A categorification of the polynomial ring

Radmila Sazdanović
joint work with Mikhail Khovanov

University of Pennsylvania

Swiss Knots
Lake Thun
05/23/2011

Categorification

Integers \Rightarrow Abelian groups \Rightarrow Abelian categories
Decat Compute the Grothendieck group of abelian category.
Cat Given an abelian group with additional data, such as a collection of its endomorphisms, realize it as a Grothendieck group of some interesting category equipped with exact endofunctors that descend to the endomorphisms.

Goal: Diagrammatic categorification of $\mathbb{Z}[x]$

Algebras with planar interpretation

Group algebra $\mathbb{C}\left[S_{n}\right]$

$$
\begin{aligned}
T_{i}^{2} & =1 \\
T_{i} T_{j} & =T_{j} T_{i},|i-j|>1 \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1}
\end{aligned}
$$

Hecke algebra H_{n}

$$
\begin{aligned}
T_{i}^{2} & =(q-1) T_{i}+q \\
T_{i} T_{j} & =T_{j} T_{i},|i-j|>1 \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1}
\end{aligned}
$$

Categorification
Category of Soergel bimodules categorifies $Z\left[S_{n}\right]$ and, considered as a graded category, it gives H_{n}.

From algebras to categories

Temperley-Lieb algebra $T L_{n}$

TL category

- Objects Non-negative integers
- Morphisms $n \rightarrow m$ Given by plane diagrams with n bottom and m top endpoints i.e. linear combination of planar diagrams over $Z\left[q, q^{-1}\right]$ or a field $Q(q)$ up to isotopies.

Subject to isotopy relations \& $\square=q+q^{-1}$

Category as an algebra

Temperley Lieb algebra on n strands $\operatorname{TL}(n)=\operatorname{Hom}_{T L}(n, n)$
TL category can be viewed as algebra without a unit 1 but with system of mutually orthogonal idempotents
$1_{n} \in \operatorname{Hom}_{T L}(n, n), \forall n:$

$$
T L=\bigoplus_{n, m \geq 0} \operatorname{Hom}_{T L}(n, m)
$$

Goal: Diagrammatic categorification of $Z[x]$

- $\mathbb{Z}[x]$ is a ring: we need a monoidal category
- Monomial $x^{n} \leftrightarrow$ Indecomposable projective module P_{n}
- Integral inner product $\left(x^{n}, x^{m}\right)=\operatorname{dimHom}\left(P_{n}, P_{m}\right)$

Rotate diagrams 90° clockwise so that diagrams match left/right action of algebra on itself.

SLarc diagrams

${ }_{n} B_{m}^{-} \stackrel{\text { def }}{=}$ set of isotopy classes of planar diagrams

$$
\left|{ }_{n} B_{m}^{-}\right|=\sum_{k=0}^{\min (n, m)}\binom{n}{k}\binom{m}{k}=\binom{n+m}{n} .
$$

SLarc diagrams

${ }_{n} B_{m}^{-}(k)$ diagrams in ${ }_{n} B_{m}^{-}$of width k ${ }_{n} B_{m}^{-}(\leq k)$ diagrams in ${ }_{n} B_{m}^{-}$of width less than or equal to k.

SLarc diagrams

If assume $d \in \mathbb{C}$, up to rescaling, the value of the floating arc d can be set to 0 or 1 .

- If $d=1$ we get two orthogonal idempotents, so $\operatorname{Hom}(1,1) \cong \mathbb{C} \oplus \mathbb{C} \Rightarrow$ semisimple! to be continued....
- Set the value of the floating arc to zero $d=0$, get only one idempotent $\operatorname{Hom}(1,1) \cong \mathbb{C}[\alpha] /\left(\alpha^{2}\right)$.

SLarc algebra A^{-}

\mathbf{k} a field and $A^{-} \mathbf{k}$-vector space with the basis B^{-}. Multiplication:

- generated by the concatenation of elements of B^{-}

- if $y \in{ }_{n} B_{m}^{-}, z \in{ }_{k} B_{l}^{-}$and $m \neq k$, then the concatenation is not defined and we set $y z=0$.
- product is zero if the resulting diagram has an arc which is not attached to the lines $x=0$ or $x=1$, called floating arc.

