
Generalized Gaussian Quadrature as a Tool for Discretizing Singular Integral
Equations

James Bremer (University of California, Davis)

October 15, 2020

Joint work with Zydrunas Gimbutas (NIST Boulder) and Vladimir Rokhlin (Yale University)

A large class of linear elliptic boundary value problems can be reformulated as systems of integral equations.

Initial elliptic boundary value problem:

∆u(x) + q(x)u(x) = f (x) in Ω ⊂ R2

u(x) = g(x) on ∂Ω

Representation formula for the solution:

u(x) =
1

2π

∫
Ω

log |x − y | ψ(y) dy +
1

4π

∫
∂Ω

(y − x) · ηy
|x − y |2

σ(y) dS(y)

Resulting system of integral equations:

ψ(x) +
q(x)

2π

∫
Ω

log |x − y |ψ(y) dy +
q(x)

4π

∫
∂Ω

(y − x) · ηy
|x − y |2

σ(y) dS(y) = f (x) in Ω

1

2
σ(x) +

q(x)

2π

∫
Ω

log |x − y | ψ(y) dy +
q(x)

4π

∫
∂Ω

(y − x) · ηy
|x − y |2

σ(y) dS(y) = g(x) on ∂Ω.

Why might one do this?

The boundary value problem
∆u(x) + q(x)u(x) = f (x) in Ω ⊂ R2

u(x) = g(x) on ∂Ω

gives rise to a well-conditioned invertible operator H2(Ω)→ L2(Ω)×H
3
2 (∂Ω) (for example) assuming sufficient

regularity on the part of q and Ω.

This is a spatially global problem and representing its solutions locally (e.g., spectral element, finite element or
finite difference methods) generally leads to an ill-conditioned discretization.

The system of integral equations

ψ(x) +
q(x)

2π

∫
Ω

log |x − y |ψ(y) dy +
q(x)

4π

∫
∂Ω

(y − x) · ηy
|x − y |2

σ(y) dS(y) = f (x) in Ω

1

2
σ(x) +

q(x)

2π

∫
Ω

log |x − y | ψ(y) dy +
q(x)

4π

∫
∂Ω

(y − x) · ηy
|x − y |2

σ(y) dS(y) = g(x) on ∂Ω.

gives rise to a well-conditioned invertible operator L2(Ω)→ L2(Ω)× L2(∂Ω).

There is no difficulty in representing the solutions ψ and σ of this system locally.

There is no free lunch ...

The discretization of systems of integral equations leads to linear systems with large, dense coefficient matrices.

Historically, the cost of solving these dense systems dominated the cost of integral equation
methods and all other considerations were secondary.

But, in the low-frequency regime, this problem is “mostly solved” by analysis-based fast methods
such as tree codes, fast multipole methods, and fast direct solvers.

Most of the integral operators which arise have singular kernels.

Producing accurate discretizations at a reasonable cost is challenging, especially in two and three
dimensions.

Generalized Gaussian quadrature rules have emerged as one of the principal tools for doing so.

Generalized Gaussian quadrature rules on intervals

Theorem (Bojanov, Braess, Dyn): Suppose that f1, . . . , f2N ⊂ C2N−1[a, b] form an extended Chebyshev system.
This means that any Hermite interpolation problem on [a, b] with 2N degrees of freedom can be solved via a
linear combination of the fj . Suppose also that η ∈ C (a, b) is positive. Then there exist a unique quadrature
rule of the form ∫ b

a
f (x)η(x)dx =

N∑
j=1

f (xj)wj

which is exact for each of the functions fi .

A formula of this type is known as a generalized Gaussian quadrature rule for the functions f1, . . . , f2N .

But we are mostly interested in singular functions!

Ostensibly, the theorem only applies to products of fairly smooth functions with a weight function η
which is possibly singular at the endpoints of the interval.

In fact, we can use various substitutions (e.g., x = exp(−u)) and other tricks (|x | =
√
x2 + ε2) to

apply this theorem to a large class of nasty singular functions.

A numerical algorithm for constructing GGQs

Basic idea:

Apply Newton’s method to solve the system∫ b

a

fi (x)dx =
N∑
j=1

fi (xj)wj , i = 1, . . . , 2N,

of 2N nonlinear equations in the 2N unknowns x1, . . . , xN ,w1, . . . ,wN .

This is much harder than it sounds:

As always with Newton’s method, we need a good initial guess.

