
CATEGORIFICATIONS OF THE ARROW POLYNOMIAL

Louis H. Kauffman
UIC

with
Heather Dye

Vassily Manturov
Aaron Kaestner



arXiv:0906.3408

Title: Virtual Crossing Number and the Arrow Polynomial
Authors: H. A. Dye, Louis H. Kauffman

arXiv:0810.3858

Title: An Extended Bracket Polynomial for Virtual 
Knots and Links, JKTR, Vol. 18, No. 10, Oct. 2009.
Authors: Louis H. Kauffman

arXiv:0712.2546

Title: On two categorifications of the arrow polynomial for virtual knots
Authors: Heather Ann Dye, Louis Hirsch Kauffman, Vassily Olegovich Manturov

Title: Arrow Categorifications -- Examples and Computations
Authors: Aaron Kaestner and L.H. Kauffman (in preparation).

AND ...



  

Figure 1 - A knot diagram.
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Figure 2 - The Reidemeister Moves.

That is, two knots are regarded as equivalent if one embedding can be ob-
tained from the other through a continuous family of embeddings of circles

4

Reidemeister Moves 
reformulate knot theory in 

terms of graph 
combinatorics.



[16], and Bar-Natan’s emphasis on tangle cobordisms [2]. We use similar considera-

tions in our paper [10].

Two key motivating ideas are involved in finding the Khovanov invariant. First

of all, one would like to categorify a link polynomial such as 〈K〉. There are many
meanings to the term categorify, but here the quest is to find a way to express the link

polynomial as a graded Euler characteristic 〈K〉 = χq〈H(K)〉 for some homology
theory associated with 〈K〉.

The bracket polynomial [7] model for the Jones polynomial [4, 5, 6, 17] is usually

described by the expansion

〈 〉 = A〈 〉 + A−1〈 〉 (4)

and we have

〈K ©〉 = (−A2 − A−2)〈K〉 (5)

〈 〉 = (−A3)〈 〉 (6)

〈 〉 = (−A−3)〈 〉 (7)

Letting c(K) denote the number of crossings in the diagramK, if we replace 〈K〉
by A−c(K)〈K〉, and then replace A by −q−1, the bracket will be rewritten in the fol-
lowing form:

〈 〉 = 〈 〉 − q〈 〉 (8)

with 〈©〉 = (q+q−1). It is useful to use this form of the bracket state sum for the sake
of the grading in the Khovanov homology (to be described below). We shall continue

to refer to the smoothings labeled q (or A−1 in the original bracket formulation) as

B-smoothings. We should further note that we use the well-known convention of en-
hanced states where an enhanced state has a label of 1 or X on each of its component

loops. We then regard the value of the loop q + q−1 as the sum of the value of a circle

labeled with a 1 (the value is q) added to the value of a circle labeled with an X (the

value is q−1).We could have chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of

labeling from the beginning.
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Let c(K) = number of crossings on link K.

Replace <K> by  A      <K> and replace  A    by  -q    .
-c(K)

Then the skein relation for <K> will 
be replaced by:
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but, since an algebra involving 1 and X naturally appears later, we take this form of labeling from the

beginning.

To see how the Khovanov grading arises, consider the form of the expansion of this version of the

bracket polynonmial in enhanced states. We have the formula as a sum over enhanced states s :

〈K〉 =
∑

s

(−1)nB(s)qj(s)

where nB(s) is the number of B-type smoothings in s, λ(s) is the number of loops in s labeled 1 minus
the number of loops labeled X, and j(s) = nB(s) + λ(s). This can be rewritten in the following form:

〈K〉 =
∑

i ,j

(−1)iqjdim(Cij)

where we define Cij to be the linear span (over k = Z/2Z as we will work with mod 2 coefficients) of
the set of enhanced states with nB(s) = i and j(s) = j. Then the number of such states is the dimension
dim(Cij).

We would like to have a bigraded complex composed of the Cij with a differential

∂ : Cij −→ Ci+1 j .

The differential should increase the homological grading i by 1 and preserve the quantum grading j. Then
we could write

〈K〉 =
∑

j

qj
∑

i

(−1)idim(Cij) =
∑

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed value of j.

This formula would constitute a categorification of the bracket polynomial. Below, we shall see how the

original Khovanov differential ∂ is uniquely determined by the restriction that j(∂s) = j(s) for each
enhanced state s. Since j is preserved by the differential, these subcomplexes C• j have their own Euler

characteristics and homology. We have

χ(H(C• j)) = χ(C• j)

where H(C• j) denotes the homology of the complex C• j . We can write

〈K〉 =
∑

j

qjχ(H(C• j)).

The last formula expresses the bracket polynomial as a graded Euler characteristic of a homology theory

associated with the enhanced states of the bracket state summation. This is the categorification of the

bracket polynomial. Khovanov proves that this homology theory is an invariant of knots and links (via the

Reidemeister moves of Figure 1), creating a new and stronger invariant than the original Jones polynomial.
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and

j(∂|s〉) = j(|s〉)

for each enhanced state s. In the next section, we shall explain how the boundary operator
is constructed.

2. Lemma. By defining U : C(K) −→ C(K) as in the previous section, via

U |s〉 = (−1)i(s)qj(s)|s〉,

we have the following basic relationship between U and the boundary operator ∂ :

U∂ + ∂U = 0.

Proof. This follows at once from the definition of U and the fact that ∂ preserves j and
increases i to i + 1. //

3. From this Lemma we conclude that the operator U acts on the homology of C(K). We
can regard H(C(K)) = Ker(∂)/Image(∂) as a new Hilbert space on which the unitary
operator U acts. In this way, the Khovanov homology and its relationship with the Jones

polynomial has a natural quantum context.

4. For a fixed value of j,
C•,j = ⊕iCi,j

is a subcomplex of C(K) with the boundary operator ∂. Consequently, we can speak of
the homology H(C•,j). Note that the dimension of Cij is equal to the number of enhanced

states |s〉 with i = i(s) and j = j(s). Consequently, we have

〈K〉 =
∑

s

qj(s)(−1)i(s) =
∑

j

qj
∑

i

(−1)idim(Cij)

=
∑

j

qjχ(C•,j) =
∑

j

qjχ(H(C•,j)).

