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The variable coefficient Helmholtz equation

∆u(x) + k2q(x)u(x) = 0

can be used to model the scattering of waves from inhomogeneous media.

When the coefficient q is piecewise smooth and positive, its solutions are oscillatory with
the wavenumber k controlling their frequency of oscillation.

A solution u(x1, x2) when A solution u(x1, x2) when
q(x1, x2) = x2

1/4, k = 6 q(x1, x2) = x2
1/4, k = 12



Problem

In d dimensions, discretizing the solutions of the variable coefficient Helmholtz equation
using standard techniques (e.g., collocation, orthogonal polynomial bases, finite element

bases) requires O
(
kd
)

points.
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This is a consequence of the Nyquist sampling
theorem.



Problem

In d dimensions, discretizing the solutions of the variable coefficient Helmholtz equation
using standard techniques (e.g., collocation, orthogonal polynomial bases, finite element

bases) requires O
(
kd
)

points.

One consequence of this is that any solver using such methods to represent solutions must

have a running time which grow at least as fast as O
(
kd
)

.

This makes them prohibitively expensive in the high-frequency regime, when the wavenum-
ber k is large.



Central observation

In certain cases and under mild conditions on the coefficient q, the variable coefficient
Helmholtz equation

∆u(x) + k2q(x)u(x) = 0

admits solutions whose logarithms are nonoscillatory, even though the solutions
themselves are highly oscillatory.
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Central observation

In certain cases and under mild conditions on the coefficient q, the variable coefficient
Helmholtz equation

∆u(x) + k2q(x)u(x) = 0

admits solutions whose logarithms are nonoscillatory, even though the solutions
themselves are highly oscillatory.

One spatial dimension

Radially symmetric coefficients in two spatial dimensions

Conjecture: true for general (nonsymmetric) coefficients in two dimensions



Solution

In those cases, we can solve the variable coefficient Helmholtz equation by constructing a
basis in its space of solutions whose logarithms are nonoscillatory functions. We then
represent the desired (oscillatory) solutions — which is usually specified via boundary
conditions — with respect to this basis.

This allows us to construct extremely efficient solvers whose asymptotic running times

are grow more slowly than O
(
kd
)

.



Outline of this talk

I will describe three solvers based on this idea:

A solver for the one-dimensional problem which runs in time independent of the
wavenumber k

A solver for the Dirichlet problem in the case of a radially symmetric coefficient in
two dimensions whose running time is a O (log(k)m) where m is a measure of the
complexity of the boundary data

A method for simulating scattering from a radially symmetric potential in two
spatial dimensions which runs in O (k log(k)) time



The variable coefficient Helmholtz equation in one dimension

If u(x) = exp(ψ(x)) satisfies the Helmholtz equation

u′′(x) + k2q(x)u(x) = 0,

then ψ is a solution of the Riccati equation

ψ′′(x) + (ψ′(x))2 + k2q(x) = 0.

The one-dimensional solver operates by numerically constructing a nonoscillatory solution
of the Riccati equation.



WKB Approximation

There are many asymptotic methods for the Helmholtz equation that operate by
constructing a nonoscillatory function which approximates a solution of the Riccati
equation.

For instance, the WKB approximations of the solutions of

u′′(x) + k2q(x)u(x) = 0

are obtained by inserting the ansatz

ψ′(x) ≈
∞∑

n=−1

k−nαn(x)

into the Riccati equation

ψ′′(x) +
(
ψ′(x)

)2
+ k2q(x) = 0.



WKB Approximation

There is a solution ψ of the Riccati equation such that

ψ(x) =
N−1∑
n=−1

k−n

∫ x

x0

αn(t) dt +O
(
k−N

)
with

α−1(x) = i
√

q(x)

α0(x) = −
q′(x)

4q(x)

α1(x) = −
i

8

q′′(x)

(q(x))3/2
+

5i

32

(q′(x))2

(q(x))5/2

...

αn+1(x) =
i

2
√

q(x)

α′n(x) + n∑
j=0

αj (x)αn−j (x)


...



