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CHAPTER 1

Introduction

This course concerns boundary value problems for second order elliptic equations given on
domains in Euclidean space. More specifically, we will discuss the variational formulations
of such problems, which is essential material for anyone interested in studying analysis or
partial differential equations.

My intention is to move quickly through preliminary material and get to the heart of the
course — a discussion of the variational formulation of elliptic boundary value problems and
a presentation of basic existence, uniqueness and regularity results for them — as soon as
possible.

This is the second draft of the notes for this course, and they were written in some haste.
No doubt there are many errors and inconsistencies. I ask for your patience, and that you
bring any errors you find to my attention. I am also open to any suggestions you may have
for their improvement.

I made extensive use of the following texts while preparing these notes, and suggest them as
references.

(1) “Partial Differential Equations” by Lawrence Evans.

(2) “Elliptic Partial Differential Equations of Second Order” by David Gilbarg and Neil
Trudinger.

(3) “Sobolev Spaces” by Robert Adams and John Fournier.

I also highly recommend the following texts which cover material beyond the scope of the
course, but may be of some use to you.

(1) “Non-homogeneous boundary value problems” by J.L. Lions and E. Magenes dis-
cusses boundary value problems for higher order elliptic operators.

(2) Gerald Folland’s “Partial Differential Equations” contains good introductions to
layer potentials and pseudodifferential calculus.

(3) Pierre Grisvard’s “Elliptic Problems in Nonsmooth Domains” first gives an excellent
(but fast-paced) review of the material presented here and then goes on to discuss
boundary value problems under somewhat weaker regularity assumptions than we
make.
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1. INTRODUCTION 4

Much of the material in the preliminaries — with Sections 2.3 and 2.10 notable exceptions
— can be found in “Real Analysis: Modern Techniques and Their Application” by Gerald
Folland.



CHAPTER 2

Preliminaries

In this chapter, we review a number of basic definitions and results which will be used
throughout these notes. I do not suggest that you read through this material in its entirety
at the beginning of the course. Rather, I recommend that you consult this section as needed.
Many of the results discussed here were originally developed in order to analyze partial
differential equations and without this context, it is difficult to appreciate the utility of much
of this material.

Throughout this chapter and these notes, all normed linear spaces are vector spaces over the
the field of real numbers. Small modifications must be made if normed linear spaces over the
complex numbers are considered instead.

2.1. Three Basic Theorems in Functional Analysis

You should already be familiar with the following three basic theorems regarding Banach
and normed linear spaces. If not, I suggest you refer to [8] or [4].

Theorem 1 (Open mapping theorem). Suppose that T : X → Y is a continuous linear
mapping between Banach spaces. Then T is surjective if and only if it is an open mapping
(that is, if it takes open sets in X to open sets in Y ).

Theorem 2 (Uniform boundedness principle). Suppose that X is a Banach space, and that
Y is a normed linear space. Suppose also that F is a collection of bounded linear operators
X → Y . If for each x ∈ X,

sup
T∈F
‖Tx‖ <∞ (1)

then

sup
T∈F
‖T‖ <∞. (2)

Theorem 3 (Hahn-Banach theorem). Suppose that Y is a subspace of a normed linear space
X, and that T : Y → R is a bounded linear functional. Then there is a bounded linear
functional T̃ : X → R which extends T (i.e., T̃ (y) = T (y) for all y ∈ Y ) and whose norm is
equal to that of T .

These three basic theorems have a large number of useful consequences. For instance, the
following results are immediate consequences of the open mapping theorem

Theorem 4 (Bounded inverse theorem). Suppose that X and Y are Banach spaces. The
inverse of a bijective bounded linear mapping T : X → Y is bounded.

5



2.2. COMPACT OPERATORS 6

Theorem 5 (Closed graph theorem). Suppose that X and Y are Banach spaces, and that
T : X → Y is a linear operator. Then T is bounded if and only if the graph of T

{(x, y) ∈ X × Y : Tx = y} (3)

is closed.

Suppose that Y is a subspace of the Banach space X. We denote by X/Y the vector space
of cosets of Y . That is, X/Y consists of the equivalence classes of the relation

x1 ∼ x2 if and only if x1 − x2 ∈ Y. (4)

We will denote the equivalence class to which the element x belongs by x+ Y . Note that if
Y is closed, then X/Y is a Banach space when endowed with the norm

‖x+ Y ‖ = inf
y∈Y
‖x− y‖. (5)

If Y is not closed, then (5) is no longer a norm (it is instead a seminorm). The following is
another consequence of the open mapping theorem.

Theorem 6. Suppose that X and Y are Banach spaces, and that T : X → Y is a continuous
linear operator. If im(T ) is closed, then im(T ) is isomorphic to X/ker(T ).

Proof. We define rT : X/ker(T )→ im(T ) via the formula

rT (x+ ker(T )) = T (x). (6)

We observe that ker(T ) is closed since T is continuous, and that T is bijective and continuous.
Since im(Y ) is a closed subset of the Banach space Y , it is a Banach space and we apply the

open mapping theorem in order to conclude that rT is an isomorphism. �

Note that if T : X → Y is a continuous linear mapping and im(T ) is not closed, then im(T )
is not a Banach space and hence cannot be isomorphic to X/ker(T ), which is a Banach space
since ker(T ) is closed if and only if T is continuous.

2.2. Compact Operators

Suppose that X is a topological space, and that V is a subset of X. Then V is compact if
every covering of it by open sets admits a finite subcover. When X is a Banach space, there
are a number of other useful ways to characterize compact sets:

Theorem 7. Suppose that X is a Banach space, and that V is a subset of X. Then the
following are equivalent:

(1) The set V is compact (i.e., every covering of V by open sets admits a finite subcov-
ering).

(2) Every sequence contained in V has a convergent subsequence whose limit is in V .
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(3) The set V is closed and for every ε > 0 there exists a finite collection of points
x1, . . . , xn ∈ V such that

V ⊂
n⋃
i=1

Bε(xi).

We say that a set V of a Banach space X is totally bounded if for every ε > 0 there exists a
finite collection of points x1, . . . , xn ∈ V such that

V ⊂
n⋃
i=1

Bε(xi) (7)

so that the third criterion for compactness in Theorem 7 can be summarized by saying that
V is compact if and only if it is closed and totally bounded.

The following result, due to F. Riesz, will be used frequently in the remainder of this section.

Theorem 8 (Riesz’ lemma). Suppose that X is a Banach space, that Y is a closed proper
subspace of X, and that 0 < α < 1 is a real number. Then there exists x ∈ X \ Y such that

‖x‖ = 1 (8)

and

inf
y∈Y
‖x− y‖ ≥ α. (9)

Proof. We choose x1 in X \ Y and let

r = inf
y∈Y
‖x1 − y‖. (10)

Since Y is closed, r > 0. Suppose that ε > 0. Then there exists y1 ∈ Y such that

r ≤ ‖x1 − y1‖< r + ε. (11)

We set

x =
x1 − y1

‖y1 − x1‖
(12)

so that

‖x‖= 1 (13)

and

inf
y∈Y
‖y − x‖= inf

y∈Y

∥∥∥∥y − x1

‖x1 − y1‖
+

y1

‖x1 − y1‖

∥∥∥∥ . (14)

Since
y1

‖x1 − y1‖
(15)

is in Y , we see from (14) that

inf
y∈Y
‖x− y‖= inf

y∈Y

∥∥∥∥y − x1

‖x1 − y1‖

∥∥∥∥ =
r

r + ε
. (16)
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Since r/(r + ε) increases to 1 as ε → 0, we can ensure the conclusion of the theorem holds
by choosing ε sufficiently small. �

It follows immediately from Riesz’ lemma that if Y is an infinite-dimensional subspace of a
Banach space X, then there exists a sequence {yj} in Y such that

‖yi − yj‖ ≥
1

2
(17)

for all positive integers i and j such that i 6= j. Sequences of this type are often used as a
substitute for orthonormal bases in Hilbert spaces, as in the proof of the following theorem.

Theorem 9. The Banach space X is finite-dimensional if and only if the closed unit ball in
X is compact.

Proof. If X is finite-dimensional, it is isomorphic to Rn for some positive integer n. In
this case, the closed unit ball of X is identified with a closed, bounded subset of Rn, and so
it is compact.

Suppose now that X is infinite-dimensional and that its closed unit ball is compact. We
apply Riesz’ lemma in order to construct a sequence {xj} such that

‖xj‖ = 1 (18)

for all j = 1, 2, . . . and

‖xi − xj‖ ≥
1

2
(19)

whenever i and j are positive integers such that i 6= j. Since {xj} is contained in the closed
unit ball of X, which we have assumed to be compact, it has a convergent subsequence. But
this conclusion is contradicted by (19), which implies that no subsequence of {xn} can be
Cauchy. We conclude that X is finite-dimensional. �

We say that an operatorK : X → Y between Banach spaces is compact if im(K) is compact.It
follows from Theorem 7 that K is compact if and only if whenever {xn} is a bounded sequence
in X, {K(xn)} has a convergent subsequence.

Exercise 1. Suppose that X and Y are Banach spaces, and that K : X → Y is compact.
Show that K is bounded.

We denote by T ∗ the adjoint of T , which is the bounded linear operator Y ∗ → X∗ defined
via the requirement that

〈Tx, ϕ〉 = 〈x, T ∗ϕ〉 (20)

for all x ∈ X and ϕ ∈ Y ∗. By

〈x, ϕ〉 , (21)

where ϕ ∈ X∗ and x ∈ X, we mean the value obtained by evaluating the linear functional ϕ
at the point x — that is, ϕ(x). We omit the proof of the following theorem, which can be
found in many functional analysis textbooks.

Theorem 10. Suppose that X and Y are Banach spaces, and that K : X → Y is a compact
operator. Then the adjoint K∗ : Y ∗ → X∗ is also compact.
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We now use Riesz’s lemma to establish a basic result concerning the spectrum point

σp(K) = {λ : ker(λI −K) 6= 0} (22)

of a compact operator K : X → Y between Banach spaces. The spectrum of K is

σ(K) = {λ : λI −K is not invertible} , (23)

We will later see that σ(K) \ {0} = σp(K) \ {0} (this depends on the compactness of K,
though, and is not true for general linear operators).

Theorem 11. Suppose that X and Y are Banach spaces, and that K : X → Y is a compact
operator. Then the spectrum σ(K) of K is either finite or a sequence which converges to 0.
Moreover, for each λ ∈ σ(K), kernel of λI−K is finite-dimensional and the image of λI−K
is closed.

Proof. Suppose that {λn} is a sequence of distinct real numbers in σp(K) \ {0}. Then
there exist x1, x2, . . . such that

Kxn = λnxn. (24)

For each n, we let Sn be the subspace spanned by x1, . . . , xn. It is easy to see that the
vectors x1, . . . , xn must be linearly independent (since the λn are distinct). It follows that Sn
is properly contained in Sn+1 for all n. Moreover, each of these subspaces is finite-dimensional
and hence closed. It follows from these two observations that we can apply Riesz’ Lemma to
construct a sequence {yn} such that yn ∈ Sn, ‖yn‖= 1, and

inf
z∈Sn−1

‖yn − z‖≥
1

2
. (25)

Then for any m < n we have:

(26)‖λ−1
n Kyn − λ−1

m Kym‖=
∥∥λ−1

n (Kyn − λnyn)− λ−1
m Kym + yn

∥∥ ≥ 1

2
.

This follows from (25) since Kym and Kyn − λnyn are elements of Sn−1. To see that Kyn −
λnyn ∈ Sn−1, we write

yn =
n∑
j=1

αjxj. (27)

It follows easily that

Kyn =
n∑
j=1

αjλjxj, (28)

from which we conclude that

Kyn − λnyn =
n∑
j=1

pαjλj − αjλnqxj =
n−1∑
j=1

pαjλj − αjλnqxj. (29)

Now it follows from (26) that

1

2
≤

ˇ

ˇλ−1
n − λ−1

m

ˇ

ˇ ‖K(yn)‖+
ˇ

ˇλ−1
m

ˇ

ˇ ‖K(yn)−K(ym)‖ (30)
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for all positive integers m < n. We may assume, without loss of generality, that the sequence
K(yn) is convergent by the compactness of K. If {λn} converges to any λ 6= 0, then we have
a contradiction.

We now suppose that for some λ ∈ σ(K), the kernel of λI −K is infinite-dimensional and
we will derive a contradiction. The kernel of any bounded linear mapping is closed, so we
apply Riesz’ lemma in order to obtain z1, z2, . . . such that

‖zj‖= 1 (31)

for all positive integers j,

‖zi − zj‖≥
1

2
(32)

for all pairs of positive integers i,j such that i 6= j, and

λjzj = K(zj) (33)

for all positive integers j. We observe that

‖K(zj)−K(zi)‖= |λ| ‖zi − zj‖≥
|λ|

2
. (34)

But (34) implies that no subsequence of {K(zj)} is Cauchy, which contradicts the the as-
sumption that K is compact.

We suppose that y is the limit of a sequence in the image of λI −K. That is, we suppose
that there exists a sequence {xn} such that

lim
n→∞

pλxn −Kxnq = y. (35)

Since K is compact, by passing to a sequence we can assume that Kxn is convergent. It is
clear, then, from (35) that the sequence xn converges to some x ∈ X. The continuity of the
operator λI −K implies that

y = lim
n→∞

pλI −Kqxn = pλI −Kq = pλI −Kq

´

lim
n→∞

xn

¯

= pλI −Kqx, (36)

from which we conclude that the image of T is closed. �

Suppose that X and Y are Banach spaces. It is easy to see that the set of compact operators
X → Y is a closed subspace of the set of linear operators X → Y . In particular, if {Kn} is a
sequence of compact operators which converges to K in operator norm, then K is compact.
Moreover, every operator of finite rank is compact, so that any operator which is the limit
of finite rank operators is compact. We say that the Banach space Y has the approximation
property if the converse is true — that is, if every compact operator is the limit of a sequence
of finite rank operators.

Not every Banach space has the approximation property [5]; however, the following theorem
gives a useful sufficient condition for a Banach space have the approximation property. Before
we state it, we require a further definition. A sequence {xn} in a Banach spaceX is a Schauder
basis for X if for every x ∈ X there exist real numbers α1, α2, . . . such that

lim
n→∞

∥∥∥∥∥
n∑
j=1

αjxj − x

∥∥∥∥∥ = 0. (37)
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Theorem 12. Suppose that X and Y are Banach spaces, and that Y has a Schauder basis.
Then every compact operator X → Y is the limit of a sequence of finite rank operators
X → Y .

Clearly, every separable Hilbert space has a Schauder basis, as does the space Lp pRnq when
1 ≤ p <∞, and also the space C(X) of continuous functions on a compact metric space. On
the other hand, the space L∞ pRnq does not admit a Schauder basis since it is not separable.
Note, though, that not every separable Banach space has a Schauder basis (indeed, in [5],
a separable Banach space which does not have a Schauder basis and does not have the
approximation property is constructed).

Exercise 2. Suppose that (Ω, µ) is a measure space, that k(x, y) is an element of L2(Ω×Ω),
and that T : L2(Ω)→ L2(Ω) is the linear operator defined via the formula

T rf s (x) =

∫
Ω

k(x, y)f(y) dy. (38)

Show that T is a compact operator. Operators of this type are called Hilbert-Schmdit operators
and the function k is referred to as the kernel of T .

2.3. Fredholm Operators

Suppose that A is a real-valued n × n matrix, and that A∗ is its transpose. Then Rn is the
orthogonal direct sum of the image of A and the kernel of A∗, as well as the orthogonal direct
sum of the image of A∗ and the kernel of A, and the dimension of im(A) is equal to the
dimension of im(A∗). These elementary observations have a number of useful consequences.
Among them, that the equation

Ax = b (39)

is uniquely solvable for each b ∈ Rn if and only if

A∗z = 0 (40)

admits only the trivial solution, which is the case if and only if the equation

Ax = 0 (41)

admits only the trivial solution. In order words, the linear operator corresponding to the
matrix A is injective if and only if it is surjective.

In this section, we discuss a class of operators acting on infinite-dimensional vector spaces
which have this rather useful property of square matrices. Before we give the principal
definition, we review some of the basic properties of direct sum decompositions of Banach
spaces.

2.3.1. Direct Sums and Complemented Subspaces. If Y and Z are Banach spaces,
then the direct sum Y ⊕Z is the Banach space obtained by endowing the vector space Y ×Z
with the norm

‖(y, z)‖ = ‖y‖+ ‖z‖ . (42)
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We say that a subspace Y of a Banach space X is complemented in X if there exists a
subspace Z of X such that the addition map A : Y ⊕ Z → X defined via the formula

A(y, x) = y + z (43)

is an isomorphism (meaning that it is a continuous bijective linear mapping whose inverse
is also continuous). If Y is complemented in X, then Y is necessarily closed since the
composition of the inverse of A with the projection

P : Y ⊕ Z → Z (44)

defined via P (y, z) = z is a continuous linear mapping whose kernel is Y (the kernel of a
linear mapping is closed if and only if the mapping is continuous).

Any closed subspace of a Hilbert space is complemented: if M is a closed subspace of a
Hilbert space X, then X = M ⊕M⊥, where M⊥ denotes the orthogonal complement of the
space X. The same is not true of Banach spaces. In fact, if X is a Banach space and every
closed subspace of X is complemented, then X is isomorphic to a Hilbert space [13]. In
general, it is difficult to determine whether or not a particular closed subspace Y of a Banach
space X is complemented. However, as we will now show, subspaces of finite dimension and
closed subspaces of finite codimension are complemented (the codimension of Y in X is the
dimension of the quotient space X/Y ).

Suppose that X is a Banach space. A linear mapping P : X → X such that P 2 = P is called
a projection. The following theorem characterizes complemented subspaces as the kernels
and images of continuous projections.

Theorem 13. Suppose that X is a Banach space, and that Y is a subspace of X. Then the
following are equivalent:

(1) The subspace Y is complemented in X.

(2) There is a continuous projection P : X → X such that ker(P ) = Y .

(3) There is a continuous projection P : X → X such that im(P ) = Y .

Proof. First, we show that (1) implies (2). To that end, we suppose that Y is com-
plemented in X so that there exists a closed subspace Z of X such that the addition map
A : Y ⊕ Z → X defined via the formula

A(y, z) = y + z (45)

is a linear isomorphism. We observe that the composition P of A−1 : X → Y ⊕ Z with the
mapping Y ⊕ Z → X which takes map (y, z) to z is a continuous projection X → X whose
kernel is Y .

To see that (2) implies (3), we observe that if P : X → X is a continuous projection such
that ker(P ) = Y , then I − P is a continuous projection such that im(P ) = Y .

We now conclude the proof by showing that (3) implies (1). We suppose that Y is the image
of a continuous projection P : X → X, and that Z is the kernel of P . We will how that the
addition mpa A : Y ⊕ Z → X defined by the formula

A(y, z) = y + z (46)
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is an isomorphism. The map A is plainly continuous since

‖y + z‖ ≤ ‖y‖+‖z‖. (47)

It is surjective since

x = Px+ (I − P )x (48)

with Px ∈ Y and (I − P )x ∈ Z whenever x ∈ X. Suppose that

y1 + z1 = y2 + z2 (49)

where y1, y2 ∈ Y and z1, z2 ∈ Z. Since Y is the image of P , there exist x1, x2 such that

Px1 = y1 (50)

and

Px2 = y2. (51)

We combine (49), (50) and (51) in order to conclude that

P (x1 − x2) + (z1 − z2) = 0. (52)

By applying P to both sides of (52) and make use of the facts that P 2 = P and Z = ker(P )
we obtain

P (x1 − x2) = 0, (53)

from which we conclude that y1 = y2. It follows from this and (49) that z1 = z2. We conclude
that A is also injective. We now apply the open mapping theorem in order to see that the
bijective continuous linear mapping A is an isomorphism. �

Theorem 14. Suppose that Y is a finite-dimensional subspace of the Banach space X. Then
there exists a closed subspace Z such that X = Y ⊕ Z.

Proof. We let {v1, v2, . . . , vn} be a basis for the subspace Y . For each j = 1, . . . , n we
define the bounded linear function ϕj : Y → R via the formula

ϕj(vi) =

{
1 if i = j

0 otherwise.
(54)

Now we apply the Hahn-Banach theorem in order to extend each of the ϕj to mappings
Y → R. We also let

Z =
n⋂
j=1

ker(ϕj), (55)

and define the mapping P : X → X via

P (x) =
n∑
j=1

ϕj(x)vj. (56)

We observe that P is a continuous projection whose image is Y . It follows from Theorem 13
that Y is complemented. �

Theorem 15. Suppose that X is a Banach space, and that Y is a closed subspace of X
of finite codimension n. Then there exists an n-dimensional subspace Z of X such that
X = Y ⊕ Z.
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Proof. We let {v1, . . . , vn} be a basis for the space X/Y . For each j = 1, . . . , n, we
choose an element wj of X which is in the equivalence class vj, and we denote by Z be the
subspace of X spanned by w1, . . . , wn. The kernel of the canonical projection ϕ : X → X/Y
is Y , which is a closed subspace, so ϕ is continuous. As is the restriction ϕ̃ : Z → X/Y
of ϕ to the finite dimensional (and hence closed) subspace Z of Y . Moreover, ϕ̃ is clearly
bijective. It follows from the open mapping theorem that ϕ̃−1 : X/Y → Z is continuous. We
observe that the composition P = ϕ̃−1 ◦ ψ is a continuous projection X → X whose kernel
is Y . We conclude form this observation and Theorem 13 that Y is complemented in X. �

Note that the requirement that Y be closed in Theorem 15 is essential since there are sub-
spaces of finite codimension which are not closed, and hence cannot be complemented. In-
deed, the kernel of any discontinuous linear functional T : X → R is a subspace of X of
codimension 1 which is not closed. There is no need for such a requirement in Theorem 14
since all finite-dimensional subspaces are necessarily closed. We now show that if a subspace
of finite codimension is the image of a continuous linear operator, then it must be closed.

Theorem 16. Suppose that X and Y are Banach spaces, and that T : X → Y is a con-
tinuous linear mapping. If im(T ) is of finite codimension in Y , then it is closed (and hence
complemented).

Proof. Without loss of generality, we assume that T is injective (if not, then we may re-
place T with the injective mapping X/ker(T )→ Y it induces). We choose a basis {v1, . . . , vn}
for the space Y/im(T ) and for each j = 1, . . . , n, we choose a representative wi in Y of the
equivalence class vi. We denote by Z the subspace of Y spanned by w1, . . . , wn. Since Z
is finite-dimensional (and hence closed), Z is a Banach space. Now we define the mapping
A : X ⊕ Z → Y by the formula

A(x, z) = Tx+ z. (57)

Since

‖Tx+ z‖ ≤ ‖Tx‖+ ‖z‖ ≤ ‖T‖ ‖x‖+ ‖z‖ ≤ p1 + ‖T‖q p‖x‖+ ‖z‖q , (58)

A is bounded. Suppose that y ∈ Y . Then there exist α1, . . . , αn such that
n∑
j=1

αjvj (59)

is the equivalence class in Y/im(T ) containing y. Since wj is an element of the equivalence
class containing vj, we have

y =
n∑
j=1

αjwj +
n∑
j=1

αjuj + u (60)

where u1, . . . , un and u are containined in im(T ). We conclude that A is surjective. Now
suppose that

T px1 − x2q + z1 − z2 = 0. (61)

The restriction of the canonical mapping Y → Y/im(Z) to Z is clearly injective, and by
applying that mapping to (61) we see that z1 = z2. It follows from this fact and (61) that

T px1 − x2q = 0. (62)
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Since T is injective, (62) implies that x1 = x2. We conclude that A is injective as well as
surjective and continuous. We now apply the open mapping theorem in order to conclude
that it is an isomorphism. Consequently, A carries closed subsets of X ⊕Z to closed subsets
of Z. The image of the closed subset X ×{0} of X ⊕Z under A is im(T ). We conclude that
im(T ) is closed. �

2.3.2. Annihilators and Preannihilators. If M is a subset of a Banach space X,
then the annihilator M⊥ of M is the closed subspace of X∗ defined via

M⊥ = {f ∈ X∗ : f(x) = 0 for all x ∈M} . (63)

Similarly, if N is a subset of X∗, then the preannihilator N⊥ of N is the closed subspace of
X defined as follows:

N⊥ = {x ∈ X : f(x) = 0 for all f ∈ N} . (64)

If A is an n×m matrix, then the kernel of A is the orthogonal complement of the image of A∗

and the kernel of A∗ is the orthogonal complement of the image of A. The following theorem
generalizes these observations to the case of bounded linear mapping between Banach spaces.

Theorem 17. Suppose that T : X → Y is a continuous linear map between Banach spaces,
and that T ∗ : Y ∗ → X∗ is its adjoint. Then

(1) im(T )⊥ = ker(T ∗)

(2) im(T ) = ker(T ∗)⊥

(3) ker(T ) = im(T ∗)⊥

(4) im(T ∗) ⊂ ker(T )⊥

From Theorem 13, we see that if the image of T is closed, then the image of T is the
preannihilator of the kernel of the adjoint T ∗. This gives us a solvability criterion for the
equation

Tx = y. (65)

In particular, if the image of T is closed, then (65) admits a solution if and only if

φ(y) = 0 (66)

for all φ ∈ ker(T ∗).

2.3.3. Fredholm Operators. Suppose that X and Y are Banach spaces. We say that
a continuous linear mapping T : X → Y is a Fredholm operator if the kernel of T is of finite
dimension and the image of T is of finite codimension. The index of a Fredholm operator T
is defined to be

ind(T ) = dim(ker(T ))− dim(Y/im(T )). (67)

Fredholm operators of index 0 will play a particularly important role in what follows. They
have many of the convenient properties possessed by linear mappings Rn → Rn. For instance,
a Fredholm operator of index 0 T : X → Y is surjective if and only it is injective.
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We will now provide an alternative definition of Fredholm operator, which might be more
familiar to the reader.

Theorem 18. Suppose that X and Y are Banach spaces, that T : X → Y is a continuous
linear mapping, and that T ∗ : Y ∗ → X∗ is its adjoint. Suppose further that im(T ) is closed.
Then the dual space of Y/im(T ) is isomorphic to ker(T ∗).

Proof. We observe that if ϕ : Y → R is in ker(T ∗) then

〈Tx, ϕ〉 = 〈x, T ∗(ϕ)〉 = 0 (68)

for all x ∈ X — that is, ϕ(im(T )) = 0. It follows that the map ϕ̃ : (Y/im(T )) → R defined
via

ϕ̃(y + im(T )) = ϕ(y) (69)

is a well-defined linear functional in the dual of Y/im(T ). We denote by Λ the map which
takes ϕ ∈ ker(T ∗) to the linear functional rϕ defined via (69). Since ϕ(im(T )) = 0,

‖rϕ‖ = sup
‖y+im(T )‖=1

|rϕ(y)| ≤ sup
‖y‖=1

|ϕ(y)| = ‖ϕ‖ , (70)

from which we see that Λ is a bounded mapping. We also observe that Λ is bijective; indeed,
its inverse is the map taking

ψ : Y/im(T )→ R (71)

to the map rψ : Y → R defined via

rψ(y) = ψ(y + im(T )). (72)

Since im(T ) is closed, Y/im(T ) is a Banach space and its dual space is a Banach space.
Consequently, the open mapping theorem applies and we invoke it in order to conclude that
Λ is an isomorphism. �

Theorem 19. Suppose that X and Y are Banach spaces, that T : X → Y is a continuous
linear mapping, and that T ∗ : Y ∗ → X∗ is its adjoint. Then T is Fredholm if and only if
its image is closed and both ker(T ) and ker(T ∗) are of finite dimension. Moreover, if T is
Fredholm then

ind(T ) = dim(ker(T ))− dim(ker(T ∗)). (73)

Proof. We suppose first that T is a Fredholm operator. Then the kernel of T is finite-
dimensional by definition and the image of T is closed since it is of finite codimension in Y
(see Theorem 16). According to Theorem 18, that im(T ) is closed implies that pY/im(T )q

∗

is isomorphic to ker(T ∗). We conclude that

dim(ker(T ∗)) = dim((Y/im(T ))∗). (74)

But Y/im(T ) is finite-dimensional, so

dim(Y/im(T )) = dim((Y/im(T ))∗). (75)

We combine (74) and (75) in order to obtain

dim(ker(T ∗)) = dim(Y/im(T )) <∞, (76)

which suffices to establish (73) and the assertion that ker(T ∗) is finite-dimensional.
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Now we suppose that ker(T ), ker(T ∗) are finite-dimensional and that im(T ) is closed. By
Theorem 18,

pY/im(T )q
∗ ∼ ker(T ∗). (77)

We see from (77) that the codimension of im(T ) is equal to the (finite) dimension of ker(T ∗).
Since we have assumed that the dimension of the kernel of T is finite, we that T is Fredholm.

�

Exercise 3. Suppose that X is a Hilbert space, that {φj}∞j=1 is an orthonormal basis for X,
and that T is the linear mapping X → X defined via the formula

T rφis = φi+1 for all i = 1, 2, . . . . (78)

Suppose also that k is a positive integer. What is the kernel of T k? What is the cokernel of
T k? What is the index of T k?

Theorem 20. Suppose that X is a Banach spaces, and that T : X → X is compact. Then
I + T is a Fredholm operator.

Proof. From Theorem 11, we see that the kernel of I+T is finite-dimensional, and that
its image is closed. The adjoint of I + T is

I + T ∗, (79)

where T ∗ : Y ∗ → X∗ is the adjoint of T . Since T ∗ is also compact (by Theorem 10), we see
from Theorem 11 that the kernel of I + T ∗ is finite-dimensional. We now apply Theorem 19
in order to conclude that T is Fredholm. �

We conclude from Theorems 14, 15 and 16 that a Fredholm operator induces the direct sum
decompositions

X = ker(T )⊕X ′ (80)

and

Y = im(T )⊕ Y ′, (81)

where ker(T ) is a finite-dimensional subspace of X and Y ′ is a finite-dimensional subspace
of Y . This direct sum decomposition is crucial in the proof of the next theorem, which
characterizes Fredholm operators as those which are invertible “modulo compact operators.”

Theorem 21. An operator T : X → Y between Banach spaces is Fredholm if and only if
there exist a bounded linear operator S : Y → X and a pair of compact operators K1 : Y → Y ,
K2 : X → X such that

ST = I −K1 (82)

and

TS = I −K2. (83)

Proof. We first suppose that there exist a bounded linear operator S : Y → X and
compact operators K1 : Y → Y , K2 : X → X such that (82) and (83) hold. By The-
orem 19, I − K1 and I − K2 are Fredholm, so dim(ker(I − K1)) and dim(Y/im(TS)) are
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finite-dimensional. We observe that

ker(T ) ⊂ ker(ST ) = ker(I −K1) (84)

and that

Y/im(T ) ⊂ Y/im(TS) (85)

since im(TS) ⊂ im(T ). We conclude that ker(T ) and Y/im(T ) are finite-dimensional so that
T is Fredholm.

Now we suppose that T is Fredholm. Then there exists a closed subspace X ′ of X such that

X = X ′ ⊕ ker(T ) (86)

and a finite dimensional subspace Y ′ of Y such that

Y = Y ′ ⊕ im(T ). (87)

The restriction of T to X ′ is a continuous bijective linear mapping X ′ → im(T ). We let
S̃ : im(T )→ X ′ denote the inverse of this mapping, which is continuous by the open mapping
theorem. We extend S̃ to a bounded linear mapping S : Y → X such that S(Y ′) = 0 by
linearity. If we let P be the projection X → ker(T ) and let Q be the projection Y → Y ′,
then

ST = ST (P + I − P ) = S̃T (I − P ) = I − P (88)

and

TS = TS(Q+ I −Q) = T S̃(I −Q) = I −Q. (89)

The projections P and Q are compact since ker(T ) and Y ′ are finite dimensional. �

In fact, it is clear from the proof of Theorem 21 that a continuous linear mapping T : X → Y
is Fredholm if and only if there exists a continuous linear mapping S : X → Y and finite
rank operators K1 : X → X and K2 : Y → Y such that

ST = I −K1 (90)

and

TS = I −K2. (91)

We call any bounded linear operator S for which there exists compact operators K1 and
K2 such that (82) and (83) holds a parametrix for T . We note that that the relationship
is symmetric: if S is a parametrix for T then S is Fredholm and T is a parametrix of S.
Moreover, it is clear from the proof of Theorem 21 that

ind(T ) = − ind(S) (92)

whenever S is a parametrix for the operator T . This observation leads immediately to the
following result.

Theorem 22. Suppose that X and Y are Banach spaces, that T : X → Y is Fredholm, and
that K : X → Y is compact. Then T +K is Fredholm and ind(T +K) = ind(T ).

Proof. Let S be a parametrix for the operator T so that

ST = I −K1 (93)
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and

TS = I −K2 (94)

with K1 and K2 compact operators. We observe that

S pT +Kq = I −K1 + SK (95)

and

pT +KqS = I −K2 +KS. (96)

Since K1 −KS and K2 − SK are compact operators, we conclude from (95) and (96) that
T +K is Fredholm and S is a parametrix for T +K. It follows that

ind(S) = − ind(T +K), (97)

but we we also have

ind(S) = − ind(T ) (98)

since S is a parametrix for T . We conclude from (97) and (98) that

ind(T ) = − ind(S) = ind(T +K). (99)

�

Any isomorphism B : X → Y between Banach spaces is Fredholm of index 0. Consequently,
it follows from Theorem 22 that any operator of the form

B +K (100)

where K : X → Y is compact is Fredholm of index 0. In fact, all Fredholm operators of
index 0 are of this form:

Theorem 23. Suppose that X and Y are Banach spaces, and that T : X → Y is a bounded
linear operator. Then T is a Fredholm operator of index 0 if and only if there exist an
isomorphism B : X → Y and a finite rank operator F : X → Y such that T = B + F .

Proof. We have already seen that an operator of the form B + K with K compact is
Fredholm of index 0. So we suppose that T : X → Y is a Fredholm operator of index 0.
Then there exists a closed subspace X ′ of X such that

X = X ′ ⊕ ker(T ) (101)

and a finite dimensional subspace Y ′ of Y such that

Y = Y ′ ⊕ im(T ). (102)

Moreover, since T is of index 0 the dimensions of ker(T ) and Y ′ are equal. We denote by S
an isomorphism ker(T )→ Y ′. Suppose that x ∈ X. We define B : X → Y via the formula

B(x) = T (x′) + S(z), (103)

where

x = x′ + z (104)

is the unique decomposition of x into x′ ∈ X ′ and z ∈ ker(T ). It is easy to verify that B is
an isomorphism, and that S extends to a finite rank linear operator X → Y . �
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We can now very easily establish the following:

Theorem 24. If K : X → X is a compact linear mapping between Banach spaces, then
σp(K) \ {0} = σ(K) \ {0}.

Proof. It is obvious that σp(K) ⊂ σ(K). Now suppose that λ ∈ σ(K) \ {0} but
λ /∈ σp(K) \ {0}. That is, suppose that λI −K is injective but not surjective. Since λI −K
is Fredholm of index 0 and dim ker(λI − K) = 0, the codimension of the image of λI − K
must be 0. But that implies that λI − K is surjective, and hence an isomorphism, which
contradicts our assumption that λ ∈ σ(K). �

We now turn to the solvability of the linear equation

Tx = y (105)

when T : X → Y is a Fredholm operator of index 0. We have already observed that T is
injective if and only if it is surjective. By combining this observation with the open mapping
theorem we obtain the following well-known theorem:

Theorem 25 (Fredholm Alternative). Suppose that X and Y are Banach spaces, and that
T : X → Y is a Fredholm operator of index 0. Then either the equation

Tx = y (106)

is uniquely solvable for all y ∈ Y or the corresponding homogeneous equation

Tx = 0 (107)

admits nontrivial solutions. In the former case, the inverse of the operator T is bounded.

Since the image of T is closed, the preannihilator of the kernel of T ∗ coincides with the image
of T . This together with the fact that ker(T ∗) is finite-dimensional when T is Fredholm gives
us:

Theorem 26. Suppose that X and Y are Banach spaces, and that T : X → Y is a Fredholm
operator. Suppose also that

ϕ1, . . . , ϕn (108)

is a basis for ker(T ∗), and that

x1, . . . , xm (109)

is a basis for ker(T ). Then

Tx = y (110)

admits a solution if and only if

〈y, ϕj〉 = 0 for all j = 1, . . . , n. (111)

In the event that Tx = y does admit a solution x0, then any solution is of the form

x0 +
m∑
j=1

ajxj. (112)
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2.4. The Lax-Milgram Theorem

Suppose that X is a reflexive Banach space, and that X∗ is its dual. We say that a bounded
linear mapping L : X → X∗ is coercive if there exists λ > 0 such that

|L rxs (x)| ≥ λ‖x‖2 (113)

for all x ∈ X.