Here we use the definition of the Euler characteristic of a chain complex

χ(C•,j) =
∑

i

(−1)idim(Cij)

and the fact that the Euler characteristic of the complex is equal to the Euler characteristic

of its homology. The quantum amplitude associated with the operator U is given in terms

of the Euler characteristics of the Khovanov homology of the linkK.

〈K〉 = 〈ψ|U |ψ〉 =
∑

j

qjχ(H(C•,j(K))).

7

Enhanced State Sum Formula for the Bracket
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Khovanov Homology - 
Jones Polynomial as a

graded Euler Characteristic

with 〈©〉 = (q+ q−1). In this form of the bracket state sum, the grading of the

Khovanov homology (which is described below) appears naturally. We shall con-

tinue to refer to the smoothings labelled q (or A−1 in the original bracket for-

mulation) as B-smoothings. We should further note that we use the well-known

convention of enhanced states where an enhanced state has a label of 1 or X on

each of its component loops. We then regard the value of the loop (q+ q−1) as
the sum of the value of two circles: a circle labelled with a 1 (the value is q) and a

circle labelled with an X (the value is q−1).

To see how the Khovanov grading arises, consider the form of the expansion

of this version of the bracket polynomial in enhanced states. We have the formula

as a sum over enhanced states s :

〈K〉 =!
s

(−1)nB(s)q j(s)

where nB(s) is the number of B-type smoothings in s, " (s) is the number of loops
in s labelled 1 minus the number of loops labelled X , and j(s) = nB(s)+" (s). This
can be rewritten in the following form:

〈K〉 =!
i, j

(−1)iq j
[

!
s:nB(s)=i, j(s)= j

1

]

=!
i , j

(−1)iq jdim(Ci j).

In the Khovanov homology, the states with nB(s) = i and j(s) = j form the

basis for a module Ci j over the ground ring k. Thus we can write

dim(Ci j) = !
s:nB(s)=i, j(s)= j

1.

The bigraded complex composed of the Ci j has a differential d : Ci j −→ Ci+1 j.
That is, the differential increases the homological grading i by 1 and preserves the

quantum grading j. Below, we will remind the reader of the formula for the dif-
ferential in the Khovanov complex. Note however that the existence of a bigraded

complex of this type allows us to further write:

〈K〉 =!
j

q j!
i

(−1)idim(Ci j) =!
j

q j#(C• j),

where #(C• j) is the Euler characteristic of the subcomplex C• j for a fixed value

of j. Since j is preserved by the differential, these subcomplexes have their own
Euler characteristics and homology. We can write

〈K〉 =!
j

q j#(H(C• j)),

where H(C• j) denotes the homology of this complex. Thus our last formula ex-
presses the bracket polynomial as a graded Euler characteristic of a homology

theory associated with the enhanced states of the bracket state summation. This is

the categorification of the bracket polynomial. Khovanov proves that this homol-

ogy theory is an invariant of knots and links, creating a new and stronger invariant

than the original Jones polynomial.
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A Quantum Digression

Let C(K) denote a Hilbert space
with basis |s> where s runs over the 

enhanced states of a knot or link diagram K.

One advantage of the expression of the bracket polynomial via enhanced states is that it is

now a sum of monomials. We shall make use of this property throughout the rest of the paper.

3 Quantum Statistics and the Jones Polynomial

We now use the enhanced state summation for the bracket polynomial with variable q to give a
quantum formulation of the state sum. Let q be on the unit circle in the complex plane. (This is
equivalent to letting the original bracket variable A be on the unit circle and equivalent to letting

the Jones polynmial variable t be on the unit circle.) Let C(K) denote the complex vector space
with orthonormal basis {|s〉 }where s runs over the enhanced states of the diagramK. The vector
space C(K) is the (finite dimensional) Hilbert space for our quantum formulation of the Jones

polynomial. While it is customary for a Hilbert space to be written with the letter H, we do not
follow that convention here, due to the fact that we shall soon regard C(K) as a chain complex
and take its homology. One can hardly avoid usingH for homology.

With q on the unit circle, we define a unitary transformation

U : C(K) −→ C(K)

by the formula

U |s〉 = (−1)i(s)qj(s)|s〉

for each enhanced state s. Here i(s) and j(s) are as defined in the previous section of this paper.

Let

|ψ〉 =
∑

s

|s〉.

The state vector |ψ〉 is the sum over the basis states of our Hilbert space C(K). For convenience,
we do not normalize |ψ〉 to length one in the Hilbert space C(K).We then have the

Lemma. The evaluation of the bracket polynomial is given by the following formula

〈K〉 = 〈ψ|U |ψ〉.

Proof.

〈ψ|U |ψ〉 =
∑

s′

∑

s

〈s′|(−1)i(s)qj(s)|s〉 =
∑

s′

∑

s

(−1)i(s)qj(s)〈s′|s〉

=
∑

s

(−1)i(s)qj(s) = 〈K〉,

since

〈s′|s〉 = δ(s, s′)

where δ(s, s′) is the Kronecker delta, equal to 1 when s = s′ and equal to 0 otherwise. //
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q  is chosen on the unit circle in the 
complex plane.

We define a unitary transformation.
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This gives a new quantum algorithm for the 
Jones polynomial (via Hadamard Test).

<K> = Trace(U)



U

H|0>

|phi>

Measure
frequency

 of

Hadamard Test

|0>

|0> occurs with probability
1/2 + Re[<phi|U|phi>]/2.

H



Eigenspace Picture

be a unitary operator that satisfies the equation U∂+∂U = 0.We do not assume a second grading
j as occurs in the Khovanov homology. However, since U is unitary, it follows [22] that there is a

basis for C in which U is diagonal. Let B = {|s〉} denote this basis. Let λs denote the eigenvalue

of U corresponding to |s〉 so that U |s〉 = λs|s〉. Let αs,s′ be the matrix element for ∂ so that

∂|s〉 =
∑

s′
αs,s′|s′〉

where s′ runs over a set of basis elements so that i(s′) = i(s) + 1.

Lemma. With the above conventions, we have that for |s′〉 a basis element such that αs,s′ "= 0
then λs′ = −λs.