WKB Approximation

There is a solution u of the Helmholtz equation u such that

u(x) = exp

(
N−1∑
n=−1

k−n

∫ x

x0

αn(t) dt

)(
1 +O

(
k−N

))
with

α−1(x) = i
√

q(x)

α0(x) = −
q′(x)

4q(x)

α1(x) = −
i

8

q′′(x)

(q(x))3/2
+

5i

32

(q′(x))2

(q(x))5/2

...

αn+1(x) =
i

2
√

q(x)

α′n(x) + n∑
j=0

αj (x)αn−j (x)


...



WKB Approximation

The expansion

ψ(x) ≈
N−1∑
n=−1

k−n

∫ x

x0

αn(t) dt

used to approximate a solution of the Riccati equation do not depend on k, but only on q
and its derivatives. In particular, they are nonoscillatory in the sense that they can be
evaluated in time independent of k.

But while WKB approximations and related methods are excellent theoretical tools, they
do not lead to viable numerical methods. Indeed, they have at least three critical flaws:

The coefficients in high order expansions involve high order derivatives of q

These expansions is asymptotic in nature rather than convergent

O
(

1

kn

)
accuracy at O (n) cost



An improved result

When q is positive, splitting the Riccati equation into real and imaginary components
shows that its solutions must be of the form

ψ(x) = iα(x)− 1

2
log
(
α′(x)

)
with α a real-valued solution of Kummer’s equation

(α′(x))2 = k2q(x) +
3

4

(
α′′(x)

α′(x)

)2

− 1

2

α′′′(x)

α′(x)
.

The functions
cos (α(x))√

α′(t)
and

sin (α(x))√
α′(t)

form a basis in the space of solutions of the Helmholtz equation and we call α a phase
function for the Helmholtz equation.



An improved result

Under mild conditions on q, there exist a solution α of Kummer’s equation and a
function α0 which is roughly as oscillatory as the coefficient q such that

α(x) = α0(x) +O (exp(−Ck)) .

More explicitly, if, after a suitable transformation is applied, q has a rapidly decaying Fourier
transform, then, after a similar transformation is applied, α0 has a Fourier transform which
decays at roughly the same rate.

In particular, α0 can be represented using a number of discretization nodes which does not
increase with k so that we get O (exp(−Ck)) accuracy with O (1) cost.



An improved result

Under mild conditions on q, there exist a solution α of Kummer’s equation and a
function α0 which is roughly as oscillatory as the coefficient q such that

α(x) = α0(x) +O (exp(−Ck)) .

Although this improved efficiency is nice, it is perhaps more important that there is a
robust numerical method for computing the phase function α.

Note that we do not compute the function α0! We exploit the fact that the exponential
decay in the error means that α is nonoscillatory from the point of view of numerical
analysis even at quite small values of k.



Nonoscillatory phase functions

Under mild conditions on q, including that it is smooth and positive, the second order
differential equation

u′′(x) + k2q(x)u(x) = 0

admits a phase function which is roughly as oscillatory as q.

q(x) =
sin(2x)2

0.1 + (x − 0.5)2
with k = 10
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Nonoscillatory phase functions

Under mild conditions on q, including that it is smooth and positive, the second order
differential equation

u′′(x) + k2q(x)u(x) = 0

admits a phase function which is roughly as oscillatory as q.
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with k = 103
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Nonoscillatory phase functions

Under mild conditions on q, including that it is smooth and positive, the second order
differential equation

u′′(x) + k2q(x)u(x) = 0

admits a phase function which is roughly as oscillatory as q.

q(x) =
sin(2x)2

0.1 + (x − 0.5)2
with k = 107

0.0 0.2 0.4 0.6 0.8 1.0

0

1×10
15

2 ×10
15

3 ×10
15

4 ×10
15

5 ×10
15

6 ×10
15

7 ×10
15

0.000 0.005 0.010 0.015 0.020 0.025
0

2000

4000

6000

8000

10000

12000

14000



Nonoscillatory phase functions

Under mild conditions on q, including that it is smooth and positive, the second order
differential equation

u′′(x) + k2q(x)u(x) = 0

admits a phase function which is roughly as oscillatory as q.

q(x) = (13 + 12 cos(30x)) with k = 107
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A numerical algorithm for the calculation of nonoscillatory phase functions

In order to construct a nonoscillatory phase function α for the Helmholtz equation

u′′(x) + q(x)u(x) = 0,

I solve Kummer’s equation numerically

(
α′(x)

)2
= q(x)− 1

2

α′′′(x)

α′(x)
+

3

4

(
α′′(x)

α′(x)

)2

.