Theorem 27 (Lax-Milgram). Suppose that X is a reflexive Banach space, that X∗ is its
dual space, and that L : X → X∗ is a bounded linear map. If L is coercive, then it is an
isomorphism (that is, it is invertible, and its inverse is also continuous).

Proof. We use 〈f, x〉 to denote the duality pairing of X∗ with X — in particular the
value of the linear function L rxs at the point y ∈ X is 〈L rxs , y〉. We observe that (113)
implies

λ‖x‖2≤ |〈L[x], x〉| ≤ ‖L rxs‖ ‖x‖ (114)

for all x ∈ X. Dividing both sides of (114) by ‖x‖ yields

λ‖x‖≤ ‖L rxs‖ . (115)

The identity (115) implies that L is injective. It also implies that the range of L is closed.
To see that, we suppose that L rxns → y. Then {L rxns} is a Cauchy sequence and we see
from (115) that {xn} is Cauchy as well. We denote by z the limit of {xn}. The continuity
of L gives us L rxs = limn L rxns = y, from which we conclude that L has closed range. So L
is a continuous bijective mapping from X to im(L). Since im(L) is a closed subset of X∗, it
is a Banach space and we may apply the open mapping theorem. By doing so, we see that
L : X → im(L) is an isomorphism.

We suppose now that im(L) 6= X∗. Then there exists f ∈ X∗ \ im(L). By the Hahn-Banach
theorem, there exists φ in (X∗)∗ such that

〈φ, f〉 = 1 (116)

and

φ|im(L) = 0. (117)

Since X is reflexive, we may identify φ ∈ (X∗)∗ = X with an element u ∈ X such that

f(u) = 1 (118)

and

〈L rxs , u〉 = 0 (119)

for all x ∈ X. We combine (116) and (117) with the assumption that L is coercive in order
to conclude that

λ‖u‖2≤ 〈L rus , u〉 = 0, (120)

from which we see that u = 0. However, this contradicts (118). We conclude that im(L) =
V ∗. �
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Clearly, we can identify the continuous linear mapping L : X → X∗ with the bilinear form
B : X ×X → R defined via

B rx, ys = L rxs (y). (121)

We say that the bilinear form B is bounded if there exists C > 0 such that

|B rx, ys‖ ≤ C‖x‖‖y‖ (122)

for all x, y ∈ X. Obviously, B is bounded if and only if L is bounded. We say that B is
coercive if

|B rx, xs| ≥ λ‖x‖2 (123)

for all x ∈ X. The Lax-Milgram theorem can be rephrased as follows.

Theorem 28. If X is a reflexive Banach space B is a bounded, coercive bilinear form X ×
X → R, then for each f ∈ X∗, there exists a unique u such that

B ru, vs = f(v) (124)

for all v ∈ X.

Since Hilbert spaces are reflexive and inner products are coercive bilinear forms, the Lax-
Milgram theorem implies the Riesz representation theorem.

Theorem 29 (Riesz representation theorem). Suppose that X is a Hilbert space, and that
f : X → R is a bounded linear functional on X. Then there exists a unique u ∈ X such that
‖u‖= ‖f‖ and

f(x) = (u, x) (125)

for all x ∈ X

A slight modification of the argument we used to establish the Lax-Milgram theorem gives
us the following theorem.

Theorem 30. Suppose that X is a reflexive Banach space, and that T : X → X∗ is a bounded
linear mapping. Suppose also that there exists λ > 0 such that

‖Lx‖≥ λ‖x‖ for all x ∈ X (126)

and that

sup
x∈X

|〈Lx, y〉| > 0 for all y ∈ X \ {0}. (127)

Then L is an isomorphism.

2.5. Weak Convergence and the Banach-Alaoglu theorem

Suppose that X is a Banach space, and that X∗ is its dual space. Until now, we have
considered only the strong topology on X∗ and only the norm topology on X. There are,
however, other toplogies on these spaces which are of use to us.

We say that a sequence {xn} in X converges to x weakly provided

φ(xn)→ φ(x) (128)
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for all φ ∈ X∗. We use the notation xn ⇀ x to indicate that the sequence {xn} converges
weakly to x.

We say that {φn} ⊂ X∗ converges to φ ⊂ X∗ in the weak-* topology provided

φn(x)→ φ(x) for all x ∈ X. (129)

The original version of the Banach-Alaoglu theorem is

Theorem 31 (Banach-Alaoglu I). If X is a Banach space, then the closed unit ball of X∗ is
compact in the weak-* topology.

The weak-* topology on the unit ball of X∗ is metrizable when X is separable (although the
weak-* topology on the whole space X∗ is metrizable if and only if X∗ is finite-dimensional).
In that case, we have the following version of the Banach-Alaoglu theorem:

Theorem 32 (Banach-Alaoglu II). If X is a separable Banach space, then the closed unit
ball of X∗ is sequentially compact in the weak-* topology.

When X is reflexive, the weak-* toplogy on (X∗)∗ coincides with the weak topology on X.
In this case, we have teh following version of the Banach-Alaoglu theorem. Note that we are
not making the assumption that X is separable.

Theorem 33 (Banach-Alaoglu III). Suppose that X is a reflexive Banach space. Then the
closed unit ball of X is sequentially compact in the weak topology.

The following particular form of the preceding theorem is the one we will use most often:

Theorem 34 (Banach-Alaoglu IV). Suppose that Ω is an open subset of Rn, and that 1 <
p < ∞ is a real number. Then any bounded sequence in Lp(Ω) has a weakly convergent
subsequence.

2.6. Galerkin Discretization

Suppose that X is a Banach space, that X1 ⊂ X2 ⊂ X3 ⊂ · · · is a sequence of finite-
dimensional subspaces of X, and that for each positive integer j, Pj : X → Xj is a projection
operator. We say that the subspaces {Xj} together with the projection operators {Pj} form
a projective approximation scheme for X if

lim
n→∞
‖Pjx− x‖X= 0 (130)

for all x ∈ X and

PnPm = Pn (131)

whenever n ≤ m are positive integers. We note that by the uniform boundedness principle,
(130) implies that there exists a constant C such that

‖Pj‖≤ C (132)

for all positive integers j. We also observe that (130) means that the union of the subspaces
Xj must be dense in X; that is,

∪∞j=1Xj = X. (133)
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In particular, the existence of a projective approximation scheme for X implies that X is
separable.

In the event that X is a Hilbert space and {ϕj} is an orthonormal basis for X, a projective
approximation scheme for X can be obtained by letting

Sj = span{ϕ1, . . . , ϕj}, (134)

and taking Pj to be the orthogonal projection operator

Pj rf s =

j∑
i=1

〈f, ϕi〉ϕi. (135)

Suppose now that X and Y are reflexive Banach spaces, and that A : X → Y is a bounded
linear mapping. Suppose also that {Xj, Pj} is a projective approximation scheme for X, and
that {Yj, Qj} is a projective approximation scheme for Y such that dim(Yj) = dim(Xj) for
each j = 1, 2 . . .. For each positive integer n, we let An = QnA|Xn . By a slight abuse of
terminology, we call each of the equations

Anxn = Qny (xn ∈ Xn) (136)

a Galerkin discretization of

Ax = y. (137)

We will shortly given conditions which guarantee that for for all sufficiently large n the
equation (136) admits a solution xn, and that the sqeuence {xn} converges to the solution
x of (137). We observe first, though, that Equation (136) is equivalent to a linear system of
equations. To see this, we let ϕ1, . . . , ϕm be a basis for Xn and ψ1, . . . , ψm be a basis for Yn.
Then we can represent xn as

xn =
m∑
j=1

ajϕj, (138)

Qny as

Qny =
m∑
i=1

biψi, (139)

and, for each j = 1, . . . , k, we represent QnAϕj as

QnAϕj =
m∑
i=1

cijψi. (140)

Then (136) is equivalent to requiring that
m∑
j=1

cijaj = bi for all i = 1, . . . ,m. (141)

In the event that X and Y are Hilbert spaces, {ϕj} is an orthonormal basis for X, {ψj}
is an orthonormal basis for Y , and Pj and Qj are the corresponding orthogonal projection
operators then

cij = 〈Aϕj, ψi〉 , (142)
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and

bi = 〈y, ψi〉 . (143)

Theorem 35. Suppose that X and Y are reflexive Banach spaces, that A : X → Y is
a bounded linear operator, that {Xj, Pj} is a projective approximation scheme for X, that
{Yj, Qj} is a projective approximation scheme for Y such that dim(Yj) = dim(Xj) for all
j = 1, 2, . . ., and that for each positive integer n, An is the operator Xn → Yn defined via
An = QnA|Xn. Suppose also that there exist a positive integer N and a positive real number
γ such that for all n ≥ N and all xn ∈ Xn

‖Anxn‖Y≥ γ‖xn‖X . (144)

Then for each y ∈ Y , there exists a unique solution x of the equation Ax = y, and for each
n ≥ N the equation

Anxn = Qny (145)

admits a unique solution xn. Moreover, the sequence {xn} converges to x; in fact, if c is a
constant such that ‖Qn‖≤ c and ‖Pn‖≤ c for all positive integers n, then

‖xn − x‖X≤
ˆ

1 +
c

γ
‖A‖

˙

inf
v∈Xn
‖x− v‖X . (146)

Proof. We fix y ∈ Y and let c be a constant such that ‖Qn‖≤ c and ‖Pn‖≤ c for all
positive integers n. Condition (144) implies that each An, n ≥ N, is an isomorphism. In
particular, the equation

Anxn = Qny (147)

has a unique solution xn for all n ≥ N , and

‖xn‖≤
1

γ
‖Qny‖Y≤ c‖y‖ (148)

for all n ≥ N . By the Banach-Alaoglu theorem, there exists a subsequence of {xn} which
converges weakly to some element x of X. Without loss of generality, we pass to this subse-
quence. It is not hard to establish that Qny = QnAxn converges weakly to Ax. On the other
hand, Qny converges strongly (and weakly) to y, so by the uniquness of weak limits we must
have Ax = y.

Now we observe that for any v ∈ Xn,

‖xn − x‖X ≤ ‖xn − v‖X+‖v − x‖X

≤ 1

γ
‖QnA pxn − vq ‖Y +‖v − x‖X

=
1

γ
‖QnA px− vq ‖Y +‖v − x‖X

≤
ˆ

1 +
1

γ
‖Qn‖‖A‖

˙

‖v − x‖X

≤
ˆ

1 +
c

γ
‖A‖

˙

‖v − x‖X .

(149)
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This suffices to establish (146). Note that

QnAxn = QnAx (150)

since Au = y implies QnAx = Qny and QnAxn = Anxn = Qnyn by construction.

We now need only establish that x is the unique solution of Ax = y. To that end, we suppose
that x̃ is such that Ax̃ = y and let w = x− x̃. Then Aw = 0. It is easy to verify that

AnPnx→ Ax (151)

for any x ∈ X. Using this, we obtain

‖Pnw‖≤
1

λ
‖AnPnw‖→ ‖Aw‖= 0. (152)

From this we conclude that Pnw → 0 as n→∞, so w = 0. �

As is often the case, perturbing the operator A by a compact operator does not fundamentally
change the situation. Indeed:

Theorem 36. Suppose that the hypotheses of Theorem 35 are satisfied. Suppose, in addition,
that B : X → Y is compact operator, and that ker(A+B) = {0}. Suppose also that for each
positive integer n, An = QnA|Xn and Bn = QnB|Xn. Then for any y ∈ Y , there exists a
unique solution x to the equation

Ax+Bx = y. (153)

Moreover, for all n which are sufficently large the equation

Qn pAn +Bnqxn = Qny (154)

has a unique solution xn ∈ Xn and there exists a constant C such that

‖x− xn‖X≤ C inf
v∈Xn
‖x− v‖. (155)

Proof. We will show that A + B satisfies condition (144). That is, there exists λ such
that

‖pAn +Bnqxn‖Y≥ λ‖xn‖X . (156)

for all xn ∈ Xn. Suppose this is not the case. Then there exists a sequence {xj} with
xj ∈ Xnj such that ‖xj‖= 1 and∥∥Qnj pA+Bqxj

∥∥
Y
→ 0 as j →∞. (157)

By the Banach-Alaoglu theorem, we may assume without loss of generality that xj converges
weakly to some x ∈ X. Then Qnj pA+Bqxj converges weakly to pA+Bqx. It follows from
this and (157) that pA+Bqx = 0. Since the kernel of A+B is {0}, we must have x = 0. But
B is compact, so Bxj → 0 (some subsequence of {Bxj} is convergent, and it must converge
to x = 0). It follows that

‖xj‖X ≤ ‖QnjAxj‖Y

≤ ‖Qnj(A+B)xj‖Y +
1

γ
‖QnjBxj‖Y→ 0 as j →∞,

(158)

but this contradicts the fact that ‖xj‖= 1 for all j = 1, 2 . . .. �
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The preceding theorem can be easily applied to coercive operators. Suppose that X is a
reflexive Hilbert space, and that that L is a linear mapping X → X∗. We say that L is
coercive provided there exists a constant λ > 0 such that

〈Lx, x〉 ≥ λ 〈x, x〉 (159)

for all x ∈ X. We now let {Xj, Pj} be a projective approximation scheme. Moreover, for
each j = 1, 2, . . ., we set X∗j = P ∗j Xj. Then {X∗j , P ∗j } is a projective approximation scheme
for X∗. Moreover, since

〈Lx, x〉 ≥ λ 〈x, x〉 = λ‖x‖2 (160)

for all x ∈ X, we have

λ‖xn‖2≤ |〈xn, Lxn〉| = |〈Pnxn, Lxn〉| = |〈xn, P ∗nLxn〉| ≤ ‖P ∗nLxn‖‖xn‖ (161)

for all xn ∈ Xn. In particular, condition (144) of Theorem 35 is satisfied. If follows that
for each y ∈ X∗, there exists a unique solution to the equation Lx = y, and that the
approximations of x formed via Galerkin discretization converge. The open mapping theorem
now implies that L has a continuous inverse.

Note that the existence of a projective approximation scheme for X implies that X is sep-
arable, so that the Lax-Milgram theorem applies in greater generality that the result just
obtained. However we have just established that coercive operators X → X∗ are susceptible
to a particularly simply case of Galerkin discretization provided X is seperable, a stronger
conclusion than that of the Lax-Milgram theorem.

2.7. Classical Function Spaces

In this section, we define several classical spaces of continuous functions, smooth functions
and Hölder continuous functions and review several important results relating to them.

2.7.1. Spaces of Continuous Functions. Suppose that Ω is an open subset of Rn.
We denote by C(Ω) the vector space of all continuous functions f : Ω → R, by Cb(Ω)
the subspace of C(Ω) consisting of continuous functions f : Ω → R which are bounded,
by C(Ω) the subspace of Cb(Ω) of functions which are uniformly continuous in addition to
being bounded, and by Cc(Ω) the subspace of C

`

Ω
˘

of all continuous functions Ω → R
with compact support contained in Ω. The notation C(Ω) is used for the space of bounded,
uniformly continuous functions Ω→ R because any such function admits a unique continuous
extension to the closure Ω of Ω.

Exercise 4. Show that any continuous function on a compact subset of Rn is uniformly
continuous.

Exercise 5. Suppose that Ω = Rn. Show that C
`

Ω
˘

is not the same space as C pRnq, which

means that the notation C
`

Ω
˘

is misleading when Ω is not bounded.

The vector space Cb(Ω) is a Banach space when endowed with the uniform norm

‖f‖= sup
x∈Ω

|f(x)| , (162)
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as is the vector space C(Ω). Neither C(Ω) nor Cc pΩq are Banach spaces with respect to (162),
although if K1 ⊂ K2 ⊂ . . . is an increasing sequence of compact sets such that Ω =

⋃
Kj,

then they are Fréchet spaces with respect to the family of seminorms

‖f‖i= sup
x∈Ki

|f(x)| , i = 1, 2, . . . . (163)

We will not make use of this last observation, but a further discussion can be found in, for
instance, [15].

Exercise 6. Suppose that Ω is an open set in Rn. Show that any uniformly continuous
function f : Ω → R is bounded . Give an example to show that if Ω is not bounded, then
there exist uniformly continuous functions Ω→ R which are not bounded.

Suppose that Ω is a bounded open subset of Rn. The following theorem, a proof of which
can be found in [8] (for instance), characterizes the compact subsets of C

`

Ω
˘

. We say that

a subset Φ of C
`

Ω
˘

is equicontinuous if for all ε > 0 there exists δ > 0 such that

|f(x)− f(y)| < ε (164)

for all x and y in Ω such that

|x− y| < δ. (165)

Similarly, we say that Φ is uniformly bounded if there exists a M > 0 such that

‖f‖< M (166)

for all f ∈ Φ.

Theorem 37 (Arzelà-Ascoli). Suppose that Ω is a bounded open subset of Rn, and that Φ is
a subset of C

`

Ω
˘

. Then Φ is compact if and only if it is equicontinuous, closed and uniformly
bounded.

The following well-known theorem is also of some interest to us.

Theorem 38 (Stone-Weierstrauss). Suppose that Ω is a bounded opne subset of Rn. Then
a subalgebra Φ of C

`

Ω
˘

which contains 1 is dense if and only if it separates points. That is,
if for any x and y in Ω, there exists f ∈ Φ such that f(x) 6= f(y).

2.7.2. Multi-index notation for partial derivatives. We now introduce notation
which, inter alia, simplifies expressions involving partial derivatives. We call an n-tuple α =
pα1, . . . , αnq of nonnegative integers a multi-index. The absolute value of α = pα1, . . . , αnq is

|α| = α1 + α2 + · · ·+ αn, (167)

we define the factorial of a multi-index α via

α! = α1!α2! · · ·αn! , (168)

and for x = (x1, x2, . . . , xn) ∈ Rn we define

xα = xα1
1 x

α2
2 · · ·xαnn . (169)

Moreover, for each multi-index α, we denote by Dα the partial differential operator which
acts on sufficiently smooth functions u defined on an open set Ω ⊂ Rn via the formula

Dαu =

ˆ

∂ϕ

∂x1

˙α1
ˆ

∂ϕ

∂x2

˙α2

· · ·
ˆ

∂ϕ

∂xn

˙αn

u. (170)
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We will sometimes also use the alternative notation Diu to refer to the derivative of u with
respect to the ith coordinate; that is,

Diu =
∂u

∂xi
. (171)

Using multi-index notation, the Taylor expansion of a function u about a point x becomes

u(y) =
k∑
|α|=0

α!

j!
Dαu(x)(y − x)α +O

´

|y − x|
k+1

¯

(172)

and the product rule is

Dα(uv) =
∑
β≤α

ˆ

α

β

˙

Dα−β(u)Dβ(v), (173)

where α ≤ β if and only αi ≤ βi for all i = 1, . . . , n and
ˆ

α

β

˙

=
α!

β! (α− β)!
. (174)

We will sometimes use Du to refer to the gradient of the function u; that is,

Du(x) =

¨

˚

˚

˝

D1u(x)
D2u(x)

...
Dnu(x)

˛

‹

‹

‚

. (175)

2.7.3. Spaces of Smooth Functions. Suppose that Ω is an open set in Rn. We denote
by Ck(Ω) the vector space of functions Ω→ R whose derivatives through order k are continu-
ous, by Ck

b (Ω) the subspace of Ck(Ω) consisting of functions whose derivatives through order
k are continuous and bounded, by Ck

`

Ω
˘

the subspace of Ck pΩq consisting of k-times differ-
entiable functions whose derivatives through order k are bounded and uniformly continuous
on Ω, and by Ck

c (Ω) the subspace of Ck
`

Ω
˘

consisting of k-times differentiable functions with

compact support contained in Ω. The vector spaces Ck
b pΩq and Ck

`

Ω
˘

are Banach spaces
with respect to the norm

‖f‖=
∑
|β|≤k

sup
x∈Ω

ˇ

ˇDβf(x)
ˇ

ˇ . (176)

By C∞ pΩq we mean the vector space of functions infinitely differentiable functions Ω → R.
We denote by C∞b pΩq the subspace of C∞ pΩq consisting of infinitely differentiable functions
Ω → R whose derivatives of all orders are bounded, and by C∞c pΩq the space of infinitely
differentiable functions with compact support contained in Ω. All of these spaces are Fréchet
spaces with respect to appropriately chosen families of seminorms (see, for instance, [15]);
however, we will not make use of this fact.

Exercise 7. Suppose that Ω is an open convex set in Rn. Show that the norm (176) and

‖f‖0 = sup
x∈Ω

|f(x)| +
∑
|β|=k

sup
x∈Ω

ˇ

ˇDβ(x)
ˇ

ˇ (177)
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are equivalent norms for Ck
`

Ω
˘

(Hint: use some form of Taylor’s theorem).

2.7.4. Hölder Spaces. Suppose that Ω is an open set in Rn. For k a nonnegative integer
and 0 < α ≤ 1 a real number we denote by Ck,α

`

Ω
˘

the subspace of Ck
`

Ω
˘

consisting of
functions whose derivatives of order k satisfy a Hölder condition of exponent α; that is, there
exists a constant C such that

ˇ

ˇDβf(x)−Dβf(y)
ˇ

ˇ ≤ C |x− y|
α (178)

for all x, y ∈ Ω and all multi-indices |β| = k. When endowed with the norm

‖f‖ = ‖f‖CmpΩq+ sup
|β|=k

sup
x,y∈Ω, x6=y

ˇ

ˇDβf(x)−Dβf(y)
ˇ

ˇ

|x− y|
α , (179)

Ck,α
`

Ω
˘

is a Banach space.

Exercise 8. Suppose that Ω is a bounded open set in Rn. Show that for any positive integer
k and any real numbers 0 < λ < α ≤ 1,

Ck,α
`

Ω
˘

Ĺ Ck,λ
`

Ω
˘

Ĺ Ck
`

Ω
˘

. (180)

Note carefully the assumption that Ω is bounded.

Suppose that Ω is an open set in Rn, k is a nonnegative integer and 0 < α ≤ 1 is a real number.
We denote by Ck,α pΩq the subspace of Ck pΩq consisting of functions whose restrictions to
each bounded open subset Ω′ ⊂⊂ Ω is contained in Ck,α

`

Ω′
˘

. By Ω′ ⊂⊂ Ω we mean that Ω′

is compactly supported in Ω; that is, there exists a compact set K such that Ω′ ⊂ K ⊂ Ω.

For the sake of convenience, we set

Ck,0
`

Ω
˘

= Ck
`

Ω
˘

(181)

and

Ck,0
pΩq = Ck

pΩq (182)

for all nonnegative integers k.

Suppose that k ≥ 0 is an integer, that 0 ≤ α ≤ 1 is a real number, and that Ω is an open
subset of Rn. Suppose also that ψ : Ω→ Ω′, and that ψ1, . . . , ψm are mappings Ω→ R such
that

ψ(x1, . . . , xn) =

¨

˝

ψ1(x1, . . . , xn)
...

ψm(x1, . . . , xn)

˛

‚ (183)

for all x = (x1, . . . , xn) ∈ Rn. Then we say that ψ is a Ck,α mapping if each of the mappings ψj
is an element of Ck,α(Ω). Obviously, the C0,1 mappings Ω→ Rm are the Lipschitz continuous
functions Ω → Rm; that is, f : Ω → Rm is a C0,1 mapping if and only if there exists C > 0
such that

‖f(x)− f(y)‖≤ C‖x− y‖ (184)

for all x, y ∈ Ω.
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Exercise 9. Suppose that Ω is a bounded open set in Rn, that k is a positive integer, and
that 0 < α ≤ 1 is a real number. Show that Ck,α

`

Ω
˘

is compactly embedded in Ck
`

Ω
˘

. Hint:
use the Arzelá-Ascoli theorem.

Exercise 10. Why do we only consider Hölder exponents which are less than or equal to 1?

2.7.5. Lipschitz continuous functions. The space C0,1 pΩq, whose elements are known
as Lipschitz continuous functions, will play an important role in this course. They are suffi-
ciently smooth to take the place of differentiable functions much of the time, but they offer
more flexibility in modeling physical problems than differentiable functions (this is particu-
larly important when it comes to model-ling the domains in which boundary value problems
are given — the boundary of a square can be described using Lipschitz functions but not
with differentiable functions).

Suppose that f : [a, b] ⊂ R → R is a Lipschitz continuous function. It is easy to verify that
f is absolutely continuous; that is, for all ε > 0 there exists δ > 0 such that

n∑
j=1

|f(bj)− f(aj)| ≤ ε (185)

whenever (a1, b1), . . . , (an, bn) is a finite collection of disjoint open intervals in [a, b] such that
n∑
j=1

(bj − aj) ≤ δ. (186)

Absolutely continuous functions are characterized by the following theorem, which is a stan-
dard result in measure theory (for a proof, see, for instance, Chapter 3 of [8]).

Theorem 39. A function f : [a, b]→ R is absolutely continuous if and only if the derivative
f ′ exists almost everywhere in [a, b], the derivative f ′ is integrable, and for every x ∈ [a, b]

f(x) = f(a) +

∫ x

a

f ′(y) dy. (187)

That the usual integration by parts formula

f(b)g(b)− f(a)g(a) =

∫ b

a

f ′(x)g(x) dx+

∫ b

a

f(x)g′(x) dx (188)

holds when f and g are absolutely continuous functions is also a standard result in measure
theory (see, for instance, Theorem 3.36 in Chapter 3 of [8]).

We conclude that a Lipschitz continuous function f : [a, b] → R is differentiable almost
everywhere, and that the integration by parts formula (188) holds for such functions. Also,
from (187), we see that the derivative of f must be bounded almost everywhere.

Rademacher’s theorem, which we state below, extends Theorem 39 to higher dimensions. A
proof can be found in [16].

Theorem 40 (Rademacher). Suppose that Ω is an open set in Rn, and that f : Ω→ Rm is
Lipschitz continuous with Lipschitz constant C. That is, suppose that

‖f(x)− f(y)‖≤ C‖x− y‖ (189)
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for all x, y ∈ Ω. Then f is differentiable almost everywhere in Ω and the operator norm of
f ′(x) is bounded by C for almost all x ∈ Ω.

It is important to understand that Theorem 40 asserts the almost everywhere existence of
the “total derivative” of f . That is, if f : Ω → Rm is a Lipschitz mapping, then for almost
all x ∈ Ω there exists a linear mapping T : Rn → R such that

lim
h→0

‖f(x+ h)− f(x)− Th‖
‖h‖

= 0. (190)

Many of the standard results of multivariable calculus require only the pointwise existence
of total derivatives, and hence apply to Lipschitz continuous functions without significant
modification. The multivariable chain rule and product rule are examples:

Theorem 41. Suppose that Ω is an open subset of Rn, that Ω′ is an open subset of Rm, and
that Ω′′ is an open subset of Rk. Suppose also that f : Ω→ Ω′ and that g : Ω′ → Ω′′. If g is
differentiable at x and f is differentiable at g(x), then the composition f ◦ g is differentiable
at x and (f ◦ g)′(x) = f ′(g(x))g′(x).

Theorem 42. Suppose that Ω is an open subset of Rn, and that f, g : Ω→ Rm are differen-
tiable at x ∈ R. Then

(f · g)′(x) = f ′(x)g(x) + f(x)g′(x). (191)

It is somewhat more difficult to establish the following change of variables formula for Lips-
chitz mappings. A proof can be found in [7].

Theorem 43. Suppose that Ω and is a open subset of Rn, and that ψ : Ω→ Rn is a bilipschitz
mapping. Then ∫

Ω

g(ψ(x)) |det pψ′(x)q| dx =

∫
ψ(Ω)

g(y) dy (192)

for all measurable g : Ω→ R. In particular, the measure of ψ(Ω) is∫
Ω

|det pψ′(x)q| dx. (193)

The implicit function theorem is an example of a result in multivariable calculus which
requires C1 differentiability and does not extend to Lipschitz continuous functions.

2.8. Mollifiers, Cutoff Functions and Partitions of Unity

The function η : Rn → R defined via

η(x) =

{
exp

´

− 1
1−|x|2

¯

if |x|≤ 1

0 if |x|> 1,
(194)

is an element of C∞c pRnq. For each ε > 0, we define

ηε(x) = (α)−1ε−nη(x/ε), (195)
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where

α =

∫
Rn
η(x) dx, (196)

so that ηε is supported on the ball {x : |x|≤ ε} and∫
ηε(x) dx = 1. (197)

We call ηε the standard mollifier on Rn. The sequence of functions

ηε ∗ u(x) =

∫
Rn
ηε(x− y)u(y) dy (198)

obtained by convolving u with ηε is called mollification or regularization of f . The following
theorem, whose proof can be easily found in the literature (for example, in [8]), enumerates
some of the key properties of mollifiers.

Theorem 44. Suppose that u ∈ L1
loc(Rn), and that ηh is the standard mollifier. Then:

(1) For each h > 0, ηh ∗ u is an element of C∞(Rn).

(2) If u ∈ Lp(Rn), where 1 ≤ p <∞, then ‖ηh ∗ u− u‖p→ 0 as h→ 0.

(3) If u ∈ C(Rn), then ηh ∗ u converges to u uniformly on compact subsets of Rn.

(4) If u is compactly supported, and Ω is an open set in Rn such that 0 < h <
dist(supp(u), ∂Ω), then the support of ηh ∗ u is contained in Ω.

Exercise 11. Suppose that ηh is the standard mollifier. Show that there exists a function u
in L∞(Rn) such that ηh ∗ u does not converge to u in L∞(Rn) norm as h→ 0.

Exercise 12. Suppose that Ω is a bounded open subset of Rn, and that f and g are continuous
functions Ω→ C such that ∫

Ω

f(x)ψ(x) dx =

∫
Ω

g(x)ψ(x) dx (199)

whenever ψ is a infinitely differentiable function whose support is contained in Ω. Show that
f(x) = g(x) for all x ∈ Ω.

We will typically work with functions which are only defined on an open subset Ω of Rn. If
u ∈ L1

loc(Ω), then the mollification

ηh ∗ u(x) =

∫
Ω

ηh(x− y)u(y) dy =

∫
Ω

ηh(y)u(x− y) dy (200)

is defined for all x ∈ Ω and h > 0 such that 0 < dist(x, ∂Ω) < h.

The following definition is useful when mollifying functions defined on subsets of Rn. If Ω
is an open subset of Rn and Ω′ is an open subset of Ω, then we say that Ω′ is compactly
embedded in Ω and write Ω′ ⊂⊂ Ω if there exists a compact set K such that Ω′ ⊂ K ⊂ Ω. If
u ∈ L1

loc(Ω) and Ω′ ⊂⊂ Ω, then for sufficiently small h, ηh∗u is defined and so it is reasonable
to speak of the limit of ηh ∗ u as h→ 0.

Theorem 45. Suppose that Ω is an open subset of Rn, that Ω′ ⊂⊂ Ω, and that ηh denotes
the standard mollifier. Then:
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(1) If u ∈ Lploc(Ω) with 1 ≤ p <∞, then ηh ∗ u→ u in Lp pΩ′q and ηh ∗ u converges to u
almost everywhere in Ω′.

(2) If u ∈ C pΩq, then ηh ∗ u converges to u uniformly on Ω′.

We now use mollifiers to establish the existence of smooth cutoff functions; that is, functions
which are exactly equal to 1 on a specified compact set and which decay smoothly to 0 outside
of that set.

Theorem 46. Suppose that U is an open subset of Rn, and that V ⊂⊂ U . Then there exists
a nonnegative function ψ ∈ C∞c pUq which is identically 1 on V .

Proof. We denote the standard mollifier by ηε, let W be an open set such that

V ⊂ W ⊂ W ⊂ U, (201)

and choose ε < min{dist(∂U, ∂W ), dist(∂V, ∂W )}. We claim that the function ψ defined via
the formula

ψ(x) = χW ∗ ηε (202)

is the desired cutoff function. To see this, we observe that according Conclusion (1) of
Theorem 44, fε ∈ C∞(Rn), and that conclusion (4) of the same theorem implies that the
support of ψ is contained in U . Moreover, for all x ∈ V the support of the function ηε(x− ·)
is contained in W , so that

ψ(x) =

∫
Rn
ηε(x− y)χW (y) dy =

∫
W

ηε(x− y) dy =

∫
Rn
ηε(x− y) dy = 1. (203)

It is the case that ψ(x) ≥ 0 for all x ∈ Rn since both ηε and ξW are nonnegative functions. �

Suppose that A is an arbitrary subset of Rn, and that

A ⊂
⋃
α∈O

Uα (204)

is an open covering of A. We say that a sequence of C∞ pRnq functions ψ1, ψ2, . . . is a smooth
partition of unity subordinate to the cover (204) if

(1) each of the functions ψj is supported in one of the sets Uα;

(2) 0 ≤ ψj(x) ≤ 1 for all x ∈ A and j = 1, 2, . . .;

(3) there exists a neighborhood of each x ∈ A on which all but a finite number of the
functions ψj vanish;

(4)

∞∑
j=1

ψj(x) = 1 for all x ∈ A.

We now establish the existence of smooth partitions of unity, starting with the special case
in which the set A is compact.
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Theorem 47. Suppose that A is a compact subset of Rn, and that

A ⊂
⋃
α∈O

Uα (205)

is a covering of A by open sets. Then there exist C∞c (Rn) functions ψ1, ψ2, . . . , ψm such that

(1) Each ψj is supported in one of the open sets Uα;

(2) 0 ≤ ψj(x) ≤ 1 for all x ∈ Rn and all j = 1, 2, . . . ,m;

(3) for each x ∈ A, there exists an open neighborhood of x in which
∑m

j=1 ψj(x) = 1.

Proof. We let

A ⊂
m⋃
j=1

Uj (206)

be a covering of A by open sets chosen from the collection {Uα : α ∈ O}. Now we construct
a collection of open sets V1, . . . , Vm such that

A ⊂
m⋃
j=1

Vj (207)

and

Vj ⊂⊂ Uj (208)

for each j = 1, 2, . . . ,m. To that end, for each ε > 0 and j = 1, . . . ,m, we let Vj,ε be the
open subset of Uj defined via

Vj,ε =
{
x ∈ Uj : dist

`

x, U c
j

˘

> ε
}
. (209)

We claim that if ε > 0 is sufficiently small, then

A ⊂
m⋃
j=1

Vj,ε. (210)

If not, then for each n > 0, there exists xn such that

xn ∈ A \
m⋃
j=1

Vj,1/n = A ∩
m⋂
j=1

V c
j,1/n (211)

Since A is compact, the sequence {xn} has a subsequence converging to a point x ∈ A. From
(211) we see that

x /∈
m⋃
j=1

Vj,1/n (212)

for all j = 1, . . . ,m and all positive integers n. We conclude from (212) that x ∈ U c
j for all

j = 1, . . . ,m. But this is a contradiction since the Uj cover A and x ∈ A. We conclude that
(210) holds.
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According to Theorem 46, for each j = 1, . . . ,m, there exists a function ϕj ∈ C∞c (Uj) which
is 1 on Vj. Then the functions ψ1, . . . , ψm defined via the formula

ψj(x) =
ϕj(x)∑m
i=1 ϕj(x)

(213)

have the desired properties. �

Theorem 48. Suppose that A is an arbitrary subset of Rn, and that

A ⊂
⋃
α∈O

Uα (214)

is a covering of A by open sets. Then there exists a smooth partition of unity ψ1, ψ2, . . .
subordinate to (214).

Proof. We first suppose that A is open. Then

A =
∞⋃
k=1

Ak, (215)

where the sets Ak are defined by the formula

Ak = {x ∈ A : |x|≤ k and dist(x, ∂A) ≥ 1/k} . (216)

Note that if A is not open, then (215) need not hold. For each α ∈ O and each k ≥ 1, we let

Vα,k = Uα ∩ int pAk+1 \ Ak−2q , (217)

where we set A0 = A−1 = ∅. Then, for each fixed k ≥ 1,

Ak ⊂
⋃
α∈O

Vα,k (218)

is an open covering of the compact set Ak. For each k ≥ 1, we invoke Theorem 47 in order
to obtain a smooth partition of unity

ψk1 , ψ
k
2 , . . . , ψ

k
mk

(219)

subordinate to the covering (218). We define the function σ : A→ R via the formula

σ(x) =
∞∑
k=1

mk∑
j=1

ψkj (x); (220)

note that only a finite number of terms are nonzero for each point x and that σ(x) > 0 for
all x ∈ A. For each pair k = 1, 2, . . . and 1 ≤ j ≤ mk, we define

ϕk,j(x) =
ψkj (x)

σ(x)
. (221)

The collection of functions {ϕk,j} is the desired smooth partition of unity.

