct product decompositionwB n = PwBn o Sn .

9The inverse, � � 1
ij , is \strand i crosses over strandj at a negative crossing"

10Why this is appropriate was explained in the previous section.
9



Exercise 2.5. Show that the OC relation is equivalent to the relation

� � 1
i si +1 � i = � i +1 si � � 1

i +1 or =

While mostly in this paper the pictorial / algebraic de�nition of w-braids (and other w-
knotted objects) will su�ce, we ought describe at least brie
y 2-3further interpretations of
wB n :

2.2.1. The group of 
ying rings. Let X n be the space of all placements ofn numbered disjoint
geometric circles inR3, such that all circles are parallel to thexy plane. Such placements
will be called horizontal11. A horizontal placement is determined by the centres inR3 of the
n circles and byn radii, so dimX n = 3n + n = 4n. The permutation group Sn acts onX n

by permuting the circles, and one may think of the quotient~X n := X n=Sn as the space of
all horizontal placements ofn unmarked circles inR3. The fundamental group� 1( ~X n ) is
a group of paths traced byn disjoint horizontal circles (modulo homotopy), so it is fair to
think of it as \the group of 
ying rings".

Theorem 2.6. The group of pure w-braids PwBn is isomorphic to the group of 
ying rings
� 1(X n ). The group wB n is isomorphic to the group of unmarked 
ying rings� 1( ~X n).

For the proof of this theorem, see [Gol, Sa] and especially [BH]. Here we will contend
ourselves with pictures describing the images of the generators ofwB n in � 1( ~X n ) and a few
comments:

� i =si =

i i + 1 i i + 1

Thus we map the permutationsi to the movie clip in which ring number i trades its
place with ring number i + 1 by having the two 
ying around each other. This acrobatic
feat is performed inR3 and it does not matter if ring number i goes \above" or \below" or
\left" or \right" of ring number i + 1 when they trade places, as all of these possibilities are
homotopic. More interestingly, we map the braiding� i to the movie clip in which ring i + 1
shrinks a bit and 
ies through ring i . It is a worthwhile exercise for the reader to verify that
the relations in the de�nition of wB n become homotopies of movie clips. Of these relations
it is most interesting to see why the \overcrossings commute" relation � i � i +1 si = si +1 � i � i +1

holds, yet the \undercrossings commute" relation� � 1
i � � 1

i +1 si = si +1 � � 1
i � � 1

i +1 doesn't.

wClip
120118-2

ends

Exercise 2.7. To be perfectly precise, we have to specify the 
y-through direction. In our
notation, � i means that the ring corresponding to the under-strand approaches the bigger
ring representing the over-strand from below, 
ies through it andexists above. For� � 1

i we
are \playing the movie backwards", i.e., the ring of the under-strand comes from above and
exits below the ring of the over-strand.

11 For the group of non-horizontal 
ying rings see Section2.5.4
10



Let \the signed w braid group", swBn , be the group of horizontal 
ying rings where both

y-through directions are allowed. This introduces a \sign" for each crossing� i :

i i + 1 i i + 1

+ �� i � =� i + =

In other words, swBn is generated bysi , � i + and � i � , for i = 1; :::; n. Check that in swBn

� i � = si � � 1
i + si , and this, along with the other obvious relations impliesswBn

�= wB n .
For a rigorous discussion of orientations and signs, see Section5.4.

2.2.2. Certain ribbon tubes inR4. With time as the added dimension, a 
ying ring in R3

wClip
120118-3

starts

traces a tube (an annulus) inR4, as shown in the picture below:

i i + 1 i i + 1

si = � i =

Note that we adopt here the drawing conventions of Carter and Saito [CS] | we draw
surfaces as if they were projected fromR4 to R3, and we cut them open whenever they are
\hidden" by something with a higher fourth coordinate.

Note also that the tubes we get inR4 always bound natural 3D \solids" | their \insides", wClip
120118-3

continues
Sec.2.5.4

in the pictures above. These solids are disjoint in the case ofsi and have a very speci�c kind
of intersection in the case of� i | these are transverse intersections with no triple points,
and their inverse images are a meridional disk on the \thin" solid tube and an interior disk
on the \thick" one. By analogy with the case of ribbon knots and ribbon singularities inR3

(e.g. [Ka1, Chapter V]) and following Satoh [Sa], we call this kind if intersections of solids
in R4 \ribbon singularities" and thus our tubes in R4 are always \ribbon tubes".

2.2.3. Basis conjugating automorphisms ofFn . Let Fn be the free (non-Abelian) group with

wClip
120125-1

starts

generators� 1; : : : ; � n . Artin's theorem (Theorems 15 and 16 of [Ar ]) says that the (usual)
braid group uB n (equivalently, the subgroup ofwB n generated by the� i 's) has a faithful
right action on Fn . In other words, uB n is isomorphic to a subgroupH of Aut op(Fn ) (the
group of automorphisms ofFn with opposite multiplication;  1 2 :=  2 �  1). Precisely,
using (�; B ) 7! � � B to denote the right action of Autop(Fn ) on Fn , the subgroupH consists
of those automorphismsB : Fn ! Fn of Fn that satisfy the following two conditions:

(1) B maps any generator� i to a conjugate of a generator (possibly di�erent). That is,
there is a permutation� 2 Sn and elementsai 2 Fn so that for every i ,

� i � B = a� 1
i � �i ai : (11)

(2) B �xes the ordered product of the generators ofFn ,

� 1� 2 � � � � n � B = � 1� 2 � � � � n :
11



McCool's theorem [Mc] says that the same holds true12 if one replaces the braid group
uB n with the bigger group wB n and drops the second condition above. SowB n is precisely
the group of \basis-conjugating" automorphisms of the free group Fn , the group of those
automorphisms which map any \basis element" inf � 1; : : : ; � ng to a conjugate of a (possibly
di�erent) basis element.

The relevant action is explicitly de�ned on the generators ofwB n and Fn as follows (with
the omitted generators ofFn always �xed):

(� i ; � i +1 ) � si = ( � i +1 ; � i ) ( � i ; � i +1 ) � � i = ( � i +1 ; � i +1 � i � � 1
i +1 ) � j � � ij = � i � j � � 1

i (12)

It is a worthwhile exercise to verify that � respects the relations in the de�nition ofwB n

and that the permutation � in (11) is the skeleton&(B).
There is a more conceptual description of� , in terms of the structure ofwB n+1 . Consider

the inclusions

wB n
�

,�! wB n+1
i u � - Fn : (13)

1 i i +1 n n +1
� � � � � �

� i 7!
Here � is the inclusion ofwB n into wB n+1 by adding an inert

(n + 1) � st strand (it is injective as it has a well de�ned one sided
inverse | the deletion of the ( n + 1)-st strand). The inclusion
iu of the free groupFn into wB n+1 is de�ned by iu(� i ) := � i;n +1 .
The imageiu(Fn ) � wB n+1 is the set of all w-braids whose �rstn strands are straight and
vertical, and whose (n+1)-st strand wanders among the �rstn strands mostly virtually (i.e.,
mostly using virtual crossings), occasionally slipping under one of thosen strands, but never
going over anything. In the \
ying rings" picture of Section 2.2.1, the imageiu(Fn ) � wB n+1

can be interpreted as the fundamental group of the complement inR3 of n stationary rings
(which is indeedFn ) | in iu(Fn ) the only ring in motion is the last, and it only goes under,
or \through", other rings, so it can be replaced by a point object whose path is an element
of the fundamental group. The injectivity of iu follows from this geometric picture.

B � 1

B




One may explicitly verify that iu(Fn ) is normalized by �(wB n ) in wB n+1 (that
is, the set iu(Fn ) is preserved by conjugation by elements of�(wB n )). Thus the
following de�nition (also shown as a picture on the right) makes sense, for B 2
wB n � wB n+1 and for 
 2 Fn � wB n+1 :


 � B := i � 1
u (B � 1
B ) (14)

It is a worthwhile exercise to recover the explicit formulae in (12) from the above de�nition.

Warning 2.8. People familiar with the Artin story for ordinary braids should be warned that
even thoughwB n acts onFn and the action is induced from the inclusions in (13) in much

of the same way as the Artin action is induced by inclusionsuB n
�

,�! uB n+1
i

 � - Fn , there are
also some di�erences, and some further warnings apply:

� In the ordinary Artin story, i (Fn ) is the set of braids inuB n+1 whose �rst n strands are
unbraided (that is, whose image inuB n via \dropping the last strand" is the identity).
This is not true for w-braids. For w-braids, iniu(Fn ) the last strand always goes \under"
all other strands (or just virtually crosses them), but never over.

12Though see Warning2.8.
12



� Thus unlike the isomorphismPuB n+1
�= PuB n n Fn , it is not true that PwBn+1 is isomor-

phic to PwBn n Fn .
� The Overcrossings Commute relation imposed inwB breaks the symmetry between over-

crossings and undercrossings. Thus letio : Fn ! wB n be the \opposite" of iu, mapping
into braids in which the last strand is always \over" or virtual. Then io is not injective
(its image is in fact Abelian) and its image is not normalized by�(wB n ). So there is no
\second" action of wB n on Fn de�ned using io.

� For v-braids, both iu and io are injective and there are two actions ofvB n on Fn | one
de�ned by �rst projecting into w-braids, and the other de�ned by �rst projecting into v-
braids modulo \Undercrossings Commute". Yet v-braids contain more information than
these two actions can see. The \Kishino" v-braid below, for example, is visibly trivial
if either overcrossings or undercrossings are made to commute, yet by computing its
Kau�man bracket we know it is non-trivial as a v-braid [WKO0, \The Kishino Braid"]:

a b

0

@
The commutator ab� 1a� 1b
of v-braids a; b annihilated
by OC/UC, respectively,
with a minor cancellation.

1

A wClip
120125-1

ends

Problem 2.9. Is PwBn a semi-direct product of free groups? Note that bothPuB n and
PvBn are such semi-direct products: ForPuB n , this is the well known \combing of braids";
it follows from PuB n

�= PuB n� 1 n Fn� 1 and induction. For PvBn , it is a result stated in [Ba]
(though our own understanding of [Ba] is incomplete).

Remark 2.10. Note that Guti�errez and Krsti�c [ GK] �nd \normal forms" for the elements of
PwBn , yet they do not decide whetherPwBn is \automatic" in the sense of [Ep].

2.3. Finite Type Invariants of v-Braids and w-Braids. Just as we had two de�ni-
tions for v-braids (and thus w-braids) in Section2.1, we will give two (obviously equiv-
alent) developments of the theory of �nite type invariants of v-braids and w-braids | a
pictorial/topological version in Section2.3.1, and a more abstract algebraic version in Sec-
tion 2.3.2.

2.3.1. Finite Type Invariants, the Pictorial Approach. In the standard theory of �nite type wClip
120125-2

describes the
standard
theory,
brie
y

invariants of knots (also known as Vassiliev or Goussarov-Vassiliev invariants) [Gou1, Vas,
BN1, BN7] one progresses from the de�nition of �nite type via iterated di�erences to chord
diagrams and weight systems, to 4T (and other) relations, to the de�nition of universal �nite
type invariants, and beyond. The exact same progression (with di�erent objects playing sim-
ilar roles, and sometimes, when yet insu�ciently studied, with the laststep or two missing) is
also seen in the theories of �nite type invariants of braids [BN5], 3-manifolds [Oh, LMO, Le],
virtual knots [GPV, Po] and of several other classes of objects. We thus assume that the
reader has familiarity with these basic ideas, and we only indicate brie
y how they are
implemented in the case of v-braids and w-braids.

Much like the formula  ! ! � " of the Vassiliev-Goussarov fame, given a v-braid

wClip
120208

starts

invariant V : vB n ! A valued in some Abelian groupA, we extend it to \singular" v-
braids, braids that contain \semi-virtual crossings" likeQ and R using the formulaeV( Q ) :=
V( ! ) � V ( P ) and V( R ) := V( " ) � V ( P ) (see [GPV, Po, BHLR]). We say that \ V is of type
m" if its extension vanishes on singular v-braids having more thanm semi-virtual crossings.

13



1 2 3 4 1 2 3 4

1 2 3 41 2 3 4
�

D
i j k l i j k l

Figure 2. On the left, a 3-singular v-braid and its corresponding 3-arrow diagram. A
self-explanatory algebraic notation for this arrow diagram is(a12a41a23; 3421). picture and
in algebraic notation. Note that we regard arrow diagrams as graph-theoretic objects, and
hence the two arrow diagrams on the right, whose underlying graphs are the same, are regarded
as equal. In algebraic notation this means that we always impose the relationaij akl = akl aij

when the indicesi , j , k, and l are all distinct.

kji kji kji

+ +

kji kji kji

+ +=

aij aik + aij ajk + aik ajk = aik aij + ajk aij + ajk aik

or [aij ; aik ] + [ aij ; ajk ] + [ aik ; ajk ] = 0

Figure 3. The 6T relation. Standard knot theoretic conventions apply | only therelevant
parts of each diagram is shown; in reality each diagram may have further vertical strands
and horizontal arrows, provided the extras are the same in all 6 diagrams. Also, the vertical
strands are in no particular order | other valid6T relations are obtained when those strands
are permuted in other ways.

Up to invariants of lower type, an invariant of typem is determined by its \weight system",
which is a functional W = Wm (V) de�ned on \ m-singular v-braids modulo ! = P = " ".
Let us denote the vector space of all formal linear combinations ofsuch equivalence classes
by Gm Dv

n . Much asm-singular knots modulo! = " can be identi�ed with chord diagrams,
the basis elements ofGm Dv

n can be identi�ed with pairs (D; � ), whereD is a horizontal arrow
diagram and� is a \skeleton permutation". See Figure2.

We assemble the spacesGm Dv
n together to form a single graded space,Dv

n := � 1
m=0 Gm Dv

n .
Note that throughout this paper, whenever we write an in�nite direct sum, we automatically
complete it. Thus in Dv

n we allow in�nite sums with one term in each homogeneous piece
Gm Dv

n .
In the standard �nite-type theory for knots, weight systems always satisfy the 4T rela-

tion, and are therefore functionals onA := D=4T. Likewise, in the case of v-braids, weight
systems satisfy the \6T relation" of [GPV, Po, BHLR], shown in Figure3, and are therefore
functionals on A v

n := Dv
n=6T. In the case of w-braids, the \overcrossings commute" rela-

tion (9) implies the \Tails Commute" ( TC) relation on the level of arrow diagrams, and in
the presence of the TC relation, two of the terms in the 6T relation drop out, and what

14



i j k i j k

=

i j k i j ki j k i j k

+ +=

aij aik = aik aij aij ajk + aik ajk = ajk aij + ajk aik

or [aij ; aik ] = 0 or [aij + aik ; ajk ] = 0

Figure 4. The TC and the
�!
4T relations.

remains is the \
�!
4T" relation. These relations are shown in Figure4. Thus weight systems

of �nite type invariants of w-braids are linear functionals onA w
n := Dv

n=T C;
�!
4T.

The next question that arises is whether we have already foundall the relations that weight
systems always satisfy. More precisely, given a degreem linear functional on A v

n = Dv
n=6T

(or on A w
n = Dv

n=T C;
�!
4T), is it always the weight system of some typem invariant V of

v-braids (or w-braids)? As in every other theory of �nite type invariants, the answer to this
question is a�rmative if and only if there exists a \universal �nite typ e invariant" (or simply,
an \expansion") of v-braids (w-braids):

De�nition 2.11. An expansion for v-braids (w-braids) is an invariantZ : vB n ! A v
n (or

Z : wB n ! A w
n ) satisfying the following \universality condition":

� If B is anm-singular v-braid (w-braid) andD 2 Gm Dv
n is its underlying arrow diagram

as in Figure2, then

Z(B) = D + (terms of degree> m ):

Indeed if Z is an expansion andW 2 Gm A ?,13 the universality condition implies that
W � Z is a �nite type invariant whose weight system isW. To go the other way, if (D i ) is a
basis ofA consisting of homogeneous elements, if (Wi ) is the dual basis ofA ? and (Vi ) are
�nite type invariants whose weight systems are theWi 's, then Z(B) :=

P
i D i Vi (B ) de�nes

an expansion.
In general, constructing a universal �nite type invariant is a hard task. For knots, one uses

either the Kontsevich integral or perturbative Chern-Simons theory (also known as \con�gu-
ration space integrals" [BT] or \tinker-toy towers" [ Th]) or the rather fancy algebraic theory
of \Drinfel'd associators" (a summary of all those approaches is at[BS]). For homology
spheres, this is the \LMO invariant" [LMO, Le] (also the \�Arhus integral" [BGRT2]). For
v-braids, we still don't know if an expansion exists. As we shall see below, the construction
of an expansion for w-braids is quite easy.

2.3.2. Finite Type Invariants, the Algebraic Approach.For any group G, one can form the

wClip
120201

starts

group algebraFG for some �eld F by allowing formal linear combinations of group elements
and extending multiplication linearly. The augmentation idealis the ideal generated by
di�erences, or equivalently, the set of linear combinations of groupelements whose coe�cients
sum to zero:

I :=

(
kX

i =1

ai gi : ai 2 F; gi 2 G;
kX

i =1

ai = 0

)

:

13A here denotes eitherA v
n or A w

n , or in fact, any of many similar spaces that we will discuss later on.
15



Powers of the augmentation ideal provide a �ltration of the group algebra. Let A (G) :=L
m� 0 I m =I m+1 be the associated graded space corresponding to this �ltration.

De�nition 2.12. An expansion for the groupG is a map Z : G ! A (G), such that thewClip
120201

is much more
detailed on

these
matters

linear extensionZ : FG ! A (G) is �ltration preserving and the induced map

gr Z : (gr FG = A(G)) ! (gr A (G) = A(G))

is the identity. An equivalent way to phrase this is that the degreem piece ofZ restricted
to I m is the projection onto I m =I m+1 .

Exercise2.13. Verify that for the groups PvBn andPwBn the m-th power of the augmentation
ideal coincides with the span of all resolutions ofm-singular v- or w-braids (by a resolution
we mean the formal linear combination where each semivirtual crossing is replaced by the
appropriate di�erence of a virtual and a regular crossing). Then check that the notion of
expansion de�ned above is the same as that of De�nition2.11, restricted to pure braids.

Finally, note the functorial nature of the construction above. What we have described is a
functor, called \projectivization" proj : Groups ! GradedAlgebras, which assigns to each
group G the graded algebraA(G). To each homomorphism� : G ! H , proj assigns the
induced map gr� : (A (G) = gr FG) ! (A (H ) = gr FH ).

2.4. Expansions for w-Braids. The spaceA w
n of arrow diagrams onn strands is an asso-

ciative algebra in an obvious manner: If the permutations underlyingtwo arrow diagrams
are the identity permutations, we simply juxtapose the diagrams. Otherwise we \slide" ar-
rows through permutations in the obvious manner | if � is a permutation, we declare that
�a (� i )( � j ) = aij � . Instead of seeking an expansionwB n ! A w

n , we set the bar a little higher
and seek a \homomorphic expansion":

De�nition 2.14. A homomorphic expansionZ : wB n ! A w
n is an expansion that carries

products in wB n to products in A w
n .

To �nd a homomorphic expansion, we just need to de�ne it on the generators of wB n

and verify that it satis�es the relations de�ning wB n and the universality condition. Follow-
ing [BP, Section 5.3] and [AT , Section 8.1] we setZ ( P ) = P (that is, a transposition in wB n

gets mapped to the same transposition inA w
n , adding no arrows) andZ( ! ) = exp( S ) P .

This last formula is important so deserves to be magni�ed, explained and replaced by some
new notation:

Z
�

!

�
= exp

�

S

�
�

P

= + + 1
2 + 1

3! + : : : =: ea : (15)

Thus the new notation ea

�! stands for an \exponential reservoir" of parallel arrows, much
like ea = 1 + a + aa=2 + aaa=3! + : : : is a \reservoir" of a's. With the obvious interpretation

for e� a

�! (the � sign indicates that the terms should have alternating signs, as ine� a =
16



1 � a + a2=2 � a3=3! + : : :), the second Reidemeister move!" = 1 forces that we set

Z
�

"

�
=

P

� exp
�

�
S

�
=

e� a

= e� a :
wClip
120201

ends

Theorem 2.15. The above formulae de�ne an invariantZ : wB n ! A w
n (that is, Z satis�es

all the de�ning relations of wB n). The resulting Z is a homomorphic expansion (that is, it
satis�es the universality property of De�nition 2.14).

Proof. (Following [BP, AT ]) For the invariance ofZ , the only interesting relations to check
are the Reidemeister 3 relation of (4) and the Overcrossings Commute relation of (10). For
Reidemeister 3, we have

=
Z

ea ea

ea

eaea

ea

= ea12 ea13 ea23 � 1= ea12 + a13 ea23 � 2= ea12 + a13 + a23 �;

where� is the permutation 321 and equality 1 holds because [a12; a13] = 0 by a Tails Commute
(TC) relation and equality 2 holds because [a12 + a13; a23] = 0 by a

�!
4T relation. Likewise,

again using TC and
�!
4T,

=
Z

ea

ea

ea ea

ea

ea

= ea23 ea13 ea12 � = ea23 ea13 + a12 � = ea23 + a13 + a12 �;

and so Reidemeister 3 holds. An even simpler proof using just the TailsCommute relation
shows that the Overcrossings Commute relation also holds. Finally, sinceZ is homomorphic,
it is enough to check the universality property at degree 1, where itis very easy:

Z
�

Q

�
= exp

�

S

�
�

P

�
P

=
S

�
P

+ (terms of degree> 1);

and a similar computation manages theR case. �

Remark 2.16. Note that the main ingredient of the above proof was to show thatR :=
Z(� 12) = ea12 satis�es the famed Yang-Baxter equation,

R12R13R23 = R23R13R12;

whereRij means \placeR on strandsi and j ".

wClip
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ends

17



2.5. Some Further Comments.

2.5.1. Compatibility with Braid Operations. As with any new gadget, we would like to know

wClip
120215

starts

how compatible the expansionZ of the previous section is with the gadgets we already
have; namely, with various operations that are available on w-braidsand with the action of
w-braids on the free groupFn (Section2.2.3).

wB n
� //

Z
��

wB n

Z
��

A w
n �

//A w
n

	
2.5.1.1. Z is Compatible with Braid Inversion. Let � denote both the
\braid inversion" operation � : wB n ! wB n de�ned by B 7! B � 1 and the
\antipode" anti-automorphism � : A w

n ! A w
n de�ned by mapping permu-

tations to their inverses and arrows to their negatives (that is,aij 7! � aij ).
Then the diagram on the right commutes.

wB n
� //

Z
��

wB n � wB n

Z � Z
��

A w
n �

//A w
n 
 A w

n

	
2.5.1.2. Braid Cloning and the Group-Like Property. Let� denote
both the \braid cloning" operation � : wB n ! wB n � wB n de�ned
by B 7! (B; B ) and the \co-product" algebra morphism � : A w

n !
A w

n 
A w
n de�ned by cloning permutations (that is, � 7! � 
 � ) and

by treating arrows as primitives (that is, aij 7! aij 
 1 + 1 
 aij ).
Then the diagram on the right commutes. In formulae, this is �(Z (B)) = Z(B) 
 Z (B),
which is the statement \Z (B) is group-like".

wB n
� //

Z
��

wB n+1

Z
��

A w
n �

//A w
n+1

	
2.5.1.3. Strand Insertions. Let� : wB n ! wB n+1 be an operation of \in-
ert strand insertion". Given B 2 wB n , the resulting �B 2 wB n+1 will
be B with one strand S added at some location chosen in advance | to
the left of all existing strands, or to the right, or starting from between
the 3rd and the 4th strand ofB and ending between the 6th and the
7th strand of B ; when addingS, add it \inert", so that all crossings on it are virtual (this
is well de�ned). There is a corresponding inert strand addition operation � : A w

n ! A w
n+1 ,

obtained by adding a strand at the same location as for the original� and adding no arrows.
It is easy to check that Z is compatible with �; namely, that the diagram on the right is
commutative.

wB n
dk //

Z
��

wB n� 1

Z
��

A w
n dk

//A w
n� 1

	
2.5.1.4. Strand Deletions. Givenk between 1 andn, let dk : wB n !
wB n� 1 the operation of \removing the kth strand". This operation
induces a homonymous operationdk : A w

n ! A w
n� 1: if D 2 A w

n is an
arrow diagram,dkD is D with its kth strand removed if no arrows inD
start or end on thekth strand, and it is 0 otherwise. It is easy to check
that Z is compatible with dk ; namely, that the diagram on the right is
commutative.14

14Section 4.2, \ dk : wB n ! wB n � 1" is an algebraic structure made of two spaces (wB n and wB n � 1),
two binary operations (braid composition in wB n and in wB n � 1), and one unary operation, dk . After
projectivization we get the algebraic structuredk : A w

n ! A w
n � 1 with dk as described above, and an alternative

way of stating our assertion is to say thatZ is a morphism of algebraic structures. A similar remark applies
(sometimes in the negative form) to the other operations discussed in this section.
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Fn
V

Z
��

wB n

Z
��

FAn
V

A w
n

	
2.5.1.5. Compatibility with the action onFn . Let FAn denote the (degree-
completed) free associative (but not commutative) algebra on generators
x1; : : : ; xn . Then there is an \expansion"Z : Fn ! FAn de�ned by � i 7! ex i

(see [Lin] and the related \Magnus Expansion" of [MKS]). Also, there is
a right action of A w

n on FAn de�ned on generators byx i � = x � i for � 2 Sn

and by x j aij = [ x i ; x j ] and xkaij = 0 for k 6= j and extended by the Leibniz rule to the rest
of FAn and then multiplicatively to the rest of A w

n .

Exercise 2.17. Using the language of Section4.2, verify that FAn = proj Fn and that when
the actions involved are regarded as instances of the algebraic structure \one monoid acting
on another", we have that

�
FAn V A w

n

�
= proj

�
Fn V wB n

�
. Finally, use the de�nition of the

action in (14) and the commutative diagrams of paragraphs2.5.1.1, 2.5.1.2and 2.5.1.3to
show that the diagram of paragraph2.5.1.5is also commutative.

k

+

+
k

:=

=: x + y

k uk

uk

uk

wB n
uk //

Z
��

wB n+1

Z
��

A w
n uk

//A w
n+1

6	

2.5.1.6. Unzipping a Strand. Givenk between 1 andn, let uk : wB n !
wB n+1 the operation of \unzipping the kth strand", brie
y de�ned on
the right15. The induced operationuk : A w

n ! A w
n+1 is also shown on

the right | if an arrow starts (or ends) on the strand being doubled,
it is replaced by a sum of two arrows that start (or end) on either
of the two \daughter strands" (and this is performed for each arrow
independently; so if there aret arrows touching thekth strands in a
diagram D, then ukD will be a sum of 2t diagrams).

In some sense, this whole paper as well as the work of Kashiwara
and Vergne [KV ] and Alekseev and Torossian [AT ] is about coming to
grips with the fact that Z is not compatible with uk (that the diagram
on the right is not commutative). Indeed, letx := a13 and y := a23 be
as on the right, and lets be the permutation 21 and� the permutation
231. Then d1Z( ! ) = d1(ea12 s) = ex+ y � while Z (d1 ! ) = eyex � . So
the failure of d1 and Z to commute is the ill-behaviour of the exponential function when its
arguments are not commuting, which is measured by the BCH formula, central to both [KV ]
and [AT ].

2.5.2. Power and Injectivity. The following theorem is due to Berceanu and Papadima [BP,
Theorem 5.4]; a variant of this theorem are also true for ordinary braids [BN2, Ko, HM],
and can be proven by similar means:

Theorem 2.18. Z : wB n ! A w
n is injective. In other words, �nite type invariants separate

w-braids.

Proof. Follows immediately from the faithfulness of the actionFn V wB n , from the com-
patibility of Z with this action, and from the injectivity of Z : Fn ! FAn (the latter is well
known, see e.g. [MKS, Lin]). Indeed if B1 and B2 are w-braids andZ(B1) = Z (B2), then
Z(� )Z (B1) = Z (� )Z (B2) for any � 2 Fn , therefore 8� Z (� � B1) = Z (� � B2), therefore
8� � � B1 = � � B2, thereforeB1 = B2.

15Unzipping a knotted zipper turns a single band into two parallel ones.This operation is also known as
\strand doubling", but for compatibility with operations that will be in troduced later, we prefer \unzipping".
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Remark 2.19. Apart from the obvious, that A w
n can be computed degree by degree in ex-

ponential time, we do not know a simple formula for the dimension of the degreem piece
of A w

n or a natural basis of that space. This compares unfavourably withthe situation for
ordinary braids (see e.g. [BN5]). Also compare with Problem2.9 and with Remark 2.10.

2.5.3. Uniqueness.There is certainly not a unique expansion for w-braids | if Z1 is an
expansion and andP is any degree-increasing linear mapA w ! A w (a \pollution" map),
then Z2 := ( I + P) � Z1 is also an expansion, whereI : A w ! A w is the identity. But that's
all, and if we require a bit more, even that freedom disappears.

Proposition 2.20. If Z1;2 : wB n ! A w
n are expansions then there exists a degree-increasing

linear map P : A w ! A w so that Z2 := ( I + P) � Z1.