Proof. Note that

U∂|s〉 = U(
∑

s′
αs,s′|s′〉) =

∑

s′
αs,s′λs′|s′〉

while

∂U |s〉 = ∂λs|s〉 =
∑

s′
αs,s′λs|s′〉.

Since U∂+∂U = 0, the conclusion of the Lemma follows from the independence of the elements
in the basis for the Hilbert space. //

In this way we see that eigenvalues will propagate forward from C0 with alternating signs ac-

cording to the appearance of successive basis elements in the boundary formulas for the chain

complex. Various states of affairs are possible in general, with new eigenvaluues starting at some

Ck for k > 0. The simplest state of affairs would be if all the possible eigenvalues (up to multi-
plication by −1) for U occurred in C0 so that

C0 = ⊕λC0
λ

where λ runs over all the distinct eigenvalues of U restricted to C0, and C0
λ is spanned by all

|s〉 in C0 with U |s〉 = λ|s〉. Let us take the further assumption that for each λ as above, the
subcomplexes

C•
λ : C0

λ −→ C1
−λ −→ C2

+λ −→ · · · Cn
(−1)nλ

have C = ⊕λC•
λ as their direct sum. With this assumption about the chain complex, define

|ψ〉 =
∑

s |s〉 as before, with |s〉 running over the whole basis for C. Then it follows just as in the
beginning of this section that

〈ψ|U |ψ〉 =
∑

λ

λχ(H(C•
λ)).

Here χ denotes the Euler characteristic of the homology. The point is, that this formula for

〈ψ|U |ψ〉 takes exactly the form we had for the special case of Khovanov homology (with eigen-
values (−1)iqj), but here the formula occurs just in terms of the eigenspace decomposition of the

unitary transformation U in relation to the chain complex. Clearly there is more work to be done

here and we will return to it in a subsequent paper.
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We have interpreted the bracket polynomial as a 
quantum amplitude by making a Hilbert space C(K) 

whose basis is the collection of enhanced states of the 
bracket.

This space C(K) is naturally intepreted as the 
chain space for the Khovanov homology 
associated with the bracket polynomial. 

The homology and the unitary transformation U
speak to one another via the formula

One advantage of the expression of the bracket polynomial via enhanced states is that it is

now a sum of monomials. We shall make use of this property throughout the rest of the paper.

3 Quantum Statistics and the Jones Polynomial

We now use the enhanced state summation for the bracket polynomial with variable q to give a
quantum formulation of the state sum. Let q be on the unit circle in the complex plane. (This is
equivalent to letting the original bracket variable A be on the unit circle and equivalent to letting

the Jones polynmial variable t be on the unit circle.) Let C(K) denote the complex vector space
with orthonormal basis {|s〉 }where s runs over the enhanced states of the diagramK. The vector
space C(K) is the (finite dimensional) Hilbert space for our quantum formulation of the Jones

polynomial. While it is customary for a Hilbert space to be written with the letter H, we do not
follow that convention here, due to the fact that we shall soon regard C(K) as a chain complex
and take its homology. One can hardly avoid usingH for homology.

With q on the unit circle, we define a unitary transformation

U : C(K) −→ C(K)

by the formula

U |s〉 = (−1)i(s)qj(s)|s〉

for each enhanced state s. Here i(s) and j(s) are as defined in the previous section of this paper.

Let

|ψ〉 =
∑

s

|s〉.

The state vector |ψ〉 is the sum over the basis states of our Hilbert space C(K). For convenience,
we do not normalize |ψ〉 to length one in the Hilbert space C(K).We then have the

Lemma. The evaluation of the bracket polynomial is given by the following formula

〈K〉 = 〈ψ|U |ψ〉.

Proof.

〈ψ|U |ψ〉 =
∑

s′

∑

s

〈s′|(−1)i(s)qj(s)|s〉 =
∑

s′

∑

s

(−1)i(s)qj(s)〈s′|s〉

=
∑

s

(−1)i(s)qj(s) = 〈K〉,

since

〈s′|s〉 = δ(s, s′)

where δ(s, s′) is the Kronecker delta, equal to 1 when s = s′ and equal to 0 otherwise. //

4

and

j(∂|s〉) = j(|s〉)

for each enhanced state s. In the next section, we shall explain how the boundary operator
is constructed.

2. Lemma. By defining U : C(K) −→ C(K) as in the previous section, via

U |s〉 = (−1)i(s)qj(s)|s〉,

we have the following basic relationship between U and the boundary operator ∂ :

U∂ + ∂U = 0.

Proof. This follows at once from the definition of U and the fact that ∂ preserves j and
increases i to i + 1. //

3. From this Lemma we conclude that the operator U acts on the homology of C(K). We
can regard H(C(K)) = Ker(∂)/Image(∂) as a new Hilbert space on which the unitary
operator U acts. In this way, the Khovanov homology and its relationship with the Jones

polynomial has a natural quantum context.

4. For a fixed value of j,
C•,j = ⊕iCi,j

is a subcomplex of C(K) with the boundary operator ∂. Consequently, we can speak of
the homology H(C•,j). Note that the dimension of Cij is equal to the number of enhanced

states |s〉 with i = i(s) and j = j(s). Consequently, we have

〈K〉 =
∑

s

qj(s)(−1)i(s) =
∑

j

qj
∑

i

(−1)idim(Cij)

=
∑

j

qjχ(C•,j) =
∑

j

qjχ(H(C•,j)).

Here we use the definition of the Euler characteristic of a chain complex

χ(C•,j) =
∑

i

(−1)idim(Cij)

and the fact that the Euler characteristic of the complex is equal to the Euler characteristic

of its homology. The quantum amplitude associated with the operator U is given in terms

of the Euler characteristics of the Khovanov homology of the linkK.

〈K〉 = 〈ψ|U |ψ〉 =
∑

j

qjχ(H(C•,j(K))).

7

SUMMARY



View the next slide as a category whose objects
are the bracket states.

The cubical shape of this category suggests 
making a homology theory.

In order to make a non-trivial homology theory
we need a functor from this category of states

to a module category. Each state loop will 
map to a module V.  Unions of loops will map to 

tenor products of this module.