SLarc algebra A^{-}

$A^{-}=\bigoplus_{n, m \geq 0}{ }_{n} A_{m}^{-}$where ${ }_{n} A_{m}^{-}$is spanned by diagrams in ${ }_{n} B_{m}^{-}$.

- associative
A^{-}is: - non-unital with a system of orthogonal idempotents $\left\{1_{n}\right\}_{n \geq 0}$.

Examples

Diagrams ${ }^{i} b_{n}$ and b_{n}^{i} composed with diagram $a \in B^{-}$. Left multiplication cannot increase width.

Modules over A^{-}

Consider
left modules M over A^{-}with the property $M=\bigoplus_{n \geq 0} 1_{n} M$.

Definition

A left A^{-}-module M is called finitely-generated if and only if it's isomorphic to a quotient of a direct sum of finitely many indecomposable projective modules with finite multiplicities.

Notation
$A^{-}-\bmod$ the category of finitely-generated left A^{-}-modules
A^{-}- pmod the category of finitely-generated projective left A^{-}-modules.

Projective, standard and simple modules over A^{-}

$P_{n}=A^{-} 1_{n}$ indecomposable projective left A^{-}-modules.
Basis: all diagrams in B^{-}with n right endpoints.

M_{n} standard module is the quotient of P_{n} by the submodule spanned by diagrams which have right sarcs. Basis: diagrams in B_{n}^{-}with no right sarcs.
L_{n} simple 1-dim module

\section*{$P_{0}:$| | - | $\ldots \equiv$ | M_{0} |
| :--- | :--- | :--- | :--- |}

Module homomorphisms

Diagrams in ${ }_{n} B_{m}^{-}$constitute a basis for $\operatorname{Hom}\left(P_{n}, P_{m}\right)$.

Remark
All diagrams in B^{-}except 1_{n} act trivially on simple module L_{n}.

Properties

Proposition

$\operatorname{Hom}_{A^{-}}(M, N)$ is a finite-dimensional \mathbf{k}-vector space for any $M, N \in A^{-}-\bmod$.
Corollary
The category $A^{-}-\bmod$ is Krull-Schmidt.

Proposition

Any $P \in A^{-}-$pmod is isomorphic to a direct sum $P \cong \bigoplus_{i=0}^{N} P_{i}^{n_{i}}$ with the multiplicities n_{i} 's being invariants of P.

Proposition

A submodule of a finitely-generated left A^{-}-module is finitely-generated.
Corollary
The category $A^{-}-\bmod$ is abelian.

Grothendieck group/ring

Definition

Grothendieck group $K_{0}(A)$ of finitely generated projective A-modules is a group generated by symbols of projective modules $[P]$, such that

$$
[P]=\left[P^{\prime}\right]+\left[P^{\prime \prime}\right] \text { if } P \cong P^{\prime} \oplus P^{\prime \prime}
$$

Theorem
$K_{0}\left(A^{-}\right)$is a free group with basis $\left\{\left[P_{n}\right]\right\}_{n \geq 0}$.

$$
K_{0}\left(A^{-}\right) \cong \mathbb{Z}[x] \operatorname{via}\left[P_{n}\right] \leftrightarrow x^{n}
$$

If a category is monoidal, Grothendieck group becomes a ring.

Monoidal structure on $A^{-}-\operatorname{pmod}$

Tensor product bifunctor
$A^{-}-\operatorname{pmod} \times A^{-}-\operatorname{pmod} \rightarrow A^{-}-$pmod

- $P_{n} \otimes P_{m}=P_{n+m}$ and extend to all projective modules
- on basic morphisms of projective modules $\alpha: P_{n} \rightarrow P_{n^{\prime}}$ and $\beta: P_{m} \rightarrow P_{m^{\prime}}$ by placing α on top of β and then extending it to all morphisms and objects using bilinearity.

Relations between P_{n} and M_{n}

Left multiplication by a basis vector cannot increase the width $\Rightarrow P_{n}(\leq m)$ is a submodule of P_{n}.

$P_{n}(\leq m) / P_{n}(\leq m-1)$ is spanned by diagrams in $P_{n}(m)$.
These diagrams can be partitioned into $\binom{n}{m}$ classes enumerated by positions of the $n-m$ right sarcs.

