Functorification

Chebyshev polynomials

Hermite polynomials

A categorification of the polynomial ring

Radmila Sazdanović joint work with Mikhail Khovanov

University of Pennsylvania

Swiss Knots Lake Thun 05/23/2011

Categorification

Integers \Rightarrow Abelian groups \Rightarrow Abelian categories

Decat Compute the Grothendieck group of abelian category.

Cat Given an abelian group with additional data, such as a collection of its endomorphisms, realize it as a Grothendieck group of some interesting category equipped with exact endofunctors that descend to the endomorphisms.

Goal: Diagrammatic categorification of $\mathbb{Z}[x]$

Hermite polynomials

Algebras with planar interpretation

Group algebra $\mathbb{C}[S_n]$

Hecke algebra H_n

Categorification

Category of Soergel bimodules categorifies $Z[S_n]$ and, considered as a graded category, it gives H_n .

Categorification Z[x]

From algebras to categories

Temperley-Lieb algebra TL_n

TL category

- Objects
 Non-negative integers
- Morphisms n → m Given by plane diagrams with n bottom and m top endpoints i.e. linear combination of planar diagrams over Z[q, q⁻¹] or a field Q(q) up to isotopies.

Subject to isotopy relations & $\bigcirc = q + q^{-1}$

Category as an algebra

Temperley Lieb algebra on *n* strands $TL(n) = Hom_{TL}(n, n)$

TL category can be viewed as algebra without a unit 1 but with system of mutually orthogonal idempotents $1_n \in Hom_{TL}(n, n), \forall n$:

$$TL = \bigoplus_{n,m\geq 0} Hom_{TL}(n,m)$$

Hermite polynomials

Goal: Diagrammatic categorification of Z[x]

- $\mathbb{Z}[x]$ is a ring: we need a monoidal category
- Monomial $x^n \leftrightarrow$ Indecomposable projective module P_n
- Integral inner product $(x^n, x^m) = dimHom(P_n, P_m)$

Rotate diagrams 90° clockwise so that diagrams match left/right action of algebra on itself.

SLarc diagrams

Chebyshev polynomials

Hermite polynomials

SLarc diagrams

 ${}_{n}B_{m}^{-}(k)$ diagrams in ${}_{n}B_{m}^{-}$ of width k

 ${}_{n}B_{m}^{-}(\leq k)$ diagrams in ${}_{n}B_{m}^{-}$ of width less than or equal to k.

SLarc diagrams

If assume $d \in \mathbb{C}$, up to rescaling, the value of the floating arc d can be set to 0 or 1.

- If *d* = 1 we get two orthogonal idempotents, so Hom(1, 1) ≅ C ⊕ C ⇒ semisimple! to be continued....
- Set the value of the floating arc to zero d = 0, get only one idempotent Hom(1, 1) ≅ C[α]/(α²).

SLarc algebra A⁻

k a field and A^- **k**-vector space with the basis B^- . Multiplication:

• generated by the concatenation of elements of B-

- if y ∈ _nB⁻_m, z ∈ _kB⁻_l and m ≠ k, then the concatenation is not defined and we set yz = 0.
- product is zero if the resulting diagram has an arc which is not attached to the lines x = 0 or x = 1, called *floating* arc.

Hermite polynomials

SLarc algebra A⁻

$$A^- = \bigoplus_{n,m \ge 0} {}_nA^-_m$$
 where ${}_nA^-_m$ is spanned by diagrams in ${}_nB^-_m$.

- associative
- A[−] is: non-unital with a system of orthogonal idempotents {1_n}_{n≥0}.

Functorification

Chebyshev polynomials

Hermite polynomials

Examples

Diagrams ${}^{i}b_{n}$ and b_{n}^{i} composed with diagram $a \in B^{-}$. Left multiplication cannot increase width. Functorification

Chebyshev polynomials

Hermite polynomials

Modules over A⁻

Consider left modules *M* over A^- with the property $M = \bigoplus_{n \ge 0} 1_n M$.

Definition

A left A^- -module M is called finitely-generated if and only if it's isomorphic to a quotient of a direct sum of finitely many indecomposable projective modules with finite multiplicities.

