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Introduction In 1846, the French Astronomer Le Verriere, doing calcu-
lations based on Newton’s theory of gravitation, pin-pointed the position of a
mass that was perturbing Uranus’ orbit. When fellow astronomers aimed their
telescopes at his location, they recognized, for the first time, the eighth planet.
Newton’s theory had reached its zenith. Shortly after, however, it became clear
to Le Verriere that additional mass, nearer to the sun than Mercury, was needed
to explain the strange advance of Mercury’s orbit. When no such mass was ob-
served, astronomers began to doubt Newton’s theory. Then, along came Albert
Einstein, whose theory nearly perfectly explained Mercury’s erstwhile mysteri-
ous motion. This essay is a history of Newton’s theory of gravity, the enigma
of Mercury, and Einstein’s convincing solution. It will blend together mathe-
matical and physical theories with a narrative about the brilliant scientists who
chose to tackle the problem of gravitation. In particular, this paper will show
the following computations:

1. A derivation of Kepler’s First Law concerning elliptical orbits from New-
ton’s Law of Gravitation and Newton’s Second Law.

2. An outline of a method to approximate non-relativistic perturbations on
Mercury’s orbit by assuming external planets are heliocentric circles of
uniform linear mass density.

3. A calculation of relativistic perihelion shift using Einstein’s theory of rel-
ativity and the Schwarzschild solution.

Pre-Newtonian Theories and Ideas The problem I set out to explain,
the advance of Mercury’s perihelion, was of tantamount importance to the as-
tronomical community. This seemingly miniscule enigma stood glaringly in the
way of humanity’s understanding of the solar system. Let’s begin by reviewing
the early evolution of celestial theories.

In the second century CE, the Greek astronomer Claudius Ptolemy hypoth-
esized that the sun, moon, and planets orbited the earth along circles called
deferents. On a smaller scale, they travelled along smaller circles, called epicy-
cles, whose centres moved along the deferents. This theory was sufficiently
accurate to explain observations of the time. It dominated until around 1843,
when Copernicus published his book, de Revolutionibus Orbium Caelestium.
His solar system was heliocentric but retained the orbital deferents and epicy-
cles of Ptolemy’s theory. It is interesting to note that Copernicus had difficulty
explaining Mercury’s motion and once commented that ”this planet has . .
. influenced many perplexities and labours on us in our investigation of its
wanderings.” (from Baum, 11)

More exact naked-eye planetary observations were taken by Tyco Brahe,
who, I discovered while writing this paper, did not cut off his own nose. I had
always believed, courtesy of my eleventh grade science teacher, that the great
Danish observational astronomer ’removed’ his nose to allow his face a better
seal with his telescope. My teacher, it turns out, was doubly dishonest since
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Brahe lost part of his nose in a duel with a student and telescopes had not been
invented in 1600, when Brahe made his observations.

A young mathematician who worked with Brahe examined the elder’s notes
and tried to calculate the orbit of Mars. Although an apparently simple task,
this was disconcertingly complex since planets appear to change speed and di-
rection based on the motion of not only the planet but also Earth.

When Kepler finished his calculations, he determined that Mars moved in an
ellipse with the sun at one focus. Kepler became quite proficient at predicting
Mercury’s passes between the Sun and Earth, called transits. By hand, he
calculated Mercury’s 7 November 1631 transit time, accurate to within five hours
(Baum, 15), although he died before witnessing the event he had predicted. A
subsequent transit, on 23 October 1651, was predicted, using corrections of
Kepler’s calculations, with an accuracy of a few minutes.

Based on his planetary observations, Kepler made the following statements,
known collectively as Kepler’s Laws (Stewart, 897):

1. A planet revolves around the Sun in an elliptical orbit with the Sun at
one focus

2. The line joining the Sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the
cube of the length of the major axis of its orbit.

And so, by the middle of the 17th century, kinematic data on planetary paths
were fairly accurately known. Hence, all of the pieces were on the table for a
brilliant theorist (read: Newton) to assemble, explaining the dynamics behind
planetar motion.

