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Quantum sl(2)
The quantum group Uq(sl2) is the associative algebra (with unit) overC(q) with generators E , F , K , K−1 and relations

KK−1 = 1 = K−1K ,

KE = q2EK , KF = q−2FK ,

EF − FE = K−K−1

q−q−1

A finite-dimensional representation V of Uq(sl2) is given by
homomorphism

Uq(sl2) −→ End(V )

for some C(q)-vector space V .

We can decompose V into eigenspaces for the action of K .

V =
⊕

n∈Z V (n)

Kv = qnv v ∈ V (n)
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Representation theory of Uq(sl2)

A representation of Uq(sl2) is a collection of

V−N Vn−2 Vn Vn+2 VN· · ·· · ·

vector spaces (Kv = qnv for v ∈ Vn),
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vector spaces (Kv = qnv for v ∈ Vn),

linear maps E : Vn → Vn+2 (KE = q2EK ),

and linear maps F : Vn → Vn−2 (KF = q−2FK )

satisfying EFv − FEv = [n]v for v ∈ Vn.

[n] :=
qn − q−n

q − q−1 = qn−1 + qn−3 + · · ·+ q1−n
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Categorical representations of Uq(sl2)
A categorical representation of Uq(sl2) is a collection of

V−N Vn−2 Vn Vn+2 VN· · ·· · ·

categories
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Categorical representations of Uq(sl2)
A categorical representation of Uq(sl2) is a collection of
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categories
functors E : Vn → Vn+2

functors F : Vn → Vn−2

identity functors 1n : Vn → Vn.
satisfying

EF1n
∼= FE1n

⊕

[n]

1n for n ≥ 0

FE1n
∼= EF1n

⊕

[−n]

1n for n ≤ 0
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Example (cohomology of partial flag varieties)
Fix N > 0 consider the varieties

Fl(k , k + 1,N)
{0⊂Ck⊂Ck+1⊂CN}Gr(k ,N) Gr(k + 1,N)

{0⊂Ck⊂CN} {0⊂Ck+1⊂CN}

qqccccccc --[[[[[[

which give rise to inclusions

Hk ,k+1 := H∗(Fl(k , k + 1,N))

Hk := H∗(Gr(k ,N)) Hk+1 := H∗(Gr(k + 1,N))

11ccc kkXXX

on cohomology making Hk ,k+1 an (Hk ,Hk+1)-bimodule.

H0 Hk−1 Hk Hk+1 Hk

H1,0

((

Hk,k−1
))

Hk+1,k
++

HN,N−1
))

H0,1

ii

Hk−1,k

kk

Hk,k+1

ii

HN−1,N

hh· · ·· · ·
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Higher structure
We expect to see a new level of structure in categorification.
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What is the higher structure of categorical representation theory?

Idea: look at the structure of natural transformations between functors
in categorical Uq(sl2)-actions.
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Higher structure
We expect to see a new level of structure in categorification.

 

What is the higher structure of categorical representation theory?

Idea: look at the structure of natural transformations between functors
in categorical Uq(sl2)-actions.

The sl2-relations should follow as consequences of this higher
structure.

This suggests a categorification of the Uq(sl2) that allows for maps
between algebra elements.
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U is an additive k-linear 2-category with
objects: n for n ∈ Z.
1-morphism in U from n to n′ is a formal finite direct sum of

Eα1Fβ1 · · · EαmFβm1n{s} = 1n′Eα1Fβ1 · · · EαmFβm1n{s}

for any s ∈ Z and n′ = n + 2
∑

αi − 2
∑

βi .
2-morphisms given by k-linear combinations of diagrams

Generating 2-morphisms

OO

•
nn+2
: E1n{2} → E1n

��

•
nn−2
: F1n{2} → F1n

OOOO
n : EE1n{−2} → EE1n ����

n : FF1n{−2} → FF1n

�� JJ

n
: 1n{1 + n} → FE1n ��TT

n
: 1n{1 − n} → EF1n

WW


n

: FE1n{1 + n} → 1n GG ��
n

: EF1n{1 − n} → 1n
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Topological invariance

OO �� OO

n

n+2
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��
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•

=
��

•
n n+2

= OO
��

��

n+2
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•

OO��
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n
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�� ��
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OO ��

�� OO
n

�� OO
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NilHecke relations

OOOO

OOOO

n = 0,
OOOO

OOOO

OOOO

n =
OO OO

OO OO

OO OO

n

OOOO
n =

OO

•

OO
n −

OO
•

OO
n =

OOOO
• n −

OOOO

•
n

Positivity of bubbles
All dotted bubbles of negative degree are zero. That is,

deg





��MM

•
β

n


 = 2(1 − n) + 2β deg





QQ��

•
β

n


 = 2(1 + n) + 2β
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sl2 isomorphism FE1n ⊕[n] 1n
∼= EF1n for n ≥ 0