Notation

 A^- -mod the category of finitely-generated left A^- -modules

 A^- -pmod the category of finitely-generated projective left A^- -modules.

Projective, standard and simple modules over A^-

 $P_n = A^- 1_n$ indecomposable projective left A^- -modules. Basis: all diagrams in B^- with *n* right endpoints.

 M_n standard module is the quotient of P_n by the submodule spanned by diagrams which have right sarcs. Basis: diagrams in B_n^- with no right sarcs.

L_n simple 1-dim module

Categorification $\mathbb{Z}[x]$
000000
000000000000000000000000000000000000000

Functorification

Chebyshev polynomials

Functorification

Chebyshev polynomials

Categorification ℤ[x]

Functorification

Chebyshev polynomials

Hermite polynomials

Module homomorphisms

Diagrams in ${}_{n}B_{m}^{-}$ constitute a basis for Hom(P_{n}, P_{m}).

Remark All diagrams in B^- except 1_n act trivially on simple module L_n .

Properties

Proposition

 $\operatorname{Hom}_{A^-}(M, N)$ is a finite-dimensional **k**-vector space for any $M, N \in A^-$ -mod.

Corollary

The category A⁻-mod is Krull-Schmidt.

Proposition

Any $P \in A^-$ -pmod is isomorphic to a direct sum $P \cong \bigoplus_{i=0}^{n} P_i^{n_i}$ with the

multiplicities n_i 's being invariants of P.

Proposition

A submodule of a finitely-generated left A⁻-module is finitely-generated.

Corollary

The category A⁻-mod is abelian.

Functorification

Chebyshev polynomials

Hermite polynomials

Grothendieck group/ring

Definition

Grothendieck group $K_0(A)$ of finitely generated projective A-modules is a group generated by symbols of projective modules [*P*], such that

[P] = [P'] + [P"] if $P \cong P' \oplus P"$

Theorem $K_0(A^-)$ is a free group with basis $\{[P_n]\}_{n\geq 0}$.

 $K_0(A^-) \cong \mathbb{Z}[x]$ via $[P_n] \leftrightarrow x^n$.

If a category is monoidal, Grothendieck group becomes a ring.

Categorification ℤ[x]

Monoidal structure on A^- -pmod

Tensor product bifunctor

 $A^--pmod \times A^--pmod \rightarrow A^--pmod$

- $P_n \otimes P_m = P_{n+m}$ and extend to all projective modules
- on basic morphisms of projective modules α : P_n → P_{n'} and β : P_m → P_{m'} by placing α on top of β and then extending it to all morphisms and objects using bilinearity.

Categorification **Z**[*x*]

Relations between P_n and M_n

Left multiplication by a basis vector cannot increase the width $\Rightarrow P_n(\leq m)$ is a submodule of P_n .

 $P_n(\leq m)/P_n(\leq m-1)$ is spanned by diagrams in $P_n(m)$. These diagrams can be partitioned into $\binom{n}{m}$ classes enumerated by positions of the n-m right sarcs.

Categorification $\mathbb{Z}[x]$

Relations between P_n and M_n

In the Grothendieck group of finitely-generated A^- -modules

$$[P_n] = \sum_{m=0}^n \binom{n}{m} [M_m]$$
⁽¹⁾

Categorification ℤ[x] ○○○○○ ○○○○○○●○○○○○○○

Projective resolution of M_m

$$x^{n} = [P_{n}] = \sum_{m=0}^{n} \binom{n}{m} [M_{m}] \leftrightarrow [M_{n}] = \sum_{m \leq n} (-1)^{n+m} \binom{n}{m} [P_{m}]$$

Expect a finite projective resolution of M_m

$$\longrightarrow P_n^{\oplus \binom{m}{n}} \longrightarrow \ldots \longrightarrow P_{m-2}^{\oplus \frac{m(m-1)}{2}} \longrightarrow P_{m-1}^{\oplus m} \longrightarrow P_m \longrightarrow M_m \longrightarrow 0$$

Proposition

The complex with the differential defined above is exact.

Corollary Homological dimension of standard module *M_m* is *m*.