We are often given a large collection of linearly dependent functions whose span we wish to
integrate.

Outline of an algorithm for the numerical computation of GGQ rules

Step one: discretize a collection of input functions f1, . . . , fM

Step two: form an orthonormal basis q1, . . . , qK in the span of the input functions

Step three: construct an oversampled K -point quadrature rule

Step four:
reduce the quadrature rule one point at a time using Newton’s method in hope of eventually
producing a rule with dK/2e nodes

Step one: discretize the input functions

Represent the input functions via piecewise Legendre expansions:

m∑
j=1

χ[aj ,bj]
(t)

n∑
i=0

cij

√
2i + 1

bj − aj
Pi

(
2

bj − aj
t +

aj + bj

aj − bj

)

The decomposition of the interval [a, b] is determined using a heuristic procedure:

We recursively subdivide intervals until the trailing coefficients of each Legendre expansion are
“small.”

We expect to obtain a piecewise Gauss-Legendre rule

x1, . . . , xl ,w1, . . . ,wl

which integrates products of the input functions. Note that the (n + 1)-point Gauss-Legendre rule
is exact for the product of any two polynomials of degree n.

Step two: orthonormalization of the input functions

We compute a rank-revealing QR decomposition of the matrix:
f1(x1)

√
w1 f2(x1)

√
w1 · · · fM (x1)

√
w1

f1(x2)
√
w2 f2(x2)

√
w2 · · · fM (x2)

√
w2

.

.

.
. . .

.

.

.
f1(xl)

√
wl f2(xl)

√
wl · · · fM (xl)

√
wl

 We use a randomized algorithm
to accelerate these calculations.

The result is an orthonormal basis q1, . . . , qK for the span of the input functions:

If S is the span of the input functions, then the map

f →


f (x1)

√
w1

f (x2)
√
w2

...
f (xl)

√
wl


is an isomorphism S ⊂ L2(a, b)→ Rl and so inner products of the columns of this matrix are equal to the inner
products of the input functions in L2(a, b).

Step three: construction of an initial K -point quadrature rule

We use a rank-revealing QR decomposition to select a set of K columns of the matrix :


q1(x1)

√
w1 q1(x2)

√
w2 · · · q1(xl)

√
wl

q2(x1)
√
w1 q2(x2)

√
w2 · · · q2(xl)

√
wl

...

qK (x1)
√
w1 qK (x2)

√
w2 · · · qK (xl)

√
wl


We then solve the following system to construct a K -point quadrature rule:

q1(xj1)
√
wj1 q1(xj2)

√
wj2 · · · q1(xjK)

√
wjK

q2(xj1)
√
wj1 q2(xj2)

√
wj2 · · · q2(xjK)

√
wjK

...
. . .

...

qK (xj1)
√
wj1 qK (xj2)

√
wj2 · · · qK (xjK)

√
wjK




ω1

ω2

...
ωK

 =



∫ b
a q1(x) dx∫ b
a q2(x) dx

...∫ b
a qK (x) dx



Step four: point-by-point reduction of the quadrature rule

We remove one quadrature node from our quadrature rule:

This leaves us with a “quadrature rule” with nodes and weights

x1, . . . , xs−1, xs+1, . . . , xL,w1, . . . ,ws−1,ws+1, . . . ,wL

which does not accurately integrate the input functions.

We apply Newton’s method to the system of nonlinear equations:

L∑
j=1
j 6=s

qi (xj)wj =

∫ b

a
qi (x)dx , i = 1, . . . ,K

If Newton’s method does not converge, we choose a different point and try again.

How do we decide in what order we should try to remove points?

For every node xS , we solve the linearization of the system:

L∑
j=1
j 6=s

qi (xj)wj =

∫ b

a
qi (x)dx , i = 1, . . . ,K

That is, we perform one Newton iteration.

We order the nodes according to the l2 norms of the solutions:

We refer to this quantity as the “significance” of the node. We try to remove nodes with low
“significance” first.

A naive implementation of this approach would be extremely expensive — the asymptotic running
time of the algorithm would be O

(
K4
)
!