Recall that for [n] = qn−1 + qn−3 + · · ·+ q1−n we write
⊕[n]1n := 1n{n − 1} ⊕ 1n{n − 3} ⊕ · · · ⊕ 1n{1 − n}.
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has a specified inverse. Similarly for n ≤ 0.
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Relations in U

The previous relations imposed on U were

E1n and F1n are biadjoint up to grading shift.

All 2-morphisms are cyclic with respect to this biadjoint structure
(topological invariance, or planar algebra condition)

The nilHecke algebra acts on END(Ea)1n.

Negative degree bubbles are zero.

The requirement that the specified maps give isomorphisms

EF1n
∼= FE1n ⊕[n] 1n for n ≥ 0

FE1n
∼= EF1n ⊕[−n] 1n for n ≤ 0

for the sl2 relations imposes diagrammatic relations on the 2-category
U that depend on the weight space n.
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For n > 0

nKK

LL

RR

VV
= 0

n SS

RR

LL

HH
=

∑

g1+g2=n

n
OOQQ��

•
−n−1+g2

•g1

OO �� n = − OO��

��

OO

n
+

∑

f1+f2+f3
=n−1

n

��NN•f3

		OO

• f1
QQ��

•
−n−1+f2

�� OO n = − ��

��

OO

OO

n

Similar relations for n < 0.

For n = 0

OO �� n = − OO��

��

OO

n
�� OO n = − ��

��

OO

OO

n
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Theorem (L.)
This graphical calculus is consistent and categorifies the integral
idempotent version U̇Z of Uq(sl2). This Z[q,q−1]-algebra is obtained
from Uq(sl2) by replacing 1 by mutually orthogonal idempotents 1n

projecting onto the nth weight space.

U̇Z ∼= K0(U̇) the Grothendieck ring/category of this 2-category

x ⊕ y ∈ U̇  [x ] + [y ] ∈ K0(U̇) x{s}  qs[x ] ∈ K0(U̇)

Indecomposable 1-morphisms ⇔ Lusztig canonical basis element
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Theorem (L.)
This graphical calculus is consistent and categorifies the integral
idempotent version U̇Z of Uq(sl2). This Z[q,q−1]-algebra is obtained
from Uq(sl2) by replacing 1 by mutually orthogonal idempotents 1n

projecting onto the nth weight space.

U̇Z ∼= K0(U̇) the Grothendieck ring/category of this 2-category

x ⊕ y ∈ U̇  [x ] + [y ] ∈ K0(U̇) x{s}  qs[x ] ∈ K0(U̇)

Indecomposable 1-morphisms ⇔ Lusztig canonical basis element

Graded 2Hom HOMU̇ (x , y) categorifies the semilinear form 〈x , y〉

The 2-category U̇ acts on cohomology of iterated flag varieties,
categorifying the irreducible N-dimensional rep of Uq(sl2)

Theorem (Khovanov, L., Mackaay, Stošić)

The natural homomorphism U̇Z → K0(U̇) remains an isomorphism
when considering k = Z-linear combinations of 2-morphisms.
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2-representations

Definition
Let K be a graded additive k-linear 2-category. A 2-representation is a
2-functor U → K.

Example (K = Cat)

U −→ Cat

n 7→ category Vn

E1n 7→ functors E1n : Vn → Vn+2

F1n 7→ functors F1n : Vn → Vn−2

generating 2-morphisms 7→ natural transformations

relations 7→ relations between natural transformations
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2-representations

Definition
Let K be a graded additive k-linear 2-category. A 2-representation is a
2-functor U → K.

Example (K = Cat)

U −→ Cat

n 7→ category Vn

E1n 7→ functors E1n : Vn → Vn+2

F1n 7→ functors F1n : Vn → Vn−2

generating 2-morphisms 7→ natural transformations

relations 7→ relations between natural transformations

Do we really have to check all those relations?
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Theorem (Cautis-L.)
Given a finite dimensional categorical representation of Uq(sl2)
(functors E and F satisfying sl2-relations up to isomorphism) then this
structure extends to a 2-representation of U if the following additional
conditions are satisfied:

The functors E and F are biadjoint up to grading shift.

The nilHecke algebra axioms hold.