Newton’s Law Issac Newton was born on Christmas Day, 1642. Since
he was a failure at farming, his mother sent him to university. In the middle
of his study at Cambridge, the plage broke out, and the school was closed
to students for 1665-1666. Newton returned home, and in this marvellously
creative period, wrote about both gravitation and calculus. On the former
question, he considered a rock twirling around on the end of a string. The
rock, he knew, tended to launch, but the string provided a counteracting force.
Newton wondered, then, what provided a counteracting force in the case of
planetary motion. Could it be gravity, the force that held people on the Earth’s
surface?

In his magnum opus, 1687’s Philosophiae Naturalis Principia Mathematice,
Newton calculated that the path of planets would be elliptical if they were
subjected to a force of gravitation that varied with the inverse square of the
separation between the planets and the Sun. Starting from Newton’s Second
Law and the Newton’s Law of Gravitation, it is possible to prove each of Kepler’s
Laws. Since Kepler’s First Law deals with the elliptical shape of planetary
orbits, a derivation is included below. The discussion that follows is based on
Chapter 11.4 of Stewart’s Calculus. This is the so-called ”one-body problem”
since the system under consideration contains a test particle (the planet) moving
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under the attraction of a massive body (the Sun). The planet’s mass is assumed
to be so small relative to that of the Sun that the Sun remains fixed in space.
Also, the effects of all other planets are neglected.

Let’s begin by stating Newton’s Second Law:

F = ma (1)

where F is the force experienced by the planet, m is its mass, and a is its
acceleration.

And Newton’s Law of Gravitation:

F = −GMm

r3
r = −GMm

r2
u (2)

The coordinate system is radial. F is the force experienced by the planet, G
denotes the gravitational constant, r = r(t) is the planet’s position vector, u is
a unit vector in the direction of r, and M and m are the masses of the Sun and
planet, respectively. Further, r = |r|, v = r′, and a = r′′.

First, we will show that the planet moves in a plane. Equating the Fs from
(1) and (2) gives

a =
−GM

r3
r (3)

hence a and r are parallel, so
r× a = 0

From the properties of cross products, we know that

d

dt
(r× v) = r′ × v + r× v′

= v× v + r× a

= 0 + 0

= 0

So, we can conclude that r× v is a constant vector, say h. We can assume
that r and v are not parallel. This implies that h 6= 0. We can now conclude
that r and h are perpendicular, so the planet always lies in a plane through the
origin perpendicular to h. Planetary motion, according to Newton’s Laws, is
planar.

Now, we can prove examine the shape of the orbit within this plane. Let’s
start by rewriting h:

h = r× v

= r× r′

= ru× (ru)′

= ru× (ru′ + r′u)
= r2(u× u′) + rr′(u× u)
= r2(u× u′)
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So, combining the above result with (3) gives

a× h = −GM

r2
u× r2(u× u′)

= −GMu× (u× u′)
= −GM [(u · u′)u− (u · u)u′]

Since u is a unit vector, u · u = |u|2 = 1, so

a× h = −GM [(u · u′)u− u′] (4)

Now, let’s consider the (u · u′) term in (4). Since u · u is constant,

d

dt
(u · u) = 0

→ u′ · u + u · u′ = 0
→ u · u′ = 0

Substituting into (4) we get

a× h = GMu′

But h is a constant vector, so

(v× h)′ = v′ × h

= a× h

→ (v× h)′ = GMu′

Integrating both sides yields

v× h = GMu + c (5)

where c is a constant vector.
Since the planet’s motion is confined to an arbitrary plane, we can, without

loss of generality, call this the xy-plane. Recalling that h is perpendicular to this
plane, let’s define a standard basis vector k in the direction of h. Looking at (5)
and recalling that (v× h) and u both lie in the xy-plane, we can conclude that
c is also in the xy-plane. Let’s choose the x - and y-axes such that the standard
basis vector i is in the direction of c. There is really nothing special about
this choice. Any set of axes would do just fine. Let’s go one step further and
call θ the angle between c and r. Hence (r, θ) is the planet’s position in polar
coordinates. If, at this point, it is unclear where we are heading, recall that we
set out to show that the planet’s path is elliptical. So, ultimately, we’re seeking
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an expression for r(θ). Let’s look at an expression for r · (v× h), substitute in
(5), and turn the crank . . .

r · (v× h) = r · (GMu + c)
= GMr · u + r · c
= GMru · u + |r||c| cos θ

= GMr + rc cos θ

where c = |c|.
Now, let’s solve for r in the previous equation.