Of course, most of its solutions are highly oscillatory. In order to choose a solution of
Kummer’s equation which is not, I will rely on the fact that when q(x) = η2,

α(x) = ηx

is a nonoscillatory phase function for the Helmholtz equation.



A numerical algorithm for the calculation of nonoscillatory phase functions

-1.0 -0.5 0.0 0.5 1.0

10 000

12 000

14 000

16 000

The original coefficient
q(x) on the interval [a, b].

(
α′(x)

)2
= q(x)− 1

2

α′′′(x)

α′(x)
+

3

4

(
α′′(x)

α′(x)

)2



A numerical algorithm for the calculation of nonoscillatory phase functions
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α̃′(x)
+

3

4

(
α̃′′(x)

α̃′(x)

)2

α̃′(a) = η

α̃′′(a) = 0



A numerical algorithm for the calculation of nonoscillatory phase functions
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Numerical results for the one-dimensional solver

q(x) =
k2 sin(2x)2

0.1 + (x − 0.5)2

k
Phase function Average time to Maximum absolute

construction time evaluate solution error

101 1.79×10−03 5.51×10−07 6.39× 10−14

102 3.10×10−03 5.39×10−07 3.51× 10−13

103 2.90×10−03 5.39×10−07 6.16× 10−12

104 3.06×10−03 5.61×10−07 3.78× 10−11

105 3.80×10−03 4.77×10−07 1.83× 10−10

106 2.91×10−03 5.12×10−07 1.33× 10−09

107 4.33×10−03 5.38×10−07 5.66× 10−09

108 3.46×10−03 4.92×10−07 2.54× 10−08

109 1.87×10−03 5.22×10−07 7.32× 10−07

The obtained accuracy is on the order of εk with ε equal to machine precision. This is
close to the optimal level of accuracy which can be achieved.

When sin(kx) is evaluated numerically, the optimal obtainable accuracy is roughly kε
with ε equal to machine precision.



The Dirichlet problem in two spatial dimensions

A similar approach can be used to solve the variable coefficient Helmholtz equation in
two dimensions.

I will first illustrate it using the relatively simple boundary value problem{
∆u(x) + k2q(x)u(x) = 0 in Ω ⊂ R2

u(x) = f (x) on ∂Ω,

where:

the coefficient q is piecewise smooth and positive

Ω is the disk of radius R centered at 0

For a countable number of values of k (called resonant frequencies), this problem is
ill-posed. I will shortly discuss a different boundary value problem that does not suffer
from this difficulty and which is more relevant in applications.



The Dirichlet problem in two spatial dimensions

The first step of the algorithm is to calculate the truncated Fourier expansion of the
boundary data:

f (R exp(iθ)) ≈
m∑

n=−m

an exp(inθ).

Next, for each integer n = −m,−m + 1, . . . ,m we construct a solution un of the
Helmholtz equation such that

un (R exp(iθ)) = exp(inθ).

The desired solution of the Helmholtz equation is then

u(x) =
m∑

n=−m

anun(x).



The Dirichlet problem in two spatial dimensions

The trick is, of course, that we construct un by solving the Riccati equation

∆ψ(x) +∇ψ(x) · ∇ψ(x) + k2q(x) = 0

satisfied by the logarithms of the solutions of the Helmholtz equation.

In particular, for each n, we find a solution ψn of the Riccati equation such that
un(x) = exp(ψn(x)) has the desired behavior on the boundary:

un(R exp(iθ)) = exp(inθ).