Suppose now that A is an arbitrary subset of Rn. Then we construct a smooth partition of
unity for the set B defined via

B =
⋃
α∈O

Uα (222)
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subordinate to the open covering

B ⊂
⋃
α∈O

Uα. (223)

We conclude the proof by observing that the resulting smooth partition of unity for B sub-
ordinate to the covering (223) is also a smooth partition of unity for A subordinate to the
covering (214). �

Note carefully that Theorem 48 asserts that a finite partition of unity can be obtained when
A is compact; however, Theorem 49, which applies in the general case, only asserts the
existence of a countable partition of unity.

Theorem 49. Suppose that A is an arbitrary set in Rn, and that

A ⊂
∞⋃
j=1

Uj (224)

is a covering of A by open sets. Then there exists a smooth partition of unity ψ1, ψ2, . . .
subordinate to the covering (224) such that

supp(ψj) ⊂ Uj. (225)

Proof. We let ϕ1, ϕ2, . . . be a smooth partition of unity subordinate to the covering

A ⊂
∞⋃
j=1

Uj (226)

whose existence is ensured by Theorem 48. We define

I1 = {j ≥ 1 : supp(ϕj) ⊂ U1} (227)

and, for k > 1,

Ik = {j ≥ 1 : supp(ϕj) ⊂ Uk and j /∈ I1 ∪ I2 ∪ · · · ∪ Ik−1} . (228)

We then define a new partition of unity {ψj : j = 1, 2, . . .} via the formula

ψj(x) =
∑
i∈Ij

ϕi(x). (229)

�

2.9. Domains with Ck,α Boundary

Suppose that Ω is a bounded open set in Rn, that k is a nonnegative integer, and that
0 ≤ α ≤ 1 is a real number. The domain Ω is of class Ck,α if ∂Ω is locally the graph of a
Ck,α function. That is, if for each x ∈ ∂Ω there exists an open set V containing x and a new
orthogonal coordinate system y1, . . . , yn such that

(1) V is a hypercube in the new coordinate system; i.e., there exist a1, . . . , an such that

V = {(y1, . . . , yn) : −ai < yi < ai for all i = 1, 2, . . . , n} (230)
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(2) there exists a function ψ in Ck,α
`

V ′
˘

, where V ′ is defined via

V ′ = {(y1, . . . , yn−1) : −ai < yi < ai for all i = 1, 2, . . . , n− 1} , (231)

such that

−an < ψ(y1, . . . , yn−1) < an for all (y1, . . . , yn−1) ∈ V ′, (232)

V ∩ Ω = {(y1, . . . , yn) : (y1, . . . , yn−1) ∈ V ′ and yn < ψ(y1, . . . , yn−1)} , (233)

and

V ∩ ∂Ω = {(y1, . . . , yn) : (y1, . . . , yn−1) ∈ V ′ and yn = ψ(y1, . . . , yn−1)} . (234)

A bounded open set Ω in Rn is a Ck,α submanifold with boundary in Rn if each x ∈ ∂Ω there
exist an open set V containing x and an injective mapping ψ : V → Rn such that

(1) ψ is a Ck,α mapping;

(2) ψ−1 : ψ(V )→ V is a Ck,α mapping;

(3) Ω ∩ V = {y ∈ V : ψn(y) < 0}, where ψn denotes the nth component of ψ(y) ∈ Rn;

(4) ∂Ω ∩ V = {y ∈ V : ψn(y) = 0}, where ψn denotes the nth component of ψ(y) ∈ Rn.

It is easy to verify that a Ck,α domain in Rn is always a Ck,α submanifold with boundary in
Rn, but the converse is not always true. See, for instance, [10] for an example of a domain
which is a C0,1 submanifold but not a C0,1 domain.

Exercise 13. Use the implicit function theorem to show that a C1,0 submanifold with bound-
ary in Rn is necessarily a C1,0 domain.

There are two common geometric assumptions which are equivalent to requirements that Ω
is a Ck,α domain of the appropriate type. The bounded open set Ω ⊂ Rn has the segment
property if for every x ∈ ∂Ω there exist a neighborhood V of x, a new orthogonal coordinate
system (y1, . . . , yn), and a real number h > 0 such that

(1) V is a hypercube in the new coordinate system; i.e., there exist a1, . . . , an such that

V = {(y1, . . . , yn) : −ai < yi < ai for all i = 1, 2, . . . , n} (235)

(2) y − t(0, 0, . . . , 0, 1) is in Ω whenever 0 < t < h and y ∈ Ω ∩ V .

Similarly, Ω has the cone property if for every x ∈ ∂Ω there exist a neighborhood V of x, a
new orthogonal coordinate system (y1, . . . , yn), and constants h > 0 and 0 < θ ≤ π/2 such
that

(1) V is a hypercube in the new coordinate system; i.e., there exist a1, . . . , an such that

V = {(y1, . . . , yn) : −ai < yi < ai for all i = 1, 2, . . . , n} (236)

(2) y − z is in Ω whenever y ∈ Ω ∩ V and z is contained in the cone

C = {(t1, . . . , tn−1, tn) : cot(θ) |(t1, . . . , tn−1q |< tn < h}. (237)
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Theorem 50. Suppose that Ω is an open set in Rn. Then Ω has the segment property if and
only if its boundary is C0.

Theorem 51. Suppose that Ω is an open set in Rn. Then Ω has the cone property if and
only if its boundary is C0,1.

Exercise 14. Prove Theorem 50.

See [10] for a proof of Theorem 51. We will not make use of the following theorem, but it is
a straightforward consequence of Theorem 51 that you might find useful.

Theorem 52. Suppose that Ω is a bounded open convex set in Rn. Then Ω is a C0,1 domain.

Suppose that Ω ⊂ Rn is either a Ck,0 domain with k ≥ 0 an integer or a C0,1 domain. Then
we can define the outward-pointing normal derivative on the boundary ∂Ω as follows. Given
x ∈ ∂Ω, we let V be an open set containing x which has the properties (230) through (234).
We let O be the n× n orthogonal matrix and ξ the vector in Rn such that

¨

˝

x1
...
xn

˛

‚= O

¨

˝

y1
...
yn

˛

‚+ ξ. (238)

The outward-pointing unit normal to the surface yn = ψ(y1, . . . , yn−1) at the point

(y1, . . . , yn−1, ψ(y1, . . . , yn−1))

is

ν̃(y1, . . . , yn−1) =
1

b

1 + |Dψ py1, . . . , yn−1q|
2

ˆ

−Dψ(y1, . . . , yn−1)
1

˙

. (239)

We define the outward-pointing unit normal to ∂Ω at the point x1, . . . , xn to be

O∗ν̃(y1, . . . , yn−1), (240)

where x1, . . . , xn and y1, . . . , yn are related by (238).

We now define the surface integral ∫
∂Ω

f(x) dS(x) (241)

in the event that Ω is either a Ck,0 domain with k ≥ 1 or a C0,1 domain. We let V1, . . . , Vm
be an open covering of ∂Ω each set of which has properties (230) through (234). We also let
ϕ1, . . . , ϕm be a smooth partition of unity subordinate to this covering. Moreover, for each

j = 1, . . . ,m, we denote by y
(j)
1 , . . . , y

(j)
n the coordinate system associated with Vj, by ψj the

function associated with Vj, and by a
(j)
1 , . . . , a

(j)
n the real numbers such that

Vj =
{
y

(j)
1 , . . . , y(j)

n : −a(j)
1 ≤ y

(j)
1 ≤ a

(j)
1 , . . . , −a(j)

n ≤ y(j)
n ≤ a(j)

n

}
. (242)
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Also, for each j = 1, . . . ,m, we let Oj and ξj denote the orthogonal matrix and vector such
that

¨

˝

x1
...
xn

˛

‚= Oj

¨

˚

˝

y
(j)
1
...

y
(j)
n

˛

‹

‚

+ ξj, (243)

and define f̃j via

f̃j

´

y
(j)
1 , . . . , y(j)

n

¯

= f(x1 . . . , xn)ϕj(x1, . . . , xn), (244)

where y
(j)
1 , . . . , y

(j)
n and x1, . . . , xn are related by (243). We say that f : ∂Ω→ C is integrable

if, for each i = j, . . . ,m, the function

f̃j

´

y
(j)
1 , . . . , y

(j)
n−1, ψj(y

(j)
1 , . . . , y

(j)
n−1)

¯

(245)

is integrable on the set

V ′j =
{
y

(j)
1 , . . . , y

(j)
n−1 : −a(j)

1 ≤ y
(j)
1 ≤ a

(j)
1 , . . . , −a(j)

n−1 ≤ y
(j)
n−1 ≤ a

(j)
n−1

}
. (246)

In this event, we define the surface integral via

(247)

∫
∂Ω

f(x) dS(x) =
m∑
j=1

∫
V ′j

(
f̃j

(
y

(j)
1 , . . . , y

(j)
n−1, ψj

(
y

(j)
1 , . . . , y

(j)
n−1

))
×

c

1 +
∣∣∣Dψj (y(j)

1 , . . . , y
(j)
n−1

)∣∣∣2 ) dy
(j)
1 dy

(j)
2 . . . dy

(j)
n−1.

It is tedious, but not difficult, to verify that this definition does not depend on the choice of
the sets V1, . . . , Vm or the partition of unity ϕ1, . . . , ϕm.

Exercise 15. Write down suitable definitions for the outward-pointing unit normal for ∂Ω
and the surface integral ∫

∂Ω

f(x) dS (248)

in the event that Ω is a Ck,0 submanifold with boundary in Rn.

2.10. Integration by Parts

We will make extensive use of the following two theorems.

Theorem 53. Suppose that Ω is a bounded C0,1 domain, and that u ∈ C1
`

Ω
˘

. Then∫
Ω

Diu(x) dx =

∫
∂Ω

u(x)νi(x) dS(x), (249)

where νi(x) denotes the ith component of the outward-pointing unit normal at the point x ∈
∂Ω.
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Proof. We give a very careful proof of this theorem to illustrate certain techniques which
are often used to prove results regarding Ck,α domains. In the future, similar proofs will be
dealt with in a more cursory fashion.

For each x in ∂Ω, let Vx be an open set containing x with the properties (230) through (234).
For each x, let Ux be an open set containing x and compactly contained in Vx. Since ∂Ω is
compact, we can choose a finite subcover Ux1 , . . . , Uxm of ∂Ω. For each i = 1, . . . ,m, we let
Vi = Vxi . Obviously, V1, . . . , Vm also covers ∂Ω. Now we let

V0 = Ω \ {Ux1 ∪ . . . ∪ Uxm}. (250)

Then V0 is an open set which is compactly contained in Ω, and V0, V1, . . . , Vm is an open
covering of Ω. We now let ϕ0, . . . , ϕm be a smooth partition of unity subordinate to the
cover V0, . . . , Vn of Ω.

We observe that∫
Ω

Diu(x) dx =

∫
Ω

Di

˜

u
n∑
j=0

ϕj

¸

(x) dx =
n∑
j=0

∫
Ω

Di pϕjuq (x) dx. (251)

Since ϕ0 is supported in V0 ⊂ Ω and u is defined on all of V0, we can extend ϕ0(x)u(x) to a
function in C1 pRnq by simply letting it be equal to 0 in the exterior of V0. Now, we let

R = {(x1, x2, . . . , xn) : −b1 < x1 < b1, −b2 < x2 < b2, . . . , −bn < xn < bn} (252)

be a large cube containing V0 whose boundary does not intersect V0. Clearly, it is the case
that ∫

Ω

Di pϕ0uq (x) dx =

∫
R

Di pϕ0uq (x) dx

=

∫ b1

−b1

∫ b2

−b2
. . .

∫ bn

−bn
Di pϕ0uq (x1, . . . , xn) dx1dx2 · · · dxn.

(253)

By the fundamental theorem of calculus (see, for instance, Theorem 3.35 in [8]),∫ bi

−bi
Di pϕ0uq (x1, . . . , xn) dxi =ϕ0 px1, . . . , bi, . . . , xnqu px1, . . . , bi, . . . , xnq

− ϕ0 px1, . . . ,−bi, . . . , xnqu px1, . . . ,−bi, . . . , xnq

= 0− 0 = 0.

(254)

It follows that from (253) and (254) that∫
Ω

Di pϕ0uq (x) dx = 0. (255)

We now fix 1 ≤ j ≤ n and recall how Vj was constructed. In particular, there exist a
coordinate system y1, . . . , yn and a function ψ such that (230) through (234) hold. We let
O = pOijq be an orthogonal matrix and ξ be a vector in Rn such that

¨

˝

x1
...
xn

˛

‚= O

¨

˝

y1
...
yn

˛

‚+ ξ, (256)
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and define ũ via the formula

ũ(y) = u pOy + ξqϕj pOy + ξq . (257)

It follows that

∂

∂xi
=

n∑
k=1

∂yk
∂xi

∂

∂yk
=

n∑
k=1

Oki
∂

∂yk
. (258)

We observe that the integral ∫
Ω

Di pϕj(x)u(x)q dx (259)

is equal to
n∑
k=1

Oki

∫ a1

−a1
. . .

∫ an−1

−an−1

∫ ψ(y1,...,yn−1)

−an
Dkũ(y1, . . . , yn) dy1dy2 · · · dyn. (260)

Note that the Jacobian determinant of an orthogonal transformation is 1. For k = 1, . . . , n−1,
it is the case that

(261)Dk

(∫ ψ(y1,...,yn−1)

−an
ũ(y) dyn

)
=

∫ ψ(y1,...,yn−1)

−an
Dkũ(y) dyn

+Dkψ(y1 . . . , yn−1)ũ(y1, . . . , yn−1, ψ(y1, . . . , yn−1)).

By integrating this expression first with respect to yk, then with respect to the rest of the
coordinates y1, . . . , yn−1 and making use of the compact support of ũ, we see that∫ a1

−a1
. . .

∫ an−1

−an−1

∫ ψ(y1,...,yn−1)

−an
Dkũ(y) dy1dy2 · · · dyn

= −
∫ a1

−a1
. . .

∫ an−1

−an−1

ũ (y1 . . . , yn−1, ψ (y1, . . . , yn−1))Dkψ(y1, . . . , yn−1) dy1dy2 · · · dyn−1

(262)

for k = 1, . . . , n− 1. On the other hand, it is readily apparent that

(263)

∫ a1

−a1
. . .

∫ an−1

−an−1

∫ ψ(y1,...,yn−1)

−an
Dnũ(y1, . . . , yn) dy1dy2 · · · dyn

=

∫ a1

−a1
. . .

∫ an−1

−an−1

ũ(y1, . . . , yn−1, ψ(y1, . . . , yn−1)) dy1dy2 · · · dyn−1.

Now, we let ν̃ denote the outward pointing unit normal to the surface defined via yn =
ψ(y1, . . . , yn−1); that is,

ν̃(y1, . . . , yn−1) =
1

b

1 + |Dψ(y1, . . . , yn−1|
2

ˆ

−Dψ(y1, . . . , yn−1)
1

˙

(264)
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(here Dψ refers to the gradient of ψ). From (260), (262) and (263), we see that (259) is equal
to

(265)

∫ a1

−a1
. . .

∫ an−1

−an−1

ũ (y1 . . . , ψ(y1, . . . , yn−1))

(O∗ν̃ (y1, . . . , yn−1))i

b

1 + |Dψ (y1, . . . , yn−1)|2 dy1dy2 · · · dyn−1,

where pO∗ν̃qi denotes the ith component of the vector O∗ν̃. Since

pO∗ν̃(y1, . . . , yn−1)qi = νi(x1, . . . , xn), (266)

(263) is simply the expression obtained directly from the definition of surface integral∫
∂Ω

u(x)ϕj(x)νi(x) dS(x). (267)

In particular, ∫
Ω

Di pu(x)ϕj(x)q dx =

∫
∂Ω

u(x)ϕj(x)νi(x) dS(x). (268)

We sum (268) over j = 1, . . . ,m to obtain the conclusion of the theorem. �

Theorem 54. (Integration by parts) Suppose that Ω is a bounded C0,1 domain, and that
u, v ∈ C1

`

Ω
˘

. Then∫
Ω

Diu(x)v(x) dx = −
∫

Ω

u(x)Div(x) dx+

∫
∂Ω

u(x)v(x)νi(x) dS(x), (269)

where νi(x) denotes the ith componenet of the outward-pointing unit normal at the point
x ∈ ∂Ω.

Proof. This follows immediately from the preceding theorem and the fact that Di(uv) =
pDiuq v + u pDivq. �

Theorem 54 is a special case of the divergence theorem and we will, by a slight abuse of
terminology, sometimes refer to it as the divergence theorem.



CHAPTER 3

Sobolev spaces

In this chapter, we discuss the elementary properties of Sobolev spaces, a family of func-
tion spaces which serve as the principle setting for the variational theory of elliptic partial
differential equations.

3.1. Weak Derivatives

Suppose that Ω is an open set in Rn, and that α = (α1, . . . , αn) is an n-tuple. We say that
v ∈ L1

loc(Ω) is the αth weak derivative of u ∈ L1
loc(Ω) if∫

Ω

u(x)Dαψ(x) dx = (−1)|α|
∫

Ω

v(x)ψ(x) dx (270)

for all ψ in C∞c (Ω).

Exercise 16. What is the first weak derivative of the function f : R → R defined via
f(x) = |x|? Is f twice weakly differentiable?

Exercise 17. Show that if u ∈ Ck(Ω) and |α|≤ k is a multi-index, then u has weak deriva-
tives of orders 0 through k, and the αth weak derivative of u is the ath classical derivative of
u.

Since the notions of classical and weak differentiability coincide when u is classically differ-
entiable, there is no harm in denoting the αth weak derivative of a function u ∈ L1

loc(Ω) by
Dαu.

Exercise 18. Suppose that Ω is an open subset of Rn, and that α is a multi-index. Show
that if u, v1 and v2 are elements of L1

loc(Ω) such that Dαu = v1 and Dαu = v2, then v1 = v2

almost everywhere.

Exercise 19. Suppose that Ω is an open subset of R, and that u, v and w are L1
loc(Ω)

functions such that the first weak derivative of both u and v is w. Show that there exists a
constant C > 0 such that u(x)− v(x) = C almost everywhere.

Exercise 20. What is the first weak derivative of the function f : R → R defined via the
formula f(x) = sin(1/x)?

Exercise 21. Suppose that Ω is an open subset of Rn, that α, β and γ are multi-indices
such that α = β + γ, and that u ∈ L1

loc(Ω) such that Dα, Dβ and Dγ exist. Show that Dαu
= DβDγu = DγDβu.

Exercise 22. Suppose that Ω = (a, b) is an open interval in R. Show that f ∈ C0,1(Ω) if
and only if f is weakly differentiable and its weak derivative is an element of L∞loc(Ω). You
are free to make use the theorems of Section 2.7.

44
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We will frequently rely on the following theorem that asserts that weak differentiation com-
mutes with mollification. We note that if u is locally integrable and admits an αth weak
derivative, then both ηh ∗u and ηh ∗Dαu are infinitely differentiable functions, and hence are
pointwise defined.

Theorem 55. Suppose that Ω is an open set in Rn, that u is an element of L1
loc(Ω) whose

αth weak derivative exists. Then for all x ∈ Ω and h > 0 such that Bh(x) ⊂ Ω,

Dα
pηh ∗ uq (x) = ηh ∗ pDαuq (x). (271)

Proof. Suppose that h > 0, and let Ω′ = {x ∈ Ω : dist(x, ∂Ω) > h}. Then ηh ∗ u is
defined for all x ∈ Ω′; in fact, it is an element of C∞ pΩ′q. Moreover, for all x ∈ Ω′ we have

Dα
pηh ∗ uq (x) = h−n

∫
Ω

Dα
xη

ˆ

x− y
h

˙

u(y) dy

= h−n(−1)|α|
∫

Ω

Dα
y η

ˆ

x− y
h

˙

u(y) dy

= h−n
∫

Ω

η

ˆ

x− y
h

˙

Dαu(y) dy

= ηh ∗Dαu(x),

(272)

which estalbishes the theorem. �

3.2. Sobolev Spaces

Suppose that Ω is an open set in Rn, that k ≥ 0 is an integer, and that 1 ≤ p ≤ ∞ is a real
number. The Sobolev space W k,p(Ω) consists of all L1

loc(Ω) functions u : Ω → R such that
for each multi-index α with |α|≤ k, Dαu exists in the weak sense and belongs to Lp(Ω). For
1 ≤ p <∞, the space W k,p(Ω) is a Banach space with respect to the norm

‖u‖Wk,p(Ω)=

¨

˝

k∑
|α|=0

‖Dαu‖pLppΩq

˛

‚

1/p

, (273)

and W k,∞ pΩq is a Banach space with respect to the norm

‖u‖Wk,∞(Ω)= sup
|α|≤k
‖Dαu‖L∞pΩq

. (274)

The spaces W k,2(Ω) are of particular importance because they are Hilbert spaces with respect
to the inner product

pu, vq =
k∑
|α|=0

∫
Ω

Dαu(x) Dαv(x) dx. (275)

We will use the special notation Hk(Ω) to refer to W k,2(Ω).
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We observe that C∞c (Ω) is a subspace of W k,p(Ω), and we let W k,p
0 (Ω) be the completion of

C∞c pΩq with respect to the W k,p(Ω) norm. Plainly, W k,p
0 (Ω) is a closed subspace of W k,p(Ω)

and hence is a Banach space. We also denote the space W k,2
0 (Ω) by Hk

0 (Ω). We will often
encounter the dual space of H1

0 (Ω), which we denote by H−1(Ω). Note that H−1(Ω) need
not coincide with (H1(Ω))∗.

For a function u ∈ W 1,p(Ω), we use the notation Du to denote the gradient of u; that is,

Du(x) =

¨

˚

˚

˝

D1u(x)
D2u(x)

...
Dnu(x)

˛

‹

‹

‚

(276)

Moreover, we define

‖Du‖p =
`

‖D1u(x)‖pp+ · · · ‖Dnu(x)‖p2
˘1/p

. (277)

In a similar fashion, for u ∈ W 2,p(Ω) we define D2u(x) to be the Hessian matrix whose (i, j)
entry is

DiDju(x) (278)

and denote by ‖D2u‖p the sum
˜

n∑
i,j=1

‖DiDju(x)‖pp

¸1/p

. (279)

The following theorem shows that the product of a function in W k,p(Ω) with a smooth
compactly supported function is an element of W k,p(Ω). We need this result to establish, in
Theorem 58, that C∞(Ω) functions are dense in W k,p(Ω).

Theorem 56. Suppose that Ω is an open subset of Rn, that k ≥ 0 is an integer and 1 ≤ p ≤ ∞
is a real number, and that u ∈ W k,p(Ω), and that ψ ∈ C∞c (Ω). Then the product ψu is an
element of W k,p(Ω).

Proof. We prove the theorem by induction on k. The result obviously holds when
k = 0. We will show that if it holds for 0 ≤ k < l, then it holds when k = l. Suppose that
ϕ ∈ C∞c (Ω). Since ψϕ is an element of C∞c (Ω),∫

Ω

Dαu(x)ψ(x)ϕ(x) dx = (−1)|α|
∫

Ω

u(x)Dα
pψϕq (x) dx. (280)

We insert the identity

Dα(ψϕ)(x) dx =
∑
β≤α

ˆ

α

β

˙

Dα−βψ(x)Dβϕ(x) (281)

into (280) to obtain∫
Ω

Dαu(x)ψ(x)ϕ(x) dx = (−1)|α|
∫

Ω

u(x)

˜∑
β≤α

ˆ

α

β

˙

Dα−βψ(x)Dβϕ(x)

¸

dx. (282)
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We rearrange (282) as∫
Ω

u(x)ψ(x)Dαϕ(x) dx = (−1)|α|
∫

Ω

Dαu(x)ψ(x)ϕ(x) dx−∑
β<α

ˆ

α

β

˙ ∫
Ω

u(x)Dα−βψ(x)Dβϕ(x) dx.
(283)

and apply the induction hypothesis to each of the terms in the sum on the right-hand side
of (283) to obtain∫

Ω

u(x)ψ(x)Dαϕ(x) dx =(−1)|α|
∫

Ω

Dαu(x)ψ(x)ϕ(x) dx−

(−1)|α|
∑
β<α

(−1)|β|+|α|
ˆ

α

β

˙ ∫
Ω

Dβ
`

u(x)Dα−βψ(x)
˘

ϕ(x) dx.
(284)

We conclude that Dα(ψu) exists and equals

Dαu(x)ψ(x)−
∑
β<α

(−1)|β|+|α|
ˆ

α

β

˙

Dβ
`

u(x)Dα−βψ(x)
˘

. (285)

By assumption Dαu ∈ Lp(Ω) and our induction hypothesis implies that each of the functions

Dβ
`

u(x)Dα−βψ(x)
˘

(286)

is an element of Lp(Ω). Since the products of C∞c (Ω) functions with Lp(Ω) functions are in
Lp(Ω), we conclude that Dα(ψu) is an element of Lp(Ω). �

For 1 ≤ p ≤ ∞ a real number and k ≥ 0 an integer, We denote by W k,p
loc (Ω) the vector

space of functions whose restrictions to any open subset Ω′ ⊂⊂ Ω are in W k,p(Ω′). We say

that a sequence {un} ⊂ W k,p
loc (Ω) converges to u ∈ W k,p

loc if un → u in W k,p(Ω′) whenever
Ω′ ⊂⊂ Ω. In light of this definition, the conclusion of Exercise 22 can be rephrased as saying
that W k,∞

loc (Ω) coincides with C0,1(Ω) when Ω is an open set in R. Later, will we see that

W 1,∞
loc (Ω) = C0,1(Ω) (287)

for any open subset Ω of Rn. Moreover, it follows from the standard embedding theorems
for Sobolev spaces that

W k,∞
loc (Ω) = Ck−1,1(Ω) (288)

for all positive integers k. It is not always the case that W k,∞(Ω) coincides with Ck−1,1
`

Ω
˘

,
although it does so under mild regularity assumptions on Ω. Not surprisingly, we will some-
times use the notation Hk

loc(Ω) to refer to W k,2
loc (Ω).

3.3. Approximation by Smooth Functions

In this section, we will two key results (Theorems 58 and 62) on the approximation of
elements of W k,p(Ω) by smooth functions. They are the mechanism by which we establish
many of the basic properties of functions in Sobolev spaces — by first demonstrating that
sufficiently smooth functions posses those properties and then appealing to the density of
smooth functions in W k,p(Ω).
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Theorem 57. Suppose that Ω is an open set in Rn, and that ηh is the standard mollifier.
Suppose also that u ∈ W k,p

loc (Ω) with 1 ≤ p < ∞ a real number and k ≥ 0 an integer. Then

the sequence of functions ηh ∗ u converges to u in W k,p
loc (Ω).

Proof. Suppose that α is a multi-index such that 0 ≤ |α|≤ k, and that Ω′ ⊂⊂ Ω.
According to Theorem 55, for all sufficiently small h and all x ∈ Ω′

Dα
pηh ∗ uq (x) = ηh ∗Dαu(x). (289)

By integrating both sides of (289) over Ω′, we obtain∫
Ω′

|Dα
pηh ∗ u− uq (x)|

p dx =

∫
Ω′

|ηh ∗Dαu(x)−Dαu(x)|
p dx. (290)

Now we invoke Theorem 45 to conclude that

lim
h→0

∫
Ω′

|ηh ∗Dαu(x)−Dαu(x)|
p dx = 0. (291)

We combine (290) with (291) to obtain

lim
h→0
‖Dα

pηh ∗ uq−Dαu‖Lp(Ω′)= 0, (292)

from which we conclude that ηh ∗ u converges in W k,p(Ω′) to u. �

If u ∈ Lp(Ω), then the sequence of C∞(Ω) functions obtained by mollifying the zero extension
of u converges to u in Lp(Ω) norm. The same is not true for W k,p(Ω) — as the following
exercise shows — and we will need to use a somewhat more complicated construction to
produce a sequence of smooth functions approximating an element of W k,p(Ω).

Exercise 23. Suppose that Ω = p0, 1q, that u : Ω→ R is the function defined via u(x) = 1,
and that ũ : R → R is the zero extension of u. Show that ηh ∗ ũ does not converge to u in
W 1,1(Ω).

Theorem 58 (Meyers-Serrin). Suppose that Ω is an open set in Rn, and that 1 ≤ p <∞ is
a real number. Then C∞ pΩq ∩W k,p pΩq is dense in W k,p pΩq.

Proof. We choose a sequence of open sets Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂ such that

Ω =
∞⋃
k=1

Ωk (293)

and we let {ψk : k = 1, 2, . . .} be a smooth partition of unity subordinate to the covering
(293). That is, ψ1, ψ2, . . . is a sequence in C∞c pRnq with the following properties:

(1) supp pψjq ⊂ Ωj for each j = 1, 2, . . . ;

(2) 0 ≤ ψj(x) ≤ 1 for all x ∈ Rn and j = 1, 2, . . . ;

(3) for each x ∈ Ω, there exists compact set K containing x on which only a finite
number of the functions ψ1, ψ2, . . . are nonzero;

(4)
∑∞

j=1 ψj(x) = 1 for all x ∈ Ω.
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We now suppose that u ∈ W k,p(Ω) and for each j = 1, 2, . . . we define uj by the formula

uj(x) = u(x)ψj(x). (294)

We now let ε > 0. By Theorem 56, uj is an element of W k,p(Ω). Moreover, Ωj is compact
contained in Ω. So we can apply Theorem 57 to see that

lim
h→0
‖ηh ∗ uj − uj‖Wk,p(Ωj+1) = 0. (295)

Since uj has compact support contained in Ωj, for sufficiently small h the support of ηh ∗ uj
is also contained in Ωj. So, for each j ≥ 1, there exists a real number hj such that

supp(ηhj ∗ uj) ⊂ Ωj (296)

and ∥∥ηhj ∗ uj − uj∥∥Wk,p(Ωj)
<

ε

2j
. (297)

Of course, since both uh and ηhj ∗ uj have support contained in Ωj, we have∥∥ηhj ∗ uj − uj∥∥Wk,p(Ω)
=
∥∥ηhj ∗ uj − uj∥∥Wk,p(Ωj)

<
ε

2j
. (298)

Since only a finite number of the functions u1, u2, . . . are nonzero in each of the sets Ωj, only
a finite number of the functions ηh1 ∗ u1, ηh2 ∗ u2, . . . are nonzero in each of the sets Ωj+1 and

v(x) =
∞∑
j=1

ηhj ∗ uj(x). (299)

defines a C∞ pΩq function. We combine (298) and (299) to arrive at

‖v − u‖Wk,p(Ω) =

∥∥∥∥∥
∞∑
j=1

ηε ∗ uj −
∞∑
j=1

uj

∥∥∥∥∥
Wk,p(Ω)

≤
∞∑
j=1

‖ηε ∗ uj − uj‖Wk,p(Ω) ≤
∞∑
j=1

ε

2j
= ε,

from which the conclusion of the theorem follows. �

The Meyers-Serrin theorem cannot be extended to the case p = ∞. To see this, we let
Ω = {x ∈ R : −1 < x < 1} and u(x) = |x|. We observe that u′(x) = x/|x| for all x 6= 0, so
u ∈ W 1,∞(Ω). But there is no C1(Ω) function φ such that ‖φ′ − u′‖∞< 1/4, so u cannot be
the limit of a sequence of infinitely differentiable functions in W k,p(Ω). Note that in many
books (e.g., [1]), W k,p(Ω) is defined for k = 1, 2, . . . and 1 ≤ p < ∞ as the completion of
C∞ pΩq with respect to the norm

‖ψ‖k,p=

¨

˝

∑
|α|≤k

‖Dαψ‖pLppΩq

˛

‚

1/p

, (300)

and W k,∞(Ω) is defined as the completion of C∞ pΩq with respect to the norm

‖ψ‖k,∞= sup
|α|≤k
‖Dαψ‖L∞pΩq. (301)

The preceding discussion shows that this definition differs from ours in the case p =∞ (see,
for instance, Theorem 3.16 in [1]).
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As an application Theorem 58, we now sharpen Theorem 56.

Theorem 59. Suppose that Ω is an open set in Rn, and that 1 ≤ p <∞ and k ≥ 1. Suppose
also that ψ ∈ Ck−1,1(Ω). Then the mapping

u(x)→ ψ(x)u(x) (302)

is a bounded linear mapping W k,p(Ω)→ W k,p(Ω).

Proof. We suppose that u ∈ C∞(Ω) ∩W k,p(Ω), and that α is a multi-index such that
|α|≤ k. We apply the standard chain rule from multivariable calculus to conclude that

Dα(ψu)(x) =
∑
β≤α

ˆ

α

β

˙

Dα−βψ(x)Dβu(x) (303)

for almost all x ∈ Ω. We observe that since ψ ∈ Ck−1,1(Ω), there exists a constant C > 0
such that

ˇ

ˇDβψ(x)
ˇ

ˇ ≤ C (304)

for all |β|≤ k and almost all x ∈ Ω. We combine (303) with (304) to conclude that

|Dα(ψu)(x)| ≤ C
∑
β≤α

ˆ

α

β

˙

ˇ

ˇDβu(x)
ˇ

ˇ (305)

for almost all x ∈ Ω. It clearly follows from(305) that Dα(ψu) ∈ Lp(Ω), and that there exists
a constant C ′ which depends on α and ψ but not u such that

‖Dα(ψu)(x)‖p ≤ C ′‖u‖Wk,p(Ω). (306)

We conclude that there exists C ′′ > 0 such that

‖ψu‖Wk,p(Ω)≤ C ′′‖u‖Wk,p(Ω) (307)

for all u ∈ C∞(Ω)∩W k,p(Ω). It now follows from Theorem 58 that the mapping (302) extends
to a bounded linear mapping W k,p(Ω) → W k,p(Ω). Since convergence in Lp(Ω) implies
pointwise almost everywhere convergence, the mapping obtained by extension coincides with
the mapping defined for u ∈ W k,p(Ω) via the formula

u(x)→ ψ(x)u(x). (308)

�

The following two theorems are established in much the same fashion as Theorem 59 — by
applying the theorems of Section 2.7.5 and then appealing to Theorem 59.

Theorem 60. Suppose that Ω is a subset of Rn, and that Ω′ is a subset of Rm. Suppose also
that k ≥ 1 is an integer, that 1 ≤ p < ∞ is a real number, and that ψ : Ω → Ω′ is a Ck−1,1

mapping. Then the map

u(x)→ u(ψ(x)) (309)

is a bounded linear mapping W k,p(Ω′)→ W k,p(Ω).

Theorem 61. Suppose that Ω is a subset of Rn, and that Ω′ is a subset of Rm. Suppose also
that k ≥ 1 is an integer, that 1 ≤ p <∞ is a real number, and that ψ : Ω→ Ω′ is a bijective
mapping such that ψ and ψ−1 are Ck−1,1 mappings. Then there exists a constant C > 0 such
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that

C−1‖u ◦ ψ‖Wk,p(Ω)≤ ‖u‖Wk,p(Ω′)≤ C‖u ◦ ψ‖Wk,p(Ω) (310)

for all u ∈ W k,p(Ω′). That is, the W k,p(Ω′) norm of u(x) is equivalent to the W k,p(Ω) norm
of the composition u(ψ(x)).

The space C∞
`

Ω
˘

is always contained in W k,p(Ω) and in light of Theorem 58 it is natural

to ask if C∞
`

Ω
˘

is dense in W k,p(Ω). To see that this is not always the case, we let Ω =
{(x, y) ∈ R2 : 0 < |x|< 1 and 0 < y < 1} and define the function f : Ω→ R via the formula

f(x) =

{
1 if x > 0

0 if x < 0.
(311)

Then f ∈ W 1,p(Ω) for all integers p ≥ 1, but there is plainly no sequence of functions in
C1

`

Ω
˘

which converges to f . However, as we now show, it is the case under mild regularity
assumptions on the boundary of Ω.

Theorem 62. Suppose that Ω is a bounded open set with continuous boundary. Suppose also
that 1 ≤ p <∞ is a real number and k ≥ 0 is an integer. Then C∞

`

Ω
˘

is dense in W k,p pΩq.

