The structure of categorified representation theory

Aaron Lauda

Columbia University

May 23rd, 2011

Aaron Lauda (Columbia University)

Categorified representation theory

May 23rd, 2011 1 / 23

Jones polynomial

Э

590

イロト イポト イヨト イヨト

Jones polynomial

Representation theory of quantum \mathfrak{sl}_2

- IB

ヨト イヨト ニヨ

Aaron Lauda (Columbia University)

Sar

Representation theory of quantum \mathfrak{sl}_2

Khovanov homology

Aaron Lauda (Columbia University)

Categorified representation theory

May 23rd, 2011 2 / 23

Sac

Aaron Lauda (Columbia University)

Categorified representation theory

May 23rd, 2011 2 / 23

Quantum sl(2)

The quantum group $\mathbf{U}_q(\mathfrak{sl}_2)$ is the associative algebra (with unit) over $\mathbb{C}(q)$ with generators E, F, K, K^{-1} and relations

•
$$KK^{-1} = 1 = K^{-1}K$$
,
• $KE = q^{2}EK$, $KF = q^{-2}FK$,
• $EF - FE = \frac{K-K^{-1}}{q-q^{-1}}$

A finite-dimensional representation V of $\mathbf{U}_q(\mathfrak{sl}_2)$ is given by homomorphism

$$\mathbf{U}_q(\mathfrak{sl}_2) \longrightarrow \mathrm{End}(V)$$

for some $\mathbb{C}(q)$ -vector space *V*.

We can decompose V into eigenspaces for the action of K.

$$V = \bigoplus_{n \in \mathbb{Z}} V(n)$$

$$Kv = q^n v$$
 $v \in V(n)$

イロト イポト イヨト イヨト 二日

A representation of $\mathbf{U}_q(\mathfrak{sl}_2)$ is a collection of

 V_{-N} \cdots V_{n-2} V_n V_{n+2} \cdots V_N

• vector spaces ($Kv = q^n v$ for $v \in V_n$),

Sac

A representation of $\mathbf{U}_q(\mathfrak{sl}_2)$ is a collection of

$$V_{-N} \xrightarrow{E} \cdots V_{n-2} \xrightarrow{E} V_n \xrightarrow{E} V_{n+2} \cdots \xrightarrow{E} V_N$$

• vector spaces ($Kv = q^n v$ for $v \in V_n$),

• linear maps $E: V_n \rightarrow V_{n+2}$ ($KE = q^2 EK$),

Sac

A representation of $\mathbf{U}_q(\mathfrak{sl}_2)$ is a collection of

• vector spaces (
$$Kv = q^n v$$
 for $v \in V_n$),

- linear maps $E: V_n \to V_{n+2}$ ($KE = q^2 EK$),
- and linear maps $F \colon V_n \to V_{n-2}$ (KF = $q^{-2}FK$)

A representation of $\mathbf{U}_q(\mathfrak{sl}_2)$ is a collection of

• vector spaces (
$$Kv = q^n v$$
 for $v \in V_n$),

- linear maps $E: V_n \to V_{n+2}$ ($KE = q^2 EK$),
- and linear maps $F: V_n \to V_{n-2}$ (KF = $q^{-2}FK$)
- satisfying EFv FEv = [n]v for $v \in V_n$.

$$[n] := \frac{q^n - q^{-n}}{q - q^{-1}} = q^{n-1} + q^{n-3} + \dots + q^{1-n}$$

Aaron Lauda (Columbia University)

$$\mathcal{V}_{-N}$$
 ... \mathcal{V}_{n-2} \mathcal{V}_n \mathcal{V}_{n+2} ... \mathcal{V}_N

categories

Э

ヨトイヨト

$$\mathcal{V}_{-N} \xrightarrow{\mathcal{E}} \cdots \qquad \mathcal{V}_{n-2} \xrightarrow{\mathcal{E}} \mathcal{V}_{n} \xrightarrow{\mathcal{E}} \mathcal{V}_{n+2} \cdots \xrightarrow{\mathcal{E}} \mathcal{V}_{N}$$