CATEGORIFICATION
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The Khovanov Complex



We will construct the differential in this complex first for mod-2 coefficients. The differential is based
on regarding two states as adjacent if one differs from the other by a single smoothing at some site. Thus

if (s, τ) denotes a pair consisting in an enhanced state s and site τ of that state with τ of type A, then
we consider all enhanced states s′ obtained from s by smoothing at τ and relabeling only those loops that
are affected by the resmoothing. Call this set of enhanced states S′[s, τ ]. Then we shall define the partial
differential ∂τ (s) as a sum over certain elements in S′[s, τ ], and the differential by the formula

∂(s) =
∑

τ

∂τ (s)

with the sum over all type A sites τ in s. It then remains to see what are the possibilities for ∂τ (s) so that
j(s) is preserved.

Note that if s′ ∈ S′[s, τ ], then nB(s′) = nB(s) + 1. Thus

j(s′) = nB(s′) + λ(s′) = 1 + nB(s) + λ(s′).

From this we conclude that j(s) = j(s′) if and only if λ(s′) = λ(s) − 1. Recall that

λ(s) = [s : +] − [s : −]

where [s : +] is the number of loops in s labeled +1, [s : −] is the number of loops labeled −1 (same as
labeled with X) and j(s) = nB(s) + λ(s).

Proposition. The partial differentials ∂τ (s) are uniquely determined by the condition that j(s′) = j(s)
for all s′ involved in the action of the partial differential on the enhanced state s. This unique form of the
partial differential can be described by the following structures of multiplication and comultiplication on

the algebra A = k[X]/(X2) where k = Z/2Z for mod-2 coefficients, or k = Z for integral coefficients.

1. The element 1 is a multiplicative unit andX2 = 0.

2. ∆(1) = 1 ⊗ X + X ⊗ 1 and ∆(X) = X ⊗ X.

These rules describe the local relabeling process for loops in a state. Multiplication corresponds to the

case where two loops merge to a single loop, while comultiplication corresponds to the case where one

loop bifurcates into two loops.

(The proof is omitted.)

Partial differentials are defined on each enhanced state s and a site τ of typeA in that state. We consider
states obtained from the given state by smoothing the given site τ . The result of smoothing τ is to produce
a new state s′ with one more site of type B than s. Forming s′ from s we either amalgamate two loops to
a single loop at τ , or we divide a loop at τ into two distinct loops. In the case of amalgamation, the new
state s acquires the label on the amalgamated circle that is the product of the labels on the two circles that
are its ancestors in s. This case of the partial differential is described by the multiplication in the algebra.
If one circle becomes two circles, then we apply the coproduct. Thus if the circle is labeled X , then the
resultant two circles are each labeledX corresponding to∆(X) = X⊗X . If the orginal circle is labeled 1
then we take the partial boundary to be a sum of two enhanced states with labels 1 andX in one case, and

labels X and 1 in the other case, on the respective circles. This corresponds to ∆(1) = 1 ⊗ X + X ⊗ 1.

7

The boundary is a sum of partial differentials
corresponding to resmoothings on the states.

Each state loop
is a module.

A collection of state 
loops corresponds to
 a tensor product of 

these modules.



It turns out that one can take the algebra
generated by 1 and X with

X   = 0   and  
 

that the existence of a bigraded complex of this type allows us to further
write:

〈K〉 =
X

j

qj
X

i

(−1)idim(Cij) =
X

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed
value of j. Since j is preserved by the differential, these subcomplexes have
their own Euler characteristics and homology. We can write

〈K〉 =
X

j

qjχ(H(C• j)),

where H(C• j) denotes the homology of this complex. Thus our last for-
mula expresses the bracket polynomial as a graded Euler characteristic of a
homology theory associated with the enhanced states of the bracket state
summation. This is the categorification of the bracket polynomial. Kho-
vanov proves that this homology theory is an invariant of knots and links,
creating a new and stronger invariant than the original Jones polynomial.

We explain the differential in this complex for mod-2 coefficients and
leave it to the reader to see the references for the rest. The differential
is defined via the algebra A = k[X]/(x2) so that X2 = 0 with coproduct
∆ : A −→ A⊗A defined by ∆(X) = X ⊗ X and ∆(1) = 1 ⊗ X + X ⊗ 1.
Partial differentials (which are defined on an enhanced state with a chosen
site, whereas the differential is a sum of these mappings) are defined on
each enhanced state s and a site κ of type A in that state. We consider
states obtained from the given state by smoothing the given site κ. The
result of smoothing κ is to produce a new state s′ with one more site of
type B than s. Forming s′ from s we either amalgamate two loops to a
single loop at κ, or we divide a loop at κ into two distinct loops. In the case
of amalgamation, the new state s acquires the label on the amalgamated
circle that is the product of the labels on the two circles that are its
ancestors in s. That is, m(1⊗X) = X and m(X⊗X) = 0. Thus this case
of the partial differential is described by the multiplication in the algebra.
If one circle becomes two circles, then we apply the coproduct. Thus if
the circle is labelled X, then the resultant two circles are each labelled X
corresponding to ∆(X) = X ⊗ X. If the orginal circle is labelled 1 then
we take the partial boundary to be a sum of two enhanced states with
labels 1 and X in one case, and labels X and 1 in the other case on the
respective circles. This corresponds to ∆(1) = 1 ⊗ X + X ⊗ 1. Modulo
two, the differential of an enhanced state is the sum, over all sites of type
A in the state, of the partial differential at these sites. It is not hard
to verify directly that the square of the differential mapping is zero and
that it behaves as advertised, keeping j(s) constant. There is more to say
about the nature of this construction with respect to Frobenius algebras
and tangle cobordisms. See [Kh, BN, BN2]

Here we consider bigraded complexes Cij with height (homological
grading) i and quantum grading j. In the unnormalized Khovanov complex
[[K]] the index i is the number of B-smoothings of the bracket, and for
every enhanced state, the index j is equal to the number of components
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The chain complex is then generated by 
enhanced states with loop labels 1 and X.

2



with a 1 (the value is q) added to the value of a circle labeled with anX (the value is q−1).We could have
chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of labeling from the

beginning.

