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CHAPTER 1

Introduction

This course concerns boundary value problems for second order elliptic equations given on
domains in Euclidean space. More specifically, we will discuss the variational formulations
of such problems, which is essential material for anyone interested in studying analysis or
partial differential equations.

My intention is to move quickly through preliminary material and get to the heart of the
course — a discussion of the variational formulation of elliptic boundary value problems and
a presentation of basic existence, uniqueness and regularity results for them — as soon as
possible.

This is the second draft of the notes for this course, and they were written in some haste.
No doubt there are many errors and inconsistencies. I ask for your patience, and that you
bring any errors you find to my attention. I am also open to any suggestions you may have
for their improvement.

I made extensive use of the following texts while preparing these notes, and suggest them as
references.

(1) “Partial Differential Equations” by Lawrence Evans.

(2) “Elliptic Partial Differential Equations of Second Order” by David Gilbarg and Neil
Trudinger.

(3) “Sobolev Spaces” by Robert Adams and John Fournier.

I also highly recommend the following texts which cover material beyond the scope of the
course, but may be of some use to you.

(1) “Non-homogeneous boundary value problems” by J.L. Lions and E. Magenes dis-
cusses boundary value problems for higher order elliptic operators.

(2) Gerald Folland’s “Partial Differential Equations” contains good introductions to
layer potentials and pseudodifferential calculus.

(3) Pierre Grisvard’s “Elliptic Problems in Nonsmooth Domains” first gives an excellent
(but fast-paced) review of the material presented here and then goes on to discuss
boundary value problems under somewhat weaker regularity assumptions than we
make.
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Much of the material in the preliminaries — with Sections 2.3 and 2.10 notable exceptions
— can be found in “Real Analysis: Modern Techniques and Their Application” by Gerald
Folland.



CHAPTER 2

Preliminaries

In this chapter, we review a number of basic definitions and results which will be used
throughout these notes. I do not suggest that you read through this material in its entirety
at the beginning of the course. Rather, I recommend that you consult this section as needed.
Many of the results discussed here were originally developed in order to analyze partial
differential equations and without this context, it is difficult to appreciate the utility of much
of this material.

Throughout this chapter and these notes, all normed linear spaces are vector spaces over the
the field of real numbers. Small modifications must be made if normed linear spaces over the
complex numbers are considered instead.

2.1. Three Basic Theorems in Functional Analysis

You should already be familiar with the following three basic theorems regarding Banach
and normed linear spaces. If not, I suggest you refer to [8] or [4].

THEOREM 1 (Open mapping theorem). Suppose that T : X — Y is a continuous linear
mapping between Banach spaces. Then T is surjective if and only if it is an open mapping
(that is, if it takes open sets in X to open sets in'Y ).

THEOREM 2 (Uniform boundedness principle). Suppose that X is a Banach space, and that
Y is a normed linear space. Suppose also that F' is a collection of bounded linear operators
X =Y. If for each x € X,

sup ||[Tz]| < oo (1)
TeF

then
sup ||T]| < 0. (2)
TEF

THEOREM 3 (Hahn-Banach theorem). Suppose that'Y is a subspace of a normed linear space
X, and that T : Y — R is a bounded linear functional. Then there is a bounded linear
functional T : X — R which extends T (i.e., T(y) = T(y) for ally € Y ) and whose norm is
equal to that of T.

These three basic theorems have a large number of useful consequences. For instance, the
following results are immediate consequences of the open mapping theorem

THEOREM 4 (Bounded inverse theorem). Suppose that X and Y are Banach spaces. The
nverse of a bijective bounded linear mapping T : X — Y is bounded.

5



2.2. COMPACT OPERATORS 6
THEOREM 5 (Closed graph theorem). Suppose that X and Y are Banach spaces, and that
T: X —Y is a linear operator. Then T is bounded if and only if the graph of T

{(z,y) e X xY : Tz =y} (3)

18 closed.

Suppose that Y is a subspace of the Banach space X. We denote by X/Y the vector space
of cosets of Y. That is, X/Y consists of the equivalence classes of the relation

x1 ~ x9 if and only if z7 — 29 €Y. (4)
We will denote the equivalence class to which the element x belongs by x + Y. Note that if
Y is closed, then X/Y is a Banach space when endowed with the norm

Y| = inf||lx — y]|.
lz + Y[} = inf llo =y ()

If Y is not closed, then (5) is no longer a norm (it is instead a seminorm). The following is
another consequence of the open mapping theorem.

THEOREM 6. Suppose that X andY are Banach spaces, and that T : X — Y is a continuous
linear operator. If im(T') is closed, then im(T) is isomorphic to X /ker(T).

PROOF. We define T': X /ker(T) — im(T) via the formula

T(z + ker(T)) = T(x). (6)

We observe that ker(T) is closed since T is continuous, and that 7" is bijective and continuous.
Since im(Y) is a closed subset of the Banach space Y, it is a Banach space and we apply the

open mapping theorem in order to conclude that T is an isomorphism. O

Note that if T: X — Y is a continuous linear mapping and im(7") is not closed, then im(7)
is not a Banach space and hence cannot be isomorphic to X /ker(T"), which is a Banach space
since ker(7') is closed if and only if 7" is continuous.

2.2. Compact Operators

Suppose that X is a topological space, and that V' is a subset of X. Then V is compact if
every covering of it by open sets admits a finite subcover. When X is a Banach space, there
are a number of other useful ways to characterize compact sets:

THEOREM 7. Suppose that X is a Banach space, and that V is a subset of X. Then the
following are equivalent:

(1) The set 'V is compact (i.e., every covering of V' by open sets admits a finite subcov-
ering).

(2) Every sequence contained in V' has a convergent subsequence whose limit is in V.
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(8) The set V is closed and for every € > 0 there exists a finite collection of points
X1y...,%, €V such that

V C LnJ B(z;).

=1

We say that a set V' of a Banach space X is totally bounded if for every € > 0 there exists a
finite collection of points x1,...,z, € V such that

Vv c B (x:) (7)
i=1
so that the third criterion for compactness in Theorem 7 can be summarized by saying that

V' is compact if and only if it is closed and totally bounded.

The following result, due to F. Riesz, will be used frequently in the remainder of this section.

THEOREM 8 (Riesz’ lemma). Suppose that X is a Banach space, that Y is a closed proper
subspace of X, and that 0 < a < 1 is a real number. Then there exists x € X \'Y such that

[zl =1 (8)
and

inf ||z —y| > a.
inf o~ yl > a Q)

PROOF. We choose z; in X \ Y and let

r=inffley — . (10)
Since Y is closed, r > 0. Suppose that € > 0. Then there exists y; € Y such that
r<|lzi —wml<r+e (11)
We set
Tr— U
=0 (12)
Iy — 21|
so that
lzf]= 1 (13)
and
. . Ty Y1
inf ||y — x||= inf ’y— + ’ 14
e = = Y o=l o=l "
Since
Y1
TTE—Y (15)
1 =yl
is in Y, we see from (14) that
. . I r
inf ||z — y||= inf ||y — = . 16
inflle = yl= g - 2 = (16)
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Since 7/(r + €) increases to 1 as € — 0, we can ensure the conclusion of the theorem holds
by choosing € sufficiently small. O

It follows immediately from Riesz’ lemma that if Y is an infinite-dimensional subspace of a
Banach space X, then there exists a sequence {y,} in Y such that

1
e — il = (1)

for all positive integers ¢ and j such that ¢ # j. Sequences of this type are often used as a
substitute for orthonormal bases in Hilbert spaces, as in the proof of the following theorem.

THEOREM 9. The Banach space X 1is finite-dimensional if and only if the closed unit ball in
X 15 compact.

Proor. If X is finite-dimensional, it is isomorphic to R™ for some positive integer n. In
this case, the closed unit ball of X is identified with a closed, bounded subset of R", and so
it is compact.

Suppose now that X is infinite-dimensional and that its closed unit ball is compact. We
apply Riesz’ lemma in order to construct a sequence {z;} such that

;]| =1 (18)
forall j =1,2,... and

(19)

N | —

;= ;[ =

whenever ¢ and j are positive integers such that i # j. Since {x;} is contained in the closed
unit ball of X, which we have assumed to be compact, it has a convergent subsequence. But
this conclusion is contradicted by (19), which implies that no subsequence of {z,} can be
Cauchy. We conclude that X is finite-dimensional. O

We say that an operator K : X — Y between Banach spaces is compact if im (/) is compact.It
follows from Theorem 7 that K is compact if and only if whenever {z,} is a bounded sequence
in X, {K(z,)} has a convergent subsequence.

EXERCISE 1. Suppose that X and Y are Banach spaces, and that K : X — Y is compact.
Show that K is bounded.

We denote by T™ the adjoint of T', which is the bounded linear operator Y* — X* defined
via the requirement that

(T, p) = (x,T"p) (20)
for all x € X and p € Y*. By

(z,9), (21)

where ¢ € X* and x € X, we mean the value obtained by evaluating the linear functional ¢
at the point x — that is, ¢(x). We omit the proof of the following theorem, which can be
found in many functional analysis textbooks.

THEOREM 10. Suppose that X and Y are Banach spaces, and that K : X —Y is a compact
operator. Then the adjoint K* :Y* — X* is also compact.
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We now use Riesz’s lemma to establish a basic result concerning the spectrum point

op(K) ={X:ker(A\] — K) # 0} (22)
of a compact operator K : X — Y between Banach spaces. The spectrum of K is
o(K)={X: A — K is not invertible} , (23)

We will later see that o(K) \ {0} = 0,(K) \ {0} (this depends on the compactness of K,
though, and is not true for general linear operators).

THEOREM 11. Suppose that X and Y are Banach spaces, and that K : X —Y is a compact
operator. Then the spectrum o(K) of K is either finite or a sequence which converges to 0.
Moreover, for each A € o(K), kernel of A\I — K is finite-dimensional and the image of N\ — K
15 closed.

PROOF. Suppose that {\,} is a sequence of distinct real numbers in 0,(K) \ {0}. Then
there exist x1, xs, ... such that

K, = Ay, (24)
For each n, we let S, be the subspace spanned by x1,...,z,. It is easy to see that the
vectors xy, . .., x, must be linearly independent (since the A, are distinct). It follows that S,

is properly contained in S,, 1 for all n. Moreover, each of these subspaces is finite-dimensional
and hence closed. It follows from these two observations that we can apply Riesz’ Lemma to
construct a sequence {y,} such that y, € S,, ||y.||= 1, and
1
inf —z||> =. 25
Jof g =zl 5 (25)
Then for any m < n we have:

1A Ky — A Kyl = (A (K Yn — M) = A Ky + || > (26)

| —

This follows from (25) since Ky, and Ky, — \,y, are elements of S,_;. To see that Ky, —
AlYn € Sp_1, We write

Yn = Zajxj. (27)
j=1

It follows easily that

Kyn = ZO&j)\jx]’, (28)
j=1
from which we conclude that
n n—1
Ky = A = Y () — agha) 2y = Y (a); — aAn) @ (29)
j=1 j=1

Now it follows from (26) that

L < = A I Gl A @) — K () (30)
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for all positive integers m < n. We may assume, without loss of generality, that the sequence
K(y,) is convergent by the compactness of K. If {\,} converges to any A # 0, then we have
a contradiction.

We now suppose that for some A € o(K), the kernel of A\l — K is infinite-dimensional and
we will derive a contradiction. The kernel of any bounded linear mapping is closed, so we

apply Riesz’ lemma in order to obtain 2y, 25, ... such that
I25]]= 1 (31)
for all positive integers 7,
1
= 2411 5 (32)
for all pairs of positive integers 4,j such that ¢ # j, and
Az = K(2) (33)
for all positive integers j. We observe that
Al
1 (=5) = K (zo)ll= A ]z = 212 = (34)

But (34) implies that no subsequence of {K(z;)} is Cauchy, which contradicts the the as-
sumption that K is compact.

We suppose that y is the limit of a sequence in the image of A\l — K. That is, we suppose
that there exists a sequence {x,} such that
lim (A\z, — Kz,) = y. (35)
n—oo
Since K is compact, by passing to a sequence we can assume that Kz, is convergent. It is
clear, then, from (35) that the sequence x,, converges to some x € X. The continuity of the
operator AI — K implies that

y=lim (\ — K)a, = (M - K) = (\ - K) <lim xn> = (A~ K)x, (36)
n—oo n—oo
from which we conclude that the image of T is closed. O

Suppose that X and Y are Banach spaces. It is easy to see that the set of compact operators
X — Y is a closed subspace of the set of linear operators X — Y. In particular, if { K,,} is a
sequence of compact operators which converges to K in operator norm, then K is compact.
Moreover, every operator of finite rank is compact, so that any operator which is the limit
of finite rank operators is compact. We say that the Banach space Y has the approximation
property if the converse is true — that is, if every compact operator is the limit of a sequence
of finite rank operators.

Not every Banach space has the approximation property [5]; however, the following theorem
gives a useful sufficient condition for a Banach space have the approximation property. Before
we state it, we require a further definition. A sequence {z,} in a Banach space X is a Schauder
basis for X if for every x € X there exist real numbers a4, as, ... such that

n
E Oéjf]?j — X
=1

= 0. (37)

lim
n—oo
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THEOREM 12. Suppose that X and Y are Banach spaces, and that Y has a Schauder basis.

Then every compact operator X — Y s the limit of a sequence of finite rank operators
X =Y.

Clearly, every separable Hilbert space has a Schauder basis, as does the space L? (R") when
1 < p < o0, and also the space C(X) of continuous functions on a compact metric space. On
the other hand, the space L> (R™) does not admit a Schauder basis since it is not separable.
Note, though, that not every separable Banach space has a Schauder basis (indeed, in [5],
a separable Banach space which does not have a Schauder basis and does not have the
approximation property is constructed).

EXERCISE 2. Suppose that (2, i) is a measure space, that k(x,y) is an element of L*(2x ),
and that T : L*(Q) — L*(Q) is the linear operator defined via the formula

T(f) () = / k() f(y) dy. (38)

Show that T is a compact operator. Operators of this type are called Hilbert-Schmdit operators
and the function k is referred to as the kernel of T'.

2.3. Fredholm Operators

Suppose that A is a real-valued n x n matrix, and that A* is its transpose. Then R" is the
orthogonal direct sum of the image of A and the kernel of A*, as well as the orthogonal direct
sum of the image of A* and the kernel of A, and the dimension of im(A) is equal to the
dimension of im(A*). These elementary observations have a number of useful consequences.
Among them, that the equation

Ar =10 (39)
is uniquely solvable for each b € R™ if and only if

A*2=0 (40)
admits only the trivial solution, which is the case if and only if the equation

Az =0 (41)

admits only the trivial solution. In order words, the linear operator corresponding to the
matrix A is injective if and only if it is surjective.

In this section, we discuss a class of operators acting on infinite-dimensional vector spaces
which have this rather useful property of square matrices. Before we give the principal
definition, we review some of the basic properties of direct sum decompositions of Banach
spaces.

2.3.1. Direct Sums and Complemented Subspaces. If Y and Z are Banach spaces,
then the direct sum Y & Z is the Banach space obtained by endowing the vector space Y x Z
with the norm

Iy, )1 = llyll + ll=l- (42)
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We say that a subspace Y of a Banach space X is complemented in X if there exists a
subspace Z of X such that the addition map A :Y & Z — X defined via the formula

Aly,z) =y + 2 (43)
is an isomorphism (meaning that it is a continuous bijective linear mapping whose inverse

is also continuous). If Y is complemented in X, then Y is necessarily closed since the
composition of the inverse of A with the projection

P:Y®Z—Z (44)

defined via P(y,z) = z is a continuous linear mapping whose kernel is Y (the kernel of a
linear mapping is closed if and only if the mapping is continuous).

Any closed subspace of a Hilbert space is complemented: if M is a closed subspace of a
Hilbert space X, then X = M @& M*, where M+ denotes the orthogonal complement of the
space X. The same is not true of Banach spaces. In fact, if X is a Banach space and every
closed subspace of X is complemented, then X is isomorphic to a Hilbert space [13]. In
general, it is difficult to determine whether or not a particular closed subspace Y of a Banach
space X is complemented. However, as we will now show, subspaces of finite dimension and
closed subspaces of finite codimension are complemented (the codimension of Y in X is the
dimension of the quotient space X/Y).

Suppose that X is a Banach space. A linear mapping P : X — X such that P2 = P is called
a projection. The following theorem characterizes complemented subspaces as the kernels
and images of continuous projections.