- categories
- functors $\mathcal{E}: \mathcal{V}_n \to \mathcal{V}_{n+2}$

Э

イロト イポト イヨト イヨト

- categories
- functors $\mathcal{E}: \mathcal{V}_n \to \mathcal{V}_{n+2}$
- functors $\mathcal{F}: \mathcal{V}_n \to \mathcal{V}_{n-2}$

ヨト・ヨト

- categories
- functors $\mathcal{E}: \mathcal{V}_n \to \mathcal{V}_{n+2}$
- functors $\mathcal{F}: \mathcal{V}_n \to \mathcal{V}_{n-2}$
- identity functors $\mathbf{1}_n: \mathcal{V}_n \to \mathcal{V}_n$.

프 ト イ 프 ト

- categories
- functors $\mathcal{E}: \mathcal{V}_n \to \mathcal{V}_{n+2}$
- functors $\mathcal{F}: \mathcal{V}_n \to \mathcal{V}_{n-2}$
- identity functors $\mathbf{1}_n : \mathcal{V}_n \to \mathcal{V}_n$.
- satisfying

$$\mathcal{EF}\mathbf{1}_n \cong \mathcal{FE}\mathbf{1}_n \bigoplus_{[n]} \mathbf{1}_n \quad \text{for } n \ge 0$$

 $\mathcal{FE}\mathbf{1}_n \cong \mathcal{EF}\mathbf{1}_n \bigoplus_{[-n]} \mathbf{1}_n \quad \text{for } n \le 0$

Example (cohomology of partial flag varieties) Fix N > 0 consider the varieties

$$Gr(k, N) \xrightarrow{Fl(k, k+1, N)} Gr(k+1, N) \xrightarrow{\{0 \subset \mathbb{C}^k \subset \mathbb{C}^{k+1} \subset \mathbb{C}^N\}} Gr(k+1, N)}_{\{0 \subset \mathbb{C}^{k+1} \subset \mathbb{C}^N\}}$$

which give rise to inclusions

$$H_{k,k+1} := H^*(Fl(k, k+1, N))$$

$$H_k := H^*(Gr(k, N))$$

$$H_{k+1} := H^*(Gr(k+1, N))$$

on cohomology making $H_{k,k+1}$ an (H_k, H_{k+1}) -bimodule.

Aaron Lauda (Columbia University)

We expect to see a new level of structure in categorification.

Sar

∃ ⊳

We expect to see a new level of structure in categorification.

What is the higher structure of categorical representation theory?

We expect to see a new level of structure in categorification.

What is the higher structure of categorical representation theory?

Idea: look at the structure of natural transformations between functors in categorical $U_q(\mathfrak{sl}_2)$ -actions.

We expect to see a new level of structure in categorification.

What is the higher structure of categorical representation theory?

Idea: look at the structure of natural transformations between functors in categorical $U_q(\mathfrak{sl}_2)$ -actions.

The $\mathfrak{sl}_2\text{-relations}$ should follow as consequences of this higher structure.

This suggests a categorification of the $U_q(\mathfrak{sl}_2)$ that allows for maps between algebra elements.

Aaron Lauda (Columbia University)

Categorified representation theory

nan

 ${\mathcal U}$ is an additive $\Bbbk{\text{-linear 2-category with}}$

- objects: *n* for $n \in \mathbb{Z}$.
- 1-morphism in \mathcal{U} from *n* to *n'* is a formal finite direct sum of

$$\mathcal{E}^{\alpha_1}\mathcal{F}^{\beta_1}\cdots\mathcal{E}^{\alpha_m}\mathcal{F}^{\beta_m}\mathbf{1}_n\{s\}=\mathbf{1}_{n'}\mathcal{E}^{\alpha_1}\mathcal{F}^{\beta_1}\cdots\mathcal{E}^{\alpha_m}\mathcal{F}^{\beta_m}\mathbf{1}_n\{s\}$$

for any $s \in \mathbb{Z}$ and $n' = n + 2 \sum \alpha_i - 2 \sum \beta_i$.