The cost of this algorithm is on the order of

m log(m)︸ ︷︷ ︸
FFT

+ m · (Cost of solving the Riccati equation)︸ ︷︷ ︸
Compute basis



The Dirichlet problem in the case of a radially symmetric coefficient

The method of separation of variables shows that if u satisfies

∆u(x) + k2q(r)u(x) = 0

then it admits an expansion of the form

u(r exp(iθ)) =
∞∑

n=−∞

an ϕ|n|(r) exp(inθ)︸ ︷︷ ︸
un

where, for each nonnegative integer n, ϕn(r)
√
r is a solution of the second order

differential equation

y ′′(r) +

(
k2q(r) +

1
4
− n2

r 2

)
y(r) = 0.



The Dirichlet problem in the case of a radially symmetric coefficient

We cannot just solve this differential equation using the approach described earlier
because, except possibly when n = 0, the coefficient in the equation

ϕ′′n (r) +

(
k2q(r) +

1
4
− n2

r 2

)
ϕn(r) = 0,

changes sign (i.e., the differential equation has turning points).

The results I mentioned earlier apply in the case of coefficients which are positive. Near
turning points, the behavior of phase functions is somewhat more complicated.



The Dirichlet problem in the case of a radially symmetric coefficient

This isn’t a significant problem, though — the cost of solving

y ′′(r) +

(
k2q(r) +

1
4
− n2

r 2

)
y(r) = 0.

only grows logarithmically with k.

So the running time of our algorithm is on the order of

m log(m)︸ ︷︷ ︸
FFT

+ m log(k)︸ ︷︷ ︸
Compute basis



The Dirichlet problem in the case of a radially symmetric coefficient

This isn’t a significant problem, though — the cost of solving

y ′′(r) +

(
k2q(r) +

1
4
− n2

r 2

)
y(r) = 0.

only grows logarithmically with k.

In most physically relevant cases (i.e., scattering problems), m = O (k) so that the running
time is on the order of

k log(k)︸ ︷︷ ︸
FFT

+ k log(k)︸ ︷︷ ︸
Compute basis
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Runtime
k log(k)

{
∆u(x) + k2q(x)u(x) = 0

u(x) = f (x)

q(r) = 14r 2 exp(−5r 2)

f (x) = H0(k|x − 4|)

k m Maximum absolute Running time
error (in seconds)

28 603 1.85×10−13 1.89×10−01

29 1206 1.63×10−12 3.54×10−01

210 2412 1.85×10−12 7.57×10−01

211 4825 7.16×10−12 1.61×10+00

212 9650 2.73×10−11 3.40×10+00

213 19301 6.80×10−11 7.20×10+00

214 38603 4.16×10−10 1.49×10+01

215 77207 6.92×10−10 3.23×10+01

216 154415 3.94×10−09 6.96×10+01

217 308831 5.74×10−09 1.48×10+02



Scattering from a radially symmetric potential in two dimensions

The boundary problem

∆u(x) + k2 (1 + q(x)) u(x) = 0 for all x ∈ R2

u = ui + us

∆ui (x) + k2ui (x) = 0 for all x ∈ R2

lim
r→∞

sup
0≤θ≤2π

√
r

∣∣∣∣∂us∂r (r exp(iθ)) −ikus(r exp(iθ))| = 0

is used to model the scattering of an incoming wave ui from an inhomogeneous medium.

The function u, which is called the total field, is the sum of the known incident wave ui
and the scattered field us , which is to be determined.

We will assume that the scattering potential q is a piecewise smooth and radially
symmetric with compact support in the disk Ω of radius R centered at 0.



Scattering from a radially symmetric potential in two dimensions

The scattered field us is uniquely determined by the boundary value problem
∆us(x) + k2 (1 + q(x)) us(x) = −k2q(x)ui (x) for all x ∈ R2

lim
r→∞

sup
0≤θ≤2π

√
r

∣∣∣∣∂us∂r (r exp(iθ)) −ikus(r exp(iθ))| = 0,

which can be easily obtained from the preceding formulation of the problem.

In particular, since q has support contained in Ω, us satisfies the constant coefficient
Helmholtz equation

∆us(x) + k2q(x)us(x) = 0

in the exterior of Ω.