These calculations can be accelerated

The linearization of the system

L∑
j=1

qi (xj)wj =

∫ b

a
qi (x)dx , i = 1, . . . ,K is:


q′

1(x1)w1 q′
1(x2)w2 · · · q′

1(xL)wL q1(x1) q1(x2) · · · q1(xL)
q′

2(x1)w1 q′
2(x2)w2 · · · q′

2(xL)wL q2(x1) q2(x2) · · · q2(xL)

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

q′
K (x1)w1 q′

K (x2)w2 · · · q′
K (xL)wL qK (x1) qK (x2) · · · qK (xL)


︸ ︷︷ ︸

A



δx1

.

.

.
δxL
δw1

.

.

.
δwL


︸ ︷︷ ︸

x

=


∆1

∆2

.

.

.
∆K

 ,

︸ ︷︷ ︸
b

where ∆i =

∫ b

a

qi (x) dx −
L∑

j=1

qi (xj)wj .

We can find a minimum l2 norm least squares solution by solving the normal equations:

x = At(AtA)−1b

Deleting a node corresponds to deleting two columns of A and requires recalculating the ∆i .

Example:
∫ 1

0

Pj (x)
√
x

dx for all j = 0, 1, . . . ,N

20 40 60 80 100
Order

0.2

0.4

0.6

0.8

1.0

Seconds

Running Time

N^3

Example:
∫ 1

0

Pj (x)
√
x

dx for all j = 0, 1, . . . ,N

20 40 60 80 100
Order

5

10

15

Seconds

Significance

Magnitude of node

Example:
∫ 1

0

Pj (x)
√
x

dx for all j = 0, 1, . . . ,N

20 40 60 80 100
Order

2

4

6

8

Seconds

Significance

Magnitude of weight

Example:
∫ 1

0

Pj (x)
√
x

dx for all j = 0, 1, . . . ,N

20 40 60 80 100
Order

0.2

0.4

0.6

0.8

1.0

1.2

Seconds

Significance

Random ordering

Example:
∫ 1

−1
|x |αPj (x)dx , −

1

2
≤ α ≤

1

2
, j = 0, . . . ,N

10 20 30 40 50

N

20

40

60

80

100

Rank

N Rank Nodes

10 54 28
11 56 29
12 58 30
17 64 33
27 76 39
30 78 40
31 80 41
37 88 45
40 91 47
41 92 47
45 96 49
47 99 51
50 102 52

Example:
∫ 1

−1
|x |αPj (x)dx , −

1

2
≤ α ≤

1

2
, j = 0, . . . ,N

10 20 30 40 50

N

1.×10
-13

2.×10
-13

5.×10
-13

1.×10
-12

2.×10
-12

Maximum Error

10 20 30 40 50

N

1

2

3

4

Time

Example:
∫ 1

−1

(
log |x − y |Pi (y) + Pj (y)

)
dx , x ∈ [−2,−1) ∪ (1, 2], 0 ≤ i , j ≤ N

Computed with 30-digit accuracy.

N Rank Nodes

9 129 65
14 134 67
19 138 69
24 143 72
29 147 74
39 157 79
49 168 84

Example:
∫ 1

−1
|x |αPj (x)dx , 0 ≤ j ≤ 29

Range of α Rank Nodes

−0.1 ≤ α ≤ 0 66 33
−0.2 ≤ α ≤ 0 69 35
−0.3 ≤ α ≤ 0 72 37
−0.4 ≤ α ≤ 0 74 38
−0.5 ≤ α ≤ 0 76 38
−0.6 ≤ α ≤ 0 80 41
−0.7 ≤ α ≤ 0 83 42
−0.8 ≤ α ≤ 0 86 44
−0.9 ≤ α ≤ 0 93 47

-150 -100 -50 0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Example:
∫
T
r jθidA where T is a triangle with vertices (0, 0), (1, 0), r0 exp(iθ0).

These quadratures are used to discretize integral operators of the form

∫
Σ

σ(y)

|x − y |
dS(y) with Σ is a smooth

surface.

They were constructed using the two-dimensional version of this algorithm.

The rule which holds for
0 ≤ i ≤ 12 and − 1 ≤ j ≤ 12

0.9 ≤ r0 ≤ 1.0 and
π

4
− 0.1 ≤ θ0 ≤

π

4
+ 0.1

has 54 nodes. The rank of the space of integrands is 152. The number of input functions was 57, 000, and the
rule took approximately 30 seconds to build.

Thank you for your attention!

You can find an implementation of this algorithm (and the PDF of these slides) at:

github.com/jamescbremerjr/GGQ

github.com/jamescbremerjr/GGQ