r =
r · (v× h)

GM + c cos θ

Define e = c
GM , and substitute into the above equation:

r =
r · (v× h)

GM [1 + e cos θ]
(6)

So, we now have the desired equation for r. Let’s simplify the numerator of
(6).

r · (v× h) = (r× v) · h
= h× h

= h2

where h = |h|. So, (6) becomes

r =
h2

GM [1 + e cos θ]

=
eh2

c[1 + e cos θ]

And, for one final simplification, let’s rename h2

c as d. So

r =
ed

1 + e cos θ
(7)

This is the equation of a conic section in polar coordinates. The value of e
in the denominator determines the type of conic section (7) represents. Since
planets have closed orbits, 0 < e < 1 and r represents an ellipse. Further, e is
the eccentricity of Mercury’s orbit, and one of the ellipse’s foci is located at the
origin. So, beginning with only Newton’s Second Law and Law of Gravitation,
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we have verified Kepler’s First Law, that planets moves in an elliptical orbit
with the sun at one of the foci.

Of course, the actual solar system is far more complex than this model.
Newton’s central idea, that planetary motions are governed by an inverse square
force of gravity, gave mathematicians and astronomers the tools to explain the
clockwork motion of the planets, as long as precise masses and positions were
known for all planets. Shortly after Principia’s publication, scientists began to
use these laws to make successively more accurate predictions.

Applying Newton’s Amazing Law of Gravitation Comet Halley had
been predicted to return, by Halley himself, in winter 1758-59. In 1757, Alexis-
Claude Clairault, of France, and two assistants rushed to find a more precise
return date. Using Newton’s Law of Gravitation and considering perturbations
caused by Jupiter and Saturn, they arrived at a date of mid-April 1759. Comet
Halley’s perihelion, the point in its orbit nearest to the sun, was only 33 days
earlier than they had predicted. This error was due mainly to computational
shortcuts they made to ensure that they finished their calculations before Comet
Halley arrived.

William Hanover, who was born in Hanover in 1738 but moved to England in
1757, made a shocking discovery in 1781, making use of the telescope. He found
a seventh planet orbiting the Sun. Uranus became the first planet discovered
since antiquity. As predicted by Newton’s theory, Uranus followed an elliptical
path. The astronomers of the world excitedly turned their attention to this new
planet.

There is one figure who played so important a role in verifying and employing
Newton’s amazing theory that it is necessary to look at his life in more detail.
That man is Urbain Jean Joseph Le Verriere, born n Normandy in 1811. He
attended Ecole Polytechnique and graduated with a degree in chemistry. He
received an appealing job offer that required him to move away from Paris and
his girlfriend. He declined the job, chose marriage, gave up chemistry, and ended
up in astronomy through a fortuitous job offer.

In 1839, he began calculating the stability of the solar system and planetary
orbits. In 1841, then, he applied his ”unique analytic skills and almost superhu-
man endurance for calculation to master the motion of Mercury.” (Baum, 71)
This planet orbits nearest the sun and has a large eccentricity and short period.
A detailed description of its motion had, so far, eluded theorists and stood out
as a critical test for Newton’s Gravitation. In 1845, Le Verriere gained reknown
for calculating Mercury’s 1845 transit of the Sun to within 16 seconds (Baum,
73). Unsatisfied by this error, however, he did not publish his tables of Mer-
cury’s motion. At this point, he left Mercury (!) temporarily and turned to
another problem.

Since the discovery of Uranus, its orbit had been lagging behind predictions.
Le Verriere, always sure of Newton, set to calculating the position and mass of
an object that could bring about the observed lag in Uranus’ orbit. He began
with an assumption that the unknown mass must be exterior to Uranus’s orbit,
since a perturbation had not been observed in Saturn’s orbit. He then tried to
calculate the location, mass, and orbital parameters of such an object.
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In mid-1845, a young Cambridge mathematician, John Couch Adams, was
also considering the same problem. Adams was, in fact, the first to theorize the
new planet’s position, but his results were not well disseminated. By 1846, the
famous Le Verriere too issued a prediction as to the new planet’s position, and a
team at the Berlin Observatory found it almost immediately, only 55 arc minutes
from Le Verriere’s calculation, and 2.5 degrees from Adams’. The director of the
observatory exclaimed that this was ”the most outstanding conceivable proof
of the validity of universal gravitation” (Baum, 117). Indeed, Newton’s theory
had reached its peak. Its power, in the hands of a talented mathematician or
astronomer like Le Verriere of Adams, seemed without bounds. With another
success behind him, Le Verriere then returned to the problem of Mercury.