Proof. (Sketch). Let dwB n be the unipotent completion ofwB n . That is, let QwB n be the
algebra of formal linear combinations of w-braids, letI be the ideal inQwB n be the ideal
generated byQ = ! � P and by R = P � " , and set

dwB n := lim � m!1 QwB n / I m :

dwB n is �ltered with Fm
dwB n := lim � m0>m I m

�
I m0

: An \expansion" can be re-interpreted as

an \isomorphism of dwB n and A w
n as �ltered vector spaces". Always, any two isomorphisms

di�er by an automorphism of the target space, and that's the essence ofI + P. �

Proposition 2.21. If Z1;2 : wB n ! A w
n are homomorphic expansions that commute with

braid cloning (paragraph2.5.1.2) and with strand insertion (paragraph2.5.1.3), then Z1 =
Z2.

Proof. (Sketch). A homomorphic expansion that commutes with strand insertions is
determined by its values on the generators! , " and P of wB 2. Commutativity with braid
cloning implies that these values must be (up to permuting the strands) group like, that is,
the exponentials of primitives. But the only primitives area12 and a21, and one may easily
verify that there is only one way to arrange these so thatZ will respect P

2 = ! � " = 1 and
Q 7! S + (higher degree terms). �

wClip
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ends

2.5.4. The group of non-horizontal 
ying rings. Let Yn denote the space of all placements ofn

wClip
120118-3

at 0:14:20

numbered disjoint oriented unlinked geometric circles inR3. Such a placement is determined
by the centres inR3 of the circles, the radii, and a unit normal vector for each circle pointing
in the positive direction, so dimYn = 3n + n + 3n = 7n. Sn n Z n

2 acts onYn by permuting
the circles and mapping each circle to its image in either an orientation-preserving or an
orientation-reversing way. Let ~Yn denote the quotientYn=Sn n Z n

2 . The fundamental group
� 1( ~Yn) can be thought of as the \group of 
ippable 
ying rings". Without lo ss of generality,
we can assume that the basepoint is chosen to be a horizontal placement. We want to study
the relationship of this group towB n .

Theorem 2.22. � 1( ~Yn ) is a Zn
2 -extension of wB n , generated bysi , � i (1 � i � n � 1), and

wi (\
ips"), for 1 � i � n; with the relations as above, and in addition:

w2
i = 1; wi wj = wj wi ; wj si = si wj wheni 6= j; j + 1;

wi si = si wi +1 ; wi +1 si = si wi ;
wj � i = � i wj if j 6= i; i + 1; wi +1 � i = � i wi ; yet wi � i = si � � 1

i si wi +1 :
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The two most interesting 
ip relations in pictures:

yet ==
w

i

w

i
i

w

w

i
i +1 i +1

i +1 i +1

(16)

i

wwi =

Instead of a proof, we provide some heuristics. Since each circle
starts out in a horizontal position and returns to a horizontal position,
there is an integer number of \
ips" they do in between, these are the
generatorswi , as shown on the right.

The �rst relation says that a double 
ip is homotopic to doing noth-
ing. Technically, there are two di�erent directions of 
ips, and they are the same via this
(non-obvious but true) relation. The rest of the �rst line is obvious: 
ips of di�erent rings
commute, and if two rings 
y around each other while another one 
ips, the order of these
events can be switched by homotopy. The second line says that if two rings trade places with
no interaction while one 
ips, the order of these events can be switched as well. However,
we have to re-number the 
ip to conform to the strand labelling convention.

The only subtle point is how 
ips interact with crossings. First of all, if one ring 
ies
through another while a third one 
ips, the order clearly does not matter. If a ring 
ies
through another and also 
ips, the order can be switched. However, if ring A 
ips and
then ring B 
ies through it, this is homotopic to ring B 
ying through ring A from the
other direction and then ringA 
ipping. In other words, commuting � i with wi changes the
\sign of the crossing" in the sense of Exercise2.7. This gives the last, and the only truly
non-commutative 
ip relation.

wClip
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To explain why the 
ip is denoted by w, let us consider the alternative descrip-
tion by ribbon tubes. A 
ipping ring traces a so called wen16 in R4. A wen is a
Klein bottle cut along a meridian circle, as shown. The wen is embedded inR4.

Finally, note that � 1Yn is exactly the purew-braid group PwBn : since each ring
has to return to its original position and orientation, each does an even number
of 
ips. The 
ips (or wens) can all be moved to the bottoms of the braid diagram
strands (to the bottoms of the tubes, to the beginning of words), at a possible cost,
as speci�ed by Equation (16). Once together, they pairwise cancel each other. As
a result, this group can be thought of as not containing wens at all.

wClip
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2.5.5. The Relationship with u-Braids. For the sake of ignoring strand permutations, we

wClip
120222

starts

restrict our attention to pure braids.

PuB Z u
//

a
��

A u

�
��

PwB Z w
//A w

By Section2.3.2, for any expansionZ u : PuB n ! A u
n (wherePuB n is the

\usual" braid group and A u
n is the algebra of horizontal chord diagrams

on n strands), there is a square of maps as shown on the right. HereZ w

is the expansion constructed in Section2.4, the left vertical map a is the
composition of the inclusion and projection mapsPuB n ! PvBn ! PwBn .
The map� is the induced map by the functoriality of projectivization, as notedafter Exercise

16The term wen was coined by Kanenobu and Shima in [KS]
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2.13. The reader can verify that� maps each chord to the sum of its two possible directed
versions.

Note that this square isnot commutative for any choice ofZ u even in degree 2: the image
of a crossing underZ w is outside the image of� .

P uBn

P wBn

A u
n

A w
n

Z w

�a

Z u
c

More speci�cally, for any choicec of a \parenthesization" of n points,
the KZ-construction / Kontsevich integral (see for example [BN3]) re-
turns an expansionZ u

c of u-braids. As we shall see in Proposition6.15,
for any choice ofc, the two compositions� � Z u

c and Z w � a are \conju-
gate in a bigger space": there is a mapi from A w to a larger space of
\non-horizontal arrow diagrams", and in this space the images of the above composites are
conjugate. However, we are not certain thati is an injection, and whether the conjugation
leaves thei -image ofA w invariant, and so we do not know if the two compositions di�er
merely by an outer automorphism ofA w.
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3. w-Knots

Section Summary. In 3.1 we de�ne v-knots and w-knots (long v-knots and long
w-knots, to be precise) and discuss the mapv ! w. In 3.2we determine the space of
\chord diagrams" for w-knots to be the spaceA w(" ) of arrow diagrams modulo

�!
4T

and TC relations and in 3.3 we compute some relevant dimensions. In3.5 we show
that A w(" ) can be re-interpreted as a space of trivalent graphs moduloSTU- and
IHX-like relations, and is therefore related to Lie algebras (Sec.3.6). This allows
us to completely determineA w(" ). With no di�culty at all in 3.4 we construct a
universal �nite type invariant for w-knots. With a bit of fur ther di�culty we show
in Sec.3.7 that it is essentially equal to the Alexander polynomial.

Knots are the wrong objects for study in knot theory, v-knots are the wrong

wClip
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objects for study in the theory of v-knotted objects and w-knots are the wrong objects for
study in the theory of w-knotted objects. Studying uvw-knots on their own is the parallel
of studying cakes and pastries as they come out of the bakery | wesure want to make
them our own, but the theory of desserts is more about the ingredients and how they are
put together than about the end products. In algebraic knot theory this re
ects through the
fact that knots are not �nitely generated in any sense (hence they must be made of some
more basic ingredients), and through the fact that there are very few operations de�ned on
knots (connected sums and satellite operations being the main exceptions), and thus most
interesting properties of knots are transcendental, or non-algebraic, when viewed from within
the algebra of knots and operations on knots [BN8].

The right objects for study in knot theory, or v-knot theory or w-knot theory, are thus
the ingredients that make up knots and that permit a richer algebraic structure. These are
braids, studied in the previous section, and even more so tangles and tangled graphs, studied
in the following sections. Yet tradition has its place and the sweets are tempting, and we
feel compelled to introduce some of the tools we will use in the deeperand healthier study
of w-tangles and w-tangled foams in the limited but tasty arena of the baked goods of knot
theory, the knots themselves.

3.1. v-Knots and w-Knots. v-Knots may be understood either as knots drawn on sur-
faces modulo the addition or removal of empty handles [Ka2, Kup] or as \Gauss diagrams"
(Remark 3.4), or simply \unembedded but wired together" crossings modulo theReidemeis-
ter moves ([Ka2, Rou] and Section4.4). But right now we forgo the topological and the
abstract and give only the \planar" (and somewhat less philosophically satisfying) de�nition
of v-knots.

Figure 5. A long v-knot diagram with 2 virtual crossings, 2 positive crossings and 2 negative
crossings. A positive-negative pair can easily be cancelledusing R2, and then a virtual crossing
can be cancelled using VR1, and it seems that the rest cannot besimpli�ed any further.
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=

VR2

=

VR1

=

R3

6=

R1

=

R2

= w= 6=

M OC UC

=

VR3R1s

=

Figure 6. The relations de�ning v-knots and w-knots, along with two relations that arenot
imposed.

De�nition 3.1. A \long v-knot diagram" is an arc smoothly drawn in the plane from�1
to + 1 , with �nitely many self-intersections, divided into \virtual crossings" P and over- and
under-crossings,! and " , and regarded up to planar isotopy. A picture is worth more than a
more formal de�nition, and one appears in Figure5. A \long v-knot" is an equivalence class
of long v-knot diagrams, modulo the equivalence generated by the Reidemeister 1s, 2 and 3
moves (R1s, R2 and R3)17, the virtual Reidemeister 1 through 3 moves (VR1, VR2, VR3),
and by the mixed relations (M); all these are shown in Figure6. Finally, \long w-knots" are
obtained from long v-knots by also dividing by the Overcrossings Commute (OC) relations,
also shown in Figure6. Note that we never mod out by the Reidemeister 1 (R1) move nor
by the Undercrossings Commute relation (UC).

De�nition and Warning 3.2. A \circular v-knot" is like a long v-knot, except parametrized
by a circle rather than by a long line. Unlike the case of ordinary knots, circular v-knots are
not equivalent to long v-knots. The same applies to w-knots.

De�nition and Warning 3.3. Long v-knots form a monoid using the concatenation oper-
ation #. Unlike the case of ordinary knots, the resulting monoid isnot Abelian. The same
applies to w-knots.
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ends

Remark 3.4. A \Gauss diagram" is a straight \skeleton line" along with signed directed

wClip
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starts

chords (signed \arrows") marked along it (more at [Ka2, GPV]). Gauss diagrams are in an
obvious bijection with long v-knot diagrams; the skeleton line of a Gauss diagram corresponds
to the parameter space of the v-knot, and the arrows correspond to the crossings, with each
arrow heading from the upper strand to the lower strand, markedby the sign of the relevant
crossing:

2 3 4 1 2 4 31

�
+ +

�

2 4 31

One may also describe the relations in Figure6 as well as circular v-knots and other types
of v-knots (as we will encounter later) in terms of Gauss diagrams with varying skeletons.

17 R1s is the \spun" version of R1 | kinks can be spun around, but not remo ved outright. See Figure6.
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L,-: R,+: R,-:L,+:

Figure 7. The positive and negative under-then-over kinks (left), andthe positive and
negative over-then-under kinks (right). In each pair the negative kink is the# -inverse of the
positive kink.

Remark 3.5. Since we do not mod out by R1, it is perhaps more appropriate to call our class
of v/w-knots \framed long v/w-knots", but since we care more about framed v/w-knots than
about unframed ones, we reserve the unquali�ed name for the framed case, and when we do
wish to mod out by R1 we will explicitly write \unframed long v/w-knots" .

Recall that in the case of \usual knots", or u-knots, dropping the R1 relation altogether
also results in aZ2-extension of unframed knot theory, where the two factors ofZ are framing
and rotation number. If one wants to talk about \true" framed knots, one mods out by the
spun Reidemeister 1 relation (R1s of Figure 6), which preserves the blackboard framing but
does not preserve the rotation number. We take the analogous approach here, including the
R1s relation but not R1 also in the v and w cases.

This said, note that the monoid of long v-knots is just a central extension byZ of the
monoid of unframed long v-knots, and so studying the framed caseis not very di�erent from
studying the unframed case. Indeed the four \kinks" of Figure7 generate a centralZ within
long v-knots, and it is not hard to show that the sequence

1 �! Z �! f long v-knotsg �! f unframed long v-knotsg �! 1 (17)

is split and exact. The same can be said for w-knots.

Exercise3.6. Show that a splitting of the sequence (17) is given by the \self-linking" invariant
sl : f long v-knotsg ! Z de�ned by

sl(K ) :=
X

crossings
x in K

signx;

whereK is a v-knot diagram, and the sign of a crossingx is de�ned so as to agree with the
signs in Figure7.

Remark 3.7. w-Knots are strictly weaker than v-knots | a notorious example is the Kishino
knot (e.g. [Dye]) which is non-trivial as a v-knot yet both it and its mirror are trivial as
w-knots. Yet ordinary knots inject even into w-knots, as the Wirtinger presentation makes
sense for w-knots and therefore w-knots have a \fundamentalquandle" which generalizes the
fundamental quandle of ordinary knots [Ka2], and as the fundamental quandle of ordinary
knots separates ordinary knots [Joy].

3.1.1. A topological construction of Satoh's tubing map.Following Satoh [Sa] and using the wClip
120229

has more
pictures, less

formalism

same constructions as in Section2.2.2, we can map w-knots to (\long") ribbon tubes inR4

(and the relations in Figure 6 still hold). It is natural to expect that this \tubing" map
is an isomorphism; in other words, that the theory of w-knots provides a \Reidemeister
framework" for long ribbon tubes inR4 | that every long ribbon tube is in the image of
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this map and that two \w-knot diagrams" represent the same long ribbon tube i� they di�er
by a sequence of moves as in Figure6. This remains unproven.

Let � : f v-knotsg ! f Ribbon tori in R4g denote the tubing map described in Section2.2.2.
In Satoh's [Sa] � is called \Tube". It is worthwhile to give a completely \topological"
de�nition of � . To do this we must start with a topological interpretation of v-knots.

The standard topological interpretation of v-knots (e.g. [Kup]) is that they are oriented
framed knots drawn18 on an oriented surface �, modulo \stabilization", which is the addition
and/or removal of empty handles (handles that do not intersect with the knot). We prefer an
equivalent, yet even more bare-bones approach. For us, a virtual knot is an oriented framed
knot 
 drawn on a \virtual surface � for 
 ". More precisely, � is an oriented surface that
may have a boundary,
 is drawn on �, and the pair (� ; 
 ) is taken modulo the following
relations:

� Isotopies of
 on � (meaning, in � � [� �; � ]).
� Tearing and puncturing parts of � away from 
 :

tearing

@�

�


 

isotopy puncturing

(We call � a \virtual surface" because tearing and puncturing imply that we only care about
it in the immediate vicinity of 
 ).

We can now de�ne19 a map � , de�ned on v-knots and taking values in ribbon tori inR4:
given (� ; 
 ), embed � arbitrarily in R3

xzt � R4. Note that the unit normal bundle of �
in R4 is a trivial circle bundle and it has a distinguished trivialization, constructed using
its positive-y-direction section and the orientation that gives each �bre a linking number
+1 with the base �. We say that a normal vector to � in R4 is \near unit" if its norm is
between 1� � and 1 + � . The near-unit normal bundle of � has as �bre an annulus that can
be identi�ed with [ � �; � ] � S1 (identifying the radial direction [1 � �; 1 + � ] with [ � �; � ] in
an orientation-preserving manner), and hence the near-unit normal bundle of � de�nes an
embedding of � � [� �; � ] � S1 into R4. On the other hand, 
 is embedded in � � [� �; � ] so

 � S1 is embedded in � � [� �; � ] � S1, and we can let� (
 ) be the composition


 � S1 ,! � � [� �; � ] � S1 ,! R4;

which is a torus inR4, oriented using the given orientation of
 and the standard orientation
of S1.

A framing of a knot (or a v-knot) 
 can be thought of as a \nearby companion" to
 .
Applying the above procedure to a knot and a nearby companion simultaneously, we �nd
that � takes framed v-knots to framed ribbon tori inR4, where a framing of a tube inR4 is
a continuous up-to-homotopy choice of unit normal vector at every point of the tube. Note
that from the perspective of 
ying rings as in Section2.2.1a framing is a \companion ring"
to a 
ying ring. In the framing of � (
 ) the companion ring is never linked with the main
ring, but can 
y parallel inside, outside, above or below it and changethese positions, as
shown below.

18Here and below, \drawn on �" means \embedded in � � [� �; � ]".
19Following a private discussion with Dylan Thurston.
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Figure 8. An arrow diagram of degree 6, a 6T relation, and an RI relation.

We leave it to the reader to verify that� (
 ) is ribbon, that it is independent of the choices
made within its construction, that it is invariant under isotopies of 
 and under tearing
and puncturing of �, that it is also invariant under the \overcrossings commute" relation
of Figure 6 and hence the true domain of� is w-knots, and that it is equivalent to Satoh's
tubing map.

3.2. Finite Type Invariants of v-Knots and w-Knots. Much as for v-braids and w-
braids (Section2.3) and much as for ordinary knots (e.g. [BN1]) we de�ne �nite type in-
variants for v-knots and for w-knots using an alternation schemewith Q ! ! � P and
R ! P � " . That is, we extend any Abelian-group-valued invariant of v- or w-knots to v- or
w-knots also containing \semi-virtual crossings" likeQ and R using the above assignments,
and we declare an invariant to be \of typem" if it vanishes on v- or w-knots with more
than m semi-virtuals. As for v- and w-braids and as for ordinary knots, such invariants
have an \mth derivative", their \weight system", which is a linear functional on the space
A sv(" ) (for v-knots) or A sw(" ) (for w-knots). We turn to the de�nitions of these spaces,
following [GPV, BHLR]:

De�nition 3.8. An \arrow diagram" is a chord diagram along a long line (called \the
skeleton"), in which the chords are oriented (hence \arrows"). An example is in Figure8.
Let Dv(" ) be the space of formal linear combinations of arrow diagrams. LetA v(" ) be Dv(" )
modulo all \6T relations". Here a 6T relation is any (signed) combination of arrow diagrams
obtained from the diagrams in Figure3 by placing the 3 vertical strands there along a long
line in any order, and possibly adding some further arrows in between. An example is in
Figure 8. Let A sv(" ) be the further quotient of A v(" ) by the RI relation, where the RI (for
Rotation number Independence) relation asserts that an isolatedarrow pointing to the right
equals an isolated arrow pointing to the left, as shown in Figure820.

20 The XII relation of [ BHLR ] follows from RI and need not be imposed.
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Figure 9. The TC and the
�!
4T relations for knots.

Let A w(" ) be the further quotient of A v(" ) by the \Tails Commute" (TC) relation, �rst
displayed in Figure4 and reproduced for the case of a long-line skeleton in Figure9. Likewise,
let A sw(" ) := A sv(" )=T C = A w(" )=RI . Alternatively, noting that given TC two of the terms
in 6T drop out, A w(" ) is the space of formal linear combinations of arrow diagrams modulo
TC and

�!
4T relations, displayed in Figures4 and 9. Likewise,A sw = Dv=T C;

�!
4T ; RI . Finally,

gradeDv(" ) and all of its quotients by declaring that the degree of an arrow diagram is the
number of arrows in it.

As an example, the spacesA v;sv;w;sw (" ) restricted to degrees up to 2 are studied in detail
in Section7.2.

In the same manner as in the theory of �nite type invariants of ordinary knots (see es-
pecially [BN1, Section 3], the spacesA � (" ) carry much algebraic structure. The obvious
juxtaposition product makes them into graded algebras. The product of two �nite type
invariants is a �nite type invariant (whose type is the sum of the types of the factors); this
induces a product on weight systems, and therefore a co-product � on arrow diagrams. In
brief (and much the same as in the usual �nite type story), the co-product � D of an arrow
diagram D is the sum of all ways of dividing the arrows inD between a \left co-factor" and
a \right co-factor". In summary,

Proposition 3.9. A v(" ), A sv(" ), A w(" ), and A sw(" ) are co-commutative graded bi-algebras.

By the Milnor-Moore theorem [MM] we �nd that A v;sv;w;sw (" ) are the universal enveloping
algebras of their Lie algebras of primitive elements. Denote these (graded) Lie algebras by
P v;sv;w;sw (" ), respectively.

When we grow up we'd like to understandA v(" ) and A sv(" ). At the moment we know
only very little about these spaces beyond the generalities of Proposition 3.9. In the next
section some dimensions of low degree parts ofA v;sv(" ) are displayed. Also, given a �nite
dimensional Lie bialgebra and a �nite dimensional representation thereof, we know how to
construct linear functionals onA v(" ) (one in each degree) [Hav, Leu] (but not on A sv(" )).
But we don't even know which degreem linear functionals onA sv(" ) are the weight systems of
degreem invariants of v-knots (that is, we have not solved the \Fundamental Problem" [BS]
for v-knots).

As we shall see below, the situation is much brighter forA w;sw (" ).
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3.3. Some Dimensions. The table below lists what we could �nd aboutA v and A w by
crude brute force computations in low degrees. We list degrees 0 through 7. The spaces we
study are A � (" ), A s� (" ), A r � (" ) which is A � (" ) moded out by \isolated" arrows 21, P � (" )
which is the space of primitives inA � (" ), and A � (
 ), A s� (
 ), and A r � (
 ), which are the
same asA � (" ), A s� (" ), and A r � (" ) except with closed knots (knots with a circle skeleton)
replacing long knots. Each of these spaces we study in three variants: the \v" and the \w"
variants, as well as the usual knots \u" variant which is here just for comparison. We also
include a row \dim GmL ie� (" )" for the dimensions of \Lie-algebraic weight systems". Those
are explained in the u and v cases in [BN1, Hav, Leu], and in the w case in Section3.6.

See Section7.2
m 0 1 2 3 4 5 6 7 Comments

dim Gm A � (" ) u j v
w

1 j 1
1

1 j 2
2

2 j 7
4

3 j 27
7

6 j 139
12

10 j 813
19

19 j?
30

33 j?
45

1 j 2
3; 4; 5

dim Gm L ie� (" ) u j v
w

1 j 1
1

1 j 2
2

2 j 7
4

3 j 27
7

6 j � 128
12

10 j?
19

19 j?
30

33 j?
45

1 j 6
5

dim GmA s� (" ) u j v
w

� j 1
1

� j 1
1

� j 3
2

� j 10
3

� j 52
5

� j 298
7

� j ?
11

� j ?
15

7 j 2
3; 8

dim Gm A r � (" ) u j v
w

1 j 1
1

0 j 0
0

1 j 2
1

1 j 7
1

3 j 42
2

4 j 246
2

9 j?
4

14 j?
4

1 j 9
3; 10

dim Gm P � (" ) u j v
w

0 j 0
0

1 j 2
2

1 j 4
1

1 j 15
1

2 j 82
1

3 j 502
1

5 j?
1

8 j?
1

1 j 11
3

dim Gm A � (
 ) u j v
w

1 j 1
1

1 j 1
1

2 j 2
1

3 j 5
1

6 j 19
1

10 j 77
1

19 j?
1

33 j?
1

1 j 12
3

dim Gm A s� (
 ) u j v
w

� j 1
1

� j 1
1

� j 1
1

� j 2
1

� j 6
1

� j 23
1

� j ?
1

� j ?
1

7 j 2
3

dim Gm A r � (
 ) u j v
w

1 j 1
1

0 j 0
0

1 j 0
0

1 j 1
0

3 j 4
0

4 j 17
0

9 j?
0

14 j?
0

1 j 12
3

Comments3.10. (1) Much more is known computationally on the u-knots case. See
especially [BN1, BN4, Kn, AS].

(2) These dimensions were computed by Louis Leung and DBN using a program available
at [WKO0, \Dimensions"].

(3) As we shall see in Section3.5, the spaces associated with w-knots are understood to
all degrees.

(4) To degree 4, these numbers were also veri�ed by [WKO0, \Dimensions"].
(5) The next few numbers in these sequences are 67, 97, 139, 195, 272.
(6) These dimensions were computed by Louis Leung and DBN using a program available

at [WKO0, \Arrow Diagrams and gl(N )"]. Note the match with the row above.
(7) There is no \s" quotient in the \u" case.
(8) The next few numbers in this sequence are 22, 30, 42, 56, 77.
(9) These numbers were computed by [WKO0, \Dimensions"]. Contrary to the A u case,

A rv is not the quotient of A v by the ideal generated by degree 1 elements, and

21That is, A r � (" ) is A � (" ) modulo \Framing Independence" (FI) relations [BN1], with the isolated arrow
taken with either orientation. It is the space related to �nite type in variants of unframed knots, on which
the �rst Reidemeister move is also imposed, in the same way asA � (" ) is related to framed knots.
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therefore the dimensions of the graded pieces of these two spaces cannot be deduced
from each other using the Milnor-Moore theorem.

(10) The next few numbers in this sequence are 7,8,12,14,21.
(11) These dimensions were deduced from the dimensions ofGm A v(" ) using the Milnor-

Moore theorem.
(12) Computed by [WKO0, \Dimensions"]. Contrary to the A u case,A v(
 ), A sv(
 ), and

A rv (
 ) are not isomorphic toA v(" ), A sv(" ), and A rv (" ) and separate computations
are required.

3.4. Expansions for w-Knots. The notion of \an expansion" (or \a universal �nite type
invariant") for w-knots (or v-knots) is de�ned in complete analogywith the parallel notion for
ordinary knots (e.g. [BN1]), except replacing double points ( ) with semi-virtual crossings
( Q and R ) and replacing chord diagrams by arrow diagrams. Alternatively, it isthe same as
an expansion for w-braids (De�nition2.11), with the obvious replacement of w-braids by w-
knots. Just as in the cases of ordinary knots and/or w-braids, the existence of an expansion
Z : f w-knotsg ! A sw(" ) is equivalent to the statement \every weight system integrates",
i.e., \every degreem linear functional on A sw(" ) is the mth derivative of a type m invariant
of long w-knots".

Theorem 3.11. There exists an expansionZ : f w-knotsg ! A sw(" ).
wClip
120229

ends
Proof. It is best to de�ne Z by an example, and it is best to display the example only as
a picture:

wClip
120307

starts

1 2 3 4 1 2 4 3

Z = =
e� a ea

ea e� a e� a
ea ea

e� aea

21 4 3

e� a

It is clear how to de�ne Z(K ) in the general case | for every crossing inK place an
exponential reservoir of arrows (compare with (15)) next to that crossing, with the arrows
heading from the upper strand to the lower strand, taking positivereservoirs (ea, with
a symbolizing the arrow) for positive crossings and negative reservoirs (e� a) for negative
crossings, and then tug the skeleton until it looks like a straight line.Note that the Tails
Commute relation in A sw is used to show that all reasonable ways of placing an arrow
reservoir at a crossing (with its heading and sign �xed) are equivalent:

= = =
ea

ea

ea
ea

The same proof that shows the invariance ofZ in the braids case (Theorem2.15) works
here as well22, and the same argument as in the braids case shows the universalityof Z . �

Remark 3.12. Using the language of Gauss diagrams (Remark3.4) the de�nition of Z is even
simpler. Simply map every positive arrow in a Gauss diagram to a positive(ea) reservoir,

22A tiny bit of extra care is required for invariance under R1s: it easily follows from RI.
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lr

Figure 10. A degree 11 w-Jacobi diagram on a long line skeleton. It has a skeleton line at
the bottom, 13 vertices along the skeleton (of which 2 are incoming and 11 are outgoing),
9 internal vertices (with only one explicitly marked with \left" ( l ) and \right" ( r )) and one
bubble. The �ve quadrivalent vertices that seem to appear in the diagram are just projection
artifacts and graph-theoretically, they don't exist.

and every negative one to a negative (e� a) reservoir:

Z�
+ +

� e� a
ea ea

e� a

An expansion (a universal �nite type invariant) is as interesting as its target space, for it
is just a tool that takes linear functionals on the target space to �nite type invariants on its
domain space. The purpose of the next section is to �nd out how interesting are our present
target space,A sw(" ), and its \parent", A w(" ).

3.5. Jacobi Diagrams, Trees and Wheels. In studying A w(" ) we again follow the model
set by ordinary knots. Compare the following de�nitions and theorem with [BN1, Section 3].

De�nition 3.13. A \w-Jacobi diagram on a long line skeleton"23 is a connected graph made
of the following ingredients:

� A \long" oriented \skeleton" line. We usually draw the skeleton line a bitthicker for
emphasis.

� Other directed edges, usually called \arrows".
� Trivalent \skeleton vertices" in which an arrow starts or ends on the skeleton line.
� Trivalent \internal vertices" in which two arrows end and one arrowbegins. The

internal vertices are \oriented" | of the two arrows that end in an internal vertices,
one is marked as \left" and the other is marked as \right". In realitywhen a diagram
is drawn in the plane, we almost never mark \left" and \right", but instead assume
the \left" and \right" inherited from the plane, as seen from the outgoing arrow from
the given vertex.

Note that we allow multiple arrows connecting the same two vertices (though at most two
are possible, given connectedness and trivalence) and we allow \bubbles" | arrows that
begin and end in the same vertex. Note that for the purpose of determining equality of
diagrams the skeleton line is distinguished. The \degree" of a w-Jacobi diagram is half the
number of trivalent vertices in it, including both internal and skeleton vertices. An example
of a w-Jacobi diagram is in Figure10.

