The structure of categorified representation theory

Aaron Lauda

Columbia University

May 23rd, 2011

Quantum link invariants

Jones polynomial

Quantum link invariants

Jones polynomial

Representation theory of quantum $\mathfrak{s l}_{2}$

Quantum link invariants

Jones polynomial

Representation theory of quantum $\mathfrak{s l}_{2}$

Khovanov homology

Quantum link invariants

Jones polynomial

Categorification \downarrow

Khovanov homology

Quantum sl(2)

The quantum group $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is the associative algebra (with unit) over $\mathbb{C}(q)$ with generators E, F, K, K^{-1} and relations

- $K K^{-1}=1=K^{-1} K$,
- $K E=q^{2} E K, \quad K F=q^{-2} F K$,
- $E F-F E=\frac{K-K^{-1}}{q-q^{-1}}$

A finite-dimensional representation V of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is given by homomorphism

$$
\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right) \longrightarrow \operatorname{End}(V)
$$

for some $\mathbb{C}(q)$-vector space V.
We can decompose V into eigenspaces for the action of K.

$$
\begin{gathered}
V=\bigoplus_{n \in \mathbb{Z}} V(n) \\
K v=q^{n} v \quad v \in V(n)
\end{gathered}
$$

Representation theory of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$

A representation of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is a collection of

$$
\begin{array}{lllllll}
V_{-N} & \cdots & V_{n-2} & V_{n} & V_{n+2} & \cdots & V_{N}
\end{array}
$$

- vector spaces $\left(K v=q^{n} v\right.$ for $\left.v \in V_{n}\right)$,

Representation theory of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$

A representation of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is a collection of

- vector spaces $\left(K v=q^{n} v\right.$ for $\left.v \in V_{n}\right)$,
- linear maps $E: V_{n} \rightarrow V_{n+2} \quad\left(K E=q^{2} E K\right)$,

Representation theory of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$

A representation of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is a collection of

- vector spaces $\left(K v=q^{n} v\right.$ for $\left.v \in V_{n}\right)$,
- linear maps $E: V_{n} \rightarrow V_{n+2} \quad\left(K E=q^{2} E K\right)$,
- and linear maps $F: V_{n} \rightarrow V_{n-2} \quad\left(K F=q^{-2} F K\right)$

Representation theory of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$

A representation of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is a collection of

- vector spaces ($K v=q^{n} v$ for $v \in V_{n}$),
- linear maps $E: V_{n} \rightarrow V_{n+2} \quad\left(K E=q^{2} E K\right)$,
- and linear maps $F: V_{n} \rightarrow V_{n-2} \quad\left(K F=q^{-2} F K\right)$
- satisfying $E F v-F E v=[n] v$ for $v \in V_{n}$.

$$
[n]:=\frac{q^{n}-q^{-n}}{q-q^{-1}}=q^{n-1}+q^{n-3}+\cdots+q^{1-n}
$$

Categorical representations of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$

A categorical representation of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is a collection of
\mathcal{V}_{-N}
$\cdots \quad \mathcal{V}_{n-2}$
\mathcal{V}_{n}
\mathcal{V}_{n+2}
\mathcal{V}_{N}

- categories

Categorical representations of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$

A categorical representation of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is a collection of

- categories
- functors $\mathcal{E}: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n+2}$

Categorical representations of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$

A categorical representation of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is a collection of

- categories
- functors $\mathcal{E}: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n+2}$
- functors $\mathcal{F}: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n-2}$

Categorical representations of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$

A categorical representation of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is a collection of

- categories
- functors $\mathcal{E}: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n+2}$
- functors $\mathcal{F}: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n-2}$
- identity functors $\mathbf{1}_{n}: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n}$.