Proof. We let u ∈ W k,p pΩq. We observe that since the boundary of ∂Ω is continuous,
Ω has the segment property (see Section 2.9). In particular, for each x ∈ ∂Ω, there exists an
open ball Ux centered at x and a vector γx ∈ Rn such that y+ tγx ∈ Ω for all y ∈ Ω∩Ux and
all 0 < t < 1. Then

∂Ω ⊂
⋃
x∈∂Ω

1/2Ux, (312)

where 1/2Ux denotes the open ball centered at x whose radius is half that of the open ball
Ux, us an open covering of the compact set ∂Ω. Consequently, there exists a finite collection
of the balls Ux1 , . . . , Uxm such that

∂Ω ⊂
m⋃
j=1

1/2Uxj . (313)

For each j = 1, . . . ,m, we set Uj = Uxj and Vj = 1/2Uxj ∩ Ω and let γj denote the vector
γxj . We also choose an open set V0 such that V0 ⊂⊂ Ω and

Ω ⊂
m⋃
j=0

Vj. (314)

Next, we choose a smooth partition of unity ψ0, . . . , ψm subordinate to the covering

Ω ⊂ V0 ∪
m⋃
j=1

1/2Uj (315)

so that

(1) ψ0 ∈ C∞c (V0);

(2) ψj ∈ C∞c (1/2Uj) for each j = 1, . . . ,m;
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(3) 0 ≤ ψj(x) ≤ 1 for all j = 0, 1, . . . ,m and x ∈ Rn;

(4)
∑m

j=0 ψj(x) = 1 for all x ∈ Ω.

Moreover, for each j = 0, 1, . . . ,m we define uj : Vj → R via the formula

uj(x) = ψj(x)u(x). (316)

Note that the support of ψj is not necessarily contained in Vj = 1/2Uj ∩ Ω.

We now fix ε > 0; we will construct a function w ∈ C∞
`

Ω
˘

such that

‖u− w‖Wk,p(Ω)< ε. (317)

To that end, we define the function w0 : V0 → R via the formula

w0(x) = ηh0 ∗ u0(x), (318)

where ηh denotes the standard mollifier and h0 is chosen so that

‖w0 − u0‖Wk,p(V0)<
ε

2
. (319)

For each j = 1, . . . ,m, all sufficiently small h > 0 and all x ∈ Vj, we define uj,h : Vj → R by
the formula

uj,h(x) = uj(x+ hγj) (320)

and vj,h ∈ C∞
`

Vj
˘

via the formula

vj,h(x) = ηh ∗ uj,h(x). (321)

We observe that

‖Dαvj,h −Dαuj‖Lp(Vj)≤ ‖Dαvj,h −Dαuj,h‖Lp(Vj)+‖Dαuj,h −Dαuj‖Lp(Vj) (322)

for all multi-indices |α|≤ k. Since

Dαuj,h(x) = (Dαuj)(x+ hγj) (323)

and translation is continuous in the Lp norm,

‖Dαuj,h −Dαuj‖Lp(Vj)→ 0 as h→ 0 (324)

whenever |α|≤ k. Moreover, a simple modification of the standard argument showing that
the mollification of a function converges in Lp norm shows that

‖Dαvj,h −Dαuj,h‖Lp(Vj)→ 0 as h→ 0 (325)

for all |α|≤ k. We conclude that for each j = 1, . . . ,m there exists a function wj in C∞
`

Vj
˘

such that

‖wj − uj‖Wk,p(Vj)≤
ε

2j+1
. (326)

We now define the function w ∈ C∞
`

Ω
˘

via the formula

w(x) =
m∑
j=0

ψj(x)wj(x). (327)
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We combine (316), (319) and (326) to conclude that

‖u− w‖Wk,p(Ω) =

∥∥∥∥∥
m∑
j=0

ψju−
m∑
j=0

ψjw

∥∥∥∥∥
Wk,p(Ω)

≤
m∑
j=0

‖ψju− ψjw‖Wk,p(Ω)

=
m∑
j=0

‖uj − wj‖Wk,p(Vj)

≤ ε.

(328)

�

Exercise 24. Suppose that u ∈ Lp(Rn), where 1 ≤ p < ∞. Suppose also that uh is defined
via the formula uh(x) = u(x+ h), and that ηh is the standard mollifier. Show that

‖ηh ∗ uh − u‖p→ 0 as h→ 0. (329)

We shall make frequent use of the following theorems, which are straightforward to prove
using the results of this section.

Theorem 63. Suppose that 1 ≤ p <∞ is a real number, that k ≥ 0 is an integer, that Ω is
an open set, that

Ω ⊂
N⋃
j=1

Uj (330)

is a covering of Ω by open sets, and that {ψj} is a smooth partition of unity subordinate to
the covering (330). Then u is an element of W k,p(Ω) if and only if each of the functions

ψj(x)u(x) (331)

is an element of W k,p(Ω). Moreover, then there exists a constant C > 0 such that

C−1‖u‖Wk,p(Ω)≤
N∑
j=1

‖ψju‖Wk,p(Uj)
≤ C‖u‖Wk,p(Ω) (332)

for all u ∈ W k,p(Ω); that is, the ‖u‖Wk,p(Ω) norm is equivalent to the norm

N∑
j=1

‖ψju‖Wk,p(Uj)
. (333)

Theorem 64. Suppose that 1 ≤ p <∞ is a real number, that k > 0 is an integer, that Ω is
a bounded open set in Rn which is Ck−1,1 domain.

3.4. The Trace Operator

Suppose that Ω ⊂ Rn is a bounded open set. We are ultimately interested in solving boundary
value problems given on Ω. However, it is not a priori clear that the notion of the “boundary
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values on ∂Ω” of a function u in W k,p(Ω) is well-defined. After all, ∂Ω is typically a set of
measure 0 in Rn (although there are open sets in Rn whose boundaries are of positive measure
in Rn) and u, as an element of Lp(Ω), is only defined almost everywhere in Ω. However, using
Theorem 62 it is easy to establish that there is a reasonable notion of “boundary values on
∂Ω” for functions in W 1,p(Ω), assuming that the boundary of Ω is sufficiently regular.

Theorem 65. Suppose that Ω ⊂ Rn is a C0,1 domain, and that 1 ≤ p <∞ is a real number.
Then there exists a continuous linear mapping

T : W 1,p(Ω)→ Lp(∂Ω) (334)

such that

T rus = u|∂Ω (335)

for all u ∈ C
`

Ω
˘

Proof. Since Ω is a C0,1 domain, there exists a covering of ∂Ω by open sets

∂Ω ⊂
m⋃
j=1

Uj (336)

with the property that for each j = 1, . . . ,m there exist an open ball Vj ⊂ Rn and a bijective
mapping ψj : Vj → Uj such that

(1) ψj and ψ−1
k are Lipschitz mappings;

(2) Uj ∩ Ω = ψj pVj ∩ {(x1, . . . , xn) : xn > 0}q; and

(3) Uj ∩ ∂Ω = ψj pVj ∩ {(x1, . . . , xn) : xn = 0}q.

We choose a smooth partition of unity {γj} subordinate to the covering (336) and define, for
each j = 1, . . . ,m, the function ηj : Vj → R via the formula

ηj(x) = γj(ψj(x)) (337)

Suppose that u ∈ C1
`

Ω
˘

, and for each j = 1, . . . ,m, define the functions uj : Vj → R via
the formula

uj(x) = u(ψj(x))ηj(x) (338)

We will show that there exists a positive constant C not depending on u such that

‖uj‖Lp(Vj∩{xn=0})≤ C‖uj‖W 1,p(Vj∩{xn>0}). (339)

The well-known change of variables formula from measure theory implies that there exists a
constant C1 not depending on u such that

‖γju‖Lpp∂Ω∩Ujq≤ C1‖uj‖Lp(Vj∩{xn=0}) (340)

and Theorem 60 implies that there exists a constant C2 not depending on u such that

‖uj‖W 1,p(Vj∩{xn>0})≤ C2‖γju‖W 1,p(Ω∩Uj). (341)
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So it will follow from (339) that

‖u‖Lpp∂Ωq =

∥∥∥∥∥
m∑
j=1

γju

∥∥∥∥∥
Lpp∂Ωq

≤
m∑
j=1

‖γju‖Lpp∂Ω∩Ujq

≤ C1

m∑
j=1

‖uj‖Lp(Vj∩{xn=0})

≤ CC1

m∑
j=1

‖uj‖W 1,p(Vj∩{xn>0})

≤ CC1C2

m∑
j=1

‖γju‖W 1,p(Ω∩Uj)

≤ mCC1C2‖u‖W 1,p(Ω).

(342)

We will rarely make these kinds of arguments explicitly in the future; we will instead simply
say that using a partition of unity and the properties of the domain Ω, we reduce the theorem
to proving it for the case of a function given on Vj.

We observe that the support of ηj — and hence uj — is compactly contained in Vj, so that
when we apply the divergence theorem we obtain∫

Vj∩{xn=0}
|uj(x)|

p dx = −
∫
Vj∩{xn>0}

∂

∂xn
p|uj(x)|

p
q dx

= −
∫
Vj∩{xn>0}

p |uj(x)|
p−1 sign(uj(x))

∂uj(x)

∂xn
dx

≤
∫
Vj∩{xn>0}

p |uj(x)|
p−1

ˇ

ˇ

ˇ

ˇ

∂uj(x)

∂xn

ˇ

ˇ

ˇ

ˇ

dx.

(343)

By letting

q =
1

1− 1
p

, a =

ˇ

ˇ

ˇ

ˇ

∂uj(x)

∂xn

ˇ

ˇ

ˇ

ˇ

and b = |uj(x)|p−1 (344)

in the inequality ab ≤ ap

p
+ bq

q
, which holds for all a, b > 0 and all 1 < p, q < ∞ such that

p−1 + q−1 = 1, we obtain
ˇ

ˇ

ˇ

ˇ

∂uj(x)

∂xn

ˇ

ˇ

ˇ

ˇ

|uj(x)|p−1 ≤ 1

p

ˇ

ˇ

ˇ

ˇ

∂uj(x)

∂xn

ˇ

ˇ

ˇ

ˇ

p

+
1

q
|uj(x)|q(p−1)

=
1

p

ˇ

ˇ

ˇ

ˇ

∂uj(x)

∂xn

ˇ

ˇ

ˇ

ˇ

p

+
1

q
|uj(x)|p.

(345)

We conclude, by inserting (345) into (343), that for each j = 1, . . . ,m there exists Cj > 0
such that ∫

{xn=0}∩Vj
|uj(x)|

p dx ≤ Cj‖uj‖W 1,p(Vj∩{xn>0}). (346)
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It now follows from Theorem 62 that T extends by continuity to a bounded linear mapping
W 1,p(Ω) → W 1,p(Ω). If u ∈ C

`

Ω
˘

∩W 1,p(Ω), then the sequence {um} of C∞
`

Ω
˘

functions

constructed in Theorem 62 converge uniformly on Ω to u. We conclude from this observation
that um → u on the boundary of ∂Ω, so that T (u) = u|∂Ω. �

The mapping T is called the trace operator, T rus is known as the trace of the function u,
and the image of W k,p(Ω) under the mapping T is known as the trace space of W k,p(Ω).
The mapping T is not a surjection onto Lp(Ω). Later, we will characterize the trace space
of H l(Ω) when Ω is a Lipschitz domain.

Theorem 66. Suppose that Ω is a Lipschitz domain in Rn, and that 1 ≤ p < ∞. Then
u ∈ W 1,p

0 (Ω) if and only if T rus = 0.

Proof. If u ∈ C∞c (Ω), then it is a consequence of (65) that T rus = 0. Since functions in

W k,p
0 (Ω) are the limits in W k,p(Ω) norm of C∞c (Ω) functions and T is continuous, it follows

that the trace of a function in W 1,p
0 (Ω) is 0.

We will now show that if u ∈ W 1,p pΩq such that T rus = 0, then u is the limit in W 1,p pΩq

of a sequence of C∞c pΩq functions. Via a localization argument virtually identical to that
used in the proof Theorem 65, we see that it suffices to show that if U is an open ball in Rn

centered at 0, V = Rn
+ ∩ U and u is an element of W 1,p pV q whose support in bounded away

from ∂U and whose trace on ∂V is 0, then u is the limit of a sequence of C∞c pV q functions.

Since the trace of u is 0, there exist functions um ∈ C1
`

V
˘

such that

‖um − u‖W 1,ppV q→ 0 (347)

and ‖um‖Lpp∂V q→ 0. Since the um are continuous and ∂V is compact, we may assume by
passing to a subsequence that um converges to 0 uniformly on ∂V . Indeed, we can ensure
that

|um(x)| ≤ 1

m2
for all x ∈ ∂V. (348)

We now let G be an element of C1 pRq such that

G(t) =

{
0 if |t|≤ 1

t if |t|≥ 2
(349)

and define a sequence {vm} of functions via the formula

vm(x) =
1

m
G(m · um(x)). (350)

It is the case that vm → u in W 1,k pV q. Since vm(x) = 0 for all x such that um(x) < 1/m
and |um(x)|< 1

m2 , each vm has compact support bounded away from ∂V . It follows that
we can mollify vm in order to form a sequence of C∞c pV q functions which converge to u in
W 1,p pV q. �

Suppose that Ω is C0,1 domain and that u ∈ C1
`

Ω
˘

. Then not only does u have a well-defined
trace on ∂Ω, it admits a derivative with respect to the outward-pointing unit normal vector
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on ∂Ω. Let U be an open ball U which intersects ∂Ω such that there exist an open set V in
Rn and a bijective mapping ψ : V → U with the following properties:

(1) ψ and ψ−1 are Ck−1,1 mappings;

(2) Ω ∩ U = ψ(V ∩ {xn > 0}); and

(3) ∂Ω ∩ U = ψ(V ∩ {xn = 0}).

By normalizing the map ψ, we may assume that
ˇ

ˇ

ˇ

ˇ

∂ψ

∂xn
(x)

ˇ

ˇ

ˇ

ˇ

= 1 (351)

for all x ∈ V . Since the composition u◦ψ is an element of C0,1
´

V ∩ {xn > 0}
¯

, the derivative

∂

∂xn
u ◦ ψ (352)

extends to the set V ∩ {xn = 0}. For each point y ∈ U ∩ ∂Ω, there exists x ∈ V ∩ {xn = 0}
such that ψ(x) = y. We take the value of

∂u

∂ν
(353)

at the point y to be

∂

∂xn
u ◦ ψ(x). (354)

It is easy to verify that this definition is independent of the choice of U and ψ. Note, though,
that the map ∂

∂ν
does not extend to a mapping from W 1,p(Ω) into any reasonable class of

functions on ∂Ω. To see this, we observe that there exists a function u ∈ C1
`

Ω
˘

such that

u|∂Ω = 0 (355)

and
∂u

∂ν
6= 0. (356)

But, if u ∈ W 1,p(Ω), then (355) implies that u ∈ W 1,p
0 (Ω) and hence is the limit of a sequence

{ϕk} of C∞c (Ω) functions. But the normal derivative of each of the ϕk is 0, so we cannot
have

∂φk
∂ν
→ ∂u

∂ν
(357)

in any reasonable norm.

We close this section with the following generalization of the divergence theorem, which
follows immediately from Theorem 65 and the classical divergence theorem.

Theorem 67. Suppose that Ω is a bounded Lipschitz domain in Rn, that u ∈ W 1,p pΩq for
some p ≥ 1, and that ψ ∈ C0,1

`

Ω
˘

. Then for all i = 1, . . . , n,∫
Ω

Diψ(x)u(x) dx = −
∫

Ω

ψ(x)Diu(x) dx+

∫
∂Ω

ψ(x)νi(x)T u(x) dx, (358)
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where νi(x) is the ith component of the outward-pointing unit normal vector at the point
x ∈ ∂Ω.

3.5. Extension Operators

Suppose that Ω is an open subset of Rn, that 1 ≤ p <∞ is a real number, and that k ≥ 0 is an
integer. We say that a linear mapping E : W k,p(Ω)→ W k,p(Rn) is a simple (k, p)-extension
operator if

(1) E rus (x) = u(x) for almost all x ∈ Ω;

(2) there exists a constant C > 0 such that ‖E rus ‖Wk,p(Rn)≤ C‖u‖Wk,p(Ω) for all u ∈
W k,p(Ω).

A mapping E which takes functions defined almost everywhere in Ω to functions defined
almost everywhere in Ω is a strong k-extension operator for Ω if for all 0 ≤ m ≤ k and
1 ≤ p < ∞, the restriction of E to Wm,p(Ω) is a simple (m, p)-extension operator. Finally,
if E is a strong k-extension operator for all nonnegative integers k, then we call it a total
extension operator for the domain Ω.

Exercise 25. Suppose that k ≥ 0 is an integer, and that 1 ≤ p <∞ is a real number. Show
that if E is a simple (k, p)-extension operator for Ω and that Ω′ is an open set containing Ω,
then there exists a bounded linear mapping T : W k,p(Ω)→ W k,p(Ω′) such that T rus |Ω = u.

Theorem 68. Suppose that Ω is a Lipschitz domain (that is, a C0,1 domain), and that
1 ≤ p <∞. Then there exists a simple (1, p)-extension operator for Ω.

Proof. Suppose that u ∈ C1 p{(x1, . . . , xn) : xn ≥ 0}q whose support in contained an
open ball V centered at 0. It is easy to verify that the function ψ defined via

ψ(x1, . . . , xn−1, xn) =

{
u(x1, . . . , xn−1, xn) xn > 0

−3u(x1, . . . , xn−1,−xn) + 4u(x1, . . . , xn−1,−xn/2) xn < 0
(359)

is an element of C1 pRnq, and that there exists C > 0 which does not depend on u such that

‖ψ‖W 1,p(V )≤ C‖u‖W 1,p(V ∩{xn>0}). (360)

The general case now follows from Theorem 62 and a (by now) standard localization argu-
ment. Note that we are implicitly “straightening out” the boundary of ∂Ω here. This is why
we cannot use this technique to obtain a (k, p) extension operator. �

Note that it follows easily from the proof of Theorem 68 that we can always assume that
E rus has compact support. The argument of the preceding proof can be easily extended to
yield the following theorem.

Theorem 69. Suppose that Ω is a Ck−1,1 domain, that 1 ≤ p < ∞ is a real number, and
that k ≥ 1 is an integer. Then there exists a simple (k, p)-extension operator for Ω.

However, the requirements placed on the boundary of Ω by Theorem 69 are much stronger
than necessary. See Chapter 6 of [16] for a proof of the following much improved result.
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Theorem 70 (Stein). Suppose that Ω is a Lipschitz domain in Rn. Then there exists a total
extension operator for Ω.

Note too the article [12], which characterizes the domains which admit a simple (k, p)-
extension operator for every k ≥ 0 and every 1 ≤ p ≤ ∞.

3.6. The Fourier Transform and Sobolev Spaces

Throughout this section we will use the convention

pf(ξ) =

∫
Rn

exp(2πix · ξ)f(x) dx (361)

for the Fourier transform and we will denote by ‖u‖1 the usual norm in W k,2(Rn) = Hk(Rn);
that is,

‖u‖1=

d∑
|α|≤k

‖Dαu‖2
L2(Rn). (362)

Since

‖u‖L2(Rn)= ‖pu‖L2(Rn) (363)

and

zDαu(ξ) = (2πiξ)αpu(ξ), (364)

the Hk(Rn) norm of a function u can be bounded using the Fourier transform of u and
vice-versa. More specifically:

Theorem 71. Suppose that k ≥ 0 is an integer. Then

‖u‖2=

d∫
Rn

|pu(ξ)|
2
`

1 + |ξ|
2
˘k

dξ (365)

is equivalent to the usual norm

‖u‖1=

d∑
|α|≤k

‖Dαu‖2
L2(Rn). (366)

in Hk(Rn).

Proof. Suppose that u ∈ Hk(Rn) so that Dαu ∈ L2(Rn) for all |α|≤ k. We observe that

zDαu(ξ) = (ξ)αpu(ξ), (367)

so that

‖Dαu‖2
L2(Rn)=

∫
Rn

|(2πiξ)α|
2

|u(ξ)|
2 dξ = (2π)|α|

∫
Rn

|ξα|
2

|u(ξ)|
2 dξ. (368)

We observe that

|ξα| ≤

{
|ξ|k if |ξ|≥ 1

1 if |ξ|≤ 1.
(369)
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when |α|≤ k. Consequently, there exists C1 > 0 such that

|ξα|
2 ≤ max{1, |ξ|k}2 ≤ (1 + |ξ|k)2 = 1 + 2|ξ|k+|ξ|2k≤ C1(1 + |ξ|2k) (370)

for all |α|≤ k. By summing (370) over α we see that there exists C2 > 0 such that∑
|α|≤k

|ξα|
2 ≤ C2(1 + |ξ|2k). (371)

Consequently, ∑
|α|≤k

‖Dαu‖2
L2(Rn) =

∑
|α|≤k

‖zDαu‖2
L2(Rn)

=
∑
|α|≤k

(2π)|α|
∫
Rn
|pu(ξ)|2|ξα|2 dξ

≤ (2π)k
∫
Rn

|pu(ξ)|
2
∑
|α|≤k

|ξα|2 dξ

≤ C2(2π)k
∫
Rn

|pu(ξ)|
2 (1 + |ξ|2)k dξ.

(372)

Now we define functions f1 and f2 via the formulas

f1(ξ) =
n∑
j=1

|ξkj |2 (373)

and

f2(ξ) = |ξ|2k. (374)

We denote by M1 the maximum of f1 on the unit sphere in Rn and by M2 the maximum of
f2 on the unit sphere in Rn. Then

f2(ξ) ≤M2/M1f1(ξ) (375)

for all |ξ|= 1. Since both f1 and f2 are homogeneous of degree 2k, the inequality (375) in
fact holds for all ξ ∈ Rn; in particular, if we set C3 = M2/M1 then

|ξ|2k≤ C3

n∑
j=1

|ξkj |2 (376)

for all ξ ∈ Rn . From the binomial theorem we have that

(1 + |ξ|2)k ≤ 2k max{1, |ξ|2k}, (377)

and we combine (376), (377) to conclude that

(1 + |ξ|2)k ≤ 2k
`

1 + |ξ|2k
˘

≤ 2k max{1, C3}

˜

1 +
n∑
j=1

|ξkj |2
¸

≤ 2k max{1, C3}
∑
|α|≤k

|ξα|2
(378)
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for all ξ ∈ Rn. Note that the last inequality follows since 1 and

‖ξkj ‖2, (379)

for each j = 1, . . . , n, are terms in the sum∑
|α|≤k

|ξα|2. (380)

It follows from (367) and (378) that there exists C4 > 0 such that∫
Rn

|pu(ξ)|
2 (1 + |ξ|2)k dξ ≤ C4

∫
Rn

|pu(ξ)|
2

¨

˝

∑
|α|≤k

|ξα|2
˛

‚ dξ

= C4

∑
|α|≤k

∫
Rn

|pu(ξ)|
2 |ξα|2 dξ

≤ C4

(2π)k

∑
|α|≤k

‖zDαu‖2
L2(Rn).

=
C4

(2π)k

∑
|α|≤k

‖Dαu‖2
L2(Rn).

(381)

�

One important difference between the norms

‖u‖1=

d∑
|α|≤k

‖Dαu‖2
L2(Rn) (382)

and

‖u‖2=

d∫
Rn

|pu(ξ)|
2
`

1 + |ξ|
2
˘k

dξ (383)

is that the later generalizes to the case where k is no longer an integer; that is, it gives
us a reasonable method for defining fractional derivatives and Sobolev spaces of fractional
order. In particular, we define Hs(Rn) for real numbers s ≥ 0 to be the space of functions
u ∈ L2(Rn) such that ∫

Rn
|pu(ξ)|

2 (1 + |ξ|2)s dξ <∞. (384)

Clearly, Hs(Rn) is a Hilbert space with respect to the inner product

〈u, v〉 =

∫
Rn

pu(ξ)pv(ξ)(1 + |ξ|2)s dξ. (385)

There is no real difficulty in allowing negative values of s. In this case, the elements of
Hs pRnq might no longer be functions, so we have to adapt our definition slightly. For s < 0,
we let Hs(Rn) be the space of tempered distributions such that∫

Rn
|pu(ξ)|

2 (1 + |ξ|2)s dξ <∞. (386)
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It is easy to verify that the space H−s pRnq is isomorphic to the dual space of Hs pRnq.

Exercise 26. Prove that if s > n
2
, then Hs pRnq is a Banach algebra.

The norm ‖u‖1 provides us with a definition of Hk(Ω) for Ω an open subset of Rn, but only
for nonnegative integer orders. On the other hand, ‖u‖2 gives a definition of Hs pRnq for all
real-valued s, but it is not readily applicable in the case of open subsets of Rn. The following
theorem will provide us with yet another equivalent norm, which we will use to define Hs(Ω)
when s is a positive real number and Ω is an open subset of Rn.

Theorem 72. Suppose that 0 < s < 1 is a real number and n > 0 is an integer. Then there
exists a constant C > 0 depending only on s and n such that∫

Rn

∫
Rn

|u(x)− u(y)|
2

|x− y|2s+n
dx dy = C

∫
Rn

|ξ|
2s

|pu(ξ)|
2 dξ. (387)

for all u ∈ Hs(Rn).

Proof. We observe that the Fourier transform of the function

u(x+ h)− u(x) (388)

is

pexp(2πih · ξ)− 1q pu(ξ). (389)

From Planacherel’s theorem we see that∫
Rn

|u(x+ h)− u(x)|
2 dx =

∫
Rn

|exp(2πih · ξ)− 1|
2

|pu(ξ)|
2 dξ. (390)

We multiply both sides of (388) by |h|−2s−n and integrate with respect to h to obtain∫
Rn

∫
Rn

|u(x+ h)− u(x)|
2

|h|2s+n
dx dh =

∫
Rn

∫
Rn

|exp(2πih · ξ)− 1|
2

|h|2s+n
|pu(ξ)|

2 dξ dh. (391)

By changing the order of integration in the integral on the right-hand side of (391), we see
that∫

Rn

∫
Rn

|u(x+ h)− u(x)|
2

|h|2s+n
dx dh =

∫
Rn

|pu(ξ)|
2

˜∫
Rn

|exp(2πih · ξ)− 1|
2

|h|2s+n
dh

¸

dξ. (392)

Using polar coordinates we see that∫
Rn

|exp(2πih · ξ)− 1|
2

|h|2s+n
dh =

∫ ∞
0

ρn−1

ρ2s+n

∫
|s|=1

|exp(2πiρs · ξ)− 1|
2 dsdρ

=

∫ ∞
0

ρ−2s−1

∫
|s|=1

|exp(2πiρs · ξ)− 1|
2 dsdρ.

(393)

Now we let p = t|ξ|−1 in (393) to obtain∫
Rn

|exp(2πih · ξ)− 1|
2

|h|2s+n
dh = |ξ|

2s

∫ ∞
0

t−2s−1

∫
|s|=1

ˇ

ˇ

ˇ

ˇ

exp

ˆ

2πits · ξ
|ξ|

˙

− 1

ˇ

ˇ

ˇ

ˇ

2

ds dt. (394)

We observe that ∫
|s|=1

ˇ

ˇ

ˇ

ˇ

exp

ˆ

2πits · ξ
|ξ|

˙

− 1

ˇ

ˇ

ˇ

ˇ

2

dt (395)
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is O(t2) as t → 0 and O(1) as t → ∞, so that the integral (394) converges. By radial
symmetry its value does not depend on ξ. So there exists a constant C > 0 depending only
on s and n such that ∫

Rn

|exp(2πih · ξ)− 1|
2

|h2s+n|
dh = C|ξ|2s (396)

for all ξ ∈ Rn. Inserting (396) into (391) yields∫
Rn

∫
Rn

|u(x+ h)− u(x)|
2

|h|2s+n
dx dh = C

∫
Rn

|ξ|
2s

|pu(ξ)|
2 dξ. (397)

We let h = y − x in (397) to conclude that∫
Rn

∫
Rn

|u(x)− u(y)|
2

|x− y|2s+n
dx dy = C

∫
Rn

|ξ|
2s

|pu(ξ)|
2 dξ. (398)

�

If s = k + λ, where k is a nonnegative integer and 0 < λ < 1, then we define another norm
for Hs(Rn) by

‖u‖3=

g

f

f

e

∑
|α|≤k

∫
Rn

|Dαu(x)|
2 dx+

∑
|α|=k

∫
Rn

∫
Rn

|Dαu(x)−Dαu(y)|2
|x− y|2λ+n

dxdy. (399)

It is easy to verify via Theorem 72 that ‖u‖3 is equivalent to ‖u‖1 and ‖u‖2. For Ω an open
subset of Rn, we let Hs pΩq be the set of functions u ∈ Hk pΩq such that∫

Ω

∫
Ω

|Dαu(x)−Dαu(y)|2

|x− y|2λ+n
dxdy <∞ (400)

for all |α|= k. This is a Banach space with respect to the norm

‖u‖=

g

f

f

e

∑
|α|≤k

∫
Ω

|Dαu(x)|
2 dx+

∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|2
|x− y|2λ+n

dxdy. (401)

As usual, we let Hs
0 pΩq denote the closure of C∞c pΩq with respect to the norm (401), and

use H−s pΩq to denote the dual of Hs
0 pΩq.

The norm (401) motivates the following definition of the fractional order space W k,p pΩq

when Ω is an open subset of Rn. Suppose that s = k + λ with k a nonnegative integer and
0 < λ < 1. We say that u ∈ W k,p(Ω) is an element of the space provided u ∈ W s,p(Ω) and∫

Ω

∫
Ω

|Dαu(x)−Dαu(y)|
p

|x− y|n+sp
<∞ (402)

for all |α|= k. When endowed with the norm

‖u‖=

¨

˝

∑
|α|≤k

∫
Ω

|Dαu(x)|
p dx+

∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|p

|x− y|n+λp
dxdy

˛

‚

1/p

, (403)

W s,p(Ω) becomes a Banach space. The closure of C∞c pΩq with respect to the norm (403) is
typically denoted by W s,p

0 pΩq.
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There are many other methods for defining the fractional order Sobolev spaces W k,p pΩq. For
the most part, they coincide when the domain Ω is sufficiently regular. For instance,

‖u‖= inf
{
‖f‖Hs(Rn): f ∈ Hs(Rn) such that f |Ω = u

}
. (404)

is equivalent to the norms for Hs pΩq we have defined when Ω is Lipschitz. We note that
this fact is strongly related to results showing existence of extension operators for fractional
order Sobolev spaces. See also [1] and [9] for definitions of the Besov and Triebel-Lizorkin
spaces which generalize the fractional order spaces we consider here.

3.7. Fractional Order Sobolev Spaces on the Boundary of a Domain

We have not yet introduced definitions of Hs p∂Ωq or W s,p p∂Ωq when s is a real number and
Ω ⊂ Rn is a bounded open set in Rn. In fact, we have not even treated the case when s is a
positive integer. We now do so.

Our definition will require fairly strong regularity assumptions on the boundary of Ω. We
suppose that s = k + λ with k a positive integer and 0 < λ < 1, and that Ω is a Ck−1,1

domain. Then there exist a covering

∂Ω ⊂
m⋃
j=1

Uj (405)

of ∂Ω by open sets, a collection of open sets V1, . . . , Vm in Rn, and a collection of mappings
ψ1, . . . , ψm such that

(1) ψj is a bijective mapping Vj → Uj;

(2) ψj and ψ−1
j are Ck−1,1 mappings;

(3) ψj pVj ∩ {xn < 0}q = Uj ∩ Ω;

(4) ψj pVj ∩ {xn = 0}q = Uj ∩ ∂Ω.

Now we let η1, . . . , ηm be a partition of unity subordinate to the covering (405). For each
j = 1, . . . ,m, we let uj be the restriction of pηjuq ◦ψj to Vj ∩ {xn = 0}. We can view uj as a
compactly supported function defined on Rn−1. We let W s,p p∂Ωq consist of all functions u
in L1

loc p∂Ωq such that

‖u‖W s,pp∂Ωq=

˜

m∑
j=1

‖uj‖pW s,ppRn−1q

¸1/p

<∞. (406)

It is easy to verify that W s,p p∂Ωq is a Banach space with respect to the norm (406). A
straightforward but tedious argument shows that alternate choices of the sets U1, . . . , Um,
V1, . . . , Vm, mappings ψ1, . . . , ψm and partition of unity η1, . . . , ηm lead to equivalent norms.
We use Hs p∂Ωq to denote W s,2 p∂Ωq and we define H−s p∂Ωq to be the dual space of Hs p∂Ωq.
Of course, Hs pΩq
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When 0 < s < 1, we can avoid the use of a partition of unity and local parameterizations of
the boundary. Indeed,

‖u‖W s,pp∂Ωq=

ˆ∫
∂Ω

|u(x)|
p dx+

∫
∂Ω

∫
∂Ω

|u(x)− u(y)|
p

|x− y|
sp+n−1 dx dy

˙1/p

(407)

is equivalent to (406) when 0 < s < 1. Note that sp + n − 1 is correct exponent in the
denominator because ∂Ω is n− 1 dimensional rather than n dimensional.

We will now show that the trace space of Hk pΩq is Hk−1/2 p∂Ωq when Ω is a Ck−1,1 domain.
We suppose that U1, . . . , Um, V1, . . . , Vm, and ψ1, . . . , ψm are as before, but now we asumme
that U0 an open set compactly contained in Ω such that

Ω ⊂
m⋃
j=0

Uj, (408)

and let η0, η1, . . . , ηm be a smooth partition of unity subordinate to the cover (408). We also
let E be a total extension operator for Ω such that E rus is always compactly supported.
For each j = 1, . . . ,m, we let uj be the restriction of pηjE rusq ◦ ψj to Vj ⊂ Rn and vj the
restriction of uj to Vj ∩ {xn = 0} ⊂ Rn−1. Then

˜

‖η0u‖pHkpRnq
+

m∑
j=1

‖uj‖pHkpRnq

¸1/p

(409)

is equivalent to the usual Hk pΩq norm and
˜

m∑
j=1

‖vj‖pHk−1/2pRn−1q

¸1/p

(410)

is, by definition, a norm for Hk−1/2 p∂Ωq. Note that we use the extension operator because
the function pηjuq ◦ ψj is only defined for points inside Vj ∩ {xn < 0} and its zero extension
may not be an element of Hk pRnq, whereas uj compactly supported in Vj and so its zero
extension is an element of Hk pRnq. It follows that to study the trace of functions in Hk pΩq,
it suffices to consider the restriction of compactly supported functions in Rn to the set
{px1, . . . , xn−1, xnq : xn = 0}.
Theorem 73. Suppose that 1

2
< s ≤ ∞ and that n ≥ 1 is an integer. Then the operator

R : C∞c pRn
q→ C∞c

`

Rn−1
˘

(411)

defined via

R rf s (x1, . . . , xn−1) = f(x1, . . . , xn−1, 0) (412)

admits an extension to a continuous linear mapping

Hs
pRn

q→ Hs−1/2
`

Rn−1
˘

. (413)

Moreover, the extended operator has a continuous right inverse.

Proof. We observe that∫
Rn−1

exp(2πiη · y)zR rf s(η) dη = R rf s (y) = f(y, 0) =

∫
Rn−1

∫
R

exp(2πiη · y) pf(η, ζ) dηdζ

(414)
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for all y ∈ Rn−1. In particular,

R rf s (y) =

∫
Rn−1

exp(2πiη · y)

ˆ∫
R

pf(η, ζ) dζ

˙

dη (415)

for all y ∈ Rn−1, from which we see that

zR rf s(η) =

∫
R

pf(η, ζ) dζ. (416)

It follows from (416) and the Cauchy-Schwartz inequality that
ˇ

ˇ

ˇ

zR rf s(η)
ˇ

ˇ

ˇ

2

=

ˇ

ˇ

ˇ

ˇ

∫
R

pf(η, ζ)
`

1 + |η|2+|ζ|2
˘s/2 `

1 + |η|2+|ζ|2
˘−s/2

dζ

ˇ

ˇ

ˇ

ˇ

2

≤
ˆ∫

R

ˇ

ˇ

ˇ

pf(η, ζ)
ˇ

ˇ

ˇ

2
`

1 + |η|2+|ζ|2
˘s

dζ

˙ˆ∫
R

`

1 + |η|2+|ζ|2
˘−s

dζ

˙

.

