Dror Bar-Natan: Talks: Louvain-1506:

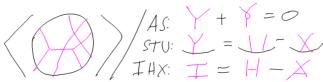
 $\omega := \text{http:drorbn.net/Louvain-1506}$ 

number

## Day 3: Chern-Simons, Gaussian Integration, Feynman Diagrams

Cosmic Coincidences

Recall.  $\mathcal{K} = \{\text{knots}\}, \mathcal{A} := \text{gr}\mathcal{A} = \mathcal{D}/\text{rels} =$ 



Seek  $Z: \mathcal{K} \to \hat{\mathcal{A}}$  such that if K is n-singular,  $Z(K) = D_k + \dots$ 

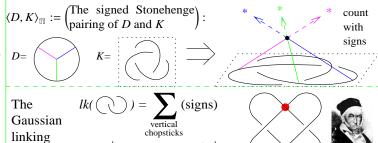
$$\mathcal{K} \xrightarrow[\text{equations in finitely many unknowns}]{\text{Z: high algebra}} \mathcal{A} \coloneqq \text{gr} \mathcal{K} \xrightarrow[\text{low algebra: pictures represent formulas}]{\text{given a "Lie" algebra g}}} \mathcal{U}(g)$$

$$D = \left( \begin{array}{c} \\ \\ \\ \\ \end{array} \right) \Rightarrow \left( \begin{array}{c} \\ \\ \\ \\ \end{array} \right) \left$$

**Theorem.** Given a parametrized knot  $\gamma$  in  $\mathbb{R}^3$ , up to renormalizing the "framing anomaly",

$$Z(\gamma) = \sum_{D \in \mathcal{D}} \frac{C(D)D}{|\operatorname{Aut}(D)|} \int_{C_D(\mathbb{R}^3, \gamma)} \bigwedge_{e \in E(D)} \phi_e^* \omega \in \mathcal{A}$$

is an expansion. Here  $\mathcal{D}$  is the set of all "Feynman diagrams", E(D) is the set of internal edges (and chords) of D,  $C_D(\mathbb{R}^3, \gamma)$ and  $\omega$  is a volume form on  $S^2$ .



The generating function of all cosmic coincidences:

$$Z(K) := \lim_{N \to \infty} \sum_{3 \text{-valent } D} \frac{\langle D, K \rangle_{\parallel} D}{2^c c! \binom{N}{e}} \in \mathcal{A}$$



Claim. It all comes from the Chern-Simons-Witten theory,

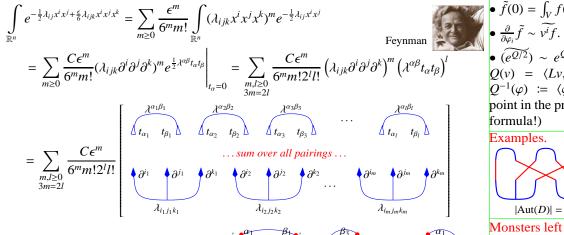
$$\int_{A \in \Omega^{1}(\mathbb{R}^{3},\mathfrak{g})} \mathcal{D}A \operatorname{tr}_{R} hol_{\gamma}(A) \exp \left[ \frac{ik}{4\pi} \int_{\mathfrak{P}^{3}} \operatorname{tr} \left( A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right) \right]$$



where  $\Omega^1(\mathbb{R}^3,\mathfrak{g})$  is the space of all g-valued 1-forms on  $\mathbb{R}^3$  (really, connections), k is some large constant, R is some representation of  $\mathfrak{g}$ and  $\operatorname{tr}_R$  is trace in R, and  $\operatorname{hol}_{\gamma}(A)$  is the holonomy of A along  $\gamma$ .

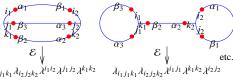
References. Witten's Quantum field theory and the Jones is the configuration space of placements of D on/around  $\gamma$ , polynomial, Axelrod-Singer's Chern-Simons perturbation the- $\phi: C_D(\mathbb{R}^3, \gamma) \to (S^2)^{\tilde{E}(D)}$  is the "direction of the edges" map, O(D) I-II, D. Thurston's arXiv:math.QA/9901110, Polyak's arXiv:math.GT/0406251, and my videotaped 2014 class  $\omega$ /AKT.

Gaussian Integration.  $(\lambda_{ij})$  is a symmetric positive definite matrix and  $(\lambda^{ij})$  is its inverse, The Fourier Transform. and  $(\lambda_{ijk})$  are the coefficients of some cubic form. Denote by  $(x^i)_{i=1}^n$  the coordinates of  $(F: V \to \mathbb{C}) \Rightarrow (\tilde{f}: V^* \to \mathbb{C})$   $\mathbb{R}^n$ , let  $(t_i)_{i=1}^n$  be a set of "dual" variables, and let  $\partial^i$  denote  $\frac{\partial}{\partial t_i}$ . Also let  $C := \frac{(2\pi)^{n/2}}{\det(\lambda_{ij})}$ . Then V is  $\tilde{F}(\varphi) := \int_V f(v)e^{-i\langle \varphi, v \rangle} dv$ . Some facts:



$$= \sum_{\substack{m,l \ge 0 \\ 3m=2l}} \frac{C\epsilon^m}{6^m m! 2^l l!} \sum_{\substack{m\text{-vertex fully marked} \\ \text{Feynman diagrams } D}} \mathcal{E}(D)$$

 $\sum_{\text{unmarked Feynman}} \frac{\epsilon^{m(D)} \mathcal{E}(D)}{|\text{Aut}(D)|}.$ 



Claim. The number of pairings that produce a given unmarked Feynman diagram D is  $\frac{6^m m! 2^l l!}{|Aut(D)|}$ 

**Proof of the Claim.** The group  $G_{m,l} := [(S_3)^m \rtimes S_m] \times [(S_2)^l \rtimes S_l]$  acts on the set of pairings, the action is transitive on the set of pairings P that produce a given D, and the stabilizer of any given P is Aut(D).

- $\bullet \ \tilde{f}(0) = \int_{V} f(v) dv.$
- $(\widetilde{e^{Q/2}}) \sim e^{Q^{-1}/2}$ , where Q is quadratic,  $Q(v) = \langle Lv, v \rangle$  for  $L: V \rightarrow V^*$ , and  $Q^{-1}(\varphi) := \langle \varphi, L^{-1}\varphi \rangle$ . (This is the key point in the proof of the Fourier inversion formula!)

## Examples. $|\operatorname{Aut}(D)| = 12$ $|\operatorname{Aut}(D)| = 8$

## Monsters left to Slay.

- Convergence.
- Proof of invariance.
- The framing anomaly.
- Universallity.
- $d^{-1}$  doesn't really exist, Faddeev-Popov, determinants, ghosts, Berezin integration.
- Assembly.