Relations between P_{n} and M_{n}

In the Grothendieck group of finitely-generated A^{-}-modules

$$
\begin{equation*}
\left[P_{n}\right]=\sum_{m=0}^{n}\binom{n}{m}\left[M_{m}\right] \tag{1}
\end{equation*}
$$

Projective resolution of M_{m}

$$
x^{n}=\left[P_{n}\right]=\sum_{m=0}^{n}\binom{n}{m}\left[M_{m}\right] \leftrightarrow\left[M_{n}\right]=\sum_{m \leq n}(-1)^{n+m}\binom{n}{m}\left[P_{m}\right]
$$

Expect a finite projective resolution of M_{m}

$$
\longrightarrow P_{n}^{\oplus\binom{m}{n}} \longrightarrow \ldots \longrightarrow P_{m-2^{2}}^{\oplus \frac{m(m-1)}{2}} \longrightarrow P_{m-1}^{\oplus m} \longrightarrow P_{m} \longrightarrow M_{m} \longrightarrow 0
$$

Proposition

The complex with the differential defined above is exact.
Corollary
Homological dimension of standard module M_{m} is m.

Projective resolutions of M_{0} and M_{1}

$$
\begin{gathered}
0 \rightarrow P_{0} \cong M_{0} \rightarrow 0 \\
0 \rightarrow P_{0} \xrightarrow{\longrightarrow} P_{1} \xrightarrow{p r} M_{1} \rightarrow 0
\end{gathered}
$$

Resolution of simple modules L_{k} by M_{m}

Resolution of simple L_{k} by standard modules M_{m} for $m \geq k$:
$\xrightarrow{d} M_{k+m}^{\oplus}\binom{k+m}{m} \xrightarrow{d} \cdots \xrightarrow{d} M_{k+2}^{\oplus}\binom{k+2}{2} \xrightarrow{d} M_{k+1}^{\oplus k+1} \xrightarrow{d} M_{k} \xrightarrow{d} L_{k} \longrightarrow 0$.

Projective resolution of simple modules L_{k}

Lemma
Simple modules L_{k} have infinite homological dimension.

$\mathcal{C}\left(A^{-}\right)$category of bounded complexes of projective modules modulo chain homotopies

- $\mathcal{C}\left(A^{-}\right)$is monoidal
- $\mathcal{C}\left(A^{-}\right)$contains M_{n} but not L_{n}.
- $C\left(A^{-}-\mathrm{pmod}\right) \times C\left(A^{-}-\mathrm{pmod}\right) \rightarrow C\left(A^{-}-\mathrm{pmod}\right)$
- $P\left(M_{n}\right) \otimes P\left(M_{m}\right) \cong P\left(M_{m+n}\right)$
- $M_{n} \otimes M_{m} \cong M_{m+n}$, when viewed as objects of $C\left(A^{-}-\mathrm{pmod}\right)$
$K_{0}\left(\mathcal{C}\left(A^{-}\right)\right) \cong K_{0}\left(A^{-}\right)$
$X=\left(\ldots \longrightarrow X^{i} \longrightarrow X^{i+1} \longrightarrow \ldots\right) \Rightarrow[X] \longmapsto \sum_{i \in \mathbb{Z}}(-1)^{i}\left[X^{i}\right]$.

Categorification of polynomial ring $\mathbb{Z}[x]$

$$
\begin{aligned}
& {\left[P_{n}\right]=\sum_{m=0}^{n}\binom{n}{m}\left[M_{m}\right] } \leftrightarrow x^{n}=\sum_{m=0}^{n}\binom{n}{m}(x-1)^{m} \\
& {\left[M_{n}\right]=\sum_{m \leq n}(-1)^{n+m}\binom{n}{m}\left[P_{m}\right] } \leftrightarrow(x-1)^{n}=\sum_{m \leq n}(-1)^{n+m}\binom{n}{m} x^{m} \\
& {\left[L_{n}\right]=\sum_{k=0}^{\infty}(-1)^{k}\binom{n+k}{k}\left[M_{n+k}\right] } \leftrightarrow \sum_{k=0}^{\infty}(-1)^{k}\left(\begin{array}{c}
\binom{k}{k}(x-1)^{n+k} \\
\end{array}\right. \\
& \leftrightarrow \frac{(x-1)^{n}}{x^{n+1}} .
\end{aligned}
$$