THEOREM 13. Suppose that X is a Banach space, and that'Y is a subspace of X. Then the
following are equivalent:

(1) The subspace Y is complemented in X .
(2) There is a continuous projection P : X — X such that ker(P) =Y.

(3) There is a continuous projection P : X — X such that im(P) =Y .

PROOF. First, we show that (1) implies (2). To that end, we suppose that Y is com-
plemented in X so that there exists a closed subspace Z of X such that the addition map

A:Y ®7Z — X defined via the formula
Aly,z) =y += (45)

is a linear isomorphism. We observe that the composition P of A~ : X — Y @& Z with the
mapping Y @& Z — X which takes map (y, z) to z is a continuous projection X — X whose
kernel is Y.

To see that (2) implies (3), we observe that if P : X — X is a continuous projection such
that ker(P) =Y, then I — P is a continuous projection such that im(P) =Y.

We now conclude the proof by showing that (3) implies (1). We suppose that Y is the image
of a continuous projection P : X — X, and that Z is the kernel of P. We will how that the
addition mpa A : Y & Z — X defined by the formula

Aly,z) =y += (46)
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is an isomorphism. The map A is plainly continuous since

ly + 2l < [lyll+l=]]. (47)
It is surjective since
t=Pr+ (- P (48)
with Pz € Y and (I — P)x € Z whenever z € X. Suppose that
Y1+ 21 =y2+ 22 (49)
where y1,y2 € Y and 21,29 € Z. Since Y is the image of P, there exist xq, 9 such that
Pxy =y (50)
and
Pxy = ys. (51)
We combine (49), (50) and (51) in order to conclude that
P(xy —x9) + (21 — 29) = 0. (52)

By applying P to both sides of (52) and make use of the facts that P? = P and Z = ker(P)
we obtain
P(ZEl — 272) = 07 (53)

from which we conclude that y; = ys. It follows from this and (49) that z; = z5. We conclude
that A is also injective. We now apply the open mapping theorem in order to see that the
bijective continuous linear mapping A is an isomorphism. O

THEOREM 14. Suppose that'Y is a finite-dimensional subspace of the Banach space X . Then
there exists a closed subspace Z such that X =Y & Z.

PROOF. We let {vy,vq,...,v,} be a basis for the subspace Y. For each j =1,...,n we
define the bounded linear function ¢; : ¥ — R via the formula

1 if 1=y
(v;) = 54
i (vi) {O otherwise. (54)

Now we apply the Hahn-Banach theorem in order to extend each of the ¢; to mappings
Y — R. We also let

Z = [ ker()), (55)

j=1
and define the mapping P : X — X via

P(z) = Z%(I)Uj‘ (56)

We observe that P is a continuous projection whose image is Y. It follows from Theorem 13
that Y is complemented. 0

THEOREM 15. Suppose that X is a Banach space, and that Y is a closed subspace of X

of finite codimension n. Then there exists an n-dimensional subspace Z of X such that
X=YdZ
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PrRoOOF. We let {v,...,v,} be a basis for the space X/Y. For each j = 1,....,n, we
choose an element w; of X which is in the equivalence class v;, and we denote by Z be the
subspace of X spanned by wy, ..., w,. The kernel of the canonical projection ¢ : X — X/Y
is Y, which is a closed subspace, so ¢ is continuous. As is the restriction ¢ : Z — X/Y
of ¢ to the finite dimensional (and hence closed) subspace Z of Y. Moreover, ¢ is clearly
bijective. It follows from the open mapping theorem that ¢=! : X/Y — Z is continuous. We
observe that the composition P = ¢! 0 1) is a continuous projection X — X whose kernel
is Y. We conclude form this observation and Theorem 13 that Y is complemented in X. [

Note that the requirement that Y be closed in Theorem 15 is essential since there are sub-
spaces of finite codimension which are not closed, and hence cannot be complemented. In-
deed, the kernel of any discontinuous linear functional 7" : X — R is a subspace of X of
codimension 1 which is not closed. There is no need for such a requirement in Theorem 14
since all finite-dimensional subspaces are necessarily closed. We now show that if a subspace
of finite codimension is the image of a continuous linear operator, then it must be closed.

THEOREM 16. Suppose that X and Y are Banach spaces, and that T : X — Y 1is a con-
tinuous linear mapping. If im(T) is of finite codimension in'Y , then it is closed (and hence
complemented).

PRrROOF. Without loss of generality, we assume that 7" is injective (if not, then we may re-
place T with the injective mapping X /ker(7T") — Y it induces). We choose a basis {vy,...,v,}
for the space Y/im(T) and for each j = 1,...,n, we choose a representative w; in Y of the
equivalence class v;. We denote by Z the subspace of Y spanned by wy, ..., w,. Since Z
is finite-dimensional (and hence closed), Z is a Banach space. Now we define the mapping
A: X & Z —Y by the formula

Alz,z) =Tz + = (57)
Since
1T+ zf| < [[Tal| + (|2l < TNl + 1121 < 01T Azl + 2] (58)
A is bounded. Suppose that y € Y. Then there exist a4, ..., a, such that

> (59)
j=1

is the equivalence class in Y/im(7") containing y. Since w; is an element of the equivalence
class containing v;, we have

y = Z ajw; + Z auj +u (60)
j=1 j=1

where u1,...,u, and u are containined in im(7"). We conclude that A is surjective. Now
suppose that

T (x1 —x3)+ 21 — 20 =0. (61)

The restriction of the canonical mapping Y — Y/im(Z) to Z is clearly injective, and by
applying that mapping to (61) we see that z; = z5. It follows from this fact and (61) that
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Since T is injective, (62) implies that z; = x5. We conclude that A is injective as well as
surjective and continuous. We now apply the open mapping theorem in order to conclude
that it is an isomorphism. Consequently, A carries closed subsets of X @& Z to closed subsets
of Z. The image of the closed subset X x {0} of X & Z under A is im(7"). We conclude that
im(7') is closed. O

2.3.2. Annihilators and Preannihilators. If M is a subset of a Banach space X,
then the annihilator M=+ of M is the closed subspace of X* defined via

M*+={feX*: f(x)=0forallz € M}. (63)

Similarly, if /V is a subset of X*, then the preannihilator N, of N is the closed subspace of
X defined as follows:

Ny ={xeX:f(xr)=0forall fe N}. (64)

If Ais an n x m matrix, then the kernel of A is the orthogonal complement of the image of A*
and the kernel of A* is the orthogonal complement of the image of A. The following theorem
generalizes these observations to the case of bounded linear mapping between Banach spaces.

THEOREM 17. Suppose that T : X — 'Y s a continuous linear map between Banach spaces,
and that T . Y* — X* 1s its adjoint. Then

(1) im(T)* = ker(T*)
(2) im(T) = ker(T™) |
(3) ker(T) = im(7T™),
(4) im(T*) C ker(T)*
From Theorem 13, we see that if the image of T is closed, then the image of T is the

preannihilator of the kernel of the adjoint T*. This gives us a solvability criterion for the
equation

Tx =y. (65)
In particular, if the image of T is closed, then (65) admits a solution if and only if
o(y) =0 (66)

for all ¢ € ker(T™).

2.3.3. Fredholm Operators. Suppose that X and Y are Banach spaces. We say that
a continuous linear mapping 7' : X — Y is a Fredholm operator if the kernel of 7' is of finite
dimension and the image of T is of finite codimension. The index of a Fredholm operator T’

is defined to be
ind(7") = dim(ker(7)) — dim(Y/im(T)). (67)

Fredholm operators of index 0 will play a particularly important role in what follows. They
have many of the convenient properties possessed by linear mappings R” — R™. For instance,
a Fredholm operator of index 0 T": X — Y is surjective if and only it is injective.
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We will now provide an alternative definition of Fredholm operator, which might be more
familiar to the reader.

THEOREM 18. Suppose that X and Y are Banach spaces, that T : X — Y is a continuous
linear mapping, and that T* : Y* — X* is its adjoint. Suppose further that im(T') is closed.
Then the dual space of Y/im(T') is isomorphic to ker(T™).

PROOF. We observe that if ¢ : Y — R is in ker(7™) then

(Tz, @) = (x,T"(¢)) = 0 (68)
for all z € X — that is, p(im(7")) = 0. It follows that the map ¢ : (Y/im(7")) — R defined
via

Py +1im(T)) = ¢(y) (69)
is a well-defined linear functional in the dual of Y/im(T"). We denote by A the map which
takes ¢ € ker(T™) to the linear functional @ defined via (69). Since p(im(7")) = 0,

181 = sup |@(y)] < sup [(y)] = [lell, (70)
[ly+im(T)[|=1 lyll=1
from which we see that A is a bounded mapping. We also observe that A is bijective; indeed,
its inverse is the map taking

Y :Y/im(T) — R (71)
to the map @Z .Y — R defined via
Oy) = ¥y +im(T)). (72)

Since im(T") is closed, Y/im(7T) is a Banach space and its dual space is a Banach space.
Consequently, the open mapping theorem applies and we invoke it in order to conclude that
A is an isomorphism. O

THEOREM 19. Suppose that X and Y are Banach spaces, that T : X — Y is a continuous
linear mapping, and that T* : Y* — X* is its adjoint. Then T is Fredholm if and only if
its image is closed and both ker(T) and ker(T*) are of finite dimension. Moreover, if T is
Fredholm then

ind(7") = dim(ker(7)) — dim(ker(7™)). (73)

Proor. We suppose first that T is a Fredholm operator. Then the kernel of T is finite-
dimensional by definition and the image of 1" is closed since it is of finite codimension in Y
(see Theorem 16). According to Theorem 18, that im(7) is closed implies that (Y/im(T'))"
is isomorphic to ker(7™). We conclude that

dim(ker(7™)) = dim((Y/im(7"))"). (74)
But Y/im(T) is finite-dimensional, so
dim(Y/im(7)) = dim((Y/im(T))"). (75)
We combine (74) and (75) in order to obtain
dim(ker(7™)) = dim(Y/im(7)) < oo, (76)

which suffices to establish (73) and the assertion that ker(7™) is finite-dimensional.
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Now we suppose that ker(T), ker(T*) are finite-dimensional and that im(7') is closed. By
Theorem 18,
(Y/im(T))" ~ ker(T™). (77)

We see from (77) that the codimension of im(7") is equal to the (finite) dimension of ker(7*).
Since we have assumed that the dimension of the kernel of T is finite, we that T is Fredholm.
O

EXERCISE 3. Suppose that X is a Hilbert space, that {¢;}32, is an orthonormal basis for X,
and that T is the linear mapping X — X defined via the formula

T [¢z] = ¢i+1 fOT all ©= 1, 2, cee (78)

Suppose also that k is a positive integer. What is the kernel of T*? What is the cokernel of
T*? What is the index of T*?

THEOREM 20. Suppose that X is a Banach spaces, and that T : X — X s compact. Then
I+ T is a Fredholm operator.

PrOOF. From Theorem 11, we see that the kernel of I + T is finite-dimensional, and that
its image is closed. The adjoint of I + T is
I+7T7, (79)

where 7% : Y* — X* is the adjoint of T". Since T™* is also compact (by Theorem 10), we see
from Theorem 11 that the kernel of I 4+ T is finite-dimensional. We now apply Theorem 19
in order to conclude that 71" is Fredholm. 0

We conclude from Theorems 14, 15 and 16 that a Fredholm operator induces the direct sum
decompositions

X =ker(T)® X' (80)
and
Y =im(T)® Y’ (81)

where ker(T") is a finite-dimensional subspace of X and Y’ is a finite-dimensional subspace
of Y. This direct sum decomposition is crucial in the proof of the next theorem, which
characterizes Fredholm operators as those which are invertible “modulo compact operators.”

THEOREM 21. An operator T : X — Y between Banach spaces is Fredholm if and only if
there exist a bounded linear operator S :' Y — X and a pair of compact operators Ky : Y — Y,
Ky : X — X such that

ST=1-K; (82)
and

PROOF. We first suppose that there exist a bounded linear operator S : ¥ — X and
compact operators Ky : Y — Y, Ky : X — X such that (82) and (83) hold. By The-
orem 19, I — K; and I — Ky are Fredholm, so dim(ker(I — K;)) and dim(Y/im(7'S)) are
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finite-dimensional. We observe that
ker(T') C ker(ST') = ker(I — K;) (84)
and that
Y/im(T) C Y/im(T'S) (85)
since im(7'S) C im(7"). We conclude that ker(7") and Y/im(T") are finite-dimensional so that
T is Fredholm.

Now we suppose that 7" is Fredholm. Then there exists a closed subspace X’ of X such that

X =X"®ker(T) (86)
and a finite dimensional subspace Y’ of Y such that
Y =Y @im(T). (87)

The restriction of 7" to X’ is a continuous bijective linear mapping X’ — im(7"). We let
S im(7") — X’ denote the inverse of this mapping, which is continuous by the open mapping
theorem. We extend S to a bounded linear mapping S : ¥ — X such that S(Y’) = 0 by
linearity. If we let P be the projection X — ker(7T) and let @) be the projection Y — Y’,

then

ST =ST(P+I—-P)=ST(I-P)=1-P (88)
and

TS=TSQ+I1-Q)=TSI-Q)=1-Q. (89)
The projections P and @) are compact since ker(7") and Y are finite dimensional. 0

In fact, it is clear from the proof of Theorem 21 that a continuous linear mapping 7': X — Y
is Fredholm if and only if there exists a continuous linear mapping S : X — Y and finite
rank operators K; : X — X and K5 : Y — Y such that

ST=1-K; (90)
and

We call any bounded linear operator S for which there exists compact operators K; and
K5 such that (82) and (83) holds a parametrix for 7. We note that that the relationship
is symmetric: if S is a parametrix for T then S is Fredholm and T is a parametrix of S.
Moreover, it is clear from the proof of Theorem 21 that

ind(7T") = —ind(S) (92)

whenever S is a parametrix for the operator 7. This observation leads immediately to the
following result.

THEOREM 22. Suppose that X and Y are Banach spaces, that T : X —'Y is Fredholm, and
that K : X —'Y s compact. Then T + K is Fredholm and ind(T + K) = ind(7T).

PRrOOF. Let S be a parametrix for the operator T" so that
ST=1-K, (93)
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and
TS =1-K, (94)
with K; and K5 compact operators. We observe that
S(Ir'+K)=1-K,+SK (95)
and
(T+K)S=1—-Ky,+KS. (96)

Since Ky — KS and Ky — SK are compact operators, we conclude from (95) and (96) that
T + K is Fredholm and S is a parametrix for 7'+ K. It follows that

ind(S) = —ind(7T + K), (97)
but we we also have
ind(S) = —ind(7") (98)
since S is a parametrix for 7. We conclude from (97) and (98) that
ind(7') = —ind(S) = ind(T + K). (99)
0

Any isomorphism B : X — Y between Banach spaces is Fredholm of index 0. Consequently,
it follows from Theorem 22 that any operator of the form

B+ K (100)

where K : X — Y is compact is Fredholm of index 0. In fact, all Fredholm operators of
index 0 are of this form:

THEOREM 23. Suppose that X and Y are Banach spaces, and that T : X — Y is a bounded
linear operator. Then T is a Fredholm operator of index 0 if and only if there exist an
isomorphism B : X —'Y and a finite rank operator F': X —'Y such that T = B+ F.

PrROOF. We have already seen that an operator of the form B + K with K compact is
Fredholm of index 0. So we suppose that T": X — Y is a Fredholm operator of index 0.
Then there exists a closed subspace X’ of X such that

X =X"®ker(T) (101)
and a finite dimensional subspace Y’ of Y such that
Y =Y @im(T). (102)

Moreover, since 7' is of index 0 the dimensions of ker(7") and Y’ are equal. We denote by S
an isomorphism ker(7") — Y’. Suppose that € X. We define B : X — Y via the formula

B(z) =T(z") + S(z), (103)
where
r=1+z (104)

is the unique decomposition of = into 2’ € X’ and z € ker(7'). It is easy to verify that B is
an isomorphism, and that S extends to a finite rank linear operator X — Y. O
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We can now very easily establish the following:

THEOREM 24. If K : X — X is a compact linear mapping between Banach spaces, then

ap(K) \ {0} = o (K) \ {0}.