The Hunt for an Intermercurial Planet In 1854, Le Verriere was ap-
pointed director of the Paris Observatory. He undertook, with the assistance of
many human ’computers,’ a study of the whole solar system. His dream was to
explain every minute movement of the ”jewelled clockwork that seemed, for an
elusive moment, to be stable, self-adjusting, and eternal” (Baum, 2).

In 1859, he began examining observations of Mercury’s motion in detail,
relying mainly on 14 very accurate solar transit times, recorded between 1697
and 1848. He concluded that the ellipse of Mercury’s orbit was precessing slowly,
which was expected, since the other planets of the solar system were expected
to Mercury’s perihelion to precess. The observed precession amounted to a
perihelion advance of approximately 565 seconds of arc per Earth century. Le
Verriere then calculated an expected precession by considering the effects force
each planet exerted on Mercury. This was an accurate, though computationally
demanding technique. The outer planets, Le Verrier predicted, should cause an
advance of 527 seconds of arc per century, leaving a residual 38 seconds that
he was not able to explain using Newton’s theory (Baum, 136). In the next
section, we will calculate an approximation of this Newtonian perturbation.

An Approximation of the Newtonian Precession of Mercury’s Or-
bit It is possible to model, very precisely, the Newtonian force each planet was
expected to exert on Mercury. An elegant approximation, however, was de-
scribed by Price and Rush in their paper entitled Non-relativistic contribution
to Mercury’s perihelion precession. They replaced each of the outer planets
by a ring of uniform linear mass density. Since Mercury’s precession is slow
compared to the ortits of even Uranus, their approach yields a fairly accurate
time-averaged effect of the moving planets’ effects. An sketch of their calcula-
tions follows.

First, let’s replace each planet by a ring with linear mass density given by
the follwing equation:

λi =
Mi

2πRi

where λi is the linear mass density along the orbit of the ith planet from the
sun, Mi is the mass of the ith planet, and Ri is the radius of the ith planets
orbit, which is assumed to be circular.

We can calculate the gravitational pull exerted on Mercury by each of the
exterior planets by considering the radial components of the force exerted by
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differential angular elements on Mercury using Newton’s Law of Gravitation
and integrating over the circle. Please see page 532 of Price and Rush’s paper
for further details on this integration.

This yields

Fi = [
Gπλima

R2
i − a2

]u (8)

where Fi is the radial force exerted on Mercury by the ith planet, a is Mercury’s
distance from the Sun, and u is a unit vector for Mercury’s position. Note that
since Ri > a, Fi in (8) is positive, so the force exerted on Mercury by each
external planet is directed outward, opposite to the force exerted by the Sun.

Now, we will refer to some results from Classical Mechanics. From the re-
quirements that planetary orbits are stable and closed, the following differential
equation relates gravitational force and planetary motion:

Φ(r) = m(r̈ − θ̇2r)

where Φ(r) is the total applied force, and ”·” represents differentiation with
respect to time.

Also, the planet’s angular momentum, mr2θ̇, is a constant, say h. Substi-
tuting this value into the above equation yields

Φ(r) = m(r̈ − h2

m2r3
)

Now, let’s consider an orbit for Mercury that oscillates about a circular
orbit of radius a. Using a Taylor series approximation and solving the resulting
differrential equation gives an equation for apsidal angle, which is defined as the
angle between the perihelion and aphelion:

Ψ =
π√

3 + a[Φ
′(a)

Φ(a) ]
(9)

where Ψ is the apsidal angle, Φ(a) is the net central force, and a is the radius
of the circular orbit around which we are perturbing.

Now, let’s use (8) to find the sum of the forces of all of the external planetary
rings on Mercury:

F (a) = Gπm
9∑

i=2

λia

R2
i − a2

= 7.587× 1015N (10)

The numerical value was obtained by substituting masses and orbital radii for
all external planets into (10).

