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1. Algebraic Knot Theory

1.1. Some general philosophy. Let K be some algebraic structure. Namely, K is a set K1

or a number of sets Ki, along with an operation α or a number of operations αj defined on
some of the sets or on their Cartesian products and taking values in one or another of the
Ki’s, possibly subject to some axioms. Examples include groups, vector spaces (two sets!
{vectors} and {scalars}), categories, and in fact, almost everything we see in algebra.

A structure-preserving invariant Z on K is a morphism (in the obvious sense) from
K into another algebraic structure A of the same kind as K (same numbers of sets and
operations, same axioms). Invariants are useful, for example, when for some reason A is
more “understandable” than K (perhaps the objects within K are knots or manifolds, and
it is hard to tell if two are the same, while the objects within A are numbers or polynomials
and are easier to work with).

Invariants in general are useful for telling things apart. Structure-preserving invariants
are even more useful, for often they automatically detect (or exclude) “definable” properties,
as follows.

A property P of elements of one of the sets Ki in K (or of a product of such Ki’s) is
called definable (within K) if it is defined by a formula involving ∀, ∃, the logical “and”,
“or”, “not”, the operations αj and perhaps a certain number of “constants” fixed in advance
within the Ki’s. Thus with some obvious operations, “being on the sphere” is definable
within the reals, for S2 = {(x, y, z) ∈ R× R× R : x2 + y2 + z2 = 1}.

If Z : K → A is a structure-preserving invariant and P is a definable property within
K, then the formula F defining P also defines a property P ′ of elements of A. Depending
on the precise order of quantifiers and logical operations in F it is often the case that for
K in K the property P (K) implies the property P ′(Z(K)). If so, then we are in position
to learn something about properties of K using the invariant Z and the presumably-easier
target space A.

This may sound lofty, yet it is precisely the principle underlying much of, say, algebraic
topology. Indeed in algebraic topology we often prove the non-existence of some topological
object (say a retract r : D2 → S1) by applying an invariant Z (homotopy or homology, for
example) that takes a hard category K (topological spaces) to an easier category A (groups)
while preserving all relevant structure (the structure of a category). And indeed, a key point
in the success of algebraic topology in saying something about retracts is the fact that the
notion of a “retract” is definable within the given structure (in terms of a tiny commutative
diagram or equivalently, a simple formula).

1.2. The case of knots. Knot invariants and especially “quantum” knot invariants are
aplenty, and they are quite good at telling knots apart. But by en large, with a few notable
exceptions, they fail at detecting properties of knots, such as their genus, unknotting number
and (say) whether or not they are ribbon.
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Figure 1: A KTG γ (middle), the result deγ of deleting the edge e of γ (left) and the result ueγ of
unzipping the edge e of γ (right). This figure also serves to suggest the definability of ribbon knots
within knotted trivalent graphs: ueγ is clearly a ribbon knot while deγ is clearly the unlink, and in general
one sees that {ueγ : γ ∈ K(@) and deγ = unlink} ⊂ {ribbon knots}. The other inclusion requires more
work and some modification of the statement.
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Figure 2: When we say “knotted graph”, we really mean “knotted band graph”. So a KTG γ is
automatically a (thin) surface and its boundary ∂T (γ) is a knot of a pre-determined genus. It is possible
to write the operation ∂T as a composition of edge unzips and connect-sum operation with some simple
constant KTGs, and hence knot genus is definable.

In my opinion, the underlying reason for that is that the language of knots and links is
simply not expressive enough to render interesting properties definable. “Algebraic opera-
tions” on knots include the connected sum operation, cablings and a little more, but do not
include even simple things such as crossing changes, for a “crossing change” is simply not a
well defined operation — it also depends on further information, the choice of the crossing to
be flipped. And it turns out that very little properties of interest can be stated just in terms
of connected sums and cablings. Thus with what we have, we simply cannot expect there to
be an algebraic knot theory with success comparable to that of algebraic topology.

The solution is to enlarge our domain space to also include knotted graphs, or more specif-
ically, for a technical reason, knotted trivalent graphs (KTGs). Well-defined operations
on KTGs include connected sum operations, edge deletion operations and unzip operations
(see Figure 1) and with these operations, the genus, unknotting number and the set of ribbon
knots (see e.g. Figures 1 and 2) all become definable.