Categorical representations of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$

A categorical representation of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is a collection of

- categories
- functors $\mathcal{E}: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n+2}$
- functors $\mathcal{F}: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n-2}$
- identity functors $\mathbf{1}_{n}: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n}$.
- satisfying

$$
\begin{array}{ll}
\mathcal{E F} \mathbf{1}_{n} \cong \mathcal{F E} \mathbf{1}_{n} \bigoplus_{[n]} \mathbf{1}_{n} \quad \text { for } n \geq 0 \\
\mathcal{F E} \mathbf{1}_{n} \cong \mathcal{E F} \mathbf{1}_{n} \bigoplus_{[-n]} \mathbf{1}_{n} \quad \text { for } n \leq 0
\end{array}
$$

Example (cohomology of partial flag varieties)

Fix $N>0$ consider the varieties

$$
\begin{array}{cl}
\operatorname{Gr}(k, N) \\
\left\{0 \subset \mathbb{C}^{k} \subset \mathbb{C}^{N}\right\}
\end{array} \quad \underset{\left\{0 \subset \mathbb{C}^{k} \subset \mathbb{C}^{k+1} \subset \mathbb{C}^{N}\right\}}{F I(k, k+1, N)} \longrightarrow \begin{array}{ll}
& G r(k+1, N) \\
& \\
& \left\{0 \subset \mathbb{C}^{k+1} \subset \mathbb{C}^{N}\right\}
\end{array}
$$

which give rise to inclusions

$$
\begin{gathered}
H_{k, k+1}:=H^{*}(F I(k, k+1, N)) \\
H_{k}:=H^{*}\left(\widehat{\operatorname{Gr}(k, N))} \quad H_{k+1}^{\leftarrow}:=H^{*}(\operatorname{Gr}(k+1, N))\right.
\end{gathered}
$$

on cohomology making $H_{k, k+1}$ an $\left(H_{k}, H_{k+1}\right)$-bimodule.

Higher structure

We expect to see a new level of structure in categorification.

Higher structure

We expect to see a new level of structure in categorification.

What is the higher structure of categorical representation theory?

Higher structure

We expect to see a new level of structure in categorification.

What is the higher structure of categorical representation theory?

Idea: look at the structure of natural transformations between functors in categorical $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$-actions.

Higher structure

We expect to see a new level of structure in categorification.

What is the higher structure of categorical representation theory?
Idea: look at the structure of natural transformations between functors in categorical $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$-actions.
The $\mathfrak{s l}_{2}$-relations should follow as consequences of this higher structure.
This suggests a categorification of the $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ that allows for maps between algebra elements.
\mathcal{U} is an additive \mathbb{k}-linear 2-category with

- objects: n for $n \in \mathbb{Z}$.
- 1-morphism in \mathcal{U} from n to n^{\prime} is a formal finite direct sum of

$$
\mathcal{E}^{\alpha_{1}} \mathcal{F}^{\beta_{1}} \cdots \mathcal{E}^{\alpha_{m}} \mathcal{F}^{\beta_{m}} 1_{n}\{s\}=1_{n^{\prime}} \mathcal{E}^{\alpha_{1}} \mathcal{F}^{\beta_{1}} \ldots \mathcal{E}^{\alpha_{m}} \mathcal{F}^{\beta_{m}} 1_{n}\{s\}
$$ for any $s \in \mathbb{Z}$ and $n^{\prime}=n+2 \sum \alpha_{i}-2 \sum \beta_{i}$.

- 2-morphisms given by \mathbb{k}-linear combinations of diagrams

Generating 2-morphisms

$$
\begin{array}{ll}
{ }_{n}^{n+2}: \mathcal{E} \mathbf{1}_{n}\{2\} \rightarrow \mathcal{E} \mathbf{1}_{n} & { }^{n-2}{ }_{n}: \mathcal{F} \mathbf{1}_{n}\{2\} \rightarrow \mathcal{F} \mathbf{1}_{n} \\
{ }^{n}: \mathcal{E E} \mathbf{1}_{n}\{-2\} \rightarrow \mathcal{E E} \mathbf{1}_{n} & { }^{n}: \mathcal{F F} \mathbf{1}_{n}\{-2\} \rightarrow \mathcal{F F} \mathbf{1}_{n} \\
{ }^{n} \mathbf{1}_{n}\{1+n\} \rightarrow \mathcal{F E} \mathbf{1}_{n} & \underbrace{}_{n}: \mathbf{1}_{n}\{1-n\} \rightarrow \mathcal{E F} \mathbf{1}_{n} \\
{ }^{n}: \mathcal{F E} \mathbf{1}_{n}\{1+n\} \rightarrow \mathbf{1}_{n} & \Omega^{n}: \mathcal{E F} \mathbf{1}_{n}\{1-n\} \rightarrow \mathbf{1}_{n}
\end{array}
$$