PROOF. It is obvious that o,(K) C o(K). Now suppose that A € o(K) \ {0} but
A ¢ o,(K)\ {0}. That is, suppose that A\ — K is injective but not surjective. Since A\ — K
is Fredholm of index 0 and dimker(A — K') = 0, the codimension of the image of A\l — K
must be 0. But that implies that A\ — K is surjective, and hence an isomorphism, which
contradicts our assumption that A € o(K). O

We now turn to the solvability of the linear equation
Te =1y (105)

when 7' : X — Y is a Fredholm operator of index 0. We have already observed that T is
injective if and only if it is surjective. By combining this observation with the open mapping
theorem we obtain the following well-known theorem:

THEOREM 25 (Fredholm Alternative). Suppose that X and Y are Banach spaces, and that
T:X —Y is a Fredholm operator of index 0. Then either the equation

Tx =y (106)
18 uniquely solvable for all y € Y or the corresponding homogeneous equation
Txr=0 (107)

admits nontrivial solutions. In the former case, the inverse of the operator T is bounded.

Since the image of 7' is closed, the preannihilator of the kernel of 7% coincides with the image
of T'. This together with the fact that ker(7™) is finite-dimensional when 7" is Fredholm gives
us:

THEOREM 26. Suppose that X andY are Banach spaces, and that'T : X —'Y is a Fredholm
operator. Suppose also that

©1,- -, Pn (108)
is a basis for ker(T™*), and that
Ty T (109)
is a basis for ker(T). Then
Tr =y (110)

admits a solution if and only if
(y,0;) =0 forall j=1,...,n. (111)

In the event that Tx =y does admit a solution xy, then any solution is of the form

Zo +Z(1jl’j. (112)
j=1
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2.4. The Lax-Milgram Theorem

Suppose that X is a reflexive Banach space, and that X* is its dual. We say that a bounded
linear mapping L : X — X* is coercive if there exists A > 0 such that

L[] (2)] = Afj||? (113)
for all z € X.

THEOREM 27 (Lax-Milgram). Suppose that X is a reflexive Banach space, that X* is its
dual space, and that L : X — X* is a bounded linear map. If L is coercive, then it is an
isomorphism (that is, it is invertible, and its inverse is also continuous).

PROOF. We use (f,z) to denote the duality pairing of X* with X — in particular the
value of the linear function L [z] at the point y € X is (L[z],y). We observe that (113)
implies

All(*< [(Llz], 2)| < |L [2]|] [l (114)
for all z € X. Dividing both sides of (114) by ||z|| yields
Azl < (1L [«]]f - (115)

The identity (115) implies that L is injective. It also implies that the range of L is closed.
To see that, we suppose that L [z,] — y. Then {L[z,]} is a Cauchy sequence and we see
from (115) that {z,,} is Cauchy as well. We denote by z the limit of {z,}. The continuity
of L gives us L [z] = lim,, L [x,,] = y, from which we conclude that L has closed range. So L
is a continuous bijective mapping from X to im(L). Since im(L) is a closed subset of X*, it
is a Banach space and we may apply the open mapping theorem. By doing so, we see that
L: X — im(L) is an isomorphism.

We suppose now that im(L) # X*. Then there exists f € X*\ im(L). By the Hahn-Banach
theorem, there exists ¢ in (X*)* such that

(¢, f) =1 (116)
and
¢|im(L) = 0. (117)
Since X is reflexive, we may identify ¢ € (X*)* = X with an element u € X such that
flw) =1 (118)
and
(L{x],u) =0 (119)

for all z € X. We combine (116) and (117) with the assumption that L is coercive in order
to conclude that

Mlul*< (L [u] ,u) =0, (120)

from which we see that u = 0. However, this contradicts (118). We conclude that im(L)
V=

ol
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Clearly, we can identify the continuous linear mapping L : X — X* with the bilinear form
B: X x X — R defined via

Blz,y] = L{z] (y). (121)
We say that the bilinear form B is bounded if there exists C' > 0 such that
B [z, y]l] < Cllzl[lyll (122)

for all x,y € X. Obviously, B is bounded if and only if L is bounded. We say that B is
coercive if

|B [z, 2]| = All® (123)
for all z € X. The Lax-Milgram theorem can be rephrased as follows.

THEOREM 28. If X is a reflexive Banach space B is a bounded, coercive bilinear form X X
X — R, then for each f € X*, there exists a unique u such that

Blu,v] = f(v) (124)
forallv e X.

Since Hilbert spaces are reflexive and inner products are coercive bilinear forms, the Lax-
Milgram theorem implies the Riesz representation theorem.

THEOREM 29 (Riesz representation theorem). Suppose that X is a Hilbert space, and that
f: X — R s a bounded linear functional on X. Then there exists a unique uw € X such that
[ul|= ] and

f(@) = (u, z) (125)
forallz e X

A slight modification of the argument we used to establish the Lax-Milgram theorem gives
us the following theorem.

THEOREM 30. Suppose that X is a reflexive Banach space, and thatT : X — X* is a bounded
linear mapping. Suppose also that there exists X > 0 such that

| Lx||> M|z|| for all x € X (126)
and that

sup [(Lz,y)| >0 for all ye X \ {0}. (127)
zeX

Then L 1s an isomorphism.

2.5. Weak Convergence and the Banach-Alaoglu theorem

Suppose that X is a Banach space, and that X* is its dual space. Until now, we have
considered only the strong topology on X* and only the norm topology on X. There are,
however, other toplogies on these spaces which are of use to us.

We say that a sequence {x,} in X converges to x weakly provided

¢(zn) = ¢(z) (128)
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for all ¢ € X*. We use the notation x, — z to indicate that the sequence {z,} converges
weakly to x.

We say that {¢,} C X* converges to ¢ C X* in the weak-* topology provided
oOn(z) = o(x) for all = € X. (129)

The original version of the Banach-Alaoglu theorem is

THEOREM 31 (Banach-Alaoglu I). If X is a Banach space, then the closed unit ball of X* is
compact in the weak-* topology.

The weak-* topology on the unit ball of X* is metrizable when X is separable (although the
weak-* topology on the whole space X* is metrizable if and only if X* is finite-dimensional).
In that case, we have the following version of the Banach-Alaoglu theorem:

THEOREM 32 (Banach-Alaoglu I1). If X is a separable Banach space, then the closed unit
ball of X* is sequentially compact in the weak-* topology.

When X is reflexive, the weak-* toplogy on (X*)* coincides with the weak topology on X.
In this case, we have teh following version of the Banach-Alaoglu theorem. Note that we are
not making the assumption that X is separable.

THEOREM 33 (Banach-Alaoglu III). Suppose that X is a reflexive Banach space. Then the
closed unit ball of X is sequentially compact in the weak topology.

The following particular form of the preceding theorem is the one we will use most often:

THEOREM 34 (Banach-Alaoglu IV). Suppose that § is an open subset of R™, and that 1 <
p < o0 is a real number. Then any bounded sequence in LP(Y) has a weakly convergent
subsequence.

2.6. Galerkin Discretization

Suppose that X is a Banach space, that X; C Xy C X3 C --- is a sequence of finite-
dimensional subspaces of X, and that for each positive integer j, P; : X — X is a projection
operator. We say that the subspaces { X} together with the projection operators {P;} form
a projective approximation scheme for X if

lim || Pjz — z||x=0 (130)

n—oo
for all z € X and
PP, =P, (131)

whenever n < m are positive integers. We note that by the uniform boundedness principle,
(130) implies that there exists a constant C' such that

17l< C (132)

for all positive integers j. We also observe that (130) means that the union of the subspaces
X, must be dense in X; that is,

UX,X; = X. (133)
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In particular, the existence of a projective approximation scheme for X implies that X is
separable.

In the event that X is a Hilbert space and {;} is an orthonormal basis for X, a projective
approximation scheme for X can be obtained by letting

S; = span{e1,...,¥;}, (134)
and taking P; to be the orthogonal projection operator

Pilf] =2 (f.00) i (135)

=1

Suppose now that X and Y are reflexive Banach spaces, and that A : X — Y is a bounded
linear mapping. Suppose also that {X, P;} is a projective approximation scheme for X, and
that {Y;,Q;} is a projective approximation scheme for Y such that dim(Y;) = dim(X}) for
each j = 1,2.... For each positive integer n, we let A, = Q,A|y . By a slight abuse of
terminology, we call each of the equations

Apzy, = Quy (x, € X,,) (136)
a Galerkin discretization of
Az =y. (137)

We will shortly given conditions which guarantee that for for all sufficiently large n the
equation (136) admits a solution z,, and that the sqeuence {z,} converges to the solution
x of (137). We observe first, though, that Equation (136) is equivalent to a linear system of
equations. To see this, we let ¢, ..., @, be a basis for X,, and ¢4, ...,1,, be a basis for Y,,.
Then we can represent x,, as

Ty = Z ajp;, (138)
j=1
Qny as
Qny = Z bits, (139)
i=1
and, for each j =1,...,k, we represent (),,Ap; as
QnAp; = Zcz’jwi- (140)
i=1
Then (136) is equivalent to requiring that
Z cija; =0b; forall i=1,...,m. (141)
j=1

In the event that X and Y are Hilbert spaces, {¢;} is an orthonormal basis for X, {¢;}
is an orthonormal basis for Y, and P; and @); are the corresponding orthogonal projection
operators then

Cij = <AS0j71/fi> ) (142)
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and
bi = (y, i) - (143)

THEOREM 35. Suppose that X and Y are reflexive Banach spaces, that A : X — Y s
a bounded linear operator, that {X;, P;} is a projective approzimation scheme for X, that
{Y;,Q;} is a projective approximation scheme for Y such that dim(Y;) = dim(X;) for all
j =1,2,..., and that for each positive integer n, A, is the operator X, — Y, defined via
An = QnAly . Suppose also that there exist a positive integer N and a positive real number
~ such that for alln > N and all x, € X,

[Anznlly > yllznlx- (144)

Then for each y € Y, there exists a unique solution x of the equation Ax =y, and for each
n > N the equation

Apxn, = Quy (145)

admits a unique solution x,,. Moreover, the sequence {x,} converges to xz; in fact, if ¢ is a
constant such that ||Q,||< ¢ and ||P,||< ¢ for all positive integers n, then

C
— <1+ —-||A inf ||z — : 14
o = all< (14 S041) if o = ol (146)

PrROOF. We fix y € Y and let ¢ be a constant such that ||Q,]|< ¢ and ||P,||< ¢ for all
positive integers n. Condition (144) implies that each A,,n > N, is an isomorphism. In
particular, the equation

Ann = Qny (147)
has a unique solution z,, for all n > N, and
1

[ERS ;I!Qnyllyﬁ cllyll (148)

for all n > N. By the Banach-Alaoglu theorem, there exists a subsequence of {x,} which
converges weakly to some element z of X. Without loss of generality, we pass to this subse-
quence. It is not hard to establish that Q,y = @Q,, Az, converges weakly to Az. On the other
hand, @,y converges strongly (and weakly) to y, so by the uniquness of weak limits we must
have Az = y.

Now we observe that for any v € X,,,

l2n = 2llx < llan = vllx+llv = llx

1
< 2 l@nA (zn =) lly+lv = zllx

= %HQHA (@ —v) ly+llv —z[x (149)

1
< (1 i ;HQnHHAII) v —zllx

C
< (1+ Z141) o -l
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This suffices to establish (146). Note that
since Au = y implies Q,,Ar = Q,y and Q, Az, = Az, = Q,y, by construction.

We now need only establish that x is the unique solution of Ax = y. To that end, we suppose
that = is such that A7 = y and let w = x — . Then Aw = 0. It is easy to verify that

A, P,x — Ax (151)
for any x € X. Using this, we obtain
1
1Pwl[< S 1A Pawl| = [ Aw]|= 0. (152)
From this we conclude that P,w — 0 as n — oo, so w = 0. 0

As is often the case, perturbing the operator A by a compact operator does not fundamentally
change the situation. Indeed:

THEOREM 36. Suppose that the hypotheses of Theorem 35 are satisfied. Suppose, in addition,
that B : X — 'Y is compact operator, and that ker(A + B) = {0}. Suppose also that for each
positive integer n, A, = Q,A|x and B, = Q,B|y . Then for any y € Y, there exists a
unique solution x to the equation

Az + Bx = y. (153)
Moreover, for all n which are sufficently large the equation
Qn (An + Bp) x = Quy (154)
has a unique solution x, € X, and there exists a constant C' such that
lz = @allx< C inf Jlo—vl]. (155)

Proor. We will show that A + B satisfies condition (144). That is, there exists A such
that

[(An + Bn) 2nlly = All2n]lx (156)
for all z,, € X,,. Suppose this is not the case. Then there exists a sequence {z;} with
x; € X, such that [|z;||= 1 and

|Qn, (A + B) xﬂ'”y — 0 as j — oo. (157)

By the Banach-Alaoglu theorem, we may assume without loss of generality that x; converges
weakly to some x € X. Then Q,, (A + B) x; converges weakly to (A + B) z. It follows from
this and (157) that (A + B) x = 0. Since the kernel of A+ B is {0}, we must have x = 0. But
B is compact, so Bx; — 0 (some subsequence of {Bx;} is convergent, and it must converge
to x = 0). It follows that

5]l x < |Qn; Azjly

1 ] 158
< 1Qu,(A4-+ Byl + 1@, Basly— 0 as 5 oc. (158)

but this contradicts the fact that ||z;||=1for all j =1,2.... O
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The preceding theorem can be easily applied to coercive operators. Suppose that X is a
reflexive Hilbert space, and that that L is a linear mapping X — X*. We say that L is
coercive provided there exists a constant A > 0 such that

(Lz,z) > Xz, 2) (159)
for all z € X. We now let {X;, P;} be a projective approximation scheme. Moreover, for
each j =1,2,..., we set X; = P/X;. Then {X7, P/} is a projective approximation scheme
for X*. Moreover, since

(Lz,3) > Mz, 2) = Al (160)

for all x € X, we have
Ml@nll*< [{zn, Lan)| = [{Pazn, Len)| = [(@n, Py Lrg)| < ||y Lan||||2a] (161)

for all z, € X,. In particular, condition (144) of Theorem 35 is satisfied. If follows that
for each y € X, there exists a unique solution to the equation Lx = y, and that the
approximations of x formed via Galerkin discretization converge. The open mapping theorem
now implies that L has a continuous inverse.

Note that the existence of a projective approximation scheme for X implies that X is sep-
arable, so that the Lax-Milgram theorem applies in greater generality that the result just
obtained. However we have just established that coercive operators X — X* are susceptible
to a particularly simply case of Galerkin discretization provided X is seperable, a stronger
conclusion than that of the Lax-Milgram theorem.

2.7. Classical Function Spaces

In this section, we define several classical spaces of continuous functions, smooth functions
and Holder continuous functions and review several important results relating to them.

2.7.1. Spaces of Continuous Functions. Suppose that {2 is an open subset of R".
We denote by C(€2) the vector space of all continuous functions f : Q@ — R, by Cy(Q)
the subspace of C(Q) consisting of continuous functions f : @ — R which are bounded,

by C(Q) the subspace of Cy(§2) of functions which are uniformly continuous in addition to
being bounded, and by C.(€2) the subspace of C (Q) of all continuous functions 2 — R

with compact support contained in 2. The notation C'(€2) is used for the space of bounded,
uniformly continuous functions 2 — R because any such function admits a unique continuous
extension to the closure € of 2.

EXERCISE 4. Show that any continuous function on a compact subset of R™ is uniformly
continuous.

EXERCISE 5. Suppose that = R™. Show that C (ﬁ) is not the same space as C' (R™), which
means that the notation C (ﬁ) is misleading when ) is not bounded.

The vector space Cy(€2) is a Banach space when endowed with the uniform norm

||f||:ilelg|f(fv)|7 (162)
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as is the vector space C'(£2). Neither C'(Q2) nor C.. (Q2) are Banach spaces with respect to (162),
although if K7 C K, C ... is an increasing sequence of compact sets such that Q = (J K},
then they are Fréchet spaces with respect to the family of seminorms
[flli= sup [f(z)], i=1,2,.... (163)
reK;

We will not make use of this last observation, but a further discussion can be found in, for
instance, [15].

EXERCISE 6. Suppose that 2 is an open set in R™. Show that any uniformly continuous
function f : Q — R is bounded . Give an example to show that if Q is not bounded, then
there exist uniformly continuous functions 2 — R which are not bounded.

Suppose that (2 is a bounded open subset of R". The following theorem, a proof of which
can be found in [8] (for instance), characterizes the compact subsets of C' (Q) We say that

a subset ¢ of C' (ﬁ) is equicontinuous if for all € > 0 there exists § > 0 such that

|f(x) = fy)| <€ (164)
for all  and y in €2 such that
|z —y| < 0. (165)
Similarly, we say that ® is uniformly bounded if there exists a M > 0 such that
Ifll< M (166)

for all f € ®.