2-morphisms given by k-linear combinations of diagrams

Generating 2-morphisms

$$n+2 \stackrel{h}{\longrightarrow} n : \mathcal{E}\mathbf{1}_{n}\{2\} \to \mathcal{E}\mathbf{1}_{n}$$

$$n-2 \stackrel{h}{\longrightarrow} n : \mathcal{F}\mathbf{1}_{n}\{2\} \to \mathcal{F}\mathbf{1}_{n}$$

$$n-2 \stackrel{h}{\longrightarrow} n : \mathcal{F}\mathbf{1}_{n}\{2\} \to \mathcal{F}\mathbf{1}_{n}$$

$$n : \mathcal{F}\mathcal{F}\mathbf{1}_{n}\{-2\} \to \mathcal{F}\mathcal{F}\mathbf{1}_{n}$$

$$n : \mathcal{F}\mathcal{F}\mathbf{1}_{n}\{-2\} \to \mathcal{F}\mathcal{F}\mathbf{1}_{n}$$

$$n : \mathcal{F}\mathcal{F}\mathbf{1}_{n}\{-2\} \to \mathcal{F}\mathcal{F}\mathbf{1}_{n}$$

$$n : \mathcal{F}\mathcal{F}\mathbf{1}_{n}\{1+n\} \to \mathcal{F}\mathcal{E}\mathbf{1}_{n}$$

$$n : \mathcal{F}\mathcal{F}\mathbf{1}_{n}\{1+n\} \to \mathbf{1}_{n}$$

$$n : \mathcal{F}\mathcal{F}\mathbf{1}_{n}\{1-n\} \to \mathbf{1}_{n}$$

Topological invariance

Aaron Lauda (Columbia University)

Categorified representation theory

NilHecke relations

Positivity of bubbles

All dotted bubbles of negative degree are zero. That is,

$$\deg\left(\bigcap_{\beta}^{n}\right) = 2(1-n) + 2\beta \qquad \qquad \deg\left(\bigcap_{\beta}^{n}\right) = 2(1+n) + 2\beta$$

Aaron Lauda (Columbia University)

3

イロト イポト イヨト イヨト

NilHecke relations

Positivity of bubbles

All dotted bubbles of negative degree are zero. That is,

$$\deg\left(\bigcap_{\beta}^{n}\right) = 2(1-n) + 2\beta \qquad \deg\left(\bigcap_{\beta}^{n}\right) = 2(1+n) + 2\beta$$
$$\Rightarrow \qquad \bigoplus_{\beta}^{n} = 0 \quad \text{if } \beta < n-1 \qquad \bigoplus_{\beta}^{n} = 0 \quad \text{if } \beta < -n-1$$

Aaron Lauda (Columbia University)

= nar

イロト イポト イヨト イヨト

 $\mathfrak{sl}_2 \text{ isomorphism } \mathcal{FE}\mathbf{1}_n \oplus_{[n]} \mathbf{1}_n \cong \mathcal{EF}\mathbf{1}_n \text{ for } n \ge 0$ Recall that for $[n] = q^{n-1} + q^{n-3} + \cdots + q^{1-n}$ we write $\oplus_{[n]}\mathbf{1}_n := \mathbf{1}_n\{n-1\} \oplus \mathbf{1}_n\{n-3\} \oplus \cdots \oplus \mathbf{1}_n\{1-n\}.$

Aaron Lauda (Columbia University)

Categorified representation theory

May 23rd, 2011 11 / 23

 $\mathfrak{sl}_2 \text{ isomorphism } \mathcal{FE1}_n \oplus_{[n]} \mathbf{1}_n \cong \mathcal{EF1}_n \text{ for } n \ge 0$ Recall that for $[n] = q^{n-1} + q^{n-3} + \cdots + q^{1-n}$ we write $\oplus_{[n]} \mathbf{1}_n := \mathbf{1}_n \{n-1\} \oplus \mathbf{1}_n \{n-3\} \oplus \cdots \oplus \mathbf{1}_n \{1-n\}.$