To see how the Khovanov grading arises, consider the form of the expansion of this version of the

bracket polynonmial in enhanced states. We have the formula as a sum over enhanced states s :

〈K〉 =
∑

s

(−1)nB(s)qj(s)

where nB(s) is the number of B-type smoothings in s, λ(s) is the number of loops in s labeled 1 minus
the number of loops labeled X, and j(s) = nB(s) + λ(s). This can be rewritten in the following form:

〈K〉 =
∑

i ,j

(−1)iqjdim(Cij)

where we define Cij to be the linear span (over k = Z/2Z as we will work with mod 2 coefficients) of
the set of enhanced states with nB(s) = i and j(s) = j. Then the number of such states is the dimension
dim(Cij).

We would like to have a bigraded complex composed of the Cij with a differential

∂ : Cij −→ Ci+1 j .

The differential should increase the homological grading i by 1 and preserve the quantum grading j. Then
we could write

〈K〉 =
∑

j

qj
∑

i

(−1)idim(Cij) =
∑

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed value of j.

This formula would constitute a categorification of the bracket polynomial. Below, we shall see how the

original Khovanov differential ∂ is uniquely determined by the restriction that j(∂s) = j(s) for each
enhanced state s. Since j is preserved by the differential, these subcomplexes C• j have their own Euler

characteristics and homology. We have

χ(H(C• j)) = χ(C• j)

where H(C• j) denotes the homology of the complex C• j . We can write

〈K〉 =
∑

j

qjχ(H(C• j)).

The last formula expresses the bracket polynomial as a graded Euler characteristic of a homology theory

associated with the enhanced states of the bracket state summation. This is the categorification of the

bracket polynomial. Khovanov proves that this homology theory is an invariant of knots and links (via the

Reidemeister moves of Figure 1), creating a new and stronger invariant than the original Jones polynomial.
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to decrease by 1.

[which it does!]



The differential  increases the homological
grading i by 1 and leaves fixed the quantum grading j.
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ARROW POLYNOMIAL

The arrow polynomial is a 
generalization of the Jones polynomial
(bracket polynomial) that takes into

account the state structure of oriented diagrams.

2 -2
d = - A    - A

K =     Kd

= A              + A      
-1

= A               + A      
-1

Figure 1: Oriented Bracket Expansion.

is an invariant of virtual isotopy. Here wr(K) denotes the writhe of the diagram
K; this is the sum of the signs of all the classical crossings in the diagram. If we

set A= 1 and d = −A2−A−2 = −2, then the resulting specialization

F [K] = 〈K〉A(A= 1)

is an invariant of flat virtual knots and links.

Example. Figure 4 illustrates the Kishino diagram. With d = −A2−A−2

〈K〉A = 1+A4+A−4−d2K21 +2K2.

Thus the simple extended bracket shows that the Kishino is non-trivial and non-

classical. In fact, note that

F [K] = 3+2K2−4K
2
1 .

Thus the invariant F [K] of flat virtual diagrams proves that the flat Kishino diagram
is non-trivial. This example shows the power of the arrow polynomial. See [Kau09,

DK09] for the details of this calculation.

3 Khovanov homology for virtual knots

In this section, we describe Khovanov homology for virtual knots along the lines

of [Kho97, BN02, Man07b].

The bracket polynomial [Kau87] is usually described by the expansion

〈 〉 = A〈 〉+A−1〈 〉 (2)

Letting c(K) denote the number of crossings in the diagram K, if we replace 〈K〉
by A−c(K)〈K〉, and then replace A2 by −q−1, the bracket will be rewritten in the
following form:

〈 〉 = 〈 〉−q〈 〉 (3)
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For a knot in a thickened surface, the states can 
zigzag and so have arrow numbers.



Figure 4: Surfaces and Virtuals

We have the

Theorem 1 [17, 24, 19, 3]. Two virtual link diagrams are isotopic if and only if their

corresponding surface embeddings are stably equivalent.

In Figure 4 we illustrate some points about this association of virtual diagrams and knot

and link diagrams on surfaces. Note the projection of the knot diagram on the torus to

a diagram in the plane (in the center of the figure) has a virtual crossing in the planar

diagram where two arcs that do not form a crossing in the thickened surface project to

the same point in the plane. In this way, virtual crossings can be regarded as artifacts of

projection. The same figure shows a virtual diagram on the left and an “abstract knot

diagram” [38, 3] on the right. The abstract knot diagram is a realization of the knot

on the left in a thickened surface with boundary and it is obtained by making a neigh-

borhood of the virtual diagram that resolves the virtual crossing into arcs that travel

on separate bands. The virtual crossing appears as an artifact of the projection of this

surface to the plane. The reader will find more information about this correspondence

[17, 24] in other papers by the author and in the literature of virtual knot theory.

4 Flat Virtual Knots and Links

Every classical knot or link diagram can be regarded as a 4-regular plane graph with ex-
tra structure at the nodes. This extra structure is usually indicated by the over and under

crossing conventions that give instructions for constructing an embedding of the link in

three dimensional space from the diagram. If we take the flat diagramwithout this extra

structure then the diagram is the shadow of some link in three dimensional space, but

the weaving of that link is not specified. It is well known that if one is allowed to apply

the Reidemeister moves to such a shadow (without regard to the types of crossing since

they are not specified) then the shadow can be reduced to a disjoint union of circles.

5

Virtual Knot Theory
 studies stabilized knots in thickened surfaces.



to the handling of classical knot diagrams. Many structures in classical knot theory

generalize to the virtual domain.

In the diagrammatic theory of virtual knots one adds a virtual crossing (see Figure

1) that is neither an over-crossing nor an under-crossing. A virtual crossing is repre-

sented by two crossing segments with a small circle placed around the crossing point.

Moves on virtual diagrams generalize the Reidemeister moves for classical knot

and link diagrams. See Figure 1. One can summarize the moves on virtual diagrams by

saying that the classical crossings interact with one another according to the usual Rei-

demeister moves while virtual crossings are artifacts of the attempt to draw the virtual

structure in the plane. A segment of diagram consisting of a sequence of consecutive

virtual crossings can be excised and a new connection made between the resulting free

ends. If the new connecting segment intersects the remaining diagram (transversally)

then each new intersection is taken to be virtual. Such an excision and reconnection

is called a detour move. Adding the global detour move to the Reidemeister moves

completes the description of moves on virtual diagrams. In Figure 1 we illustrate a set

of local moves involving virtual crossings. The global detour move is a consequence

of moves (B) and (C) in Figure 1. The detour move is illustrated in Figure 2. Virtual

knot and link diagrams that can be connected by a finite sequence of these moves are

said to be equivalent or virtually isotopic.