THEOREM 37 (Arzela-Ascoli). Suppose that € is a bounded open subset of R"™, and that ® is

a subset of C' (ﬁ) Then ® is compact if and only if it is equicontinuous, closed and uniformly
bounded.

The following well-known theorem is also of some interest to us.

THEOREM 38 (Stone-Weierstrauss). Suppose that € is a bounded opne subset of R™. Then

a subalgebra ® of C (ﬁ) which contains 1 is dense if and only if it separates points. That is,
if for any x and y in ), there exists f € ® such that f(x) # f(y).

2.7.2. Multi-index notation for partial derivatives. We now introduce notation
which, inter alia, simplifies expressions involving partial derivatives. We call an n-tuple oo =

(o, ..., ) of nonnegative integers a multi-index. The absolute value of & = (a, ..., @) is
o) = o +ag+ - + o, (167)
we define the factorial of a multi-index a via
al=alag! - ap!, (168)
and for z = (x1,x9,...,x,) € R" we define
% = xtag? - ann. (169)

Moreover, for each multi-index «, we denote by D® the partial differential operator which
acts on sufficiently smooth functions u defined on an open set {2 C R" via the formula

8(,0 a1 8g0 as 890 an
pru= (22} (Z2) ... . 1
=(50) (32) ~(50) (170)
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We will sometimes also use the alternative notation D;u to refer to the derivative of u with
respect to the i"* coordinate; that is,

ou
v o (171)
Using multi-index notation, the Taylor expansion of a function u about a point x becomes
k
al N
uly) = D2 S u(@)y — )" + 0 (ly — ") (172)
la=0 7~

and the product rule is

D uv) =Y <O‘> DB () D (v), (173)

BLa 2
where o < § if and only «o; < §; for all e =1,...,n and

(g) B ﬁ'—ﬁ)l (174)

We will sometimes use Du to refer to the gradient of the function u; that is,

Dyu(x)
Dou(x)

Du(z) = (175)

Dyu(x)

2.7.3. Spaces of Smooth Functions. Suppose that €2 is an open set in R”. We denote
by C*(2) the vector space of functions 2 — R whose derivatives through order k are continu-
ous, by CF(£2) the subspace of C*(£2) consisting of functions whose derivatives through order
k are continuous and bounded, by C* (ﬁ) the subspace of C* (Q) consisting of k-times differ-
entiable functions whose derivatives through order k are bounded and uniformly continuous
on €, and by C¥(2) the subspace of C* (©0) consisting of k-times differentiable functions with
compact support contained in 2. The vector spaces CF (€2) and C* (ﬁ) are Banach spaces
with respect to the norm

Ifll= "> sup|D?f(x)]. (176)

1B1<k T

By C* () we mean the vector space of functions infinitely differentiable functions 2 — R.
We denote by Cp° (€2) the subspace of C* (€2) consisting of infinitely differentiable functions
2 — R whose derivatives of all orders are bounded, and by C2° () the space of infinitely
differentiable functions with compact support contained in €2. All of these spaces are Fréchet
spaces with respect to appropriately chosen families of seminorms (see, for instance, [15]);
however, we will not make use of this fact.

EXERCISE 7. Suppose that € is an open convex set in R™. Show that the norm (176) and

171y = sup|£(&)| + 3 sup | D (x) ()

18l=k *€
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are equivalent norms for C* (ﬁ) (Hint: use some form of Taylor’s theorem).

2.7.4. Holder Spaces. Suppose that () is an open set in R™. For k a nonnegative integer
and 0 < a < 1 a real number we denote by C*® (ﬁ) the subspace of C* (ﬁ) consisting of
functions whose derivatives of order k satisfy a Holder condition of exponent «; that is, there
exists a constant C' such that

D7 f(x) = D f(y)| < C'la —y|* (178)
for all z,y € Q and all multi-indices |5| = k. When endowed with the norm

D) (@) = D*f(y)]
1F1 =15 lgm(zy* sup sup ;
e () 1Bl=k =ye, z#y [z —y|

7 (179)
Cke () is a Banach space.

EXERCISE 8. Suppose that €2 is a bounded open set in R™. Show that for any positive integer
k and any real numbers 0 < A < a < 1,

Che (@) < O (@) < O (7). (180)
Note carefully the assumption that ) is bounded.

Suppose that 2 is an open set in R”, k is a nonnegative integer and 0 < o < 1 is a real number.
We denote by C*< (Q) the subspace of C* (2) consisting of functions whose restrictions to
each bounded open subset € CC  is contained in C* (Q’) By Q' CC © we mean that

is compactly supported in €2; that is, there exists a compact set K such that ' c K C Q.

For the sake of convenience, we set

CH(Q) = C* (Q) (181)
and

Cr(Q) = C* (Q) (182)

for all nonnegative integers k.

Suppose that &£ > 0 is an integer, that 0 < o < 1 is a real number, and that {2 is an open
subset of R™. Suppose also that ¢ : Q — €' and that 1y, ..., are mappings €2 — R such
that

¢1<x1, e 7(17n)
(xy, .. 1) = : (183)
?/)m(%, s 7$n)
forall z = (z1,...,7,) € R". Then we say that ¢ is a C*® mapping if each of the mappings 1,
is an element of C*(Q)). Obviously, the C%! mappings 2 — R™ are the Lipschitz continuous
functions  — R™; that is, f : Q — R™ is a C%! mapping if and only if there exists C' > 0
such that
1f(z) = FW)l< Cllz =y (184)
for all z,y € Q2.



2.7. CLASSICAL FUNCTION SPACES 31

EXERCISE 9. Suppose that § is a bounded open set in R", that k is a positive integer, and
that 0 < a < 1 is a real number. Show that C* (Q) is compactly embedded in C* (Q) Hint:
use the Arzeld-Ascoli theorem.

EXERCISE 10. Why do we only consider Holder exponents which are less than or equal to 17

2.7.5. Lipschitz continuous functions. The space C%! (Q), whose elements are known
as Lipschitz continuous functions, will play an important role in this course. They are suffi-
ciently smooth to take the place of differentiable functions much of the time, but they offer
more flexibility in modeling physical problems than differentiable functions (this is particu-
larly important when it comes to model-ling the domains in which boundary value problems
are given — the boundary of a square can be described using Lipschitz functions but not
with differentiable functions).

Suppose that f : [a,b] C R — R is a Lipschitz continuous function. It is easy to verify that
f is absolutely continuous; that is, for all € > 0 there exists 6 > 0 such that

Z £ (b;) = flaj)] < e (185)

whenever (a1, b1), ..., (a,,by,) is a finite collection of disjoint open intervals in [a, b] such that
> (b —a) <6 (186)
=1

Absolutely continuous functions are characterized by the following theorem, which is a stan-
dard result in measure theory (for a proof, see, for instance, Chapter 3 of [8]).

THEOREM 39. A function f : [a,b] — R is absolutely continuous if and only if the derivative
[ exists almost everywhere in |a,b], the derivative f' is integrable, and for every x € [a, ]

f(e) = f(a) + / ") dy. (187)

That the usual integration by parts formula

f)g(b) — fla)g(a) :/ f'(x)g() dw+/ f(x)g (x) dx (188)

holds when f and ¢ are absolutely continuous functions is also a standard result in measure
theory (see, for instance, Theorem 3.36 in Chapter 3 of [8]).

We conclude that a Lipschitz continuous function f : [a,b] — R is differentiable almost
everywhere, and that the integration by parts formula (188) holds for such functions. Also,
from (187), we see that the derivative of f must be bounded almost everywhere.

Rademacher’s theorem, which we state below, extends Theorem 39 to higher dimensions. A
proof can be found in [16].

THEOREM 40 (Rademacher). Suppose that €2 is an open set in R", and that f : Q — R™ is
Lipschitz continuous with Lipschitz constant C'. That is, suppose that

If(z) = F)ll< Cllz =y (189)
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for all x,y € Q. Then [ is differentiable almost everywhere in ) and the operator norm of

f'(x) is bounded by C for almost all x € (2.

It is important to understand that Theorem 40 asserts the almost everywhere existence of
the “total derivative” of f. That is, if f : 2 — R™ is a Lipschitz mapping, then for almost
all z € ) there exists a linear mapping 7" : R®™ — R such that

G )~ f) = TH
h=0 |12l

0. (190)

Many of the standard results of multivariable calculus require only the pointwise existence
of total derivatives, and hence apply to Lipschitz continuous functions without significant
modification. The multivariable chain rule and product rule are examples:

THEOREM 41. Suppose that 2 is an open subset of R™, that Q' is an open subset of R™, and
that Q" is an open subset of R¥. Suppose also that f : Q — Q' and that g : Q' — Q". If g is
differentiable at x and f is differentiable at g(x), then the composition f o g is differentiable

at x and (f o g)'(z) = f'(g9(x))g'(x).

THEOREM 42. Suppose that §2 is an open subset of R™, and that f,qg: Q) — R™ are differen-
tiable at x € R. Then

(f-9)(x) = f(z)g(x) + f(x)g (z). (191)

It is somewhat more difficult to establish the following change of variables formula for Lips-
chitz mappings. A proof can be found in [7].

THEOREM 43. Suppose that €2 and is a open subset of R™, and that vy : 1 — R™ is a bilipschitz
mapping. Then

/Q 9(0(x)) |det (¢ ()] dx = / o(y) dy (192)

()
for all measurable g : Q@ — R. In particular, the measure of () is

/Q |det (¢'(x))| da. (193)

The implicit function theorem is an example of a result in multivariable calculus which
requires C* differentiability and does not extend to Lipschitz continuous functions.

2.8. Mollifiers, Cutoff Functions and Partitions of Unity

The function n : R®™ — R defined via
——Lt5) if 2< 1
n(a)=4F ( e ) i |z} < (194)
0 if |z|> 1,
is an element of C2° (R™). For each € > 0, we define
ne(x) = () e "n(a/e), (195)
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where
a :/ n(x) dz, (196)

so that 7. is supported on the ball {z : |z|< €} and

/776(.’13) dr = 1. (197)

We call 7. the standard mollifier on R™. The sequence of functions

novule) = [ e = y)uty) dy (195)

obtained by convolving u with 7. is called mollification or regularization of f. The following
theorem, whose proof can be easily found in the literature (for example, in [8]), enumerates
some of the key properties of mollifiers.

THEOREM 44. Suppose that u € L} (R™), and that ny, is the standard mollifier. Then:
(1) For each h > 0, n, x u is an element of C>°(R").
(2) If w € LP(R™), where 1 < p < oo, then ||n, * u — ul|,— 0 as h — 0.
(3) If u € C(R™), then np * u converges to u uniformly on compact subsets of R".

(4) If w is compactly supported, and € is an open set in R™ such that 0 < h <
dist(supp(u), 0R2), then the support of n, * u is contained in €.

EXERCISE 11. Suppose that ny, is the standard mollifier. Show that there exists a function u
in L>®(R™) such that n, *x u does not converge to u in L= (R™) norm as h — 0.

EXERCISE 12. Suppose that €2 is a bounded open subset of R™, and that f and g are continuous
functions Q@ — C such that

/Q f@)b(z) de = / 9(2)(z) d (199)

whenever 1 is a infinitely differentiable function whose support is contained in ). Show that

f(x) = g(zx) for all x € Q.

We will typically work with functions which are only defined on an open subset 2 of R". If
u € L (), then the mollification

loc
i * u() = / mn(x = y)uly) dy = / m(y)u(z —y) dy (200)
0 Q
is defined for all x € Q and h > 0 such that 0 < dist(x, 0Q) < h.

The following definition is useful when mollifying functions defined on subsets of R™. If 2
is an open subset of R™ and ' is an open subset of 2, then we say that ' is compactly
embedded in 2 and write Q' CC € if there exists a compact set K such that Q' ¢ K C Q. If
u € Li () and ' CC Q, then for sufficiently small h, 1, *u is defined and so it is reasonable

to speak of the limit of n, x u as h — 0.

THEOREM 45. Suppose that 2 is an open subset of R™, that Q' CC ), and that n;, denotes
the standard mollifier. Then:
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(1) Ifue LY (Q) with1 < p < oo, then ny*xu — u in LP (') and ny, x u converges to u

loc
almost everywhere in €.

(2) If u € C (), then ny * u converges to u uniformly on €)'.

We now use mollifiers to establish the existence of smooth cutoff functions; that is, functions
which are exactly equal to 1 on a specified compact set and which decay smoothly to 0 outside
of that set.

THEOREM 46. Suppose that U is an open subset of R", and that V- CC U. Then there exists
a nonnegative function ¢ € C° (U) which is identically 1 on V.

ProoOF. We denote the standard mollifier by 7., let W be an open set such that
Vcwcwcl, (201)

and choose € < min{dist(U, 0W), dist(OV, 0W)}. We claim that the function ¢ defined via
the formula

(x) = Xw * e (202)
is the desired cutoff function. To see this, we observe that according Conclusion (1) of
Theorem 44, f. € C*°(R"), and that conclusion (4) of the same theorem implies that the
support of ¢ is contained in U. Moreover, for all z € V the support of the function n.(z — -)
is contained in W, so that

v@) = [ e —vpant) dy= [ ne=ndr= [ w-n =1 o)

It is the case that ¢ (x) > 0 for all x € R" since both 7, and & are nonnegative functions. [

Suppose that A is an arbitrary subset of R", and that

AclJu. (204)
acl
is an open covering of A. We say that a sequence of C* (R™) functions 11, 1o, ... is a smooth

partition of unity subordinate to the cover (204) if
(1) each of the functions 1; is supported in one of the sets U,;
(2) 0<¢j(zr)<lforallze Aand j=1,2,...;

(3) there exists a neighborhood of each z € A on which all but a finite number of the
functions 1; vanish;

(4) Z%‘(x) =1 for all x € A.
=1

We now establish the existence of smooth partitions of unity, starting with the special case
in which the set A is compact.
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THEOREM 47. Suppose that A is a compact subset of R", and that
Ac U (205)

acl
is a covering of A by open sets. Then there exist C°(R™) functions i1,1s, ..., Uy such that

(1) Each 1; is supported in one of the open sets U,;
(2) 0 <;(z) <1 forallz e R" and all j =1,2,...,m;

(3) for each x € A, there exists an open neighborhood of x in which Y7 v;(x) = 1.

Proor. We let

AclJy (206)
j=1

be a covering of A by open sets chosen from the collection {U, : @ € €}. Now we construct
a collection of open sets V4, ..., V,, such that

AclJv (207)
j=1

and
vV cc U, (208)

for each 7 = 1,2,...,m. To that end, for each ¢ > 0 and j = 1,...,m, we let V;. be the
open subset of U; defined via

Vie={zeU; : dist (z,Uf) > €} . (209)
We claim that if € > 0 is sufficiently small, then

Ac| Ve (210)
j=1
If not, then for each n > 0, there exists x,, such that
2, € A\ JViam = A0 (Vi (211)
j=1 j=1

Since A is compact, the sequence {x,} has a subsequence converging to a point € A. From
(211) we see that

z ¢ |JViam (212)
j=1
for all j = 1,...,m and all positive integers n. We conclude from (212) that = € U; for all

j =1,...,m. But this is a contradiction since the U; cover A and x € A. We conclude that
(210) holds.
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According to Theorem 46, for each j = 1,...,m, there exists a function ¢; € C°(U,) which
is 1 on Vj. Then the functions v, ..., %, defined via the formula

$i(z) = Z:f# (213)

i1 95 ()

have the desired properties. O

THEOREM 48. Suppose that A is an arbitrary subset of R™, and that
Ac U (214)

is a covering of A by open sets. Then there exists a smooth partition of unity 1q,1s, ...
subordinate to (214).

Proor. We first suppose that A is open. Then

A= U Ay, (215)
k=1
where the sets A; are defined by the formula
Ay ={x € A:|z|< k and dist(z,04) > 1/k}. (216)
Note that if A is not open, then (215) need not hold. For each o € & and each k > 1, we let
Vor = Ua Nint (Ajp1 \ Ag—2), (217)
where we set Ag = A_; = (). Then, for each fixed k > 1,
Ay € Vo (218)
agl

is an open covering of the compact set Ay. For each k > 1, we invoke Theorem 47 in order
to obtain a smooth partition of unity

YT Y55 Uy (219)
subordinate to the covering (218). We define the function o : A — R via the formula
oo My
o(z) =) > V() (220)
k=1 j=1

note that only a finite number of terms are nonzero for each point x and that o(z) > 0 for
all x € A. For each pair k =1,2,... and 1 < j < my, we define

bz
oy (z) = by (x)

o(r)
The collection of functions {¢y ;} is the desired smooth partition of unity.