The Gravitational force exerted by the Sun on Mercury is F◦ = −1.318 ×
1022N , and the net force that Mercury experiences is given by Φ(a) = F◦+F (a).
Let’s differentiate this expression and multiply by a.

aΦ′(a) = aF ′
◦ + aF ′(a) (11)
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Let’s now examine the terms on the right-hand side of (11). Differentiating
(10) yields:

F ′(a) = Gπm
9∑

i=2

λi(R2
i + a2)

R2
i − a2

(12)

And F◦, the magnitude of the force exerted on Mercury by the Sun, is given
by Newton’s Law of Gravity

F◦ = −GMsm

a2

where Ms is the mass of the Sun. Differentiating,

F ′
◦ =

2GMs

a3
=
−2
a

F◦

→ aF ′
◦ = −2F◦ (13)

Substituting (12) and (13) into (11) gives the following for Mercury’s apsidal
equation:

Ψ =
π√

3 +
−2F◦+Gmπa

∑9
i=2 λi

R2
i
+a2

(R2
i
−a2)2

F◦+F (a)

(14)

We now apply a binomial expansion on both the numerator and denominator
of (14) and neglect all terms higher than first power of F (a)

F◦
:

Ψ = π(1− F (a)
F◦

−
Gmπa

∑9
i=2 λi

R2
i +a2

(R2
i−a2)2

2F◦
) (15)

Now, compute the numerical value for Ψ by substituting the value of F (a)
calculated in (10), F◦, and mass and orbital radius for the exterior planets into
(15):

Ψ = π(1 + 9.884× 10−7)

where Ψ is the angle between perihelion and aphelion. Please see p533 of Price
and Rush’s article for the numerical valuse used in calculating Ψ.

The precession of Mercury’s orbit per revolution, then, is

2Ψ− 2π

T

where T is the period of Mercury’s orbit, 87.969 days. So, in more conventional
units,

precession =
531.9arcsec

century
(16)

Le Verriere predicted a perihelion advance of 527 arcseconds per century,
and this approximation yields 531.9 arcseconds. Still, Newton’s theory was not
able to explain the observed perihelion precession using known masses in the
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solar system. Le Verrier, naturally, tried to apply the same technique that had
led him to the discovery of Neptune and began looking for a missing body in
the solar system.

The Hunt for an Intermercurial Planet An increase of approximately
10 percent in Venus’ mass would explain Mercury’s perihelion advance, but it
would also affect Earth’s orbit in a way that had not been observed. Since the
missing mass must not affect Earth, Le Verriere decided that it must be nearer
to the Sun than Mercury’s orbit. And so began the hunt for Le Verriere’s ghost
planet, or rather planets. He quickly realized that a single planet so near the
Sun would have been bright and, hence, visible during solar eclipses. Since no
such planet had been observed during past eclipses, Le Verriere hypothesized,
instead, that the mass was in the form of many small bodies.

In 1860, he visited a small-town French doctor and part-time astronomer
who had recorded observations during what he believed to be a transit of an
intermercurial planet. Le Verriere, convinced by the man’s story, released the
news of the new planet, which was quickly dubbed Vulcan. He had, again,
delighted the French scientific community. The team of Newton and Le Verriere
had again triumphed. Or so it seemed.

Based on the doctor’s observations, Le Verriere calculated the planet’s dis-
tance from the sun, 0.147AU, and period, 19 days 17 hours (Baum, 156). The
astronomical community tried again and again to observe the elusive planet
Vulcan, but, as time passed with no further sightings, doubts as to the planet’s
existence began to mount. With so much attention directed at observing the
area around the sun during subsequent eclipses, and with no, or at least very
few, credible sightings, most astronomers lost faith in Vulcan. Until his death
in 1877, Le Verriere remained utterly convinced that the missing mass existed
and would eventually be found, verifying the supremacy of Newton’s Law of
Gravitation.

By 1890, however, almost nobody believed a sufficient amount of matter
would be found inside Mercury’s orbit to explain the perihelion advance. In
1895, Newcomb corrected some inconsistencies in planetary mass and repeated
Le Verriere’s calculations. He found an extra perihelion shift of 43” per century,
slightly larger than Le Verriere’s result. Since hidden mass was, by this time,
out of the question, perhaps, he thought, the problem lay with Newton’s Law of
Gravitation. If, for example, the exponent in the denominator were 2.00000016
(Baum, 233), then the motion of Mercury could be more accurately explained.