23What a mouthful! We usually short this to \w-Jacobi diagram", or so metimes \arrow diagram" or just
\diagram".
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= � = �
���!
ST U1 :

���!
ST U2 :

e
e

e

e
e

e

= �0���!
ST U3 =TC:

e
e

Figure 11. The
���!
ST U1;2 and TC relations with their \central edges" markede.

= �
���!
IHX : e e

e

�!
AS: 0 = +

l r r l

Figure 12. The
�!
AS and

���!
IHX relations.

De�nition 3.14. Let Dwt (" ) be the graded vector space of formal linear combinations of
w-Jacobi diagrams on a long line skeleton, and letA wt (" ) be Dwt (" ) modulo the

���!
ST U1,

���!
ST U2, and TC relations of Figure11. Note that that each diagram appearing in each

���!
ST U

relation has a \central edge"e which can serve as an \identifying name" for that
���!
ST U. Thus

given a diagramD with a marked edgee which is either on the skeleton or which contacts
the skeleton, there is an unambiguous

���!
ST U relation \around" or \along" the edge e.

We like to call the following theorem \the bracket-rise theorem", for it justi�es the in-
troduction of internal vertices, and as should be clear from the

���!
ST U relations and as will

become even clearer in Section3.6, internal vertices can be viewed as \brackets". Two other
bracket-rise theorems are Theorem 6 of [BN1] and Ohtsuki's theorem, Theorem 4.9 of [Po].

Theorem 3.15 (bracket-rise). The obvious inclusion� : Dv(" ) ! D wt (" ) of arrow diagrams
(De�nition 3.8) into w-Jacobi diagrams descends to the quotientA w(" ) and induces an iso-
morphism �� : A w(" ) ��! A wt (" ). Furthermore, the

�!
AS and

���!
IHX relations of Figure 12 hold

in A wt (" ).

Proof. The proof, joint with D. Thurston, is modelled after the proof of Theorem 6
of [BN1]. To show that � descends toA w(" ) we just need to show that inA wt (" ),

�!
4T follows

from
���!
ST U1;2. Indeed, applying

���!
ST U1 along the edgee1 and

���!
ST U2 along e2 in the picture

below, we get the two sides of
�!
4T:

=

=

�

�

���!
ST U1

���!
ST U2

e2 e1

(18)
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The fact that �� is surjective is obvious; indeed, for diagrams inA wt (" ) that have no internal
vertices there is nothing to show, for they are really inA w(" ). Further, by repeated use of
���!
ST U1;2 relations, all internal vertices in any diagram inA wt (" ) can be removed (remember
that the diagrams in A wt (" ) are always connected, and in particular, if they have an internal
vertex they must have an internal vertex connected by an edge to the skeleton, and the latter
vertex can be removed �rst).

To complete the proof that �� is an isomorphism it is enough to show that the \elimination
of internal vertices" procedure of the last paragraph is well de�ned | that its output is
independent of the order in which

���!
ST U1;2 relations are applied in order to eliminate internal

vertices. Indeed, this done, the elimination map would by de�nition satisfy the
���!
ST U1;2

relations and thus descend to a well de�ned inverse for �� .
On diagrams with just one internal vertex, Equation (18) shows that all ways of eliminating

that vertex are equivalent modulo
�!
4T relations, and hence the elimination map is well de�ned

on such diagrams.
Now assume that we have shown that the elimination map is well de�nedon all diagrams

with at most 7 internal vertices, and let D be a diagram with 8 internal vertices24. Let e
and e0 be edges inD that connect the skeleton ofD to an internal vertex. We need to show
that any elimination process that begins with eliminatinge yields the same answer, modulo
�!
4T, as any elimination process that begins with eliminatinge0. There are several cases to
consider.

e e0
Case I. e and e0 connect the skeleton todi�erent internal vertices of

D. In this case, after eliminatinge we get a signed sum of two diagrams
with exactly 7 internal vertices, and since the elimination process is well
de�ned on such diagrams, we may as well continue by eliminatinge0 in each of those, getting
a signed sum of 4 diagrams with 6 internal vertices each. On the other hand, if we start
by eliminating e0 we can continue by eliminatinge, and we get thesamesigned sum of 4
diagrams with 6 internal vertices.

e e0
e00

Case II. e and e0 are connected to the same internal vertexv of D,
yet some other edgee00exists in D that connects the skeleton ofD to
some other internal vertexv0 in D. In that case, use the previous case
and the transitivity of equality: (elimination starting with e)=(elimination starting with
e00)=(elimination starting with e0).

e
e0

f

Case III. Case III is what remains if neither Case I nor Case II
hold. In that case, D must have a schematic form as on the right,
with the \blob" not connected to the skeleton other than via e or
e0, yet further arrows may exist outside of the blob. Letf denote
the edge connecting the blob toe and e0. The \two in one out"
rule for vertices implies that any part of a diagram must have an excess of incoming edges
over outgoing edges, equal to the total number of vertices in that diagram part. Applying
this principle to the blob, we �nd that it must contain exactly one vertex, and that f and
thereforee and e0 must all be oriented upwards.

24\7" here is a symbol that denotes an arbitrary natural number greater than 1 and \8" denotes 7 + 1.
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� � �kwk =DL = DR =

Figure 13. The left-arrow diagramDL , the right-arrow diagramDR and thek-wheelwk .

f

e0e

We leave it to the reader to verify that in this case the two ways of
applying the elimination procedure,e and then f or e0 and then f , yield
the same answer modulo

�!
4T (in fact, that answer is 0).

We also leave it to the reader to verify that
���!
ST U1 implies

�!
AS and

���!
IHX . Algebraically, these are restatements of the anti-symmetry of
the bracket and of Jacobi's identity: if [x; y] := xy � yx, then 0 =
[x; y] + [ y; x] and [x; [y; z]] = [[ x; y]; z] � [[x; z]; y]. �

wClip
120307

ends

Note that A wt (" ) inherits algebraic structure fromA w(" ): it is an algebra by concatenation
of diagrams, and a co-algebra with �(D), for D 2 D wt (" ), being the sum of all ways of
dividing D between a \left co-factor" and a \right co-factor" so that connected components of
D � S are kept intact, whereS is the skeleton line ofD (compare with [BN1, De�nition 3.7]).

As A w(" ) and A wt (" ) are canonically isomorphic, from this point on we will not keep the
distinction between the two spaces.

One may add the RI relation to the de�nition of A wt (" ) to get a spaceA swt (" ), or the FI
relation to get A rwt (" ). The statement and proof of the bracket rise theorem adapt with no
di�culty, and we �nd that A sw(" ) �= A swt (" ) and A rw (" ) �= A rwt (" ).

Theorem 3.16. The bi-algebraA w(" ) is the bi-algebra of polynomials in the diagramsDL ,
DR and wk (for k � 1) shown in Figure 13, wheredegDL = deg DR = 1 and degwk = k,
subject to the one relationw1 = DL � DR . Thus A w(" ) has two generators in degree 1 and
one generator in every degree greater than 1, as stated in Section 3.3.

Proof. (sketch). Readers familiar with the diagrammatic PBW theorem [BN1, Theorem 8]
will note that it has an obvious analogue for theA w(" ) case, and that the proof in [BN1]
carries through almost verbatim. Namely, the spaceA w(" ) is isomorphic to a spaceBw

of \unitrivalent diagrams" with symmetrized univalent ends modulo
�!
AS and

���!
IHX . Given

the \two in one out" rule for arrow diagrams in A w(" ) (and hence inBw) the connected
components of diagrams inBw can only be trees or wheels. Trees vanish if they have more
than one leaf, as their leafs are symmetric while their internal vertices are anti-symmetric,
soBw is generated by wheels (which become thewk 's in A w(" )) and by the one-leaf-one-root
tree, which is simply a single arrow, and which becomes the average ofDL and DR . The
relation w1 = DL � DR is then easily veri�ed using

���!
ST U2.

One may also argue directly, without using sophisticated tools. In short, let D be a diagram
in A w(" ) and S is its skeleton. ThenD � S may have several connected components, whose
\legs" are intermingled alongS. Using the

���!
ST U relations these legs can be sorted (at a cost

of diagrams with fewer connected components, which could have been treated earlier in an
inductive proof). At the end of the sorting procedure one can seethat the only diagrams
that remain are our declared generators. It remains to show thatour generators are linearly
independent (apart for the relationw1 = DL � DR ). For the generators in degree 1, simply
write everything out explicitly in the spirit of Section 7.2.2. In higher degrees there is only
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one primitive diagram in each degree, so it is enough to show thatwk 6= 0 for every k. This
can be done \by hand", but it is more easily done using Lie algebraic tools in Section3.6. �

Exercise3.17. Show that the bi-algebraA rw (" ) (see Section3.3) is the bi-algebra of polyno-
mials in the wheel diagramswk (k � 2), and that A sw(" ) is the bi-algebra of polynomials in
the same wheel diagrams and an additional generatorDA := DL = DR .

Theorem 3.18. In A w(
 ) all wheels vanish and hence the bi-algebraA w(
 ) is the bi-
algebra of polynomials in a single variableDL = DR .

Proof. This is Lemma 2.7 of [Na]. In short, a wheel inA w(
 ) can be reduced using
���!
ST U2

to a di�erence of trees. One of these trees has two adjoining leafsand hence is 0 by TC and
�!
AS. In the other two of the leafs can be commuted \around the circle"using TC until they
are adjoining and hence vanish by TC and

�!
AS. A picture is worth a thousand words, but

sometimes it takes up more space. �

Exercise 3.19. Show that A sw(
 ) �= A w(
 ) yet A rw (
 ) vanishes except in degree 0.

The following two exercises may help the reader to develop a better \feel" for A w(" )
and will be needed, within the discussion of the Alexander polynomial (especially within
De�nition 3.32).

= 0

Exercise3.20. Show that the \Commutators Commute" (CC) relation, shown

wClip
120404

at 0:58:42

on the right, holds in A w(" ). (Interpreted in Lie algebras as in the next
section, this relation becomes [[x; y]; [z; w]] = 0, and hence the name \Com-
mutators Commute"). Note that the proof of CC depends on the skeleton
having a single component; later, when we will work withA w-spaces with more complicated
skeleta, the CC relation will not hold.

W

h a i r

Y

Exercise3.21. Show that \detached wheels" and \hairy
Y 's" make sense inA w(" ). As on the right, a detached
wheel is a wheel with a number of spokes, and a hairy
Y is a combinatorialY shape with further \hair" on its
trunk (its outgoing arrow). It is speci�ed where the trunk and the leafs of theY connect to
the skeleton, but it is not speci�ed where the spokes of the wheel and where the hair on the
Y connect to the skeleton. The content of the exercise is to show that modulo the relations
of A w(" ), it is not necessary to specify this further information: all ways of connecting the
spokes and the hair to the skeleton are equivalent. Like the previous exercise, this result
depends on the skeleton having a single component.

Remark 3.22. In the case of classical knots and classical chord diagrams, Jacobi diagrams
have a topological interpretation using the Goussarov-Habiro calculus of claspers [Gou2,
Hab]. In the w case a similar such calculus was developed by Watanabe in [Wa]. Various
related results are at [HKS, HS].

3.6. The Relation with Lie Algebras. The theory of �nite type invariants of knots is

wClip
120314

starts

related to the theory of metrized Lie algebras via the spaceA of chord diagrams, as explained
in [BN1, Theorem 4, Exercise 5.1]. In a similar manner the theory of �nite type invariants
of w-knots is related to arbitrary �nite-dimensional Lie algebras (or equivalently, to doubles
of co-commutative Lie bialgebra) via the spaceA w(" ) of arrow diagrams.
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3.6.1. Preliminaries. Given a �nite dimensional Lie algebrag let I g := g� o g be the semi-
direct product of the dual g� of g with g, with g� taken as an Abelian algebra and withg
acting on g� by the usual coadjoint action. In formulae,

I g = f ('; x ) : ' 2 g� ; x 2 gg;

[(' 1; x1); (' 2; x2)] = ( x1' 2 � x2' 1; [x1; x2]):

In the case whereg is the algebraso(3) of in�nitesimal symmetries of R3, its dual g� is
itself R3 with the usual action ofso(3) on it, and I g is the algebraR3 o so(3) of in�nitesimal
a�ne isometries of R3. This is the Lie algebra of the Euclidean group of isometries ofR3,
which is often denotedISO(3). This explains our choice of the nameI g.

Note that if g is a co-commutative Lie bialgebra thenI g is the \double" of g [Dr1]. This
is a signi�cant observation, for it is a part of the relationship between this paper and the
Etingof-Kazhdan theory of quantization of Lie bialgebras [EK]. Yet we will make no explicit
use of this observation below.

In the construction that follows we are going to construct a map from A w to U(I g), the
universal enveloping algebra ofI g. Note that a map A w ! U (I g) is \almost the same" as a
map A sw ! U (I g), in the following sense. There is an obvious quotient mapp: A w ! A sw,
and p has a one-sided inverseF : A sw ! A w de�ned by

F (D) =
1X

k=0

(� 1)k

k!
Sk

L (D) � wk
1:

Here SL denotes the map that sends an arrow diagram to the sum of all waysof deleting a
left-going arrow, andw1 denotes the 1-wheel, as shown in Figure13. The reader can verify
that F is well-de�ned, an algebra- and co-algebra homomorphism, and thatp � F = idA sw .

3.6.2. The Construction. Fixing a �nite dimensional Lie algebra g we construct a map
T w

g : A w ! U (I g) which assigns to every arrow diagramD an element of the universal
enveloping algebraU(I g). As is often the case in our subject, a picture of a typical example
is worth more than a formal de�nition:

g� 
 g� 
 g 
 g 
 g� 
 g� U(I g)
I

g� g� g g �g�g

B B

contract

g g �

In short, we break up the diagramD into its constituent pieces and assign a copy of
the structure constants tensorB 2 g� 
 g� 
 g to each internal vertex v of D (keeping
an association between the tensor factors ing� 
 g� 
 g and the edges emanating from
v, as dictated by the orientations of the edges and of the vertexv itself). We assign the
identity tensor in g� 
 g to every arrow in D that is not connected to an internal vertex,
and contract any pair of factors connected by a fully internal arrow. The remaining tensor
factors (g� 
 g� 
 g 
 g 
 g� 
 g� in our examples) are all along the skeleton and can thus be
ordered by the skeleton. We then multiply these factors to get an output T w

g (D) in U(I g).
It is also useful to restate this construction given a choice of a basis. Let (x j ) be a basis

of g and let (' i ) be the dual basis ofg� , so that ' i (x j ) = � i
j , and let bk

ij denote the structure
constants ofg in the chosen basis: [x i ; x j ] =

P
bk

ij xk . Mark every arrow in D with lower
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case Latin letter from within f i; j; k; : : : g25. Form a product PD by taking oneb

�� factor for

each internal vertexv of D using the letters marking the edges aroundv for � , � and 
 and
by taking one x � or ' � factor for each skeleton vertex ofD, taken in the order that they
appear along the skeleton, with the indices� and � dictated by the edge markings and with
the choice between factors ing and factors in g� dictated by the orientations of the edges.
Finally let T w

g (D) be the sum ofPD over the indicesi; j; k; : : : running from 1 to dimg:

i j

k

lmn

bm
klbk

ji
dim gX

i;j;k;l;m;n =1

bk
ij bm

kl ' i ' j xn xm ' l 2 U (I g)

' i ' j xn xm ' n ' l

(19)

The following is easy to verify (compare with [BN1, Theorem 4, Exercise 5.1]):

Proposition 3.23. The above two de�nitions ofTw
g agree, are independent of the choices

made within them, and respect all the relations de�ningA w. �

While we do not provide a proof of this proposition here, it is worthwhileto state the
correspondence between the relations de�ningA w and the Lie algebraic information inU(I g):
�!
AS is the antisymmetry of the bracket ofg,

���!
IHX is the Jacobi identity of g,

���!
ST U1 and

���!
ST U2 are the relations [x i ; x j ] = x i x j � x j x i and [' i ; x j ] = ' i x j � x j ' i in U(I g), T C is the
fact that g? is taken as an Abelian algebra, and

�!
4T is the fact that the identity tensor in

g� 
 g is g-invariant.

3.6.3. Example: The 2 Dimensional Non-Abelian Lie Algebra.Let g be the Lie algebra with
two generatorsx1;2 satisfying [x1; x2] = x2, so that the only non-vanishing structure constants
bk

ij of g are b2
12 = � b2

21 = 1. Let ' i 2 g� be the dual basis ofx i ; by an easy calculation,
we �nd that in I g the element ' 1 is central, while [x1; ' 2] = � ' 2 and [x2; ' 2] = ' 1. We
calculate T w

g (DL ), T w
g (DR ) and T w

g (wk) using the \in basis" technique of Equation (19).
The outputs of these calculations lie inU(I g); we display these results in a PBW basis in
which the elements ofg� precede the elements ofg:

T w
g (DL ) = x1' 1 + x2' 2 = ' 1x1 + ' 2x2 + [ x2; ' 2] = ' 1x1 + ' 2x2 + ' 1;

T w
g (DR ) = ' 1x1 + ' 2x2; (20)

T w
g (wk) = ( ' 1)k :

1 1 1 1

2
222

' 1 ' 1 ' 1 ' 1

For the last assertion above, note that all non-vanishing structure
constantsbk

ij in our case havek = 2, and therefore all indices corre-
sponding to edges that exit an internal vertex must be set equal to
2. This forces the \hub" of wk to be marked 2 and therefore the legs
to be marked 1, and thereforewk is mapped to (' 1)k .

Note that the calculations in (20) are consistent with the relation DL � DR = w1 of
Theorem 3.16 and that they show that other than that relation, the generators of A w are
linearly independent.

wClip
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ends

25The supply of these can be made inexhaustible by the addition of numerical subscripts.
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1 2 3 4

5

6 7 8

Figure 14. A long 817, with the span of crossing#3 marked. The projection is as in Brian
Sanderson's garden. See [WKO0]/ SandersonsGarden.html .

3.7. The Alexander Polynomial. Let K be a long w-knot, let Z (K ) be the invariant

wClip
120404

starts

of Theorem 3.11. Theorem 3.27 below asserts that apart from self-linking,Z (K ) contains
precisely the same information as the Alexander polynomialA(K ) of K (de�ned below).
But we have to start with some de�nitions.

De�nition 3.24. Enumerate the crossings ofK from 1 to n in some arbitrary order. For 1�
j � n, the \span" of crossing #i is the connected open interval along the line parametrizing
K between the two timesK \visits" crossing # i (see Figure14). Form a matrix T = T(K )
with Tij the indicator function of \the lower strand of crossing #j is within the span of
crossing #i" (so Tij is 1 if for a giveni; j the quoted statement is true, and 0 otherwise). Let
si be the sign of crossing #i (( � ; � ; � ; � ; + ; + ; + ; +) for Figure 14), let di be +1 if K visits
the \over" strand of crossing #i before visiting the \under" strand of that crossing, and let
di = � 1 otherwise ((� ; + ; � ; + ; � ; + ; � ; +) for Figure 14). Let S = S(K ) be the diagonal
matrix with Sii = si di , and for an indeterminateX , let X � S denote the diagonal matrix with
diagonal entriesX � si di . Finally, let A(K ) be the Laurent polynomial in Z[X; X � 1] given by

A(K )(X ) := det
�
I + T(I � X � S)

�
: (21)

Example3.25. For the knot diagram in Figure 14,

T =

0

B
B
B
B
@

0 1 1 1 1 0 1 0
0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0
0 1 0 1 0 1 1 1
0 1 0 1 0 0 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0

1

C
C
C
C
A

; S=

0

B
B
B
B
B
@

1 0 0 0 0 0 0 0
0 � 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 � 1 0 0 0 0
0 0 0 0 � 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 � 1 0
0 0 0 0 0 0 0 1

1

C
C
C
C
C
A

; and A=

�
�
�
�
�
�
�
�
�
�
�
�
�
�

1 1� X 1� X � 1 1� X 1� X 0 1� X 0
0 1 1� X � 1 0 1� X 0 0 0
0 1� X 1 0 1� X 0 0 0
0 1� X 0 1 1� X 0 1� X 0
0 1� X 0 1� X 1 1� X � 1 1� X 1� X � 1

0 1� X 0 1� X 0 1 1� X 0
0 0 0 1� X 0 1� X � 1 1 0
0 0 0 1� X 0 1� X � 1 0 1

�
�
�
�
�
�
�
�
�
�
�
�
�
�

:

The last determinant equals� X 3 + 4X 2 � 8X + 11 � 8X � 1 + 4X � 2 � X � 3, the Alexander
polynomial of the knot 817 (e.g. [Rol]).

Theorem 3.26. (P. Lee, [Lee2]) For any (classical) knotK , A(K ) is equal to the normalized
Alexander polynomial[Rol] of K . �

The Mathematica notebook [WKO0, \wA"] veri�es Theorem 3.26for all prime knots with
up to 11 crossings.

The following theorem asserts thatZ (K ) can be computed fromA(K ) (Equation (22))
and that modulo a certain additional relation and with the appropriate identi�cations in
place,Z (K ) is A(K ) (Equation (23)).
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Theorem 3.27. (Proof in Section 3.8). Let x be an indeterminate, let sl be self-linking as
in Exercise 3.6, let DA := DL = DR and wk be as in Figure13, and let w: QJxK! A w be
the linear map de�ned byxk 7! wk . Then for a w-knot K ,

Z (K ) = expA sw (sl(K )DA )
| {z }

sl coded in arrows

� expA sw

�
� w

�
logQJxKA(K )(ex )

��

| {z }
main part: Alexander coded in wheels

; (22)

where the logarithm and inner exponentiation are computed by formal power series inQJxK
and the outer exponentiations are likewise computed inA sw.

=

=w2 � w3 w5

Let A reduced beA sw modulo the additional relationsDA = 0 and
wkwl = wk+ l for k; l 6= 1. The quotient A reduced can be identi�ed
with vector space of (in�nite) linear combinations ofwk 's (with
k 6= 1). Identifying the k-wheelwk with xk , we see thatA reduced is the space of power series
in x having no linear terms. Note by inspecting (21) that A(K )(ex ) never has a term linear
in x, and that modulo wkwl = wk+ l , the exponential and the logarithm in (22) cancel each
other out. Hence within A reduced,

Z (K ) = A � 1(K )(ex ): (23)

Remark 3.28. In [HKS] K. Habiro, T. Kanenobu, and A. Shima show that all coe�cients of
the Alexander polynomial are �nite type invariants of w-knots, andin [HS] K. Habiro and
A. Shima show that all �nite type invariants of w-knots are polynomials in the coe�cients of
the Alexander polynomial. Thus Theorem3.27 is merely an \explicit form" of these earlier
results.

3.8. Proof of Theorem 3.27. We start with a sketch. The proof of Theorem3.27can be
divided in three parts: di�erentiation, bulk management, and computation.

wClip
120404

ends
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Di�erentiation. Both sides of our goal, Equation (22), are exponential in nature. WhenwClip
120418

has further
background
on E, the
di�erential
of exp, and
the BCH
formula.

seeking to show an equality of exponentials it is often bene�cial to compare their derivatives26.
In our case the useful \derivatives" to use are the \Euler operator" E (\multiply every term
by its degree", an analogue off 7! xf 0, de�ned in Section 3.8.1), and the \normalized
Euler operator" Z 7! ~EZ := Z � 1EZ , which is a variant of the logarithmic derivative f 7!
x(log f )0 = xf 0=f . Since ~E is one to one (Section3.8.1) and since we know how to apply
~E to the right hand side of Equation (22) (Section 3.8.1), it is enough to show that with
B := T(exp(� xS) � I ) and suppressing the �xed w-knotK from the notation,

EZ = Z �
�
sl � DA � w

�
x tr

�
(I � B )� 1T Sexp(� xS)

���
in A sw: (24)

Bulk Management. Next we seek to understand the left hand side of (24). Z is made

wClip
120425

starts

up of \quantities in bulk": arrows that come in exponential \reservoirs". As it turns out,
EZ is made up of the same bulk quantities, but also allowing for a single non-bulk \red
excitation" (compare with Eex = x � ex ; the \bulk" ex remains, and single \excited red"
x gets created). We wish manipulate and simplify that red excitation. This is best done
by introducing a certain module,IAM K , the \In�nitesimal Alexander Module" of K (see
Section3.8.2). The elements ofIAM K can be thought of as names for \bulk objects with a
red excitation", and hence there is an \interpretation map"� : IAM K ! A sw, which maps
every \name" into the object it represents. There are three special elements inIAM K : an
element � , which is the name ofEZ (that is, �(� ) = EZ ), the element � A which is the
name ofDA � Z (so �(� A ) = DA � Z ), and an element! 1 which is the name of a \detached"
1-wheel that is appended toZ . The latter can take a coe�cient which is a power ofx, with
�(xk ! 1) = w(xk+1 ) � Z = ( Z times a (k +1)-wheel). Thus it is enough to show that inIAM K ,

� = sl � � A � tr
�
(I � B )� 1T SX � S

�
! 1; with X = ex : (25)

Indeed, applying� to both sides of the above equation, we get Equation (24) back again.
Computation. Last, we show in Section3.8.3that ( 25) holds true. This is a computation
that happens entirely in IAM K and does not mention �nite type invariants, expansions or
arrow diagrams in any way.

3.8.1. The Euler Operator. Let A be a completed graded algebra with unit, in which all
degrees are� 0. De�ne a continuous linear operatorE : A ! A by setting Ea = (deg a)a
for homogeneousa 2 A. In the caseA = QJxK, we haveEf = xf 0, the standard \Euler
operator", and hence we adopt this name forE in general.

We say that Z 2 A is a \perturbation of the identity" if its degree 0 piece is 1. Such aZ
is always invertible. For such aZ , set ~EZ := Z � 1 � EZ , and call the thus (partially) de�ned
operator ~E : A ! A the \normalized Euler operator". From this point on when we write
~EZ for someZ 2 A, we automatically assume thatZ is a perturbation of the identity or
that it is trivial to show that Z is a perturbation of the identity. Note that for f 2 QJxK,
we have ~Ef = x(log f )0, so ~E is a variant of the logarithmic derivative.

Claim 3.29. ~E is one to one.

Proof. AssumeZ1 6= Z2 and let d be the smallest degree in which they di�er. Then
d > 0 and in degreed the di�erence ~EZ 1 � ~EZ 2 is d times the di�erence Z1 � Z2, and hence
~EZ 1 6= ~EZ 2. �

26Thanks, Dylan.
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Thus in order to prove our goal, Equation (22), it is enough to compute ~E of both sides
and to show the equality then. We start with the right hand side of (22); but �rst, we need
some simple properties ofE and ~E. The proofs of these properties are routine and hence
they are omitted.

Proposition 3.30. The following hold true:
(1) E is a derivation: E(fg ) = ( Ef )g + f (Eg).
(2) If Z1 commutes withZ2, then ~E(Z1Z2) = ~EZ 1 + ~EZ 2.
(3) If z commutes withEz, then Eez = ez(Ez) and ~Eez = Ez.
(4) If w : A ! A is a morphism of graded algebras, then it commutes withE and ~E. �

Let us denote the right hand side of (22) by Z1(K ). Then by the above proposition,
remembering (Theorem3.16) that A sw is commutative and that degDA = 1, we have

~EZ 1(K ) = sl � DA � w(E logA(K )(ex )) = sl � DA � w
�

x
d

dx
logA(K )(ex )

�
:

The rest is an exercise in matrices and di�erentiation.A(K ) is a determinant (21), and in
general, d

dx log det(M ) = tr
�
M � 1 d

dx M
�
. So with B = T(e� xS � I ) (so M = I � B), we have

~EZ 1(K ) = sl � DA + w
�

x tr
�

(I � B )� 1 d
dx

B
��

= sl � DA � w
�
x tr

�
(I � B )� 1T Se� xS

��
;

as promised in Equation (24).

3.8.2. The In�nitesimal Alexander Module. Let K be a w-knot diagram. The In�nitesimal
Alexander Module IAM K of K is a certain module made from a certain spaceIAM 0

K of
pictures \annotating" K with \red excitations" modulo some pictorial relations that indicate
how the red excitations can be moved around. The spaceIAM 0

K in itself is made of three
pieces, or \sectors". The \A sector" in which the excitations are red arrows, the \Y sector"
in which the excitations are \red hairy Y-diagrams", and a rank 1 \W sector" for \red hairy
wheels". There is an \interpretation map" � : IAM 0

K ! A w which descends to a well de�ned
(and homonymous)� : IAM K ! A w . Finally, there are some special elements� and � A that
live in the A sector of IAM 0

K and ! 1 that lives in the W sector.
In principle, the description of IAM 0

K and of IAM K can be given independently of the
interpretation map �, and there are some good questions to ask aboutIAM K (and the
special elements in it) that are completely independent of the interpretation of the elements
of IAM K as \perturbed bulk quantities" within A sw. Yet IAM K is a complicated object
and we fear its de�nition will appear completely arti�cial without its int erpretation. Hence
below the two de�nitions will be woven together.