(221)

Suppose now that A is an arbitrary subset of R™. Then we construct a smooth partition of
unity for the set B defined via

B=|]JU., (222)

ael
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subordinate to the open covering

Bc |JU.. (223)
acl
We conclude the proof by observing that the resulting smooth partition of unity for B sub-

ordinate to the covering (223) is also a smooth partition of unity for A subordinate to the
covering (214). O

Note carefully that Theorem 48 asserts that a finite partition of unity can be obtained when
A is compact; however, Theorem 49, which applies in the general case, only asserts the
existence of a countable partition of unity.

THEOREM 49. Suppose that A is an arbitrary set in R™, and that
Ac (224)
j=1
is a covering of A by open sets. Then there exists a smooth partition of unity 1q,1s, ...

subordinate to the covering (224) such that
supp(¢;) C Uj. (225)

Proor. We let ¢1, s, ... be a smooth partition of unity subordinate to the covering
Ac (226)
j=1

whose existence is ensured by Theorem 48. We define
I ={j > 1:supp(p,;) C Ui} (227)
and, for k > 1,
In={j>1:supp(p;) CU; and j¢ L UL U---UIl_;}. (228)
We then define a new partition of unity {¢; : j = 1,2,...} via the formula
Ui(x) =) wila). (229)
i€l;

O

2.9. Domains with C*® Boundary

Suppose that €0 is a bounded open set in R"™, that k£ is a nonnegative integer, and that
0 < a < 1is a real number. The domain  is of class C** if 9Q is locally the graph of a
C*e function. That is, if for each € 9 there exists an open set V containing = and a new
orthogonal coordinate system vy, ..., y, such that

(1) V is a hypercube in the new coordinate system; i.e., there exist aq, ..., a, such that
V=AW, yn): —a; <y; <a; foralli=1,2,... n} (230)
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(2) there exists a function ¢ in C* (V7), where V' is defined via

Vi={(y1,. ,yn-1) : —a; <y; <a; foralli=1,2,....n—1}, (231)
such that
—an < VWY1, Yno1) < ap, forall (yi,...,y,_1) €V, (232)
VOQ={(y, - -, yn): W1,y yn_1) €V and y, <V(y1,...,yn_1)}, (233)
and
VNo={(s - ¥n): W1 ¥Un-1) €V and g = (Y1, ..., Yn-1)}- (234)

A bounded open set  in R” is a C®* submanifold with boundary in R" if each z € 9 there
exist an open set V' containing x and an injective mapping ¢ : V' — R" such that

1 is a C*® mapping;

(1) ¥
(2) vt (V) — V is a C** mapping;

(3) QNV ={y €V :4,(y) < 0}, where 1), denotes the n'" component of 1(y) € R™;
(4) 00NV ={y € V : 9,(y) = 0}, where 1, denotes the n'* component of ¥ (y) € R".

It is easy to verify that a C* domain in R” is always a C*® submanifold with boundary in
R™, but the converse is not always true. See, for instance, [10] for an example of a domain
which is a C%! submanifold but not a C%! domain.

EXERCISE 13. Use the implicit function theorem to show that a C*° submanifold with bound-
ary in R™ is necessarily a C*° domain.

There are two common geometric assumptions which are equivalent to requirements that 2
is a C* domain of the appropriate type. The bounded open set 2 C R" has the segment
property if for every x € 02 there exist a neighborhood V' of z, a new orthogonal coordinate

system (y1,...,Yn), and a real number h > 0 such that
(1) V is a hypercube in the new coordinate system; i.e., there exist aq, ..., a, such that
V={(y1,. . yn): —a; <y; <a; foralli =1,2,... ,n} (235)

(2) y —t(0,0,...,0,1) is in Q whenever 0 <t < handy € QN V.

Similarly, ) has the cone property if for every x € 02 there exist a neighborhood V of z, a

new orthogonal coordinate system (y1,...,¥,), and constants h > 0 and 0 < 6 < 7/2 such

that
(1) V is a hypercube in the new coordinate system; i.e., there exist ay, ..., a, such that
V={(y1,.- - yn) : —a; <y; <a; foralli=1,2... n} (236)

(2) y — z is in Q whenever y € QN V and z is contained in the cone
C = {(tl, tn—1,tn ) COt(0)|(t1,...,tn_1)|< tn<h} (237)
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THEOREM 50. Suppose that () is an open set in R™. Then §2 has the segment property if and
only if its boundary is C°.

THEOREM bH1. Suppose that  is an open set in R™. Then €2 has the cone property if and
only if its boundary is C%*.

EXERCISE 14. Prove Theorem 50.

See [10] for a proof of Theorem 51. We will not make use of the following theorem, but it is
a straightforward consequence of Theorem 51 that you might find useful.

THEOREM 52. Suppose that Q is a bounded open convex set in R™. Then Q is a C%' domain.

Suppose that Q C R" is either a C*° domain with & > 0 an integer or a C%! domain. Then
we can define the outward-pointing normal derivative on the boundary 0f2 as follows. Given
z € 0R2, we let V be an open set containing = which has the properties (230) through (234).
We let O be the n x n orthogonal matrix and & the vector in R™ such that

1 Y1
=0 o +E (238)
T Yn
The outward-pointing unit normal to the surface y,, = ¥ (y1,...,y,—1) at the point

(y17 s 7yn717¢(y17 s 7yn71))
is

_ 1 -D sy Yne
V(yh s 7yn—1) — - ( Q/’(yl ) Yy 1) ) . (239)
L+ D8 (g1, )
We define the outward-pointing unit normal to 02 at the point x1,...,x, to be
O*Ij(yl, e ;yn—1>7 (240)

where zy,...,z, and yi, ..., y, are related by (238).

We now define the surface integral

f(z) dS(x) (241)

o9
in the event that  is either a C*° domain with & > 1 or a C%! domain. We let V;,...,V,,
be an open covering of 02 each set of which has properties (230) through (234). We also let
©O1,--.,9m be a smooth partition of unity subordinate to this covering. Moreover, for each
j=1,...,m, we denote by ygj), . ,yr(Lj) the coordinate system associated with V}, by 1; the

function associated with Vj, and by agj ), e ,aﬁf ) the real numbers such that

V= {y%j),...,yflj) : —aﬁj) < y%j) < agj)’ cee —ag) < %(Lj) < agzj)}' (242)
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Also, for each j =1,...,m, we let O; and &; denote the orthogonal matrix and vector such
that

1 ?J%J)

T, y7(lj)

and define f] via

fj (ygj), . ,yg)) = f(z1...,20)pj(x1,. .., 2T0), (244)
where yij), e ,ygj) and z1,...,x, are related by (243). We say that f : 02 — C is integrable
if, for each ¢ = j,..., m, the function
is integrable on the set

Vj/ - {?A]), e aySLJL : _agj) < yij) < ag;)) R _a521 < 9521 < agll} : (246)

In this event, we define the surface integral via
fl’ dS(z) = / f <y(j):"'7yg27w'<y(j)7"->y7(1]2 )) X
20 ( ) ( ) ; j/ J 1 1 J 1 1 (247)

\/1 + ’ij (ygj)a cee 7y7(1]21>

It is tedious, but not difficult, to verify that this definition does not depend on the choice of
the sets Vi, ..., V,, or the partition of unity ¢1,..., ©m.

2 . . .
) dydys) .y,

EXERCISE 15. Write down suitable definitions for the outward-pointing unit normal for OS)
and the surface integral

f(z) dS (248)
oN

in the event that Q0 is a C*° submanifold with boundary in R™.

2.10. Integration by Parts

We will make extensive use of the following two theorems.

THEOREM 53. Suppose that ) is a bounded C*' domain, and that u € C* (ﬁ) Then

/Dzu(x) dx :/ u(z)v;(x) dS(x), (249)
Q o0

where v;(x) denotes the it component of the outward-pointing unit normal at the point x €

09Q2.
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Proor. We give a very careful proof of this theorem to illustrate certain techniques which
are often used to prove results regarding C** domains. In the future, similar proofs will be
dealt with in a more cursory fashion.

For each x in 09, let V,, be an open set containing x with the properties (230) through (234).
For each z, let U, be an open set containing x and compactly contained in V. Since 0f) is

compact, we can choose a finite subcover U,,,...,U,, of 0. For each i =1,...,m, we let
V; = V,,. Obviously, Vi,...,V,, also covers 02. Now we let

Then Vj is an open set which is compactly contained in €2, and Vq, V4,...,V,, is an open
covering of Q2. We now let q,..., ¥, be a smooth partition of unity subordinate to the

cover Vp, ..., V, of Q.

We observe that

/Q Diu(z) dx = /Q D, <ui)¢j> (x) dz = io /Q D (yu) (x) de. (251)

Since ¢ is supported in Vy C ©Q and w is defined on all of Vj, we can extend ¢y(x)u(x) to a
function in C! (R™) by simply letting it be equal to 0 in the exterior of V5. Now, we let

R:{(xl,ﬂlg,...,.’]?n)I—b1<l’1<b1, —b2<$2<b2, e _bn<xn<bn} (252)

be a large cube containing Vi whose boundary does not intersect Vj. Clearly, it is the case
that

/Q D (o) () dar = /R D (o) () da

b1 b2 bn (253)
:/ / D; (pou) (z1,. .., zp) dridzy - - - dz)y.
—by J—bs —by,
By the fundamental theorem of calculus (see, for instance, Theorem 3.35 in [8]),
b;
/ D; (pou) (z1, ..., x,) dx; =po (T1,. .. by .oy xp)u (T, ..o by oo )
—b;
i 254
— o (1, ..oy, =biy oy xp)u(xy, . o, =biy . Ty) (254)
=0-0=0.
It follows that from (253) and (254) that
D; (pou) (z) dz = 0. (255)
Q

We now fix 1 < j < n and recall how V; was constructed. In particular, there exist a
coordinate system ¥y, ...,y, and a function ¢ such that (230) through (234) hold. We let
O = (0;;) be an orthogonal matrix and & be a vector in R™ such that
L1 Y1
=0 : +¢, (256)

Tn Yn
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and define @ via the formula

u(y) = u(Oy + &) p; (Oy +€). (257)
It follows that
8yk - 0
. )
83:1 Z Dx; Dy ; N (258)

We observe that the integral

/QEh(¢w(x)u(x)> da (259)

is equal to

n ay an—1 (Y1, Yn—1) ~
g Owi / . / / Dra(y, -, Yn) dyrdys - - - dys,. (260)
k=1 —al —0n—1 —Qan

Note that the Jacobian determinant of an orthogonal transformationis 1. Fork =1,... n—1,
it is the case that

(Y1, Yn—1) Y150 Yn—1)
M</ mnw&:/‘ Dyi(y) dy (261)

+ Dk’,@b(yl cee 7yn—1)ﬁ'(yla <o Yn—1, sz(yla s 7yn—1))'

By integrating this expression first with respect to yx, then with respect to the rest of the
coordinates 1, ..., ¥y,_1 and making use of the compact support of %, we see that

77777 Yn— 1
/ / / Dya(y) dyrdys - - - dyp

ai an—1
_/ / iL(yl-"ayn—hl/}(yl?'-'7yn—1))Dk¢(y17"'7yn—l) dyldyQ"'dyn—l
(262)

for k =1,...,n— 1. On the other hand, it is readily apparent that

a1 V(Y15 5Yn— 1)
/ / / D WY1, - Yn) dyrdys - - - dyy, (263)
—al —QGn-—1
al an—1 R
= / / u(yla'"7yn—1a,¢)(y17"'7yn—1)) dyldyQ"'dyn—l-

Now, we let 7 denote the outward pointing unit normal to the surface defined via y, =
Y(Y1y .., Yn—1); that is,

) 1 Dby Y
(Y1, Y1) ( Wyll Y 1)> (264)
\/1+’D1/J yla"'ayn 1’
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(here D1 refers to the gradient of ). From (260), (262) and (263), we see that (259) is equal

to
/ / . W Ynr) (265)

O V(yh-‘ y Yn— 1 \/1+|D¢ yla-“ayn—1>|2 dydys - - - dyp—1,

where (O*77), denotes the i component of the vector O*i. Since
(O*D(y1,- - Yn—1)); = Vi(@1, ..., 20), (266)
(263) is simply the expression obtained directly from the definition of surface integral
/ w(@)p;(x)m(z) dS(2). (267)
o9

In particular,

/D ”‘”‘/ag (25 ()i(x) dS(x). (268)

We sum (268) over j = 1,...,m to obtain the conclusion of the theorem. O

THEOREM 54 (Integration by parts) Suppose that Q is a bounded C%' domain, and that
u,v e’ 1 . Then

/ Diu(x _ /Q (@) Div(x) dz + / w(@)o(@)vi(z) dS(x),  (269)

o0

where vi(xz) denotes the i'™™ componenet of the outward-pointing unit normal at the point
x € 0fd.

PRrROOF. This follows immediately from the preceding theorem and the fact that D;(uv) =
(Dyu) v+ u (D;v). O

Theorem 54 is a special case of the divergence theorem and we will, by a slight abuse of
terminology, sometimes refer to it as the divergence theorem.



CHAPTER 3

Sobolev spaces

In this chapter, we discuss the elementary properties of Sobolev spaces, a family of func-
tion spaces which serve as the principle setting for the variational theory of elliptic partial
differential equations.

3.1. Weak Derivatives

Suppose that €2 is an open set in R”, and that « = («q,...,a,) is an n-tuple. We say that
v e LL (Q) is the o weak derivative of u € LL _(Q) if

loc loc

/u(x)Da@D(x) dr = (—1)l / v(x)Y(z) do (270)
Q

Q
for all ¥ in C2°(92).

EXERCISE 16. What is the first weak derivative of the function f : R — R defined via
f(z) =|z|? Is f twice weakly differentiable?

EXERCISE 17. Show that if u € C*(Q) and |a|< k is a multi-index, then u has weak deriva-
tives of orders 0 through k, and the o' weak derivative of u is the a™™ classical derivative of
u.

Since the notions of classical and weak differentiability coincide when w is classically differ-
entiable, there is no harm in denoting the " weak derivative of a function u € L{ _(Q) by
D*u.

EXERCISE 18. Suppose that Q) is an open subset of R"™, and that o is a multi-index. Show
that if u, vy and vy are elements of Lj,.(Q) such that D*u = vy and D% = vy, then vi = vy
almost everywhere.

EXERCISE 19. Suppose that Q0 is an open subset of R, and that u, v and w are L} (Q)
functions such that the first weak derivative of both u and v is w. Show that there exists a

constant C > 0 such that u(z) — v(z) = C almost everywhere.
EXERCISE 20. What is the first weak derivative of the function f : R — R defined via the
formula f(x) =sin(1/x)?

EXERCISE 21. Suppose that € is an open subset of R", that o, 5 and v are multi-indices
such that a = B+, and that u € L}, (Q) such that D*, D® and D7 exist. Show that D®u
= DDV = D"D"u.

EXERCISE 22. Suppose that Q = (a,b) is an open interval in R. Show that f € C%Y(Q) if
and only if f is weakly differentiable and its weak derivative is an element of L2.(2). You
are free to make use the theorems of Section 2.7.

44
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We will frequently rely on the following theorem that asserts that weak differentiation com-
mutes with mollification. We note that if u is locally integrable and admits an o'® weak
derivative, then both n, xu and n, * D®u are infinitely differentiable functions, and hence are
pointwise defined.