Hermite polynomials

Projective resolutions of M_0 and M_1

$$0 \to P_0 \xrightarrow{\cong} M_0 \to 0$$
$$0 \to P_0 \xrightarrow{\rho_1} P_1 \xrightarrow{\rho_r} M_1 \to 0$$

Resolution of simple modules L_k by M_m

Resolution of simple L_k by standard modules M_m for $m \ge k$:

$$\stackrel{\oplus}{\longrightarrow} \begin{pmatrix} k+m \\ m \end{pmatrix} \stackrel{\oplus}{\longrightarrow} \begin{pmatrix} k+2 \\ 2 \end{pmatrix} \stackrel{\oplus}{\longrightarrow} M_{k+2} \stackrel{\oplus}{\longrightarrow} M_{k+1} \stackrel{d}{\longrightarrow} M_k \stackrel{d}{\longrightarrow} L_k \longrightarrow 0.$$

Hermite polynomials

Projective resolution of simple modules L_k

Lemma Simple modules L_k have infinite homological dimension.

$C(A^{-})$ category of bounded complexes of projective modules modulo chain homotopies

- C(A⁻) is monoidal
- $C(A^{-})$ contains M_n but not L_n .
- $C(A^--pmod) \times C(A^--pmod) \rightarrow C(A^--pmod)$
- $P(M_n) \otimes P(M_m) \cong P(M_{m+n})$
- $M_n \otimes M_m \cong M_{m+n}$, when viewed as objects of $C(A^--pmod)$

 $\begin{array}{l} \mathcal{K}_0(\mathcal{C}(\mathcal{A}^-)) \cong \mathcal{K}_0(\mathcal{A}^-) \\ \mathcal{X} = (\ldots \longrightarrow \mathcal{X}^i \longrightarrow \mathcal{X}^{i+1} \longrightarrow \ldots) \Rightarrow [\mathcal{X}] \longmapsto \sum_{i \in \mathbb{Z}} (-1)^i [\mathcal{X}^i]. \end{array}$

Hermite polynomials

Categorification of polynomial ring $\mathbb{Z}[x]$

$$[P_n] = \sum_{m=0}^n \binom{n}{m} [M_m] \quad \leftrightarrow \quad \mathbf{x}^n = \sum_{m=0}^n \binom{n}{m} (\mathbf{x} - 1)^m$$
$$[M_n] = \sum_{m \le n} (-1)^{n+m} \binom{n}{m} [P_m] \quad \leftrightarrow \quad (\mathbf{x} - 1)^n = \sum_{m \le n} (-1)^{n+m} \binom{n}{m} \mathbf{x}^m$$
$$[L_n] = \sum_{k=0}^\infty (-1)^k \binom{n+k}{k} [M_{n+k}] \quad \leftrightarrow \quad \sum_{k=0}^\infty (-1)^k \binom{n+k}{k} (\mathbf{x} - 1)^{n+k}$$
$$\quad \leftrightarrow \quad \frac{(\mathbf{x} - 1)^n}{\mathbf{x}^{n+1}}.$$

Hermite polynomials

Categorifying multiplication in the ring Z[x]

In
$$K_0(\mathcal{C}(\mathcal{A}^-))$$

 $P(M_n) \otimes P(M_m) \cong P(M_{m+n})$ categorifies multiplication
 $[M_n] \cdot [M_m] = (x-1)^{n+m} = [M_{n+m}]$

Generalization

 \otimes for A^- modules admitting a finite filtration by M_n

- Need to construct and tensor their projective resolutions
- derived tensor product M^ô⊗N has cohomology only in degree zero and H⁰(M^ô⊗N) ≅_{D^b} M^ô⊗N has a filtration by standard modules.

Approximations of identity

 $A^{-}(\leq k)$ spanned by diagrams in B^{-} of width $\leq k$

 $_{k}P = 1_{k}A^{-}$ right projective module

 $_kM$ is spanned by diagrams $_kB^-$ without left sarcs

Lemma $A^{-}(\leq k)/A^{-}(\leq k-1) \cong M_k \otimes_k M$ as an A^{-} -bimodule.

Approximations of identity

Definition

For a given $k \ge 0$ define a functor $F_k : A^- - \text{mod} \to A^- - \text{mod}$ by

 $F_k(M) = A(\leq k) \otimes_{A^-} M$

for any A^- -module M.