A

B

C

RI

RII

RIII

vRI

vRII

vRIII

mixed

  RIII

planar
isotopy

Figure 1: Moves

Another way to understand virtual diagrams is to regard them as representatives

for oriented Gauss codes [8], [17, 18] (Gauss diagrams). Such codes do not always

have planar realizations. An attempt to embed such a code in the plane leads to the

production of the virtual crossings. The detour move makes the particular choice of

3
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Classical knot theory embeds in virtual knot theory.

Open Question: 
Does classical knot theory embed in virtual knot theory 

modulo Z-equivalence?



Figure 1 illustrates the basic oriented bracket expansion formula. Figure 2

illustates the reduction rule for the arrow polynomial. While we have indicated

(above) the relationship of the arrow polynomial with the extended bracket poly-

nomial, the reduction rule for the arrow polynomial is completely described by

Figure 2. We shall denote the arrow polynomial by the notation 〈K〉A, for a virtual
knot or link diagram K. The reduction rule allows the cancellation of two adjacent
cusps when they have insides on the same side of the segment that connects them.

When the insides of the cusps are on opposite sides of the connecting segment, then

no cancellation is allowed. All graphs are taken up to virtual equivalence. Figure

2 illustrates the simplification of two circle graphs. In one case the graph reduces

to a circle with no vertices. In the other case there is no further cancellation, but

the graph is equivalent to one without a virtual crossing. The state expansion for

〈K〉A is exactly as shown in Figure 1, but we use the reduction rule of Figure 2
so that each state is a disjoint union of reduced circle graphs. Since such graphs

are planar, each is equivalent to an embedded graph (no virtual crossings) and the

reduced forms of such graphs have 2n cusps that alternate in type around the circle

so that n are pointing inward and n are pointing outward. The circle with no cusps

is evaluated as d = −A2−A−2 as is usual for these expansions and the circle is

removed from the graphical expansion. Let Kn denote the circle graph with 2n al-

ternating vertex types as shown in Figure 2 for n= 1 and n= 2. By our conventions
for the extended bracket polynomial, each circle graph contributes d = −A2−A−2

to the state sum and the graphs Kn (with n≥ 1) remain in the graphical expansion.
For the arrow polynomial 〈K〉A we can regard each Kn as an extra variable in the
polynomial. Thus a product of the Kn’s denotes a state that is a disjoint union of

copies of these circle graphs with multiplicities. By evaluating each circle graph as

d =−A2−A−2 we guarantee that the resulting polynomial will reduce to the orig-

inal bracket polynomial when each of the new variables Kn is set equal to unity.

Note that we continue to use the caveat that an isolated circle or circle graph (i.e.

a state consisting in a single circle or single circle graph) is assigned a loop value

of unity in the state sum. This assures that 〈K〉A is normalized so that the unknot
receives the value one.

Formally, we have the following state summation for the arrow polynomial

〈K〉A =!
S

〈K|S〉d||S||−1P[S]

where S runs over the oriented bracket states of the diagram, 〈K|S〉 is the usual
product of vertex weights as in the standard bracket polynomial, ||S|| is the number
of circle graphs in the state S, and P[S] is a product of the variables Kn associated
with the non-trivial circle graphs in the state S. Note that each circle graph (trivial
or not) contributes to the power of d in the state summation, but only non-trivial

circle graphs contribute to P[S]. The regular isotopy invariance of 〈K〉A follows
from an analysis of the behaviour of this state summation under the Reidemeister

moves.

Theorem 1. With the above conventions, the arrow polynomial 〈K〉A is a polyno-
mial in A,A−1 and the graphical variables Kn (of which finitely many will appear
for any given virtual knot or link). 〈K〉A is a regular isotopy invariant of virtual
knots and links. The normalized version

W [K] = (−A3)−wr(K)〈K〉A

4
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Figure 2: Reduction Relation for the Arrow Polynomial.
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Figure 4: Kishino Diagram.
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Figure 1: Oriented Bracket Expansion.

is an invariant of virtual isotopy. Here wr(K) denotes the writhe of the diagram
K; this is the sum of the signs of all the classical crossings in the diagram. If we

set A= 1 and d = −A2−A−2 = −2, then the resulting specialization

F [K] = 〈K〉A(A= 1)

is an invariant of flat virtual knots and links.

Example. Figure 4 illustrates the Kishino diagram. With d = −A2−A−2

〈K〉A = 1+A4+A−4−d2K21 +2K2.

Thus the simple extended bracket shows that the Kishino is non-trivial and non-

classical. In fact, note that

F [K] = 3+2K2−4K
2
1 .

Thus the invariant F [K] of flat virtual diagrams proves that the flat Kishino diagram
is non-trivial. This example shows the power of the arrow polynomial. See [Kau09,

DK09] for the details of this calculation.

3 Khovanov homology for virtual knots

In this section, we describe Khovanov homology for virtual knots along the lines

of [Kho97, BN02, Man07b].

The bracket polynomial [Kau87] is usually described by the expansion

〈 〉 = A〈 〉+A−1〈 〉 (2)

Letting c(K) denote the number of crossings in the diagram K, if we replace 〈K〉
by A−c(K)〈K〉, and then replace A2 by −q−1, the bracket will be rewritten in the
following form:

〈 〉 = 〈 〉−q〈 〉 (3)
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Parity Digression

[16], and Bar-Natan’s emphasis on tangle cobordisms [2]. We use similar considera-

tions in our paper [10].

Two key motivating ideas are involved in finding the Khovanov invariant. First

of all, one would like to categorify a link polynomial such as 〈K〉. There are many
meanings to the term categorify, but here the quest is to find a way to express the link

polynomial as a graded Euler characteristic 〈K〉 = χq〈H(K)〉 for some homology
theory associated with 〈K〉.