THEOREM 55. Suppose that ) is an open set in R", that u is an element of L}, () whose
o' weak derivative exists. Then for all x € Q and h > 0 such that By,(z) C €,

D (i + w) (x) = 1+ (D) (). (271)

PROOF. Suppose that h > 0, and let ' = {z € Q : dist(z,00Q) > h}. Then 7, * u is
defined for all x € ' in fact, it is an element of C'* (€)’). Moreover, for all z € Q' we have

D (+0) (&) = b / pen (52 ) uto) dy
0e! [ D (52 )t ay -
=" /Q () o)

= x D%(x),
which estalbishes the theorem. ]

3.2. Sobolev Spaces

Suppose that 2 is an open set in R™, that k£ > 0 is an integer, and that 1 < p < oo is a real
number. The Sobolev space W*P(Q) consists of all Li () functions u : @ — R such that
for each multi-index o with |a|< k, D*u exists in the weak sense and belongs to LP(Q2). For
1 < p < oo, the space W*P(Q) is a Banach space with respect to the norm

& 1/p
[l @)= 1D ulln) | (273)
()
|ae]=0
and WH*> (Q) is a Banach space with respect to the norm
[llwroe = sup [D%ul| (g - (274)

o] <k

The spaces W*?2(02) are of particular importance because they are Hilbert spaces with respect
to the inner product

/ Dou(z) Dv(z) da. (275)

|af=0

We will use the special notation H*(Q) to refer to W*2(Q).
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We observe that C°(Q) is a subspace of W*?(Q), and we let WE?(€2) be the completion of
O (Q) with respect to the W*P() norm. Plainly, W,?(Q) is a closed subspace of W#?(Q)
and hence is a Banach space. We also denote the space W;*(Q) by HE(Q). We will often
encounter the dual space of H}(Q), which we denote by H~'(2). Note that H'(2) need
not coincide with (H'(9))*.

For a function u € WP(Q), we use the notation Du to denote the gradient of u; that is,

Dyu(x)
Dou(x)
Du(z) = : (276)
Dyu(z)
Moreover, we define
1
|Dull, = (IDyu(@) |2+ | Dau() )7 (277)

In a similar fashion, for u € W??(Q) we define D?*u(z) to be the Hessian matrix whose (i, j)
entry is
and denote by || D?ul|, the sum

1/p
(ZHDDU ||p> . (279)

4,7=1

The following theorem shows that the product of a function in W*?(Q) with a smooth
compactly supported function is an element of W*?(2). We need this result to establish, in
Theorem 58, that C*°(Q2) functions are dense in W*P((Q).

THEOREM 56. Suppose that £ is an open subset of R™, that k > 0 is an integer and 1 < p < o0
is a real number, and that u € W*P(Q), and that 1 € C>(Q). Then the product Yu is an
element of Wk»(Q).

Proor. We prove the theorem by induction on k. The result obviously holds when
k = 0. We will show that if it holds for 0 < k < [, then it holds when k£ = [. Suppose that
p € C(R). Since 1y is an element of C°(€2),

/ D u(a)p(z)p(z) de = (—1) / u(2) D" (4p) (x) da. (280)
Q

Q
We insert the identity

D*(dp)(a) dz = 3 (g) D*Py(a) D () (281)

BLa
into (280) to obtain

/ Du(z)p()p(x) da = (—1)! /Q w(z) (Z (g) DoPp() D%(m)) i os)

B<a
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We rearrange (282) as
[ us@)Dp(a) do = (1) | Dula)iie)pte) do-
Q

Q

2 (Z) /Q“(JC)D“‘WI)D%(x) dz.

[B<a

(283)

and apply the induction hypothesis to each of the terms in the sum on the right-hand side
of (283) to obtain

[ u@yi@ (@) de =-1)°1 [ Dula)s(w)eta) da-
0 S0 (%) [ D (ate) Do) )

B<a
We conclude that D*(1u) exists and equals

D*ula)ita) = S0 ()07 (ul) D Puw) (285)

B<a

(284)

By assumption D% € LP(Q2) and our induction hypothesis implies that each of the functions

D? (u(z) D Py(z)) (286)
is an element of LP(2). Since the products of C°(Q2) functions with LP(2) functions are in
LP(£2), we conclude that D*(vu) is an element of LP(2). O

For 1 < p < oo a real number and £ > 0 an integer, We denote by VV{Zf(Q) the vector
space of functions whose restrictions to any open subset ' CC Q are in W*?(Q). We say
that a sequence {u,} C Wi P(Q) converges to u € WP if u, — u in W*?() whenever

Q' ccC Q. In light of this definition, the conclusion of Exercise 22 can be rephrased as saying
that TW;">°(Q) coincides with C%!(Q) when € is an open set in R. Later, will we see that

: WEhe(Q) = c%(Q) (287)

loc
for any open subset 2 of R™. Moreover, it follows from the standard embedding theorems
for Sobolev spaces that

WE>(Q) = C*11(Q) (288)

loc

for all positive integers k. It is not always the case that W"*(Q) coincides with C*~! (Q),
although it does so under mild regularity assumptions on €2. Not surprisingly, we will some-
times use the notation Hf_(Q) to refer to W,2(€).

loc loc

3.3. Approximation by Smooth Functions

In this section, we will two key results (Theorems 58 and 62) on the approximation of
elements of W*?(Q) by smooth functions. They are the mechanism by which we establish
many of the basic properties of functions in Sobolev spaces — by first demonstrating that
sufficiently smooth functions posses those properties and then appealing to the density of
smooth functions in W*?(Q).
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THEOREM 57. Suppose that €2 is an open set in R™, and that n, is the standard mollifier.
Suppose also that u € WZIZC”(Q) with 1 < p < oo a real number and k > 0 an integer. Then

the sequence of functions n, * u converges to u in WZIZCP(Q)

PROOF. Suppose that « is a multi-index such that 0 < |a|< k, and that Q' CcC Q.
According to Theorem 55, for all sufficiently small ~ and all = €

D% (gp x u) (z) = np, x D(z). (289)
By integrating both sides of (289) over (¥, we obtain

|ID* (np, xw —w) ()" dz = [ |gn* Du(z) — Du(x)|’ du. (290)
o o
Now we invoke Theorem 45 to conclude that
lim [ |nn* D%u(x) — D%u(x)” dx = 0. (291)
h—0 QO
We combine (290) with (291) to obtain
lim || D (s * u) — Dl zry= 0, (292)
h—0
from which we conclude that n;, * u converges in W*?(Q') to u. O

If u € LP(2), then the sequence of C*°(2) functions obtained by mollifying the zero extension
of u converges to u in LP() norm. The same is not true for W*?(Q2) — as the following
exercise shows — and we will need to use a somewhat more complicated construction to
produce a sequence of smooth functions approximating an element of W*P(Q).

EXERCISE 23. Suppose that Q@ = (0,1), that u : Q — R is the function defined via u(x) =1,
and that i : R — R is the zero extension of w. Show that n, *x @ does not converge to u in
wWhi(Q).

THEOREM 58 (Meyers-Serrin). Suppose that € is an open set in R™, and that 1 < p < oo is
a real number. Then C* (Q) N WP (Q) is dense in WEP ().

ProOOF. We choose a sequence of open sets 2y CC 2y CC €23 CC such that
Q=) (293)
k=1

and we let {1y : £k = 1,2,...} be a smooth partition of unity subordinate to the covering
(293). That is, ¥1,1s, ... is a sequence in C2° (R™) with the following properties:

(1) supp (¢j) C Q; for each j =1,2,...;
(2) 0<¢j(zr)<lforallzeR"and j=1,2,...;

(3) for each x € , there exists compact set K containing x on which only a finite
number of the functions 1, s, ... are nonzero;

(4) 3272, ¥j(x) =1 for all z € Q.
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We now suppose that u € W*?(Q) and for each j = 1,2, ... we define u; by the formula
uj(z) = u(x)y;(z). (294)

We now let € > 0. By Theorem 56, u; is an element of W*?(2). Moreover, ), is compact
contained in 2. So we can apply Theorem 57 to see that

lm [ wj =l yraq, ) = 0- (295)

Since u; has compact support contained in 25, for sufficiently small h the support of 1, * u,;
is also contained in €2;. So, for each j > 1, there exists a real number h; such that

supp(nn; * u;) C € (296)

and

||77h]- *U; — ujHWk,p(Q].) < % (297)

Of course, since both uy, and ny,; * u; have support contained in €2;, we have
€

[[1m, ;= uiHka(Q) = {[mn, *u; — “J’”mej) <o (298)
Since only a finite number of the functions wu;, us, . .. are nonzero in each of the sets {25, only
a finite number of the functions 7, * w1, Nn, * ug, . .. are nonzero in each of the sets 2,4, and

x) = Z N, * U (). (299)

defines a C* (§2) function. We combine (298) and (299) to arrive at

o0 o oo €
Z;ne*uj_z;uj <ZH776*UJ uJHWkp(Q §Z2_j:
j= j=

Wk’p(Q) ] 1 j=1
from which the conclusion of the theorem follows. O

lv = ullyrny =

The Meyers-Serrin theorem cannot be extended to the case p = oo. To see this, we let
Q={reR:—-1<xz<1}and u(x) = |x|]. We observe that u/(z) = z/|z| for all x # 0, so
u € WhH>(Q). But there is no C'(Q) function ¢ such that ||¢' — u'||.e< 1/4, so u cannot be
the limit of a sequence of infinitely differentiable functions in W*?(Q2). Note that in many
books (e.g., [1]), W*P(Q) is defined for k = 1,2,... and 1 < p < oo as the completion of
C> (2) with respect to the norm

1/p
1 lep= | DD U0y | (300)
o<k
and WH*(Q) is defined as the completion of C* () with respect to the norm
19| k,00= |81|1<pk\|DO‘¢HLoo(Q)- (301)

The preceding discussion shows that this definition differs from ours in the case p = 0o (see,
for instance, Theorem 3.16 in [1]).
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As an application Theorem 58, we now sharpen Theorem 56.
THEOREM 59. Suppose that §) is an open set in R", and that 1 < p < oo and k > 1. Suppose
also that 1 € C*=1Y(Q). Then the mapping

u(z) — Y(x)u(zx) (302)
is a bounded linear mapping WkP(Q) — WkP(Q).

PROOF. We suppose that u € C*(Q) N W*P(Q), and that « is a multi-index such that
|a|< k. We apply the standard chain rule from multivariable calculus to conclude that

D (u)(x) = Y () D*Pup(x) DPux) (303)
= ()

for almost all z € Q. We observe that since ¢ € C*~11(Q), there exists a constant C' > 0
such that

DPy(a)| < € (304)
for all |3|< k and almost all z € 2. We combine (303) with (304) to conclude that
a
D (Wu) (@) < C) ( 5) | D u(a) (305)
BLla

for almost all z € Q. It clearly follows from(305) that D*(yu) € LP(£2), and that there exists
a constant C’ which depends on o and v but not u such that

| D% (u) (@), < C[|ullwrr - (306)
We conclude that there exists C” > 0 such that
bl wes@) < Cullwrs@ (307)

for all u € C°(Q)NW*P(Q). Tt now follows from Theorem 58 that the mapping (302) extends
to a bounded linear mapping W*?(Q) — WkP(Q). Since convergence in LP(f2) implies
pointwise almost everywhere convergence, the mapping obtained by extension coincides with
the mapping defined for u € W*?(Q) via the formula

u(z) = Y(x)u(x). (308)
0

The following two theorems are established in much the same fashion as Theorem 59 — by
applying the theorems of Section 2.7.5 and then appealing to Theorem 59.

THEOREM 60. Suppose that € is a subset of R™, and that ' is a subset of R™. Suppose also
that k > 1 is an integer, that 1 < p < oo is a real number, and that ¢ : Q@ — Q' is a CF 11
mapping. Then the map

u(z) = u(y(x)) (309)
is a bounded linear mapping WHP(Q)) — WHFP(Q).
THEOREM 61. Suppose that € is a subset of R™, and that ' is a subset of R™. Suppose also

that k > 1 is an integer, that 1 < p < 00 is a real number, and that ¢ : Q — Q' is a bijective
mapping such that ¥ and ' are C*~11 mappings. Then there exists a constant C > 0 such
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that
CMwo ¢|lwra@) < ullwre@n < Clluo ¥llwrsq (310)

for all w € WFP(QY). That is, the W*P(Q') norm of u(z) is equivalent to the W*P(Q2) norm
of the composition u(i(x)).

The space C* (ﬁ) is always contained in W*P(Q2) and in light of Theorem 58 it is natural
to ask if C* (Q) is dense in W*?(Q2). To see that this is not always the case, we let Q =
{(z,y) eR?: 0 < |z|]< 1 and 0 <y < 1} and define the function f : Q — R via the formula

1 if z>0
f(x):{o if 2 <0. (311)

Then f € WiP(Q) for all integers p > 1, but there is plainly no sequence of functions in
C! (Q) which converges to f. However, as we now show, it is the case under mild regularity
assumptions on the boundary of €.

THEOREM 62. Suppose that () is a bounded open set with continuous boundary. Suppose also
that 1 < p < 00 is a real number and k > 0 is an integer. Then C'* (Q) is dense in W*P ().

PRrROOF. We let u € WP (Q2). We observe that since the boundary of 9 is continuous,
2 has the segment property (see Section 2.9). In particular, for each = € 052, there exists an
open ball U, centered at = and a vector v, € R" such that y +tv, € Q for all y € QN U, and
all 0 <t < 1. Then

o c | 1/20,, (312)
€I

where 1/2U, denotes the open ball centered at x whose radius is half that of the open ball
U,, us an open covering of the compact set 9. Consequently, there exists a finite collection
of the balls U,,, ..., U,,, such that

o0 c | J1/20,,. (313)
j=1
For each j = 1,...,m, we set U; = U,, and V; = 1/2U,; N and let ; denote the vector
Ve;- We also choose an open set Vg such that Vo CC Q and

aclJv. (314)
j=0
Next, we choose a smooth partition of unity )y, ..., %,, subordinate to the covering
Qcvul /20 (315)
j=1

so that

(1) vo € C(Vo);
(2) ¢; € C(1/2U;) for each j =1,...,m;
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(3) 0<¢;(zr) <1lforall j=0,1,...,m and z € R"
(4) Yo vi(z) =1 for all v € Q.

Moreover, for each j = 0,1,...,m we define u; : V; — R via the formula

uj(x) = j(w)u(z). (316)
Note that the support of ¢; is not necessarily contained in V; = 1/2U; N 2.

We now fix € > 0; we will construct a function w € C* (ﬁ) such that

|u — wlwrso< € (317)
To that end, we define the function wy : Vy — R via the formula
wo(T) = 1y * uo(z), (318)
where 7y, denotes the standard mollifier and hq is chosen so that
€
[[wo — uollwrn vy < 5 (319)

For each 7 = 1,...,m, all sufficiently small A > 0 and all x € Vj7 we define wu;y, : VJ — R by
the formula

ujn(x) = uj(x + hy;) (320)
and v;, € C> (V) via the formula
vjn(x) = np *uip(x). (321)
We observe that
1D%0jp — Dl Lo vy < (1D = Dwjin | Loqvy) + 11 D — Dl oy (322)
for all multi-indices |a|< k. Since
Dujp(x) = (D%;)(x + hy;) (323)
and translation is continuous in the LP norm,
| Dujp — D%uj|Lov;)— 0 as h — 0 (324)

whenever |a|< k. Moreover, a simple modification of the standard argument showing that
the mollification of a function converges in L norm shows that

||Da1}j7h — Dauj,hHLp(Vj)—) 0 as h—0 (325)
for all |o|< k. We conclude that for each j = 1,...,m there exists a function w; in C* (V])
such that
€
[w; = wjllwra) < 21 (326)

We now define the function w € C*° (ﬁ) via the formula

w(z) = Z by (w)w; (). (327)
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We combine (316), (319) and (326) to conclude that

Z Vju — Z Yjw
j=0 j=0

[lu — wHW’w(Q) =

Wh(Q)
< D iu = djwllyin g, (328)
=0
= Ml = wjllyrwgys
=0
<e
0

EXERCISE 24. Suppose that uw € LP(R™), where 1 < p < 0o. Suppose also that uy is defined
via the formula uy,(x) = u(z + h), and that ny, is the standard mollifier. Show that

lnn * up — ull,— 0 as h— 0. (329)

We shall make frequent use of the following theorems, which are straightforward to prove
using the results of this section.

THEOREM 63. Suppose that 1 < p < 0o is a real number, that k > 0 is an integer, that §2 is
an open set, that

N
aclJu (330)
j=1

is a covering of Q by open sets, and that {1;} is a smooth partition of unity subordinate to
the covering (330). Then u is an element of W*P(Q) if and only if each of the functions

Vi (z)u(z) (331)
is an element of WkP(Q). Moreover, then there exists a constant C > 0 such that
N
CHulwrr@y< Y I195tllraq,) < Cllullweso (332)
j=1

for all w € W*P(Q); that is, the |[ullyrsq) norm is equivalent to the norm

N

> sl e - (333)
U;)

j=1

THEOREM 64. Suppose that 1 < p < oo is a real number, that k > 0 is an integer, that § is
a bounded open set in R™ which is C*~Y' domain.