Categorifying multiplication in the ring $Z[x]$

In $K_{0}\left(\mathcal{C}\left(A^{-}\right)\right)$
$P\left(M_{n}\right) \otimes P\left(M_{m}\right) \cong P\left(M_{m+n}\right)$ categorifies multiplication
$\left[M_{n}\right] \cdot\left[M_{m}\right]=(x-1)^{n+m}=\left[M_{n+m}\right]$

Generalization

\otimes for A^{-}modules admitting a finite filtration by M_{n}

- Need to construct and tensor their projective resolutions
- derived tensor product $M \widehat{\otimes} N$ has cohomology only in degree zero and $H^{0}(M \widehat{\otimes} N) \cong_{D^{b}} M \widehat{\otimes} N$ has a filtration by standard modules.

Approximations of identity

$A^{-}(\leq k)$ spanned by diagrams in B^{-}of width $\leq k$
${ }_{k} P=1{ }_{k} A^{-}$right projective module
${ }_{k} M$ is spanned by diagrams ${ }_{k} B^{-}$without left sarcs

Lemma
$A^{-}(\leq k) / A^{-}(\leq k-1) \cong M_{k} \otimes_{k} M$ as an A^{-}-bimodule.

Approximations of identity

Definition
For a given $k \geq 0$ define a functor $F_{k}: A^{-}-\bmod \rightarrow A^{-}-\bmod$ by

$$
F_{k}(M)=A(\leq k) \otimes_{A^{-}} M
$$

for any A^{-}-module M.
Lemma

$$
\begin{gathered}
F_{k}\left(M_{m}\right)= \begin{cases}M_{m}, & \text { if } m \leq k ; \\
0, & \text { otherwise }\end{cases} \\
F_{k}\left(P_{n}\right)= \begin{cases}P_{n}, & \text { if } n \leq k ; \\
P_{n}(\leq k), & \text { if } n>k\end{cases}
\end{gathered}
$$

Proof.
$A^{-}(\leq k) \otimes_{A^{-}} P_{m}=A^{-}(\leq k) \otimes_{A^{-}} A^{-} 1_{m}=A^{-}(\leq k) 1_{m}$

Approximations of identity

On the level of Grothendieck group F_{k} corresponds to operator $\left[F_{k}\right]$:

$$
\left[F_{k}\right]\left[P_{n}\right]= \begin{cases}{\left[P_{n}\right]=x^{n},} & \text { if } n \leq k ; \\ \sum_{m=0}^{k}\binom{n}{m}\left[M_{m}\right]=\sum_{m=0}^{k}\binom{n}{m}(x-1)^{m}, & \text { if } n>k .\end{cases}
$$

Lemma
$L^{i} F_{k}\left(M_{m}\right)= \begin{cases}M_{m}, & \text { if } i=0, k \geq m ; \\ 0, & \text { otherwise. }\end{cases}$
[F_{k}] approximates identity

- for $n \leq k$ it is Id on P_{n}
- for $n>k$, it is like taking $k+1$ terms in the expansion of $\left[P_{n}\right]$ in the basis $\left\{\left[M_{m}\right]\right\}_{m \geq k}$

$$
f(x)=\sum_{m \geq 0} a_{m}(x-1)^{m} \rightarrow \sum_{m=0}^{k} a_{m}(x-1)^{m}
$$

Restriction and induction functors

Let $\iota: B \hookrightarrow A$ be a unital inclusion of arbitrary rings A, B.

$$
\begin{gathered}
\text { Ind : } B-\bmod \hookrightarrow A-\bmod \text { given by } \operatorname{Ind}(M)=A \otimes_{B} M \\
\text { is left adjoint to the restriction functor } \\
\operatorname{Hom}_{A}(\operatorname{Ind}(M), N) \cong \operatorname{Hom}_{B}(M, \operatorname{Res}(N)) .
\end{gathered}
$$

Non-unital inclusion $\iota\left(1_{B}\right)=e \neq 1_{A}, e^{2}=e \in A$
For A-module N define $\operatorname{Res}(N)=e N$ with $B \subset e A e$ acting via ι.

$$
\operatorname{Ind}(M)=A \otimes_{B} M \cong A e \otimes_{B} M \oplus A(1-e) \otimes_{B} M=A e \otimes_{B} M .
$$

A similar construction works for non-unital B and A equipped with systems of idempotents.