IAM K and � may equally well be described in terms ofK or in terms of the Gauss diagram
of K (Remark 3.4). For pictorial simplicity, we choose to use the latter; so letG = G(K ) be
the Gauss diagram ofK . It is best to read the following de�nition while at the same time
studying Figure 15.

De�nition 3.31. Let R be the ring Z[X; X � 1] of Laurent polynomials inX , and let R1 be
the subring of polynomials that vanish atX = 1 (i.e., whose sum of coe�cients is 0)27. Let

27R1 is only very lightly needed, and only within De�nition 3.32. In particular, all that we say about
IAM K that does not concern the interpretation map � is equally valid with R replacing R1.
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� + � + � + � +
red red

K G in A in Y in W

red

Figure 15. A sample w-knotK , it's Gauss diagramG, and one generator from each of the
A, Y, and W sectors ofIAM 0

K . Red parts are marked with the word \red".

IAM 0
K be the direct sum of the following three modules (which for the purpose of taking the

direct sum, are all regarded asZ-modules):

(1) The \A sector" is the free Z-module generated by all diagrams made fromG by the
addition of a single unmarked \red excitation" arrow, whose endpoints are on the
skeleton ofG and are distinct from each other and from all other endpoints of arrows
in G. Such diagrams are considered combinatorially | so two are equivalent i� they
di�er only by an orientation preserving di�eomorphism of the skeleton. Let us count:
if K hasn crossings, thenG hasn arrows and the skeleton ofG get subdivided into
m := 2n +1 arcs. An A sector diagram is speci�ed by the choice of an arc for the tail
of the red arrow and an arc for the head (m2 choices), except if the head and the tail
fall within the same arc, their relative ordering has to be speci�ed aswell (m further
choices). So the rank of the A sector overZ is m(m + 1).

(2) The \Y sector" is the free R1-module generated by all diagrams made fromG by
the addition of a single \red excitation" Y-shape single-vertex graph, with two in-
coming edges (\tails") and one outgoing (\head"), modulo anti-symmetry for the
two incoming edges (again, considered combinatorially). Counting is more elaborate:
when the three edges of theY end in distinct arcs in the skeleton ofG, we have
1
2m(m � 1)(m � 2) possibilities (12 for the antisymmetry). When the two tails of the
Y lie on the same arc, we get 0 by anti-symmetry. The remaining possibility is to
have the head and one tail on one arc (order matters!) and the other tail on another,
at 2m(m � 1) possibilities. So the rank of the Y sector overR1 is m(m � 1)( 1

2m + 1).
(3) The \W sector" is the rank 1 free R-module with a single generatorw1. It is not

necessary forw1 to have a pictorial representation, yet one, involving a single \red"
1-wheel, is shown in Figure15.

De�nition 3.32. The \interpretation map" � : IAM 0
K ! A w is de�ned by sending the

arrows (marked + or � ) of a diagram inIAM 0
K to e� a-exponential reservoirs of arrows, as in

the de�nition of Z (see Remark3.12). In addition, the red excitations of diagrams inIAM 0
K

are interpreted as follows:

(1) In the A sector, the red arrow is simply mapped to itself, with thecolour red sup-
pressed.

(2) In the Y sector diagrams have redY 's and coe�cients f 2 R1. Substitute X = ex

in f , expand in powers ofx, and interpret xkY as a \hairy Y with k � 1 hairs" as in
Exercise3.21. Note that f (1) = 0, so only positive powers ofx occur, so we never
need to worry about \Y 's with � 1 hairs". This is the only point where the condition
f 2 R1 (as opposed tof 2 R) is needed.
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Figure 16. The relationsR making IAM K .

(3) In the W sector treat the coe�cients as above, but interpretxkw1 as a detached
wk+1 . I.e., as a detached wheel withk + 1 spokes, as in Exercise3.21.

As stated above,IAM K is the quotient of IAM 0
K by some set of relations. The best way

to think of this set of relations is as \everything that's obviously annihilated by �". Here's
the same thing, in a more formal language:

De�nition 3.33. Let IAM K := IAM 0
K =R, where R is the linear span of the relations

depicted in Figure 16. The top 8 relations are about moving a leg of the red excitation
across an arrow head or an arrow tail inG. Since the red excitation may be either an arrow
(A) or a Y, its leg in motion may be either a tail or a head, and it may be moving either past
a tail or past a head, there are 8 relations of that type. The next relation corresponds to
DL � DR = w1 = 0. The last relation indicates the \price" (always a redw1) of commuting
a red head across a red tail. As per custom, in each case only the changing part of the
diagrams involved is shown. Further, the red excitations are marked with the letter \r" and
the sign of an arrow inG is markeds; so alwayss 2 f� 1g. The relations in the left column
may be multiplied by a scalar inZ, while the relations in the right column may be multiplied
by a scalar inR. Hence, for example,x0w1 = 0 by Aw , yet xkw1 6= 0 for k > 0.

Proposition 3.34. The interpretation map � indeed annihilates all the relations inR.

Proof. �A tt and �Ytt follow immediately from \Tails Commute". The formal identity
ead b(a) = ebae� b implies ead b(a)eb = eba and henceaeb � eba = (1 � ead b)(a)eb. With a
interpreted as \red head", b as \black head", and adb as \hair" (justi�ed by the �-meaning
of hair and by the

���!
ST U1 relation, Figure 11), the last equality becomes a proof of�Yhh .

Further pushing that same equality, we getaeb � eba = 1� ead b

ad b ([b; a]), where 1� ead b

ad b is �rst
interpreted as a power series1� ey

y involving only non-negative powers ofy, and then the
substitution y = ad b is made. But that's �A hh , when one remembers that� on the Y sector
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Figure 17. The special elements! 1, � A , and � in IAM G , for a sample 3-arrow Gauss diagramG.

automatically contains a single \ 1
hair " factor. Similar arguments, though using

���!
ST U2 instead

of
���!
ST U1, prove that Yht , Yth , Aht , and A th are all in ker�. Finally, �A w is RI, and �Yw is a

direct consequence of
���!
ST U2. �

Finally, we come to the special elements� , � A , and ! 1.

De�nition 3.35. Within IAM G, let ! 1 be, as before, the generator of the W sector. Let
� A be a \short" red arrow, as in the Aw relation (exercise: moduloR, this is independent
of the placement of the short arrows withinG). Finally, let � be the signed sum of exciting
each of the (black) arrows inG in turn. The picture says all, and it is Figure17.

Proposition 3.36. In A sw(" ), the special elements of IAMG are interpreted as follows:
�(! 1) = Zw1, � (� A ) = ZD A , and most interesting,�(� ) = EZ . Therefore, Equation (25) (if
true) implies Equation (24) and hence it implies our goal, Theorem3.27.

Proof. For the proof of this proposition, the only thing that isn't done yet and isn't trivial
is the assertion�(� ) = EZ . But this assertion is a consequence ofEe� a = � ae� a and of
a Leibniz law for the derivation E, appropriately generalized to a context whereZ can be
thought of as a \product" of \arrow reservoirs". The details areleft to the reader. �

3.8.3. The Computation of � . Naturally, our next task is to prove Equation (25). This is
done entirely algebraically within the �nite rank module IAM G. To read this section one
need not know aboutA sw(" ), or � , or Z , but we do need to lay out some notation. Start by
marking the arrows ofG with a1 through an in some order.

Let � stand for the informal yet useful quantity \a little". Let � ij denote the di�erence
� 0

ij � � 00
ij of red excitations in the A sector ofIAM G , where � 0

ij is the diagram with a red
arrow whose tail is� to the right of the left end of ai and whose head is12 � away from head of
aj in the direction of the tail of aj , and where� 00

ij has a red arrow whose tail is� to the left of
the right end of ai and whose head is as before,1

2 � away from head ofaj in the direction of
the tail of aj . Let � = ( � ij ) be the matrix whose entries are the� ij 's, as shown in Figure18.

Similarly, let yij denote the element in the Y sector ofIAM G whose red Y has its head12 �
away from head ofaj in the direction of the tail of aj , its right tail (as seen from the head)
� to the left of the right end of ai and its left tail � to the right of the left end of ai . Let
Y = ( yij ) be the matrix whose entries are theyij 's, as shown in Figure18.

Proposition 3.37. With S and T as in De�nition 3.24, and with B = T(X � S � I ) and
� as above, the following identities between elements of IAMG and matrices with entries in

44



� �

Y

1

2

j
i

� 1 2

1

2

j
i

1 2

� �

Figure 18. The matrices� and Y for a sample 2-arrow Gauss diagram (the signs ona1 and
a2 are suppressed, and so are ther marks). The twists iny11 and y22 may be replaced by
minus signs.

IAM G hold true:

� � sl � DA = tr S� (26)

� = � BY � T X � Sw1 (27)

Y = BY + T X � Sw1 (28)

Proof of Equation (25) given Proposition3.37. The last of the equalities above implies that
Y = ( I � B )� 1T X � Sw1. Thus

� � sl � DA = tr S� = � tr S(BY + T X � Sw1) = � tr S(B(I � B )� 1T X � S + T X � S)w1

= � tr
�
(I � B )� 1T SX � S

�
w1;

and this is exactly Equation (25). �
Proof of Proposition 3.37. Equation (26) is trivial. The proofs of Equations (27) and (28)
both have the same simple cores, that have to be supplemented by highly unpleasant tracking
of signs and conventions and powers ofX . Let us start from the cores.

To prove Equation (27) we wish to \compute" � ik = � 0
ik � � 00

ik . As � 0
ik and � 00

ik have their
heads in the same place, we can compute their di�erence by graduallysliding the tail of � 0

ik
from its original position near the left end ofai towards the right end ofai , where it would
be cancelled by� 00

ik . As the tail slides we pick up ayjk term each time it crosses a head of an
aj (relation A th ), we pick up a vanishing term each time it crosses a tail (relationA tt ), and
we pick up aw1 term if the tail needs to cross over its own head (relationAw). Ignoring signs
and (X � 1 � 1) factors, the sum of theyjk -terms should be proportional toT Y, for indeed,
the matrix T has non-zero entries precisely when the head of anaj falls within the span of
an ai . Unignoring these signs and factors, we get� BY (recall that B = T(X � S � I ) is just
T with added (X � 1 � 1) factors). Similarly, a w1 term arises in this process when a tail has
to cross over its own head, that is, when the head ofak is within the span of ai . Thus the
w1 term should be proportional toT w1, and we claim it is � T X � Sw1.

The core of the proof of Equation (28) is more or less the same. We wish to \compute"
yik by sliding its left leg, starting near the left end ofai , towards its right leg, which is
stationary near the right end ofai . When the two legs come together, we get 0 because of
the anti-symmetry of Y excitations. Along the way we pick up further Y terms from the
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Yth relations, and sometimes aw1 term from the Yw relation. When all signs and (X � 1 � 1)
factors are accounted for, we get Equation (28).

We leave it to the reader to complete the details in the above proofs.It is a major
headache, and we would not have trusted ourselves had we not written a computer program to
manipulate quantities inIAM G by a brute force application of the relations inR. Everything
checks; see [WKO0, \The In�nitesimal Alexander Module"]. �

This concludes the proof of Theorem3.27. �
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Remark 3.38. We chose the name \In�nitesimal Alexander Module" as in our mind there is
some similarity betweenIAM K and the \Alexander Module" of K . Yet beyond the above,
we did not embark on any serious study ofIAM K . In particular, we do not know if IAM K

in itself is an invariant of K (though we suspect it wouldn't be hard to show that it is),
we do not know if IAM K contains any further information beyondsl and the Alexander
polynomial, and we do not know if there is any formal relationship betweenIAM K and the
Alexander module ofK .

Remark 3.39. The logarithmic derivative of the Alexander polynomial also appears inLe-
scop's [Les1, Les2]. We don't know if its appearances there are related to its appearance
here.

3.9. The Relationship with u-Knots. Unlike in the case of braids, there is a canonical
universal �nite type invariant of u-knots: the Kontsevich integralZ u. So it makes sense to
ask how it is related to the expansionZ w.

Ku(" ) Z u
//

a
��

A u(" )

�
��

Kw(" ) Z w
//A w(" )

We claim that the square on the left commutes, whereKu(" ) stands
for long u-knots (knottings of an oriented line), and similarlyKw(" )
denotes longw-knots. As before,a is the composition of the maps
u-knots ! v-knots ! w-knots, and � is the induced map on the pro-
jectivizations, mapping each chord to the sum of the two ways to direct

it.
Recall that � kills everything but wheels and arrows. We are going to use the formula

for the \wheel part" of the Kontsevich integral as stated in [Kr ]. Let K be a 0-framed long
knot, and let A(K ) denote the Alexander polynomial. Then by [Kr ],

Z u(K ) = expA u

�
�

1
2

logA(K )(eh)jh2n ! wu
2n

�
+ \loopy terms" ;

wherewu
2n stands for the unoriented wheel with 2n spokes; and \loopy terms" means terms

that contain diagrams with more than one loop, which are killed by� . Note that by the
symmetry A(z) = A(z� 1) of the Alexander polynomial,A(K )(eh) contains only even powers
of h, as suggested by the formula.

We need to understand how� acts on wheels. Due to the two-in-one-out rule, a wheel is
zero unless all the \spokes" are oriented inward, and the cycle oriented in one direction. In
other words, there are two ways to orient an unoriented wheel: clockwise or counterclockwise.
Due to the anti-symmetry of chord vertices, we get that for odd wheels� (wu

2h+1 ) = 0 and
for even wheels� (wu

2h) = 2 ww
2h. As a result,

�Z u(K ) = expA w

�
�

1
2

logA(K )(eh)jh2n ! 2w2n

�
= expA w

�
� logA(K )(eh)jh2n ! w2n

�
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which agrees with the formula (22) of Theorem3.27. Note that sinceK is 0-framed, the �rst
part (\ sl coded in arrows") of (22) is trivial.
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4. Algebraic Structures, Projectivizations, Expansions, Cir cuit Algebras

Section Summary. In this section we de�ne the \projectivization" (Sec. 4.2)
of an arbitrary algebraic structure (4.1) and introduce the notions of \expansions"
and \homomorphic expansions" (4.3) for such projectivizations. Everything is so
general that practically anything is an example. The baby-example of quandles is
built in into the section; the braid groups and w-braid groups appeared already in
Section 2, yet our main goal is to set the language for the examples of w-tangles
and w-tangled foams, which appear later in this paper. Both of these examples are
types of \circuit algebras", and hence we end this section with a general discussion
of circuit algebras (Sec.4.4).

4.1. Algebraic Structures. An \algebraic structure" O is some collection (O� ) of sets of
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objects of di�erent kinds, where the subscript� denotes the \kind" of the objects in O� ,
along with some collection of \operations" � , where each � is an arbitrary map with
domain some productO� 1 � � � � � O � k of sets of objects, and range a single setO� 0 (so
operations may be unary or binary or multinary, but they always return a value of some
�xed kind). We also allow some named \constants" within someO� 's (or equivalently, allow
some 0-nary operations).28 The operations may or may not be subject to axioms | an
\axiom" is an identity asserting that some composition of operationsis equal to some other
composition of operations.

Figure 19. An algebraic struc-
ture O with 4 kinds of objects
and one binary, 3 unary and two
0-nary operations (the constants
1 and � ).

(
objects
of kind

3

)

=

O =

O3 O4

O1

� 1
O2

� �
 1

 3

 4

 2

Figure 19 illustrates the general notion of an algebraic structure. Here area few speci�c
examples:

� Groups: one kind of objects, one binary \multiplication", one unary\inverse", one
constant \the identity", and some axioms.

� Group homomorphisms: Two kinds of objects, one for each group.7 operations |
3 for each of the two groups and the homomorphism itself, going between the two
groups. Many axioms.

� A group acting on a set, a group extension, a split group extension and many other
examples from group theory.

� A quandle. It is worthwhile to quote the abstract of the paper thatintroduced the
de�nition (Joyce, [Joy]):

The two operations of conjugation in a group,x B y = y� 1xy and x B � 1 y =
yxy � 1 satisfy certain identities. A set with two operations satisfying these

28alternatively de�ne \algebraic structures" using the theory of \m ulticategories" [Lei]. Using this lan-
guage, an algebraic structure is simply a functor from some \structure" multicategory C into the multi-
category Set (or into Vect , if all Oi are vector spaces and all operations are multilinear). A \morphism"
between two algebraic structures over the same multicategoryC is a natural transformation between the two
functors representing those structures.
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identities is called a quandle. The Wirtinger presentationof the knot group
involves only relations of the formy� 1xy = z and so may be construed as
presenting a quandle rather than a group. This quandle, called the knot
quandle, is not only an invariant of the knot, but in fact a classifying in-
variant of the knot.

Also see De�nition 4.2.
� Planar algebras as in [Jon] and circuit algebras as in Section4.4.
� The algebra of knotted trivalent graphs as in [BN8, Da].
� Let &: B ! S be an arbitrary homomorphism of groups (though our notation suggests

what we have in mind | B may well be braids, andS may well be permutations). We
can consider an algebraic structureO whose kinds are the elements ofS, for which
the objects of kinds 2 S are the elements ofOs := &� 1(s), and with the product in
B de�ning operations Os1 � O s2 ! O s1s2 .

� Clearly, many more examples appear throughout mathematics.

4.2. Projectivization. Any algebraic structure O has a projectivization. First extendO
to allow formal linear combinations of objects of the same kind (extending the operations in
a linear or multi-linear manner), then let I , the \augmentation ideal", be the sub-structure
made out of all such combinations in which the sum of coe�cients is 0, then let I m be the
set of all outputs of algebraic expressions (that is, arbitrary compositions of the operations
in O) that have at least m inputs in I (and possibly, further inputs in O), and �nally, set

proj O :=
M

m� 0

I m =I m+1 : (29)

Clearly, with the operations inherited fromO, the projectivization proj O is again algebraic
structure with the same multi-graph of spaces and operations, but with new objects and
with new operations that may or may not satisfy the axioms satis�edby the operations of
O. The main new feature in projO is that it is a \graded" structure; we denote the degree
m pieceI m =I m+1 of proj O by projmO.

We believe that many of the most interesting graded structures that appear in mathematics
are the result of this construction, and that many of the interesting graded equations that
appear in mathematics arise when one tries to �nd \expansions", or\universal �nite type
invariants", which are also morphisms29 Z : O ! proj O (see Section4.3) or when one studies
\automorphisms" of such expansions30. Indeed, the paper you are reading now is really
the study of the projectivizations of various algebraic structures associated with w-knotted
objects. We would like to believe that much of the theory of quantumgroups (at \generic" ~)
will eventually be shown to be a study of the projectivizations of various algebraic structures
associated with v-knotted objects.

Thus we believe that the operation described in Equation (29) is truly fundamental and
therefore worthy of a catchy name. So why \projectivization"? Well, it reminds us of graded
spaces, but really, that's all. We simply found no better name. We're open to suggestions.

29Indeed, if O is �nitely presented then �nding such a morphism Z : O ! proj O amounts to �nding its
values on the generators ofO, subject to the relations of O. Thus it is equivalent to solving a system of
equations written in some graded spaces.

30The Drinfel'd graded Grothendieck-Teichmuller group GRT is an example of such an automorphism
group. See [Dr3, BN6].
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Let us end this section with two examples.

Proposition 4.1. If G is a group,proj G is a graded associative algebra with unit. �

De�nition 4.2. A quandle is a setQ with a binary operation " : Q � Q ! Q satisfying the
following axioms:

(1) 8x 2 Q; x" x = x.
(2) For any �xed y 2 Q, the map x 7! x" y is invertible31.
(3) Self-distributivity: 8x; y; x 2 Q; (x" y)" z = ( x" z)" (y" z).

We say that a quandleQ has a unit, or is unital, if there is a distinguished element 12 Q
satisfying the further axiom:

(4) 8x 2 Q; x" 1 = x and 1"x = 1.

If G is a group, it is also a (unital) quandle by settingx" y := y� 1xy, yet there are many
quandles that do not arise from groups in this way.

Proposition 4.3. If Q is a unital quandle,proj0Q is one-dimensional andproj> 0Q is a
graded right Leibniz algebra32 generated byproj1Q.

Proof. For any algebraic structure A with just one kind of objects, proj0A is one-
dimensional, generated by the equivalence class [x] of any single objectx. In particular,
proj0Q is one-dimensional and generated by [1]. LetI � QQ be the augmentation ideal
of Q. For any x 2 Q set �x := x � 1 2 I . Then I is generated by the �x's, and therefore
I m is generated by expressions involving the operation" applied to somem elements of
�Q := f �x : x 2 Qg and possibly some further elementsyi 2 Q. When regarded inI m =I m+1 ,
any yi in such a generating expression can be replaced by 1, for the di�erence would be the
same expression withyi replaced by �yi , and this is now a member ofI m+1 . But for any
element z 2 I we havez" 1 = z and 1"z = 0, so all the 1's can be eliminated from the
expressions generatingI m . Thus proj> 0Q is generated by �Q and hence by proj1Q.

Let � : QQ ! QQ 
 QQ be the linear extension of the operationx 7! x 
 x de�ned on
x 2 Q, and extend" to a binary operator " 2 : (QQ 
 QQ) 
 (QQ 
 QQ) ! QQ 
 QQ by
using " twice, to pair the �rst and third tensor factors and then to pair the second and the
fourth tensor factors. With this language in place, the self-distributivity axiom becomes the
following linear statement, which holds for everyx; y; z 2 QQ:

(x" y)" z = " � " 2(x 
 y 
 � z): (30)

Clearly, we need to understand � better. By direct computation, if x 2 Q then �� x =
�x 
 1 + 1 
 �x + �x 
 �x. We claim that in general, if z is a generating expression ofI m (that
is, a formula made ofm elements of �Q and m � 1 applications of" ), then

� z = z 
 1 + 1 
 z +
X

z0
i 
 z00

i ; with
X

z0
i 
 z00

i 2
X

m 0+ m 00= m +1 ;
m 0;m 00> 0

I m0

 I m00

: (31)

31This can alternatively be stated as \there exists a second binary operation " � 1 so that 8x; x =
(x" y)" � 1y = ( x" � 1y)" y", so this axiom can still be phrased within the language of \algebraic structures".
Yet note that below we do not use this axiom at all.

32A Leibniz algebra is a Lie algebra without anticommutativity, as de�ned by Loday in [Lod].
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Indeed, for the generators ofI 1 this had just been shown, and ifz = z1" z2 is a generator
of I m , with z1 and z2 generators ofI m1 and I m2 with 1 � m1; m2 < m and m1 + m2 = m,
then (using w" 1 = w and 1" w = 0 for w 2 I ),

� z = �( z1" z2) = (� z1)" 2(� z2)

= ( z1 
 1 + 1 
 z1 +
X

z0
1j 
 z00

1j )" 2(z2 
 1 + 1 
 z2 +
X

z0
2k 
 z00

2k)

= ( z1" z2) 
 1 + 1 
 (z1" z2)

+
X

j

 

(z0
1j " z2) 
 z00

1j + z0
1j 
 (z00

1j " z2) +
X

k

(z0
1j " z0

2k) 
 (z00
1j " z00

2k )

!

;

and it is easy to see that the last line agrees with (31).
We can now combine Equations (30) and (31) to get that for any x; y; z 2 QQ,

(x" y)" z = ( x" z)" y + x" (y"z) +
X

(x" z0
i )" (y"z00

i ):

If x 2 I m1 , y 2 I m2 , and z 2 I m3 , then by (31) the last term above is in I m1 + m2+ m3+1 ,
and so the above identity becomes the Jacobi identity (x" y)" z = ( x" z)" y + x" (y" z) in
projm1+ m2+ m3

Q.
Note that in the above proof neither axiom (1) nor axiom (2) of De�nition 4.2 was used.

Exercise 4.4. Show that axiom (1) implies the antisymmetry of" on I 1.

4.3. Expansions and Homomorphic Expansions. We start with the de�nition. Given
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an algebraic structureO let �l O denote the �ltered structure of linear combinations of
objects in O (respecting kinds), �ltered by the powers (I m ) of the augmentation idealI .
Recall also that any graded spaceG =

L
m Gm is automatically �ltered, by

� L
n� m Gn

� 1

m=0
.

De�nition 4.5. An \expansion" Z for O is a mapZ : O ! proj O that preserves the kinds
of objects and whose linear extension (also calledZ) to �l O respects the �ltration of both
sides, and for which (grZ ) : (gr �l O = proj O) ! (gr proj O = proj O) is the identity map
of proj O.

In practical terms, this is equivalent to saying thatZ is a map O ! proj O whose re-
striction to I m vanishes in degrees less thanm (in proj O) and whose degreem piece is the
projection I m ! I m =I m+1 .

We come now to what is perhaps the most crucial de�nition in this paper.

De�nition 4.6. A \homomorphic expansion" is an expansion which also commutes with all
the algebraic operations de�ned on the algebraic structureO.
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Why Bother with Homomorphic Expansions? Primarily, for two reasons:
� Often times projO is simpler to work with than O; for one, it is graded and so it allows

for �nite \degree by degree" computations, whereas often times, such as in many
topological examples, anything inO is inherently in�nite. Thus it can be bene�cial
to translate questions aboutO to questions about projO. A simplistic example
would be, \is some elementa 2 O the square (relative to some �xed operation) of an
elementb 2 O ?". Well, if Z is a homomorphic expansion and by a �nite computation
it can be shown thatZ (a) is not a square already in degree 7 in projO, then we've
given a conclusive negative answer to the example question. Some less simplistic and
more relevant examples appear in [BN8].
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� Often times projO is \�nitely presented", meaning that it is generated by some
�nitely many elements g1; : : : ; gk 2 O , subject to some relationsR1 : : : Rn that can
be written in terms of g1; : : : ; gk and the operations ofO. In this case, �nding a
homomorphic expansionZ is essentially equivalent to guessing the values ofZ on
g1; : : : ; gk , in such a manner that these valuesZ(g1); : : : ; Z(gk) would satisfy the
proj O versions of the relationsR1 : : : Rn . So �nding Z amounts to solving equations
in graded spaces. It is often the case (as will be demonstrated in this paper; see
also [BN3, BN6]) that these equations are very interesting for their own algebraic
sake, and that viewing such equations as arising from an attempt tosolve a problem
about O sheds further light on their meaning.

In practise, often times the �rst di�culty in searching for an expansion (or a homomorphic
expansion)Z : O ! proj O is that its would-be target space projO is hard to identify. It
is typically easy to make a suggestionA for what proj O could be. It is typically easy to
come up with a reasonable generating setDm for I m (keep some knot theoretic examples in
mind, or the case of quandles as in Proposition4.3). It is a bit harder but not exceedingly
di�cult to discover some relations R satis�ed by the elements of the image ofD in I m =I m+1

(4T,
�!
4T, and more in knot theory, the Jacobi relation in Proposition4.3). Thus we set

A := D=R; but it is often very hard to be sure that we found everything thatought to go in
R; so perhaps our suggestionA is still too big? Finding 4T, or Jacobi in Proposition4.3was
actually not that easy. Perhaps we missed some further relations that are hiding in proj Q,
for example?

The notion of anA-expansion, de�ned below, solves two problems are once. Once we �nd
an A-expansion we know that we've identi�ed projO correctly, and we automatically get
what we really wanted, a (projO)-valued expansion.

A

�
��

O

ZA

;;xxxxxxxxxx

Z
//proj O

gr ZA

OO
De�nition 4.7. A \candidate projectivization" for an algebraic struc-
ture O is a graded structureA with the same operations asO along
with a homomorphic surjective graded map� : A ! proj O. An \ A -
expansion" is a kind and �ltration respecting map ZA : O ! A for
which (gr ZA ) � � : A ! A is the identity. There's no need to de�ne
\homomorphic A -expansions".

Proposition 4.8. If A is a candidate projectivization ofO and ZA : O ! A is a homomor-
phic A -expansion, then� : A ! proj O is an isomorphism andZ := � � ZA is a homomorphic
expansion. (Often in this case,A is identi�ed with proj O and ZA is identi�ed with Z ).

Proof. � is surjective by birth. Since (grZA ) � � is the identity, � it is also injective and
hence it is an isomorphism. The rest is immediate. �

4.4. Circuit Algebras. \Circuit algebras" are so common and everyday, and they make
such a useful language (de�nitely for the purposes of this paper,but also elsewhere), we
�nd it hard to believe they haven't made it into the standard mathematical vocabulary33.
People familiar with planar algebras [Jon] may note that circuit algebras are just the same
as planar algebras, except with the planarity requirement droppedfrom the \connection
diagrams" (and all colourings are dropped as well). For the rest, we'll start with an image
and then move on to the dry de�nition.

33Or have they, and we've been looking the wrong way?
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Figure 20. The J-K 
ip 
op, a very basic memory cell, is an electronic
circuit that can be realized using 9 components | two triple-input \and"
gates, two standard \nor" gates, and 5 \junctions" in which 3 wires
connect (many engineers would not consider the junctions to be real
components, but we do). Note that the \crossing" in the middleof the
�gure is merely a projection artifact and does not indicate an electrical
connection, and that electronically speaking, we need not specify how this crossing may be
implemented inR3. The J-K 
ip 
op has 5 external connections (labelled J, K, CP,Q, and
Q') and hence in the circuit algebra of computer parts, it lives in C5. In the directed circuit
algebra of computer parts it would be inC3;2 as it has 3 incoming wires (J, CP, and K) and
two outgoing wires (Q and Q').