Lemma

$$F_{k}(M_{m}) = \begin{cases} M_{m}, & \text{if } m \leq k; \\ 0, & \text{otherwise.} \end{cases}$$
$$F_{k}(P_{n}) = \begin{cases} P_{n}, & \text{if } n \leq k; \\ P_{n}(\leq k), & \text{if } n > k. \end{cases}$$

Proof. $A^-(\leq k) \otimes_{A^-} P_m = A^-(\leq k) \otimes_{A^-} A^- \mathbf{1}_m = A^-(\leq k)\mathbf{1}_m$ Categorification Z[x]

Approximations of identity

On the level of Grothendieck group F_k corresponds to operator $[F_k]$:

$$[F_k][P_n] = \begin{cases} [P_n] = x^n, & \text{if } n \le k;\\ \sum_{m=0}^k \binom{n}{m} [M_m] = \sum_{m=0}^k \binom{n}{m} (x-1)^m, & \text{if } n > k. \end{cases}$$

Lemma $L^{i}F_{k}(M_{m}) = \begin{cases} M_{m}, & \text{if } i = 0, \ k \geq m; \\ 0, & \text{otherwise.} \end{cases}$

[F_k] approximates identity

- for $n \le k$ it is ld on P_n
- for n > k, it is like taking k + 1 terms in the expansion of [P_n] in the basis {[M_m]}_{m≥k}

$$f(x) = \sum_{m \ge 0} a_m (x-1)^m \to \sum_{m=0}^k a_m (x-1)^m$$

Restriction and induction functors

Let $\iota : B \hookrightarrow A$ be a unital inclusion of arbitrary rings A, B.

Ind :
$$B - mod \hookrightarrow A - mod$$
 given by $Ind(M) = A \otimes_B M$
is left adjoint to the restriction functor
 $Hom_A(Ind(M), N) \cong Hom_B(M, Res(N)).$

Non-unital inclusion $\iota(1_B) = e \neq 1_A$, $e^2 = e \in A$ For A-module N define Res(N) = eN with $B \subset eAe$ acting via ι .

$$Ind(M) = A \otimes_B M \cong Ae \otimes_B M \oplus A(1-e) \otimes_B M = Ae \otimes_B M.$$

A similar construction works for non-unital *B* and *A* equipped with systems of idempotents.

Restriction and induction functors on A^-

 $\iota: A^- \hookrightarrow A^-$ induced by adding a straight through line at the top of every diagram

- $d \in {}_{m}B_{n} \Rightarrow \iota(d) \in {}_{m+1}B_{n+1}^{-}.$
- $\{\mathbf{1}_n\}_{n\geq 0} \hookrightarrow \{\mathbf{1}_{n+1}\}_{n\geq 0}$ missing $\mathbf{1}_0$.
- ι gives rise to both induction and restriction functors, with

$$\operatorname{Res}(N)\cong N/1_0N\cong \underset{k>0}{\oplus}1_kN$$

and A^- acting on the left via ι .

Restriction functor on A⁻

Functorification

Figure: (a) is P_{12}^{\emptyset} and (b) is $P_{12}^{(i)}$

Decomposition of P_n as a sum of vector spaces spanned by diagrams of type

- (a) where left sarc is attached to the top left point P_n^{\emptyset}
- (b) where the top left point is connected by larc to the i-th point on the right P_n^i .

Restriction functor on A^-

 $P_n^{(i)} \cong P_{n-i}$

Restriction functor on A^-

•
$$Res(L_n) = L_{n-1}$$
 if $n > 0$ and $Res(L_0) = 0$

•
$$\operatorname{Res}(M_n) \cong M_n \oplus M_{n-1}$$
 for $n > 0$, and $\operatorname{Res}(M_0) \cong M_0$.

•
$$\operatorname{Res}(P_n) \cong \bigoplus_{k=0}^n P_k$$
 for $n > 0$, and $\operatorname{Res}(P_0) \cong P_0$.