2. My Proposed Research

It turns out that there is indeed an invariant Z on knotted trivalent graphs that is a
morphism into some combinatorially defined structure, and which therefore may serve as a
foundation for an algebraic knot theory. The invariant Z is a variant due to Murakami and
Ohtsuki [MO] of the Kontsevich integral for knots [Ko, BN1]. Much of my research until now
involved the study of the Kontsevich integral, in one way or another, though the “algebraic
knot theory” perspective provides fresh motivation and new directions for study. The most
general, of course, is the following:

Problem 1. Use the Kontsevich integral Z as an algebraic knot theory to obtain lower
bounds on the genus of a knot and on unknotting numbers, to detect knots that are not
ribbon (and may therefore be counterexamples to the {ribbon} = {slice} conjecture), and
in general, to say something about other KTG-definable classes of knots.
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Figure 3: Two of the relations always satisfied by the weight system of the
Alexander polynomial (top, [FKV]) and one of the relations likewise related
to the Jones polynomial (bottom, folklore). Either set of relations reduces
A to a manageable size (polynomial growth with reasonable generating
sets); yet these reductions carry more than merely the Alexander and
Jones polynomials (respectively), if only because these reductions make
sense for knotted trivalent graphs rather than just for knots or links.
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The Kontsevich integral Z is valued in some graded space of diagrams modulo relations,
usually called A(Γ) where Γ is the trivalent graph being knotted. While in principle A(Γ)
is combinatorially defined and computable to any given degree, it is still far from being
understood. In particular, a solution of the following problem will give us a Kontsevich-
integral method of bounding knot genus:

Problem 2. Determine im ∂A, where ∂A is the operator defined on A-spaces using the same
composition that defines ∂T in Figure 2.

Ng [Ng] has shown that no bounded-degree part of Z can be used to extract information
about ribbon knots, though the full Z contains the Alexander polynomial, and hence contains
at least some information on ribbon knots. A similar limitation applies to Z in relation to
unknotting numbers. Thus to deal with ribbon knots and unknotting numbers we need
an understanding of Z to all orders. It would be lovely to gain such an understanding,
but unfortunately it seems beyond reach — it is implicit in [MO] that knowing Z(,) is
equivalent to knowing a Drinfel’d associator (also see [Dr1, Dr2, LM, BN2]), and associators
are notoriously difficult.

There is a potential way out, though. For the algebraic knot theory machinery to work
and possibly be useful for ribbon knots and unknotting numbers, it is enough to consider
quotients of A by appropriate ideals, such as the ones corresponding to the Alexander and
Jones polynomials (Figure 3). In such quotients computing Z(,), or finding an associator,
may well be within reach. (In some sense the Alexander quotient is already done, though it
is not sufficiently understood. See Lieberum [Li]). Thus we come to our next two problems:

Problem 3. Develop a “theory of ideals”, such as the ones generated by the relations in
Figure 3. When are two such ideals “equivalent”? Can such ideals be classified? Bear in mind
that in the similar algebraic world of ideals within polynomial algebras, ideals correspond to
varieties and their study is the very rich subject called “algebraic geometry”.

Problem 4. Which ideals lead to a computable theory? For those that do, compute and
use your computations to study ribbon knots and unknotting numbers.

Algebraic knot theory suggests many other good problems, and the above problems can be
sharpened and partitioned into many further problems ranging from topology via algebra to
combinatorics, ranging from philosophical via concrete to computational and ranging from
(probably) very hard to (probably) easy. Much of this is yet unwritten, but some of it can
be found on my web site, especially at [BN4].

3. Knot Theoretic Algebra

I’ll start with the question, and then try to put some meaning into it.
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Question 1. Sometimes a bit of algebra turns out to be a bit of topology, in disguise. Is
that true for the theory of quantum groups1?

3.1. An example. My favourite example for a bit of algebra which turns out to be a bit of
topology is the Drinfel’d theory of associators2.

It is well-known that associators can be used to produce knot and braid invariants (e.g. [LM,
BN2]). But more is true. In [BN3] I have shown that a universal associator is precisely a
certain type of braid invariant. Namely, universal associators are in a natural bijection with
structure-preserving universal finite type invariants of a certain type of “parenthesized”
braids, and hence an associator can equivalently be thought of as such an invariant. This
equivalence is then used in [BN3] to better understand the algebra itself — within the equiv-
alence lies a conceptual explanation for the appearance of a “Grothendieck-Teichmüller”
group in Drinfel’d’s study of associators, and the results of his study can be re-achieved in
much simpler terms.

In fact, if knotted trivalent graphs are introduced as in Section 1.2 the picture becomes even
nicer and the need for the topologically-artificial “parenthesizations” disappears. Indeed, one
may show that a universal associator3 is precisely the same as a structure-preserving universal
finite type invariant of knotted trivalent graphs. Thus an associator is entirely a topological
object, and one which arises rather naturally.