Topological invariance

$$
{ }^{n} \oint_{n+2}=n \not{ }^{n+2}=\underbrace{}_{n}+\underbrace{n+2}
$$

NilHecke relations

Positivity of bubbles

All dotted bubbles of negative degree are zero. That is,

$\operatorname{deg}\left(\bigodot_{\beta}^{n}\right)=2(1+n)+2 \beta$

NilHecke relations

Positivity of bubbles

All dotted bubbles of negative degree are zero. That is,

$$
\begin{aligned}
& \operatorname{deg}\left(\bigodot_{\beta}^{n}\right)^{n}=2(1-n)+2 \beta \quad \operatorname{deg}\left(\bigodot_{\beta}^{n}\right)=2(1+n)+2 \beta \\
& \Rightarrow \overparen{O}_{\beta}^{n}=0 \text { if } \beta<n-1
\end{aligned}
$$

$\mathfrak{s l} L_{2}$ isomorphism $\mathcal{F E} 1_{n} \oplus_{[n]} 1_{n} \cong \mathcal{E F} 1_{n}$ for $n \geq 0$
Recall that for $[n]=q^{n-1}+q^{n-3}+\cdots+q^{1-n}$ we write $\oplus_{[n]} 1_{n}:=1_{n}\{n-1\} \oplus 1_{n}\{n-3\} \oplus \cdots \oplus 1_{n}\{1-n\}$.
$\mathfrak{s l} L_{2}$ isomorphism $\mathcal{F E} 1_{n} \oplus_{[n]} 1_{n} \cong \mathcal{E F} 1_{n}$ for $n \geq 0$
Recall that for $[n]=q^{n-1}+q^{n-3}+\cdots+q^{1-n}$ we write $\oplus_{[n]} 1_{n}:=1_{n}\{n-1\} \oplus 1_{n}\{n-3\} \oplus \cdots \oplus 1_{n}\{1-n\}$.

We require that the map

$\mathfrak{s l} L_{2}$ isomorphism $\mathcal{F E} 1_{n} \oplus_{[n]} 1_{n} \cong \mathcal{E F} 1_{n}$ for $n \geq 0$

Recall that for $[n]=q^{n-1}+q^{n-3}+\cdots+q^{1-n}$ we write
$\oplus_{[n]} 1_{n}:=1_{n}\{n-1\} \oplus 1_{n}\{n-3\} \oplus \cdots \oplus 1_{n}\{1-n\}$.
We require that the map

has a specified inverse. Similarly for $n \leq 0$.

Relations in \mathcal{U}

The previous relations imposed on \mathcal{U} were

- $\mathcal{E} \mathbf{1}_{n}$ and $\mathcal{F} \mathbf{1}_{n}$ are biadjoint up to grading shift.
- All 2-morphisms are cyclic with respect to this biadjoint structure (topological invariance, or planar algebra condition)
- The nilHecke algebra acts on $\operatorname{END}\left(\mathcal{E}^{a}\right) \mathbf{1}_{n}$.
- Negative degree bubbles are zero.

The requirement that the specified maps give isomorphisms

$$
\begin{array}{ll}
\mathcal{E F} 1_{n} \cong \mathcal{F E} 1_{n} \oplus_{[n]} 1_{n} & \text { for } n \geq 0 \\
\mathcal{F E} 1_{n} \cong \mathcal{E F} 1_{n} \oplus_{[-n]} 1_{n} & \text { for } n \leq 0
\end{array}
$$

for the $\mathfrak{s l}_{2}$ relations imposes diagrammatic relations on the 2-category \mathcal{U} that depend on the weight space n.

For $n>0$

Similar relations for $n<0$.

For $n=0$

$$
n=->n+\cdots n=-\sum_{n} n
$$

Theorem (L.)

This graphical calculus is consistent and categorifies the integral idempotent version $\dot{\mathbf{U}}_{\mathbb{Z}}$ of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$. This $\mathbb{Z}\left[q, q^{-1}\right]$-algebra is obtained from $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ by replacing 1 by mutually orthogonal idempotents 1_{n} projecting onto the nth weight space.