We require that the map

Э

(同) (三) (三) (

 $\mathfrak{sl}_2 \text{ isomorphism } \mathcal{FE1}_n \oplus_{[n]} \mathbf{1}_n \cong \mathcal{EF1}_n \text{ for } n \ge 0$ Recall that for $[n] = q^{n-1} + q^{n-3} + \dots + q^{1-n}$ we write $\oplus_{[n]} \mathbf{1}_n := \mathbf{1}_n \{n-1\} \oplus \mathbf{1}_n \{n-3\} \oplus \dots \oplus \mathbf{1}_n \{1-n\}.$

We require that the map

has a specified inverse. Similarly for $n \leq 0$.

ヨト・モヨト

Relations in $\ensuremath{\mathcal{U}}$

The previous relations imposed on $\ensuremath{\mathcal{U}}$ were

- $\mathcal{E}\mathbf{1}_n$ and $\mathcal{F}\mathbf{1}_n$ are biadjoint up to grading shift.
- All 2-morphisms are cyclic with respect to this biadjoint structure (topological invariance, or planar algebra condition)
- The nilHecke algebra acts on $END(\mathcal{E}^a)\mathbf{1}_n$.
- Negative degree bubbles are zero.

The requirement that the specified maps give isomorphisms

$\mathcal{EF}1_n \cong \mathcal{FE}1_n \oplus_{[n]} 1_n$	for <i>n</i> ≥ 0
$\mathcal{FE1}_n \cong \mathcal{EF1}_n \oplus_{[-n]} 1_n$	for <i>n</i> ≤ 0

for the \mathfrak{sl}_2 relations imposes diagrammatic relations on the 2-category \mathcal{U} that depend on the weight space *n*.

For *n* > 0

Similar relations for n < 0.

This graphical calculus is consistent and categorifies the integral idempotent version $\dot{\mathbf{U}}_{\mathbb{Z}}$ of $\mathbf{U}_q(\mathfrak{sl}_2)$. This $\mathbb{Z}[q, q^{-1}]$ -algebra is obtained from $\mathbf{U}_q(\mathfrak{sl}_2)$ by replacing 1 by mutually orthogonal idempotents $\mathbf{1}_n$ projecting onto the *n*th weight space.

• $\dot{U}_{\mathbb{Z}} \cong K_0(\dot{\mathcal{U}})$ the Grothendieck ring/category of this 2-category

$$\mathbf{x} \oplus \mathbf{y} \in \dot{\mathcal{U}} \quad \rightsquigarrow \quad [\mathbf{x}] + [\mathbf{y}] \in \mathcal{K}_0(\dot{\mathcal{U}}) \qquad \mathbf{x}\{\mathbf{s}\} \quad \rightsquigarrow \quad q^{\mathbf{s}}[\mathbf{x}] \in \mathcal{K}_0(\dot{\mathcal{U}})$$

Indecomposable 1-morphisms ⇔ Lusztig canonical basis element

イロト イポト イヨト イヨト 二日

This graphical calculus is consistent and categorifies the integral idempotent version $\dot{\mathbf{U}}_{\mathbb{Z}}$ of $\mathbf{U}_q(\mathfrak{sl}_2)$. This $\mathbb{Z}[q, q^{-1}]$ -algebra is obtained from $\mathbf{U}_q(\mathfrak{sl}_2)$ by replacing 1 by mutually orthogonal idempotents $\mathbf{1}_n$ projecting onto the *n*th weight space.