Figure 21. The circuit algebra product of 4 big black
components and 1 small black component carried out using
a green wiring diagram, is an even bigger component that
has many golden connections (at bottom). When plugged
into a yet bigger circuit, the CPU board of a laptop, our
circuit functions as 4,294,967,296 binary memory cells.

Image 4.9. Electronic circuits are made of \components" that can be wired together in many
ways. On a logical level, we only care to know which pin of which component is connected
with which other pin of the same or other component. On a logical level, we don't really need
to know how the wires between those pins are embedded in space (see Figures20 and 21).
\Printed Circuit Boards" (PCBs) are operators that make smaller components (\chips") into
bigger ones (\circuits") | logically speaking, a PCB is simply a set of \wir ing instructions",
telling us which pins on which components are made to connect (and again, we never care
precisely how the wires are routed provided they reach their intended destinations, and ever
since the invention of multi-layered PCBs, all conceivable topologies for wiring are actually
realizable). PCBs can be composed (think \plugging a graphics card onto a motherboard");
the result of a composition of PCBs, logically speaking, is simply a largerPCB which takes
a larger number of components as inputs and outputs a larger circuit. Finally, it doesn't
matter if several PCB are connected together and then the chipsare placed on them, or
if the chips are placed �rst and the PCBs are connected later; the resulting overall circuit
remains the same.

We start process of drying (formalizing) this image by de�ning \wiring diagrams", the
abstract analogs of printed circuit boards. LetN denote the set of natural numbers including
0, and for n 2 N let n denote some �xed set withn elements, sayf 1; 2; : : : ; ng.

De�nition 4.10. Let k; n; n1; : : : ; nk 2 N be natural numbers. A \wiring diagram" D
with inputs n1; : : : nk and outputs n is an unoriented compact 1-manifold whose boundary
is n q n1 q � � � q nk , regarded up to homeomorphism. In strictly combinatorial terms,
it is a pairing of the elements of the setn q n1 q � � � q nk along with a single further
natural number that counts closed circles. IfD1; : : : ; Dm are wiring diagrams with inputs
n11; : : : ; n1k1 ; : : : ; nm1; : : : ; nmk m and outputs n1; : : : ; nm and D is a wiring diagram with
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inputs n1; : : : ; nm and outputsn, there is an obvious \composition"D(D1; : : : ; Dm ) (obtained
by gluing the corresponding 1-manifolds, and also describable in completely combinatorial
terms) which is a wiring diagram with inputs (nij )1� i � k j ;1� j � m and outputs n (note that
closed circles may be created inD(D1; : : : ; Dm ) even if none existed inD and in D1; : : : ; Dm ).

A circuit algebra is an algebraic structure (in the sense of Section4.2) whose operations
are parametrized by wiring diagrams. Here's a formal de�nition:

De�nition 4.11. A circuit algebra consists of the following data:

� For every natural numbern � 0 a set (or aZ-module) Cn \of circuits with n legs".
� For any wiring diagramD with inputs n1; : : : nk and outputsn, an operation (denoted

by the same letter)D : Cn1 � � � � � Cnk ! Cn (or linear D : Cn1 
 � � � 
 Cnk ! Cn if
we work with Z-modules).

We insist that the obvious \identity" wiring diagrams with n inputs and n outputs act as
the identity of Cn , and that the actions of wiring diagrams be compatible in the obvious
sense with the composition operation on wiring diagrams.

A silly but useful example of a circuit algebra is the circuit algebraS of empty circuits,
or in our context, of \skeletons". The circuits with n legs forS are wiring diagrams withn
outputs and no inputs; namely, they are 1-manifolds with boundaryn (so n must be even).

More generally one may pick some collection of \basic components" (perhaps some logic
gates and junctions for electronic circuits as in Figure20) and speak of the \free circuit
algebra" generated by these components. Even more generally wecan speak of circuit
algebras given in terms of \generators and relations"; in the case of electronics, our relations
may include the likes of De Morgan's law: (p_ q) = ( : p) ^ (: q) and the laws governing the
placement of resistors in parallel or in series. We feel there is no need to present the details
here, yet many examples of circuit algebras given in terms of generators and relations appear
in this paper, starting with the next section. We will use the notationC = CA hG j R i to
denote the circuit algebra generated by a collection of elementsG subject to some collection
R of relations.

People familiar with electric circuits know very well that connectors sometimes come in
\male" and \female" versions, and that you can't plug a USB cable intoa headphone jack
and expect your system to cooperate. Thus one may de�ne \directed circuit algebras"
in which the wiring diagrams are oriented, the circuit setsCn get replaced byCn1n2 for
\circuits with n1 incoming wires andn2 outgoing wires" and only orientation preserving
connections are ever allowed. Likewise there is a \coloured" versionof everything, in which
the wires may be coloured by the elements of some given setX which may include among its
members the elements \USB" and \audio" and in which connections are allowed only if the
colour coding is respected. We will not give formal de�nitions of directed and/or coloured
circuit algebras here, yet we will allow ourselves to freely use these notions. Likewise for the
obvious analogues of the skeletons algebraS and for algebras given in terms of generators
and relations.

Note that there is an obvious notion of \a morphism between two circuit algebras" and
that circuit algebras (directed or not, coloured or not) form a category. We feel that a precise
de�nition is not needed. Yet a lovely example is the \implementation morphism" of logic
circuits in the style of Figure20 into more basic circuits made of transistors and resistors.
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Perhaps the prime mathematical example of a circuit algebra is tensor algebra. If t1 is
an element (a \circuit") in some tensor product of vector spaces and their duals, and t2 is
the same except in a possibly di�erent tensor product of vector spaces and their duals, then
once an appropriate pairingD (a \wiring diagram") of the relevant vector spaces is chosen,
t1 and t2 can be contracted (\wired together") to make a new tensorD(t1; t2). The pairing
D must pair a vector space with its own dual, and so this circuit algebra iscoloured by the
set of vector spaces involved, and directed, by declaring (say) that some vector spaces are of
one gender and their duals are of the other. We have in fact encountered this circuit algebra
already, in Section3.6.

Let G be a group. AG-graded algebraA is a collection f Ag : g 2 Gg of vector spaces,
along with products Ag 
 Ah ! Agh that induce an overall structure of an algebra on
A :=

L
g2 G Ag. In a similar vein, we de�ne the notion of anS-graded circuit algebra:

De�nition 4.12. An S-graded circuit algebra, or a \circuit algebra with skeletons", is an
algebraic structureC with spacesC� , one for each element� of the circuit algebra of skeletons
S, along with composition operationsD � 1 ;:::;� k : C� 1 � � � � � C� k ! C� , de�ned wheneverD is
a wiring diagram and� = D(� 1; : : : ; � k), so that with the obvious induced structure,

`
� C�

is a circuit algebra. A similar de�nition can be made if/when the skeletons are taken to be
directed or coloured.

Loosely speaking, a circuit algebra with skeletons is a circuit algebra inwhich every element
T has a well-de�ned skeleton&(T) 2 S. Yet note that as an algebraic structure a circuit
algebra with skeletons has more \spaces" than an ordinary circuit algebra, for its spaces are
enumerated by skeleta and not merely by integers. The prime examples for circuit algebras
with skeletons appear in the next section.
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5. w-Tangles

Section Summary. In Sec.5.1 we introduce v-tangles and w-tangles, the obvious
v- and w- counterparts of the standard knot-theoretic notion of \tangles", and
brie
y discuss their �nite type invariants and their associ ated spaces of \arrow
diagrams", A v(" n ) and A w(" n ). We then construct a homomorphic expansionZ ,
or a \well-behaved" universal �nite type invariant for w-ta ngles. Once again, the
only algebraic tool we need to use is exp(a) :=

P
an=n!, and indeed, Sec.5.1 is but

a routine extension of parts of Section3. We break away in Sec.5.2 and show that
A w(" n ) �= U(an � tdern n trn ), where an is an Abelian algebra of rankn and where
tdern and trn , two of the primary spaces used by Alekseev and Torossian [AT ],
have simple descriptions in terms of words and free Lie algebras. We also show
that some functionals studied in [AT ], div and j , have a natural interpretation in
our language. In 5.3 we discuss a subclass of w-tangles called \special" w-tangles,
and relate them by similar means to Alekseev and Torossian'ssdern and to \tree
level" ordinary Vassiliev theory. Some conventions are described in Sec.5.4 and
the uniqueness ofZ is studied in Sec.5.5.

5.1. v-Tangles and w-Tangles. With The (surprisingly pleasant) task of de�ning circuit

wClip
120510

starts

algebras completed in Section4.4, the de�nition of v-tangles and w-tangles is simple.

De�nition 5.1. The (S-graded) circuit algebravT of v-tangles is theS-graded directed
circuit algebra generated by two generators inC2;2 called the \positive crossing" and the
\negative crossing", modulo the usual R1s, R2 and R3 moves as depicted in Figure6 (these
relations clearly make sense as circuit algebra relations between ourtwo generators), with the
obvious meaning for their skeleta. The circuit algebrawT of w-tangles is the same, except
we also mod out by the OC relation of Figure6 (note that each side in that relation involves
only two generators, with the apparent third crossing being merelya projection artifact). In
fewer words,vT := ,= =,=,CA , and wT := =vT .

wClip
120502

ends

Remark 5.2. One may also de�ne v-tangles and w-tangles using the language of
planar algebras, except then another generator is required (the\virtual crossing")
and also a few further relations (VR1{VR3, M), and some of the operations (non-
planar wirings) become less elegant to de�ne.

Our next task is to study the projectivizations projvT and projwT of vT and wT. Again,
the language of circuit algebras makes it exceedingly simple.

� �
De�nition 5.3. The (S-graded) circuit algebraDv = Dw of
arrow diagrams is the graded andS-graded directed circuit
algebra generated by a single degree 1 generatora in C2;2

called \the arrow" as shown on the right, with the obvious
meaning for its skeleton. There are morphisms� : Dv ! vT and � : Dw ! wT de�ned
by mapping the arrow to an overcrossing minus a no-crossing. (On the right some virtual
crossings were added to make the skeleta match). LetA v be Dv=6T, let A w := A v=T C =
Dw=(

�!
4T ; T C), and let A sv := A v=RI and A sw := A w=RI as usual, with RI, 6T,

�!
4T, and T C

being the same relations as in Figures8 and 9 (allowing skeleta parts that are not explicitly
connected to really lie on separate skeleton components).
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Proposition 5.4. The maps� above induce surjections� : A sv ! proj vT and � : A sw !
proj wT. Hence in the language of De�nition4.7, A sv andA sw are candidate projectivizations
of vT and wT.

Proof. Proving that � is well-de�ned amounts to checking directly that the RI and 6T
or RI,

�!
4T and TC relations are in the kernel of� . (Just like in the �nite type theory of

virtual knots and braids.) Thanks to the circuit algebra structure, it is enough to verify the
surjectivity of � in degree 1. We leave this as an exercise for the reader. �

We do not know if A sv is indeed the projectivizations ofvT (also see [BHLR]). Yet in the
w case, the picture is simple:

Theorem 5.5. The assignment! 7! ea (with ea denoting the exponential of a single arrow
from the over strand to the under strand) extends to a well de�ned Z : wT ! A sw. The
resulting mapZ is a homomorphicA sw-expansion, and in particular,A sw �= proj wT and Z
is a homomorphic expansion.

Proof. There is nothing new here.Z is satis�es the Reidemeister moves for the same
reasons as in Theorem2.15and Theorem3.11and as there it also satis�es the universality
property. The rest follows from Proposition4.8. �

In a similar spirit to De�nition 3.13, one may de�ne a \w-Jacobi diagram" (often shorts
to \arrow diagram") on an arbitrary skeleton. Denote the circuit algebra of formal linear
combinations of arrow diagrams modulo

���!
ST U1,

���!
ST U2, and TC relations by A wt . We have

the following bracket-rise theorem:

Theorem 5.6. The obvious inclusion of diagrams induces a circuit algebraisomorphism
A w �= A wt . Furthermore, the

�!
AS and

���!
IHX relations of Figure 12 hold in A wt . Similarly,

A sw �= A swt , with the expected de�nition forA swt .

Proof. The proof of Theorem3.15can be repeated verbatim. Note that that proof does
not make use of the connectivity of the skeleton. �

Given the above theorem, we no longer keep the distinction betweenA w and A wt and
betweenA sw and A swt .

Remark 5.7. Note that if T is an arbitrary w tangle, then the equality on the left side of the
�gure below always holds, while the one on the right generally doesn't:

,
T T

= .
T T

6=yet (32)

The arrow diagram version of this statement is that ifD is an arbitrary arrow diagram inA w, wClip
120510

shows a
direct proof

of (33)

then the left side equality in the �gure below always holds (we will sometimes refer to this
as the \head-invariance" of arrow diagrams), while the right side equality (\tail-invariance")
generally fails.

= 0;
D

+
6= 0:

D

+
yet (33)
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x1

x1

x2

x1

x1

x3

apply
���!
IHX here �rst

Figure 22. A wheel of trees can be reduced to a combination of wheels, and a wheel of trees
with a Little Prince.

We leave it to the reader to ascertain that Equation (32) implies Equation (33). There
is also a direct proof of Equation (33) which we also leave to the reader, though see an
analogous statement and proof in [BN3, Lemma 3.4]. Finally note that a restricted version
of tail-invariance does hold | see Section5.3.

5.2. A w(" n) and the Alekseev-Torossian Spaces.

De�nition 5.8. Let vT(" n ) (likewise wT(" n )) be the set of v-tangles (w-tangles) whose
skeleton is the disjoint union ofn directed lines. Likewise letA v(" n ) be the part of A v

in which the skeleton is the disjoint union ofn directed lines, with similar de�nitions for
A w(" n ), A sv(" n ), and A sw(" n ).

In the same manner as in the case of knots (Theorem3.16), A w(" n) is a bi-algebra iso-
morphic (via a diagrammatic PBW theorem, applied independently on each component of
the skeleton) to a spaceBw

n of unitrivalent diagrams with symmetrized ends coloured with
colours in somen-element set (sayf x1; : : : ; xng), modulo

�!
AS and

���!
IHX . Note that the RI

relation becomesw1 = 0, where w1 denotes the 1-wheel of any colour.
The primitives Pw

n of Bw
n are the connected diagrams (and hence the primitives ofA w(" n )

are the diagrams that remain connected even when the skeleton is removed). Given the \two
in one out" rule for internal vertices, the diagrams inPw

n can only be trees or wheels (\wheels
of trees" can be reduced to simple wheels by repeatedly using

���!
IHX , as in Figure22).

Thus as a vector spacePw
n is easy to identify. It is a direct sumPw

n = htreesi � h wheelsi .
The wheels part is simply the graded vector space generated by all cyclic words in the letters
x1; : : : ; xn . Alekseev and Torossian [AT ] denote the space of cyclic words bytr n , and so shall
we. The trees inPw

n have leafs colouredx1; : : : ; xn . Modulo
�!
AS and

���!
IHX , they correspond

to elements of the free Lie algebralien on the generatorsx1; : : : ; xn . But the root of each such
tree also carries a label inf x1; : : : ; xng, hence there aren types of such trees as separated by
their roots, and soPw

n is isomorphic to the direct sumtr n �
L n

i =1 lien . With Bsw
n and P sw

n
de�ned in the analogous manner, we can also conclude thatP sw

n
�= tr n =(deg 1)�

L n
i =1 lien .

By the Milnor-Moore theorem [MM], A w(" n ) is isomorphic to the universal enveloping
algebraU(Pw

n ), with Pw
n identi�ed as the subspacePw(" n ) of primitives of A w(" n ) using the

PBW symmetrization map � : Bw
n ! A w(" n). Thus in order to understand A w(" n ) as an

associative algebra, it is enough to understand the Lie algebra structure induced onPw
n via

the commutator bracket ofA w(" n ).
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We now wish to identify Pw(" n ) as the Lie algebratr n o (an � tdern ), which in itself is a
combination of the Lie algebrasan , tdern and tr n studied by Alekseev and Torossian [AT ].
Here are the relevant de�nitions:

De�nition 5.9. Let an denote the vector space with basisx1; : : : ; xn , also regarded as an
Abelian Lie algebra of dimensionn. As before, letlien = lie(an ) denote the free Lie algebra
on n generators, now identi�ed as the basis elements ofan . Let dern = der(lien ) be the
(graded) Lie algebra of derivations acting onlien , and let

tdern = f D 2 dern : 8i 9ai s.t. D(x i ) = [ x i ; ai ]g

denote the subalgebra of \tangential derivations". A tangentialderivation D is determined
by the ai 's for which D(x i ) = [ x i ; ai ], and determines them up to the ambiguityai 7! ai + � i x i ,
where the� i 's are scalars. Thus as vector spaces,an � tdern �=

L n
i =1 lien .

De�nition 5.10. Let Assn = U(lien ) be the free associative algebra \of words", and letAss+
n

be the degree> 0 part of Assn . As before, we lettr n = Ass+
n =(x i 1 x i 2 � � � x i m = x i 2 � � � x i m x i 1 )

denote \cyclic words" or \(coloured) wheels". Assn , Ass+
n , and tr n are tdern -modules and

there is an obvious equivariant \trace" tr : Ass+n ! tr n .
wClip
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ends

Proposition 5.11. There is a split short exact sequence of Lie algebras

wClip
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starts

0 �! tr n
��! P w(" n ) ��! an � tdern �! 0:

Proof. The inclusion � is de�ned the natural way: tr n is spanned by coloured \
oating"
wheels, and such a wheel is mapped intoPw(" n) by attaching its ends to their assigned
strands in arbitrary order. Note that this is well-de�ned: wheels have only tails, and tails
commute.

As vector spaces, the statement is already proven:Pw(" n ) is generated by trees and wheels
(with the all arrow endings �xed on n strands). When factoring out by the wheels, only trees
remain. Trees have one head and many tails. All the tails commute witheach other, and
commuting a tail with a head on a strand costs a wheel (by

���!
ST U), thus in the quotient the

head also commutes with the tails. Therefore, the quotient is the space of 
oating (coloured)
trees, which we have previously identi�ed with

L n
i =1 lien

�= an � tdern .
It remains to show that the maps� and � are Lie algebra maps as well. For� this is

easy: the Lie algebratr n is commutative, and is mapped to the commutative (due toT C)
subalgebra ofPw(" n ) generated by wheels.

To show that � is a map of Lie algebras we give two proofs, �rst a \hands-on" one, then
a \conceptual" one.

Hands-on argument. an is the image of single arrows on one strand. These commute
with everything in Pw(" n), and so doesan in the direct sum an � tdern .

It remains to show that the bracket oftdern works the same way as commuting trees in
Pw(" n ). Let D and D 0 be elements oftdern represented by (a1; : : : ; an ) and (a0

1; : : : ; a0
n ),

meaning that D(x i ) = [ x i ; ai ] and D 0(x i ) = [ x i ; a0
i ] for i = 1; : : : ; n. Let us compute the

commutator of these elements:

[D; D 0](x i ) = ( DD 0 � D 0D)(x i ) = D[x i ; a0
i ] � D 0[x i ; ai ] =

= [[ x i ; ai ]; a0
i ] + [ x i ; Da0

i ] � [[x i ; a0
i ]; ai ] � [x i ; D 0ai ] = [ x i ; Da0

i � D 0ai + [ ai ; a0
i ]]:
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Now let T and T0 be two trees in Pw(" n)=tr n , their heads on strandsi and j , respec-
tively ( i may or may not equalj ). Let us denote byai (resp. a0

j ) the element in lien given
by forming the appropriate commutator of the colours of the tails of T's (resp. T0). In
tdern , let D = � (T) and D 0 = � (T0). D and D 0 are determined by (0; : : : ; ai ; : : : ; 0), and
(0; : : : ; a0

j ; : : : 0), respectively. (In each case, thei -th or the j -th is the only non-zero compo-
nent.) The commutator of these elements is given by [D; D 0](x i ) = [ Da0

i � D 0ai + [ ai ; a0
i ]; x i ],

and [D; D 0](x j ) = [ Da0
j � D 0aj + [ aj ; a0

j ]; x j ]: Note that unlessi = j , aj = a0
i = 0.

In Pw(" n )=trn , all tails commute, as well as a head of a tree with its own tails. Therefore,
commuting two trees only incurs a cost when commuting a head of onetree over the tails
of the other on the same strand, and the two heads over each other, if they are on the same
strand.

If i 6= j , then commuting the head ofT over the tails of T0 by
���!
ST U costs a sum of trees

given by Da0
j , with heads on strandj , while moving the head ofT0 over the tails of T costs

exactly � D 0ai , with heads on strandi , as needed.
If i = j , then everything happens on strandi , and the cost is (Da0

i � D 0ai + [ ai ; a0
i ]), where

the last term happens when the two heads cross each other.
Conceptual argument. There is an action ofPw(" n) on lien , as follows: introduce and

extra strand on the right. An element L of lien corresponds to a tree with its head on
the extra strand. Its commutator with an element ofPw(" n) (considered as an element of
Pw(" n+1 ) by the obvious inclusion) is again a tree with head on strand (n + 1), de�ned to
be the result of the action.

SinceL has only tails on the �rst n strands, elements oftr n , which also only have tails, act
trivially. So do single (local) arrows on one strand (an ). It remains to show that trees act as
tdern , and it is enough to check this on the generators oflien (as the Leibniz rule is obviously
satis�ed). The generators oflien are arrows pointing from one of the �rst n strands, say
strand i , to strand (n + 1). A tree with head on strand i acts on this element, according
���!
ST U, by forming the commutator, which is exactly the action oftdern .

To identify Pw(" n ) as the semidirect producttr n o (an � tdern ), it remains to show that
the short exact sequence of the Proposition splits. This is indeed the case, although not
canonically. Two |of the many| splitting maps u; l : tdern � an ! P w(" n ) are described
as follows: tdern � an is identi�ed with

L n
i =1 lien , which in turn is identi�ed with 
oating

(coloured) trees. A map toPw(" n ) can be given by specifying how to place the legs on their
speci�ed strands. A tree may have many tails but has only one head,and due to T C, only
the positioning of the head matters. Letu (for upper) be the map placing the head of each
tree above all its tails on the same strand, whilel (for lower) places the head below all the
tails. It is obvious that these are both Lie algebra maps and that� � u and � � l are both
the identity of tdern � an . This makesPw(" n ) a semidirect product. �

Remark 5.12. Let tr s
n denotetr n mod out by its degree one part (one-wheels). Since the RI

relation is in the kernel of� , there is a similar split exact sequence

0 ! tr s
n

�! P sw �! an � tdern :

De�nition 5.13. For any D 2 tdern , (l � u)D is in the kernel of� , therefore is in the image
of �, so � � 1(l � u)D makes sense. We call this elementdivD.
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De�nition 5.14. In [AT ] div is de�ned as follows: div(a1; : : : ; an ) :=
P n

k=1 tr(( @kak)xk),
where@k picks out the words of a sum which end inxk and deletes their last letterxk , and
deletes all other words (the ones which do not end inxk ).

Proposition 5.15. The div of De�nition 5.13 and the div of[AT ] are the same.

...

x i 2

x i 1

x i k

x i k � 1

Proof. It is enough to verify the claim for the linear generators oftdern ,
namely, elements of the form (0; : : : ; aj ; : : : ; 0), whereaj 2 lien or equivalently,
single (
oating, coloured) trees, where the colour of the head isj . By the
Jacobi identity, each aj can be written in a form aj = [ x i 1 ; [x i 2 ; [: : : ; xi k ] : : :].
Equivalently, by

���!
IHX , each tree has a standard \comb" form, as shown on the

picture on the right.
For an associative wordY = y1y2 : : : yl 2 Ass+

n , we introduce the notation
[Y] := [ y1; [y2; [: : : ; yl ] : : :]. The div of [AT ] picks out the words that end inx j , forgets the
rest, and considers these as cyclic words. Therefore, by interpreting the Lie brackets as
commutators, one can easily check that foraj written as above,

div((0; : : : ; aj ; : : : ; 0)) =
X

� : i � = x j

� x i 1 : : : xi � � 1 [x i � +1 : : : xi k ]x j : (34)

j

� =

jj

In De�nition 5.13, div of a tree is the di�erence be-
tween attaching its head on the appropriate strand
(here, strand j ) below all of its tails and above. As
shown in the �gure on the right, moving the head
across each of the tails on strandj requires an

���!
ST U re-

lation, which \costs" a wheel (of trees, which is equiv-
alent to a sum of honest wheels). Namely, the head gets connectedto the tail in question.
So div of the tree represented byaj is given by

P
� : x i � = j \connect the head to the� leaf".

This in turn gets mapped to the formula above via the correspondence between wheels and
cyclic words. �

wClip
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ends

wClip
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has extra
material on

the
relationship
of all this

with
di�erential
operators

� =

Remark 5.16. There is an action of tdern
on tr n as follows. Represent a cyclic word
w 2 tr n as a wheel inPw(" n ) via the map
�. Given an elementD 2 tdern , u(D), as
de�ned above, is a tree inPw(" n) whose
head is above all of its tails. We de�neD �
w := � � 1(u(D)�(w) � �(w)u(D)). Note that
u(D)�(w)� �(w)u(D) is in the image of�, i.e., a linear combination of wheels, for the following
reason. The wheel�(w) has only tails. As we commute the treeu(D) across the wheel, the
head of the tree is commuted across tails of the wheel on the same strand. Each time this
happens the cost, by the

���!
ST U relation, is a wheel with the tree attached to it, as shown on

the right, which in turn (by
���!
IHX relations, as Figure22 shows) is a sum of wheels. Once

the head of the tree has been moved to the top, the tails of the tree commute up for free by
T C. Note that the alternative de�nition, D � w := � � 1(l(D)�(w) � �(w)l(D)) is in fact equal
to the de�nition above.
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De�nition 5.17. In [AT ], the group TAut n is de�ned as exp(tdern ). Note that tdern is
positively graded, hence it integrates to a group. Note also that TAutn is the group of
\basis-conjugating" automorphisms oflien , i.e., for g 2 TAut n , and any x i , i = 1; : : : ; n
generator oflien , there exists an elementgi 2 exp(lien ) such that g(x i ) = g� 1

i x i gi .

The action of tdern on tr n lifts to an action of TAut n on tr n , by interpreting exponentials
formally, in other wordseD acts as

P 1
n=0

D n

n! . The lifted action is by conjugation: forw 2 tr n

and eD 2 TAut n , eD � w = � � 1(euD � (w)e� uD ).
Recall that in Section 5.1 of [AT ] Alekseev and Torossian construct a mapj : TAut n ! tr n

which is characterized by two properties: the cocycle property

j (gh) = j (g) + g � j (h); (35)

where in the second term multiplication byg denotes the action described above; and the
condition

d
ds

j (exp(sD)) js=0 = div( D): (36)

Now let us interpret j in our context.

De�nition 5.18. The adjoint map � : A w(" n ) ! A w(" n ) acts by \
ipping over diagrams
and negating arrow heads on the skeleton". In other words, for an arrow diagramD,

D � := ( � 1)# f tails on skeleton gS(D);

where S denotes the map which switches the orientation of the skeleton strands (i.e. 
ips
the diagram over), and multiplies by (� 1)#skeleton vertices .

Proposition 5.19. For D 2 tdern , de�ne a map J : TAut n ! exp(tr n ) by J (eD ) :=
euD (euD )� . Then

exp(j (eD )) = J (eD ):

Proof. Note that (euD )� = e� lD , due to \Tails Commute" and the fact that a tree has only
one head.

Let us check that logJ satis�es properties (35) and (36). Namely, with g = eD 1 and
h = eD 2 , and using that tr n is commutative, we need to show that

J (eD 1 eD 2 ) = J (eD 1 )
�
euD 1 � J (eD 2 )

�
; (37)

where � denotes the action oftdern on tr n ; and that
d
ds

J (esD )js=0 = div D: (38)

Indeed, with BCH(D1; D2) = log eD 1eD 2 being the standard Baker{Campbell{Hausdor�
formula,

J (eD 1 eD 2 ) = J (eBCH( D 1 ;D 2)) = eu(BCH( D 1 ;D 2)e� l (BCH( D 1 ;D 2) = eBCH( uD 1 ;uD 2)e� BCH( lD 1 ;lD 2)

= euD 1euD 2 e� lD 2 e� lD 1 = euD 1 (euD 2 e� lD 2 )e� uD 1 euD 1 elD 1 = ( euD 1 � J (D2))J (D1);

as needed.
As for condition (36), a direct computation of the derivative yields

d
ds

J (esD )js=0 = uD � lD = div D;

as desired. �
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5.3. The Relationship with u-Tangles. Let uT be the planar algebra of classical, or
\ usual" tangles. There is a mapa: uT ! wT of u-tangles into w-tangles: algebraically, it is
de�ned in the obvious way on the planar algebra generators ofuT. (It can also be interpreted
topologically as Satoh's tubing map, as in Section3.1.1, where a u-tangle is a tangle drawn
on a sphere. However, it is only conjectured that the circuit algebra presented here is a
Reidemeister theory for \tangled ribbon tubes inR4".) The map a induces a corresponding
map � : A u ! A sw, which maps an ordinary Jacobi diagram (i.e., unoriented chords with
internal trivalent vertices modulo the usualAS, IHX and ST U relations) to the sum of all
possible orientations of its chords (many of which are zero inA sw due to the \two in one
out" rule).

uT Z u
//

a
��

A u

�
��

wT Z w
//A sw

It is tempting to ask whether the square on the left commutes. Unfor-
tunately, this question hardly makes sense, as there is no canonical choice
for the dotted line in it. Similarly to the braid case in Section2.5.5, the
de�nition of the Kontsevich integral for u-tangles typically depends on vari-
ous choices of \parenthesizations". Choosing parenthesizations, this square

becomes commutative up to some �xed corrections. The details arein Proposition 6.15.
Yet already at this point we can recover something from the existence of the mapa: uT !

wT, namely an interpretation of the Alekseev-Torossian [AT ] space of special derivations,

sdern := f D 2 tdern : D(
nX

i =1

x i ) = 0 g:

Recall from Remark5.7 that in general it is not possible to slide a strand under an arbitrary
w-tangle. However, it is possible to slide strands freely under tanglesin the image ofa, and
thus by reasoning similar to the reasoning in Remark5.7, diagrams D in the image of �
respect \tail-invariance":

T D

+

+

D= )T = (39)

Let Pu(" n ) denote the primitives ofA u(" n), that is, Jacobi diagrams that remain connected
when the skeleton is removed. Remember thatPw(" n ) stands for the primitives ofA w(" n ).
Equation (39) readily implies that the image of the composition

Pu(" n) � //Pw(" n) � //an � tdern

is contained inan � sdern . Even better is true.