On the Grothendieck group, restriction takes:

$$[P_n] = x^n \quad \mapsto \quad \sum_{i=0}^n [P_i] = \sum_{i=0}^n x^i$$
$$[M_n] = (x-1)^n \quad \mapsto \quad [M_i] + [M_{i-1}] = x(x-1)^{n-1}.$$

Induction functor on A^-

- $Ind(P_n) \cong P_{n+1}$ for $n \ge 0$.
- $Ind(M_n) \cong M_n \oplus M_{n+1}$ for $n \ge 0$.

Functorification

Lemma

Higher derived functors of the induction functor applied to a standard module are zero: $L^{i} Ind(M_{n}) = 0$, for every i > 0.

Induction corresponds to the multiplication by *x* as:

$$[P_n] = x^n \quad \mapsto \quad [P_{n+1}] = x^{n+1}$$
$$[M_n] = (x-1)^n \quad \mapsto \quad [M_n] + [M_{n+1}] = x(x-1)^n$$

Bernstein–Gelfand–Gelfand (BGG) reciprocity

• A finite-dimensional A^- -module M: $[M : L_n] = \dim \mathbb{1}_n M$

Functorification

• A finitely-generated A⁻-module M: locally finite-dimensional property:

 $dim(1_n M) < \infty$, for $n \ge 0$

• Multiplicity of L_n in M def. by $[M : L_n] := dim(1_n M)$

$$[M_m : L_n] = \dim(1_n M_m) = \begin{cases} \binom{n}{m}, & \text{for } n \ge m; \\ 0, & \text{if } n < m. \end{cases}$$

Recall
$$[P_n: M_m] = \binom{n}{m}$$
, hence $[P_n: M_m] = [M_m: L_n]$

Chebyshev polynomials of the second kind U_n

Recursive definition $U_{n+1}(x) = xU_n(x) - U_{n-1}(x)$ Initial conditions: $U_0(x) = 1$, $U_1(x) = x$ Inner product $\{U_n\}$ form an orthogonal set on [-1, 1] $(f,g) = \frac{2}{\pi} \int_{-1}^{1} f(x)g(x)\sqrt{1-x^2}dx$ hence

$$(x^n, x^m) = C_{\frac{n+m}{2}}$$

Representations of sI(2)

- All finite dimensional representations of *sl*(2) are completely reducible
- Def. *Rep*(*sl*(2)) the Grothendieck ring of *sl*(2), generated by symbols [*V*] corresponding to representations *V* satisfying:

$$[V \oplus W] = [V] + [W] \tag{2}$$

$$[V \otimes W] = [V] \cdot [W] \tag{3}$$

- Basis: [*V*₀],[*V*₁],..., [*V_n*],...
- Multiplication: 1 = [V₀]

$$[V_n][V_m] = [V_n \otimes V_m] = \sum_{k=|n-m|, parity}^{n+m} [V_k]$$
(4)

Choose a different basis: $1, [V_1], [V_1^{\otimes 2}], \ldots$

 $\begin{aligned} x^n &= [V_1^{\otimes n}] = [V_1]^n \\ \text{Rep}(sl(2)) &\cong \mathbb{Z}[x] \end{aligned}$

Correspondence

Monomials $x^n \leftrightarrows V_1^{\otimes n}$ Chebyshev polynomials $U_n(x) \leftrightarrows V_n$

Examples: $V_1^{\otimes 2} \cong V_2 \otimes V_0$

$$[V_2] = [V_1]^2 - [V_0]$$
$$U_2(x) = x^2 - 1$$

Goal: another categorification of $\mathbb{Z}[x]$

- non-semisimple
- such that $\{x^n\}_{n\geq 0}$, $\{U_n(x)\}_{n\geq 0}$ correspond to natural objects.

 $Hom(V_1^{\otimes n}, V_1^{\otimes m})$ has a pictorial interpretation via Temperley-Lieb algebra and its relatives.

 $V_1^{\otimes 2} \rightarrow V_0$

Functorification

Chebyshev polynomials

Hermite polynomials

= 2 isotopy invariance

$$V_0
ightarrow V_1^{\otimes 2}$$

Quantum deformation $= q + q^{-1}$ Jones polynomial

Another deformation: maximally degenerate non-semisimple.