This represented a true paradigm shift. While formerly observations were
questioned and Newton’s theory was unassailable, now credible scientists began
to question the foundations of Newton Law of Gravitation. The observational
problem was, essentially, closed. The theory problem, in contrast, was wide
open.

Einstein’s General Theory of Relativity In November 1915, Albert
Einstein, sitting at a desk in Berlin, wrote his General Theory of Relativity. It
is ironic to note that Newton’s theory had peaked in the same town, only 70
years earlier, when Neptune was discovered at the Berlin Observatory.

Einstein did not set out to solve the problem of Mercury’s perihelion shift.
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In fact, the answer fell out as a neat consequence of his theory. In Newton’s
theory, as demonstrated previously, the motion of planets are ellipses with the
Sun at one focus. Here, I will show that Einstein’s Theory of General Relativity
changes this conclusion, although this change is minor in most cases.

The general relativistic calculation that follows will consider the motion of a
test particle in the gravitational field of a massive body. The test particle’s mass
is assumed to be so small that it has no effect on the massive body. Fortunately,
the Schwarzschild solution to Einstein’s field equations describes precisely this
case.

Here, I will assume that the reader if familiar with the Schwarzschild so-
lution. A good derivation and discussion of the Schwarzschild solution can be
found in Hans Stephani’s General Relativity. Schwarzschild’s spherically sym-
metric vacuum solution has a line element

ds2 = (1− 2m

r
)dt2 − 1

1− 2m
r

dr2 − r2(dθ2 + sin2θdφ2) (17)

where m, in our case, is the mass of the sun in relativistic units.
Starting from the Schwarzschild line element, it is possible to deduce the

motion of a test mass (a planet). Please refer to section 15.3 of Ray D’Inverno’s
Introducing Einstein’s Relativity for further details. Before we begin, though, it
is interesting to note that Einstein reached the same conclusion about Mercury’s
perihelion precession in 1915, without the use of Schwarzschild’s solution.

Since the test mass (Mercury) moves along a timelike geodesic, the La-
grangian is identical to kinetic energy, and gαβẋαẋβ = 1, where α, β = 0, 1, 2, 3.

So, the Lagrangian, L is as follows:

L =
m

2
v2

=
m

2
gαβ

dxα

dτ

dxβ

dτ

=
m

2
gαβẋαẋβ

where ẋ = dx
dτ and τ is proper time.

So, from (17), the Lagrangian for Mercury’s force-free motion is given by
the following equation:

L =
m

2
[(1− 2m

r
)ṫ2 − 1

1− 2m
r

ṙ2 − r2θ̇2 − r2sin2θφ̇2] =
m

2
(18)

Let x0 = t, x1 = r, x2 = θ, and x3 = φ. Recall the Euler-Lagrange equation:

∂L

∂xa
− d

dτ
(

∂L

∂ẋa
) = 0 (19)

Let’s now apply the Euler-Lagrange equation to (18). For the a = 0 case:

d

dτ
[(1− 2m

r
)ṫ] = 0 (20)
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For the a = 2 case:
d

dτ
(r2φ̇)− r2sinθcosθφ̇2 = 0 (21)

And for the a = 3 case:
d

dτ
(r2sin2θφ̇) = 0 (22)

It is not necessary to take the a = 1 case, which corresponds to r. Since
Mercury’s motion involves four equations, t = t(τ), r = r(τ), θ = θ(τ), and
φ = φ(τ), equations (18), (20), (21), and (22) provide sufficient information.
We have chosen to omit the a = 1 case since differentiating (18) with respect to
x1 = r will clearly make the biggest mess.

As with the Newtonian case, we first must establish whether planar motion
is possible. Let’s consider motion in the equatorial plane and check that it is
stable. So, at τ = 0, let’s assume that θ = π

2 and θ̇ = 0. Since θ = π
2 , (21) gives

d

dτ
(r2θ̇) = 0

→ r2θ̇ = constant

At τ = 0, r2θ̇ = 0, so r2θ̇ = 0 for all τ . If we assume that r 6= 0, then θ̇ = 0
for all τ . Hence θ = π

2 for all τ , and planar motion is possible. Let’s consider
motion in the xy-plane.