3.4. The Trace Operator

Suppose that 2 C R" is a bounded open set. We are ultimately interested in solving boundary
value problems given on 2. However, it is not a priori clear that the notion of the “boundary
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values on 99" of a function u in W*P(Q) is well-defined. After all, 99 is typically a set of
measure 0 in R™ (although there are open sets in R” whose boundaries are of positive measure
in R™) and u, as an element of LP(£2), is only defined almost everywhere in 2. However, using
Theorem 62 it is easy to establish that there is a reasonable notion of “boundary values on
O for functions in WHP(£2), assuming that the boundary of €2 is sufficiently regular.

THEOREM 65. Suppose that @ C R™ is a C%' domain, and that 1 < p < oo is a real number.
Then there exists a continuous linear mapping

T W (Q) — LP(09) (334)
such that
T [u] = uly (335)
for allu e C (ﬁ)

PROOF. Since 2 is a C%! domain, there exists a covering of 92 by open sets
o c|Ju; (336)
j=1

with the property that for each j = 1,..., m there exist an open ball V; C R™ and a bijective
mapping ; : V; — U; such that

(1) v; and ;' are Lipschitz mappings;

2) U;nQ=1v; (V;n{(x1,...,2,) : z, > 0}); and

(3) Uj N oS} :’QZ)]‘ (V}ﬂ{(l’l,,l‘n) Ly = 0})

We choose a smooth partition of unity {v,} subordinate to the covering (336) and define, for
each j =1,...,m, the function n; : V; — R via the formula

1;(x) = 75 (¥;(x)) (337)

Suppose that v € C* (ﬁ), and for each j = 1,...,m, define the functions u; : V; — R via
the formula

uj (@) = u(th;(x))n;(x) (338)
We will show that there exists a positive constant C' not depending on w such that
[l (v ngan=op < Cllugllwrrvingan>op)- (339)

The well-known change of variables formula from measure theory implies that there exists a
constant C; not depending on u such that

||’7ju||LP(8QﬁUj)§ CIHUjHLP(Vjﬂ{:L‘n:O}) (340)
and Theorem 60 implies that there exists a constant Cs not depending on u such that

s llwrewnge,>on < Collviullwir@nu,)- (341)
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So it will follow from (339) that

[[ull e (o0)
Lr(0Q)
Z“%UHLP aQNU;)
<C ZHUJ'HLP(Vﬂ{wn:O})
“ i (342)

<G Z||uj||wl’p(vjﬁ{zn>0})

j=1

m
< OG0y ZH%UHWLP(QnU]-)
j=1
S mCClCQ||u||W1,p(Q).
We will rarely make these kinds of arguments explicitly in the future; we will instead simply
say that using a partition of unity and the properties of the domain €2, we reduce the theorem
to proving it for the case of a function given on V;.

We observe that the support of n; — and hence u; — is compactly contained in Vj, so that
when we apply the divergence theorem we obtain

0
[ w@r == [ S () d
V;n{e,=0} V;n{en>0} OTn

1. Ou;(x
== [ @l s 2 (343)

Vin{z,>0} Tn

< / plu @)t 24) gy
Vin{z,>0} Oy,
By letting
1 Ouj(x) _

q= 1_% a= 8J—:Bn and b= |u;j(z)[P* (344)

in the inequality ab < % + %, which holds for all a,b > 0 and all 1 < p,q < oo such that

p '+ ¢! =1, we obtain
ou,; 1 |0u; L |
u;() wi ()Pt < = u;(z) + _|uj(l,)|q(p—1)
l Mp+1|u.(x)|l7
-~ p| Ox, g

We conclude, by inserting (345) into (343), that for each j = 1,...,m there exists C; > 0
such that

/{ @ 2 < Ol (346)
xn,=0}NV;
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It now follows from Theorem 62 that .7 extends by continuity to a bounded linear mapping
Wir(Q) — Wir(Q). If u € C () N W'P(2), then the sequence {u,,} of C* (Q) functions
constructed in Theorem 62 converge uniformly on  to u. We conclude from this observation
that u,, — u on the boundary of 92, so that .7 (u) = u/,. O

The mapping 7 is called the trace operator, .7 [u] is known as the trace of the function wu,
and the image of W*?(Q) under the mapping .7 is known as the trace space of W*P((Q).
The mapping .7 is not a surjection onto LP(2). Later, we will characterize the trace space
of HY(Q) when  is a Lipschitz domain.

THEOREM 66. Suppose that € is a Lipschitz domain in R™, and that 1 < p < oo. Then
we WyP(Q) if and only if T [u] = 0.

PROOF. If u € C°(Q), then it is a consequence of (65) that .7 [u] = 0. Since functions in
WP (Q) are the limits in W*?(Q) norm of C°(Q) functions and .7 is continuous, it follows
that the trace of a function in W, ?(Q) is 0.

We will now show that if u € W' (Q) such that Z [u] = 0, then u is the limit in W7 (Q)
of a sequence of C'° () functions. Via a localization argument virtually identical to that
used in the proof Theorem 65, we see that it suffices to show that if U is an open ball in R™
centered at 0, V' =R} NU and u is an element of WP (V') whose support in bounded away
from OU and whose trace on 0V is 0, then u is the limit of a sequence of C2° (V') functions.

Since the trace of u is 0, there exist functions u,, € C* (V) such that
[t — ullwrory— 0 (347)

and ||ty | Lrov)— 0. Since the w,, are continuous and 0V is compact, we may assume by
passing to a subsequence that wu,, converges to 0 uniformly on 0V. Indeed, we can ensure
that

1
[um ()| < " for all z € 9V. (348)

We now let G be an element of C'* (R) such that

0 if [¢<1
G(t) = . 349
®) {t it [t]> 2 (349)
and define a sequence {v,,} of functions via the formula
1
() = EG(m U (). (350)

It is the case that v, — u in WY* (V). Since v,,(z) = 0 for all z such that u,,(z) < 1/m
and |un,(z)|< -5, each v, has compact support bounded away from 9V. It follows that

we can mollify v, in order to form a sequence of C'° (V') functions which converge to u in
Whe (V). O

Suppose that € is %! domain and that u € C* (€2). Then not only does u have a well-defined
trace on 0f2, it admits a derivative with respect to the outward-pointing unit normal vector
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on 0f). Let U be an open ball U which intersects 9€) such that there exist an open set V in
R™ and a bijective mapping ¢ : V' — U with the following properties:

(1) ¢ and ¢t are C*~ 1! mappings;
(2) QNU =V n{x, >0}); and
(3) 2NU =y(VN{x, =0}).

By normalizing the map v, we may assume that

P
Bz, ()

=1 (351)

for all x € V. Since the composition uo1 is an element of C'%! (V N{x, > O}), the derivative

0
oz,

extends to the set V N {x, = 0}. For each point y € U N 0N, there exists x € V N {zx, = 0}
such that i (z) = y. We take the value of

w0 (352)

ou
Em (353)
at the point y to be
8inu o (x). (354)

It is easy to verify that this definition is independent of the choice of U and /. Note, though,
that the map a% does not extend to a mapping from W1?(Q) into any reasonable class of

functions on 9. To see this, we observe that there exists a function v € C* (ﬁ) such that

and
ou
m # 0. (356)

But, if u € WP(Q), then (355) implies that u € W, (€2) and hence is the limit of a sequence
{gr} of C°(£2) functions. But the normal derivative of each of the ¢ is 0, so we cannot
have
—_— 357
oy Bv (357)

in any reasonable norm.

We close this section with the following generalization of the divergence theorem, which
follows immediately from Theorem 65 and the classical divergence theorem.

THEOREM 67. Suppose that () is a bounded Lipschitz domain in R", that u € Wi (Q) for
some p > 1, and that 1 € C®' (Q). Then for alli=1,...,n,

/Q Dib(w)ulz) de = — /Q V@)Dl do+ | v Tule) e (@359)



3.5. EXTENSION OPERATORS 58

where vi(x) is the i component of the outward-pointing unit normal vector at the point

x € 0N).

3.5. Extension Operators

Suppose that 2 is an open subset of R”, that 1 < p < oo is a real number, and that £ > 0is an
integer. We say that a linear mapping £ : W*?(Q) — W*P(R") is a simple (k, p)-extension
operator if

(1) Eu] (z) = u(z) for almost all z €

(2) there exists a constant C' > 0 such that ||E [u] |lwre@n)< Cllullwrsq for all u €
WhP(Q).

A mapping E which takes functions defined almost everywhere in §2 to functions defined
almost everywhere in () is a strong k-extension operator for €2 if for all 0 < m < k and
1 < p < o0, the restriction of £ to W™P(Q) is a simple (m, p)-extension operator. Finally,
if F/ is a strong k-extension operator for all nonnegative integers k, then we call it a total
extension operator for the domain €2.

EXERCISE 25. Suppose that k > 0 is an integer, and that 1 < p < oo is a real number. Show
that if £ is a simple (k,p)-extension operator for 0 and that Q' is an open set containing €2,
then there exists a bounded linear mapping T : W*P(Q) — WEP(Q') such that T [u] |, = u.

THEOREM 68. Suppose that Q is a Lipschitz domain (that is, a C%' domain), and that
1 < p < oo. Then there exists a simple (1, p)-extension operator for €.

PROOF. Suppose that v € C' ({(x1,...,2,) : ¥, > 0}) whose support in contained an
open ball V' centered at 0. It is easy to verify that the function ¢ defined via
w(xy, ..o Ty, Ty) Tp, >0
Tlyee, Tp_1,Tpn) = 359
Yl L) {—SU(xl,...,xn_l,—xn)+4u(x1,...,xn_1,—xn/2) T, <0 (359)

is an element of C' (R™), and that there exists C' > 0 which does not depend on u such that

[¥llwrron < Cllullwrvnge,>op- (360)
The general case now follows from Theorem 62 and a (by now) standard localization argu-
ment. Note that we are implicitly “straightening out” the boundary of 0f2 here. This is why
we cannot use this technique to obtain a (k,p) extension operator. 0

Note that it follows easily from the proof of Theorem 68 that we can always assume that
E [u] has compact support. The argument of the preceding proof can be easily extended to
yield the following theorem.

THEOREM 69. Suppose that Q is a C*~11 domain, that 1 < p < oo is a real number, and
that k > 1 is an integer. Then there exists a simple (k,p)-extension operator for §).

However, the requirements placed on the boundary of {2 by Theorem 69 are much stronger
than necessary. See Chapter 6 of [16] for a proof of the following much improved result.
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THEOREM 70 (Stein). Suppose that Q is a Lipschitz domain in R™. Then there ezists a total
extension operator for Q.

Note too the article [12], which characterizes the domains which admit a simple (k,p)-
extension operator for every k > 0 and every 1 < p < oo.

3.6. The Fourier Transform and Sobolev Spaces

Throughout this section we will use the convention

fie) = [ explemin-€)1(a) do (361)

for the Fourier transform and we will denote by ||u||; the usual norm in W*?2(R") = H*(R");

that is,
lulli= [ |D° |72 @y (362)
la| <k
Since
[ull 2 emy= 11Tl L2 ) (363)
and
Deu(§) = (2mi€)*u(§), (364)

the H*(R") norm of a function u can be bounded using the Fourier transform of u and
vice-versa. More specifically:

THEOREM T71. Suppose that k > 0 is an integer. Then

Hu||2=\/ [ ©F (1+1€f)" de (365)

18 equivalent to the usual norm

Jul= \/ S Do ul (366)

la|<k

in H*(R™).

PROOF. Suppose that u € H¥(R") so that D*u € L?(R") for all |a|< k. We observe that

Deu(€) = (§)°a(8), (367)
so that
1Dl y= [ 1ie) P de =) [ e Pl de (e68)
We observe that

o e it g>1
7 < {1 if < 1. (369)
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when |a|< k. Consequently, there exists C; > 0 such that

€°* < max{1, [} < (1 +[¢]*)* = 1+ 20¢|*+¢* < Ca(1 + [¢*) (370)
for all |a|< k. By summing (370) over o we see that there exists Cy > 0 such that
> Ie < a1+ Je). (371)
la|<k
Consequently,
DD ul ey = D IDulFa g
|la|<k laf<k
=D _@mll [ fage)Pe* de
< @mf [ Al > 1€ d¢
© jal<k

< Cy(2m)" / O (14 e de

Now we define functions f; and f, via the formulas

fi(6) = Z|§f|2 (373)
and
f2(&) = €. (374)

We denote by M; the maximum of f; on the unit sphere in R™ and by M, the maximum of
fo on the unit sphere in R™. Then

f2(§) < My /My f1(€) (375)

for all |£|= 1. Since both f; and f, are homogeneous of degree 2k, the inequality (375) in
fact holds for all £ € R™; in particular, if we set C3 = My /M then

€< O IgkP? (376)
Jj=1

for all £ € R™ . From the binomial theorem we have that
(1+1¢")" < 2" max{1, ¢[*}, (377)
and we combine (376), (377) to conclude that
(1+ )" < 2% (1+[¢[*)

N k2
< 2"max{1,Cs} (1 +;|§j| ) (378)
< 2" max{1, Cs} Z €217

laf<k
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for all £ € R™. Note that the last inequality follows since 1 and

€511, (379)
for each j = 1,...,n, are terms in the sum
> 1P (380)
|| <k

It follows from (367) and (378) that there exists Cy > 0 such that

@) (1 + [¢17)* d¢ < Cy | lae) HDSRES

R

|| <K
_042/ 2P €7 de
|a\<k; (381)
> k Z ||D u||L2(R” :
lo|<k
= )k Z ‘|Da“|‘L2 R7)*
la| <k
O
One important difference between the norms
lulli= [ 1D%ul3z ey (382)

la|<k

lull.= \/ /R AP (1+1¢)" dg (383)

is that the later generalizes to the case where k£ is no longer an integer; that is, it gives
us a reasonable method for defining fractional derivatives and Sobolev spaces of fractional
order. In particular, we define H*(R") for real numbers s > 0 to be the space of functions
u € L*(R") such that

and

@O (1 +€)° dé < oo. (384)
R'n
Clearly, H*(R") is a Hilbert space with respect to the inner product
() = [ AT+ ) de (355)

There is no real difficulty in allowing negative values of s. In this case, the elements of
H?* (R™) might no longer be functions, so we have to adapt our definition slightly. For s < 0,
we let H*(R™) be the space of tempered distributions such that

a(&)* (1 + [€%)* d€ < oo. (386)

Rn
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It is easy to verify that the space H—* (R") is isomorphic to the dual space of H* (R™).
EXERCISE 26. Prove that if s > %, then H*® (R") is a Banach algebra.

The norm ||u||; provides us with a definition of H*(Q) for Q an open subset of R", but only
for nonnegative integer orders. On the other hand, |lul|s gives a definition of H*® (R™) for all
real-valued s, but it is not readily applicable in the case of open subsets of R™. The following
theorem will provide us with yet another equivalent norm, which we will use to define H*(€2)
when s is a positive real number and 2 is an open subset of R".

THEOREM 72. Suppose that 0 < s < 1 1s a real number and n > 0 is an integer. Then there
exists a constant C' > 0 dependmg only on s and n such that

for alluw € H*(R™).

PRrRoOOF. We observe that the Fourier transform of the function

u(z + h) —u(x) (388)
is
(exp(2mih - &) — 1) u(§). (389)
From Planacherel’s theorem we see that
lu(z + h) — u(yc)|2 dx = lexp(2mih - €) — 1\2 ]ﬁ(ﬁ)]Z dg. (390)
R R

We multiply both sides of (388) by |h|7257™ and integrate with respect to h to obtain

h) (2mih -1
[ [ et e g [ 0 O e g oy

By changing the order of integration in the integral on the right-hand side of (391), we see
that

u(z +h) —u(x )| B 12 lexp(2mih - &) — 1\2
/n / s dx dh = . [a(€)] (/ e dh) de. (392)

Using polar coordinates we see that

il - _12 o n—1
L= rf:psi) San= [ |  lexp(emips &)~ 1 dsp
n 0 s|=1

2s+n
W (393)
:/ p251/ lexp(2mips - €) — 1| dsdp.
0 |s|=1
Now we let p = t|¢|~! in (393) to obtain
omih - €) — 1| 0 ?
/ exp( mz f) | dh = |§|2$/ t231/ exp (2mts i) — 1| dsdt. (394)
n |h|2stn 0 |s|=1 €]
We observe that
2
/ exp (27rzts i) —1| dt (395)
Is|=1 €]
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is O(t?) as t — 0 and O(1) as t — oo, so that the integral (394) converges. By radial
symmetry its value does not depend on . So there exists a constant C' > 0 depending only
on s and n such that

lexp(2mih - €) — 1) 9
dh = C|¢|** 396
| s € (396)
for all £ € R". Inserting (396) into (391) yields
h) —
[ [ e O - [ g de (397)
n Jrn |h|2s+ Rn
We let h =y — x in (397) to conclude that
’ 25 |~ 2
dx dy = E77 lu(&)|” dE. 398
I c [ 1eate) (309
0

If s = k+ A\, where k is a nonnegative integer and 0 < A < 1, then we define another norm

for H°(R™) by

lulls= Z/ | Deu(z d:v+2/n/n D _‘M(yﬂz dedy.  (399)

laf<k laf=Fk

It is easy to verify via Theorem 72 that ||u||3 is equivalent to ||u||; and |lul|2. For € an open
subset of R™, we let H* (£2) be the set of functions u € H* (2) such that,

[D%u(x) — D*u(y)?
/ / |x ~ y|2’\+” dxdy < oo (400)

for all |a|= k. This is a Banach space with respect to the norm

|Deu(r) — Du(y)[”
||lu||= Z/]Dau dx + Z/ \x— J[P dxdy. (401)

laf<k |al=k

As usual, we let H§ (2) denote the closure of C2° (£2) with respect to the norm (401), and
use H* () to denote the dual of H (£2).