(417)

We rewrite the second factor on the right in (417) as

2

∫ ∞
0

`

α2 + r2
˘−s

dr, (418)

where α2 = 1 + |η|2, and introduce the new variable u = r/α to obtain the integral

2α1−2s

∫ ∞
0

`

1 + u2
˘−s

du. (419)

We note that this integral is convergent since s > 1
2

and set

Cs = 2

∫ ∞
0

`

1 + u2
˘−s

du, (420)

so that (417) may be rewritten as
ˇ

ˇ

ˇ

zR rf s(η)
ˇ

ˇ

ˇ

2
`

1 + |η|
2
˘s−1/2 ≤ Cs

∫
R

ˇ

ˇ

ˇ

pf(η, ζ)
ˇ

ˇ

ˇ

2
`

1 + |η|2+|ζ|2
˘

dζ. (421)

(Note that it is α2 and not α which is equal to 1 + |η|2). Integrating both sides of (421) with
respect to η gives

‖R rf s ‖2
Hs−1/2 ≤ Cs

∫
Rn−1

∫
R

ˇ

ˇ

ˇ

pf(η, ζ)
ˇ

ˇ

ˇ

2
`

1 + |η|2+|ζ|2
˘s

dζdη = Cs‖f‖2
Hs . (422)

It remains to show that the trace operator has a continous right inverse. To that end, we let
ϕ be a C∞c pRq function such that

ϕ(y) = 1 for all |y|≤ 1. (423)

Given u ∈ C∞c pRn−1q, we define U : Rn → R via

U(x1, . . . , xn−1, xn) =

∫
Rn−1

pu(ξ)ϕ
`

(1 + |ξ|
2)1/2xn

˘

exp p2πiξ · px1, . . . , xn−1qq dξ. (424)

Obviously,

U(x1, . . . , xn−1, 0) =

∫
Rn−1

pu(ξ) exp p2πiξ · px1, . . . , xn−1qq dξ = u(x1, . . . , xn−1). (425)
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Moreover,

pU(ξ, η) =

∫
R

∫
Rn−1

exp(−2πiξ · x′) exp(−2πiη · xn)U(x′, xn) dx′dxn

= pu(ξ)

∫
R

exp(−2πixnη)ϕ
`

(1 + |ξ|
2)1/2xn

˘

dxn

= pu(ξ)
pϕ(
`

1 + |ξ|
2)−1/2η

˘

`

1 + |ξ|
2
˘1/2

.

(426)

The last equality in (426) is obtained by introducing the new variable u = (1 + |ξ|
2)1/2xn.

Now (426) implies

(427)

∫
Rn−1

∫
R

∣∣∣pU(ξ, η)
∣∣∣2 (1 + |ξ|2 + |η|2

)s
dξdη

=

∫
Rn−1

|pu(ξ)|2(
1 + |ξ|2

) (∫
R

(
1 + |ξ|2 + |η|2

)s ∣∣
pϕ
(
1 + |ξ|2)−1/2η

)∣∣2 dη

)
dξ.

We rewrite the integral with respect to η appearing on the right-hand side of (427) as∫
R

`

α2 + |η|
2
˘s
ˇ

ˇ

ˇ
pϕ
´ η

α

¯ˇ

ˇ

ˇ

2

dη (428)

where α2 = 1 + |ξ|
2. By introducing the new variable u = η/α we see that (428) is equal to

α2s+1

∫
R

`

1 + u2
˘s

|pϕ puq|
2 du. (429)

We conclude that∫
R

`

1 + |ξ|
2 + |η|

2
˘s ˇ
ˇ

pϕ
`

1 + |ξ|
2)−1/2η

˘
ˇ

ˇ

2
dη = Cs

`

1 + |ξ|
2
˘s+1/2

, (430)

where

Cs =

∫
R

`

1 + u2
˘s

|pϕ puq|
2 du. (431)

The integral defining Cs is convergent since ϕ ∈ C∞c pRq. By inserting (430) into (427), we
obtain∫

Rn−1

∫
R

ˇ

ˇ

ˇ

pU(ξ, η)
ˇ

ˇ

ˇ

2
`

1 + |ξ|
2 + |η|

2
˘s

dξdη = Cs

∫
Rn−1

|pu(ξ)|
2
`

1 + |ξ|
2
˘s−1/2

dξ; (432)

that is, ‖U‖HspRnq≤ Cs‖u‖Hs−1/2pRn−1q. The mapping which takes u to U extends by continuity
to the desired continuous right inverse of the trace operator. �

Exercise 27. Show that the restriction operator R does not extend to a bounded continuous
mapping L2 pRnq→ L2 pRn−1q.

Exercise 28. Show that the restriction operator R does not extend to a bounded continuous
mapping H1/2 pRnq→ L2 pRn−1q.
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(Hint: Let u : R→ R be the inverse Fourier transform of the function f : R→ R defined by
the formula

f(ξ) =

{
1

ξ log(ξ)
ξ > 2

0 ξ ≤ 2.
(433)

Note that u and f are elements of L2 pRq. For h > 0, define uh via uh(x) = ηh ∗ u(x),
where ηh is the standard mollifier. Moreover, fix an aritrary ψ ∈ C∞c pRq and let v : R2 → R
be defined by v(x, y) = ψ(x)u(y) and, for each h > 0, define vh : R2 → R via vh(x, y) =
ψ(x)uh(y). Show that v is an element of H1/2 pR2q, that vh converges to v in H1/2 pR2q, but
that ‖R rvhs‖L2pRq

→∞ as h→ 0.)

Exercise 29. Show that for any integer l ≥ 0 there exists a mapping Tl : C∞c pRn−1q →
C∞c pRnq such that

∂kTl rf s

∂xkn
px1, . . . , xn−1, 0q = 0 (434)

for all k = 0, 1 . . . , l − 1 and (x1, . . . , xn−1) ∈ Rn−1, and

∂lTl rf s

∂xln
px1, . . . , xn−1, 0q = f px1, . . . , xn−1q (435)

for all (x1, . . . , xn−1) ∈ Rn−1. Conclude that for any integer l ≥ 0, there exists an operator

Rl :
l∏

k=0

C∞c
`

Rn−1
˘

→ C∞c pRn
q (436)

such that if

f = Rl pg1, . . . , glq , (437)

then

∂kf

∂xkn
px1, . . . , xn−1, 0q = gk px1, . . . , xn−1q (438)

for all k = 0, 1, . . . , l and (x1, . . . , xn−1).

Hint: Proceed as in Theorem 73 but replace ϕ with the function ψ(y) = yl/l! for all |y|≤ 1
in order to define Tl. Then define Rl via

Rl [f ] = T0 [g0] +T1

[
g1−

∂

∂xn
T0 [g0]

]
+T2

[
g2−

∂2

∂x2
n

T0 [g0]− ∂2

∂x2
n

T1

[
g1−

∂

∂xn
T0 [g0]

]]
+ · · · .

(439 )

The following theorem is an immediate consequence of Theorem 73 and the discussion pre-
ceding it.

Theorem 74. Suppose that k is a positive integer, Ω is a Ck−1,1 domain in Rn, and that
1 ≤ p <∞. Then the trace operator

T : C∞
`

Ω
˘

→ C(∂Ω) (440)
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defined via

T rus = u|∂Ω (441)

admits an extension to a continuous linear mapping

Hk(Ω)→ Hk−1/2(∂Ω). (442)

Moreover, the extended operator has a continuous right inverse.

In fact, using Exercise 29 we can easily establish the following:

Theorem 75. Suppose that k is a positive integer, and that Ω is a Ck−1,1 domain in Rn.
Then the trace operator

T : C∞
`

Ω
˘

→
k−1∏
j=0

C(∂Ω) (443)

defined via

T rus =

ˆ

u,
∂u

∂ν
,
∂2u

∂ν2
, · · · , ∂

k−1u

∂νk−1
,

˙

(444)

admits an extension to a continuous linear mapping

Hk(Ω)→
k−1∏
j=0

Hk−j−1/2(∂Ω). (445)

Moreover, the extended operator has a continuous right inverse.

When Ω is Lipschitz, the preceding results do not allow us to characterize the trace of Hk pΩq

for k > 1. However, we have the following theorem characterizing the trace of H2 pΩq when
Ω is Lipschitz. A proof can be found in [14, 11]; see also [3].

Theorem 76. Suppose that Ω is Lipschitz domain in Rn, and that T is the mapping defined
for u ∈ C∞

`

Ω
˘

via

u→
ˆ

u|∂Ω,
∂u

∂x1

ˇ

ˇ

ˇ

ˇ

∂Ω

∂u

∂x2

ˇ

ˇ

ˇ

ˇ

∂Ω

, . . . ,
∂u

∂xn

ˇ

ˇ

ˇ

ˇ

∂Ω

˙

. (446)

Suppose also that V 3/2 p∂Ωq is the closure of the image of T with respect to the norm in the
space

H1
p∂Ωq⊕H1/2

p∂Ωq⊕H1/2
p∂Ωq⊕ · · · ⊕H1/2

p∂Ωq . (447)

Then T extends a bounded linear mapping H2 pΩq→ V 3/2 p∂Ωq, and that mapping admits a
continuous right inverse.

See [10] and its references for characterizations of the trace spaces of W k,p pΩq in the general
case.
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3.8. Sobolev Inequalities and Embeddings

We will now establish two inequalities which will be used shortly to show that Sobolev spaces
can be embedded in various Lebesgue and Hölder spaces. See Chapter 4 of [1] for a much
more thorough discussion of this topic.

Theorem 77 (Gagliardo-Nirenberg-Sobolev). Suppose that 1 ≤ p < n, and that

p∗ =
np

n− p
. (448)

Then there exists C > 0 such that

‖u‖Lp∗ (Rn)≤ C‖Du‖Lp(Rn) (449)

for all u ∈ C1
c pRnq.

Proof. For each 1 ≤ i ≤ n,

u(x1, . . . , xi, . . . , xn) =

∫ xi

−∞

∂u

∂xi
(x1, . . . , ti, . . . xn) dti, (450)

and so

|u(x1, . . . , xi, . . . , xn)| ≤
∫ ∞
−∞

|Du(x1, . . . , ti, . . . xn)| dti. (451)

It follows that

|u(x)|
n ≤

n∏
i=1

∫ ∞
−∞

|Du(x1, . . . , ti, . . . xn)| dti. (452)

We take the 1/(n− 1)th power of each side of (452) to obtain

|u(x)|
n
n−1 ≤

n∏
i=1

ˆ∫ ∞
−∞

|Du(x1, . . . , ti, . . . xn)| dti

˙
1

n−1

. (453)

We integrate (453) with respect to x1 to obtain∫
|u(x)|

n
n−1 dx1 ≤

∫ ∞
−∞

n∏
i=1

ˆ∫ ∞
−∞

|Du(x1, . . . , ti, . . . xn)| dti

˙
1

n−1

dx1

=

ˆ∫ ∞
−∞

|Du(t1, x2, . . . , xn)| dt1

˙
1

n−1

·
∫ ∞
−∞

n∏
i=2

ˆ∫ ∞
−∞

|Du(x1, . . . , ti, . . . xn)| dti

˙
1

n−1

dx1.

(454)

Repeated application of Hölder’s inequality shows that∫
|f1(x)f2(x) · · · fn(x)|dx ≤

n∏
j=1

‖fj‖pj (455)

whenever 1 ≤ p1, p2, . . . , pn ≤ ∞ satisfy

1

p1

+
1

p2

+ · · ·+ 1

pn
= 1. (456)
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We call (455) the generalized Hölder inequality and we invoke it with p1 = p2 = . . . = pn−1 =
n− 1 to obtain ∫ ∞

−∞

n∏
i=2

ˆ∫ ∞
−∞

|Du(x1, . . . , ti, . . . xn)| dti

˙
1

n−1

dx1

≤

˜

n∏
i=2

∫ ∞
−∞

∫ ∞
−∞

|Du(x1, . . . , ti, . . . xn)| dx1 dti

¸
1

n−1

.

(457)

Inserting (457) into (452) yields∫
|u(x)|

n
n−1 dx1 ≤

ˆ∫ ∞
−∞

|Du(t1, x2, . . . , xn)| dt1

˙
1

n−1

·

˜

n∏
i=2

∫ ∞
−∞

∫ ∞
−∞

|Du(x1, . . . , ti, . . . xn)| dx1 dti

¸
1

n−1

.

(458)

We integrate both sides of (458) with respect to x2 to obtain∫ ∫
|u(x)|

n
n−1 dx1dx2 ≤

ˆ∫ ∞
−∞

∫ ∞
−∞

|Du(x1, . . . , t2, . . . xn)| dx1dt2

˙
1

n−1

·
∫ ∞
−∞

˜∫ ∞
−∞

|Du(t1, x2, . . . , xn)| dt1 ·
n∏
i=3

∫ ∞
−∞

∫ ∞
−∞

|Du(x1, . . . , ti, . . . xn)| dx1 dti

¸
1

n−1

dx2

(459)
We apply the generalized Hölder inequality once again to obtain∫ ∞

−∞

˜∫ ∞
−∞

|Du(t1, x2, . . . , xn)| dt1 ·
n∏
i=3

∫ ∞
−∞

∫ ∞
−∞

|Du(x1, . . . , ti, . . . xn)| dx1 dti

¸
1

n−1

dx2

≤
ˆ∫ ∞
−∞

∫ ∞
−∞

|Du(t1, x2, . . . , xn)| dt1dx2

˙
1

n−1

·

n∏
i=3

ˆ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

|Du(x1, . . . , ti, . . . xn)| dx1 dx2 dti

˙
1

n−1

(460)
Inserting (460) into (459) yields∫ ∫

|u(x)|
n
n−1 dx1dx2

≤
ˆ∫ ∞
−∞

∫ ∞
−∞

|Du(x1, t2, x3, . . . xn)| dx1dt2

˙
1

n−1

·
ˆ∫ ∞
−∞

|Du(t1, x2, x3, . . . xn)| dt1dx2

˙
1

n−1

·

n∏
i=3

ˆ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

|Du(x1, . . . , ti, . . . xn)| dx1 dx2 dti

˙
1

n−1

.

(461)
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By repeatedly applying this procedure we see that∫
Rn

|u(x)|
n
n−1 dx ≤

n∏
i=1

ˆ∫ ∞
−∞
· · ·
∫ ∞
−∞

Du(x1, . . . , ti, . . . , xn)dx1 · · · dti · · · dxn
˙

1
n−1

=

ˆ∫
Rn

|Du(x)| dx

˙
n
n−1

,

(462)

which is the inequality in the case p = 1.

We now suppose that 1 < p < n. We apply (462) to v = |u|γ, where

γ =
p(n− 1)

n− p
, (463)

to obtain
ˆ∫

Rn
|u(x)|

γn
n−1 dx

˙
n−1
n

≤ γ

∫
Rn

|u(x)|
γ−1

|Du| dx. (464)

We apply Hölder inequality to the integral on the right-hand side of (462) to obtain
ˆ∫

Rn
|u(x)|

γn
n−1 dx

˙
n−1
n

≤ γ

ˆ∫
Rn

|u(x)|
(γ−1) p

p−1 dx

˙

p−1
p
ˆ∫

Rn
|Du(x)|

p dx

˙
1
p

. (465)

Now we observe that

(γ − 1)
p

p− 1
=

γn

n− 1
=

np

n− p
= p∗. (466)

In light of (466), (465) is equivalent to
ˆ∫

Rn
|u(x)|

p∗ dx

˙
1
p∗

≤ γ

ˆ∫
Rn

|Du(x)|
p dx

˙
1
p

, (467)

which establishes the theorem in the case when u ∈ C1
c pRnq.

�

We call the number p∗ appearing in Theorem 77 the Sobolev conjugate of p. We note that

1

p∗
=

1

p
− 1

n
. (468)

Theorem 78 (Morrey’s inequality). Suppose that n < p ≤ ∞, and that γ = 1− n/p. Then
there exists a constant C such that

‖u‖C0,γpRnq≤ C‖u‖W 1,ppRnq (469)

for all u ∈ C1 pRnq.

Proof. First, we will show that there exists a constant C > 0 depending only on n such
that for all r > 0, ∫

Br(x)

|u(y)− u(x)| dy ≤ Crn
∫
Br(x)

|Du(y)|

|x− y|n−1
dy. (470)
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To see this, we fix w such that |w|= 1. Then if 0 < s < r,

|u(x+ sw)− u(x)| =

ˇ

ˇ

ˇ

ˇ

∫ s

0

d

dt
u(x+ tw) dt

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

∫ s

0

Du(x+ tw) · w dt

ˇ

ˇ

ˇ

ˇ

≤
∫ s

0

|Du(x+ tw)| dt.

(471)

It follows that∫
∂B1(0)

|u(x+ sw)− u(x)| dS(x) ≤
∫ s

0

∫
∂B1(0)

|Du(x+ tw)| dS(x)dt

=

∫ s

0

∫
∂B1(0)

|Du(x+ tw)|
tn−1

tn−1
dS(x)dt

(472)

We let y = x+ tw (so that t = |tw|= |x− y|) in the preceding integral to obtain∫
∂B1(0)

|u(x+ sw)− u(x)| dS(x) ≤
∫
Bs(x)

|Du(y)|

|x− y|n−1
dy

≤
∫
Br(x)

|Du(y)|

|x− y|n−1
dy.

(473)

Multiplying both sides of this equation by sn−1 and integrating from 0 to r with respect to s
yields ∫

∂Br(x)

|u(y)− u(x)| dS(x) ≤ rn

n

∫
Br(x)

Du(y)

|x− y|n−1
dy; (474)

this is (470).

We now fix x ∈ Rn and observe that (470) implies

|u(x)| =
1

|B1(x)|

∫
B1(x)

|u(x)| dy

≤ 1

|B1(x)|

∫
B1(x)

|u(x)− u(y)| dy +
1

|B1(x)|

∫
B1(x)

|u(y)| dy

≤ C

∫
B1(x)

|Du(y)|
|x− y|n−1

dy + C‖u‖LppB1(x)q.

(475)

We now apply Hölder’s inequality to obtain∫
B1(x)

|Du(y)|
|x− y|n−1

dy ≤
ˆ∫

B1(x)

|Du(y)|p dy
˙1/p

˜∫
B1(x)

dy

|x− y|(n−1) p−1
p

dy

¸
p−1
p

. (476)

Since p > n, (n− 1) p
p−1

< n so

˜∫
B1(x)

dy

|x− y|(n−1) p−1
p

dy

¸

p−1
p

<∞. (477)
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We combine (475), (476) and (477) to obtain

sup
x

|u(x)| ≤ C‖u‖W 1,ppRnq. (478)

We let x, y ∈ Rn, let r = |x− y|, and let W = Br(x) ∩Br(y). Then

|u(x)− u(y)| ≤ 1

|W |

∫
W

|u(x)− u(z)| dz +
1

|W |

∫
W

|u(y)− u(z)| dz. (479)

From (470), we have

1

|W |

∫
W

|u(x)− u(z)| dz ≤ C
1

|Br(x)|

∫
Br(x)

|u(x)− u(z)| dz

≤
ˆ∫

Br(x)

|Du(z)|p dz
˙1/p

˜∫
Br(x)

dy

|x− z|(n−1) p−1
p

dz

¸
p−1
p

≤ Cr1−n
p ‖Du‖LppRnq.

(480)

Similarly,

1

|W |

∫
W

|u(y)− u(z)| dz ≤ Cr1−n
p ‖Du‖LppRnq. (481)

Inserting (481) and (480) into (479) yields

1

|W |

∫
W

|u(x)− u(z)| dz ≤ Cr1−n
p ‖Du‖LppRnq= C|x− y|1−

n
p ‖Du‖LppRnq. (482)

It follows that

sup
x 6=y

|u(x)− u(y)|

|x− y|
1−n

p

≤ C‖Du‖LppRnq. (483)

The result follows from (483) together with (478). �

It follows immediately from Theorems 77 and 78 that when 1 ≤ p < n, W 1,p pRnq is con-
tinuously embedded in Lp

∗
pRnq and when p > n, W 1,p pRnq is continuously embedded in

C0,γ
`

Rn
˘

with γ = 1− n/p.

Using standard interpolation results for Lebesgue spaces (see, for instance, Proposition 6.10
in Chapter 6 of [8]), we can say a bit more. In fact, when 1 ≤ p < n and p ≤ q ≤ p∗,
W 1,p pRnq is continuously embedded in Lq pRnq.

From (468), one might expect that when n = p, W 1,p pRnq is embedded in L∞ pRnq. This
is not the case when n > 1. We will not use the fact there, but W 1,p pRnq is continuously
embedded in the Banach space of functions of bounded mean oscillation (see, for instance,
[6] for a proof). We now summarize the preceding discussion and prove a result for the case
n = p.

Theorem 79. If 1 ≤ p < n and

1

p∗
=

1

p
− 1

n
, (484)
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then W 1,p pRnq is continuously embedded in Lq pRnq for all q ∈ rp, p∗s. Moreover, W 1,n pRnq is
continuously embedded in Lq pRnq for all n ≤ q <∞. If p > n, then W 1,p pRnq is continuously
embedded in the Hölder space C0,γ

`

Rn
˘

with γ = 1− n/p.

Proof. It only remains to prove the statement regarding W 1,n pRnq. Arguing as in the
proof of Theorem 77, we see that

‖u‖
L

n
n−1 pRnq

≤
N∏
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥ 1
n

L1pRnq

(485)

when u ∈ C1
c pRnq. We apply (485) to u(x)|u(x)|m−1 with m ≥ 1 and proceed as in the proof

of Theorem 77 to obtain

‖u‖m
L
mn
n−1 pRnq

≤ m‖u‖m−1

L
(m−1)n
n−1 pRnq

‖Du‖LnpRnq. (486)

Applying Young’s inequality yields

‖u‖
L
mn
n−1 pRnq

≤ C

ˆ

‖u‖
L

(m−1)n
n−1 pRnq

+‖Du‖LnpRnq

˙

. (487)

Now we let m = n to obtain

‖u‖
L
n2
n−1 pRnq

≤ C‖u‖W 1,npRnq. (488)

It follows that W 1,p pRnq is continuously embedded in Lq pRnq for all n ≤ q ≤ n2/(n− 1). By
repeating this argument with m = n+ 1, m = n+ 2, etc., we obtain the desired result. �

Since C1
c pΩq is dense in W 1,p

0 pΩq, we have the following analogous results for W 1,p
0 pΩq.

Theorem 80. Suppose that Ω is an open set in Rn. If 1 ≤ p < n and

1

p∗
=

1

p
− 1

n
, (489)

then W 1,p
0 pΩq is continuously embedded in Lq pΩq for all q ∈ rp, p∗s. The space W 1,n

0 pΩq

is continuously embedded in Lq pΩq for all n ≤ q < ∞. Also, if p > n, then W 1,p
0 pΩq is

continuously embedded in C0,γ
`

Ω
˘

with γ = 1− n
p
.

If Ω is a bounded open set in Rn, then Hölder’s inequality implies that Lq pΩq is continuously
embedded in Lp pΩq provided q > p. Moreover, in this case C

`

Ω
˘

is continuously embedded
in Lp pΩq for all 1 ≤ p ≤ ∞. So we have the following:

Theorem 81. Suppose that Ω ⊂ Rn is bounded. If 1 ≤ p < n and

1

p∗
=

1

p
− 1

n
, (490)

then W 1,p
0 pΩq is continuously embedded in Lq pΩq for all 1 ≤ q ≤ p∗. The space W 1,n

0 pΩq

is continuously embedded in Lq pΩq for all 1 ≤ q < ∞. Finally, if p > n, then W 1,p
0 pΩq is

continuously embedded in Lq pΩq for all 1 ≤ q ≤ ∞.

If Ω is a Lipschitz domain, then we may use the extension theorem together with Theorem 79
to establish the following.
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Theorem 82. Suppose that Ω ⊂ Rn is a bounded Lipschitz domain. If 1 ≤ p < n,

1

p∗
=

1

p
− 1

n
(491)

and 1 ≤ q ≤ p∗, then there is a constant C such that

‖u‖LqpΩq≤ C‖u‖W 1,ppΩq (492)

for all u ∈ W 1,p pΩq. For all p ≤ q <∞, there exists a constant C ′ such that

‖u‖LqpΩq≤ C ′‖u‖W 1,npΩq (493)

for all u ∈ W 1,p pΩq. If p > n and γ = 1 − n/p, then every u ∈ W 1,p pΩq is equal almost
everywhere equal to an element of C0,γ

`

Ω
˘

, and there is a constant C ′′ such that

‖u‖C0,γpΩq≤ C ′′‖u‖W 1,ppΩq (494)

for all u ∈ W 1,p pΩq.

(495)

Proof. We prove only the first statement; the rest follow in a similar fashion. Since the
boundary of Ω is Lipschitz, there exists a simple (1, p) extension operator E : W 1,p pΩq →
W 1,p pRnq. Let C be a constant such that

‖E rus ‖W 1,ppRnq≤ C‖u‖W 1,ppΩq (496)

for all u ∈ W 1,p pΩq and let C ′ be a constant such that

‖u‖Lp∗pRnq≤ C ′‖u‖W 1,ppRnq (497)

for all u ∈ W 1,p pRnq. Then for all u ∈ W 1,p pΩq, we have

‖u‖Lp∗ pΩq≤ ‖E rus ‖Lp∗ pRnq≤ C ′‖E rus ‖W 1,ppRnq≤ CC ′‖u‖W 1,ppΩq, (498)

which shows that W 1,p pΩq is continuously embedded in Lp
∗

pΩq. By Hölder’s inquality,
Lp
∗

pΩq is continuously embedded in Lq pΩq for all 1 ≤ q ≤ p∗. The first conclusion of the
theorem is now established. �

It is a consequence of the following theorem that if Ω is bounded then the W 1,p
0 pΩq norm is

equivalent to the norm ‖u‖= ‖Du‖LppΩq. This will play an important role in Chapter 4.

Theorem 83 (Poincare’s Inequality). Suppose that Ω is a bounded open subset in Rn, and
that 1 ≤ p <∞. Then there is a constant C such that

‖u‖LppΩq
≤ C ‖Du‖LppΩq

(499)

for all u ∈ W 1,p′

0 pΩq.

Proof. Suppose first that 1 ≤ p < n, and let

1

p∗
=

1

p
− 1

n
. (500)

Then W 1,p pΩq is continuously embedded in Lp
∗

pΩq. Since Ω is bounded, Hölder’s inequality
implies that Lp

∗
pΩq is continuously embedded in Lq pΩq for all 1 ≤ q ≤ p∗. In particular, for
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all 1 ≤ q ≤ p∗, there exists C > 0 such that

‖u‖LqpΩq≤ C‖Du‖LppΩq (501)

whenever u ∈ W 1,p
0 pΩq. Since p∗ > p, the theorem is proved in this case.

Suppose now that p ≥ n. Since

p∗ =
1

p′
− 1

n
=

np

n− p′
→∞ as p′ → n, (502)

we can choose 1 ≤ p′ < n such that p∗ > p. It follows from the above discussion that there
exists a constant C1 such that

‖u‖Lp∗(Ω)≤ C1‖Du‖Lp′ pΩq. (503)

for all u ∈ W 1,p
0 pΩq. Since Ω is bounded and p∗ > p ≥ n > p′, Hölder’s inequality implies

that there exist constants C2 and C3 such that

‖u‖Lp(Ω)≤ C2‖u‖Lp∗ pΩq≤ C1C2‖Du‖Lp′ pΩq≤ C1C2C3‖Du‖LppΩq. (504)

�

By iterating the preceding results, the following theorems can be easily obtained.

Theorem 84. Suppose that Ω ⊂ Rn is Lipschitz domain, that k < n
p
, and that

1

q
=

1

p
− k

n
. (505)

Then there exists a constant C such that

‖u‖LqpΩq≤ C‖u‖Wk,ppΩq (506)

for all u ∈ W k,p pΩq.

Theorem 85. Suppose that Ω ⊂ Rn is a bounded Lipschitz domain, that k > n
p
. Then every

u ∈ W k,p pΩq is almost everywhere equal to a function in Ck−bnpc−1,γ
`

Ω
˘

, where γ is any
positive real number less than 1 if n/p is an integer, and

γ =

⌊
n

p

⌋
+ 1− n

p
(507)

otherwise. Moreover, there exists a constant C such that

‖u‖
C
k−bnpc−1,γ

pΩq
≤ C‖u‖Wk,ppΩq (508)

for all u ∈ W k,p pΩq.

3.9. Compact Embeddings

In this section, we will establish that the embeddings discussed in the preceding section are,
in fact, compact. We say a Banach space X is compactly embedded in the Banach space Y
if there exists a compact injective map X → Y . Usually X is a subset of Y and the mapping
under consideration is the inclusion map.
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Theorem 86. Suppose that Ω is a bounded open set in Rn. If 1 ≤ p < n then W 1,p
0 pΩq is

compactly embedded in Lq pΩq for all 1 ≤ q < p∗, where

1

p∗
=

1

p
− 1

n
. (509)

If p > n, then W 1,p
0 pΩq is compactly embedded in C

`

Ω
˘

. Moreover, W 1,n
0 pΩq is compactly

embedded in Lq pΩq for all n ≤ q < ∞. In particular, W 1,p
0 pΩq is compactly embedded in

Lp pΩq for all 1 ≤ p <∞.

Proof. When p > n, the theorem follows immediately from the the Arzelá-Ascoli theo-
rem and the fact that W 1,p

0 pΩq is continuously embedded in C0,γ
`

Ω
˘

for some γ > 0. When

p = n, the theorem reduces to the case p < n since W 1,n
0 pΩq is continuously embedded in

W 1,p
0 pΩq for all p < n (since Ω is bounded) and p∗ →∞ as p→ n. So we need to prove the

theorem only in the case 1 ≤ p < n.

We will first show that W 1,p
0 pΩq is compactly embedded in L1 pΩq by showing that if A is

a bounded set in W 1,p
0 pΩq, then A is totally bounded in L1 pΩq. Recall that a set is totally

bounded if given ε > 0 then exist a covering of A by a finite collection of open balls of radius
ε.

We claim that it suffices to consider the case in which A ⊂ C1
c pΩq since C1

c pΩq is dense in
W 1,p

0 pΩq. To see this, we first let C ′ be a constant such that

‖f‖L1pΩq≤ C ′‖f‖W 1,ppΩq (510)

for all f ∈ W 1,p pΩq. Note that W 1,p
0 pΩq is embedded in L1 pΩq since Ω is bounded. If A is a

bounded subset of W 1,p
0 pΩq and ε > 0, then for each u ∈ A, we choose v ∈ C1

c

`

Ω
˘

such that

‖u− v‖W 1,p
0 pΩq

< ε
2C′

. The set A′ of functions v formed in this fashion is bounded in W 1,p
0 pΩq.

If it is totally bounded in L1 pΩq, then we may choose a finite collection B1, . . . , Bm of open
balls of radius ε

2
in L1 pΩq with centers c1, . . . , cm which cover A′. In this event, if u ∈ A, v

is the corresponding element of A′, and cj is the center of a ball in L1 pΩq of radius ε
2

which
contains v, then

‖u− cj‖L1pΩq ≤ ‖u− v‖L1pΩq+‖v − cj‖L1pΩq

< C ′‖u− v‖W 1,p
0 pΩq

+
ε

2
< ε.

(511)

So the open balls of radius ε centered at the points c1, . . . , cm cover A.

To reiterate, we assume without loss of generality that A ⊂ C1
c

`

Ω
˘

such that ‖u‖W 1,p
0 pΩq

≤ 1

for all u ∈ A. For each h > 0, we define

Ah = {ηh ∗ u : u ∈ A} . (512)
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Then Ah is bounded in C
`

Ω
˘

for

|ηh ∗ u(x)| = h−n
ˇ

ˇ

ˇ

ˇ

∫
|y|≤h

η
´y

h

¯

u px− yq dy

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

∫
|z|≤1

η pzqu px− hzq dz

ˇ

ˇ

ˇ

ˇ

≤ C

ˇ

ˇ

ˇ

ˇ

∫
|z|≤1

u px− hzq dz

ˇ

ˇ

ˇ

ˇ

≤ C‖u‖L1pΩq.

(513)

We observe that

|Di pηh ∗ u(x)q| = h−n
ˇ

ˇ

ˇ

ˇ

∫
|x−y|≤h

Diη

ˆ

x− y
h

˙

u(y) dy

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

∫
|z|≤1

Diη pzqu(x− hz) dz

ˇ

ˇ

ˇ

ˇ

≤ sup
x∈Ω
|Dη(x)|‖u‖L1pΩq

(514)

for all i = 1, . . . , n. Thus

|Duh(x)| ≤ C‖u‖L1pΩq (515)

for all x ∈ Ω, where uh = ηh ∗ u. It follows that

|uh(x)− uh(x+ δ)| =

ˇ

ˇ

ˇ

ˇ

∫ 1

0

d

dt
uh(x+ tδ) dt

ˇ

ˇ

ˇ

ˇ

≤
ˇ

ˇ

ˇ

ˇ

∫ 1

0

Duh(x+ tδ) · δ dt
ˇ

ˇ

ˇ

ˇ

≤ C|δ|‖u‖L1pΩq.

(516)

In particular, Ah is equicontinuous.

It follows from the Arzelá-Ascoli theorem that Ah is precompact in C
`

Ω
˘

. In particular, Ah
is totally bounded in C

`

Ω
˘

. Since C
`

Ω
˘

is continuously embedded in L1 pΩq, it follows that
Ah is totally bounded in L1 pΩq.

Now we observe that

|u(x)− ηh ∗ u(x)| ≤
∫
|z|≤1

η(z) |u(x)− u(x− hz)| dz

=

∫
|z|≤1

η(z)

ˇ

ˇ

ˇ

ˇ

∫ h

0

d

dt
pu(x− tz)q dt

ˇ

ˇ

ˇ

ˇ

dz

≤
∫
|z|≤1

η(z)

ˇ

ˇ

ˇ

ˇ

∫ h

0

Du(x− tz) · z dt
ˇ

ˇ

ˇ

ˇ

dz

≤
∫
|z|≤1

η(z)

∫ h

0

|Du(x− tz)| dt dz.

(517)
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and we integrate over x to obtain∫
Ω

|u(x)− ηh ∗ u(x)| dx ≤
∫

Ω

∫
|z|≤1

η(z)

∫ h

0

|Du(x− tz)| dt dz dx

≤ ‖Du‖L1pΩq

∫
|z|≤1

η(z)

∫ h

0

dt dz

≤ Ch‖Du‖L1pΩq

≤ Ch.

(518)

(we note that u has compact support in Ω, so that this procedure is sensible for sufficiently
small h). It follows from this estimate that A is totally bounded in L1 pΩq (since uh is
uniformly close to u in the L1 norm).

Now we suppose that q < p∗ = 1/p − 1/n. We will use the fact that if 0 < p < q < r ≤ ∞
and

1

q
=
λ

p
+

1− λ
r

, (519)

then

‖f‖q≤ ‖f‖λp‖f‖1−λ
r (520)

(see, for instance, Chapter 6 of [8]). We apply this identity to obtain

‖u‖LqpΩq≤ ‖u‖λL1pΩq‖u‖1−λ
Lp∗ pΩq

. (521)

Now it follows from the embedding theorem that there is a constant C such that

‖u‖LqpΩq≤ C‖u‖λL1pΩq‖u‖1−λ
W 1,p

0 pΩq
(522)

Since A is precompact in L1 pΩq and bounded in W 1,p
0 pΩq, it follows easily from this inequality

that it is precompact in Lq pΩq. �

By combining the previous theorem with the Sobolev extension theorem, we easily obtain
the following result.

Theorem 87. Suppose that Ω is a bounded Lipschitz domain in Rn. If 1 ≤ p < n then
W 1,p pΩq is compactly embedded in Lq pΩq for all 1 ≤ q ≤ p∗, where

1

p∗
=

1

p
− 1

n
. (523)

If p > n, then W 1,p pΩq is compactly embedded in C
`

Ω
˘

. Moreover, W 1,n pΩq is compactly
embedded in Lq pΩq for all n ≤ q < ∞. In particular, W 1,p pΩq is compactly embedded in
Lp pΩq for all 1 ≤ p <∞.

It is straightforward to extend these theorems to the spaces W k,p pΩq by iterating them.
We observe, in particular, that Hk+1 pΩq is compactly embedded in Hk pΩq whenever Ω is a
Lipschitz domain and Hk+1

0 pΩq is compactly embedded in Hk
0 pΩq when Ω is a bounded open

set in Rn.
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Exercise 30. Suppose that Ω a bounded open set in Rn, and that s > t > 0 are real numbers.
Show that Hs

0 pΩq is compactly embedded in H t
0 pΩq. (Hint: use the “Fourier” Sobolev norm

for fractional order spaces.)