- $\dot{\mathbf{U}}_{\mathbb{Z}} \cong K_{0}(\dot{\mathcal{U}})$ the Grothendieck ring/category of this 2-category

$$
x \oplus y \in \dot{U} \quad \rightsquigarrow[x]+[y] \in K_{0}(\dot{\mathcal{U}}) \quad x\{s\} \rightsquigarrow q^{s}[x] \in K_{0}(\dot{\mathcal{U}})
$$

- Indecomposable 1-morphisms \Leftrightarrow Lusztig canonical basis element

Theorem (L.)

This graphical calculus is consistent and categorifies the integral idempotent version $\dot{\mathbf{U}}_{\mathbb{Z}}$ of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$. This $\mathbb{Z}\left[q, q^{-1}\right]$-algebra is obtained from $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ by replacing 1 by mutually orthogonal idempotents 1_{n} projecting onto the nth weight space.

- $\dot{\mathbf{U}}_{\mathbb{Z}} \cong K_{0}(\dot{\mathcal{U}})$ the Grothendieck ring/category of this 2-category

$$
x \oplus y \in \dot{\mathcal{U}} \leadsto[x]+[y] \in K_{0}(\dot{\mathcal{U}}) \quad x\{s\} \quad \rightsquigarrow \quad q^{s}[x] \in K_{0}(\dot{\mathcal{U}})
$$

- Indecomposable 1-morphisms \Leftrightarrow Lusztig canonical basis element
- Graded 2 Hom $\operatorname{HOM}_{\dot{\mathcal{U}}}(x, y)$ categorifies the semilinear form $\langle x, y\rangle$

Theorem (L.)

This graphical calculus is consistent and categorifies the integral idempotent version $\dot{\mathbf{U}}_{\mathbb{Z}}$ of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$. This $\mathbb{Z}\left[q, q^{-1}\right]$-algebra is obtained from $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ by replacing 1 by mutually orthogonal idempotents 1_{n} projecting onto the nth weight space.

- $\dot{\mathbf{U}}_{\mathbb{Z}} \cong K_{0}(\dot{\mathcal{U}})$ the Grothendieck ring/category of this 2-category

$$
x \oplus y \in \dot{\mathcal{U}} \leadsto[x]+[y] \in K_{0}(\dot{\mathcal{U}}) \quad x\{s\} \quad \rightsquigarrow \quad q^{s}[x] \in K_{0}(\dot{\mathcal{U}})
$$

- Indecomposable 1-morphisms \Leftrightarrow Lusztig canonical basis element
- Graded $2 \mathrm{Hom} \operatorname{HOM}_{\dot{\mathcal{U}}}(x, y)$ categorifies the semilinear form $\langle x, y\rangle$
- The 2-category $\dot{\mathcal{U}}$ acts on cohomology of iterated flag varieties, categorifying the irreducible N-dimensional rep of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$

Theorem (L.)

This graphical calculus is consistent and categorifies the integral idempotent version $\dot{\mathbf{U}}_{\mathbb{Z}}$ of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$. This $\mathbb{Z}\left[q, q^{-1}\right]$-algebra is obtained from $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ by replacing 1 by mutually orthogonal idempotents 1_{n} projecting onto the nth weight space.

- $\dot{\mathbf{U}}_{\mathbb{Z}} \cong K_{0}(\dot{\mathcal{U}})$ the Grothendieck ring/category of this 2-category

$$
x \oplus y \in \dot{\mathcal{U}} \leadsto[x]+[y] \in K_{0}(\dot{\mathcal{U}}) \quad x\{s\} \quad \rightsquigarrow \quad q^{s}[x] \in K_{0}(\dot{\mathcal{U}})
$$

- Indecomposable 1-morphisms \Leftrightarrow Lusztig canonical basis element
- Graded 2 Hom $\operatorname{HOM}_{\dot{\mathcal{U}}}(x, y)$ categorifies the semilinear form $\langle x, y\rangle$
- The 2-category $\dot{\mathcal{U}}$ acts on cohomology of iterated flag varieties, categorifying the irreducible N-dimensional rep of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$

Theorem (Khovanov, L., Mackaay, Stošić)

The natural homomorphism $\dot{\mathbf{U}}_{\mathbb{Z}} \rightarrow K_{0}(\dot{\mathcal{U}})$ remains an isomorphism when considering $\mathbb{k}=\mathbb{Z}$-linear combinations of 2-morphisms.