Theorem 5.20. The image of�� is preciselyan � sdern .

This theorem was �rst proven by Drinfel'd (Lemma after Proposition6.1 in [Dr3]), but
the proof we give here is due to Levine [Lev].
Proof. Let lied

n denote the degreed piece oflien . Let Vn be the vector space with basis
x1; x2; : : : ; xn . Note that

Vn 
 lied
n

�=
nM

i =1

lied
n

�= (tdern � an )d;
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wheretdern is graded by the number of tails of a tree, andan is contained in degree 1.
The bracket de�nes a map� : Vn 
 lied

n ! lied+1
n : for ai 2 lied

n where i = 1; : : : ; n, the
\tree" D = ( a1; a2; : : : ; an ) 2 (tdern � an )d is mapped to

� (D) =
nX

i =1

[x i ; ai ] = D

 
nX

i =1

x i

!

;

where the �rst equality is by the de�nition of tensor product and the bracket, and the second
is by the de�nition of the action of tdern on lien .

Sincean is contained in degree 1, by de�nitionsderdn = (ker � )d for d � 2. In degree 1,an

is obviously in the kernel, hence (ker� )1 = an � sder1n . So overall, ker� = an � sdern .
We want to study the image of the mapPu(" n ) ���! an � tdern . Under � , all connected

Jacobi diagrams that are not trees or wheels go to zero, and under � so do all wheels.
Furthermore, � maps trees that live onn strands to \
oating" trees with univalent vertices
coloured by the strand they used to end on. So for determining theimage, we may replace
Pu(" n ) by the spaceTn of connectedunoriented \
oating trees" (uni-trivalent graphs), the
ends (univalent vertices) of which are coloured by thef x i gi =1 ;::;n . We denote the degreed
piece ofTn , i.e., the space of trees withd+ 1 ends, byT d

n . Abusing notation, we shall denote
the map induced by�� on Tn by � : Tn ! an � tdern . Since choosing a \head" determines
the entire orientation of a tree by the two-in-one-out rule,� maps a tree inT d

n to the sum
of d + 1 ways of choosing one of the ends to be the \head".

We want to show that ker� = im � . This is equivalent to saying that �� is injective, where
�� : Vn 
 lien =im � ! lien is map induced by� on the quotient by im� .

x i

(0; :::; ai ; :::; 0)
�
7!

7!

x i

[x i ; ai ]The degreed piece ofVn 
 lien , in the pictorial description, is
generated by 
oating trees withd tails and one head, all coloured
by x i , i = 1; : : : ; n. This is mapped tolied+1

n , which is isomorphic
to the space of 
oating trees withd+ 1 tails and one head, where
only the tails are coloured by thex i . The map � acts as shown
on the picture on the right.

+

�We show that �� is injective by exhibiting a map� : lied+1
n !

Vn 
 lied
n =im � so that � �� = I . � is de�ned as follows: given a

tree with one head andd + 1 tails � acts by deleting the head
and the arc connecting it to the rest of the tree and summing over all ways of choosing a new
head from one of the tails on the left half of the tree relative to the original placement of
the head (see the picture on the right). As long as we show that� is well-de�ned, it follows
from the de�nition and the pictorial description of � that � �� = I .

For well-de�nedness we need to check that the images of
�!
AS and

���!
IHX relations under�

are in the image of� . This we do in the picture below. In both cases it is enough to check
the case when the \head" of the relation is the head of the tree itself, as otherwise an

�!
AS or

���!
IHX relation in the domain is mapped to an

�!
AS or

���!
IHX relation, thus zero, in the image.

+
�

+ + ++ 2 im �
�!
AS :
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CB CB CB

A A A

CB

A

CB CB

A A

� + +� +
CB CB

A A

� =�7!

= �
CB

A

CB CB

A A

� � 2 im �

���!
IHX :

In the
���!
IHX picture, in higher degreesA, B and C may denote an entire tree. In this case,

the arrow at A (for example) means the sum of all head choices from the treeA. �

Comment 5.21. In view of the relation between the right half of Equation (39) and the
special derivationssder, it makes sense to call w-tangles that satisfy the condition in the left
half of Equation (39) \special". The a images of u-tangles are thus special. We do not know
if the global version of Theorem5.20 holds true. Namely, we do not know whether every
special w-tangle is thea-image of a u-tangle.

5.4. The local topology of w-tangles. So far throughout this section we have presented
w-tangles as a Reidemeister theory: a circuit algebra given by generators and relations.
Note that Satoh's tubing map (see Sections2.2.2 and 3.1.1) does extend to w-tangles in
the obvious way, although it is not known whether it is an isomorphism between the circuit
algebra described here and tangled tubes inR4. Nonetheless, this intuition explains the
local relations (Reidemeister moves). The purpose of this subsection is to explain the local
topology of crossings and understand orientations, signs and orientation reversals.

1D

2D

The tubes we consider are endowed with two orientations, we will callthese
the 1- and 2-dimensional orientations. The one dimensional orientation is the
direction of the tube as a \strand" of the tangle. In other words,each tube has a
\core" 34: a distinguished line along the tube, which is oriented as a 1-dimensional
manifold. Furthermore, the tube as a 2-dimensional surface is oriented as given
by the tubing map. An example is shown on the right.

Note that a tube in R4 has a \�lling": a solid (3-dimensional) cylinder embedded inR4,
with boundary the tube, and the 2D orientation of the tube inducesan orientation of its �lling
as a 3-dimensional manifold. A (non-virtual) crossing is when the core of one tube intersects
the �lling of another transversely. Due to the complementary dimensions, the intersection is
a single point, and the 1D orientation of the core along with the 3D orientation of the �lling
it passes through determines an orientation of the ambient space.We say that the crossing
is positive if this agrees with the standard orientation ofR4, and negative otherwise. Hence,
there are four types of crossings, given by whether the core of tube A intersects the �lling
of B or vice versa, and two possible signs in each case.

As discussed in Section2.2, braided tubes in R4 can be thought of as movies of 
ying
rings in R3, and in particular a crossing represents a ring 
ying through another ring. In
this interpretation, the 1D orientation of the tube is given by time moving forward. The
2D and 1D orientations of the tube together induce an orientation of the 
ying ring which
is a cross-section of the tube at each moment. Hence, saying \below" and \above" the ring
makes sense, and as mentioned in Exercise2.7 there are four types of crossings: ring A 
ies
through ring B from below or from above; and ring B 
ies through ringA from below or from
above. A crossing is positive if the inner ring comes from below, and negative otherwise.

34The core of Lord Voldemort's wand was made of a phoenix feather.
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z

R4R3 : z = 0

In Sections 2.2.2 and 3.1.1 we have
discussed the tubing map from v- or w-
diagrams of braids or knots to ribbon
tubes in R4: the under-strand of a cross-
ing is interpreted as a thinner tube (or a
ring 
ying through another). This gen-
eralizes to tangles easily. We take the
opportunity here to introduce another notation, to be called the \band notation", which is
more suggestive of the 4D topology than the strand notation. We represent a tube inR4 by a
picture of an oriented band inR3. By \oriented band" we mean that it has two orientations:
a 1D direction (for example an orientation of one of the edges), anda 2D orientation as a
surface. To interpret the 3D picture of a band as an tube inR4, we add an extra coordinate.
Let us refer to the R3 coordinates asx; y and t, and to the extra coordinate asz. Think
of R3 as being embedded inR4 as the hyperplanez = 0, and think of the band as being
made of a thin double membrane. Push the membrane up and down in the z direction at
each point as far as the distance of that point from the boundary of the band, as shown on
the right. Furthermore, keep the 2D orientation of the top membrane (the one being pushed
up), but reverse it on the bottom. This produces an oriented tubeembedded inR4.

In band notation, the four possible crossings appear as follows, where underneath each
crossing we indicate the corresponding strand picture, as mentioned in Exercise2.7:

+ � � +

The signs for each type of crossing are shown in the �gure above. Note that the sign of
a crossing depends of the 2D orientation of the over-strand, as well as the 1D direction of
the under-strand. Hence, switching only the direction (1D orientation) of a strand changes
the sign of the crossing if and only if the strand of changing directionis the under strand.
However, fully changing the orientation (both 1D and 2D) always switches the sign of the
crossing. Note that switching the strand orientation in the strandnotation corresponds to
the total (both 1D and 2D) orientation switch.

5.5. Good properties and uniqueness of the homomorphic expansio n. In much the
same way as in Section2.5.1, Z has a number of good properties with respect to various
tangle operations: it is group-like; it commutes with adding an inert strand (note that this
is a circuit algebra operation, hence it doesn't add anything beyond homomorphicity); and
it commutes with deleting a strand and with strand orientation reversals. All but the last
of these were explained in the context of braids and the explanations still hold. Orientation
reversalSk : wT ! wT is the operation which reverses the orientation of thek-th component.
Note that in the world of topology (via Satoh's tubing map) this meansreversing both the
1D and the 2D orientations. The induced diagrammatic operationSk : A w(T) ! A w(Sk(T)),
where T denotes the skeleton of a given w-tangle, acts by multiplying each arrow diagram
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by (� 1) raised to the power the number of arrow endings (both heads and tails) on the
k-th strand, as well as reversing the strand orientation. Saying that \ Z commutes with Sk"
means that the appropriate square commutes.

The following theorem asserts that a well-behaved homomorphic expansion ofw-tangles
is unique:

Theorem 5.22. The only homomorphic expansion satisfying the good properties described
above is theZ de�ned in Section 5.1.

� = +
Proof. We �rst prove the following claim: Assume, by contradiction,
that Z 0 is a di�erent homomorphic expansion ofw-tangles with the good
properties described above. LetR0 = Z 0( ! ) and R = Z( ! ), and denote
by � the lowest degree homogeneous non-vanishing term ofR0� R. (Note that R0 determines
Z 0, so ifZ 0 6= Z , then R0 6= R.) Suppose� is of degreek. Then we claim that � = � 1w1

k + � 2w2
k

is a linear combination ofw1
k and w2

k , wherewi
k denotes ak-wheel living on strandi , as shown

on the right.
Before proving the claim, note that it leads to a contradiction. Letdi denote the operation

\delete strand i". Then up to degreek, we haved1(R0) = � 2w1
k and d2(R0) = � 1w2

k , but Z 0

is compatible with strand deletions, so� 1 = � 2 = 0. HenceZ is unique, as stated.
On to the proof of the claim, note that Z 0 being an expansion determines the degree 1

term of R0 (namely, the single arrowa12 from strand 1 to strand 2, with coe�cient 1). So
we can assume thatk � 2. Note also that since bothR0 and R are group-like,� is primitive.
Hence� is a linear combination of connected diagrams, namely trees and wheels.

Both R and R0 satisfy the Reidemeister 3 relation:

R12R13R23 = R23R13R12; R012R013R023 = R023R013R012

where the superscripts denote the strands on whichR is placed (compare with Remark2.16).
We focus our attention on the degreek + 1 part of the equation for R0, and use that up to
degreek + 1. We can write R0 = R + � + � , where� denotes the degreek + 1 homogeneous
part of R0 � R. Thus, up to degreek + 1, we have

(R12+ � 12+ � 12)(R13+ � 13+ � 13)(R23+ � 23+ � 23) = ( R23+ � 23+ � 23)(R13+ � 13+ � 13)(R12+ � 12+ � 12):

The homogeneous degreek + 1 part of this equation is a sum of some terms which contain
� and some which don't. The diligent reader can check that those whichdon't involve �
cancel on both sides, either due to the fact thatR satis�es the Reidemeister 3 relation, or
by simple degree counting. Rearranging all the terms which do involve� to the left side, we
get the following equation, whereaij denotes an arrow pointing from strandi to strand j :

[a12; � 13] + [ � 12; a13] + [ a12; � 23] + [ � 12; a23] + [ a13; � 23] + [ � 13; a23] = 0: (40)

The third and �fth terms sum to [ a12+ a13; � 23], which is zero due to the \head-invariance"
of diagrams, as in Remark5.7.

We treat the tree and wheel components of� separately. Let us �rst assume that� is
a linear combination of trees. Recall that the space of trees on twostrands is isomorphic
to lie2 � lie2, the �rst component given by trees whose head is on the �rst strand, and the
second component by trees with their head on the second strand.Let � = � 1 + � 2, where� i

is the projection to the i -th component for i = 1; 2.
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Note that due to T C, we have [a12; � 13
2 ] = [ � 12

2 ; a13] = [ � 12
1 ; a23] = 0. So Equation (40)

reduces to
[a12; � 13

1 ] + [ � 12
1 ; a13] + [ � 12

2 ; a23] + [ � 13
1 ; a23] + [ � 13

2 ; a23] = 0

The left side of this equation lives in
L 3

i =1 lie3. Notice that only the �rst term lies in the
second direct sum component, while the second, third and last terms live in the third one,
and the fourth term lives in the �rst. This in particular means that th e �rst term is itself
zero. By

���!
ST U, this implies

0 = [a12; � 13
1 ] = � [� 1; x1]13

2 ;
where [� 1; x1]13

2 means the tree de�ned by the element [� 1; x1] 2 lie2, with its tails on strands
1 and 3, and head on strand 2. Hence, [� 1; x1] = 0, so � 1 is a multiple of x1. The tree given
by � 1 = x1 is a degree 1 element, a possibility we have eliminated, so� 1 = 0.

Equation (40) is now reduced to

[� 12
2 ; a23] + [ � 13

2 ; a23] = 0:

Both terms are words inlie3, but notice that the �rst term does not involve the letter x3.
This means that if the second term involvesx3 at all, i.e., if � 2 has tails on the second
strand, then both terms have to be zero individually. Assuming this and looking at the
�rst term, � 12

2 is a Lie word in x1 and x2, which does involvex2 by assumption. We have
[� 12

2 ; a23] = [ x2; � 12
2 ] = 0, which implies � 12

2 is a multiple of x2, in other words, � is a single
arrow on the second strand. This is ruled out by the assumption that k � 2.

On the other hand if the second term does not involvex3 at all, then � 2 has no tails on
the second strand, hence it is of degree 1, but againk � 2. We have proven that the \tree
part" of � is zero.

So � is a linear combination of wheels. Wheels have only tails, so the �rst, second and
fourth terms of (40) are zero due to the tails commute relation. What remains is [� 13; a23] = 0.
We assert that this is true if and only if each linear component of� has all of its tails on one
strand.

To prove this, recall each wheel of� 13 represents a cyclic word in lettersx1 and x3. The
map r : � 13 7! [� 13; a23] is a maptr 2 ! tr 3, which sends each cyclic word in lettersx1 and x3

to the sum of all ways of substituting [x2; x3] for one of thex3's in the word. Note that if
we expand the commutators, then all terms that havex2 between twox3's cancel. Hence all
remaining terms will be cyclic words inx1 and x3 with a single occurrence ofx2 in between
an x1 and an x3.

We construct an almost-inverser 0 to r : for a cyclic word w in tr 3 with one occurrence of
x2, let r 0 be the map that deletesx2 from w and maps it to the resulting word in tr 2 if x2

is followed by x3 in w, and maps it to 0 otherwise. On the rest oftr 3 the map r 0 may be
de�ned to be 0.

The compositionr 0r takes a cyclic word inx1 and x3 to itself multiplied by the number
of times a letter x3 follows a letter x1 in it. The kernel of this map can consist only of cyclic
words that do not contain the sub-wordx3x1, namely, these are the words of the formxk

3 or
xk

1. Such words are indeed in the kernel ofr , so these make up exactly the kernel ofr . This
is exactly what needed to be proven: all wheels in� have all their tails on one strand.

This concludes the proof of the claim, and the proof of the theorem. �
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6. w-Tangled Foams

Section Summary. If you have come this far, you must have noticed the
approximate Bolero spirit of this article. In every chapter a new instrument comes
to play; the overall theme remains the same, but the composition is more and more
intricate. In this chapter we add \foam vertices" to w-tangl es (and a few lesser
things as well) and ask the same questions we asked before; primarily, \is there a
homomorphic expansion?". As we shall see, in the current context this question
is equivalent to the Alekseev-Torossian [AT ] version of the Kashiwara-Vergne [KV ]
problem and explains the relationship between these topicsand Drinfel'd's theory
of associators.

6.1. The Circuit Algebra of w-Tangled Foams. For reasons we will reluctantly ac-
knowledge later in this section (see Comment6.2), we will present the circuit algebra of
w-tangled foams via its Reidemeister-style diagrammatic description(accompanied by a lo-
cal topological interpretation) rather than as an entirely topological construct.

De�nition 6.1. Let wTF o (where o stands for \orientable", to be explained in Section6.5)
be the algebraic structure

wTF o = CA
D

,, , ,
�
�
� w-relations as in

Section6.1.2

�
�
� w-operations as

in Section6.1.3

E
:

HencewTF o is the circuit algebra generated by the generators listed above anddescribed
below, modulo the relations described in Section6.1.2, and augmented with several \auxiliary
operations", which are a part of the algebraic structure ofwTF o but are not a part of its
structure as a circuit algebra, as described in Section6.1.3.

To be completely precise, we have to admit thatwTF o as a circuit algebra
has more generators than shown above. The last two generatorsare \foam
vertices", as will be explained shortly, and exist in all possible orientations of the three
strands. Some examples are shown on the right. However, in Section 6.1.3we will describe
the operation \orientation switch" which allows switching the orientation of any given strand.
In the algebraic structure which includes this extra operation in addition to the circuit algebra
structure, the generators of the de�nition above are enough.

6.1.1. The generators of wTF o. There is topological meaning to each of the generators of
wTF o: they each stand for a certain local feature of framed knotted ribbon tubes in R4. As
in Section5.4, the tubes are oriented as 2-dimensional surfaces, and also havea distinguished
core with a 1-dimensional orientation (direction).

The crossings are as explained in Section2.2.2and Section5.4: the under-strand denotes
the ring 
ying through, or the \thin" tube. Remember that there r eally are four kinds of
crossings, but in the circuit algebra the two not shown are obtainedfrom the two that are
shown by adding virtual crossings.

The bulleted end denotes a cap on the tube, or a 
ying ring that shrinks to
a point, as in the �gure on the right. In terms of Satoh's tubing map,the cap
means that \the string is attached to the bottom of the thickenedsurface", as
shown in the �gure below. Recall from Section3.1.1that the tubing map is the composition


 � S1 ,! � � [� �; � ] ,! R4:
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Here 
 is a trivalent tangle with \drawn on the virtual surface �", with caps ending on
� � [� �; � ]. The �rst embedding above is the product of this \drawing" with an S1, while
the second arises from the unit normal bundle of � inR4. For each cap (c;� � ) the tube
resulting from Satoh's map has a boundary component@c = ( c;� � ) � S1. Follow the tubing
map by gluing a disc to this boundary component to obtain the cappedtube mentioned
above.

Satoh(c; � � )

� � [� �; � ]

(c; � � ) � S1
glue disc

The last two generators denote singular \foam vertices". As the notation sug-
gests, a vertex can be thought of as \half of a crossing". To makethis precise
using the 
ying rings interpretation, the �rst singular vertex represents the movie
shown on the left: the ring corresponding to the right strand approaches the ring
represented by the left strand from below, 
ies inside it, and then the two rings
fuse (as opposed to a crossing where the ring coming from the rightwould continue
to 
y out to above and to the left of the other one). The second vertex is the
movie where a ring splits radially into a smaller and a larger ring, and the small
one 
ies out to the right and below the big one.

� � [� �; � ]The vertices can also be interpreted topologically via a nat-
ural extension of Satoh's tubing map. For the �rst generating
vertex, imagine the broken right strand approaching the con-
tinuous left strand directly from below in a thickened surface,
as shown.

The reader might object that there really are four types of vertices (as there are four
types of crossings), and each of these can be viewed as a \fuse" or a \split" depending on the
strand directions, as shown in Figure23. However, looking at the fuse vertices for example,
observe that the last two of these can be obtained from the �rst two by composing with
virtual crossings, which always exist in a circuit algebra.

The sign of a vertex can be de�ned the same way as the sign of a crossing (see Section5.4).
We will sometimes refer to the �rst generator vertex as \the positive vertex" and to the second
one as \the negative vertex". We use the band notation for vertices the same way we do for
crossings: the fully coloured band stands for the thin (inner) ring.

+ � + �

+� + �

Figure 23. Vertex types inwTF o.

6.1.2. The relations of wTF o. In addition to the usual R1s, R2, R3, and OC moves of Figure6,
we need more relations to describe the behaviour of the additional features.
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Comment 6.2. As before, the relations have local topological explanations, and we conjecture
that together they provide a Reidemeister theory for \w-tangledfoams", that is, knotted
ribbon tubes with foam vertices inR4. In this section we list the relations along with
the topological reasoning behind them. However, for any rigorouspurposes below,wTF o is
studied as a circuit algebra given by the declared generators and relations, regardless of their
topological meaning.

Recall that topologically, a cap represents a capped tube or equivalently, 
ying ring shrink-
ing to a point. Hence, a cap on the thin (or under) strand can be \pulled out" from a crossing,
but the same is not true for a cap on the thick (or over) strand, asshown below. This is the
case for any orientation of the strands. We denote this relation byCP, for Cap Pull-out.

.

.

,

,

CP :

yet

yet

The Reidemeister 4 relations assert that a strand can be moved under or over a crossing, as
shown in the picture below. The ambiguously drawn vertices in the picture denote a vertex
of any kind (as described in Section6.1.1), and the strands can be oriented arbitrarily. The
local topological (tube or 
ying ring) interpretations can be read from the pictures below.
These relations will be denotedR4.

R4 :

6.1.3. The auxiliary operations of wTF o. The circuit algebra wTF o is equipped with several
extra operations.

The �rst of these is the familiar orientation switch. We will, as mentioned in Section5.4,
distinguish between switching both the 2D and 1D orientations, or just the strand (1D)
direction.

Topologically orientation switch, denoted Se, is the switch of both orientations of the
strand e. Diagrammatically (and this is the de�nition) Se is the operation which reverses
the orientation of a strand in a wTF o diagram. The reader can check that when applying
Satoh's tubing map, this amounts to reversing both the direction and the 2D orientation of
the tube arising from the strand.
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compose w/
virtual xing

= The negative
vertex

21

3

A1A2A3

1
33

2 1 2

Figure 24. Switching strand orientations at a vertex. The adjoint operation only switches
the tube direction, hence in theband pictureonly the arrows change. To express this vertex
in terms of the negative generating vertex in strand notation, weuse a virtual crossing (see
Figure23).

e e

The operation which, in topology world, reverses a tube's direction but
not its 2D orientation is called \adjoint" , and denoted byAe. This is
slightly more intricate to de�ne rigorously in terms of diagrams. In ad-
dition to reversing the direction of the strande of the wTF o diagram, Ae

also locally changes each crossing ofe over another strand by adding two
virtual crossings, as shown on the right. We recommend for the reader to
convince themselves that this indeed represents a direction switchin topology after reading
Section6.5.

Remark 6.3. As an example, let us observe how the negative generator vertex can be ob-
tained from the positive generator vertex by adjoint operations and composition with virtual
crossings, as shown in Figure24. Note that also all other vertices can be obtained from the
positive vertex via orientation switch and adjoint operations and composition by virtual
crossings.

As a small exercise, it is worthwhile to convince ourselves of the e�ect of orientation switch
operations on theband picture. For example, replaceA1A2A3 by S1S2S3 in �gure 24. In
the strand diagram, this will only reverse the direction of the strands. The reader can check
that in the band picture not only the arrows will reverse but also theblue band will switch
to be on top of the red band.

Comment 6.4. Framings were discussed in Remark3.5, but have not played a signi�cant
role so far, except to explain the lack of a Reidemeister 1 relation. Now we will need to
discuss framings in order to provide a topological explanation for the unzip (tube doubling)
operation.

In the local topological interpretation of wTF o, strands represent ribbon-knotted tubes
with foam vertices, which are also equipped with a framing, arising from the blackboard
framing of the strand diagrams via Satoh's tubing map. Strand doubling is the operation
of doubling a tube by \pushing it o� itself slightly" in the framing directio n, as shown in
Figure 25.

Recall that ribbon knotted tubes have a \�lling", with only \ribbon" s elf-intersections.
When we double a tube, we want this ribbon property to be preserved. This is equivalent
to saying that the ring obtained by pushing o� any given girth of the tube in the framing
direction is not linked with the original tube, which is indeed the case, as mentioned in
Remark 3.5.
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Figure 25. Unzipping a tube, in band notation with orientations and framing marked.

Framings arising from the blackboard framing of strand diagrams via
Satoh's tubing map always match at the vertices, with the normal vectors
pointing either directly towards or away from the centre of the singular
ring. Note that the orientations of the three tubes may or may notmatch.
An example of a vertex with the orientations and framings shown is onthe
right. Note that the framings on the two sides of each band are mirror
images of each other, as they should be.

Unzip, or tube doubling is perhaps the most interesting of the auxiliary wTF o operations.
As mentioned above, topologically this means pushing the tube o� itself slightly in the
framing direction. At each of the vertices at the two ends of the doubled tube there are two
tubes to be attached to the doubled tube. At each end, the normal vectors pointed either
directly towards or away from the centre, so there is an \inside" and an \outside" ending
ring. The two tubes to be attached also come as an \inside" and an \outside" one, which
de�nes which one to attach to which. An example is shown in Figure25. Unzip can only be
done if the 1D and 2D orientations match at both ends.

e
ue

To de�ne unzip rigorously, we must talk only of strand diagrams.
The natural de�nition is to let ue double the strand e using the
blackboard framing, and then attach the ends of the doubled strand
to the connecting ones, as shown on the right. We restrict unzip
to strands whose two ending vertices are of di�erent signs. This is
a somewhat arti�cial condition which we impose to get equations
equivalent to the [AT ] equations.

A related operation, disk unzip, is unzip done on a capped strand, pushing the tube o�
in the direction of the framing (in diagrammatic world, in the direction of the blackboard
framing), as before. An example in the line and band notations (with the framing suppressed)
is shown below.

uu =

Finally, we allow the deletion of \long linear" strands, meaning strandsthat do not end
in a vertex on either side.

The goal, as before, is to construct a homomorphic expansion forwTF o. However, �rst we
need to understand its target space, the projectivization projwTF o.
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6.2. The projectivization. Mirroring the previous section, we describe the projectivization
A sw of wTF o and its \full version" A w as circuit algebras on certain generators modulo a
number of relations. From now on we will writeA(s)w to mean \A w and/or A sw".

A (s)w = CA
D

, ,,
�
�
� relations as in

Section6.2.1

�
�
� operations as in

Section6.2.2

E
:

In other words, A (s)w are the circuit algebras of arrow diagrams on trivalent (or foam)
skeletons with caps. Note that all but the �rst of the generatorsare skeleton features (of
degree 0), and that the single arrow is the only generator of degree 1. As for the generating
vertices, the same remark applies as in De�nition6.1, that is, there are more vertices with
all possible strand orientations needed to generateA (s)w as circuit algebras.

6.2.1. The relations ofA (s)w . In addition to the usual
�!
4T and TC relations (see Section2.3),

as well as RI in the case ofA sw = A w=RI , diagrams inA (s)w satisfy the following additional
relations:

Vertex invariance, denoted byVI, are relations arising the same way as
�!
4T does, but with

the participation of a vertex as opposed to a crossing:

� � � �� � = 0 ; and = 0 :

The other end of the arrow is in the same place throughout the relation, somewhere outside
the picture shown. The signs are positive whenever the strand on which the arrow ends
is directed towards the vertex, and negative when directed away.The ambiguously drawn
vertex means any kind of vertex, but the same one throughout.

= 0
The CP relation (a cap can be pulled out from under a strand but not from

over, Section6.1.2) implies that arrow heads near a cap are zero, as shown on the
right. Denote this relation also byCP. (Also note that a tail near a cap is not
set to zero.)