3.10. Difference Quotients

In this section, we discuss a mechanism for establishing the weak differentiability of a function
and for estimating the Lp norms of its derivatives. The results of this section will be used to
establish the regularity of weak solutions of elliptic boundary value problems in Chapter 5.

Suppose that Ω is a bounded open set in Rn. We denote by ei the vector whose ith component
is 1 and whose remaining components are 0. For each i = 1, . . . , n, we define the difference
quotient of u in the direction ei via the formula

∆h
i u(x) =

u(x+ hei)− u(x)

h
. (524)

We denote by ∆hu(x) the vector

∆hu(x) =

¨

˚

˚

˝

∆h
1u(x)

∆h
2u(x)

...
∆h
nu(x)

˛

‹

‹

‚

(525)

and define ∥∥∆hu
∥∥
p

=
`

‖∆h
1u(x)‖pp+ · · ·+ ‖∆h

nu(x)‖pp
˘1/p

(526)

for 1 ≤ p <∞ and ∥∥∆hu
∥∥
∞ = ‖∆h

1u(x)‖∞+ · · ·+ ‖∆h
nu(x)‖∞. (527)

Theorem 88. Suppose that Ω is a bounded open set in Rn, that p ≥ 1 is a real number, and
that 1 ≤ i ≤ n is an integer. Suppose also that Ω′ is an open set such that Ω′ ⊂⊂ Ω. Then∥∥∆h

i u(x)
∥∥
Lp(Ω′)

≤ ‖Diu‖Lp(Ω) (528)

whenever 0 < |h|< dist(Ω′, ∂Ω).

Proof. We first suppose that u ∈ W k,p(Ω) ∩ C∞(Ω). Then

∆h
i u(x) =

u(x+ hei)− u(x)

h
=

1

h

∫ h

0

Diu(x1, . . . , xi−1, xi + t, xi+1, . . . , xn) dt (529)

for all x ∈ Ω′. If p =∞, then by taking absolute values on both sides of (529) we obtain
ˇ

ˇ∆h
i u(x)

ˇ

ˇ ≤ sup
x∈Ω′,0<t<dist(Ω′,∂Ω)

|Diu(x1, . . . , xi−1, xi + t, xi+1, . . . , xn)| ≤ sup
x∈Ω

|Diu(x)| , (530)
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from which we conclude that (528) holds when p = ∞ and u is infinitely differentiable.
Otherwise, we take the pth power of both sides of (529) to obtain

ˇ

ˇ∆h
i u(x)

ˇ

ˇ

p
=

1

hp

ˇ

ˇ

ˇ

ˇ

∫ h

0

Diu(x1, . . . , xi−1, xi + t, xi+1, . . . , xn) dt

ˇ

ˇ

ˇ

ˇ

p

≤ 1

hp

ˆ∫ h

0

|Diu(x1, . . . , xi−1, xi + t, xi+1, . . . , xn)| dt

˙p (531)

We see from Hölder’s inequality that∫ h

0

|Diu(x1, . . . , xi−1, xi + t, xi+1, . . . , xn)| dt

≤h1/q

ˆ∫ h

0

|Diu(x1, . . . , xi−1, xi + t, xi+1, . . . , xn)|
p dt

˙1/p

,

(532)

where
1

p
+

1

q
= 1. (533)

By inserting (532) into (531), we obtain

ˇ

ˇ∆h
i u(x)

ˇ

ˇ

p ≤ hp/q−p
∫ h

0

|Diu(x1, . . . , xi−1, xi + t, xi+1, . . . , xn)|
p dt

=
1

h

∫ h

0

|Diu(x1, . . . , xi−1, xi + t, xi+1, . . . , xn)|
p dt.

(534)

Note that p/q− p = −1 follows from (533). Since Diu is continuous, the integral mean value
theorem implies that for each x ∈ Ω′, there exists 0 ≤ ξx ≤ h such that

1

h

∫ h

0

|Diu(x1, . . . , xi−1, xi + t, xi+1, . . . , xn)|
p dt = |Diu(x1, . . . , xi−1, xi + ξx, xi+1, . . . , xn)|

p

= |Diu(x+ ξxei)|
p .

(535)
We insert (535) into (534) and integrate over Ω′ in order to obtain∫

Ω′

ˇ

ˇ∆h
i u(x)

ˇ

ˇ

p
dx =

∫
Ω′

|Diu(x+ ξxei)|
p dx

≤
∫

Ω

|Diu(x))|
p dx,

(536)

from which we conclude that (528) holds for all 1 ≤ p < ∞ as well as p = ∞ when u is in
C∞(Ω)∩W k,p(Ω). That (528) holds for arbitrary u ∈ W k,p(Ω) now follows from Theorem 57
— that is, the observation that C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω). �

Note that ∆h
i u is an element of Lp(Ω′) when u ∈ Lp(Ω) whenever 0 < |h|< dist(Ω′, ∂Ω); in

fact, ∥∥∥∥u(·+ hei)− u(·)
h

∥∥∥∥
Wk,p(Ω′)

≤ 2

h
‖u‖Wk,p(Ω). (537)

Theorem 88 is useful because it gives us a bound on the Lp(Ω′) norm of ∆hu which is
independent of h. We now establish that the converse also holds; that is, if the Lp norm
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of ∆h
i u is bounded independently of h, then the weak derivative Diu exists and satisfies the

same bound.

Theorem 89. Suppose that Ω is a bounded open set in Rn, that 1 < p <∞ is a real number,
that 1 ≤ i ≤ n is an integer, and that u ∈ Lp(Ω). Suppose also that there exists a constant
C > 0 such that whenever Ω′ is an open set with Ω′ ⊂⊂ Ω and 0 < h < dist(Ω′, ∂Ω),∥∥∆h

i u
∥∥
Lp(Ω′)

≤ C (538)

Then the weak derivative Diu exists in Ω and

‖Diu‖Lp(Ω)≤ C. (539)

Proof. We let i be any integer 1 ≤ i ≤ n and choose a sequence Ω1 ⊂ Ω2 ⊂ · · · of open
sets contained in Ω such that

Ω =
∞⋃
j=1

Ωj. (540)

Since bounded sets in Lp(Ω1) are weakly compact (see Theorem 34 in Section 2.5) and

‖∆h
i u‖Lp(Ω1)≤ C (541)

for all sufficiently small h, there exists a sequence {h1(j)}∞j=1 converging to 0 and a function
v1 ∈ Lp(Ω1) such that ‖v1‖Lp(Ω1)≤ C, and

lim
j→∞

∫
Ω1

∆
h1(j)
i u(x)ψ(x) dx =

∫
Ω1

v1(x)ψ(x) dx (542)

for all ψ ∈ C∞c (Ω1). We apply the same logic in order to conclude that there is a subsequence
{h2(j)} of {h1(j)} — that is, there exists a function i : Z+ → Z+ such that h2(j) = h1(i(j))
for all j ≥ 1 — and a function v2 ∈ L2(Ω2) such that ‖v2‖Lp(Ω2)≤ C and

lim
j→∞

∫
Ω2

∆
h2(j)
i u(x)ψ(x) dx =

∫
Ω2

v2(x)ψ(x) dx (543)

for all ψ ∈ C∞c (Ω2). By the uniqueness of weak limits, v2(x) = v1(x) for almost all x ∈ Ω1.
Consequently, we may replace v1 and v2 by a single function v ∈ Lp(Ω2). Continuing in
this fashion, we obtain functions v ∈ Lp(Ω) and hk(j) such that ‖v‖Lp(Ω)≤ C, hk+1(j) is a
subsequence of hk(j) and

lim
j→∞

∫
Ωk

∆
hk(j)
i u(x)ψ(x) dx =

∫
Ωk

v(x)ψ(x) dx (544)

for all ψ ∈ C∞c (Ωk). We now define a sequence {sk} via the formula

sk = hk(k); (545)

that is, sk is the diagonalization of hk(j).

Now suppose that ψ ∈ C∞c pΩq. Since sk → 0, there exists l such that sk < dist(supp(ψ), ∂Ω)
for all k ≥ l. Consequently,∫

Ω

∆sk
i u(x)ψ(x) dx =

∫
supp(ψ)

∆sk
i u(x)ψ(x) dx (546)
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is well-defined for k ≥ l and

lim
k→∞

∫
Ω

∆sk
i u(x)ψ(x) dx =

∫
Ω

v(x)ψ(x) dx. (547)

But for l ≥ k, we also have

lim
k→∞

∫
Ω

∆sk
i u(x)ψ(x) dx = lim

k→∞

∫
Ω

u(x)∆−ski ψ(x) dx = −
∫

Ω

u(x)Diψ(x) dx. (548)

From (547) and (548) we obtain∫
Ω

u(x)Diψ(x) dx = −
∫

Ω

v(x)ψ(x) dx. (549)

Since ψ is an arbitrary element of C∞c (Ω), we conclude v is the ith weak derivative of u. �

We close this section by characterizing the spaces W 1,∞
loc (Ω) for arbitrary open sets in Rn and

W 1,∞(Ω) in the event that Ω is a bounded Lipschitz domain.

Theorem 90. Suppose that Ω is an open subset of Rn. Then W 1,∞
loc (Ω) = C0,1(Ω).

Proof. We suppose first that u ∈ C0,1(Ω), and that 1 ≤ i ≤ n is an integer. If Ω′ ⊂⊂ Ω,
then for all 0 < h < dist(Ω′, ∂Ω)

‖∆h
i u‖L∞(Ω′)≤ C, (550)

where C is the Lipschitz constant for u in Ω′. Since Ω′ is bounded, (550) implies that the
sequence {∆h

i u} is bounded in L2(Ω′). Consequently, there is a sequence hj → 0 and a

function v ∈ L2(Ω′) such that ∆
hj
i u ⇀ v weakly in L2(Ω′). In particular,∫

Ω′
∆
hj
i u(x)ϕ(x) dx→

∫
Ω′
v(x)ϕ(x) dx (551)

for all ϕ ∈ C∞c pΩ′q. We observe that∫
Ω′

∆
hj
i u(x)ϕ(x) dx = −

∫
Ω′
u(x)∆

−hj
i ϕ(x) dx→ −

∫
Ω′
u(x)Diϕ(x) dx. (552)

We combine (551) and (552) in order to obtain∫
Ω′
u(x)Diϕ(x) dx = −

∫
Ω′
v(x)ϕ(x) dx, (553)

from which we conclude that Diu = v. From (550) and (551) we see that
ˇ

ˇ

ˇ

ˇ

∫
Ω′
v(x)ϕ(x) dx

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

lim
j→∞

∫
Ω′

∆
hj
i u(x)ϕ(x) dx

ˇ

ˇ

ˇ

ˇ

≤= C‖ϕ‖L1(Ω′) (554)

for all ϕ ∈ L1(Ω′). We conclude that v ∈ L∞(Ω′) (see, for instance, Theorem 6.13 in [8]).

We now suppose that u ∈ W 1,∞
loc (Ω), and that Ω′ is an open ball contained in Ω. For each

0 < h < dist(Ω′, ∂Ω), we define uh via the formula

uh(x) = ηh ∗ u(x), (555)

where ηh denotes the standard mollifier (as usual). Since u ∈ Lp(Ω′), the sequence uh
converges to u for almost all x ∈ Ω′; in fact, in converges at every point x in the Lebesgue
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set L(f) of f . We apply Theorem 55 in order to see that

‖Duh‖L∞(Ω′)= ‖D(ηh∗u)‖L∞(Ω′)‖ηh∗Du‖L∞(Ω′)≤ ‖ηh‖1‖Du‖L∞(Ω′)= ‖Du‖L∞(Ω′)<∞ (556)

for all 0 < h < dist(Ω′, ∂Ω). Note that in (556) we use Du to refer to the weak gradient of
u. Since uh ∈ C∞(Ω′),

uh(x)− uh(y) =

∫ 1

0

Duh(y + t(x− y)) dt · (x− y) (557)

for all x, y ∈ Ω′. We conclude from (557) that

|uh(x)− uh(y)| ≤ ‖Du‖L∞(Ω′)|x− y| (558)

for all x, y ∈ Ω′ and all sufficiently small h. By taking the limit as h → 0 in (558), we see
that

|u(x)− u(y)| ≤ ‖Du‖L∞(Ω′)|x− y| (559)

for all x, y in the Lebesgue set of f . It follows that u agrees almost everywhere with a function
u∗ which is Lipschitz continuous in Ω′. Note that we define u∗ as follows. For each x /∈ L(f),
we choose a sequence {xn} in L(f) such that xn → x. From (559), we conclude that {u(xn)}
is Cauchy and has a limit. We set u∗(x) = limn u(xn). This uniquely defines a representation
of u in C0,1(Ω′). �

By combining Theorem 90 with Theorem 68, we obtain the following:

Theorem 91. Suppose that Ω ⊂ Rn is a bounded Lipschitz domain. Then W 1,∞(Ω) =
C0,1

`

Ω
˘

.



CHAPTER 4

Second Order Linear Elliptic Boundary Value Problems

In this chapter, we introduce variational formulations of certain second order linear elliptic
boundary value problems and discuss their solvability.

4.1. Variational Formulations

Suppose that L is a differential operator of the form

L rus (x) = −aij(x)DiDju(x) + bi(x)Diu(x) + c(x)u(x), (560)

and that u is a classical solution of the equation

L rus (x) = f(x) (561)

in the domain Ω ⊂ Rn which vanishes on the boundary of Ω. By applying the divergence
theorem (i.e., integrating by parts) we see that∫

Ω

Dju(x)Di

`

aij(x)v(x)
˘

+bi(x)Diu(x)v(x) + c(x)u(x)v(x) dx =

∫
Ω

f(x)v(x) dx (562)

for all sufficiently smooth functions v. Note that we are assuming that u vanishes on ∂Ω, so
that no boundary terms emerge in (562). The central observation of the variational theory
of partial differential equations is that (562) is often sufficient to characterize the solution u
of the partial differential equation (561). More specifically, under mild assumptions on the
operator L, the forcing term f and the domain Ω, if (562) holds for all v in a suitable space of
test functions then u solves (561). The great advantage of the variational formulation (562)
over the equation (561) is that it requires less of u. In particular, (562) is sensible when u
has only one weak derivative whereas u must have two classical derivatives in order for (561)
to be meaningful.

A weakly differentiable function u which satisfies (562) is known as a weak solution of the
equation (561). A twice weakly differentiable function u such that (560) holds almost ev-
erywhere is called a strong solution of (561). If u is twice differentiable and satisfies (560)
everywhere, then it is a classical solution of (561). A common approach to the analysis of
a partial differential equation — one which we will take in this chapter and the next — is
to first establish the existence of weak solutions under minimal regularity assumptions and
then go on to prove that under slightly stronger conditions, weak solutions are in fact strong
or classical solutions.

In the interests of imposing the weakest possible regularity conditions on the operator L, we
will consider second order linear partial differential equations in divergence form. That is,

86
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partial differential operators of the form

L rus (x) = −Di

`

aij(x)Dju(x) + bi(x)u(x)
˘

+ ci(x)Diu(x) + d(x)u(x), (563)

where Ω is a bounded open set in Rn. The operator L is no longer a mapping which takes
functions to functions; instead, it is a map from an appropriately chosen closed subspace V
of H1(Ω) into its dual space V ∗. In particular, it maps the function u to the mapping V → R
defined via

v →
∫

Ω

aij(x)Diu(x)Djv(x) + bi(x)u(x)Div(x) + ci(x)Diu(x)v(x) + d(x)u(x)v(x) dx. (564)

The choice of the subspace V will depend on the boundary conditions being imposed on the
solution; however, we will always require that V contain H1

0 (Ω). This ensures, among other
things, that if L rus = f in the sense that

〈L rus , v〉 = 〈f, v〉 (565)

for all v ∈ V , then (562) holds for all test functions v in C∞c (Ω) and it is reasonable to say
that L rus = f “in the interior of Ω.” We will suppose that the coefficients aij, bi, ci and
d are bounded, measurable functions Ω → R. This last assumption is sufficient since the
expression (564) does not involve any derivatives of the coefficients aij. Moreover, we will
assume that L is strongly elliptic; that is, we suppose that there exists a real number λ > 0
such that ∑

aijξiξj ≥ λ|ξ|2 (566)

for all ξ ∈ Rn.

Note that in (564) we have implicitly embedded the space V in the dual space V ∗. In
particular, we have embedded V into V ∗ through the composition map

V
ι−−−→ L2(Ω)

ϕ−−−→ pL2(Ω)q
∗ T−−−→ V ∗, (567)

where ι is the inclusion map

ι : V → L2(Ω), (568)

ϕ is the isometric isomorphism which takes u ∈ L2(Ω) to the bounded linear functional
fu : L2(Ω)→ R defined via

fu(v) =

∫
Ω

u(x)v(x) dx, (569)

and T : pL2(Ω)q
∗ → V ∗ is the linear map defined by

T rφs = φ|V . (570)

Note that the map T is bounded (obviously), injective (because V contains C∞c (Ω) and is
therefore dense in L2(Ω)), and has dense range (since V is reflexive). When u ∈ L2(Ω) and
v ∈ V , the duality pairing between V and V ∗ agrees with the L2(Ω) norm:

〈v, u〉V×V ∗ = 〈v, u〉L2(Ω) =

∫
Ω

v(x)u(x) dx. (571)

Note also that this embedding of V into V ∗ is plainly not compatible with the usual identi-
fication of the Hilbert space V with its dual space.
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4.2. The Dirichlet Problem Sans Lower Order Terms

Suppose that Ω is a bounded open set in Rn, that L is a second order partial differential
operator of the form

L rus (x) = −Di

`

aij(x)Dju(x)
˘

(572)

with aij are bounded measurable functions Ω→ R (i.e. elements of L∞ pΩq), and that there
exists a real number λ > 0 such that

aij(x)ξiξj ≥ λ |ξ|
2 (573)

for all x ∈ Ω and ξ ∈ Rn (that is, we are assuming that L is strongly elliptic in Ω). The
operator L is a mapping from H1

0 (Ω) → H−1(Ω); in particular, L rus is the mapping which
takes v ∈ H1

0 (Ω) to ∫
Ω

aij(x)Dju(x)Div(x) dx. (574)

A function u ∈ H1
0 pΩq is a weak solution of the Dirichlet boundary value problem{

L rus (x) = f(x) in Ω

u(x) = 0 on ∂Ω,
(575)

where f ∈ H−1 pΩq, if

L rus (v) = 〈f, v〉 (576)

for all v ∈ H1
0 pΩq. In (576), 〈f, v〉 refers to the duality pairing of V ∗ and V .

Theorem 92. The mapping L defined via formula (572) is bounded and coercive.

Proof. The aij are bounded, so there exists a real number η > 0 such that
ˇ

ˇaij(x)
ˇ

ˇ ≤ η (577)

for all i, j = 1, . . . , n and x ∈ Ω. Using (577) and Hölder’s inequality, we see that

|〈L rus , v〉| =

ˇ

ˇ

ˇ

ˇ

∫
Ω

aij(x)Dju(x)Div(x) dx

ˇ

ˇ

ˇ

ˇ

≤ η
n∑

i,j=1

∫
Ω

|Dju(x)Div(x)| dx

≤ η

n∑
i,j=1

‖Dju‖2 ‖Div‖2

≤ η
n∑

i,j=1

‖Du‖2 ‖Dv‖2

≤ n2η‖u‖H1
0 (Ω) ‖v‖H1

0 (Ω)

(578)

for all u and v in H1
0 pΩq. We conclude that L is bounded.

The strong ellipticity of L implies that

aij(x)Dju(x)Diu(x) ≥ λ |Du(x)|
2 (579)
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for all u ∈ H1
0 pΩq. From (579) we conclude that

〈L rus , u〉 =

∫
Ω

aij(x)Dju(x)Diu(x) dx ≥ λ

∫
Ω

|Du(x)|
2 dx = λ‖Du‖2

2. (580)

According to Poincaré’s inequality, there exists a real number β > 0 such that

‖u‖2≤ β‖Du‖2 (581)

for all u ∈ H1
0 pΩq. By combining (580) and (581) we see that

〈L rus , u〉 =

∫
Ω

aij(x)Dju(x)Diu(x) dx

≥ λ

∫
Ω

|Du(x)|
2 dx

= λ‖Du‖2
2

≥ λ

2
‖Du‖2

2+
λ

2β
‖u‖2

2

≥ min

{
λ

2
,
λ

2β

}
‖u‖2

H1
0 (Ω)

(582)

for all u ∈ H1
0 pΩq, where C is an appropriately chosen constant. We conclude that L is

coercive. �

In light of Theorem 92, we can apply the Lax-Milgram theorem (Theorem 27 in Section 2.4)
in order to conclude that (575) admits a unique weak solution u, and that there exists a
constant C (depending on L and Ω but not f) such that

‖u‖H1
0 (Ω) ≤ C ‖f‖H−1(Ω) . (583)

Note that if aij = aji for all i, j = 1, . . . , n, then L defines an inner product on H1
0 (Ω) through

the formula

〈u, v〉 = 〈L[u], v〉 (584)

and the Riesz representation theorem suffices to establish the existence of weak solutions of
(575).

We now reduce the inhomogeneous boundary value problem{
L rus (x) = f(x) in Ω

u(x) = g on ∂Ω
(585)

to a homogeneous problem of the form (575). As before, we assume that f ∈ H−1 pΩq and,
in addition, we assume that g is the trace of a function ψ in H1 pΩq. In order for the trace
operator to be defined, we will need to make some assumptions on the regularity of the
boundary of Ω. We will assume that Ω is a bounded Lipschitz domain. We let w be a weak
solution of the boundary value problem{

L rws (x) = f(x)− L rψs (x) = f(x) +Di

`

aij(x)Djψ(x)
˘

in Ω

w(x) = 0 on ∂Ω.
(586)
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By f(x) +Di paij(x)Djψ(x)q, we mean the bounded linear functional on H1
0 pΩq defined via

v → 〈f, v〉+

∫
Ω

aijDjψ(x)Div(x) dx. (587)

We observe that
ˇ

ˇ

ˇ

ˇ

∫
Ω

aijDjψ(x)Div(x) dx

ˇ

ˇ

ˇ

ˇ

≤ C‖ψ‖H1(Ω) ‖v‖H1
0 (Ω) (588)

(the argument is identical to that used in the proof of Theorem 92 to show that B is bounded)
so that

‖f +Di

`

aijDjψ
˘

‖H−1(Ω)≤ C
`

‖f‖H−1(Ω)+‖ψ‖H1(Ω)

˘

. (589)

From (586), we see that ∫
Ω

L rw + ψs (x)v(x) dx = 〈f, v〉 (590)

for all v ∈ H1
0 pΩq , and that the trace of w+ψ is g. In other words, w+ψ is a weak solution

of boundary value problem (585). Moreover, the Lax-Milgram theorem together with (589)
implies that

‖w‖H1(Ω)≤ C
`

‖f‖H−1(Ω)+‖ψ‖H1(Ω)

˘

, (591)

from which we obtain the bound

‖w + ψ‖H1(Ω)≤ C
`

‖f‖H−1(Ω)+‖ψ‖H1(Ω)

˘

(592)

for the solution w + ψ of (585). We summarize our conclusions in the following theorem.

Theorem 93. Suppose that Ω is a bounded open set in Rn with Lipschitz boundary, that
T : H1 pΩq → L2 p∂Ωq denotes the trace operator, and that L is a strongly elliptic operator
of the form

L rus (x) = −Di

`

aijDju
˘

(593)

with aij bounded, measurable functions. Then for each f ∈ H−1(Ω) and ψ ∈ H1(Ω) there is
a unique weak solution u of the Dirichlet problem{

L rus (x) = f(x) in Ω

u(x) = T rψs (x) on ∂Ω.
(594)

Moreover, there is a constant C > 0 depending on Ω and L such that

‖u‖H1(Ω)≤ C
´

‖f‖H−1(Ω)+‖ψ‖H1
0 (Ω)

¯

(595)

whenever u is the weak solution of (594).

Suppose that T
”

ψ̃
ı

= T rψs, that u is the solution of (594) constructed in the preceding

theorem, and that ũ is the solution of{
L rũs (x) = f(x) in Ω

ũ(x) = T
”

ψ̃
ı

(x) on ∂Ω
(596)
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constructed in the same fashion. Then u− ũ solves{
L rũ− us (x) = 0 in Ω

u(x)− ũ(x) = 0 on ∂Ω.
(597)

It obviously follows that u − ũ = 0; i.e., u = ũ. In particular, the solution of the boundary
value problem depends only on the trace of of ψ.

Theorem 74 characterizes the traces of functions in H1 pΩq when Ω is a Lipschitz domain. In
particular, it asserts that for every g ∈ H1/2 p∂Ωq, there exists a function ψ ∈ H1 pΩq whose
trace is g and such that

‖ψ‖H1(Ω)≤ C‖g‖H1/2(∂Ω). (598)

We obtain the following theorem by combining this observation with Theorem 93.

Theorem 94. Suppose that Ω is a Lipschitz domain in Rn, and that L is a strongly elliptic
operator of the form

L rus (x) = −Di

`

aijDju
˘

(599)

with aij bounded, measurable functions. Then for every f ∈ H−1(Ω) and every g ∈ H1/2(∂Ω)
there exists a unique weak solution u of the Dirichlet boundary value problem{

L rus (x) = f(x) in Ω

u(x) = g(x) on ∂Ω.
(600)

Moreover, there exists a constant C > 0 which depends on L and Ω such that

‖u‖H1(Ω)≤ C
`

‖f‖H−1(Ω)+‖g‖H1/2(∂Ω)

˘

(601)

whenever u is a weak solution of the boundary value problem (600). In other words, the
operator L⊕T is an isomorphism

H1
pΩq→ H−1

pΩq⊕H1/2
p∂Ωq . (602)

4.3. The Dirichlet Problem for General Second Order Operators

In this section, we treat the Dirichlet boundary value problem{
L rus (x) = f(x) in Ω

u(x) = 0 on ∂Ω
(603)

for a more general class of strongly elliptic second order operators. More specifically, we
suppose that L is of the form

L rus (x) = −Di

`

aij(x)Dju(x) + bi(x)u(x)
˘

+ ci(x)Diu(x) + d(x)u(x) (604)

with aij, bi, ci and d bounded measurable functions Ω → R, and that exists a real number
λ > 0 such that

aij(x)ξiξj ≥ λ |ξ|
2 (605)

for all ξ ∈ Rn. In order to develop existence and uniqueness results for the boundary value
problem (603), we will need to use elementary results from the theory of Fredholm operators
in addition to the Lax-Milgram theorem.
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Since the coefficients of L are bounded, there exists a real number η > 0 such that

‖aij‖L∞(Ω)≤ η (606)

for all i, j = 1, . . . , n,

‖bi‖L∞pΩq+‖ci‖L∞pΩq≤ η (607)

for all i = 1, . . . , n, and ‖d‖L∞pΩq≤ η. We observe that

|〈L rus , v〉|

≤
ˇ

ˇ

ˇ

ˇ

∫
Ω

aij(x)Dju(x)Div(x) + bi(x)u(x)Div(x) + ci(x)Diu(x)v(x) + d(x)u(x)v(x) dx

ˇ

ˇ

ˇ

ˇ

≤
n∑

i,j=1

η‖Dju‖2‖Div‖2+
n∑
i=1

η‖u‖2‖Div‖2+
n∑
i=1

η‖Diu‖2‖v‖2+η‖u‖2‖v‖2

≤ (n2 + 2n+ 1)η‖u‖H1
0 (Ω) ‖v‖H1

0 (Ω),

from which we conclude that the operator L is bounded. We cannot apply the Lax-Milgram
theorem to L directly since it is no longer necessarily coercive. We will proceed by combining
the Lax-Milgram theorem with the Fredholm alternative. In particular, we show that the
operator L+ σI is invertible when σ is a sufficiently large real number.

For each real number σ > 0, we define a new linear partial differential operator Lσ via the
formula

Lσ rus (x) = L rus (x) + σI rus (x), (608)

where I denotes the embedding of H1
0 pΩq into H−1 pΩq. That is, I is the mapping which

takes u ∈ H1
0 pΩq to the mapping ϕu ∈ H−1 pΩq defined via the formula

ϕu pvq =

∫
Ω

u(x)v(x) dx. (609)

Theorem 95. The linear operator I : H1
0 pΩq→ H−1 pΩq is compact.

Proof. We factor I as I = I2I1, where

I1 : H1
0 pΩq→ L2

pΩq (610)

is the inclusion map and

I2 : L2
pΩq→ H−1

pΩq (611)

is the embedding of L2(Ω) into H−1(Ω). According to the Rellich-Kondrachov theorem, I1

is compact. Consequently, the composition I2I1 is as well. �

From (4.3), it is clear that Lσ is bounded. Moreover:

Theorem 96. For all sufficiently large σ, the operator Lσ defined in (608) is coercive.
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Proof. We let u be an arbitrary element of H1
0 (Ω). Using the assumption that L is

strongly elliptic, we obtain

λ

∫
Ω

|Du(x)|
2 dx ≤

∫
Ω

aij(x)Dju(x)Diu(x) dx

= 〈Lσ[u], u〉 −
∫

Ω

`

bi(x) + ci(x)
˘

u(x)Diu(x) dx+ d(x) pu(x)q
2 dx

− σ
∫

Ω

pu(x)q
2 dx.

(612)

By letting

a = (2ε)−1/2u(x) (613)

and

b = (2ε)1/2Diu(x), (614)

where ε is a positive real number which we will choose shortly, in Cauchy’s inequality

2ab ≤ a2 + b2, (615)

we obtain

u(x)Diu(x) ≤ 1

4ε
pu(x)q

2 + ε pDiu(x)q
2 . (616)

We insert (616) into (612) in order to conclude that

λ

∫
Ω

|Du(x)|
2 dx ≤ 〈Lσ[u], u〉+ 2η

n∑
i=1

ˆ

1

4ε

∫
Ω

(u(x))2 dx+ ε

∫
Ω

pDiu(x)q
2 dx

˙

+ pη − σq

∫
Ω

pu(x)q
2 dx

= 〈Lσ[u], u〉+

ˆ

2ηn

4ε
+ η − σ

˙ ∫
Ω

|u(x)|
2 dx+ 2ηε

∫
Ω

|Du|
2 dx,

(617)

where η is as in (607). We rearrange (617) as

pλ− 2ηεq

∫
Ω

|Du(x)|
2 dx+

ˆ

σ − 2ηn

4ε
− η

˙∫
Ω

|u(x)|
2 dx ≤ 〈Lσ[u], u〉 (618)

and let ε = λ
4η

in (618) in order to obtain

λ

2

∫
Ω

|Du(x)|
2 dx+

ˆ

σ − 8η2n+ 4λη

4λ

˙∫
Ω

|u(x)|
2 dx ≤ 〈Lσ[u], u〉 , (619)

from which conclude that Lσ is coercive when σ is sufficiently large. �

We now choose σ > 0 so as to ensure that Lσ is coercive. Since Lσ is bounded and coercive,
the Lax-Milgram theorem implies that for each f ∈ H1

0 pΩq there is a unique element u of
H1

0 pΩq such that

〈Lσ[u], v〉 = pf, vq (620)

for all v ∈ H1
0 (Ω), and that there exists a constant C > 0 such that

‖u‖≤ C‖f‖. (621)
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In other words, the operator L+σI : H1
0 (Ω)→ H−1(Ω) is an isomorphism. It follows that the

operator L is a Fredholm operator of index 0 since it is the sum of the isomorphism pL+ σIq

and the compact operator −σI. We conclude from this observation and Theorem 25 that
the boundary value problem (603) is uniquely solvable for each right-hand side f if and only
if the homogeneous equation {

L rus (x) = 0 in Ω

u(x) = 0 on ∂Ω
(622)

admits only the trivial solution. In the following section, we will give conditions in the
operator L which ensure that this is the case. For now, we use the Fredholm theory to derive
solvability conditions for the problem (603) which involve the adjoint L∗ of L.

We recall that L∗ : H1
0 pΩq→ H−1 pΩq is defined via the relation

〈L rus , v〉 = 〈u, L∗ rvs〉 (623)

for all v ∈ H1
0 pΩq, and that the closure of the image of T is the preannihilator of the kernel

of T ∗ (see Section 2.3). From (623) it is easy to see that L∗ is given by

L∗ rvs (x) = −Di

`

aji(x)Djv(x) + civ(x)
˘

+ bi(x)Div(x) + d(x)v(x). (624)

We let p = dim(ker(L)). Since L is Fredholm of index 0, the dimension of ker(L∗) is also p,
and we let v∗1, . . . , v

∗
p be a basis for ker(L∗) ⊂ H1

0 pΩq. That is, v∗1, . . . , v
∗
p is a basis in the

space of solutions of the homogeneous adjoint problem{
L∗ rus (x) = 0 in Ω

u(x) = 0 on ∂Ω.
(625)

Then f is in the image of L if and only if

f
`

v∗j
˘

= 0 for all j = 1, . . . , p. (626)

In the case where f ∈ L2 pΩq and we identify it with the mapping which takes v ∈ H1
0 pΩq to∫

Ω

f(x)v(x) dx, (627)

(626) is equivalent to ∫
Ω

f(x)v∗l (x) dx = 0 for all l = 1, . . . , p. (628)

In the event that (626) holds, the set of solutions of (603) is

{u+ v : v ∈ ker(L)} , (629)

where u is any particular solution. Since L induces an isomoprhism

H1
0 pΩq /ker(L)→ im(L) ⊂ H−1

pΩq , (630)

there exists a constant C > 0 such that

‖u‖H1
0 pΩq/ker(L)≤ C‖f‖H−1pΩq (631)

whenever u is a weak solution of (603).
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There is an alternative estimate for the Sobolev norms of the solutions of (603) which is
sometimes more useful. Suppose that u is a weak solution of (603) so that∫

Ω

`

aij(x)Dju(x)Div(x) + bi(x)u(x)Div(x) + ci(x)Diu(x)v(x)+

d(x)u(x)v(x)q dx = 〈f, v〉
(632)

for all v ∈ H1
0 pΩq. By taking v = u and rearranging terms, we obtain∫

Ω

aij(x)Dju(x)Diu(x) dx =−
∫

Ω

`

bi(x) + ci(x))u(x)Diu(x) + d(x)u(x)u(x)
˘

dx

+ 〈f, u〉 .
(633)

Now using the boundedness of f , the strong ellipticity of L and Cauchy’s inequality, we see
that

λ‖Du‖2
L2pΩq≤ 2η‖u‖L2pΩq‖Du‖L2pΩq+η‖u‖2

L2pΩq+C1‖f‖H−1pΩq‖u‖H1pΩq, (634)

where C1 is the operator norm of f . We now apply the inequality ab ≤ 1/2(a2 + b2) with

a =
2η
?
λ
‖u‖L2pΩq and b =

?
λ‖Du‖L2pΩq (635)

to obtain

λ‖Du‖2
L2pΩq≤

2η2

λ
‖u‖2

L2pΩq+
λ

2
‖Du‖2

L2pΩq+η‖u‖2
L2pΩq+C1‖f‖H−1pΩq‖u‖H1pΩq. (636)

We rearrange (636) as

λ

2
‖Du‖2

L2pΩq≤
2η2

λ
‖u‖2

L2pΩq+η‖u‖2
L2pΩq+C1‖f‖H−1pΩq‖u‖H1pΩq

(637)

and use Poincaré’s inequality to conclude that there exists a constant C2 > 0 such that

‖u‖2
H1pΩq≤ C2

´

‖u‖2
L2pΩq+‖f‖H−1pΩq‖u‖H1pΩq.