Restriction and induction functors on A^{-}

$\iota: A^{-} \hookrightarrow A^{-}$induced by adding a straight through line at the top of every diagram

- $d \in{ }_{m} B_{n} \Rightarrow \iota(d) \in{ }_{m+1} B_{n+1}^{-}$.
- $\left\{1_{n}\right\}_{n \geq 0} \hookrightarrow\left\{1_{n+1}\right\}_{n \geq 0}$ missing 1_{0}.
- ι gives rise to both induction and restriction functors, with

$$
\operatorname{Res}(N) \cong N / 1_{0} N \cong \underset{k>0}{\oplus} 1_{k} N
$$

and A^{-}acting on the left via ι.

Restriction functor on A^{-}

Figure: (a) is P_{12}^{6} and (b) is $P_{12}^{(i)}$

Decomposition of P_{n} as a sum of vector spaces spanned by diagrams of type
(a) where left sarc is attached to the top left point P_{n}^{\emptyset}
(b) where the top left point is connected by larc to the i-th point on the right P_{n}^{i}.

Restriction functor on A^{-}

$$
P_{n}^{(i)} \cong P_{n-i}
$$

Restriction functor on A^{-}

- $\operatorname{Res}\left(L_{n}\right)=L_{n-1}$ if $n>0$ and $\operatorname{Res}\left(L_{0}\right)=0$
- $\operatorname{Res}\left(M_{n}\right) \cong M_{n} \oplus M_{n-1}$ for $n>0$, and $\operatorname{Res}\left(M_{0}\right) \cong M_{0}$.
- $\operatorname{Res}\left(P_{n}\right) \cong \bigoplus_{k=0}^{n} P_{k}$ for $n>0$, and $\operatorname{Res}\left(P_{0}\right) \cong P_{0}$.

On the Grothendieck group, restriction takes:

$$
\begin{array}{rll}
{\left[P_{n}\right]=x^{n}} & \mapsto & \sum_{i=0}^{n}\left[P_{i}\right]=\sum_{i=0}^{n} x^{i} \\
{\left[M_{n}\right]=(x-1)^{n}} & \mapsto & {\left[M_{i}\right]+\left[M_{i-1}\right]=x(x-1)^{n-1} .}
\end{array}
$$

Induction functor on A^{-}

- $\quad \operatorname{lnd}\left(P_{n}\right) \cong P_{n+1}$ for $n \geq 0$.
- $\operatorname{lnd}\left(M_{n}\right) \cong M_{n} \oplus M_{n+1}$ for $n \geq 0$.

Lemma
Higher derived functors of the induction functor applied to a standard module are zero: $L^{i} \operatorname{Ind}\left(M_{n}\right)=0$, for every $i>0$.
Induction corresponds to the multiplication by x as:

$$
\begin{array}{rll}
{\left[P_{n}\right]=x^{n}} & \mapsto & {\left[P_{n+1}\right]=x^{n+1}} \\
{\left[M_{n}\right]=(x-1)^{n}} & \mapsto & {\left[M_{n}\right]+\left[M_{n+1}\right]=x(x-1)^{n}}
\end{array}
$$

Bernstein-Gelfand-Gelfand (BGG) reciprocity

- A finite-dimensional A^{-}-module $M:\left[M: L_{n}\right]=\operatorname{dim} 1_{n} M$
- A finitely-generated A^{-}-module M : locally finite-dimensional property:

$$
\operatorname{dim}\left(1_{n} M\right)<\infty, \text { for } n \geq 0
$$

- Multiplicity of L_{n} in M def. by $\left[M: L_{n}\right]:=\operatorname{dim}\left(1_{n} M\right)$

$$
\left[M_{m}: L_{n}\right]=\operatorname{dim}\left(1_{n} M_{m}\right)= \begin{cases}\binom{n}{m}, & \text { for } n \geq m \\ 0, & \text { if } n<m\end{cases}
$$