Integrating (22) gives
r2φ̇ = h (23)

where h = constant. Hence, h represents angular momentum. Next, integrate
(20) to give

(1− 2m

r
)ṫ = k (24)

where k = constant.
Now, substitute (24) and θ = π

2 into (18):

k2

1− 2m
r

− ṙ2

1− 2m
r

− r2φ̇2 = 1 (25)

Let u = 1
r . So

ṙ =
dr

dτ

=
d

dτ
(
1
u

)

= − 1
u2

(
du

dφ
)(

dφ

dτ
)

= − 1
u2

(
du

dφ
)hu2
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→ ṙ = −h(
du

dφ
) (26)

Pretty soon, we’ll be at a tidy differential equation for Mercury’s motion.
Substitute (23) and (26) and u = 1

r into (25)

k2

1− 2mu
−

h2 du
dφ

1− 2mu
− h2u2 = 1

Multiply through by 1−2mu
h2

k2

h2
− (

du

dφ
)2 − u2(1− 2mu) =

1− 2mu

h2

And, rearranging this expression will give a first order differential equation
for Mercury’s motion:

(
du

dφ
)2 + u2 =

k2 − 1
h2

+
2m

h2
u + 2mu3 (27)

By differentiating (27) and dividing through by 2, we get a second order
differential equation for Mercury’s motion:

d2u

dφ2
+ u =

m

h2
+ 3mu2 (28)

This term very closely resembles the differential encountered in Newtonian
motion, except there is an additional 3mu2 term in (28). This term, however,
is very small. In the case of Mercury, for example, the ratio of the terms on the
right-hand side of (28) is on the order of 10−7. We can, then, solve (28) using a
perturbation method. Let’s introduce a parameter ε = 3m2

h2 . Also, let’s express
differentiation with respect to φ with a ’prime’ and rewrite (28):

u′′ + u =
m

h2
+ ε(

h2u2

m
) (29)

All that remains is solving this differential equation. Let’s assume the solu-
tion has a form u = u◦ + εu1 + O(ε2). Now, we will differentiate this solution
twice, substitute it into (29), and rearrange:

u′′◦ + u◦ −
m

h2
+ ε(u′′1 + u1 −

h2u2
◦

m
) + O(ε2) = 0 (30)

For the first approximation of a solution, let’s equate the coefficients of ε,
ε2, . . . to zero. Then u◦ = m

h2 (1 + ecosφ) is the zeroth order solution to
(30). (Actually, the solution is u◦ = m

h2 (1 + ecos(φ − φ◦)), but we can set φ◦
to zero for simplicity) This solution can be verified by differentiating twice and
substituting into (30). Remembering that u = 1

r , this solution agrees with the
Newtonian solution.
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Now, let’s examine the coefficient of ε in (30):

u′′1 + u1 =
h2u2

◦
m

=
m

h2
(1 + ecosφ)2

=
m

h2
(1 + 2ecosφ + e2cos2φ)

→ u′′1 + u1 =
m

h2
(1 +

1
2
e2) +

2me

h2
cosφ +

me2

2h2
cos2φ (31)

Let’s try a general solution u1 = A + Bφsinφ + Ccos2φ and solve for its
coefficients.

u′1 = Bsinφ + Bφcosφ− 2Csin2φ

u′′1 = 2Bcos2φ−Bφsinφ− 4Ccos2φ

So,
u′′1 + u1 = (A) + (2B)cosφ + (−3C)cos2φ (32)

Comparing (32) to (31), we arrive at the following values for A, B, and C:

A =
m

h2
(1 +

1
2
e2)

B =
me

h2

C = −me2

6h2

Hence,

u1 =
m

h2
(1 +

1
2
e2) +

me

h2
φsinφ− me2

6h2
cos2φ

And, at last, the general solution to first order is

u ≈ u◦ + εu1

→ u ≈ u◦ +
εm

h2
[1 + eφsinφ + e2(

1
2
− 1

6
cos2φ)] (33)