¯

(638)

whenever u is a weak solution of (603). We now apply the inequality ab ≤ 1/2(a2 + b2) with

a =
a

C2‖f‖H−1pΩq and b =
1

?
C2

‖u‖H1pΩq (639)

to see that

‖u‖2
H1pΩq≤ C2

ˆ

‖u‖2
L2pΩq+

C2

2
‖f‖2

H−1pΩq+
1

2C2

‖u‖2
H1pΩq

˙

. (640)

It follows that there exists C > 0 such that

‖u‖H1pΩq≤ C
`

‖u‖L2pΩq+‖f‖H−1pΩq

˘

(641)

whenever u is a weak solution of (603). We summarize our conclusions as follows:

Theorem 97. Suppose that Ω is a bounded open set in Rn, that the operator L : H1
0 (Ω) →

H−1(Ω) defined via

L rus (x) = −Di

`

aij(x)Dju(x) + bi(x)u(x)
˘

+ ci(x)Diu(x) + d(x)u(x) (642)

is strongly elliptic on Ω with coefficients in L∞(Ω). Then the operator L∗ : H1
0 pΩq→ H−1 pΩq

defined via

L∗ rus (x) = −Di

`

aji(x)Dju(x) + ci(x)u
˘

+ bi(x)Diu(x) + d(x)u(x) (643)
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is the adjoint of L. Moreover, if f ∈ H−1 pΩq and v∗1, . . . , v
∗
p is a basis in the space of weak

solutions of the problem {
L∗ rvs (x) = 0 in Ω

v(x) = 0 on ∂Ω,
(644)

then the elliptic boundary value problem{
L rus (x) = f in Ω

u(x) = 0 on ∂Ω,
(645)

has a weak solution if and only if

f pv∗l q = 0 for all l = 1, . . . , p. (646)

Moreover, there exist constants C1 > 0 and C2 > 0 such that

‖u‖H1
0 pΩq/ker(L)≤ C1 ‖f‖H−1pΩq

(647)

and

‖u‖H1pΩq≤ C2

´

‖f‖H−1pΩq
+ ‖u‖L2pΩq

¯

(648)

whenever u is a weak solution of (645).

We now suppose that Ω is a Lipschitz domain and consider the inhomogeneous problem{
L rus (x) = f in Ω

u(x) = g(x) on ∂Ω,
(649)

where f ∈ H−1 pΩq and g ∈ H1/2 p∂Ωq. We reduce (649) to the homogenous problem{
L rvs (x) = f − L rϕs in Ω

v(x) = 0 on ∂Ω
(650)

as before — that is, by letting T −1 denote a continuous right inverse of the trace operator and
setting ϕ = T −1 rgs. Note that, as before, there is no difficulty in defining f−L rϕs ∈ H−1 pΩq

even though ϕ is not necessarily in H1
0 pΩq. From our previous discussion, we see that (650)

admits a solution if and only if

〈f − L rϕs , v∗l 〉 = 0 for all l = 1, . . . , p. (651)

We note that 〈L rϕs , v∗l 〉 need not be equal to 〈ϕ,L∗ rv∗l s〉 when ϕ /∈ H1
0 pΩq. In fact, under

additional regularity conditions, (651) is equivalent to

〈f, v∗l 〉 =

∫
∂Ω

aijνjDiv
∗
l (x)g(x) dS(x) for all l = 1, . . . , p. (652)

where νj denotes the jth component of the outward-pointing unit normal vector. To establish
this, we will need to use a regularity result we will prove in Chapter 5. It implies that the
weak solutions v∗1, . . . , v

∗
p of the adjoint boundary value problem{

L∗ rvs = 0 in Ω

v = 0 on ∂Ω
(653)



4.3. THE DIRICHLET PROBLEM FOR GENERAL SECOND ORDER OPERATORS 97

are elements of H2
loc pΩq∩H1

0 pΩq, provided that aij and bi are Lipschitz continuous. We will
assume also the the coefficients ci are Lipschitz continuous. Since L∗ rv∗l s = 0,

(654)
∫

Ω

(
aji(x)Djv

∗
l (x)Diu(x) + ci(x)v∗l (x)Diu(x) +

bi(x)Div
∗
l (x)u(x) + d(x)u(x)v∗l (x)

)
dx = 0

for all u ∈ C∞c pΩq. Since v∗l is in H2
loc pΩq and aij, ci are Lipschitz continuous and we can

integrate by parts in (654) to see that

(655)

∫
Ω

(
−Di

(
aji(x)Djv

∗
l (x)

)
−Di

(
ci(x)v∗l (x)

)
+ bi(x)Div

∗
l (x) + d(x)v∗l (x)

)
u(x) dx = 0

for all u ∈ C∞c pΩq. We conclude that

−Di

`

aji(x)Djv
∗
l (x)

˘

−Di

`

ci(x)v∗l (x)
˘

+ bi(x)Div
∗
l (x) + d(x)v∗l (x) = 0 (656)

for almost all x ∈ Ω. It follows from (656) that∫
Ω

`

−Di

`

aji(x)Djv
∗
l (x)

˘

−Di

`

ci(x)v∗l (x)
˘

+ bi(x)Div
∗
l (x) + d(x)v∗l (x)

˘

ϕ(x) dx = 0. (657)

Now integrating by parts in (657) yields∫
Ω

`

aji(x)Djv
∗
l (x)Diϕ(x) + ci(x)v∗l (x)Diϕ(x) + bi(x)Div

∗
l (x)ϕ(x) + d(x)v∗l (x)ϕ(x)

˘

dx

=

∫
∂Ω

aji(x)νiDjv
∗
l (x)g(x) dS(x),

(658)
where νi denotes the ith component of the outward-pointing unit normal vector. Note that
we have made use of the fact that the trace of v∗l is 0, and that the trace of ϕ is g. It follows
from (658) that

〈L rϕs , v∗l 〉 =

∫
Ω

`

aijDjϕ(x)Div
∗
l (x) + biϕ(x)Div

∗
l (x) + ciDiϕ(x)v∗l (x) + dϕ(x)v∗l (x)

˘

dx

=

∫
∂Ω

aji(x)νiDjv
∗
l (x)g(x) dS(x).

(659)
That (651) is equivalent to (652) follows immediately from (659). We summarize our con-
clusions as follows:

Theorem 98. Suppose that Ω is a bounded Lipschitz domain in Rn, that the operator L :
H1(Ω)→ H−1(Ω) defined via

L rus (x) = −Di

`

aij(x)Dju+ bi(x)u
˘

+ ci(x)Diu+ d(x)u(x) (660)

is strongly elliptic on Ω, that aij, bi and ci are Lipschitz continuous, and that d ∈ L∞(Ω).
Suppose also that f ∈ H−1 pΩq, g ∈ H1/2 p∂Ωq and v∗1, . . . , v

∗
p is a basis in the space of weak

solutions of the boundary value problem{
L∗ rvs (x) = 0 in Ω

v(x) = 0 on ∂Ω.
(661)
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Then the boundary value problem {
L rus (x) = f in Ω

u(x) = g(x) on ∂Ω,
(662)

has a solution if and only if

〈f, v∗l 〉 =

∫
∂Ω

aijνjDiv
∗
l (x)g(x) dS(x), for all l = 1, . . . , p. (663)

Moreover, there exist constants C1 > 0 and C2 > 0 such that

‖u‖H1pΩq/ker(L)≤ C1

´

‖f‖H−1pΩq
+ ‖g‖H1/2p∂Ωq

¯

(664)

and

‖u‖H1pΩq≤ C2

´

‖f‖H−1pΩq
+ ‖u‖L2pΩq+ ‖g‖H1/2p∂Ωq

¯

(665)

whenever u is a weak solution of (662).

Exercise 31. Suppose that Ω is the unit disk in R2. Show that there exist λ ∈ R such that
the boundary value problem {

∆u(x) + λ2u(x) = 0 in Ω

u(x) = 0 on ∂Ω
(666)

admits nontrivial (classical) solutions u ∈ C2(Ω).

4.4. The Weak Maximum Principle

The weak maximum principle can be used to show that the boundary value problem{
L rus = 0 in Ω

u = 0 on ∂Ω
(667)

has a unique solution under certain conditions on the operator L. In order to state it, a new
definition is required. Suppose that u ∈ H1(Ω). Then we say that u ≤ 0 on ∂Ω provided the
function

u+ = max {u, 0} (668)

is an element of H1
0 (Ω). Similarly, we say that u ≤ r on Ω provided (u− r) ≤ 0 on ∂Ω and

we define the supremem of u on ∂Ω as follows

sup
x∈∂Ω

u(x) = inf{r ∈ R : u ≤ r on ∂Ω}. (669)

(670)

Theorem 99. Suppose that Ω is a bounded open set in Rn, that the operator L : H1(Ω) →
H−1(Ω) defined via

L rus = −Di

`

aij(x)Dju+ bi(x)u
˘

+ ci(x)Diu+ d(x)u (671)

is strongly elliptic on Ω with coefficients in L∞(Ω). Suppose also that that u ∈ H1(Ω) such
that L rus ≤ 0 in the sense that

〈L[u], v〉 ≤ 0 (672)
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for all v ≥ 0 in C1
c (Ω), and that the coefficients d and ci are such that∫

Ω

bi(x)Div(x) + d(x)v(x) dx ≥ 0 (673)

for all v ≥ 0 in C1
c (Ω). Then

u(x) ≤ sup
x∈∂Ω

u+(x) (674)

for almost all x ∈ Ω.

Proof. We observe that if u ∈ H1(Ω) and v ∈ H1
0 (Ω), then uv ∈ W 1,1

0 (Ω) and

D puvq = vDu+ uDv. (675)

We now manipulate (672) in order to see that∫
Ω

aij(x)Dju(x)Div(x) + bi(x)u(x)Div(x) + ci(x)v(x)Diu(x) dx

≤ −
∫

Ω

d(x)u(x)v(x)dx

(676)

for all v ∈ H1
0 (Ω) such that v ≥ 0. By subtracting∫

Ω

bi(x)Di(uv)(x) dx =

∫
Ω

bi(x)v(x)Diu(x) + bi(x)u(x)Div(x) dx (677)

from both sides of (676) and invoking (673) we conclude that∫
Ω

aij(x)Dju(x)Div(x) + (ci(x)− bi(x))v(x)Diu(x) dx

≤−
∫

Ω

`

d(x)u(x)v(x) + bi(x)Di(uv)(x)
˘

dx ≤ 0

(678)

for all v in H1
0 (Ω) such that uv ≥ 0. Since the coefficients of L are bounded, it follows from

(678) that there exists C > 0 such that∫
Ω

aij(x)Dju(x)Div(x) dx ≤C
∫

Ω

v(x)|Du(x)| dx (679)

for all v ≥ 0 in H1
0 (Ω) such that uv ≥ 0.

Now we suppose that r > 0 is such that

sup
x∈∂Ω

u(x) < r < ‖u‖L∞(Ω), (680)

and we set v = max{u− r, 0}. Then v ∈ H1
0 (Ω) and uv ≥ 0 since v(x) = 0 for any u(x) < 0.

Moreover, v is weakly differentiable and

Dv(x) =

{
Du(x) u(x) > r

0 u(x) ≤ r.
(681)

We let Γ denote the support of Dv and note that ‖v‖L2pΓq must be positive since, otherwise,
u ≤ r almost everywhere, which contradicts (680).
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From (679) we conclude that∫
Ω

aij(x)Dju(x)Div(x) dx ≤C
∫

Ω

v(x)|Du(x)| dx (682)

for some constant C which does not depend on r. Since Dv(x) = Du(x) for any x in Γ, (682)
implies that ∫

Ω

aij(x)Djv(x)Div(x) dx ≤C
∫

Γ

v(x)|Dv(x)| dx. (683)

From (683) and the strong ellipiticty of L, we see that there exists C ′ > 0 which does not
depend on r and such that

‖Dv‖2
L2pΩq≤ C ′

∫
Γ

v(x)|Dv(x)| dx ≤ C ′‖v‖L2(Γ)‖Dv‖L2(Ω). (684)

If ‖Dv‖L2pΩq> 0, then we divide both sides of (684) by ‖Dv‖L2pΩq to obtain

‖Dv‖L2pΩq≤ C ′‖v‖L2(Γ). (685)

If ‖Dv‖L2pΩq= 0, then (685) automatically holds. In the case when n ≥ 3, the Sobolev
conjugate p∗ of 2 satisfies

1

p∗
=

1

2
− 1

n
=
n− 2

2n
. (686)

We apply the Sobolev imbedding theorem to conclude that

‖v‖L2n/(n−2)(Ω)≤ ‖Dv‖L2(Ω)≤ C ′‖v‖L2(Γ). (687)

Now we observe that
2

n
+
n− 2

n
= 1 (688)

and invoke Hölder’s inequality with p = n/2 and q = n/(n− 2) in order to obtain∫
Γ

v(x)2 dx ≤
ˆ∫

Γ

|v|
2n
n−2 dx

˙
n−2
n

|Γ|2/n≤
ˆ∫

Ω

|v|
2n
n−2 dx

˙
n−2
n

|Γ|2/n (689)

so that

‖v‖L2(Γ)≤ ‖v‖L2n/(n−2)(Ω)|Γ|
1/n . (690)

We combine (690) and (687) to obtain

‖v‖L2(Γ)≤ |Γ|
1/n ‖v‖L2n/(n−2)(Ω)≤ |Γ|

1/nC ′‖v‖L2(Γ). (691)

From this and the fact that ‖v‖L2(Γ) 6= 0, we see that

|Γ|≥ pC ′q
−n

(692)

In particular, since the support of Dv is contained in the set {x : u(x) > r} and Du = Dv
there, it must be the case that the set {x : u(x) > r} contains a subset of measure greater
than or equal to pC ′q−n on which Du 6= 0.

For all m > 0, we let

Ωm =

{
x ∈ Ω : u(x) ≥ ‖u‖∞−

1

m

}⋂
supp(Du) (693)
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and we set

Ω′ =
⋂
m>0

Ωm. (694)

Since u obtains its essential supremum on Ω′, and is therefore constant on that set, Du = 0
almost everywhere on Ω′. In particular, Ω′ must be of measure 0. But the Ωm are a sequence
of decreasing sets of finite measure, so

|Ω′| = lim
m→∞

|Ωm| ≥ pC ′q
−n
. (695)

We conclude that u ≤ sup∂Ω u
+ from this contradiction

We leave the modifications necessary to establish the result in the event that n = 1 or n = 2
to the reader. �

The following follows easily from Theorem 99.

Theorem 100. Suppose that Ω is a bounded open set in Rn, that the operator L : H1(Ω)→
H−1(Ω) defined via

L rus = −Di

`

aij(x)Dju+ bi(x)u
˘

+ ci(x)Diu+ d(x)u (696)

is strongly elliptic on Ω with coefficients in L∞(Ω). Suppose also that that u ∈ H1(Ω) such
that L rus ≥ 0 in the sense that

〈L[u], v〉 ≥ 0 (697)

for all v ≥ 0 in C1
c (Ω), and that the coefficients d and ci are such that∫

Ω

bi(x)Div(x) + d(x)v(x) dx ≥ 0 (698)

for all v ≥ 0 in C1
c (Ω). Then

u(x) ≥ inf
x∈∂Ω

u−(x) (699)

for almost all x ∈ Ω.

The following theorem is an immediate consequence of Theorems 99 and 100.

Theorem 101. Suppose that Ω is a bounded open set in Rn, that

L rus = −Di

`

aij(x)Dju(x) + bi(x)u(x)
˘

+ ci(x)Diu(x) + d(x)u(x) (700)

is a strongly elliptic operator H1
0 (Ω) → H−1(Ω) with essentially bounded coefficients, and

that ∫
Ω

bi(x)Div(x) + d(x)v(x) dx ≥ 0 (701)

for all v ∈ H1
0 (Ω) such that v ≥ 0. Then the boundary value problem{

L rus (x) = 0 in Ω

u(x) = 0 on ∂Ω
(702)

admits only the trivial solution u = 0. This is the case, in particular, if bi = 0 for all i and
d ≥ 0.
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We are now prepared to state our main result regarding strongly elliptic second order oper-
ators which satisfy the hypotheses of the weak maximal theorem.

Theorem 102. Suppose that Ω is a Lipschitz domain in Rn, that

L rus (x) = −Di

`

aij(x)Dju(x) + bi(x)u(x)
˘

+ ci(x)Diu(x) + d(x)u(x) (703)

is strongly elliptic on Ω with coefficients in L∞(Ω). Suppose also that∫
Ω

bi(x)Div(x) + d(x)v(x) dx ≥ 0 (704)

for all v ∈ H1
0 (Ω) such that v ≥ 0. This is the case, in particular, if L is of the form

L rus (x) = −Di

`

aij(x)Dju(x)
˘

+ ci(x)Diu(x) + d(x)u(x) (705)

with d(x) ≥ 0 for almost all x in Ω. Then for each f ∈ H−1(Ω) and g ∈ H1/2(∂Ω) the
boundary value problem {

L rus (x) = f(x) in Ω

u(x) = g on ∂Ω
(706)

admits a unique weak solution u. Moreover, there exists a constant C > 0 such that

‖u‖H1(Ω)≤ C
`

‖f‖H−1(Ω)+‖g‖H1/2(∂Ω)

˘

. (707)

whenever u is the weak solution of (706) In other words the operator

L⊕T : H1(Ω)→ H−1(Ω)⊕H1/2(∂Ω) (708)

is an isomorphism.

Proof. The trace operator T : H1 pΩq → H1/2 p∂Ωq has a continuous right inverse,
which we denote by T −1 (this choice is not unique). We let C1 > 0 be such that

‖T −1
rhs ‖H1pΩq≤ C1‖h‖H1/2p∂Ωq (709)

for all h ∈ H1/2 p∂Ωq.

We will now analyze the boundary value problem{
L rws (x) = f̃(x) in Ω

w(x) = 0 on ∂Ω,
(710)

According to Theorem 96, there exists σ > 0 such that K = L + σI : H1
0 pΩq → H−1 pΩq is

coercive and hence invertible. It follows that L = K − σI is Fredholm of index 0 since σI is
compact by Theorem 95. Theorem 101 implies that the dimension of the kernel of L is 0; it
follows that the dimension of the cokernel of Im(L) is 0. In particular, the exists a unique

solution w of (710) for any given f̃ . Consequently, we can view the operator L as defining
a continuous bijective mapping H1

0 pΩq → H−1 pΩq. By the bounded inverse theorem, this
bijection has a continuous inverse. That is, there exists a constant C2 such that

‖w‖H1
0 pΩq≤ C2

∥∥∥f̃∥∥∥
H−1pΩq

(711)

whenever w is the solution of (710).
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We now let g ∈ H1/2 p∂Ωq and f ∈ H−1 pΩq be given. We let ϕ = T −1 rgs so that

‖ϕ‖H1pΩq≤ C1‖g‖H1/2p∂Ωq, (712)

and we let f̃ = f − L rϕs. Obviously,∥∥∥f̃∥∥∥
H−1pΩq

≤ ‖f‖H−1pΩq+‖L‖‖ϕ‖H−1pΩq≤ ‖f‖H−1pΩq+C1‖L‖‖g‖H1/2p∂Ωq. (713)

Now we let w be the solution of (710). Then w + ϕ solves (706) and

‖w + ϕ‖H1pΩq ≤ ‖w‖H1pΩq
+ ‖ϕ‖H−1pΩq

≤ C2

∥∥∥f̃∥∥∥
H−1pΩq

+ C1 ‖g‖H1/2p∂Ωq

≤ C2

´

‖f‖H−1pΩq+C1‖L‖‖g‖H1/2p∂Ωq

¯

+ C1 ‖g‖H1/2p∂Ωq

≤ C
´

‖f‖H−1pΩq+‖g‖H1/2p∂Ωq

¯

,

(714)

where C = C2 + C1 pC2‖L‖+1q. We observe that this constant C does not depend on f or
g. Among other things, the bound (714) implies that the solution of (706) is unique. �

4.5. The Neumann Problem

We now develop a weak formulation of the Neumann boundary value problem for an operator
of the form

L rus (x) = −Di

`

aij(x)Dju(x) + bi(x)
˘

+ ci(x)Diu(x) + d(x)u(x). (715)

We assume, as usual, that L is strongly elliptic, and that the coefficients of L are bounded
measurable functions. In this section, we view L as a mapping H1 pΩq → pH1 pΩqq

∗
. More-

over, we will assume that Ω is a bounded, connected Lipschitz domain. Among other things,
this implies that H1 pΩq is compactly contained in L2 pΩq.

We take f in to be an element of pH1 pΩqq
∗

and g ∈
`

H1/2 p∂Ωq
˘∗

. We say that u ∈ H1(Ω)
is a weak solution of the Neumann problem for L provided∫

Ω

`

aij Dju(x)Div(x) + bi(x)u(x)Div(x) + ci(x)Diu(x)v(x) + d(x)u(x)v(x)
˘

dx

= 〈f, v〉+ 〈g,T (v)〉
(716)

for all v ∈ H1(Ω). Given f and g, we let Ff,g denote that bounded linear functional H1 pΩq→
R defined via

〈Ff,g, v〉 = 〈f, v〉+ 〈g,T (v)〉 . (717)

Then (716) is equivalent to requiring that L rus = Ff,g. In the (fairly typical) case that
f ∈ L2 pΩq and g ∈ L2 p∂Ωq, (716) becomes

(718)

∫
Ω

(
aijDju(x)Div(x) + bi(x)u(x)Div(x) + ci(x)Diu(x)v(x) + d(x)u(x)v(x)

)
dx

=

∫
Ω

f(x)v(x) dx+

∫
∂Ω

g(x)T [v] (x) dS(x).
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To understand the nature of the boundary conditions imposed by (716), we will momentarily
assume that u ∈ H2 pΩq which satisfies (718), and that the coefficients aij, bi are Lipschitz
continuous. Then we can integrate by parts in (718) to see that

(719)

∫
Ω

(
−Di

(
aijDju(x) + bi(x)u(x)

)
v(x) + ci(x)Diu(x)v(x) + d(x)u(x)v(x)

)
dx

+

∫
∂Ω

(
aijνiDju(x) + biνiu(x)

)
v(x) dS(x) =

∫
Ω

f(x)v(x) dx+

∫
∂Ω

g(x)v(x) dS(x)

for all v ∈ C∞
`

Ω
˘

. If v ∈ C∞c pΩq, then the boundary terms in (719) vanish, leaving us with

(720)

∫
Ω

(
−Di

(
aijDju(x) + biu(x)

)
v(x) + ci(x)Diu(x)v(x) + d(x)u(x)v(x)

)
dx

=

∫
Ω

f(x)v(x) dx.

We conclude that

−Di(a
ijDju(x) + biνiu(x)) + ci(x)Diu(x) + d(x)u(x) = f(x) (721)

almost everywhere in Ω. By combining (721) and (719), we see that (718) implies that

(722)

∫
∂Ω

(
aijνiDju(x) + biνiu(x)

)
v(x) dS(x) =

∫
∂Ω

g(x)v(x) dS(x)

for all v ∈ C∞
`

Ω
˘

. Clearly, (722) implies that

aij(x)νiDju(x) + bi(x)νiu(x) = g(x) (723)

for almost all x ∈ ∂Ω. In light of (721) and (723), it is reasonable to call (716) a weak
formulation of the boundary value problem{

L rus (x) = f(x) in Ω

aijνiDju(x) + biνiu(x) = g(x) on ∂Ω,
(724)

We can now proceed just as we did in the case of the Dirichlet problem. The proof that L is
Fredholm of index 0 is essentially identical. The adjoint L∗ : H1 pΩq→ pH1 pΩqq

∗
is given by

L∗ rus (x) = −Di

`

aji(x)Dju(x) + ci(x)u(x)
˘

+ bi(x)Diu(x) + d(x)u(x). (725)

If we let v∗1, . . . , v
∗
p denote a basis for ker pL∗q, then (724) is solvable if and only if

Ff,g pv∗l q = 0 for all l = 1, . . . , p. (726)

We note that (726) imposes conditions on both f and g and it is equivalent to

〈f, v∗l 〉+ 〈g,T rv∗l s〉 = 0 for all l = 1, . . . , p. (727)
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If v1, . . . , vp is a basis for ker(L) and u is any weak solution of (724), then the set of solutions
of (724) consists of any function of the form

u+
n∑

;=1

a;vl. (728)

Moreover, since L : H1 pΩq /ker pLq → =(L) is a continous bijection, the bounded inverse
theorem implies that there exists a constant C > 0 such that

‖u‖H1pΩq/ker(L)≤ C‖Ff,g‖pH1pΩqq
∗ (729)

whever u is a weak solution of (724). Moreover, just as in the case of the Dirichlet problem,
we can obtain an alternative bound of the form

‖u‖H1pΩq≤ C
`

‖Ff,g‖pH1pΩqq
∗+‖u‖L2pΩq

˘

(730)

on weak solutions of (724).

In the particular case of operators of the form

L rus (x) = −Di

`

aijDju(x)
˘

, (731)

the solvability condition is quite simple. In this case, the adjoint of L is

L∗ rus (x) = −Di

`

ajiDju(x)
˘

, (732)

We claim the the kernel of both L and L∗ consists of the constant functions on Ω. To see
this we observe that if L rus (x) = 0, then

0 = 〈L rus , u〉 =

∫
Ω

aijDju(x)Diu(x) dx ≥ λ |Ω| ‖Du‖2
H1pΩq, (733)

which implies that Du = 0. The same argument applies to L∗. If f ∈ L2 pΩq and g ∈ L2 p∂Ωq,
then (726) is equivalent to ∫

Ω

f(x) dx+

∫
∂Ω

g(x) = 0. (734)

Moreover, if u is a particular solution of (724), then every solution of (724) is of the form

u(x) + C (735)

with C a constant.

4.6. Mixed boundary conditions

Once again, we let Ω be a bounded, connected Lipschitz domain in Rn, and let L be a strongly
elliptic operator of the form

L rus (x) = −Di

`

aijDju(x) + bi(x)u(x)
˘

+ ci(x)Diu(x) + d(x)u(x) (736)

whose coefficients are L∞ pΩq functions. In the preceding section, we saw that the space of
test functions V in the weak formulation

〈L rus , v〉 = 〈f, v〉 for all v ∈ V (737)

has a strong effect on the boundary conditions of the boundary value problem corresponding
to it. In particular, choosing V = H1

0 pΩq lead to Dirichlet boundary conditions, while
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V = H1 pΩq gave us the Neumann problem. In this section, we show that modifying the space
of testing functons can give rise to a mixed Dircihlet/Neumann boundary value problem.

Suppose that ∂Ω is decomposed as

∂Ω = ΓD ∪ ΓN (738)

with ΓD and ΓN Lipschitz curves such that there exist bounded extension operatorsH1/2 pΓDq→
H1/2 p∂Ωq and H1/2 pΓNq→ H1/2 p∂Ωq. We wish to devise a weak formulation for the bound-
ary value problem 

L rus (x) = f(x) in Ω

u(x) = gD(x) on ΓD

aijνiDju(x) + biνiu(x) = gN(x) on ΓN .

(739)

Here, f ∈ pH1 pΩqq
∗
, gD ∈ H1/2 pΓDq, and gN ∈

`

H1/2 pΓNq
˘∗

. We say that u is a weak
solution of (739) provided T rus (x) = gD(x) for almost all x ∈ ΓD, and

〈L rus , v〉 = 〈f, v〉+ 〈gN ,T rvs〉 (740)

for all v in the space

H1
D pΩq =

{
v ∈ H1

pΩq : T rvs (x) = 0 for almost all x ∈ ΓD
}
. (741)

We first reduce (736) to the homogeneous boundary value problem
L rws (x) = f̃(x) in Ω

w(x) = 0 on ΓD

aijνiDjw(x) + bi(x)νiw(x) = gN(x) on ΓN .

(742)

To be entirely clear, we say that w ∈ H1
D pΩq is a weak solution of (742) provided

〈L rus , v〉 = 〈f, v〉+ 〈gN ,T rvs〉 (743)

for all v in the space H1
D pΩq. If ϕ is an element of H1 pΩq such that

T pϕq = E rgDs , (744)

where E : H1/2 pΓDq→ H1/2 p∂Ωq is an extension operator, and

f̃(x) = f(x)− L rϕs (x), (745)

then is easy to verify that w+ϕ is a weak solution of (736) if and only if w is a weak solution
of (742).

It is easy to establish that the operator L is Fredholm of index 0, and the adjoint of L is the
operator L∗ : H1

D pΩq→ pH1
D pΩqq

∗
defined via

L∗ rus (x) = −Di

`

aji(x)Dju(x) + ci(x)u(x)
˘

+ bi(x)Diu(x) + d(x)u(x). (746)

It follows that if v∗1, . . . , v
∗
p is a basis in the kernel of L∗, then (742) is solvable if and only if

〈f, v∗l 〉 − 〈L rϕs , v∗l 〉+ 〈gN ,T rv∗l s〉 = 0 for all l = 1, . . . , p. (747)
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The functions v∗1, . . . , v
∗
p are weak solutions of the boundary value problem

L∗ rws (x) = 0 in Ω

w(x) = 0 on ΓD

ajiνiDjw(x) + ci(x)νiw(x) = 0 on ΓN .

(748)

As in the case of the Dirichlet problem, we can derive a more satisfying solvability criterion
under slightly stronger regularity assumptions. We suppose that aij, bi and ci are Lipschitz
continuous. Then, it follows from regularity results of Chapter 5 that the functions v∗1, . . . , v

∗
p

are elements of H2 pΩq. Integrating by parts, we find that for each p = 1, . . . , l,

−Di

`

aji(x)Djv
∗
l (x)

˘

−Di

`

ci(x)v∗l (x)
˘

+ bi(x)Div
∗
l (x) + d(x)v∗l (x) = 0 (749)

almost everywhere in Ω. Multiplying both sides of (749) by ϕ, integrating over Ω, and
integrating by parts gives

〈L rϕs , v∗l 〉 =

∫
ΓD

aji(x)νiDjv
∗
l (x)gD(x) dS(x). (750)

By combining (750) and (747), we see that (736) is solvable if and only if

〈f, v∗l 〉+ 〈gN ,T rv∗l s〉ΓN =

∫
ΓD

aji(x)νiDjv
∗
l (x)gD(x) dS(x) = 0 for all l = 1, . . . , p. (751)

It is also straightfoward to show that there exists C > 0 such that

‖u‖H1pΩq≤ C
´

‖u‖L2pΩq+‖f‖H−1pΩq+‖gD‖H1/2pΓDq+‖gN‖pH−1/2pΓN qq
∗

¯

(752)

whenever u is a weak solution of (736).

4.7. The Robin problem

One of the nice features of the Fredholm theory is that the addition of a compact operator
to L will result in yet another Fredholm operator of index 0. In this section, we exploit this
fact to develop a weak formulation of the Robin boundary value problem{

L rus (x) = f(x) for all in Ω

aij(x)νiDju(x)+bi(x)νi(x)u(x) +B(x)u(x) = g(x) on ∂Ω.
(753)

Here, we will assume that Ω is a bounded, connected Lipschitz domain, and that L is a
strongly elliptic operator of the form

L rus (x) = −Di

`

aij(x)Dju(x) + bi(x)u(x)
˘

+ ci(x)Diu(x) + d(x)u(x) (754)

with L∞ pΩq coefficients. We take f ∈ H−1 pΩq, B ∈ L∞ p∂Ωq and g ∈
`

H1/2 p∂Ωq
˘∗

. We

define the operator K : H1 pΩq→ pH1 pΩqq
∗

via

〈K rus , v〉 =

∫
Ω

B(x)T rus (x)T rvs (x) dS(x). (755)
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Again, we view L as the operator H1 pΩq→ pH−1 pΩqq
∗

defined via

〈L rus , v〉 =

∫
Ω

`

aij(x)Dju(x) Diu(x) + bi(x)u(x)Div(x) + ci(x)Diu(x)v(x)+

d(x)u(x)v(x)q dx.
(756)

We say that u ∈ H1 pΩq is a weak solution of (753) if

〈L rus +K rus〉 = 〈f, v〉+ 〈g,T rvs〉 (757)

for all v ∈ H1 pΩq. The operator K is compact since K is bounded H1/2+ε pΩq → pH1 pΩqq
∗

for any ε > 0 and H1 pΩq is compactly embedded in H1/2+ε pΩq. That is, K can be factored
as an operator

H1
pΩq→ H1/2+ε

pΩq→
`

H1
pΩq

˘∗
. (758)

The operator L is Fredholm of index 0 and K is compact, so L+K is Fredholm of index 0.
If we let Ff,g denote the element of pH1 pΩqq

∗
defined via

〈Ff,g, v〉 = 〈f, v〉+ 〈g,T rvs〉 , (759)

then (753) admits weak solution if and only if

Ff,g pv∗l q = 0 for all l = 1, . . . ,m, (760)

where v∗1, . . . , v
∗
m is a basis for ker(L∗ +K∗). Moreover, if u is a weak solution of (753), then

‖u‖H1pΩq/ker(L+K)≤ C
´

‖f‖pH1pΩqq
∗ + ‖g‖

pH1/2p∂Ωqq
∗

¯

. (761)



CHAPTER 5

Regularity of Solutions of Elliptic Boundary Value Problems

In the preceding chapter, we studied the existence of weak solutions of elliptic boundary
value problems under fairly mild hypotheses. We now study these problems under stronger
regularity assumptions. Although we focus on the Dirichlet problem, similar results can be
obtained for other boundary value problems.

5.1. Interior Regularity of Solutions of the Dirichlet Problem

Suppose that Ω is a Lipschitz domain in Rn, and that

L rus (x) = −Di

`

aij(x)Dju(x) + bi(x)u(x)
˘

+ ci(x)Diu(x) + d(x)u(x) (762)

is a strongly elliptic partial differential operator with bounded coefficients. In the previous
chapter, we showed that the operator

L⊕T : H1
pΩq→ H−1

pΩq⊕H1/2
p∂Ωq (763)

associated with the Dirichlet boundary value problem{
L rus (x) = f(x) in Ω

u(x) = g(x) on ∂Ω
(764)

is a Fredholm operator of index 0 and gave sufficient (but not necessary) conditions under
which it is an isomorphism. We will now show that when f is in L2 pΩq and the coefficients
of L are Lipschitz continuous, the solutions of (764) are also more regular on the interior of
Ω.

Theorem 103. Suppose that Ω is a bounded open set in Rn, that

L rus (x) = −Di

`

aij(x)Dju(x) + bi(x)u(x)
˘

+ ci(x)Diu(x) + d(x)u(x) (765)

is strongly elliptic in Ω, that aij, bi ∈ C0,1
`

Ω
˘

, and that ci, d ∈ L∞ pΩq. Suppose also that
f ∈ L2 pΩq, and that u ∈ H1(Ω) is a weak solution of the problem L rus (x) = f(x) — that is,∫

Ω

aij(x)Dju(x)Div(x) + bi(x)u(x)Div(x) + ci(x)v(x)Diu(x) + d(x)u(x)v(x) dx

=

∫
Ω

v(x)f(x) dx

(766)

for all v ∈ H1
0 (Ω). Then u ∈ H2

loc(Ω) and u satisfies the equation

−aij(x)DiDju(x) + (−Dja
ji(x) + ci(x)− bi(x))Diu(x) +

`

d(x)−Dib
i(x)

˘

u(x) = f(x) (767)

109
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for almost all x ∈ Ω. Moreover, for each open set Ω′ ⊂⊂ Ω, there exists a real number C > 0
such that

‖u‖H2(Ω′)≤ C
`

‖u‖L2(Ω)+‖f‖L2(Ω)

˘

. (768)

Proof. We define the function g ∈ L2(Ω) via the formula

g(x) = f(x) + (bi(x)− ci(x))Diu(x) + (Dib
i(x)− d(x))u(x) (769)

so that ∫
Ω

aij(x)Dju(x)Div(x) dx =

∫
Ω

g(x)v(x) dx (770)

for all v ∈ H1
0 (Ω). We now assume that v is compactly supported in H1

0 pΩq. Then we may
replace v with ∆−hk v in (770) to obtain∫

Ω

∆h
k

`

aij(x)Dju(x)
˘

Div(x) dx = −
∫

Ω

aij(x)Dju(x)Di

`

∆−hk v(x)
˘

dx

= −
∫

Ω

g(x)∆−hk v(x) dx.

(771)

Note that difference quotients commute with differential operators. We observe that

∆h
k

`

aijDju
˘

(x) =
aij(x+ hek)Dju(x+ hek)− aij(x)Dju(x)

h

= aij(x+ hek)∆
h
kDju(x) +

`

∆h
ka

ij(x)
˘

Dju(x).

(772)

Inserting (772) into (771) yields∫
Ω

`

aij(x+ hek)Dj∆
h
ku(x) +

`

∆h
ka

ij(x)
˘

Dju(x)
˘

Div(x) dx = −
∫

Ω

g(x)∆−hk v(x) dx. (773)

We let

g =

¨

˚

˚

˝

`

∆h
ka

1j(x)
˘

Dju(x)
`

∆h
ka

2j(x)
˘

Dju(x)
...