Scattering from a radially symmetric potential in two dimensions

Because us satisfies the constant coefficient Helmholtz equation in the exterior of Ω and
the Sommerfeld condition, it admits the expansion

us(r exp(iθ)) =
∞∑

n=−∞

bnHn(kr) exp(inθ)

in the exterior of Ω. Here, Hn is the Hankel function of order n.

The total field u, which satisfies the variable coefficient Helmholtz equation in R2, can be
represented via the expansion

u(r exp(iθ)) =
∞∑

n=−∞

an ϕ|n|(r) exp(inθ)︸ ︷︷ ︸
un

where, for each nonnegative integer n, ϕn(r)
√
r is a solution of

y ′′(r) +

(
k2 (1 + q(r)) +

1
4
− n2

r 2

)
y(r) = 0.



Scattering from a radially symmetric potential in two dimensions

In the interior of Ω:

u(r exp(iθ)) =
∞∑

n=−∞

anϕ|n|(kr) exp(inθ)

In the exterior of Ω:

u(r exp(iθ)) =
∞∑

n=−∞

bnHn(r) exp(inθ)︸ ︷︷ ︸
us(r exp(iθ))

+ui (r exp(iθ))



Scattering from a radially symmetric potential in two dimensions

By standard elliptic regularity results, u and its radial derivative
∂u

∂r
must be continuous

across the boundary ∂Ω:

∞∑
n=−∞

anϕ|n|(kR) exp(inθ)︸ ︷︷ ︸
u(R exp(iθ))

=
∞∑

n=−∞

bnHn(R) exp(inθ)︸ ︷︷ ︸
us(R exp(iθ))

+ui (R exp(iθ))

∞∑
n=−∞

anϕ
′
|n|(R) exp(inθ)︸ ︷︷ ︸

∂u

∂r
(R exp(iθ))

=
∞∑

n=−∞

bnkH
′
n(kR) exp(inθ)︸ ︷︷ ︸

∂us
∂r

(R exp(iθ))

+
∂ui
∂r

(R exp(iθ))

We can easily solve for the coefficients an and bn in terms of cn and dn.



Scattering from a radially symmetric potential in two dimensions

By standard elliptic regularity results, u and its radial derivative
∂u

∂r
must be continuous

across the boundary ∂Ω:

∞∑
n=−∞

anϕ|n|(kR) exp(inθ)︸ ︷︷ ︸
u(R exp(iθ))

=
∞∑

n=−∞

bnHn(R) exp(inθ)︸ ︷︷ ︸
us(R exp(iθ))

+
∞∑

n=−∞

cn exp(inθ)︸ ︷︷ ︸
ui (R exp(iθ))

∞∑
n=−∞

anϕ
′
|n|(R) exp(inθ)︸ ︷︷ ︸

∂u

∂r
(R exp(iθ))

=
∞∑

n=−∞

bnkH
′
n(kR) exp(inθ)︸ ︷︷ ︸

∂us
∂r

(R exp(iθ))

+
∞∑

n=−∞

dn exp(inθ)︸ ︷︷ ︸
∂ui
∂r

(R exp(iθ))

We can easily solve for the coefficients an and bn in terms of cn and dn.



Scattering from a radially symmetric potential in two dimensions

Since the incident ui satisfies the constant coefficient Helmholtz equation at wavenumber
k, we can actually represent it and its normal derivative using O (k) Fourier modes. That
is, we will have high accuracy approximations

ui (R exp(iθ)) ≈
m∑

n=−m

cn exp(inθ)

∂ui
∂r

(R exp(iθ)) ≈
m∑

n=−m

dn exp(inθ)

with m = O (k). Moreover, the coefficients in these expansions can be computed via the
fast Fourier transform in O (k log(k)) operations.