• $\dot{U}_{\mathbb{Z}} \cong K_0(\dot{\mathcal{U}})$ the Grothendieck ring/category of this 2-category

$$\mathbf{x} \oplus \mathbf{y} \in \dot{\mathcal{U}} \quad \rightsquigarrow \quad [\mathbf{x}] + [\mathbf{y}] \in \mathcal{K}_0(\dot{\mathcal{U}}) \qquad \mathbf{x}\{\mathbf{s}\} \quad \rightsquigarrow \quad q^{\mathbf{s}}[\mathbf{x}] \in \mathcal{K}_0(\dot{\mathcal{U}})$$

- Indecomposable 1-morphisms ⇔ Lusztig canonical basis element
- Graded 2Hom $HOM_{\dot{\mathcal{U}}}(x,y)$ categorifies the semilinear form $\langle x,y \rangle$

This graphical calculus is consistent and categorifies the integral idempotent version $\dot{\mathbf{U}}_{\mathbb{Z}}$ of $\mathbf{U}_q(\mathfrak{sl}_2)$. This $\mathbb{Z}[q, q^{-1}]$ -algebra is obtained from $\mathbf{U}_q(\mathfrak{sl}_2)$ by replacing 1 by mutually orthogonal idempotents $\mathbf{1}_n$ projecting onto the *n*th weight space.

• $\dot{U}_{\mathbb{Z}} \cong K_0(\dot{\mathcal{U}})$ the Grothendieck ring/category of this 2-category

 $x \oplus y \in \dot{\mathcal{U}} \quad \rightsquigarrow \quad [x] + [y] \in \mathcal{K}_0(\dot{\mathcal{U}}) \qquad x\{s\} \quad \rightsquigarrow \quad q^s[x] \in \mathcal{K}_0(\dot{\mathcal{U}})$

- Indecomposable 1-morphisms ⇔ Lusztig canonical basis element
- Graded 2Hom $HOM_{\dot{\mathcal{U}}}(x,y)$ categorifies the semilinear form $\langle x,y \rangle$
- The 2-category U
 acts on cohomology of iterated flag varieties, categorifying the irreducible N-dimensional rep of U_q(sl₂)

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト - ヨ -

This graphical calculus is consistent and categorifies the integral idempotent version $\dot{\mathbf{U}}_{\mathbb{Z}}$ of $\mathbf{U}_q(\mathfrak{sl}_2)$. This $\mathbb{Z}[q, q^{-1}]$ -algebra is obtained from $\mathbf{U}_q(\mathfrak{sl}_2)$ by replacing 1 by mutually orthogonal idempotents $\mathbf{1}_n$ projecting onto the *n*th weight space.

• $\dot{U}_{\mathbb{Z}} \cong K_0(\dot{\mathcal{U}})$ the Grothendieck ring/category of this 2-category

 $x \oplus y \in \dot{\mathcal{U}} \quad \leadsto \quad [x] + [y] \in \mathcal{K}_0(\dot{\mathcal{U}}) \qquad x\{s\} \quad \leadsto \quad q^s[x] \in \mathcal{K}_0(\dot{\mathcal{U}})$

- Indecomposable 1-morphisms ⇔ Lusztig canonical basis element
- Graded 2Hom $\operatorname{HOM}_{\dot{\mathcal{U}}}(x,y)$ categorifies the semilinear form $\langle x,y\rangle$
- The 2-category U
 acts on cohomology of iterated flag varieties, categorifying the irreducible N-dimensional rep of U_q(sl₂)

Theorem (Khovanov, L., Mackaay, Stošić)

The natural homomorphism $\dot{U}_\mathbb{Z}\to {\it K}_0(\dot{\cal U})$ remains an isomorphism when considering $\Bbbk=\mathbb{Z}\text{-linear combinations of 2-morphisms.}$

2-representations

Definition

Let \mathcal{K} be a graded additive \Bbbk -linear 2-category. A 2-representation is a 2-functor $\mathcal{U} \to \mathcal{K}$.