`

∆h
ka

nj(x)
˘

Dju(x)

˛

‹

‹

‚

(774)

and rearrange (773) as∫
Ω

aij(x+ hek)Dj∆
h
ku(x)Div(x) dx = −

∫
Ω

g ·Dv(x) + g(x)∆−hk v(x) dx. (775)

We apply Hölder’s inequality to obtain∫
Ω

aij(x+ hek)Dj∆
h
ku(x)Div(x) dx ≤ p‖g‖2 + ‖g‖2q ‖Dv‖2

≤ C
`

‖u‖H1(Ω)+‖f‖L2(Ω)

˘

‖Dv‖2.

(776)

We note that the preceding argument applies when v ∈ H1
0 pΩq which is not compactly

supported in Ω as long as the difference quotients ∆h
kv and those in (774) are defined. We

will make use of this fact in the following section.
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Now we suppose that Ω′ ⊂⊂ Ω and let η ∈ C∞c (Ω) such that η(x) = 1 for all x ∈ Ω′ and
0 ≤ η ≤ 1. Moreover, we define v via the formula

v(x) = η2(x)∆h
ku(x). (777)

The strong ellipticy of L implies that

λ

∫
Ω

η2(x)
ˇ

ˇD∆h
ku(x)

ˇ

ˇ

2
dx ≤

∫
Ω

η2(x)aij(x+ hek)Di∆
h
ku(x)Dj∆

h
ku(x) dx. (778)

We observe that

Div(x) = 2η(x)Diη(x)∆h
ku(x) + η2(x)∆h

kDiu(x) (779)

so that

Div(x)− 2η(x)Diη(x)∆h
ku(x) = η2(x)∆h

kDiu(x). (780)

By inserting (780) into (778) we obtain

λ

∫
Ω

η2(x)
ˇ

ˇ∆h
kDu (x)|

2 dx ≤
∫

Ω

η2(x)aij(x+ hek)Di∆
h
ku(x)Dj∆

h
ku(x) dx

=

∫
Ω

aij(x+ hek)
`

Div(x)− 2η(x)Diη(x)∆h
ku(x)

˘

Dj∆
h
ku(x) dx.

(781)

From the inequality (776) we see that∫
Ω

aij(x+ hek)Div(x)Dj∆
h
ku(x) dx ≤ C(‖u‖H1(Ω)+‖f‖L2(Ω))‖Dv‖2. (782)

Since 0 ≤ η ≤ 1,

‖Dv‖2 = ‖2ηDη∆h
ku+ η2∆h

kDu‖2

≤ 2‖∆h
kuDη‖2+‖ηD∆h

ku‖2

(783)

Moreover, since the aij are bounded and 0 ≤ η ≤ 1, there exists C ′ such that∫
Ω

aij(x+ hek)
`

2η(x)Diη(x)∆h
ku(x)

˘

Dj∆
h
ku(x) dx ≤ C ′‖ηD∆h

ku‖2‖∆h
kuDη‖2. (784)

We combine (784), (783) and (781) to see that

λ

∫
Ω

η2(x)
ˇ

ˇ∆h
kDu(x)

ˇ

ˇ

2
dx ≤ C ′′(‖u‖H1(Ω)+‖f‖L2(Ω))

`

‖∆h
kuDη‖2+‖ηD∆h

ku‖2

˘

+ C ′′‖ηD∆h
ku‖2‖∆h

kuDη‖2

(785)

for some constant C ′′ > 0. We apply Young’s inequality —

ab ≤ 1

ε
a2 + εb2 (786)

— repeatedly to obtain

(787)

λ‖η∆h
kDu‖2

2 ≤ C ′′
(

1

ε
‖u‖2

H1(Ω) + ε‖∆h
kuDη‖2

2 +
1

ε
‖u‖2

H1(Ω) + ε‖ηD∆h
ku‖2

2

+
1

ε
‖f‖2

L2(Ω) + ε‖∆h
kuDη‖2

2 +
1

ε
‖f‖2

L2(Ω) + ε‖ηD∆h
ku‖2

2

+ ε′‖ηD∆h
ku‖2

2 +
1

ε′
‖∆h

kuDη‖2
2

)
,
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which we rearrange as

(788)λ‖η∆h
kDu‖2

2 ≤ C ′′
(

2

ε
‖u‖2

H1(Ω) +
2

ε
‖f‖2

L2(Ω) +

(
2ε+

1

ε

)
‖∆h

kuDη‖2
2 + 3ε‖η∆h

kDu‖2
2

)
.

This implies

(789)(λ− 3C ′′ε) ‖η∆h
kDu‖2

2 ≤ C ′′
(

2

ε
‖u‖2

H1(Ω) +
2

ε
‖f‖2

L2(Ω) +

(
2ε+

1

ε

)
‖∆h

kuDη‖2
2

)
.

By choosing ε sufficiently small and noting that there exists a constant C ′′′ such that
‖∆h

kuDη‖2
2≤ C ′′′‖u‖2

H1pΩq
, we obtain

(790)‖η∆h
kDu‖2

2 ≤ C ′′′′
(
‖u‖2

H1(Ω) + ‖f‖2
L2(Ω)

)
for some suitably chosen constant C ′′′′. Since η = 1 on Ω′, we can apply Theorem 89 to see
that u ∈ H2 pΩ′q.

By letting v = ζ2u in the identity (770), where ζ is a cutoff function which is 1 on a set Ω′′

such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω, we obtain

λ2

∫
Ω

ζ2(x) |Du(x)|
2 dx ≤

∫
Ω

ζ2(x)aij(x)Dju(x)Diu(x) dx =

∫
Ω

ζ2(x)g(x)u(x) dx. (791)

Using Young’s inequality and the technique we used above, we can easily show that (791)
implies that there exists C ′′′′ such that

‖u‖H1pΩq≤ C ′′′′
`

‖f‖L2pΩq+‖u‖L2pΩq

˘

. (792)

Since u is in H2 pΩ′q, we can integrate by parts in (766) with v chosen to be smooth with
compact support in Ω′ in order to see that (767) must be satisfied for almost all x ∈ Ω′.
Since Ω′ ⊂⊂ Ω is arbitrary, it follows that this identity holds for almost all x ∈ Ω. �

Note that we assumed u ∈ H1 pΩq in Theorem 103, so that if the coefficients of L are Lipschitz
and u solves (764) with f ∈ L2 pΩq, then no additional regularity condition on g is needed to
ensure that u ∈ H2

loc pΩq.

We note too that in the event that u is the unique weak solution of the boundary value
problem {

L rus = f in Ω

u = g on ∂Ω,
(793)

then we can bound the term ‖u‖L2pΩq on the right-hand side of (768) via a multiple of ‖f‖L2pΩq

and ‖g‖H1/2p∂Ωq (since we already have a bound on ‖u‖H1pΩq in terms of these two norms in
that case).
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5.2. Global Regularity of Solutions of the Dirichlet Problem

We now establish that the solutions of the homogeneous boundary value problem{
L rus = f in Ω

u = 0 on ∂Ω;
(794)

are elements of H2 pΩq — as opposed to merely being elements of H2
loc pΩq — under certain

regularity assumptions on L and Ω.

Theorem 104. Suppose that Ω ⊂ Rn is a C1,1 domain, that

L rus (x) = −Di

`

aij(x)Dju(x) + bi(x)u(x)
˘

+ ci(x)Diu(x) + d(x)u(x) (795)

is strongly elliptic in Ω, that aij, bi ∈ C0,1
`

Ω
˘

, and that ci, d ∈ L∞ pΩq. Suppose also that
f ∈ L2 pΩq, and that u ∈ H1(Ω) is a weak solution of the problem{

L rus = f in Ω

u = 0 on ∂Ω;
(796)

that is, u ∈ H1
0 pΩq and∫

Ω

aij(x)Dju(x)Div(x) + bi(x)u(x)Div(x) + ci(x)v(x)Diu(x) + d(x)u(x)v(x) dx

=

∫
Ω

v(x)f(x) dx

(797)

for all v ∈ H1
0 (Ω). Then u ∈ H2(Ω), u satisfies the equation

−aij(x)DiDju(x) + (−Dja
ji(x) + ci(x)− bi(x))Diu(x) +

`

d(x)−Dib
i(x)

˘

u(x) = f(x) (798)

for almost all x ∈ Ω, and there exists a real number C > 0 such that

‖u‖H2(Ω)≤ C
`

‖u‖L2(Ω)+‖f‖L2(Ω)

˘

(799)

Proof. Since Ω is a C1,1 domain, for each point x on the boundary of Ω, there is a ball
B containing x, an open neighborhood N of 0 in Rn and a bijective C1,1 mapping ψ : N → B
such that ψ(N ∩Rn

+) = B ∩Ω and ψ(N ∩ ∂Rn
+) = ∂Ω∩B. This mapping takes the equation

under consideration to one of the same form, and the resulting solution of the transformed
can be transformed back to a solution of the original problem. Consequently, we need only
consider the case of a domain Ω which is a bounded open set in the upper half space Rn

+ with
boundary ∂Rn

+ = {(x1, . . . , xn−1, 0) : x1, . . . , xn−1 ∈ R}.

If we let η be an element of C∞c pNq, then for sufficiently small h and k = 1, . . . , n− 1,

v = η2∆h
ku ∈ H1

0

`

N ∩ Rn
+

˘

(800)

since u is supported on N∩Rn
+ and its trace is 0 on N∩∂Rn

+ by assumption. Moreover, η∆h
kf

is well-defined whenever f ∈ N ∩ Rn
+ and k = 1, . . . , n − 1. There were the requirements

for applying the argument of the preceding section, By applying it to v, we see that DkDju
exists and that there is a constant C ′ such that

‖DkDju‖L2pΩq≤ C ′
`

‖u‖L2pΩq+‖f‖L2pΩq

˘

(801)

for all j = 1, . . . , n and k = 1, . . . , n− 1.
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We cannot use the same method to prove a bound on DnDnu. However, we can use the
assumption that L is strongly elliptic to estimate DnDnu. In particular, by letting ξ =
(0, 0, . . . , 0, 1) in the inequality

aijξiξj ≥ λ|ξ|2, (802)

we see that an,n(x) ≥ λ for all x ∈ Ω. From this and the fact that

−aij(x)DiDju(x)+(−Dja
ji(x)+ci(x)−bi(x))Diu(x)+

`

d(x)−Dib
i(x)

˘

u(x) = f(x), (803)

which is a consequence of Theorem 103, we see that

(804)
DnDnu(x) =

1

λ

(
n−1∑
i=1

n∑
j=1

aij(x)DiDju(x) +
n∑
i=1

n∑
j=1

Dja
ji(x)Diu(x)

−
n∑
i=1

(
ci(x)− bi(x)

)
Diu(x)−

(
d(x) +

n∑
i=1

Dib
i(x)

)
u(x) + f(x)

)
.

The desired estimate on DnDnu follows easily. �

If g ∈ H3/2 p∂Ωq, then there exists ϕ ∈ H2 pΩq such that T rϕs = g and the H2 pΩq norm
of ϕ is a multiple of the H3/2 p∂Ωq norm of g. If u is a weak solution of the homogeneous
boundary value problem {

L rus = f − L rϕs in Ω

u = 0 on ∂Ω,
(805)

then v = u+ ϕ is a weak solution of{
L rvs = f in Ω

v = g on ∂Ω.
(806)

From Theorem 104, we see that

‖u‖H2pΩq≤ C
`

‖u‖L2pΩq+‖f‖L2pΩq

˘

≤ C
`

‖v − ϕ‖L2pΩq+‖f‖L2pΩq

˘

≤ C
`

‖v‖L2pΩq+‖ϕ‖L2pΩq+‖f‖L2pΩq

˘

.
(807)

From this and the fact that u = v − ϕ we easily obtain

‖v‖H2pΩq ≤ C ′
`

‖v‖L2pΩq+‖ϕ‖L2pΩq+‖f‖L2pΩq

˘

≤ C ′′
`

‖v‖L2pΩq+‖g‖H3/2p∂Ωq+‖f‖L2pΩq

˘

.
(808)

If v is the unique solution of (806) then we have the estimate

‖v‖H2pΩq ≤ C ′′′
`

‖g‖H3/2p∂Ωq+‖f‖L2pΩq

˘

. (809)

since the H1 pΩq norm of v is bounded in terms of norms of f and g already appearing.

Theorem 105. Suppose that Ω is a C1,1 domain in Rn, that

L rus (x) = −Di

`

aij(x)Dju(x)
˘

+ ci(x)Diu(x) + d(x)u(x) (810)

is a strongly elliptic partial differential operator on Ω, that aij ∈ C0,1
`

Ω
˘

and that ci and d
are elements of L∞ pΩq. Suppose also that d(x) ≥ 0 for almost all x ∈ Ω. Then for every
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f ∈ L2 pΩq and g ∈ H3/2 p∂Ωq, the boundary value problem{
L rus (x) = f(x) in Ω

u(x) = g(x) on ∂Ω.
(811)

admits a unique solution u ∈ H2 pΩq. Moreover, there is a constant C not depending on f
or g such that

‖u‖H2pΩq≤ C
`

‖f‖H2pΩq+‖g‖H3/2p∂Ωq

˘

(812)

whenever u solves (811). In other words, the operator L⊕ T is an isomorphism H2 pΩq →
L2 pΩq⊕H3/2 p∂Ωq.

It is an obvious consequence of this theorem that the general elliptic operator

L rus (x) = −Di

`

aij(x)Dju(x) + bi(x)u(x)
˘

+ ci(x)Diu(x) + d(x)u(x) (813)

is a Fredholm operator of index 0 which maps H2 pΩq into L2 pΩq ⊕ H3/2 p∂Ωq, assuming
that the appropriate regularity conditions on Ω and the coefficients of L are met (since the
principal part of L is an isomorphism and the residual operator is compact).

5.3. Higher Order Local and Global Regularity for the Dirichlet Problem

Suppose that

L rus (x) = −Di

`

aij(x)Dju(x) + bi(x)u(x)
˘

+ ci(x)Diu(x) + d(x)u(x) (814)

is a strongly elliptic operator on a domain Ω such that aij and bi are Lipschitz continuous
and ci, d are essentially bounded. Then, if u satisfies

L rus (x) = f(x) in Ω (815)

with f ∈ L2 pΩq, we have u ∈ H2
loc pΩq. If k ≥ 1, f ∈ Hk pΩq , aij, bi ∈ Ck,1

`

Ω
˘

and

ci, d ∈ Ck−1
`

Ω
˘

, then we can apply a differential operator Dα of order less than or equal to
k to both sides of (815) to obtain

DαL rus (x) = Dαf(x) in Ω. (816)

A somewhat tedius calculation shows that we can rearrange the equation (816) as

L rDαus (x) = f̃(x) in Ω, (817)

with f̃ ∈ L2 pΩq. Note that applying the differential operator Dα to L rus in (816) involves
differentiating the coefficients of L. We can now apply Theorem 103 to see that Dαu ∈
H2

loc pΩq for any |α|≤ k. In particular, u ∈ Hk+2
loc pΩq.

Assuming, in addition, that Ω is a Ck+1,1 domain, we can “straigten the boundary of Ω” and
apply a similar argument to conclude that solutions of the boundary value problem{

L rus (x) = f(x) in Ω

u(x) = g(x) on ∂Ω
(818)

are elements of Hk+2 pΩq when f ∈ Hk pΩq and g ∈ Hk+ 3
2 p∂Ωq. In the event that (818)

admits unique solutions, we can rephrase this in the usual way: L ⊕ T is an isomorphism
Hk+2 pΩq→ Hk pΩq⊕Hk+3/2 p∂Ωq.
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One further remark is in order. From the Sobolev embedding theorem, we know that if
f ∈ Hk pΩq for all nonnegative integers k, then f ∈ C∞ pΩq. It follows that when Ω is a C∞

domain, f ∈ C∞ pΩq and g ∈ C∞ p∂Ωq, then the solutions of{
L rus (x) = f(x) in Ω

u(x) = g(x) on ∂Ω
(819)

are also elements of C∞ pΩq. Other, similar, results can obtained by combining the basic
facts of elliptic regularity with Sobolev embedding theorems.

5.4. A Regularity Result for Convex Domains

When Ω is Lipschitz (which is the typical case in applications, particularly numerical analy-
sis), our definition of the space Hα p∂Ωq is only valid when α ≤ 1 since local parameterizations
of the boundary only admit one derivative. Nonethessless, we have characterized the trace
of H2 pΩq as the space V 3/2 p∂Ωq (see Theorem 76), and it is reasonable to ask whether or
not solutions of the boundary value problem{

L rus (x) = f(x) in Ω

u(x) = g(x) on ∂Ω
(820)

are elements of H2 pΩq when f ∈ L2 pΩq and g ∈ V 3/2 p∂Ωq.

In general, this is not the case. To see this, we suppose that Ω is a bouned domain in R2

with a single corner point of angle ω at the origin, and that in a neighborhood of the origin,
the boundary of Ω coincides with the curve Γ parameterized via

x(r) = r cos(ω)

y(r) = r sin(ω).
(821)

It is easy to verify that when kπ/ω is not an integer, the function

uk(r, θ) = r
kπ
ω sin

ˆ

kπ

ω
θ

˙

(822)

is harmonic and that its restriction to Γ is 0. But when ω > π, the second derivative of uk
with respect to r is not square integrable. It follows that there exists a solution of (820) with
f = 0 and g smooth which is not an element of H2 pΩq.

When Ω is convex, however, solutions of (820) are necessarily elements of H2 pΩq under mild
conditions on L. We now briefly outline the proof of this result.

A proof of the following theorem can be found in Chapter 3 of [10]. It can be viewed as a
consequence of the fact that the trace of the second fundamental form

B pξ, ηq = −∂ν
∂ξ
· η (823)

for the boundary of a convex domain is nonpositive.

Theorem 106. Suppose that Ω is a convex, bounded C2 domain in Rn, and that

L rus (x) = −Di

`

aij(x)Dju(x)
˘

(824)



5.4. A REGULARITY RESULT FOR CONVEX DOMAINS 117

is a strongly elliptic operator whose coefficients are Lipschitz. Then there exists a constant
C depending only on the diameter of Ω and the Lipschitz norms of the coefficients of L such
that

‖u‖H2pΩq≤ C‖L rus ‖L2pΩq (825)

whenever u ∈ H2 pΩq ∩H1
0 pΩq.

In order to establish the existence of solutions of the homogeneous problem{
L rus (x) = f(x) in Ω

u(x) = 0 on ∂Ω
(826)

for Ω convex and with L satisfying the hypotheses of the preceding theorem, we first construct
a sequence of convex open sets {Ωm} such that Ωm ⊂ Ω and dist(∂Ωm, ∂Ω)→ 0 as m→∞.
Next, we solve the obvious Dirichlet boundary value problem on each of the domains. We can
extend each of the resulting functions to Rn since the Sobolev extension theorem applies to
Lipschitz domains. We view the resulting functions as a sequence {um} of functions defined
on Ω. Theorem 106 implies that this sequence is uniformly bounded in H2 pΩq, so that the
Banach-Alaoglu theorem implies that there is a weakly convergence subsequence of {um}.
The weak limit is a solution of the boundary value problem (826). The key to this approach
is the uniform bound provided by Theorem 106.

The usual procedures can be applied in order to study linear elliptic operators with lower
order terms and the inhomogeneous boundary value problem.



CHAPTER 6

Elementary Results from the Calculus of Variations

Solving certain partial differential equation can be shown to be equivalent to minimizing
an “energy” functional given on a Banach space. The study of such problems is called the
calculus of variations, and we will now give a treatment of certain elementary techiniques in
the field.

6.1. Fréchet Derivatives

We say that a mapping T : X → Y between Banach spaces is Fréchet differentiable at the
point x ∈ X provided there exists a linear mapping L : X → Y such that

lim
h→0

‖T rx+ hs− T rxs− L rhs‖
‖h‖

= 0. (827)

It is easy to verify that Fréchet derivatives are unique, and we call the linear mapping L the
Fréchet derivative of T at the point x. We say that T is Fréchet differentiable on an open set
U in X if it is Fréchet differentiable at every point of U . When this is the case, we denote
the mapping U → L (X, Y ) which takes x to the Fréchet derivative of T at x by T ′. We will
depart from our usual practice and use the notation T ′x to denote the image of x under T ′,
which is the Fréchet derivative of T at the point x. In other words, T ′x rhs = L rhs, where L
is as in (827).

Exercise 32. Suppose that Ω is a bounded, open set in Rn. Show that the map T : C
`

Ω
˘

→
C
`

Ω
˘

defined via T rf s (x) = (f(x))2 is Fréchet differentiable at every point of C
`

Ω
˘

, and
that

T ′f rgs (x) = 2f(x)g(x). (828)

Exercise 33. Suppose that Ω is a bounded, open set in Rn. Show that the map T : C
`

Ω
˘

→
C
`

Ω
˘

defined via T rf s (x) = exp(f(x)) is Fréchet differentiable at every point of C
`

Ω
˘

and
compute its Fréchet derivative.

Fréchet derivatives generalize the Jacobian or “total” derivative of vector calculus, and can
be used in much the same way. For instance, the iteration

xn+1 = xn −
`

T ′xn
˘−1

rT rxnss , (829)

generalizes Newton’s method for the solution of T rxs = 0. The Newton-Kantorovich Theorem
gives conditions under which (829) converges (see, for instance, [2]).
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6.2. Nonlinear Functionals

Here, we will mostly be concerned with real-valued nonlinear functionals acting on Banach
spaces; that is, mappings of the form T : X → R. It is easy to verify that many of the ele-
mentary result of calculus generalize to this setting, including those regarding local extrema.
We say that a functional T : X → R has a critical point at x if T is Fréchet differentiable in
an open set containing x and T ′x = 0.

Theorem 107. If the functional T : X → R is Fréchet differentiable on an open set U and
T has a local minimum at the point x ∈ U , then T ′x = 0. That is, a local minumum of T is
a critical point.

Proof. Let y ∈ X and define f : R → R via f(t) = T rx+ tys. It is easy to verify that
f is differentiable, and that f ′(t) = T ′x+ty rys. If T has a local minimum at x, then f has a
local minimum at 0, so that 0 = f ′(0) = T ′x rys. Since this is true for all y ∈ X, we have
T ′x = 0, as desired. �

We say that a linear function T : X → R is convex if

T r(1− t)x+ tys ≤ (1− t)T rxs + tT rys (830)

for all x, y in X and 0 ≤ t ≤ 1. It is strictly convex provided

T r(1− t)x+ tys < (1− t)T rxs + tT rys (831)

for all x, y in X and 0 < t < 1. Any norm ‖·‖ on X is a convex linear functional. A functional
T : X → R is weakly lower semicontinuous if whenever {xk} is a sequence which converges
weakly to x,

T rxs ≤ lim inf
k→∞

I rxks . (832)

We omit a proof of the following theorem, which can be found in many references.

Theorem 108. If T : X → R is a continuous, convex functional on the Banach space X,
then T is weakly lower semicontinuous.

One important consequence of Theorem 108 is that any norm given on a Banach space X
is weakly lower semicontinuous. This follows because norms are convex and continuous. We
leave it to the reader to verify that if ‖·‖ is a norm for X, then f(x) = ‖x‖2 is also weakly
lower semicontinuous.

We say that a functional T : X → R is coercive provided whenever {xj} is a sequence such
that ‖xj‖ → ∞, T rxjs → ∞. The following theorem regarding coercive functionals is of
fundamental importance.

Theorem 109. Suppose that X is a reflexive Banach space, and that T : X → R is contin-
uous, coercive and weakly lower semicontinuous. Then T has a global minimum.

Proof. Let

m = inf
x∈X

T rxs , (833)
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and let {xk} be a sequence such that T rxks converges monotonically from above to m. Since
T rxks does not converge to ∞, the coercivity of T implies that {xk} is bounded (note that
this is the case even if T rxks converges to −∞, although we will shortly show that m 6= −∞).
Since X is reflexive, the Banach-Alaoglu theorem (which holds that bounded sets in reflexive
Banach spaces are weakly relatively compact) implies that there is a subsequence of {xk}
which converges weakly to some x ∈ X. Without loss of generality, we may assume that
xk ⇀ x. Now, by the weak lower semicontinuity of T , we obtain

T rxs ≤ lim inf
k→∞

I rxks = m, (834)

from which we conclude that x is a global minimizer of T . Note that since T is a mapping
into R and not the extended reals, it cannot be the case that m = −∞. �

It is, of course, a corollary of Theorem 109 that a continuous, convex, coercive linear function
as a global minimum. Strict convexity can often be used to obtain the uniqueness results, as
in the following theorems.

Theorem 110. If T : X → R is strictly convex, then T has at most one global minimum in
X.

Proof. Suppose that x1 and x2 are distinct global minima of T . Then, by strict con-
vexity, we have

inf
x∈X

T rxs ≤ T

„

x1 + x2

2



<
1

2
T rx1s +

1

2
T rx2s = inf

x∈X
T rxs , (835)

which is a contradiction. �

Theorem 111. Suppose that T : X → R is strictly convex and Fréchet differentiable on X.
Then T has at most one critical point in X.

Proof. If f : R → R is differentiable and strictly convex, then f ′ must be strictly
increasing. Since f ′(x) = 0 if x is a critical point, it follows that there can be at most one
critical point.

To prove the general case, suppose that u is a critical point of T , fix v ∈ X, and define
f : R→ R via

f(t) = T ru+ tvs . (836)

Then f is differentiable and

f ′(t) = T ′u+tv rvs . (837)

It is easy to verify that f ′ is strictly convex and f ′(0) = T ′u rvs = 0 (since u is a critical point).
Then f ′(t) 6= 0 for all t neq0, from which we conclude that

T ′u+tv rvs 6= (838)

for all t 6= 0. Since this holds for all v, we conclude that u is the only critical point of T . �

Theorem 112. Suppose that T : X → R is a linear functional on the Banach space X, and
that T is Fréchet differentiable on X. Suppose also that

pT ′u − T ′vq ru− vs ≥ 0 (839)
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for all u, v in X. Then T is convex. If strict inequality holds in (839) when u 6= v, then T
is strictly convex.

Proof. We fix u and v, and define f : R→ R via

f(t) = T ru+ t(v − u)s . (840)

Then f is differentiable and

f ′(t) = T ′u+t(v−u) rv − us (841)

If s < t then

f ′(t)− f ′(s) =
`

T ′u+t(v−u) − T ′u+s(v−u)

˘

rv − us

=
1

t− s
`

T ′u+t(v−u) − T ′u+s(v−u)

˘

r(u+ t(v − u))− (u+ s(v − u))s

≥ 0.

(842)

We conclude that f is nondecreasing, which implies that it is convex (f ′′(x) ≥ 0). In partic-
ular,

f(t) = f(1t+ 0(1− t)) ≤ tf(1) + (1− t)f(0), (843)

which is equivalent to

T rtv + (1− t)us ≤ tI rvs + (1− t)I rus . (844)

If the inequality is strict, then f is strictly increasing, and we get strict inequality in (844). �

Exercise 34. Is the functional T : R→ R defined via T rxs = exp(x) coercive?

6.3. Application to a Linear Elliptic Partial Differential Equation

We will suppose that Ω is an open, bounded set in Rn, that q ∈ L∞ pΩq such that q(x) ≥ 0
almost everywhere in Ω, and that h ∈ L2 pΩq. It is easy to verify that the Fréchet derivative
of the linear functional I : H1

0 pΩq→ R defined via

I rus =
1

2

∫
Ω

|Du(x)|
2 dx+

1

2

∫
Ω

q(x) pu(x)q
2 dx−

∫
Ω

h(x)u(x) dx (845)

is

I ′u rvs =

∫
Ω

Du(x) ·Dv(x) dx+

∫
Ω

q(x)u(x)v(x) dx−
∫

Ω

h(x)v(x) dx. (846)

If u ∈ H1
0 pΩq is a critical point for I, then

I ′u = 0; (847)

that is,∫
Ω

Du(x) ·Dv(x) dx+

∫
Ω

q(x)u(x)v(x) dx−
∫

Ω

h(x)v(x) dx = 0 for all v ∈ H1
0 pΩq . (848)
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In other words, u is a critical point for I if and only if u is a weak solution of the boundary
value problem {−∆u(x) + q(x)u(x) = h(x) in Ω

u(x) = 0 on ∂Ω.
(849)

We will now show that I is strictly convex and coercive. It then follows that I has a global
minimum u, which must be its unique critical point. In particular, u is the unique weak
solution of (849). We first show that I is coercive. Since q(x)(u(x))2 is nonnegative, we have

I rus ≥ 1

2
‖Du‖2

L2pΩq−
∫

Ω

h(x)u(x) dx

≥ 1

2
‖Du‖2

L2pΩq−‖h‖L2pΩq‖u‖L2pΩq

(850)

Now we apply Poincaré’s inequality to see that

I[u] ≥ C‖u‖2
H1

0 pΩq
−‖h‖L2pΩq‖u‖H1

0 pΩq. (851)

for some C > 0. It follows that I ruks → ∞ if ‖uk‖H1
0 pΩq→ ∞. The strict convexity of I

follows from Theorem 111 since for u 6= v,

(I ′u − I ′v) ru− vs =

∫
Ω

(Du(x)−Dv(x)) · (Du(x)−Dv(x)) dx+

∫
Ω

q(x)(u(x)− v(x))2 dx

≥
∫

Ω

D(u− v)(x) ·D(u− v)(x) dx > 0.

(852)

6.4. Application to a Semilinear Elliptic Partial Differential Equation

We will now apply the machinary of this chapter to the boundary value problem{−∆u(x) + q(x)u(x) = h(x) + f(u) in Ω

u(x) = 0 on ∂Ω
(853)

under the assumptions that Ω is an open, bounded set in Rn, that q ∈ L∞ pΩq such that
q(x) ≥ 0 almost everywhere in Ω, that h ∈ L2 pΩq, and that f : R → R is continuous and
bounded.

We first define the function F : R→ R via the formula

F (t) =

∫ t

0

f(s) ds. (854)

Then it is easy to see that u ∈ H1
0 pΩq is a critical point of

I rus =
1

2

∫
Ω

Du(x)·Du(x) dx+
1

2

∫
Ω

q(x)(u(x))2 dx−
∫

Ω

h(x)u(x) dx−
∫

Ω

F (u(x)) dx. (855)

if and only if u is a weak solution of (853). From Poincaré’s inequality, we know that the
norm ‖u‖∗ defined via

‖u‖2
∗=

∫
Ω

Du(x) ·Du(x) dx+

∫
Ω

q(x)(u(x))2 dx (856)
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is equivalent to the H1
0 pΩq norm (note that there is nothing to preclude q from being equal

to 0 everywhere in Ω). We will show that I is coercive and weakly lower semicontinuous with
respect to ‖·‖∗. It will then follow that I has a global minimum u which is a weak solution
of (853).

First, we address the coercivity of I. Since f is bounded, there exists M > 0 such that
|f(t)| ≤M for all t. It follows that

|F (t)| ≤
∫ t

0

f(s) ds ≤M |t| . (857)

From this and the facts that H1
0 pΩq is continuously embedded in L1 pΩq and the ‖∗‖∗ norm

is equivalent to the H1
0 pΩq norm, we see that

ˇ

ˇ

ˇ

ˇ

∫
Ω

F (u(x)) dx

ˇ

ˇ

ˇ

ˇ

≤M

∫
Ω

|u(x)| dx = M ‖u‖L1pΩq
≤ C ‖u‖H1

0 pΩq
≤ C ‖u‖∗ (858)

for all u ∈ H1
0 pΩq. Using this, we have

I rus =
1

2
‖u‖2

∗−
∫

Ω

h(x)u(x) dx−
∫

Ω

F (u(x)) dx

≥ 1

2
‖u‖2

∗−C‖u‖L2pΩq−C‖u‖∗

≥ 1

2
‖u‖2

∗−C‖Du‖L2pΩq−C‖u‖∗

≥ 1

2
‖u‖2

∗−C‖u‖∗.

(859)

In the second to last line, we used Poincaré’s inequality. Inequality (859) shows that I is
coercive.

Now we will show that I is weakly lower semicontinuous. Suppose that {uk} is a sequence
in H1

0 pΩq which converges weakly to u. The image of a weakly convergent sequence under
compact mappings is strongly convergent and the embedding of H1

0 pΩq into L2 pΩq is com-
pact. It follows that some subsequence of uk converges to u in L2 pΩq. So, without loss of
generality, we can assume that {uk} converges to u weakly in H1

0 pΩq, strongly in L2 pΩq, and
pointwise almost everywhere.

Since {uk} converges pointwise almost everywhere to u, which is in square integrable, there
exists a function g ∈ L2 pΩq such that |uk(x)| ≤ g(x) for almost all x ∈ Ω. We observe that

F (uk(x)) ≤M |uk(x)|≤Mg(x) (860)

and note that since L2 pΩq is continously embedded in L1 pΩq, we can apply the dominated
convergence theorem to obtain

lim
k

∫
Ω

F (uk(x)) dx =

∫
Ω

F (u(x)). (861)

Obviously,

lim
k

∫
Ω

h(x)uk(x) dx =

∫
Ω

h(x)u(x) dx. (862)
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Since norms and their squares are weakly lower semicontinuous, we have

‖u‖2
∗≤ lim inf

k
‖uk‖2

∗. (863)

Now combining (861), (862) and (863) gives

I rus =
1

2
‖u‖2

∗−
∫

Ω

F (u(x)) dx−
∫

Ω

u(x)h(x) dx

=
1

2
‖u‖2

∗− lim inf
k→∞

∫
Ω

F (uk(x)) dx− lim inf
k→∞

∫
Ω

uk(x)h(x) dx

≤ lim inf
k→∞

1

2
‖uk‖2

∗− lim inf
k→∞

∫
Ω

F (uk(x)) dx− lim inf
k→∞

∫
Ω

uk(x)h(x) dx

= lim inf
k→∞

I ruks ,

(864)

which establishes the weak lower semicontinuity of I. We conclude that I has a global
minimum u.

6.5. A Less Restrictive Condition on the Nonlinear Term

We will now consider the boundary value problem{−∆u(x) + q(x)u(x) = h(x) + f(u) in Ω

u(x) = 0 on ∂Ω
(865)

under somewhat less restrictive conditions on the function f . More specifically, we assume
that Ω is an open, bounded set in Rn, that q ∈ L∞ pΩq such that q(x) ≥ 0 almost everywhere
in Ω, and that h ∈ L2 pΩq. We will also suppose that f : R → R is a continuous function
such that

|f(t)| ≤M + b|t|. (866)

Here, we will assume that b < λ1, where λ1 is the smallest eigenvalue of the operator −∆+q.
The variational characterization of λ1 is

λ1 = inf
u∈H1

0 pΩq\{0}

〈p−∆ + qq rus , u〉L2pΩq

〈u, u〉L2pΩq

= inf
u∈H1

0 pΩq\{0}

∫
Ω
Du(x) ·Du(x) dx+

∫
q(x)(u(x))2 dx∫

Ω
(u(x))2 dx

(867)

As before, we define the function F : R→ R via the formula

F (t) =

∫ t

0

f(s) ds (868)

and I : H1
0 pΩq→ R via

I rus =
1

2

∫
Ω

Du(x)·Du(x) dx+
1

2

∫
Ω

q(x)(u(x))2 dx.−
∫

Ω

h(x)u(x) dx−
∫

Ω

F (u(x)) dx, (869)

and we let ‖·‖∗ denote the norm defined via (856). From (868), we see that

|F (t)| ≤M |t| +
b

2
|t|2 . (870)
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The weakly lower semincontinuity of I follows as before, so in order to establish the existence
of a global minumum of I, we need only prove that I is coercive. To that end, we observe
that Formula (867) implies that

‖u‖2
L2pΩq≤

1

λ1

‖u‖2
∗ (871)

for all u ∈ H1
0 pΩq. We combine (870) and (871) to obtain

ˇ

ˇ

ˇ

ˇ

∫
Ω

F (u(x)) dx

ˇ

ˇ

ˇ

ˇ

≤M

∫
Ω

|u(x)| dx+
b

2

∫
Ω

|u(x)|
2

≤ C‖u‖∗+
b

2λ1

‖u‖2
∗.

(872)

It follows that

I rus =
1

2
‖u‖2

∗−
∫

Ω

h(x)u(x) dx−
∫

Ω

F (u(x)) dx

≥ 1

2
‖u‖2

∗−C‖u‖L2pΩq−C‖u‖∗−
b

2λ1

‖u‖2
∗

≥
ˆ

1

2
− b

2λ1

˙

‖u‖2
∗−C‖Du‖L2pΩq−C‖u‖∗

≥
ˆ

1

2
− b

2λ1

˙

‖u‖2
∗−C‖u‖∗.

(873)

Since 1
2
− b

2λ1
> 0, (873) implies that I is coercive.
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