Recall $\left[P_{n}: M_{m}\right]=\binom{n}{m}$, hence $\left[P_{n}: M_{m}\right]=\left[M_{m}: L_{n}\right]$

Chebyshev polynomials of the second kind U_{n}

Recursive definition $U_{n+1}(x)=x U_{n}(x)-U_{n-1}(x)$ Initial conditions: $U_{0}(x)=1, U_{1}(x)=x$ Inner product $\left\{U_{n}\right\}$ form an orthogonal set on $[-1,1]$ $(f, g)=\frac{2}{\pi} \int_{-1}^{1} f(x) g(x) \sqrt{1-x^{2}} d x$ hence

$$
\left(x^{n}, x^{m}\right)=C_{\frac{n+m}{2}}
$$

$$
\begin{array}{ll}
U_{0}(x)=1 & U_{4}(x)=x^{4}-3 x^{2}+1 \\
U_{1}(x)=x & U_{5}(x)=x^{5}-4 x^{3}+3 x \\
U_{2}(x)=x^{2}-1 & U_{6}(x)=x^{6}-5 x^{4}+4 x^{2}-1 \\
U_{3}(x)=x^{3}-2 x & U_{7}(x)=x^{7}-6 x^{5}+5 x^{3}-4 x
\end{array}
$$

Representations of $s l(2)$

- All finite dimensional representations of $s l(2)$ are completely reducible
Def. Rep(s/(2)) the Grothendieck ring of $s /(2)$, generated by symbols [V] corresponding to representations V satisfying:

$$
\begin{gather*}
{[V \oplus W]=[V]+[W]} \tag{2}\\
{[V \otimes W]=[V] \cdot[W]} \tag{3}
\end{gather*}
$$

- Basis: $\left[V_{0}\right],\left[V_{1}\right], \ldots,\left[V_{n}\right], \ldots$
- Multiplication: $1=\left[V_{0}\right]$

$$
\begin{equation*}
\left[V_{n}\right]\left[V_{m}\right]=\left[V_{n} \otimes V_{m}\right]=\sum_{k=|n-m|, \text { parity }}^{n+m}\left[V_{k}\right] \tag{4}
\end{equation*}
$$

Choose a different basis: $1,\left[V_{1}\right],\left[V_{1}^{\otimes 2}\right], \ldots$
$x^{n}=\left[V_{1}^{\otimes n}\right]=\left[V_{1}\right]^{n}$
$\operatorname{Rep}(s /(2)) \cong \mathbb{Z}[x]$
Correspondence
Monomials $x^{n} \leftrightarrows V_{1}^{\otimes n}$
Chebyshev polynomials $U_{n}(x) \leftrightarrows V_{n}$
Examples: $V_{1}^{\otimes 2} \cong V_{2} \otimes V_{0}$

$$
\begin{aligned}
{\left[V_{2}\right] } & =\left[V_{1}\right]^{2}-\left[V_{0}\right] \\
U_{2}(x) & =x^{2}-1
\end{aligned}
$$

Goal: another categorification of $\mathbb{Z}[x]$

- non-semisimple
- such that $\left\{x^{n}\right\}_{n \geq 0},\left\{U_{n}(x)\right\}_{n \geq 0}$ correspond to natural objects.
$\operatorname{Hom}\left(V_{1}^{\otimes n}, V_{1}^{\otimes m}\right)$ has a pictorial interpretation via Temperley-Lieb algebra and its relatives.

Basis in $\operatorname{Hom}\left(V_{1}^{\otimes n}, V_{1}^{\otimes m}\right)$ given by crossingless (n, m) matchings.

$\bigcirc=2$ isotopy invariance

$$
V_{1}^{\otimes 2} \rightarrow V_{0}
$$

$$
V_{0} \rightarrow V_{1}^{\otimes 2}
$$

Quantum deformation
$\bigcirc=q+q^{-1}$ Jones polynomial
Another deformation: maximally degenerate non-semisimple.
If $=\alpha$ then $e=\frac{1}{\alpha} \quad(\quad$ is an idempotent since
$e^{2}=\frac{1}{\alpha^{2}}$

Remove idempotents: the analogue of $V_{1}^{\otimes n}$ becomes indecomposable.