If
$$\bigcirc = \alpha$$
 then $e = \frac{1}{\alpha}$ \bigcirc $(e^2 = \frac{1}{\alpha^2})$ (\bigcirc) $(e^2 = \frac{1}{\alpha}e$.

is an idempotent since

Remove idempotents: the analogue of $V_1^{\otimes n}$ becomes indecomposable.

Algebra A^c

 ${}_{n}A_{m}^{c}$ a **k**-vector space with basis ${}_{n}B_{m}$.

Algebra A^c

Multiplication: ${}_{n}A_{m}^{c} \times {}_{m}A_{l}^{c} \rightarrow {}_{n}A_{l}^{c}$

Analogous to the SLarc case, on the level of pictures, multiplication is just a horizontal composition of diagrams, when number of endpoints match, satisfying relations:

Functorification

Chebyshev polynomials

Hermite polynomials

 $M_n = \bigoplus_{m \ge 0} 1_m M_n$ where $1_m M_n$ has basis of diagrams in ${}_m B_n^c$ without returns on the right.

Action of A^c : Composition with the additional condition: if a diagram contains right return it equals zero.

On the level of Grothendieck group we have:

$$[M_n] = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \binom{n-k}{k} [P_{n-2k}]$$
$$U_n(x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \binom{n-k}{k} x^{n-2k}$$

$$\begin{array}{rcl} \mathcal{K}_0(\mathcal{A}^c) &\cong & \mathcal{Z}[\mathbf{x}] \\ [\mathcal{P}_n] &= & \mathbf{x}^n \\ [\mathcal{M}_n] &= & \mathcal{U}_n(\mathbf{x}) \end{array}$$

Unlike sl(2) case, where P_n corresponds to $[V_1^{\otimes n}]$, P_n are indecomposable so the category is non-semisimple.

Categorification Z[x]

Hermite Polynomials

There are a few equivalent ways of defining Hermite polynomials:

Rodrigues's representation

$$H_n(x) = (-1)^n e^{x^2/2} \frac{\partial^n}{\partial x^n} e^{-x^2/2}$$

H_n(x) is the unique degree *n* polynomial with the top coefficient one and orthogonal to *x^m* for all 0 ≤ *m* < *n* with respect to the inner product

$$(f,g) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)g(x)e^{-\frac{x^2}{2}}dx$$

• $(x^m, x^n) = (n + m - 1)!!$

 $H_n(x)$ contains only powers of x of the same parity as n. For small values of n the Hermite polynomials are:

$$\begin{array}{rcl} H_0(x) &=& 1,\\ H_1(x) &=& x,\\ H_2(x) &=& x^2-1,\\ H_3(x) &=& x^3-3x,\\ H_4(x) &=& x^4-6x^2+3,\\ H_5(x) &=& x^5-10x^3+15x,\\ H_6(x) &=& x^6-15x^4+45x^2-15. \end{array}$$

$$H_{n}(x) = \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^{k} u_{n,k} x^{n-2k}$$

$$x^{n} = \sum_{k=0}^{\frac{n}{2}} u_{n,k} H_{n-2k}(x).$$
where $u_{n,k} = \binom{n}{n-2k} (2k-1)!! = \frac{n!}{2^{k}k!(n-2k)!}$

Diagrammatics for the categorification of $H_n(x)$

- Each arc is simple, i.e. without self-intersections.
- Each pair of arcs has at most one intersection.
- Allow only isotopies that preserve these conditions and triple intersections of three distinct arcs are allowed during isotopies.

Categorification Z[x]

Categorification of Hermite polynomials

Projective module $P_n \leftrightarrow x^n$ Big standard module $\widetilde{M_n} \leftrightarrow H_n(x)$ Standard module $M_n \leftrightarrow \frac{H_n(x)}{n!}$ Functorification

Chebyshev polynomials

Hermite polynomials

References and future directions

- Generalize to the categorification of other classes of orthogonal polynomials.
- Topological interpretation of the Bernstein–Gelfand–Gelfand reciprocity property
- Find a categorical lifting of more complicated parts of the orthogonal polynomials theory.
- Categorification of Knot and Graph Polynomials and the Polynomial Ring, GWU Electronic dissertation published by ProQuest, 2010 http://surveyor.gelman.gwu.edu/
- arXiv:1101.0293

THANK YOU