

Homomorphic expansions for a filtered algebraic structure \mathcal{K} :

$$
\begin{array}{cccccccc}
\mathrm{ops}^{\mathcal{C}} \mathcal{K}= & \mathcal{K}_{0} & \supset & \mathcal{K}_{1} & \supset & \mathcal{K}_{2} & \supset & \mathcal{K}_{3} \\
\Downarrow & & & & \downarrow_{Z} & &
\end{array}
$$

$\operatorname{ops} \sigma$ gr $\mathcal{K}:=\mathcal{K}_{0} / \mathcal{K}_{1} \oplus \mathcal{K}_{1} / \mathcal{K}_{2} \oplus \mathcal{K}_{2} / \mathcal{K}_{3} \oplus \mathcal{K}_{3} / \mathcal{K}_{4} \oplus \ldots$ An expansion is a filtration respecting $Z: \mathcal{K} \rightarrow \operatorname{gr} \mathcal{K}$ that "covers" the identity on $\operatorname{gr} \mathcal{K}$. A homomorphic expansion is an expansion that respects all relevant "extra" operations.
Filtered algebraic structures are cheap and plenty. In any \mathcal{K}, allow formal linear combinations, let \mathcal{K}_{1} be the ideal generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products").

- Has kinds, objects, operations, and maybe constants.
- Perhaps subject to some axioms.
- We always allow formal linear combinations.

Example: Pure Braids. $P B_{n}$ is generated by $x_{i j}$, "strand i goes around strand j once", modulo "Reidemeister moves". $A_{n}:=\operatorname{gr} P B_{n}$ is generated by $t_{i j}:=x_{i j}-1$, modulo the $4 T$ relations $\left[t_{i j}, t_{i k}+t_{j k}\right]=0$ (and some lesser ones too). Much happens in A_{n}, including the Drinfel'd theory of associators. Our case(s).

$$
\mathcal{K} \underset{\begin{array}{c}
\text { solving finitely many } \\
\text { equations in finitely } \\
\text { many unknowns }
\end{array}}{Z:} \underset{\text { gr }}{\mathcal{K}}: \overline{\mathcal{K}} \xrightarrow[\begin{array}{l}
\text { low algebra: pic- } \\
\text { tures represent } \\
\text { formulas }
\end{array}]{\frac{\text { given a "Lie" }}{\text { algebra } \mathfrak{g}}} \text { " } \mathcal{U}(\mathfrak{g}) \text { " }
$$

\mathcal{K} is knot theory or topology; $\operatorname{gr} \mathcal{K}$ is finite combinatorics: bounded-complexity diagrams modulo simple relations.

A Ribbon 2-Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with $D_{2} \cap \partial B=\partial D_{2}$ modulo isotopies of S alone.
 The w-relations include R234, VR1234, M, Overcrossings Commute (OC) but not UC, $W^{2}=1$, and funny interactions
为 Just for fun.

pansion Z for trivalent w-tangles. In particular, Z should respect $R 4$ and intertwine annulus and disk unzips:

$-$

(2)

(3)

Diagrammatic statement. Let $R=\exp \hat{\wedge} \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that
(1)

Algebraic statement. With $I \mathfrak{g}:=\mathfrak{g}^{*} \rtimes \mathfrak{g}$, with $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow$ $\hat{\mathcal{U}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ the obvious projection, with S the antipode of $\mathcal{U}(I \mathfrak{g})$, with W the automorphism of $\hat{\mathcal{U}}(I \mathfrak{g})$ induced by flipping the sign of \mathfrak{g}^{*}, with $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with $R=e^{r} \in \hat{\mathcal{U}}(I \mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\omega \in \hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ and $V \in \hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2}$ so that
(1) $V(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$
(2) $V \cdot S W V=1$
(3) $(c \otimes c)(V \Delta(\omega))=\omega \otimes \omega$

Unitary statement. There exists $\omega \in \operatorname{Fun}(\mathfrak{g})^{G}$ and an (infinite order) tangential differential operator V defined on $\operatorname{Fun}\left(\mathfrak{g}_{x} \times\right.$ g_{y}) so that
(1) $V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$ (allowing $\hat{\mathcal{U}}(\mathfrak{g})$-valued functions)
(2) $V V^{*}=I$
(3) $V \omega_{x+y}=\omega_{x} \omega_{y}$

Group-Algebra statement. There exists $\omega^{2} \in \operatorname{Fun}(\mathfrak{g})^{G}$ so that for every $\phi, \psi \in \operatorname{Fun}(\mathfrak{g})^{G}$ (with small support), the following holds in $\hat{\mathcal{U}}(\mathfrak{g})$:
$\left(\operatorname{shhh}, \omega^{2}=j^{1 / 2}\right)$

$$
\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x+y}^{2} e^{x+y}=\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y}
$$

w-Jacobi diagrams and $\mathcal{A} . \mathcal{A}^{w}(Y \uparrow) \cong \mathcal{A}^{w}(\uparrow \uparrow \uparrow)$ is

Diagrammatic to Algebraic. With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$, we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

Unitary \Longleftrightarrow Algebraic. The key is to interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differential operators on $\operatorname{Fun}(\mathfrak{g})$:

- $\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator.
- $x \in \mathfrak{g}$ becomes a tangential derivation, in the direction of the action of ad $x:(x \varphi)(y):=\varphi([x, y])$.
- $c: \hat{U}(I \mathfrak{g}) \rightarrow \hat{U}(I \mathfrak{g}) / \mathcal{U}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ is "the constant term". Unitary \Longrightarrow Group-Algebra. $\iint \omega_{x+y}^{2} e^{x+y} \phi(x) \psi(y)$ $=\left\langle\omega_{x+y}, \omega_{x+y} e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle V \omega_{x+y}, V e^{x+y} \phi(x) \psi(y) \omega_{x+y}\right\rangle$ $=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} V \phi(x) \psi(y) \omega_{x+y}\right\rangle=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} \phi(x) \psi(y) \omega_{x} \omega_{y}\right\rangle$ $=\iint \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y} \phi(x) \psi(y)$.
Convolutions and Group Algebras (ignoring all Jacobians). If G is finite, A is an algebra, $\tau: G \rightarrow A$ is multiplicative then $(\operatorname{Fun}(G), \star) \cong(A, \cdot)$ via $L: f \mapsto \sum f(a) \tau(a)$. For Lie (G, \mathfrak{g}),

Convolutions statement (Kashiwara-Vergne). Convolutions of with $L_{0} \psi=\int \psi(x) e^{x} d x \in \hat{\mathcal{S}}(\mathfrak{g})$ and $L_{1} \Phi^{-1} \psi=\int \psi(x) e^{x} \in$ invariant functions on a Lie group agree with convolutions $\hat{\mathcal{H}}(\mathfrak{g})$. Given $\psi_{i} \in \operatorname{Fun}(\mathfrak{g})$ compare $\Phi^{-1}\left(\psi_{1}\right) \star \Phi^{-1}\left(\psi_{2}\right)$ and of invariant functions on its Lie algebra. More accurately, let G be a finite dimensional Lie group and let \mathfrak{g} be its Lie algebra, let $j: \mathfrak{g} \rightarrow \mathbb{R}$ be the Jacobian of the exponential map $\exp : \mathfrak{g} \rightarrow G$, and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\mathfrak{g})$ be given by $\Phi(f)(x):=j^{1 / 2}(x) f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then

$$
\Phi(f) \star \Phi(g)=\Phi(f \star g) .
$$

$\Phi^{-1}\left(\psi_{1} \star \psi_{2}\right)$ in $\hat{\mathcal{U}}(\mathfrak{g}):$
(shhh, $L_{0 / 1}$ are "Laplace transforms") \star in $G: \iint \psi_{1}(x) \psi_{2}(y) e^{x} e^{y}$ \star in $\mathfrak{g}: \iint \psi_{1}(x) \psi_{2}(y) e^{x+y}$ We skipped... • The Alexander • v-Knots, quantum groups and polynomial and Milnor numbers. Etingof-Kazhdan.

- u-Knots, Alekseev-Torossian, - BF theory and the successful and Drinfel'd associators.
religion of path integrals.
- The simplest problem hyperbolic geometry solves. of (Fun $\left.(\mathfrak{g})^{G}, \star\right)$ correspond to coadjoint orbits in \mathfrak{g}^{*}. By averaging representation matrices and using Schur's lemma to replace intertwiners by scalars, to every irreducible representation of G we can assign a character of $\left(\operatorname{Fun}(G)^{G}, \star\right)$.

Measure theoretic statement. Ignoring all ω 's, there exists a measure preserving and orbit preserving transformation T : $\mathfrak{g}_{x} \times \mathfrak{g}_{y} \rightarrow \mathfrak{g}_{x} \times \mathfrak{g}_{y}$ for which $e^{x+y} \circ T=e^{x} e^{y}$.

Alekseev-Torossian statement. There is an element $F \in \mathrm{TAut}_{2}$ with

$$
F(x+y)=\log e^{x} e^{y}
$$

and $j(F) \in \operatorname{im} \tilde{\delta} \subset \operatorname{tr}_{2}$, where for $a \in \operatorname{tr}_{1}$,
$\tilde{\delta}(a):=a(x)+a(y)-a\left(\log e^{x} e^{y}\right)$.
Free Lie statement (Kashiwara-Vergne). There exist conver-
gent Lie series F and G so that with $z=\log e^{x} e^{y}$

$$
x+y-\log e^{y} e^{x}=\left(1-e^{-\operatorname{ad} x}\right) F+\left(e^{\operatorname{ad} y}-1\right) G
$$

$\operatorname{tr}(\operatorname{ad} x) \partial_{x} F+\operatorname{tr}(\operatorname{ad} y) \partial_{y} G=$

$$
\frac{1}{2} \operatorname{tr}\left(\frac{\operatorname{ad} x}{e^{\operatorname{ad} x}-1}+\frac{\operatorname{ad} y}{e^{\operatorname{ad} y}-1}-\frac{\operatorname{ad} z}{e^{\operatorname{ad} z}-1}-1\right)
$$

Δ acts by double and sum, S by reverse and negate.