2-representations

Definition

Let \mathcal{K} be a graded additive \mathbb{k}-linear 2-category. A 2 -representation is a 2-functor $\mathcal{U} \rightarrow \mathcal{K}$.

Example $(\mathcal{K}=$ Cat $)$

$$
\begin{aligned}
\mathcal{U} & \longrightarrow \text { Cat } \\
n & \mapsto \text { category } \mathcal{V}_{n} \\
\mathcal{E} \mathbf{1}_{n} & \mapsto \text { functors } \mathcal{E} \mathbf{1}_{n}: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n+2} \\
\mathcal{F} \mathbf{1}_{n} & \mapsto \text { functors } \mathcal{F} \mathbf{1}_{n}: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n-2}
\end{aligned}
$$

generating 2-morphisms \mapsto natural transformations relations \mapsto relations between natural transformations

2-representations

Definition

Let \mathcal{K} be a graded additive \mathbb{k}-linear 2-category. A 2 -representation is a 2-functor $\mathcal{U} \rightarrow \mathcal{K}$.

Example $(\mathcal{K}=$ Cat $)$

$$
\begin{aligned}
\mathcal{U} & \longrightarrow \text { Cat } \\
n & \mapsto \text { category } \mathcal{V}_{n} \\
\mathcal{E} \mathbf{1}_{n} & \mapsto \text { functors } \mathcal{E} \mathbf{1}_{n}: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n+2} \\
\mathcal{F} \mathbf{1}_{n} & \mapsto \text { functors } \mathcal{F} \mathbf{1}_{n}: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n-2}
\end{aligned}
$$

generating 2-morphisms \mapsto natural transformations relations \mapsto relations between natural transformations

Do we really have to check all those relations?

Theorem (Cautis-L.)

Given a finite dimensional categorical representation of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ (functors \mathcal{E} and \mathcal{F} satisfying $\mathfrak{s l}_{2}$-relations up to isomorphism) then this structure extends to a 2 -representation of \mathcal{U} if the following additional conditions are satisfied:

- The functors \mathcal{E} and \mathcal{F} are biadjoint up to grading shift.
- The nilHecke algebra axioms hold.
- The graded vector spaces $\operatorname{HOM}\left(\mathbf{1}_{n}, \mathbf{1}_{n}\right)$ are zero dimensional in negative degrees and one-dimensional in degree zero.

Theorem (Cautis-L.)

Given a finite dimensional categorical representation of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ (functors \mathcal{E} and \mathcal{F} satisfying $\mathfrak{s l}_{2}$-relations up to isomorphism) then this structure extends to a 2 -representation of \mathcal{U} if the following additional conditions are satisfied:

- The functors \mathcal{E} and \mathcal{F} are biadjoint up to grading shift.
- The nilHecke algebra axioms hold.
- The graded vector spaces $\operatorname{HOM}\left(\mathbf{1}_{n}, \mathbf{1}_{n}\right)$ are zero dimensional in negative degrees and one-dimensional in degree zero.

If much of the structure of categorified representation theory comes for free, what are the advantages of this higher structure?

Theorem (Cautis-L.)

Given a finite dimensional categorical representation of $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$ (functors \mathcal{E} and \mathcal{F} satisfying $\mathfrak{s l}_{2}$-relations up to isomorphism) then this structure extends to a 2 -representation of \mathcal{U} if the following additional conditions are satisfied:

- The functors \mathcal{E} and \mathcal{F} are biadjoint up to grading shift.
- The nilHecke algebra axioms hold.
- The graded vector spaces $\operatorname{HOM}\left(\mathbf{1}_{n}, \mathbf{1}_{n}\right)$ are zero dimensional in negative degrees and one-dimensional in degree zero.

If much of the structure of categorified representation theory comes for free, what are the advantages of this higher structure?

Higher relations play a key role in categorification of other representation theoretic constructions.

Derived equivalences

- Chuang and Rouquier showed that derived equivalences could be constructed in the context of abelian categories using a related approach to higher representation theory.
- Cautis, Kamnitzer and Licata showed that the higher structure of \mathcal{U} gives derived equivalences in the more general setting of triangulated categories.