3.2. What about quantum groups? Can the same, or perhaps just nearly the same, be
done to the theory of quasi-triangular Hopf algebras? The answer is a simple “no”, if one
wishes to stay within the world of ordinary knots. Finite type invariants of knotted objects
are closely related to chord diagrams (modulo certain relations), and by the diagrammatic
methods of [BN1], chord diagrams produce invariant elements of universal enveloping alge-
bras of classical (non-quantum) Lie algebras. But when viewed non-quantumly, R-matrices,
the fundamental building blocks of quantum groups, and are never invariant. Thus finite
type invariants will never “see” the entire structure of a quantum group, and our program
seems stuck.

The way out is to consider “virtual knots”, following Kauffman’s [Ka]. Virtual knots are
knots drawn on higher-genus surfaces, modulo stabilization by adding or removing empty
handles. Ordinary knots inject into virtual knots [Ku] but there are many more virtual knots
than ordinary knots (see a tabulation by my summer student J. Green, [Gr]).

The theory of finite type invariants of virtual knots is not well understood. But it is clear
that much like finite type invariants of knots are related to chord diagrams modulo 4T , finite
type invariants of virtual knots are related to “arrow diagrams” modulo 6T (see Figure 4
and [Po]). Furthermore, “arrow diagrams” modulo 6T are the diagrammatic counterparts
of Lie bialgebras (see my students’ [Ha]), and Lie bialgebras are at the foundations of the
theory of quantum groups — every Lie bialgebra can be naturally quantized ([EK] and
subsequent papers by Etingof and Kazhdan), and the Drinfel’d-Jimbo quantization of any
semi-simple Lie algebra arises from this construction. Finally, much of the work of Etingof
and Kazhdan can be re-interpreted in diagrammatic terms, using arrow diagrams modulo
6T relations [Ha].

1Technically, “quasi-triangular power-series deformations of universal enveloping algebras”.
2Technically, “quasi-Hopf power-series deformations of universal enveloping algebras”.
3Technically, this time also allowing for non-horizontal chords.
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Figure 4: An arrow
diagram and the 6T
relation.
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Thus it is reasonable to expect that eventually a certain “universal quantum group” will
arise, that should contain all other Drinfel’d-Jimbo quantum groups in much the same way as
a universal associator can be projected to become an associator for any specific Lie algebra.
And it is reasonable to expect that the universal quantum group will afford an interpretation
as a structure-preserving universal finite type invariant of virtually-knotted objects, much
like a universal associator is a structure-preserving universal finite type invariant of knotted
trivalent graphs.

4. My Proposed Research

Over the grant period I plan, along with my students and collaborators, to make real the
above expectations. Much remains to be done. Virtual knots are not well understood (there
is a space of arrow diagrams but not yet a “Kontsevich theorem”), and virtual graphs are
even less understood (exactly which graphs should we take, and with what operations?). And
while much of the Etingof-Kazhdan work appears diagrammatic or even knot-theoretic, other
parts still resist diagrammatization. In particular I don’t understand the Etingof-Kazhdan
crucial use of the PBW theorem, which screams “tangles”, while for nearly the same objects
and just a few lines apart, their use of “horizontal associators”, which screams “braids”.

5. Computations

My work is never very far from computations, and often when I see an algorithm, I
implement it and post it on my web site along with the results of running it. I plan to keep
things the same way. Everything in my proposal is in principle computable or will become
so once sufficiently understood, and everything to come out of the research proposed here
will be programmed, executed, documented and posted.

6. What About Khovanov Homology

I made significant contributions to the highly fashionable subject of Khovanov homology
(in fact, while Khovanov is definitely the father of the field, I share the credit for making it
fashionable...). Yet at the moment I don’t feel mature enough to study this topic any further.
I’d rather “categorify” knot invariants only after I properly understand the “algebra” on
which they ought to be defined (in the sense of my first project above). And how can I
even start categorifying other aspects of the theory of quantum groups, when in my opinion
this theory in itself is poorly understood (at least in the sense of my second project)? With
luck, at the end of this grant period I will be ready to return to Khovanov homology and
categorification in general.

7. In Summary

My recent progress in research activities related to the proposal. I made significant
contributions to almost every topic discussed in this proposal. See the “Contributions”
section of my Form 100.
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The objectives: both short and long term. To construct an “algebraic knot theory”
in the spirit of “algebraic topology” and to show that quantum groups are a part of topology.
Literature pertinent to the proposal. See the “References” section of this proposal.
Methods and proposed approach. I plan to work both analytically, using the traditional
mathematical definition-theorem-proof sequence, and by using computers for a large number
of different computations.
Training to take place through the proposal. I expect that many parts of my proposed
research will be assisted or carried out by graduate students and postdoctoral fellows as a
part of their training.
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