1. Show that \(\wedge \) is a commutative and associative operation on \(A^*(V) \), where \(V \) is a finite dimensional vector space.

2. Show that the two definitions given in class for the smoothness of a differential form \(\omega \in \Omega^p(M) \) are equivalent.

3. (The Hodge operator.) Let \(V \cong \mathbb{R}^n \). Suppose that \(V \) is equipped with the additional data of:
 (i) A non degenerate symmetric bilinear form \(B: V \times V \to \mathbb{R} \).
 (ii) A nonzero top form \(\nu \in A^n(V) \).

 It is a standard fact that \(B \) induces an isomorphism \(V \cong V^* \), hence \(V^* \) is also naturally equipped with a non degenerate symmetric bilinear form also denoted \(B \), for obvious reasons.

 (a) Show that \(B \) induces a symmetric bilinear form \(B^{\otimes k} \) on \(V^{\ast \otimes k} \) which is unique under the requirement that for 1-forms \(\omega_1, \ldots, \omega_k \) and \(\eta_1, \ldots, \eta_k \)

 \[
 B^{\otimes k}(\omega_1 \otimes \cdots \otimes \omega_k, \eta_1 \otimes \cdots \otimes \eta_k) = \prod_{i=1}^k B(\omega_i, \eta_i).
 \]

 Recall that \(A^k(V) \) is a subspace of \(V^{\ast \otimes k} \), hence \(B^{\otimes k} \) induces a bilinear form on \(A^k(V) \) by

 \[
 B^{\otimes k} = \frac{1}{k!} B^{\otimes k} |_{A^k(V)}
 \]

 Show that \(B^{\wedge k} \) is non degenerate (and symmetric). Show further, that if \(x_1, \ldots, x_n \) is a basis for \(V \), then \(B^{\otimes n}(dx_1 \wedge \cdots \wedge dx_n, dx_1 \wedge \cdots \wedge dx_n) = \det \{ B(dx_i, dx_j) \} \). For this reason, we usually assume that \(B^{\otimes n}(\nu, \nu) = \pm 1 \).

 (b) Use \(\nu \) to canonically identify \(A^n(V) \) with \(\mathbb{R} \). Then, every \(\alpha \in A^{n-k}(V) \) induces a linear functional \(\bar{\alpha}^{\otimes k} \to \mathbb{R} \) via the assignment \(\eta^\otimes k \mapsto \eta^\otimes k \wedge \alpha \). Show that this induces a canonical isomorphism \(A^{n-k}(V) \cong A^k(V)^* \).

 (c) Deduce that for every \(\alpha \in A^k(V) \) there exists a unique \((n-k)\)-form \(\star \alpha \) satisfying the following equation for every \(k \)-form \(\eta \):

 \[
 \eta \wedge \star \alpha = B^{\otimes k} (\eta, \alpha) \nu.
 \]

 Show that \(\star \) is a linear isomorphism \(A^k(V) \cong A^{n-k}(V) \). Show also that if one chooses \(\nu \) as in the end of (a), then, up to sign

 \[
 B^{\wedge k}(\alpha, \beta) = B^{n-k}(\alpha \wedge \beta).
 \]

 (d) Let \(V = \mathbb{R}^3 \) be equipped with the usual inner product and top form. Let \(\alpha, \beta \) be 1-forms and compute \(\star (\alpha \wedge \beta) \). Is this result familiar?

 (e) Let \(V = \mathbb{R}^4 \) be equipped with the Lorenz form \(B(x, y) = x_1 y_1 + x_2 y_2 + x_3 y_3 - x_4 y_4 \) and the obvious top form. Compute \(\star \).