Derived equivalences

- Chuang and Rouquier showed that derived equivalences could be constructed in the context of abelian categories using a related approach to higher representation theory.
- Cautis, Kamnitzer and Licata showed that the higher structure of \mathcal{U} gives derived equivalences in the more general setting of triangulated categories.

- Used by CR to prove the Abelian defect conjecture for symmetric groups.
- Used by CKL to construct derived equivalences between derived categories of coherent sheaves on cotangent bundles to Grassmannians.

Beliakova, Khovanov, L. Casimir Categorification for $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$

There is a complex that categorified the integral idempotent version of the Casimir element

$$
\begin{aligned}
& \dot{C}=\prod_{n \in \mathbb{Z}} C 1_{n}, \\
& C 1_{n}=1_{n} C:=\left(-q^{2}+2-q^{-2}\right) E F 1_{n}-\left(q^{n-1}+q^{1-n}\right) 1_{n},
\end{aligned}
$$

Beliakova, Khovanov, L. Casimir Categorification for $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$

There is a complex that categorified the integral idempotent version of the Casimir element

$$
\begin{gathered}
\dot{C}=\prod_{n \in \mathbb{Z}} \mathcal{C} 1_{n}, \\
C 1_{n}=1_{n} C:=\left(-q^{2}+2-q^{-2}\right) E F 1_{n}-\left(q^{n-1}+q^{1-n}\right) 1_{n}, \\
\mathcal{C} \mathbf{1}_{n}:=
\end{gathered}
$$

- The Casimir complex categorifies the Casimir element of U.
- The Casimir complex commute with complexes in $\operatorname{Com}(\mathcal{U})$ up to chain homotopy.

Combinatorics of symmetric functions

The relations arising from the invertibility of the $\mathfrak{s l}_{2}$ relations have surprising connections to symmetric functions.

Symmetric polynomials

Elementary symmetric polynomial $e_{r}=$ sum over all products of r distinct variables x_{i}

- $e_{1}=x_{1}+x_{2}+x_{3}+\ldots$
- $e_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+\ldots$

Complete symmetric polynomials $h_{r}=$ sum over all monomials of total degree r

- $h_{1}=e_{1}=x_{1}+x_{2}+x_{3}+\ldots$
- $h_{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+\ldots$

These two sets of functions are related by

$$
\sum_{r=0}^{m}(-1)^{r} e_{r} h_{m-r}=0
$$

Both provide a basis for the ring of symmetric polynomials Λ

$$
\Lambda=\mathbb{Z}\left[e_{1}, e_{2}, e_{3}, \ldots\right], \quad \Lambda=\mathbb{Z}\left[h_{1}, h_{2}, h_{3}, \ldots\right]
$$

There is an isomorphism

$$
\phi_{n}: \operatorname{HOM}_{\mathcal{U}}\left(1_{n}, 1_{n}\right) \rightarrow \Lambda \quad \mapsto e_{r} \quad \text { for } n \geq 0 .
$$

Furthermore, using fake bubbles there is also an isomorphism

$$
\begin{aligned}
\phi_{n}: \operatorname{HOM}_{\mathcal{U}}\left(1_{n}, 1_{n}\right) & \rightarrow \Lambda \\
n & \mapsto(-1)^{r} h_{r} \quad \text { for } n \geq 0,
\end{aligned}
$$

Infinite Grassmannian relation $\Rightarrow \sum_{r=0}^{m}(-1)^{r} e_{r} h_{m-r}=0$

The r th power sum is given by

$$
p_{r}=\sum x_{i}^{r}
$$

Power sums arise naturally in the graphical calculus

as a degree r counter-clockwise oriented bubble inside a degree 0 clockwise oriented bubble

Schur polynomials

For a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m}$, denote the conjugate partition to λ as λ^{\prime}. The Schur polynomial s_{λ} can be expressed as

$$
s_{\lambda}=\operatorname{det}\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i, j \leq m}, \quad s_{\lambda}=\operatorname{det}\left(\epsilon_{\lambda_{i}^{\prime}-i+j}\right)_{1 \leq i, j \leq \lambda_{1}}
$$

This generalizes to arbitrary Schur polynomials.