Examining the correction term in (33), we see that the eφsinφ term increases
after each revolution, and hence becomes dominant. Let’s substitute our solu-
tion for u◦, neglect the other terms in the correction, and obtain a simplified
version of (33):

u ≈ m

h2
(1 + ecosφ + εeφsinφ)
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→ u ≈ m

h2
[1 + ecos[φ(1− ε)]] (34)

It is straightforward to check that (34) satisfies (30) to first order by differ-
entiating and substituting. Examining (34) we see that Mercury’s orbit is no
longer an ellipse. It is still periodic, but the period is now given by the following
equation:

period =
2π

1− ε
≈ 2π(1 + ε) (35)

And Mercury’s perihelion precession per orbit, in relativistic units, is given
by subtracting 2π from its period

precession ≈ 2πε =
6πm2

r

h2
r

(36)

where ε is dimensionless, mr is the mass of the sun in relativistic units, and hr

is Mercury’s angular momentum in relativistic units. converting mr and hr into
non-relativistic units gives a more useful form of the perihelion shift equation:

precession ≈ 6πG2m2

c2h2
(37)

where G is the Gravitational constant, m is the sun’s mass, c is the speed of
light, and h is Mercury’s angular momentum per unit mass.

Lastly, let’s use Kepler’s second and third laws to rewrite an approximation
of Mercury’s perihelion precession in a more convenient form.

From Kepler’s second law,
dA

dt
=

L

2µ

where A is the area swept out by the orbit, L is angular momentum, and µ is
reduced mass. Integrating this equation over one elliptical orbit,

πab =
L

2µ
T

≈ hT

2

For an ellipse, b2 = a2(1− e2), so

T 2 =
4π2(1− e2)a4

h2
(38)

From Kepler’s third law,

T 2 =
4π2a3

G(m + mm)

where mm is Mercury’s mass. Since mm is very small compared to m, it can be
neglected:

T 2 ≈ 4π2a3

Gm
(39)
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From (39), we can solve for G2m2

G2m2 =
16π4a6

T 2
(

1
T 2

) (40)

And now, substituting (38) into (40) gives

G2m2 =
4π2a2h2

T 2(1− e2)
(41)

Finally, combining (38) and (37) gives an equation for Mercury’s relativistic
perihelion precession per orbit:

precession =
24π3a2

cT 2(1− e2)
(42)

where a is the semimajor axis of Mercury’s orbit, c is the speed of light, T is
the period of Mercury’s orbit, and e is the eccentricity of Mercury’s orbit.

Using values from NASA’s Solar System Bodies: Mercury website, this gives
a perihelion shift of 42.9 seconds of arc per century. That Einstein’s theory
of General Relativity so elegantly explained Mercury’s perihelion shift served
as an early verification of the theory. Shortly after, during the eclipse of 21
September 1922, light deflection was observed, verifying another prediction of
Einstein’s theory.

A more striking example of perihelion shift than Mercury’s has been ob-
served. In 1975, binary pulsar PSR 1913+16 was discovered. The two massive
sources, in very tight orbit, display a perihelion advance of 4.23 degrees per
year!

Conclusions
The perihelion shift was initially observed in only Mercury’s orbit since it

is nearest to the sun, and hence experiences the greatest perihelion drift. Since
Mercury’s orbit is farily eccentric, this perihelion shift is easily detectable (Fre-
undlich, 40). If it were more circular, on the other hand, it would have been
much more difficult to observe.

More recently, significant perihelion drift has been observed in other planets.
Einstein’s calculations predict a shift for Venus of 8.6 seconds of arc per century,
and 8.4 seconds has been observed. Similarly, relativity predicts a shift for Earth
of 3.8 seconds of arc per century, while 5.0 seconds has been osberved (D’Inverno,
198).

Einstein’s paper elegantly and convincingly explained the observed drift in
perihelion without the need for ghost planets or asteroid belts. From Einstein’s
original 1916 paper, entitled The Foundations of the General Theory of Relativ-
ity: ”Calculation gives for the planet Mercury a rotation of the orbit of 43” per
century, corresponding exactly to astronomical observation (Le Verriere); for
the astronomers have discovered in the motion of the perihelion of this planet,
after allowing for all disturbances by other planets, an inexplicable remainder
of this magnitude.” (Lorentz et al., 164)
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