The graded vector spaces HOM(1n,1n) are zero dimensional in
negative degrees and one-dimensional in degree zero.
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Theorem (Cautis-L.)
Given a finite dimensional categorical representation of Uq(sl2)
(functors E and F satisfying sl2-relations up to isomorphism) then this
structure extends to a 2-representation of U if the following additional
conditions are satisfied:

The functors E and F are biadjoint up to grading shift.

The nilHecke algebra axioms hold.

The graded vector spaces HOM(1n,1n) are zero dimensional in
negative degrees and one-dimensional in degree zero.

If much of the structure of categorified representation theory comes for
free, what are the advantages of this higher structure?

Higher relations play a key role in categorification of other
representation theoretic constructions.
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Derived equivalences
Chuang and Rouquier showed that derived equivalences could be
constructed in the context of abelian categories using a related
approach to higher representation theory.

Cautis, Kamnitzer and Licata showed that the higher structure of
U gives derived equivalences in the more general setting of
triangulated categories.

Vn−2 Vn Vn+2 · · ·· · ·

E
((

E
++

F
kk

F

hhV−n−2V−nV−n+2· · ·

F

ii

F
ll

E
,,

E
)) ����
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Used by CR to prove the Abelian defect conjecture for symmetric
groups.

Used by CKL to construct derived equivalences between derived
categories of coherent sheaves on cotangent bundles to
Grassmannians.
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Beliakova, Khovanov, L. Casimir Categorification for Uq(sl2)

There is a complex that categorified the integral idempotent version of
the Casimir element

Ċ =
∏

n∈ZC1n,

C1n = 1nC := (−q2 + 2 − q−2)EF1n − (qn−1 + q1−n)1n,

C1n :=

EF1n{2}

1n{1 − n}

EF1n

EF1n 1n{n − 1}

EF1n{−2}

OO
•
�� //

&&NN
NNN

NNN
NNN

NNN
NN
OO

��
•

OO

88pppppppppppppppp
OO //

��

&&NN
NNN

NNN
NNN

NNN
NN

−
OO

��
•

//

− ��

//

88pppppppppppppppp
OO
•
��

⊕ ⊕ ⊕
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The Casimir complex categorifies the Casimir element of U̇.

The Casimir complex commute with complexes in Com(U) up to
chain homotopy.
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Combinatorics of symmetric functions
The relations arising from the invertibility of the sl2 relations have
surprising connections to symmetric functions.

Aaron Lauda (Columbia University) Categorified representation theory May 23rd, 2011 19 / 23



Symmetric polynomials
Elementary symmetric polynomial er = sum over all products of r
distinct variables xi

e1 = x1 + x2 + x3 + . . .

e2 = x1x2 + x1x3 + x2x3 + . . .

Complete symmetric polynomials hr = sum over all monomials of total
degree r

h1 = e1 = x1 + x2 + x3 + . . .

h2 = x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3 + . . .

These two sets of functions are related by

m
∑

r=0

(−1)rer hm−r = 0

Both provide a basis for the ring of symmetric polynomials Λ

Λ = Z[e1,e2,e3, . . . ], Λ = Z[h1,h2,h3, . . . ].

Aaron Lauda (Columbia University) Categorified representation theory May 23rd, 2011 20 / 23



There is an isomorphism

φn : HOMU (1n,1n) → Λ

��MM

•
(n−1)+r

n

7→ er for n ≥ 0.

Furthermore, using fake bubbles there is also an isomorphism

φn : HOMU (1n,1n) → Λ

QQ��

•
(−n−1)+r

n

7→ (−1)r hr for n ≥ 0,

Infinite Grassmannian relation ⇒
∑m

r=0(−1)rer hm−r = 0
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The r th power sum is given by

pr =
∑

x r
i .

Power sums arise naturally in the graphical calculus

φn











































PP��

•
(−n+1)+r

��OO

•
(n−1)

n

degree 0
bubble

degree r
bubble

OO

����
��
��
��
��











































= pr

as a degree r counter-clockwise oriented bubble inside a degree 0
clockwise oriented bubble
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Schur polynomials

For a partition λ = (λ1, λ2, . . . , λm), λ1 ≥ λ2 ≥ · · · ≥ λm, denote the
conjugate partition to λ as λ′. The Schur polynomial sλ can be
expressed as

sλ = det(hλi−i+j)1≤i ,j≤m, sλ = det(ǫλ′

i −i+j)1≤i ,j≤λ1
.

φn























n
OO

OO

OO

•
λ1+(n−1)

•
λ2+(n−2)























= sλ1,λ2

This generalizes to arbitrary Schur polynomials.
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