

Edges: All fillings of $I \times(I)=$
Where does it live? In $\operatorname{Kom}(\operatorname{Mat}(\langle\operatorname{Cob}\rangle /\{S, T, 4 T u\})) /$ homotopy :

Kom: Complexes Cob: Cobordisms

<...>: Formal lin. comb. Mat: Matrices
S :

Jones/Kauffman?

A TQFT takes it to a
complex whose graded
$V^{\otimes 3} \longrightarrow\left(V^{\otimes 2} \oplus V^{\otimes 2} \oplus V^{\otimes 2}\right)\{1\} \longrightarrow(V \oplus V \oplus V)\{2\} \longrightarrow V^{\otimes 2}\{3\}$

Euler characteristic is the Jones polynomial.
The key point:

$$
\begin{aligned}
\longrightarrow & V=\left\langle v_{+}, v_{-}\right\rangle, \quad \operatorname{deg} v_{ \pm}= \pm 1 \\
& q-\operatorname{dim} V=q+q^{-1}
\end{aligned}
$$

Why is it interesting?

1. It is stronger than the Jones polynomial.
2. It is less understood than the Jones polynomial:
a. Does it have a topological interpretation?
b. Does it have a "physical" interpretation?
c. Does it also work for other quantum invariants?
d. Does it work for manifolds and for knots in manifolds?
e. Is there a relation with finite-type invariants?
f. Does it work for "virtual knots"?
3. Jacobsson, Khovanov: It is a functor!!! (from knots and cobordisms to complexes and morphisms)
See
http://www.math.toronto.edu/~drorbn/papers/Cobordism
 for $\mathrm{R}-\mathrm{II}$ and $\mathrm{R}-\mathrm{III}$)

A functor?