Example ($\mathcal{K} = Cat$) $\mathcal{U} \longrightarrow Cat$ $n \mapsto category \mathcal{V}_n$ $\mathcal{E}\mathbf{1}_n \mapsto functors \mathcal{E}\mathbf{1}_n : \mathcal{V}_n \to \mathcal{V}_{n+2}$ $\mathcal{F}\mathbf{1}_n \mapsto functors \mathcal{F}\mathbf{1}_n : \mathcal{V}_n \to \mathcal{V}_{n-2}$ generating 2-morphisms \mapsto natural transformations relations \mapsto relations between natural transformations

2-representations

Definition

Let \mathcal{K} be a graded additive \Bbbk -linear 2-category. A 2-representation is a 2-functor $\mathcal{U} \to \mathcal{K}$.

Example ($\mathcal{K} = Cat$) $\mathcal{U} \longrightarrow Cat$ $n \mapsto category \mathcal{V}_n$ $\mathcal{E}\mathbf{1}_n \mapsto functors \mathcal{E}\mathbf{1}_n \colon \mathcal{V}_n \to \mathcal{V}_{n+2}$ $\mathcal{F}\mathbf{1}_n \mapsto functors \mathcal{F}\mathbf{1}_n \colon \mathcal{V}_n \to \mathcal{V}_{n-2}$ generating 2-morphisms \mapsto natural transformations

relations \mapsto relations between natural transformations

Do we really have to check all those relations?

Aaron Lauda	(Columbia University)
-------------	-----------------------

Theorem (Cautis-L.)

Given a finite dimensional categorical representation of $\mathbf{U}_q(\mathfrak{sl}_2)$ (functors \mathcal{E} and \mathcal{F} satisfying \mathfrak{sl}_2 -relations up to isomorphism) then this structure extends to a 2-representation of \mathcal{U} if the following additional conditions are satisfied:

- The functors \mathcal{E} and \mathcal{F} are biadjoint up to grading shift.
- The nilHecke algebra axioms hold.
- The graded vector spaces HOM(1_n, 1_n) are zero dimensional in negative degrees and one-dimensional in degree zero.

< 同ト < ヨト < ヨト

Theorem (Cautis-L.)

Given a finite dimensional categorical representation of $\mathbf{U}_q(\mathfrak{sl}_2)$ (functors \mathcal{E} and \mathcal{F} satisfying \mathfrak{sl}_2 -relations up to isomorphism) then this structure extends to a 2-representation of \mathcal{U} if the following additional conditions are satisfied:

- The functors \mathcal{E} and \mathcal{F} are biadjoint up to grading shift.
- The nilHecke algebra axioms hold.
- The graded vector spaces HOM(1_n, 1_n) are zero dimensional in negative degrees and one-dimensional in degree zero.

If much of the structure of categorified representation theory comes for free, what are the advantages of this higher structure?

イロト イポト イヨト イヨト 二日

Theorem (Cautis-L.)

Given a finite dimensional categorical representation of $\mathbf{U}_q(\mathfrak{sl}_2)$ (functors \mathcal{E} and \mathcal{F} satisfying \mathfrak{sl}_2 -relations up to isomorphism) then this structure extends to a 2-representation of \mathcal{U} if the following additional conditions are satisfied:

- The functors \mathcal{E} and \mathcal{F} are biadjoint up to grading shift.
- The nilHecke algebra axioms hold.
- The graded vector spaces HOM(1_n, 1_n) are zero dimensional in negative degrees and one-dimensional in degree zero.

If much of the structure of categorified representation theory comes for free, what are the advantages of this higher structure?

Higher relations play a key role in categorification of other representation theoretic constructions.

3

イロト イポト イヨト イヨト

Derived equivalences

- Chuang and Rouquier showed that derived equivalences could be constructed in the context of abelian categories using a related approach to higher representation theory.
- Cautis, Kamnitzer and Licata showed that the higher structure of *U* gives derived equivalences in the more general setting of triangulated categories.

 \mathcal{V}_{-n-2}

 \mathcal{V}_{n-2}

200

Derived equivalences

- Chuang and Rouquier showed that derived equivalences could be constructed in the context of abelian categories using a related approach to higher representation theory.
- Cautis, Kamnitzer and Licata showed that the higher structure of *U* gives derived equivalences in the more general setting of triangulated categories.