As in the previous sections, and in particular in De�nition 3.13, we de�ne a \w-Jacobi
diagram" (or just \arrow diagram") on a foam skeleton by allowing trivalent chord vertices.
Denote the circuit algebra of formal linear combinations of arrow diagrams by A (s)wt . We
have the following bracket-rise theorem:

Theorem 6.5. The obvious inclusion of diagrams induces a circuit algebraisomorphism
A (s)w �= A (s)wt . Furthermore, the

�!
AS and

���!
IHX relations of Figure 12 hold in A (s)wt .

Proof. Same as the proof of Theorem3.15. �
As in Section5.1, the primitive elements ofA (s)w are connected diagrams, namely trees

and wheels. Before moving on to the auxiliary operations ofA (s)w , let us make two useful
observations:

Lemma 6.6. A w( ), the part of A w with skeleton , is isomorphic as a vector space to the
completed polynomial algebra freely generated by wheelswk with k � 1. Likewise A sw( ),
except herek � 2.

Proof. Any arrow diagram with an arrow head at its top is zero by the Cap Pull-out (CP)
relation. If D is an arrow diagram that has a head somewhere on the skeleton but not at
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the top, then one can use repeated
���!
ST U relations to commute the head to the top at the

cost of diagrams with one fewer skeleton head.
Iterating this procedure, we can get rid of all arrow heads, and hence write D as a linear

combination of diagrams having no heads on the skeleton. All connected components of such
diagrams are wheels.

To prove that there are no relations between wheels inA (s)w( ), let SL : A (s)w(" 1) !
A (s)w(" 1) (resp. SR ) be the map that sends an arrow diagram to the sum of all ways of
dropping one left (resp. right) arrow (on a vertical strand, left means down and right means
up). De�ne

F :=
1X

k=0

(� 1)k

k!
D k

R (SL + SR )k ;

whereDR is the short right arrow as shown in Figure13. We leave it as an exercise for the
reader to check thatF is a bi-algebra homomorphism that kills diagrams with an arrow head
at the top (i.e., CP is in the kernel ofF ), and F is injective on wheels. This concludes the
proof. �

Lemma 6.7. A (s)w(Y) = A (s)w(" 2), whereA (s)w(Y) stands for the space of arrow diagrams
whose skeleton is aY-graph with any orientation of the strands, and as beforeA (s)w(" 2) is
the space of arrow diagrams on two strands.

Proof. We can use the vertex invariance (VI) relation to push all arrow heads and tails
from the \trunk" of the vertex to the other two strands. �

6.2.2. The auxiliary operations ofA (s)w . Recall from Section5.4 that the orientation switch
Se (i.e. changing both the 1D and 2D orientations of a strand) always changes the sign of
a crossing involving the strande. Hence, lettingS denote any foam (trivalent) skeleton, the
induced arrow diagrammatic operation is a mapSe : A (s)w(S) ! A (s)w(Se(S)) which acts
by multiplying each arrow diagram by (� 1) raised to the number of arrow endings one
(counting both heads and tails).

The adjoint operation Ae (i.e. switching only the strand direction), on the other hand,
only changes the sign of a crossing when the strand being switched isthe under- (or through)
strand. (See section5.4 for pictures and explanation.) Therefore, the arrow diagrammatic
Ae acts by switching the direction ofe and multiplying each arrow diagram by (� 1) raised
to the number ofarrow headson e. Note that in A (s)w(" n) taking the adjoint on every strand
gives the adjoint map of De�nition 5.18.

e

ue +
The arrow diagram operations induced by unzip and disc un-

zip (both to be denotedue, and interpreted appropriately accord-
ing to whether the strand e is capped) are mapsue : A (s)w(S) !
A (s)w(ue(S)), where each arrow ending (head or tail) one is mapped to a sum of two arrows,
one ending on each of the new strands, as shown on the right. In other words, if in an arrow
diagram D there arek arrow ends one, then ue(D) is a sum of 2k arrow diagrams.

The operation induced by deleting the long linear strande is the map de : A (s)w(S) !
A (s)w(de(S)) which kills arrow diagrams with any arrow ending (head or tail) one, and
leaves all else unchanged, except withe removed.
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6.3. The homomorphic expansion.

Theorem 6.8. There exists a group-like35 homomorphic expansion for wTF o, i.e. a group-
like expansionZ : wTF o ! A sw which is a map of circuit algebras and also intertwines the
auxiliary operations of wTF o with their arrow diagrammatic counterparts.

Since bothwTF o and A sw are circuit algebras de�ned by generators and relations, when
looking for a suitable Z all we have to do is to �nd values for each of the generators of
wTF o so that these satisfy (inA sw) the equations which arise from the relations inwTF o

and the homomorphicity requirement. In this section we will derive these equations and
show that they are equivalent to the Alekseev-Torossian version of the Kashiwara-Vergne
equations [AT ]. In [AET ] Alekseev Enriquez and Torossian construct explicit solutions to
these equations using associators. In a later paper we will interpret these results in our
context of homomorphic expansions for w-tangled foams.

Let R := Z( ! ) 2 A sw(" 2). It follows from the Reidemeister 2 relation thatZ ( " ) =
(R� 1)21. As discussed in Sections5.1 and 5.5, Reidemeister 3 with group-likeness and homo-
morphicity implies that R = ea, wherea is a single arrow pointing from the over to the under
strand. Let C := Z( ) 2 A sw( ). By Lemma 6.6, we know that C is made up of wheels only.
Finally, let V = V + := Z ( ) 2 A sw( ) �= A sw(" 2), and V � := Z ( ) 2 A sw( ) �= A sw(" 2).

Before we translate each of the relations of Section6.1.2to equations let us slightly extend
the notation used in Section5.5. Recall that R23, for instance, meant \R placed on strands
2 and 3". In this section we also need notation such asR(23)1 , which means \R with its �rst
strand doubled, placed on strands 2, 3 and 1".

Now on to the relations, note that Reidemeister 2 and 3 and Overcrossings Commute
have already been dealt with. Of the two Reidemeister 4 relations, the �rst one induces an
equation that is automatically satis�ed. Pictorially, the equation looks as follows:

Z
=

V

V

R

R
=

+

V
R

R
VR

R

VI

In other words, we obtained the equation

V 12R3(12) = R32R31V 12:

However, observe that by the \head-invariance" property of arrow diagrams (Remark5.7)
V 12 and R3(12) commute on the left hand side. Hence the left hand side equalsR3(12)V 12 =
R32R31V 12. Also, R3(12) = ea31 + a32

= ea32
ea31

= R32R31, where the second step is due to the
fact that a31 and a32 commute. Therefore, the equation is true independently of the choice
of V .

We have no such luck with the second Reidemeister 4 relation, which, inthe same manner
as in the paragraph above, translates to the equation

V 12R(12)3 = R23R13V 12: (41)

35The formal de�nition of the group-like property is along the lines of 2.5.1.2. In practise, it means that
the Z -values of the vertices, crossings, and cap (denotedV , R and C below) are exponentials of linear
combinations of connected diagrams.
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There is no \tail invariance" of arrow diagrams, soV and R do not commute on the left
hand side; also,R(12)3 6= R23R13. As a result, this equation puts a genuine restriction on the
choice ofV .

The Cap Pull-out (CP) relation translates to the equationR12C2 = C2. This is true
independently of the choice ofC: by head-invariance,R12C2 = C2R12. Now R12 is just
below the cap on strand 2, and the cap \kills heads", in other words,every term ofR12 with
an arrow head at the top of strand 2 is zero. Hence, the only surviving term of R12 is 1 (the
empty diagram), which makes the equation true.

The homomorphicity of the orientation switch operation was used toprove the uniqueness
of R in Theorem 5.22. The homomorphicity of the adjoint leads to the equationV� =
A1A2(V ) (see Figure24), eliminating V� as an unknown. Note that we also silently assumed
these homomorphicity properties when we did not introduce 32 di�erent values of the vertex
depending on the strand orientations.

Homomorphicity of the (annular) unzip operation leads to an equation for V , which we
are going to refer to as \unitarity". This is illustrated in the �gure below. Recall that A1

and A2 denote the adjoint (direction switch) operation on strand 1 and 2,respectively.

u =

u � Z w Z w

1V � A1A2(V )

Reading o� the equation, we have

V � A1A2(V ) = 1 : (42)

u

u � Z w Z w

V C(12) C1C2

Homomorphicity of the disk unzip leads to an equation forC which
we will refer to as the \cap equation". The translation from homo-
morphicity to equation is shown in the �gure on the right. C, as we
introduced before, denotes theZ-value of the cap. Hence, the cap
equation reads

V 12C(12) = C1C2 in A sw( 2) (43)

The homomorphicity of deleting long strands does not lead to an equation on its own,
however it was used to prove the uniqueness ofR (Theorem 5.22).

To summarize, we have reduced the problem of �nding a homomorphicexpansionZ to
�nding the Z-values of the (positive) vertex and the cap, denotedV and C, subject to three
equations: the \hard Reidemeister 4" equation (41); \unitarity of V" equation ( 42); and the
\cap equation" (43).

6.4. The equivalence with the Alekseev-Torossian equations. First let us recall Alek-
seev and Torossian's formulation of the generalized Kashiwara-Vergne problem (see [AT ,
Section 5.3]):
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Generalized KV problem: Find an elementF 2 TAut 2 with the properties

F (x + y) = log( exey); and j (F ) 2 im(~� ): (44)

Here ~� : tr 1 ! tr 2 is de�ned by (~�a )(x; y) = a(x) + a(y) � a(log(exey)), where elements oftr 2

are cyclic words in the lettersx and y. (See [AT ], Equation (8)). Note that an element oftr 1

is a polynomial with no constant term in one variable. In other words,the second condition
says that there existsa 2 tr 1 such that jF = a(x) + a(y) � a(log(exey)).

Theorem 6.9. Theorem 6.8, namely the existence of a group-like homomorphic expansion
for wTF o, is equivalent to the generalized Kashiwara-Vergne problem.

Proof. We have reduced the problem of �nding a homomorphic expansion to �nding group-
like solutionsV and C to the hard Reidemeister 4 equation (41), the unitarity equation ( 42),
and the cap equation (43).

Suppose we have found such solutions and writeV = ebeuD , whereb2 tr s
2, D 2 tder2 � a2,

and whereu is the mapu: tder2 ! A sw(" 2) which plants the head of a tree above all of its
tails, as introduced in Section5.2. V can be written in this form without loss of generality
because wheels can always be brought to the bottom of a diagram (at the possible cost of
more wheels). Furthermore,V is group-like and hence it can be written in exponential form.
Similarly, write C = ec with c 2 tr s

1.
Note that u(a2) is central in A sw(" 2) and that replacing a solution (V; C) by (eu(a)V; C)

for any a 2 a2 does not interfere with any of the equations (41), (42) or (43). Hence we may
assume thatD does not contain any single arrows, that is,D 2 tder2. Also, a solution (V; C)
in A sw can be lifted to a solution inA w by simply setting the degree one terms ofb and c
to be zero. It is easy to check that thisb 2 tr 2 and c 2 tr 1 along with D still satisfy the
equations. (In fact, in A w (42) and (43) respectively imply that b is zero in degree 1, and
that the degree 1 term ofc is arbitrary, so we may as well assume it to be zero.) In light of
this we declare thatb2 tr 2 and c 2 tr 1.

The hard Reidemeister 4 equation (41) reads V 12R(12)3 = R23R13V 12. Denote the arrow
from strand 1 to strand 3 byx, and the arrow from strand 2 to strand 3 byy. Substituting
the known value forR and rearranging, we get

ebeuD ex+ ye� uD e� b = eyex :

Equivalently, euD ex+ ye� uD = e� beyexeb: Now on the right side there are only tails on the �rst
two strands, henceeb commutes with eyex , so e� beb cancels. Taking logarithm of both sides
we obtain euD (x + y)e� uD = log eyex . Now for notational alignment with [AT ] we switch
strands 1 and 2, which exchangesx and y so we obtain:

euD 21
(x + y)e� uD 21

= log exey : (45)

The unitarity of V (Equation (42)) translates to 1 = ebeuD (ebeuD )� ; where � denotes the
adjoint map (De�nition 5.18). Note that the adjoint switches the order of a product and
acts trivially on wheels. Also,euD (euD )� = J (eD ) = ej (eD ) , by Proposition 5.19. So we have
1 = ebej (eD )eb. Multiplying by e� b on the right and by eb on the left, we get 1 = e2bej (eD ) ,
and again by switching strand 1 and 2 we arrive at

1 = e2b21
ej (eD 21

) : (46)
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As for the cap equation, ifC1 = ec(x) and C2 = ec(y) , then C12 = ec(x+ y) . Note that wheels
on di�erent strands commute, henceec(x)ec(y) = ec(x)+ c(y) , so the cap equation reads

ebeuD ec(x+ y) = ec(x)+ c(y) :

As this equation lives in the space of arrow diagrams on twocappedstrands, we can multiply
the left side on the right bye� uD : uD has its head at the top, so it is 0 by the Cap relation,
henceeuD = 1 near the cap. Hence,

ebeuD ec(x+ y)e� uD = ec(x)+ c(y) :

�

On the right side of the equation above
euD ec(x+ y)e� uD reminds us of Equation (45), how-
ever we cannot use (45) directly as we live in a dif-
ferent space now. In particular,x there meant an
arrow from strand 1 to strand 3, while here it means
a one-wheel on (capped) strand 1, and similarly for
y. Fortunately, there is a map� : A sw(" 3) ! A sw( 2), where � \closes the third strand and
turns it into a chord (or internal) strand, and caps the �rst two strands", as shown on the
right. This map is well de�ned (in fact, it kills almost all relations, and turns one

���!
ST U into

an
���!
IHX ). Under this map, using our abusive notation,� (x) = x and � (y) = y.

Now we can apply Equation (45) and get ebec(log ey ex ) = ec(x)+ c(y) , which, using that tails
commute, impliesb= c(x) + c(y) � c(log eyex ). Switching strands 1 and 2, we obtain

b21 = c(x) + c(y) � c(logexey) (47)

In summary, we can use (V; C) to produceF := eD 21
(sorry36) which satis�es the Alekseev-

Torossian equations (44): eD 21
acts onlie2 by conjugation by euD 21

, so the �rst part of ( 44)
is implied by (45). The second half of (44) is true due to (46) and (47).

On the other hand, suppose that we have foundF 2 TAut 2 and a 2 tr 1 satisfying (44).

Then set D 21 := log F , b21 := � j (eD 21
)

2 , and c 2 ~� � 1(b21), in particular c = � a
2 works. Then

V = ebeuD and C = ec satisfy the equations for homomorphic expansions (41), (42) and
(43). �

6.5. The wen. A topological feature of w-tangled foams which we excluded from the theory
so far is the wenw. The wen was introduced in2.5.4as a Klein bottle cut apart; it amounts
to changing the 2D orientation of a tube, as shown in the picture below:

w =

36We apologize for the annoying 2$ 1 transposition in this equation, which makes some later equations,
especially (52), uglier than they could have been. There is no depth here, just mis-matching conventions
between us and Alekseev-Torossian.
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In this section we study the circuit algebra of w-Tangled Foams with the wen rightfully
included as a generator, and denote this space bywTF.

6.5.1. The relations and auxiliary operations of wTF. Adding the wen as a generator means
we have to impose additional relations involving the wen to keep our topological heuristics
intact, as follows:

The interaction of a wen and a crossing has already been mentioned inSection2.5.4, and
is described by Equation (16), which we repeat here for convenience:

yet

A B A B
A B A B

==
w

w

w

w

Recall that in 
ying ring language, a wen is a ring 
ipping over. It does not matter whether
ring B 
ips �rst and then 
ies through ring A or vice versa. However, the movies in which
ring A �rst 
ips and then ring B 
ies through it, or B 
ies through A �rs t and then A 
ips
di�er in the 
y-through direction, which is cancelled by virtual crossings, as in the �gure
above. We will refer to these relations as the Flip Relations, and abbreviate them byFR.

A double 
ip is homotopic to no 
ip, in other words two consecutive wens equal no wen.
Let us denote this relation byW 2, for Wen squared. Note that this relation explains why
there are no \left and right wens".

w
A cap can slide through a wen, hence a capped wen disappears,

as shown on the right, to be denotedCW.

$

$

The last wen relation describes the interaction of wens and ver-
tices. Recall that there are four types of vertices with the same
strand orientation: among the bottom two bands (in the pictures
on the left) there is a non-�lled and a �lled band (corresponding to
over/under in the strand diagrams), meaning the \large" ring and
the \small" one which 
ies into it before they merge. Furthermore,
there is a top and a bottom band (among these bottom two, with
apologies for the ambiguity in overusing the word bottom): this
denotes the 
y-in direction (
ying in from below or from above).
Conjugating a vertex by three wens switches the top and bottom
bands, as shown in the �gure on the left: if both rings 
ip, then
merge, and then the merged ring 
ips again, this is homotopic to
no 
ips, except the 
y-in direction (from below or from above) has
changed. We are going to denote this relation byTV, for \twisted
vertex".

The auxiliary operations are the same as forwTF o: orientation switches, adjoints, dele-
tion of long linear strands, cap unzips and unzips37. Thus, informally we can say that
wTF = ( wTF o + wens)=FR; W 2; CW; TV.

37We need not specify how to unzip an edgee that carries a wen. To unzip such e, �rst use the TV
relation to slide the wen o� e.
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6.5.2. The projectivization. The projectivization of wTF (still denoted A sw) is the same as
the projectivization for wTF o but with the wen added as a generator (a degree 0 skeleton
feature), and with extra relations describing the behaviour of thewen. Of course, the
relations describing the interaction of wens with the other skeletonfeatures (W 2, TV, and
CW) still apply, as well as the old RI,

�!
4T, and TC relations.

In addition, the Flip Relations FR imply that wens \commute" with arrow heads, but
\anti-commute" with tails. We also call theseFR relations:

,w w w w= �but .=FR:

6.5.3. The homomorphic expansion.The goal of this section is to prove that there exists a
homomorphic expansionZ for wTF. This involves solving a similar system of equations to
Section6.3, but with an added unknown for the value of the wen, as well as added equations
arising from the wen relations. LetW 2 A (" 1) denote the Z-value of the wen, and let us
agree that the arrow diagramW always appears just above the wen on the skeleton. In fact,
we are going to show that there exists a homomorphic expansion withW = 1.

As two consecutive wens on the skeleton cancel, we obtain the equation shown in the
picture and explained below:

w

w
w w

= =

W

W

W

W

W

W

The Z-value of two consecutive wens on a strand is a skeleton wen followedby W followed by
a skeleton wen and anotherW. Sliding the bottom W through the skeleton wen \multiplies
each tail by (� 1)". Let us denote this operation by \bar", i.e. for an arrow diagram D,
D = D � (� 1)# of tails in D . Cancelling the two skeleton wens, we obtainW W = 1. If W = 1
then this equation is certainly satis�ed.

Now recall the Twisted Vertex relation of Section6.5.1. Note that the negative theZ-value
of the vertex on the right hand side of the relation can be written asS1S2A1A2(V ) = (V).
(Compare with Remark 6.3.) On the other hand, applying Z to the left hand side of the
relation, assumingW = 1, we get:

w

= .=

w

w

w

w

w
V

V
V

Thus, the equation arising from the twisted vertex relation withW = 1 is automatically
satis�ed.

The CW (Capped Wen) relation says that a cap can slide through a wen. The value of
the wen is 1, but the wen as a skeleton feature anti-commutes with tails (this is the Flip
Relation of Section6.2.1). The value of the capC is made up of only wheels (Lemma6.6),
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hence the CW relation translates to the equationC = C, which is equivalent to saying that
C consists only of even wheels.

The fact that this is possible follows from Proposition 6.2 of [AT ]: the value of the cap is
C = ec, where can be set toc = � a

2 , as explained in the proof of Theorem6.9. Here a is
such that ~� (a) = jF as in Equation 44. A power seriesf so that a = tr f (where tr is the
trace which turns words into cyclic words) is called the Du
o functionof F . In Proposition
6.2 Alekseev and Torossian show that the even part off is 1

2
ln (ex= 2 � e� x= 2)

x , and that for any
f with this even part there is a corresponding solutionF of the generalizedKV problem.
In particular, f can be assumed to be even, namely the power series above, and hence it can
be guaranteed thatC consists of even wheels only. Thus we have proven the following:

Theorem 6.10. There exists a group-like homomorphic expansionZ : wTF ! A sw. �

6.6. The relationship with u-Knotted Trivalent Graphs. The \ usual", or classical
topological objects corresponding towTF are loosely speaking Knotted Trivalent Graphs, or
KTGs. A trivalent graph is a graph with three edges meeting at each vertex, equipped with
a cyclic orientation of the three half-edges at each vertex. KTGs are framed embeddings of
trivalent graphs into R3, regarded up to isotopies. The skeleton of a KTG is the trivalent
graph (as a combinatorial object) behind it. For a detailed introduction to KTGs see for
example [BND1]. Here we only recall the most important facts. The reader might recall that
in Section 3 we only dealt with long w-knots, as thew-theory of round knots is essentially
trivial (see Theorem3.18). A similar issue arises with \w-knotted trivalent graphs". Hence,
the space we are really interested in is \long KTGs", in other words trivalent (1; 1)-tangles
whose \top end" is connected to the \bottom end" by some path along the tangle.

,

S STT


 e ue(
 )
Long KTGs form an algebraic struc-

ture with the operations orientation
switch; edge unzip (as shown on the
right); and tangle insertion (I.e., in-
serting a small copy of a (1; 1)-tangle
S into the middle of some strand of
a (1; 1)-tangle T, also shown on the
right. It is a slightly weaker operation
than the connected sum of [BND1]). The projectivization of the space of long KTGs is
the spaceA u of chord diagrams on long trivalent graph skeleta, modulo the4T and vertex
invariance (VI) relations. The induced operations onA u are as expected: orientation switch
multiplies a chord diagram by (� 1) to the number of chord endings on the edge. Edge unzips
ue maps a chord diagram withk chord endings on the edgee to a sum of 2k diagrams where
each chord ending has a choice between the two daughter edges. Finally, tangle insertion
induces the insertion of chord diagrams.
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u(� 1=2)

� � 1=2 � � 1=2

Z old(
 ) Z old(u(
 ))

In [BND1] the authors prove that there is nohomomorphic
expansion for KTGs. This theorem, as well as the proof, applies
to long KTGs with slight modi�cations. There is a well-known
expansion constructed by extending the Kontsevich integral to
KTGs and renormalizing at the vertices. There are several con-
structions that do this ([MO], [CL], [Da]), and not all of these are
\compatible" with a corresponding Z w . For now, let us choose
one (any) such expansion and following the notation of [BND1]
denote it by Z old. It turns out that any of the above Z old is almost
homomorphic but not quite: they all intertwine the orientation
switch, strand delete and tangle composition operations with their chord-diagrammatic coun-
terparts, but commutativity with unzip fails by a controlled amount, as shown on the right.
Here� denotes the \invariant of the unknot", the value of which was conjectured in [BGRT1]
and proven in [BLT ].

In [BND1] the authors �x this anomaly by slightly changing the space of KTGs and adding
some extra combinatorics (\dots" on the edges), and constructa homomorphic expansion for
this new space by a slight adjustment ofZ old. Here we are going to use a similar but di�erent
adjustment of the space of long KTGs, namely breaking the symmetry of the vertices and
restricting the domain of unzip.

In this model, denoted bysKTG for \signed long KTGs", each vertex has a distinguished
edge coming out of it (denoted by a thick line in Figure26), as well as a sign. Our pictorial
convention will be that a vertex drawn in a \� " shape with all strands oriented up and the
top strand distinguished is always positive and a vertex drawn in a \Y" shape with strands
oriented up and the bottom strand distinguished is always negative,as in Figure26.

Orientation switch of either of the non-distinguished strands changes the sign of the vertex,
switching the orientation of the distinguished strand does not. Unzip of an edge is only
allowed if the edge is distinguished at both of its ends and the verticesat either end are of
opposite signs.

T TZ old := � � 1 � Z old

The homomorphic expansionZ u : sKTG ! A u

is computed fromZ old as follows. First of all we
need to interpret Z old as an invariant of (1; 1)-
tangles. This is done by connecting the top and
bottom ends by a non-interacting long strand followed by a normalization, as shown on the
right. By \multiplying by � � 1" we mean that after computingZ old we insert � � 1 on the long
strand.

To compute Z u from Z old the following normalizations are added near the vertices, as in
Figure 26. Note that in that �gure the symbol c denotes a horizontal chord going from left
to right, and e� c=4 denotes the exponential of� c=4 in a sense similar to the exponentiation
of arrows in Equation (15).

Checking that Z u is a homomorphic expansion is a simple calculation using the almost
homomorphicity of Z old, which we leave to the reader. Now let us move on the the question
of compatibility betweenZ u and Z w (from now on we are going to refer to the homomorphic
expansion ofwTF {called Z in the previous section{ asZ w to avoid confusion).
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ec=4

� � 1=4

� 1=4

� � 1=4

� �

e� c=4

� 1=4

� � 1=4� � 1=4

+

Figure 26. Normalizations forZ u at the vertices.

sKTG

Z u

��

a //wTF

Z w

��
A u � //A sw

There is a mapa: sKTG ! wTF, given by interpreting sKTG diagrams
as wTF diagrams. In particular, positive vertices (of edge orientations
shown above) are interpreted as the positivewTF vertex and negative
vertices as the negative . The induced map� : A u ! A sw is de�ned as
in Section5.3, that is, � maps each chord to the sum of its two possible

orientations. Now we can ask the question whether the square on the left commutes, or more
precisely, whether we can chooseZ u and Z w so that it does.

As a �rst step to answering this question, we prove thatsKTG is �nitely generated (and
therefore Z u is determined by its values on �nitely many generators, and these values will
later be compared with the valuesV and C that determine Z w):

Proposition 6.11. The algebraic structure sKTG is �nitely generated by the following list
of elements:

, ,
+

�
,

�

+

,

+

�

right
twist

left
twist

strand

+
+

�
� ,

right
associator

,
�

+

balloon

,�

+

nooseleft
associator

+

�
�

+
,

bubble

Proof. First of all note that throughout this proof (in fact even in the statement of the
proposition) we are ignoring the issue of strand orientations. We can do this as orientation
switches are allowed insKTG without restriction. We are also going to omit vertex signs
from the pictures given the pictorial convention stated before.

We need to prove that anysKTG (call it G) can be built from the generators above using
sKTG operations. To show this, consider a Morse drawing ofG, that is, a planar projection
of G with a height function so that all singularities along the strands are Morse and so that
every \feature" of the projection (local minima and maxima, crossings and vertices) occurs
at a di�erent height.

The idea in short is to decomposeG into levels of this Morse drawing where at each level
only one \feature" occurs. The levels themselves are notsKTG's, but we show that the
composition of the levels can be achieved by composing their \closed-up" sKTG versions
followed by some unzips. Each feature gives rise to a generator by \closing up" extra ends
at its top and bottom. We then show that we can construct each level using the generators
and the tangle insert operation.

So let us decomposeG into a composition of trivalent tangles, each of which has one
\feature" and (possibly) some straight vertical strands. An example is shown in the �gure
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below. Note that these tangles are not necessarily (1; 1)-tangles, and hence need not be
elements ofsKTG. However, we can turn each of them into a (1; 1)-tangle by \closing up"
their tops and bottoms by arbitrary trees. In the example below weshow this for one level
of the Morse-drawnsKTG containing a crossing and two vertical strands.

1

2

3

4
5

6

3

Now we can compose thesKTG's obtained from closing up each level, as tangle composi-
tion is a special case of tangle insertion. Each tree that we used to close up the tops and
bottoms of levels determines a \parenthesization" of the strand endings. If these parenthe-
sizations match on the top of each level with the bottom of the next, then we can recreate
tangle composition of the levels by composing their closed versions followed by a number of
unzips performed on the connecting trees. This is illustrated in the example below, for two
consecutive levels of thesKTG of the previous example.

unzips

3

4

3

4

If the trees used to close up consecutive levels correspond to di�erent parenthesizations,
then we can use insertion of the left and right associators (the lasttwo pictures of the list
of generators in the statement of the theorem) to change one parenthesization to match the
other. This is illustrated in the �gure below.

insert
associator

unzip
this edge

unzips

So far we have shown thatG can be assembled from closed versions of the levels in its
Morse drawing. The closed versions of the levels ofG are simplersKTG's, and it remains to
show that these can be obtained from the generators usingsKTG operations.
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=close
up

Let us examine what each level might look like. First of all,
in the absence of any \features" a level might be a single strand,
in which case it is the �rst generator itself. Two parallel strands
when closed up become the \bubble", as shown on the right.

Now suppose that a level consists ofn parallel strands, and that the trees used to close
it up on the top and bottom are horizontal mirror images of each other, as shown below (if
not, then this can be achieved by associator insertions and unzips). We want to show that
this sKTG can be obtained from the generators usingsKTG operations. Indeed, this can be
achieved by repeatedly inserting bubbles into a bubble, as shown:

close
up =

A level consisting of a single crossing becomes a left or right twist when closed up (de-
pending on the sign of the crossing). Similarly, a single vertex becomes a bubble. A level
can not contain a single minimum or maximum by itself, since we required that the top end
of an sKTG be connected to its bottom end via a path. Hence, any minimum or maximum
must be accompanied by at least one through strand. A maximum withone through strand
becomes the balloon after closing up, and a minimum with one through strand becomes the
noose.