The bracket polynomial [7] model for the Jones polynomial [4, 5, 6, 17] is usually

described by the expansion

〈 〉 = A〈 〉 + A−1〈 〉 (4)

and we have

〈K ©〉 = (−A2 − A−2)〈K〉 (5)

〈 〉 = (−A3)〈 〉 (6)

〈 〉 = (−A−3)〈 〉 (7)

Letting c(K) denote the number of crossings in the diagramK, if we replace 〈K〉
by A−c(K)〈K〉, and then replace A by −q−1, the bracket will be rewritten in the fol-
lowing form:

〈 〉 = 〈 〉 − q〈 〉 (8)

with 〈©〉 = (q+q−1). It is useful to use this form of the bracket state sum for the sake
of the grading in the Khovanov homology (to be described below). We shall continue

to refer to the smoothings labeled q (or A−1 in the original bracket formulation) as

B-smoothings. We should further note that we use the well-known convention of en-
hanced states where an enhanced state has a label of 1 or X on each of its component

loops. We then regard the value of the loop q + q−1 as the sum of the value of a circle

labeled with a 1 (the value is q) added to the value of a circle labeled with an X (the

value is q−1).We could have chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of

labeling from the beginning.
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The Knot S3 (found with Slavik Jablan) has unit Jones 
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The Parity bracket of S3 has only two terms and
includes the graph G. The virtual graph G cannot be reduced 

by Reidemeister Two moves on its nodes.
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where n and
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Figure 6: Arrow Numbers for Interacting Loops

In the third case, we have a single loop C with a disoriented site and a pair

of cusps, and on smoothing this site we obtain a single loop C′. Assuming that

n(C′) = |n+m| as shown in the figure, we have |n(C)| = |n+m+1| where n and
m can be positive or negative.

These are all the ways that loops can interact and change their respective ar-

row numbers. In the next section, we will apply these results to the grading in

Khovanov homology.

5 Dotted gradings and the dotted categorifica-

tion

First, we introduce a concept of dotting axiomatics as developed in [Man08]. The

purpose of this dotting axiomatics is to give general conditions under which ex-

tra decorations on the states can be used to create new gradings and hence new

versions of Khovanov homology. We will apply these axiomatics to the arrow

numbers on the state loops of the arrow polynomial.

For the axiomatics, assume we have some class of objects with Reidemeister

moves, Kauffman bracket and the Khovanov homology (in the usual setup or in

the setup of [Man05c]). Assume that there is a method, which for every diagram

and every state of it associates dots to some of the circles in the bracket states in

such a way that the following conditions hold:

1. The dotting of circles is additive with respect to 2→ 1-bifurcations and 1→
2-bifurcations mod 2. This additivity means that when we merge two circles

12

Heading Toward Categorification of Arrow States
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These are all the ways that loops can interact and change their respective ar-

row numbers. In the next section, we will apply these results to the grading in

Khovanov homology.
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First, we introduce a concept of dotting axiomatics as developed in [Man08]. The

purpose of this dotting axiomatics is to give general conditions under which ex-

tra decorations on the states can be used to create new gradings and hence new
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such a way that the following conditions hold:

1. The dotting of circles is additive with respect to 2→ 1-bifurcations and 1→
2-bifurcations mod 2. This additivity means that when we merge two circles
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(split one circle into two), the number of dots on the circles being operated

on is preserved modulo Z2.

This means that the parity of the number of dots on the circles operated on

is preserved whenever we merge two circles or split one circle into two.

If the dotting is not preserved under a 1→ 1 bifurcation, then this bifurcation

is taken to be the zero map.

2. Similar curves for corresponding smoothings of the RHS and the LHS of

any Reidemeister move have the same dotting.

3. Small circles appearing for the first, the second, and the third Reidemeister

moves are not dotted.

Let us call the conditions above the dotting conditions. With such a structure in

hand, one defines a new grading g(s) for states s by taking the difference between
the number of dotted X’s and the number of dotted 1’s in the state.

g(s) = !(Ẋ)− !(1̇)

We shall use this grading in the constructions that follow.

Theorem 3. Assume there is a theory using the Khovanov complex ([[K]],! ) such
that the Kauffman states can be dotted so that the dotting conditions hold. Take

[[K]]g to be the space [[K]] endowed with new grading as above.

Define ! ′ to be the composition of ! with the new grading projection and set

! ′′ = ! −! ′.

Then the homology of [[K]]g (with respect to ! ′) is invariant (up to a degree
shift and a height shift).

For any operator " on the ground ring, the complex [[K]]g is well defined with
respect to the differential ! ′ +"! ′′, and the corresponding homology is invariant

(up to well-known shifts).

Moreover, if we have several forms of dotting g1,g2, . . . ,gk occuring together
on the same Khovanov complex so that for each of them the dotting condition holds,

then the complex Kg1,...,gk with differential !g1,...,gk defined to be the projection of

! to the subspace preserving all the gradings, is invariant.

The theorem above allows one to ‘raise’ some additional information modulo

Z2 to the level of gradings. Our aim is to categorify the arrow polynomial, that is,

to add new gradings corresponding to the arrow count: for every state we have a

set of circles labelled by a set of non-zero integers, and this set of integers should

be represented in the complex as a grading. Theorem 3 shows that it is possible to

do that when we consider the information of the arrow count only modulo Z2: the

conditions of additivity and similarity under Reidemeister moves for arrow count

were checked in the previous section of this paper.
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g(s) = !(Ẋ)− !(1̇)

We shall use this grading in the constructions that follow.

Theorem 3. Assume there is a theory using the Khovanov complex ([[K]],! ) such
that the Kauffman states can be dotted so that the dotting conditions hold. Take

[[K]]g to be the space [[K]] endowed with new grading as above.

Define ! ′ to be the composition of ! with the new grading projection and set

! ′′ = ! −! ′.

Then the homology of [[K]]g (with respect to ! ′) is invariant (up to a degree
shift and a height shift).

For any operator " on the ground ring, the complex [[K]]g is well defined with
respect to the differential ! ′ +"! ′′, and the corresponding homology is invariant

(up to well-known shifts).

Moreover, if we have several forms of dotting g1,g2, . . . ,gk occuring together
on the same Khovanov complex so that for each of them the dotting condition holds,

then the complex Kg1,...,gk with differential !g1,...,gk defined to be the projection of

! to the subspace preserving all the gradings, is invariant.