 $\mathcal{V}_{-n-2} \cdots \mathcal{V}_{n-2}$

 Used by CKL to construct derived equivalences between derived categories of coherent sheaves on cotangent bundles to Grassmannians.

 $\cdots \mathcal{V}_{-n+2}$

Beliakova, Khovanov, L. Casimir Categorification for $U_q(\mathfrak{sl}_2)$

There is a complex that categorified the integral idempotent version of the Casimir element

$$\dot{C} = \prod_{n \in \mathbb{Z}} C1_n,$$

 $C1_n = 1_n C := (-q^2 + 2 - q^{-2}) EF1_n - (q^{n-1} + q^{1-n})1_n,$

Beliakova, Khovanov, L. Casimir Categorification for $U_q(\mathfrak{sl}_2)$

There is a complex that categorified the integral idempotent version of the Casimir element

$$\dot{C} = \prod_{n \in \mathbb{Z}} C1_n,$$

 $C1_n = 1_n C := (-q^2 + 2 - q^{-2}) EF1_n - (q^{n-1} + q^{1-n})1_n,$

- The Casimir complex categorifies the Casimir element of U.
- The Casimir complex commute with complexes in *Com*(*U*) up to chain homotopy.

Combinatorics of symmetric functions

The relations arising from the invertibility of the \mathfrak{sl}_2 relations have surprising connections to symmetric functions.

Sar

The 16

Symmetric polynomials

Elementary symmetric polynomial e_r = sum over all products of r distinct variables x_i

•
$$e_1 = x_1 + x_2 + x_3 + \dots$$

•
$$e_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 + \dots$$

Complete symmetric polynomials $h_r =$ sum over all monomials of total degree r

•
$$h_1 = e_1 = x_1 + x_2 + x_3 + \dots$$

• $h_2 = x_1^2 + x_2^2 + x_3^2 + x_1 x_2 + x_1 x_3 + x_2 x_3 + \dots$

These two sets of functions are related by

$$\sum_{r=0}^m (-1)^r e_r h_{m-r} = 0$$

Both provide a basis for the ring of symmetric polynomials $\boldsymbol{\Lambda}$

$$\Lambda = \mathbb{Z}[\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \dots], \qquad \Lambda = \mathbb{Z}[h_1, h_2, h_3, \dots].$$

イロト イ理ト イヨト イヨト

There is an isomorphism

$$\phi_n \colon \operatorname{HOM}_{\mathcal{U}}(\mathsf{1}_n, \mathsf{1}_n) \to \Lambda$$

$$\bigcap_{(n-1)+r} \mapsto e_r \quad \text{for } n \ge 0.$$

Furthermore, using fake bubbles there is also an isomorphism

$$\phi_n \colon \operatorname{HOM}_{\mathcal{U}}(1_n, 1_n) \to \Lambda$$

$$\bigcap_{(-n-1)+r} \mapsto (-1)^r h_r \quad \text{for } n \ge 0,$$

Infinite Grassmannian relation $\Rightarrow \sum_{r=0}^{m} (-1)^r e_r h_{m-r} = 0$

Aaron Lauda (Columbia University)

Categorified representation theory

The *r*th power sum is given by

$$p_r = \sum x_i^r$$
.

Power sums arise naturally in the graphical calculus

as a degree *r* counter-clockwise oriented bubble inside a degree 0 clockwise oriented bubble

Aaron Lauda (Columbia University)

May 23rd, 2011 22 / 23

Sar

Schur polynomials

For a partition $\lambda = (\lambda_1, \lambda_2, ..., \lambda_m)$, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m$, denote the conjugate partition to λ as λ' . The Schur polynomial s_{λ} can be expressed as

This generalizes to arbitrary Schur polynomials.

Aaron Lauda (Columbia University)

イロト イポト イヨト イヨト 二日