It remains to see that thesKTG's obtained when closing up simple features accompanied
by more through strands can be built from the generators. This is achieved by inserting
the corresponding generators into nested bubbles (bubbles inserted into bubbles), as in the
example shown below. Recall that the trees (parenthesizations) used for the closing up
process can be changed arbitrarily by inserting associators and unzipping, and hence we are
free to use the most convenient tree in the example below. This completes the proof.

close
up

=

�
We are now equipped to answer the main question of this section:

Theorem 6.12. There exists a homomorphic expansion for
the combined algebraic structure

�
sKTG a�! wTF

�
. In other

words, there exist homomorphic expansionsZ u and Z w for
which the square on the right commutes.

sKTG

Z u

��

a //wTF

Z w

��
A u � //A sw

(48)

Before moving on to the proof let us state and prove the following Lemma, to be used
repeatedly in the proof of the theorem.

Lemma 6.13. If a and b are group-like elements inA sw(" n), then a = b if and only if
� (a) = � (b) and aa� = bb� . Here � is the projection induced by� : Pw(" n ) ! tdern � an

86



(see Section5.2), and � refers to the adjoint map of De�nition 5.18. In the notation of this
section � is applying the adjointA on all strands.

Proof. Write a = eweuD and b = ew0
euD 0

, where w 2 tr n , D 2 tdern � an and
u: tdern � an ! P n is the \upper" map of Section 5.2. Assume that � (a) = � (b) and
aa� = bb� . Since� (a) = eD and � (b) = eD 0

, we conclude thatD = D 0. Now we compute
aa� = eweuD e� lD ew = ewej (D )ew; where j : tdern ! tr n is the map de�ned in Section 5.1 of
[AT ] and discussed in5.19of this paper. Now note that bothw and j (D) are elements oftr n ,
hence they commute, soaa� = e2w+ j (D ) . Thus, aa� = bb� means that e2w+ j (D ) = e2w0+ j (D ) ,
which implies that w = w0 and a = b. �
Proof of Theorem 6.12. SincesKTG is �nitely generated, we only need to check that the
square (48) commutes for each of the generators.
Proof of commutativity of (48) for the strand and the bubble.For the single strand commu-
tativity is obvious: both the Z u and Z w values are trivial.

Z old =

Z w =

� 1=2 � 1=2 � 1=2

V

V�

We claim that the Z u value of the bubble is also trivial.
By connecting the top and bottom of the bubble we ob-
tain a \theta-graph", and Z old of a theta graph has� 1=2

on each strand, as shown on the right (for a computa-
tion see [BND1] for example). After applying the vertex
normalizations of Figure26, everything cancels, so the
Z u-value of the bubble is trivial. As forZ w , the value of
the bubble is V� V, as shown, which equals to 1 by the
Unitarity property of V, Equation (42). This proves the commutativity of the square for
bubbles. �
Proof of commutativity of (48) for the twists. First note that the Z u-value of the right twist
is Ru = ec=2, where c denotes a single chord between the two twisted strands (see [BND1]
for details). Hence the commutativity ofZ u and Z w for the right twist is equivalent to the
\Twist Equation" � (Ru) = V � 1RV 21, whereR = ea12 is the Z w-value of the crossing, that
is, the exponential of a single arrow pointing from strand 1 to strand 2. By de�nition of � ,
� (Ru) = e

1
2 (a12 + a21 ) , where a12 and a21 are single arrows pointing from strand 1 to 2 and 2

to 1, respectively. So the Twist Equation becomes

e
1
2 (a12 + a21 ) = V � 1RV 21: (49)

If V is to give rise to a homomorphic expansionZ w that is compatible with Z u, then V has
to satisfy the Twist Equation in addition to the previous equations (41),(42) and (43). To
prove that such aV exists, we use Lemma6.13. Lemma 6.13 implies that it is enough to
�nd a V which satis�es the Twist Equation \on tree level" (i.e., after applying � ), and for
which the adjoint condition of the Lemma holds.

Let us start with the adjoint condition. Multiplying the left hand side of the Twist
Equation by its adjoint, we get

e
1
2 (a12 + a21 )(e

1
2 (a12 + a21 ))� = e

1
2 (a12 + a21 )e� 1

2 (a12 + a21 ) = 1:

As for the right hand side, we have to computeV � 1RV 21(V 21)� R� (V � 1)� . SinceV is unitary
(Equation (42)), V V� = V � A1A2(V) = 1. Now R = ea12 , so R� = e� a12 = R� 1, hence the
expression on the right hand side also simpli�es to 1, as needed.
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As for the \tree level" of the Twist Equation, recall that in Section 6.3 we deduced the
existence of a solution to all the previous equations from Alekseev and Torossian's solution
F 2 TAut 2 to the Kashiwara{Vergne equations [AT ]. We producedV from F by setting
F = eD 21

with D 2 tders2, b := � j (F )
2 2 tr 2 and V := ebeuD , so F is \the tree part" of V, up

to re-numbering strands. Substituting this into the Twist Equationwe obtain:

e
1
2 (a12 + a21 ) = e� uD e� bea12 eb21

euD 21
: (50)

Applying � , we get
e

1
2 (a12 + a21 ) = e� uD ea12 euD 21

= ( F 21)� 1ea12 F:
The existence of a solutionF of the KV equations which also satis�es the above is equivalent
to the existence of \symmetric solutions of the Kashiwara-Vergneproblem" discussed and
proven in Sections 8.2 and 8.3 of [AT ] (note that in [AT ] R denotesea21 ). �
Proof of commutativity of (48) for the associators.Let us recall that a Drinfel'd associator
is a group-like element ofA u(" 3) satisfying the so-called pentagon and positive and negative
hexagon equations, as well as a non-degeneracy and mirror skew-symmetry property. For a
detailed explanation see Section 4 of [BND1]; associators were �rst de�ned in [Dr2]. The Z u-
value of the generator shown in the statement of Proposition6.11called \right associator" is
a Drinfel'd associator. The proof of this statement is the same as the proof of Theorem 4.2
of [BND1], with minor modi�cations. (I.e., the graphs have positive and negative vertices
as opposed to \dots and crosses" on the edges. Note that the vertex re-normalizations for
the four vertices of an associator cancel each other out). Let us call this associator�.

What we need to show is that there exists aV satisfying all previous equations including
the Twist Equation (49), so that

� (�) = V (12)3
� V 12

� V 23V 1(23) in A sw(" 3); (51)

where� : A u ! A sw is the map de�ned in Section5.3, and keeping in mind thatV� = V � 1.
The reasoning behind this equation is shown in the �gure below.

1
2 3

Using V I to push to
the middle three strands.

V

V

V�

V�

We proceed in a similar manner as we did for the Twist Equation, treating the \tree and
wheel parts" separately using Lemma6.13. As � is by de�nition group-like, let us denote
� =: e� .

First we verify that the \wheel level" adjoint condition holds. Starting with the right hand
side of Equation (51), the unitarity V V� = 1 of V implies that

V (12)3
� V 12

� V 23V 1(23) (V 1(23) )� (V 23)� (V 12
� )� (V (12)3

� )� = 1:

For the left hand side of (51) we need to studye� (� )(e� (� ) )� and show that it equals 1 as
well. This is assured if we pick aZ u for which � is a group-like horizontal chord associator
(possible for example using [CL], as mentioned at the beginning of this section). Indeed
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restricted to the � -images of horizontal chords� is multiplication by � 1, and as it is an
anti-Lie morphism, this fact extends to the Lie algebra generated by � -images of horizontal
chords. Hencee� (� )(e� (� ) )� = e� (� )e� (� ) �

= e� (� )e� � (� ) = 1.
On to the tree part. Applying � to Equation (51) we obtain

e�� (� ) = ( F 3(12) )� 1(F 21)� 1F 32F (23)1 = e� D (12)3
e� D 12

eD 23
eD 1(23)

in SAut3 := exp(sder3) � TAut 3 : (52)

This is Equation (26) of [AT ], up to re-numbering strands 1 and 2 as 2 and 138. To prove
it in our context, we need the following fact from [AT ] (their Theorem 7.5, Propositions 9.2
and 9.3 combined):

Fact 6.14. If � 0 = e� 0
is an associator inSAut3 so that j (� 0) = 0 39 then Equation (52) has

a solution F = eD 21
which is also a solution to the KV equations, and all such solutions are

symmetric (i.e. verify the Twist Equation (50)). �

To use this fact, we need to show that �0 := �� (�) is an associator in SAut 3 and that
j (� 0) = j (�� (�)) = 0. The latter is the unitarity of � which is already proven. The f ormer
follows from the fact that � is an associator and the fact (Theorem5.20) that the image
of �� is contained insder (ignoring degree 1 terms, which are not present in an associator
anyway). �

=Z u
e� c=4

� 1=2

Proof of commutativity of (48) for the balloon and the noose.
Connecting the top and bottom end of the noose picture
creates a \dumbbell graph", andZ old of the dumbbell is
a � placed on each of the circles with nothing on the line
connecting them. Applying the vertex normalizations and the� � 1 normalization on the long
strand, we obtain that Z u of the noose has chords only on the circle, namelye� c=4� 1=2, as
shown on the right. We leave it to the reader to check this, keeping inmind the fact that
in A u, any chord diagram with chord endings on a bridge in the graph (i.e., anedge whose
deletion increases the number of connected components) is zero.Also keep in mind that the
bottom vertex is not a positive vertex: the orientation of the left strand is switched, so we
have to apply an orientation switch operation of that strand to thevalue of the normalization.
As S(� ) = � , this only a�ects the sign of the exponent. A similar computation canbe done
for the balloon, where the result isec=4� 1=2 on the circle.

=Z w
V

S1(V )

Z w on the other hand assigns aV value to each vertex, one
of which has its �rst strand orientation switched as shown in
the �gure on the right. The top copy of V appearing there
cancels: pushing arrow heads and tails onto the noose using
VI results in two terms that have opposite signs but are otherwise equal (we can slide arrow

38Note that in [ AT ] \� 0 is an associator" means that � 0 satis�es the pentagon equation, mirror skew-
symmetry, and positive and negative hexagon equations in the space SAut3. These equations are stated in
[AT ] as equations (25), (29), (30), and (31), and the hexagon equations are stated with strands 1 and 2
re-named to 2 and 1 as compared to [Dr2] and [BND1]. This is consistent with F = eD 21

.
39The condition j (� 0) = 0 is equivalent to the condition � 2 KRV 0

3 in [AT ]. The relevant de�nitions in
[AT ] can be found in Remark 4.2 and at the bottom of page 434 (before Section 5.2).
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=

S1(V )

S2(V� ) e
D A

2

e� D A
2

� (� )

Figure 27. The product equation.

heads/tails across theS1(V) term as anything concentrated on one strand is a combination
of wheels andDA arrows, and we can slide across these using

�!
4T/TC).

Hence, what we need to show is that the two equations below hold, arising from the noose
and the balloon, respectively.

==S1(V ) S2(V� )
� (� )1=2

e
� D A

2

e
D A

2

� (� )1=2

We will start by proving that the product of these two equations, shown in Figure 27, is
satis�ed. Note that any local (small) arrow diagram on a single strand is central in A sw(" n ):
a diagram on one strand can be written in terms of only wheels and isolated arrows, both
of which commute with both arrow heads and tails by

�!
4T and T C. Hence we can slide and

merge the� (� ) terms as we wish.
To show that the product equation is satis�ed, consider Figure28. We start with the wTF

on the top left and either applyZ w followed by unzipping the edges marked by stars, or �rst
unzip the same edges and then applyZ w. We use that by the compatibility with associators,
Z w of an associator is� (�). Since Z w is homomorphic, the two results in the bottom right
corner must agree. (Note that two of the four unzips we performare \illegal", as the strand
directions don't match. However, it is easy to get around this issue by inserting small bubbles
at the top of the balloon and the bottom of the noose, and switchingthe appropriate edge
orientations before and after the unzips. TheZ w-value of a bubble is 1, hence this will not
e�ect the computation and so we ignore the issue for simplicity.)

We conclude that to prove that the product equation of Figure27 is satis�ed, it is enough
to show that the left equality of Figure29 holds. Note that in Figure 29 the inverse is taken
in A sw(" 1). As both sides of this equation are in the image of� , it is enough to prove the
pre-image of the equation inA u, as shown on the right of Figure29. That equation in turn
follows from an argument identical to that of Figure28 but carried out in sKTG and A u,
using that Z u is homomorphic with respect to tangle insertion. This �nishes the proof that
the product of the noose and balloon equations holds.

What remains is to show that the noose and balloon equations hold individually. In light
of the results so far, it is su�cient to show that

= �e� D A .S2(V� )S1(V ) (53)
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*
*

*
*

*
*

*
*

unzip *

unzip *

Z w

Z w

� (�)

S2(V� )

S1(V )

� (�)

S2(V� )

S1(V )

Figure 28. Unzipping a noose and a balloon to a squiggle.

� 1 � 1

= =�� (�)
�

e� D A
2 e� c

4

� (� ) e
D A

2 e
c
4

Figure 29. The reduced noose and balloon equation.

As stated in Theorem3.16, A sw(" 1) is the polynomial algebra freely generated by the arrow
DA and wheels of degrees 2 and higher. SinceV is group-like, the \one-strand version"
of S1(V) (resp. S2(V� )) shown in Equation (53) is an exponential eA 1 (resp. eA 2 ) with
A1; A2 2 A sw(" 1). We want to show that eA 1 = eA 2 � e� D A , equivalently that A1 = A2 � DA .

In degree 1, this can be done by explicit veri�cation. LetA � 2
1 and A � 2

2 denote the degree
2 and higher parts ofA1 and A2, respectively. We claim that capping the strand at both its
top and its bottom takes eA 1 to eA � 2

1 , and similarly eA 2 to eA � 2
2 . (In other words, capping

kills arrows but leaves wheels un-changed.) This can be proven similarlyto the proof of
Lemma 6.6, but using

F 0 :=
1X

k1 ;k2=0

(� 1)k1+ k2

k1!k2!
D k1+ k2

A Sk1
L Sk2

R
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Z w

Z w u

u

C

S1(V )

C

S2(V� )

CS(C)

S1(V )

CS(C)

S2(V� )

Figure 30. The proof of Equation (54). Note that the unzips are \illegal", as the strand
directions don't match. This can be �xed by inserting a small bubble at the bottom of the
noose and doing a number of orientation switches. As this doesn't change the result or the
main argument, we suppress the issue for simplicity. Equation(54) is obtained from this
result by multiplying byS(C)� 1 on the bottom and byC � 1 on the top.

in place ofF in the proof. What we want to show, then, is that

= .S2(V� )S1(V) (54)

The proof of this is shown in Figure30. �
Having veri�ed the commutativity of ( 48) for all the generators ofsKTG appearing in

Proposition 6.11, we have concluded the proof of Theorem6.12. �
Recall from Section5.3 that there is no commutative square linkingZ u : uT ! A u and

Z w : wT ! A sw, for the simple reason that the Kontsevich integral for tanglesZ u is not
canonical, but depends on a choice of parenthesizations for the \bottom" and the \top"
strands of a tangleT. Yet given such choices, a tangleT can be \closed" as within the proof
of Proposition 6.11into an sKTG which we will denoteG. For G a commutativity statement
does hold as we have just proven. TheZ u and Z w invariants of T and of G di�er only by
a number of vertex-normalizations and vertex-values on skeleton-trees at the bottom or at
the top of G, and using VI, these values can slide so they are placed on the original skeleton
of T. This is summarized as the following proposition:

Proposition 6.15. Let n and n0 be natural numbers. Given choicesc and andc0 of paren-
thesizations ofn and n0 strands respectively, there exists invertible elementsC 2 A sw(" n )
and C0 2 A sw(" n0) so that for any u-tangleT with n \bottom" ends and n0 \top" ends we
have

�Z u
c;c0(T) = C � 1Z w(aT)C0;

whereZ u
c;c0 denotes the usual Kontsevich integral ofT with bottom and top parenthesizations

c and c0.

For u-braids the above proposition may be stated withc = c0 and then C and C0 are the
same.
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7. Odds and Ends

7.1. What means \closed form"? As stated earlier, one of my hopes for this paper is that
it will lead to closed-form formulae for tree-level associators. Thenotion \closed-form" in
itself requires an explanation (see footnote3). Is ex a closed form expression for

P 1
n=0

xn

n! , or
is it just an arti�cial name given for a transcendental function we cannot otherwise reduce?
Likewise, why not call some tree-level associator �tree and now it is \in closed form"?

For us, \closed-form" should mean \useful for computations". More precisely, it means
that the quantity in question is an element of some spaceA cf of \useful closed-form thingies"
whose elements have �nite descriptions (hopefully, �nite and short) and on which some oper-
ations are de�ned by algorithms which terminate in �nite time (hopefully, �nite and short).
Furthermore, there should be a �nite-time algorithm to decide whether two descriptions of
elements ofA cf describe the same element40. It is even better if the said decision algorithm
takes the form \bring each of the two elements in question to a canonical form by means of
some �nite (and hopefully short) procedure, and then compare the canonical forms verba-
tim"; if this is the case, many algorithms that involve managing a large number of elements
become simpler and faster.

Thus for example, polynomials in a variablex are always of closed form, for they are
simply described by �nite sequences of integers (which in themselvesare �nite sequences
of digits), the standard operations on polynomials (+,� , and, say, d

dx ) are algorithmically
computable, and it is easy to write the \polynomial equality" computer program. Likewise
for rational functions and even for rational functions ofx and ex .

On the other hand, general elements � of the spaceA tree(" 3) of potential tree-level asso-
ciators are not closed-form, for they are determined by in�nitely many coe�cients. Thus
iterative constructions of associators, such as the one in [BN3] are computationally useful
only within bounded-degree quotients ofA tree(" 3) and not as all-degree closed-form formulae.
Likewise, \explicit" formulae for an associator � in terms of multiple � -values (e.g. [LM1])
are not useful for computations as it is not clear how to apply tangle-theoretic operations
to � (such as � 7! � 1342 or � 7! (1 
 � 
 1)�) while staying within some space of \objects
with �nite description in terms of multiple � -values". And even if a reasonable space of such
objects could be de�ned, it remains an open problem to decide whether a given rational
linear combination of multiple � -values is equal to 0.

7.2. Arrow Diagrams to Degree 2. Just as an example, in this section we study the
spacesA � (" ), A s� (" ), A r � (" ), P � (" ), A � (
 ), A s� (
 ), and A r � (
 ) in degreesm � 2 in
detail, both in the \v" case and in the \w" case (the \u" case has been known since long).

7.2.1. Arrow Diagrams in Degree 0.There is only one degree 0 arrow diagram, the empty
diagramD0 (see Figure31). There are no relations, and thusf D0g is the basis of allG0A � (" )
spaces and its obvious closure, the empty circle, is the basis of allG0A � (
 ) spaces.D0 is
the unit 1, yet � D0 = D0 
 D0 = 1 
 1 6= D0 
 1 + 1 
 D0, so D0 is not primitive and
dim G0P � (" ) = 0.

40In our context, if it is hard to decide within the target space of an invariant whether two elements are
equal or not, the invariant is not too useful in deciding whether two knotted objects are equal or not.
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D 3 =
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D 6 =

D 7 =

D 8 =

D 9 =

D 10 =

D 11 =

D 12 =

Figure 31. The 15 arrow diagrams of degree at most 2.

7.2.2. Arrow Diagrams in Degree 1.There is only two degree 1 arrow diagrams, the \right
arrow" diagram DR and the \left arrow" diagram DL (see Figure31). There are no 6T
relations, and thus f DR ; DL g is the basis ofG1A � (" ). Modulo RI, DL = DR and hence
DA := DL = DR is the single basis element ofG1A s� (" ). Both DR and DL vanish modulo FI,
so dimG1A r � (" ) = dim G1A r � (
 ) = 0. Both DR and DL are primitive, so dimG1P � (" ) = 2.
Finally, the closures �DR and �DL of DR and DL are equal, soG1A s� (
 ) = G1A � (
 ) =
h�DR i = h�DL i = h�DA i .

7.2.3. Arrow Diagrams in Degree 2.There are 12 degree 2 arrow diagrams, which we denote
D1; : : : ; D12 (see Figure31). There are six 6T relations, corresponding to the 6 ways of
ordering the 3 vertical strands that appear in a 6T relation (see Figure3) along a long
line. The ordering (ijk ) becomes the relationD3 + D9 + D3 = D6 + D3 + D6. Likewise,
(ikj ) 7! D6 + D1 + D11 = D3 + D5 + D1, (jik ) 7! D10 + D2 + D6 = D2 + D5 + D3,
(jki ) 7! D4 + D7 + D1 = D8 + D1 + D11, (kij ) 7! D2 + D7 + D4 = D10 + D2 + D8,
and (kji ) 7! D8 + D4 + D8 = D4 + D12 + D4. After some linear algebra, we �nd that
f D1; D2; D6; D8; D9; D11; D12g form a basis ofG2A v(" ), and that the remaining diagrams
reduce to the basis as follows:D3 = 2D6 � D9, D4 = 2D8 � D12, D5 = D9 + D11 � D6,
D7 = D11 + D12 � D8, and D10 = D11. In G2A sv(" ) we further have that D5 = D6, D7 = D8,
and D9 = D10 = D11 = D12, and so G2A sv(" ) is 3-dimensional with basisD1, D2, and
D3 = : : : = D12. In G2A rv (" ) we further have that D5� 12 = 0. Thus f D1; D2g is a basis of
G2A rv (" ).

There are 3 OC relations to write forG2A w(" ): D2 = D10, D3 = D6, and D4 = D8.
Along with the 6T relations, we �nd that f D1; D3 = D6 = D9; D2 = D5 = D7 = D10 =
D11; D4 = D8 = D12g is a basis ofG2A w(" ). Similarly f D1; D2 = : : : = D12g is a basis of the
two-dimensionalG2A sw(" ). When we mod out by FI, only one diagram remains non-zero in
G2A rw (" ) and it is D1.

We leave the determination of the primitives and the spaces with a circle skeleton as an
exercise to the reader.
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8. Glossary of notation

Greek letters, then Latin, then symbols:

� maps A u ! A v or A u ! A w 2.5.5
� cloning, co-product 2.5.1.2, 4.2
� Satoh's tube map 3.1.1
� A a formal DA 3.8
� inversion, antipode 2.5.1.1
� an inclusion wB n ! wB n+1 2.2.3
� interpretation map 3.8, 3.8.2
� inclusion trn ! P w(" n ) 5.2
� a formal EZ 3.8
� the invariant of the unknot 6.6
� i the generators ofFn 2.2.3
� the projection Pw(" n ) ! an � tdern 5.2
� a virtual surface 3.1.1
� i a crossing between adjacent strands2.1.1
� ij strand i crosses over strandj 2.1.2
& the skeleton morphism 2.1.1
� log of an associator 6.6
� an associator 6.6
(' i ) a basis ofg� 3.6
 � \operations" 4.1
! 1 a formal 1-wheel 3.8

an n-dimensional Abelian Lie algebra 5.2
A a candidate projectivization 4.3
A (G) associated graded ofG 2.3.2
A sv Dv mod 6T, RI 5.1
A sw Dw mod

�!
4T, TC, RI 5.1

A sw proj wTF o 6.2
A sw proj wTF 6.5.2
A (s)w A w and/or A sw 6.2
A u chord diagrams mod rels for KTGs 6.6
A v Dv mod 6T 5.1
A w Dw mod

�!
4T, TC 5.1

A w proj wTF o without RI 6.2
A � (" n ) A � for pure n-tangles 5.2
A �

n Dv
n mod relations 2.3.1

A � t A � allowing trivalent vertices 3.5
A � (" ) Dv(" ) mod relations 3.2
A � (
 ) A � (" ) for round skeletons 3.3
A u usual chord diagrams 3.9
A(K ) the Alexander polynomial 3.7
Ae 1D orientation reversal 6.1.3
�!
AS arrow-AS relations 3.5
Ass associative words 5.2
Ass+ non-empty associative words 5.2

a maps u ! v or u ! w 2.5.5
aij an arrow from i to j 2.3.1
Bw unitrivalent arrow diagrams 3.5
Bw

n n-coloured unitrivalent arrow
diagrams 5.2

B the matrix T(exp(� xS) � I ) 3.8
bk

ij structure constants of g� 3.6
C the invariant of a cap 6.3
CC the Commutators Commute relation 3.5
CP the Cap-Pull relation 6.1.2, 6.2
CW Cap-Wen relations 6.5.1
c a chord in A u 6.6
der Lie-algebra derivations 5.2
Dv, Dw arrow diagrams for v/w-tangles 5.1
Dv

n arrow diagrams for braids 2.3.1
D � t D � allowing trivalent vertices 3.5
Dv(" ) arrow diagrams long knots 3.2
DA either DL or DR 3.5
DL left-going isolated arrow 3.5
DR right-going isolated arrow 3.5
div the \divergence" 5.2
dk strand deletion 2.5.1.4
di the direction of a crossing 3.7
E the Euler operator 3.8
~E the normalized Euler operator 3.8
F a map A w ! A w 6.2
F the main [AT ] unknown 6.4
FI Framing Independence 3.3
FR Flip Relations 6.5.1, 6.5.2
Fn the free group 2.2.3
FAn the free associative algebra 2.5.1.5
�l a �ltered structure 4.3
g a �nite-dimensional Lie algebra 3.6
Gm degreem piece 2.3.1
I augmentation ideal 2.3.2, 4.2
I g g� o g 3.6
IAM In�nitesimal Alexander

Module 3.8, 3.8.2
IAM 0 IAM , before relations 3.8.2
���!
IHX arrow-IHX relations 3.5
iu an inclusion Fn ! wB n+1 2.2.3
J a map TAut n ! exp(trn ) 5.2
j a map TAut n ! trn 5.2
Ku usual knots 3.9
KTG Knotted Trivalent Graphs 6.6
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lien free Lie algebra 5.2
l a map tdern ! P w(" n ) 5.2
M the \mixed" move 3.1
O an \algebraic structure" 4.1
OC the Overcrossings Commute relation2.2
Pw

n primitives of Bw
n 5.2

P � (" ) primitives of A � (" ) 3.2
P � (" n ) primitives of A � (" n ) 5.2
PvB n the group of pure v-braids 2.1.1
PwB n the group of pure w-braids 2.2
proj projectivization 4.2
R the relations in IAM 3.8.2
R Z ( ! ) 2.4
R the ring Z[X; X � 1] 3.8.2
R1 the augmentation ideal of R 3.8.2
R the invariant of a crossing 6.3
RI Rotation number Independence 3.2
R123 Reidemeister moves 3.1
R4 a Reidemeister move for foams/graphs

6.1.2
R1s the \spun" R1 move 3.1
sder special derivations 5.3
S the circuit algebra of skeletons 4.4
SAutn the group exp(sdern ) 6.6
S(K ) a matrix of signs 3.7
Sk complete orientation reversal 5.5
Se complete orientation reversal 6.1.3
Sn the symmetric group 2.1.1
���!
ST U arrow-STU relations 3.5
si a virtual crossing between adjacent

strands 2.1.1
si the sign of a crossing 3.7
sKTG signed long KTGs 6.6
sl self-linking 3.1
TV Twisted Vertex relations 6.5.1
tder tangential derivations 5.2
trn cyclic words 5.2
tr s

n cyclic words mod degree 1 5.2
T w

g a map A w ! U (I g) 3.6
TAut n the group exp(tdern ) 5.2
TC Tails Commute 2.3.1
T(K ) the \trapping" matrix 3.7
U universal enveloping algebra 3.6
UC Undercrossings Commute 2.2

u a map tdern ! P w(" n ) 5.2
ue strand unzips 6.1.3
uk strand unzips 2.5.1.6
uB n the (usual) braid group 2.1.1
uT u-tangles 5.3
V a �nite-type invariant 2.3.1
V , V + the invariant of a (positive) vertex 6.3
V � the invariant of a negative vertex 6.3
II Vertex Invariance 6.2
VR123 virtual Reidemeister moves 3.1
vB n the virtual braid group 2.1.1
vT v-tangles 5.1
vT(" n ) pure n-component v-tangles 5.2
W Z (w) 6.5.3
Wm weight system 2.3.1
W 2 Wen squared 6.5.1
w the map xk 7! wk 3.7
w the wen 6.5
wi 
ip ring # i 2.2.1
wk the k-wheel 3.5
wB n the group of w-braids 2.2
wT w-tangles 5.1
wT(" n ) pure n-component w-tangles 5.2
wTF w-tangled foams with wens 6.5
wTF o orientable w-tangled foams 6.1
X an indeterminate 3.7
X n ; ~X n moduli of horizontal rings 2.2.1
x i the generators ofFAn 2.5.1.5
(x j ) a basis ofg 3.6
Yn ; ~Yn moduli of rings 2.5.4
Z expansions throughout
ZA an A-expansion 4.3
Z u the Kontsevich integral 3.9

4T 4T relations 6.6�!
4T

�!
4T relations 2.3.1

6T 6T relations 2.3.1
Q ; R semi-virtual crossings 2.3.1
� right action 2.2.3
" a \long" strand throughout
" the quandle operation 4.2
" 2 doubled " 4.2
� the adjoint on A w(" n ) 5.2
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