Algebra A^{c}

${ }_{n} A_{m}^{c}$ a \mathbf{k}-vector space with basis ${ }_{n} B_{m}$.

Algebra A^{c}

Multiplication: ${ }_{n} A_{m}^{c} \times{ }_{m} A_{l}^{c} \rightarrow{ }_{n} A_{l}^{c}$
Analogous to the SLarc case, on the level of pictures, multiplication is just a horizontal composition of diagrams, when number of endpoints match, satisfying relations:

Get an associative ring $A^{c}=\bigoplus_{m, n \geq 0}{ }_{n} A_{m}^{c}$
A^{c} is a non-unital distributed ring: $\left\{1_{n}\right\}_{n \geq 1}$ are mutually orthogonal idempotents.

Standard modules

$M_{n}=\bigoplus_{m>0} 1_{m} M_{n}$ where $1_{m} M_{n}$ has basis of diagrams in ${ }_{m} B_{n}^{c}$ without returns on the right.

Action of A^{c} : Composition with the additional condition: if a diagram contains right return it equals zero.

On the level of Grothendieck group we have:

$$
\begin{gathered}
{\left[M_{n}\right]=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k}\left[P_{n-2 k}\right]} \\
U_{n}(x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k} x^{n-2 k} \\
K_{0}\left(A^{c}\right) \cong Z[x] \\
{\left[P_{n}\right]=x^{n}} \\
{\left[M_{n}\right]=U_{n}(x)}
\end{gathered}
$$

Unlike $s /(2)$ case, where P_{n} corresponds to [$\left.V_{1}^{\otimes n}\right], P_{n}$ are indecomposable so the category is non-semisimple.

Hermite Polynomials

There are a few equivalent ways of defining Hermite polynomials:

- Rodrigues's representation

$$
H_{n}(x)=(-1)^{n} e^{x^{2} / 2} \frac{\partial^{n}}{\partial x^{n}} e^{-x^{2} / 2}
$$

- $H_{n}(x)$ is the unique degree n polynomial with the top coefficient one and orthogonal to x^{m} for all $0 \leq m<n$ with respect to the inner product

$$
(f, g)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) g(x) e^{-\frac{x^{2}}{2}} d x
$$

- $\left(x^{m}, x^{n}\right)=(n+m-1)!!$
$H_{n}(x)$ contains only powers of x of the same parity as n. For small values of n the Hermite polynomials are:

$$
\begin{aligned}
& H_{0}(x)=1 \\
& H_{1}(x)=x \\
& H_{2}(x)=x^{2}-1, \\
& H_{3}(x)=x^{3}-3 x, \\
& H_{4}(x)=x^{4}-6 x^{2}+3 \\
& H_{5}(x)=x^{5}-10 x^{3}+15 x, \\
& H_{6}(x)=x^{6}-15 x^{4}+45 x^{2}-15
\end{aligned}
$$

$$
H_{n}(x)=\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k} u_{n, k} x^{n-2 k}
$$

$$
x^{n}=\sum_{k=0}^{\frac{n}{2}} u_{n, k} H_{n-2 k}(x)
$$

where $u_{n, k}=\binom{n}{n-2 k}(2 k-1)!!=\frac{n!}{2^{k}!!(n-2 k)!}$

Diagrammatics for the categorification of $H_{n}(x)$

- Each arc is simple, i.e. without self-intersections.
- Each pair of arcs has at most one intersection.
- Allow only isotopies that preserve these conditions and triple intersections of three distinct arcs are allowed during isotopies.

Categorification of Hermite polynomials

Projective

Big standard

Standard

Projective module $P_{n} \leftrightarrow x^{n}$
Big standard module $M_{n} \leftrightarrow H_{n}(x)$
Standard module $M_{n} \leftrightarrow \frac{H_{n}(x)}{n!}$

References and future directions

- Generalize to the categorification of other classes of orthogonal polynomials.
- Topological interpretation of the Bernstein-Gelfand-Gelfand reciprocity property
- Find a categorical lifting of more complicated parts of the orthogonal polynomials theory.
- Categorification of Knot and Graph Polynomials and the Polynomial Ring, GWU Electronic dissertation published by ProQuest, 2010 http://surveyor.gelman.gwu.edu/
- arXiv:1101.0293

THANK YOU