So the running time of this algorithm is

k log(k)︸ ︷︷ ︸
FFT

+ k log(k)︸ ︷︷ ︸
Compute basis
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k m Maximum absolute Precomp time Solve time
error (in seconds) (in seconds)

28 1608 2.44 × 10−12 4.61×10−01 2.44×10−02

29 3216 5.85 × 10−12 9.37×10−01 1.03×10−02

210 6433 9.34 × 10−12 1.98×10+00 9.11×10−02

211 12867 1.98 × 10−11 4.20×10+00 2.27×10−01

212 25735 4.80 × 10−11 9.00×10+00 2.64×10−02

213 51471 4.35 × 10−10 1.90×10+01 1.49×10−01

214 102943 1.91 × 10−09 4.09×10+01 1.53×10−01

215 205887 6.93 × 10−09 8.75×10+01 2.34×10−01

216 411774 3.23 × 10−08 1.93×10+02 2.53×10+00

217 823549 1.08 × 10−07 4.17×10+02 1.13×10+00
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q(r) = χ(0,1)(r) + χ(2,3)(r)
(

2− 4 (r − 2.5)2
)
, ui (r exp(iθ)) = exp

(
ikr cos

(
θ − π

4
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k m Maximum absolute Precomp time Solve time
error (in seconds) (in seconds)

28 1608 2.20 × 10−12 9.49×10−01 2.44×10−02

29 3216 5.95 × 10−12 1.93×10+00 1.14×10−02

210 6433 6.50 × 10−12 4.06×10+00 8.99×10−02

211 12867 2.04 × 10−11 8.58×10+00 2.27×10−01

212 25735 4.31 × 10−11 1.78×10+01 2.20×10−02

213 51471 2.27 × 10−10 3.70×10+01 1.49×10−01

214 102943 1.90 × 10−10 7.79×10+01 1.55×10−01

215 205887 3.48 × 10−10 1.62×10+02 4.00×10−01

216 411774 7.33 × 10−10 3.51×10+02 2.45×10+00

217 823549 1.95 × 10−09 7.12×10+02 1.11×10+00
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Accelerating the algorithm

This algorithm has two steps which take a nontrivial amount of time:

The Fourier transform of the restriction of the incident wave to the boundary of Ω is
computed

For each Fourier mode with a nonneglible coefficient, a solution of the Riccati
equation is calculated

Each of these steps takes O (k log(k)) time. But the overwhelming majority of the
computational effort is spent on computing the solutions of the Riccati equation.

The time required to compute these solutions can be dramatically reduced by observing
that the solutions of the Riccati equation are smooth as functions of the wavenumber k
and so can be interpolated in that variable.

k log(k)︸ ︷︷ ︸
FFT

+ logκ(k)??︸ ︷︷ ︸
Compute basis



q(r) = χ(0,1)(r) + χ(2,3)(r)
(

2− 4 (r − 2.5)2
)
, ui (r exp(iθ)) = exp

(
ikr cos
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θ − π
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))
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k m Maximum absolute Precomp time
error (in seconds)

24 100 1.40 × 10−13 9.06×10−02

25 201 2.18 × 10−13 1.54×10−01

26 402 4.02 × 10−13 5.57×10−01

27 804 1.18 × 10−13 8.87×10−01

28 1608 1.00 × 10−12 1.16×10+00

29 3216 9.95 × 10−12 1.33×10+00

210 6433 9.03 × 10−12 2.74×10+00

211 12867 2.65 × 10−11 3.45×10+00

212 25735 3.42 × 10−11 6.23×10+00

213 51471 1.07 × 10−10 5.52×10+00

214 102943 2.88 × 10−10 1.67×10+01

215 205887 6.52 × 10−10 2.70×10+01

216 411774 6.78 × 10−10 6.01×10+01

217 823549 2.53 × 10−09 9.92×10+01



Three-dimensional problems

This has important implications for higher dimensions.

In three dimensions, without an acceleration of this type, the cost of the algorithm is
expected to be on the order of

k2 log(k)︸ ︷︷ ︸
SHT

+ k2 log(k)︸ ︷︷ ︸
Compute basis

With such an acceleration, I expect the running time to be much improved, perhaps on
the order of

k2 log(k)︸ ︷︷ ︸
SHT

+ logκ(k)??︸ ︷︷ ︸
Compute basis



Thank you for your attention!

You can find an implementation of the radially symmetric solver at

github.com/jamescbremerjr/HelmRad

You can find an implementation of the one-dimensional solver at

github.com/jamescbremerjr/Phase-Functions

github.com/jamescbremerjr/HelmRad
github.com/jamescbremerjr/Phase-Functions