The theorem above allows one to ‘raise’ some additional information modulo

Z2 to the level of gradings. Our aim is to categorify the arrow polynomial, that is,

to add new gradings corresponding to the arrow count: for every state we have a

set of circles labelled by a set of non-zero integers, and this set of integers should

be represented in the complex as a grading. Theorem 3 shows that it is possible to

do that when we consider the information of the arrow count only modulo Z2: the

conditions of additivity and similarity under Reidemeister moves for arrow count

were checked in the previous section of this paper.

13

In order to use the integral information about the arrow count, we have to

undertake a generalization of the construction of theorem 3. We shall do this in

the next section. This section of the paper is devoted to describing a first-order

categorification of the arrow polynomial.

The main idea behind the proof of Theorem 3 is as follows. Additivity of the

grading can be verified and checked on a bifurcation cube. First of all, it follows

from a straightforward check that ! ′′ always increases the dotted grading (this is

proved in [Man07b] but can be taken here as an exercise for the reader). Then, the

complex is well defined because (! ′)2 is nothing but a composition of (! )2 with a
“grading-preserving projection”. This is guaranteed because ! ′′ strictly increases

the new grading. Note the the mod-2 preservation of the dotting is what makes this

grading increase of ! ′′ work. thus Theorem 3 depends ultimately on that parity

presevation of the dotted grading.

The main idea of the invariance under Reidemeister moves is similar to the

usual Khovanov idea, see for example [BN02]: we have to check that the multi-

plication m remains surjective after reducing ! to ! ′ and " remains injective. The

latter follows from the fact that “small circles are not dotted”.

Now, one can easily check that the conditions of the theorem hold if we set the

dotting as follows: the curve is dotted if it is marked as Kj with j odd, and it is not

dotted if it is marked as Ki with i even.

Now, one checks that

1. The dotting is Z2-additive with respect to resmoothing (performing 1→ 2 or

2→ 1 bifurcation).

This follows from Figure 6 upper part: we see that when merging two circles

with arrow count m and n, we get ±m± n and when splitting a circle with

arrow number k, we get two circles with arrow numbers l and ±k± l which

results in Z2-additivity under 2→ 1 and 1→ 2-bifurcations.

On the other hand, if partial differentials for all 1→ 1 bifurcations are set to

be zero, it can be checked that all faces having at least 1→ 1-bifurcation are

anticommutative because 0 = 0. The only non-trivial example is shown in

Figure 7, and the corresponding calculation is performed in [Man07b].

2. The small circles coming from Reidemeister moves are not dotted. Indeed,

for the 1st Reidemeister move we have no cusps at all, and for the second

move and for the third move we have two cusps of opposite signs.

3. For any Reidemeister move, the corresponding state diagrams in the LHS

and RHS have the same dotting. Locally, there is no grading change for the

Reidemeister moves when we use arrow counts. Again, this follows from the

invariance under Reidemeister moves: two pictures would not get cancelled

if they had different coefficients coming from cusps; this means they have

the same dotting.
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Kaestner’s example of 
a pair of virtual knots with the

same arrow polynomial but
distinct categorification 

homology.

These two knots are NOT distinguished by mod-2 
Khovanov homology or by the arrow polynomial. 

They ARE distinguished by the first (mod-2 arrow 
number dotting) categorification of the arrow 

polynomial.



VK5[267]



VK5[129]



In Jeremy Green’s tables there are 2448 five 
crossing virtual knots (tabulated). 

 There are 28 sets of knots with same arrow 
poly and some different categorifications 

within each set.

The two knots in the previous two slides each have
arrow polynomial:

H** Long Testing **L
Long = X@b, d, a, cD Y@e, c, d, bD
RawBracket@LongD
LB@LongD
B@LongD
F@LongD

X@b, d, a, cD Y@e, c, d, bD

A B del@a, eD + A HA + B JL led@a, cD led@e, cD + B2 led@a, dD led@e, dD

del@a, eD +
-led@a, cD led@e, cD + led@a, dD led@e, dD

A2

-
A2 del@a, eD - led@a, cD led@e, cD + led@a, dD led@e, dD

1 + A4

1

2
H-del@a, eD + led@a, cD led@e, cD - led@a, dD led@e, dDL

In[9]:=

VKFive@129D = Y@c, a, b, jD X@b, e, a, dD Y@f, d, e, cD X@g, i, f, hD Y@h, j, g, iD
Flip = X@c, a, b, jD X@b, e, a, dD Y@f, d, e, cD X@g, i, f, hD Y@h, j, g, iD
Expand@B@VKFive@129DDD
F@VKFive@129DD
B@FlipD
F@FlipD

Out[9]= X@b, e, a, dD X@g, i, f, hD Y@c, a, b, jD Y@f, d, e, cD Y@h, j, g, iD

Out[10]= X@b, e, a, dD X@c, a, b, jD X@g, i, f, hD Y@f, d, e, cD Y@h, j, g, iD

Out[11]= 2 A - A5 -
K1

A5
+
K1

A
-
2 K12

A3
- 2 A K12 +

K2

A3
+ A K2

Out[12]= 1 - 4 K12 + 2 K2

Out[13]=

1 - I1 + A4M2 K12 + 2 A4 K2

A5

Out[14]= 1 - 4 K12 + 2 K2

VKFiveD@129D = Y@a, i, j, hD X@j, c, i, bD Y@d, b, c, aD X@f, h, e, gD Y@e, g, d, fD
B@VKFiveD@129DD
F@VKFiveD@129DD

X@f, h, e, gD X@j, c, i, bD Y@a, i, j, hD Y@d, b, c, aD Y@e, g, d, fD

-A10 - K1 + A4 K1 + A2 I-2 K12 + K2M + A6 I2 - 2 K12 + K2M

A5

1 - 4 K12 + 2 K2

2   GBracketContinuedCTwo.nb

Note that VK5[267] appears with three virtual crossings. 
The arrow polynomial says that the virtual crossing 

number is at least two. Is it three?



The following example is not detected
by any of our invariants.



MANY QUESTIONS
Are there knots unseen by Arrow, but seen by ArrowCat?

What is going on in the examples we have found?
What does adding parity to Arrow and ArrowCat yield?

(more on this soon in paper of LK and AK)

How does all this reflect on the problem whether
bracket/Jones poly detects unknot?

How does ArrowCat information reflect on
the fact that Khovanov Homology detects the unknot?