The norm (401) motivates the following definition of the fractional order space W*? (Q)
when () is an open subset of R". Suppose that s = k 4+ A with k£ a nonnegative integer and
0 < A < 1. We say that u € WkP(Q) is an element of the space provided u € W*P(Q2) and

= a0

for all |o|= k. When endowed with the norm

1/p
_ ()P | D%u(z) — Du(y)|’
[|ul|= | |<k/ | D%u(x) d:z:‘+|2|:k// |x—y|”+>‘1’ dxdy , (403)

W#P(Q) becomes a Banach space. The closure of C2° (§2) with respect to the norm (403) is
typically denoted by Wy ().
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There are many other methods for defining the fractional order Sobolev spaces W*? (Q2). For
the most part, they coincide when the domain €2 is sufficiently regular. For instance,

|ull= inf {||f||zs@n: f € H*(R") such that f|, =u}. (404)
is equivalent to the norms for H® (€2) we have defined when 2 is Lipschitz. We note that
this fact is strongly related to results showing existence of extension operators for fractional

order Sobolev spaces. See also [1] and [9] for definitions of the Besov and Triebel-Lizorkin
spaces which generalize the fractional order spaces we consider here.

3.7. Fractional Order Sobolev Spaces on the Boundary of a Domain

We have not yet introduced definitions of H* (9€2) or W*? (02) when s is a real number and
2 C R™ is a bounded open set in R". In fact, we have not even treated the case when s is a
positive integer. We now do so.

Our definition will require fairly strong regularity assumptions on the boundary of 2. We
suppose that s = k + X\ with k a positive integer and 0 < A\ < 1, and that Q is a C*~1!
domain. Then there exist a covering

o c|Ju; (405)
j=1
of 0L by open sets, a collection of open sets Vi,...,V,, in R", and a collection of mappings

W1, ...,y such that
1) 1, is a bijective mapping V; — Uj;

(
(2) ; and ¢; " are C*~1! mappings;
(3) 0y (V; 1 {an < 0}) = U; 1

(4) ¥y (V; N {x, = 0}) = U; N O

Now we let ny,...,m, be a partition of unity subordinate to the covering (405). For each
j=1,...,m, we let u; be the restriction of (n;u) o, to V;N{x, = 0}. We can view u; as a
compactly supported function defined on R™™1. We let WP (9§2) consist of all functions u
in Lj.. (052) such that

1/p
([wllw=r@0)= (EE:HUAthpRn 1) < 0. (406)

It is easy to verify that W*P (02) is a Banach space with respect to the norm (406). A
straightforward but tedious argument shows that alternate choices of the sets Uy, ..., U,,
Vi,..., Vi, mappings ¥, ..., ¥, and partition of unity 7, ...,n,, lead to equivalent norms.
We use H* (09) to denote W2 (9€2) and we define H~* (99) to be the dual space of H* (92).
Of course, H* (Q2)
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When 0 < s < 1, we can avoid the use of a partition of unity and local parameterizations of
the boundary. Indeed,

p 1/p
l|w|lwspo0)= (/ z)|P dach/89 /aQ Sp+n ’1 dx dy> (407)

is equivalent to (406) when 0 < s < 1. Note that sp + n — 1 is correct exponent in the
denominator because 0f) is n — 1 dimensional rather than n dimensional.

We will now show that the trace space of H* (Q) is H*~/2 (9Q) when Q is a C*~!! domain.
We suppose that Uy,...,U,, Vi,..., V., and 1y, . .., 2, are as before, but now we asumme
that Uy an open set compactly contained in €2 such that

aclJu;, (408)
=0
and let 79, m1, ..., My, be a smooth partition of unity subordinate to the cover (408). We also
let E' be a total extension operator for Q such that E [u] is always compactly supported.
For each j = 1,...,m, we let u; be the restriction of (n;E [u]) o ¢; to V; C R"™ and v; the
restriction of u; to V; N {x,, =0} C R"'. Then

1/p
(HUouHHk ot Zuujum . ) (409)

is equivalent to the usual H* (€2) norm and

m 1/p
<ZH%’HZ!¢1/2(Rn1)> (410)
j=1

is, by definition, a norm for H*~1/2(9Q). Note that we use the extension operator because
the function (n;u) o ¢; is only defined for points inside V; N {z,, < 0} and its zero extension
may not be an element of H* (R"), whereas u; compactly supported in V; and so its zero
extension is an element of H* (R"). It follows that to study the trace of functions in H* (2),
it suffices to consider the restriction of compactly supported functions in R" to the set
{(z1,...,xn_1,2s) : z, = 0}.

THEOREM 73. Suppose that % < s < o0 and that n > 1 is an integer. Then the operator

R:CX(R") = C® (R™) (411)
defined via
R[f](x1,...,xn—1) = f(z1,...,2p-1,0) (412)
admits an extension to a continuous linear mapping
H* (R") — HV2 (R (413)

Moreover, the extended operator has a continuous right inverse.

ProOOF. We observe that

[ exotzmin ) RIA) do = RI71 ) = 7000 = [ [ explemin ) fn.) ¢
(414)
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for all y € R*!. In particular,

RUAG) = [ explzmin-) ( [ Finc) ac) an (415)
for all y € R"!, from which we see that
R0 = [ Fon) dc. (416)
R

It follows from (416) and the Cauchy-Schwartz inequality that
2

RTAM] = | [ Fn.0) (1 P+IC) (14 nf41P) ™" dg
R A ) (417)
< ([|Fonaf @ pmsicry ac) ([ @ mpicr) ™ ac).
We rewrite the second factor on the right in (417) as
2/00 (a®+7%)"" dr, (418)
where o = 1+ |n|?, and introduce the(:) new variable u = r/a to obtain the integral
2072 / h (14 u?) " du. (419)
We note that this integral is convergent soince 5 > % and set
Cs =2 /Oo (14+u?) " du, (420)
0

so that (417) may be rewritten as
fraga— 2 2\ s—1/2 ~ 2 2 2
R (k)™ < e [ | o] 0+ P ac (421)

(Note that it is ? and not a which is equal to 1+ |n|?). Integrating both sides of (421) with
respect to 7 gives

~ 2 s
IR <€ [ [ | @ i) dean =il 122

It remains to show that the trace operator has a continous right inverse. To that end, we let
¢ be a C° (R) function such that

p(y) =1 forall |y|<1. (423)
Given u € C° (R" 1), we define U : R” — R via

U(xl,...,xn_l,xn):/ ()0 (14 [6)2e,) exp (2mi€ - (1, .. as)) dE.  (424)
R’n—l

Obviously,

U(zy,...,Tp-1,0) = /}Rn1 u(&)exp (2mi€ - (x1,...,Tp-1)) d§ =u(xy,...,Ty_1).  (425)
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Moreover,

U(&,n) = // exp(—2mi& - ') exp(—2min - x,)U (2, x,,) da'd,
R JRn1

= a(¢) [ exp(-2mize ((1+[€)70n) do, (426)
R
PN (R S
- U(é) 9\ 1/2 .
(1+1¢)
The last equality in (426) is obtained by introducing the new variable u = (1 + |¢|*)"/2z,
Now (426) implies
[ o] @i+ mp) dedy (427
Rn-1 JR
|@(§)|2 (/ 2 2\5 | ~ 2y-1/2, Y2
= —_— 1+1&"+n (14| /7] dn | d€.
Lo asem (L e my o arlery )
We rewrite the integral with respect to n appearing on the right-hand side of (427) as
/ (o +[n*)’ ‘95 <Q>‘2 dn (428)
R (6]
where a® = 1+ |¢|>. By introducing the new variable u = 1/a we see that (428) is equal to
a25+1/ (1+4®)’ 1@ W) du. (429)
R
We conclude that
s+1/2
[ @ Ig? + 0P (3 (0 + € o) dn = . (1+1€P) (130)
where
Cs = / (14 u?)’ 3 (w)|* du. (431)
R

The integral defining Cj is convergent since ¢ € C'2° (R). By inserting (430) into (427), we
obtain

[ [loenf o +ip) aam=c, [ @©Fa+iet)ae o)
Rr-1 JR Rn-1

that is, [|U|| zs@n) < Csl|ull gs-1/2(gn-1). The mapping which takes u to U extends by continuity
to the desired continuous right inverse of the trace operator. 0

EXERCISE 27. Show that the restriction operator R does not extend to a bounded continuous
mapping L? (R™) — L* (R 1),

EXERCISE 28. Show that the restriction operator R does not extend to a bounded continuous
mapping H'/? (R") — L? (R™1).
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(Hint: Let u: R — R be the inverse Fourier transform of the function f : R — R defined by
the formula

F(6) = {W ¢ (433)

0 £<2.

Note that w and f are elements of L?* (R). For h > 0, define uj, via up(x) = np * u(z
where ny, is the standard mollifier. Moreover, fix an aritrary ¢ € C° (R) and let v : R* —
be defined by v(z,y) = Y(x)u(y) and, for each h > 0, define v, : R* — R wvia vy(z,y)
Y(x)un(y). Show that v is an element of H'/? (R?), that v), converges to v in HY/? (R?), but
that | R [vp]|| o) — 00 as h —0.)

I %V

EXERCISE 29. Show that for any integer | > 0 there exists a mapping T; : C° (R"™!) —
C° (R™) such that

O,
a;g] (1, ..., Zp_1,0) =0 (434)
forallk=0,1...,1—1 and (xq,...,2,_1) € R"! and
Ty [ f
0ll[ ] (x1>"'7xn—1a0):f(zla'--7xn—1) (435)
for all (z1,...,2,_1) € R"1. Conclude that for any integer | > 0, there exists an operator
!
R:[]Cx (R — = (RY) (436)
k=0
such that if
f:Rl (gl,...,gl), (437)
then
ak
a—w{(:ﬁl,...,xn_l,O) =gk (T1,...,Tp_1) (438)

forallk=0,1,...,0 and (z1,...,2,_1).

Hint: Proceed as in Theorem 73 but replace o with the function ¥(y) = y'/1! for all |y|< 1
in order to define T;. Then define R; via

2 2
R [f]=1To g0 +Th {91— 0 0 T1[ _ 9

[90]} + Ty { o 2T0 g0l = 55 5T [QO}H y...

(439)

oz,

The following theorem is an immediate consequence of Theorem 73 and the discussion pre-
ceding it.

THEOREM T4. Suppose that k is a positive integer, Q is a C*~V' domain in R, and that
1 <p < oo. Then the trace operator

T C®(Q) = C(09) (440)
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defined via
T [u] = ulyg (441)
admits an extension to a continuous linear mapping
H"(Q) — H*12(00). (442)

Moreover, the extended operator has a continuous right inverse.

In fact, using Exercise 29 we can easily establish the following:

THEOREM T75. Suppose that k is a positive integer, and that Q is a C*~V' domain in R".
Then the trace operator
k—1

T :C>*(Q) = [Jco9) (443)

=0

defined via ]
2 k—1

= (u 20 2

admits an extension to a continuous linear mapping
H"(Q) — ﬁ HEI712(90). (445)

j=0

Moreover, the extended operator has a continuous right inverse.

When € is Lipschitz, the preceding results do not allow us to characterize the trace of H* (£2)
for k > 1. However, we have the following theorem characterizing the trace of H? (2) when
2 is Lipschitz. A proof can be found in [14, 11]; see also [3].

THEOREM 76. Suppose that € is Lipschitz domain in R™, and that 7 is the mapping defined

forue C® (ﬁ) via
) ) (446)
o0

Suppose also that V32 (082) is the closure of the image of 7 with respect to the norm in the
space

ou

ou

7:--’_
50 oz,

ou
u— | uly0, _8301

H (0) @& HV?(0Q) & HY?(9Q) @ --- @ H'/? (59) . (447)

Then .7 estends a bounded linear mapping H? () — V3/2(0Q), and that mapping admits a
continuous right inverse.

See [10] and its references for characterizations of the trace spaces of W*? (Q) in the general
case.
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3.8. Sobolev Inequalities and Embeddings

We will now establish two inequalities which will be used shortly to show that Sobolev spaces
can be embedded in various Lebesgue and Hélder spaces. See Chapter 4 of [1] for a much
more thorough discussion of this topic.

THEOREM 77 (Gagliardo-Nirenberg-Sobolev). Suppose that 1 < p < n, and that

pr=—L_ (448)
n—p
Then there exists C' > 0 such that
[ull o mny < Cll Dul| Lowon) (449)
for alluw € C! (R™).
PRrROOF. For each 1 <1 < n,
W1y Ty XTy) = - a;i (X1, ..ty ) di, (450)
and so
lu(zy, .y x| < / |Du(zy, ...ty ... xy,)| di;. (451)

It follows that
)" < H/ Dula, ...t )| dty. (452)
i=1 7/ —o0

We take the 1/(n — 1) power of each side of (452) to obtain

We integrate (453) with respect to 1 to obtain

n 0o ﬁ
/|u |n 1d$1_/ H(/ \Du(ml,,tl,xn)\ dt,L) dl‘l
=1 e

_1
= </ |Du(t1, o, ... ,l’n)| dtl) (454>

1

o0 =2 —o0

Repeated application of Holder’s inequality shows that
/|f1($)f2($) c fu(@)de < Tl (455)
j=1

whenever 1 < py,pa,...,p, < 00 satisfy

— 4+ =+t — =1 (456)
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We call (455) the generalized Holder inequality and we invoke it with p; =py = ... =p,_1 =
n — 1 to obtain
n 0o ﬁ
S 1 (457)

Inserting (457) into (452) ylelds

=
/u a1 dr; < (/ |Du(ty, z9, ..., x,)] dt1>

We integrate both sides of 458 Wlth respect to z to obtain

1

//|u |n Tdridry < </ / |Du(xy, ... tay ... Ty)| dmldtg) N
n—1
/ (/ |Du(t1,x2,..., | dtl H/ / |Du 1'1,..., ) l’n)| del dtz) dl’g

(459)
We apply the generalized Holder inequality once again to obtain

1

/ (/ |Du(ty, @, .., o,)| dtl.H/ / |Du(z1, ... b, ... 2| da dti) s

TN j—3 J —o0 J—o0
o o0 %1

S (/ / |Du(ty, za, ..., )| dtldx2>

n IS%) 00 00 ﬁ

H(/ / / |\Du(zy, ...t ... xp)| doy dzs dti)

= (460)

Inserting (460) into (459) yields

[ [ ) e,
S (/ / |DU(1’1, tQ, I3, ... I’n>| d.ﬁl]ldt2> . </ |Du(t1, T2,T3,... CL’n)‘ dtldl'g) .

1

H(/ / / ]Du(:cl,,tz,:cnﬂ dﬂ?l dﬂ?g dti>n_ .
i—3 —00 J —o0 J —0

)

(461)
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By repeatedly applying this procedure we see that

1

" n o) e8] n—1
|u(a:)|"1d:p§H</ / Du(ml,...,ti,...,xn)dxl---dti---da:n)
=1\~ —oo

R

(462)
=
~ ([ 1uto) as)
which is the inequality in the case p = 1.
We now suppose that 1 < p < n. We apply (462) to v = |u|”, where
—1
v = ]M, (463)
n—p
to obtain
( ()7 dx> "<y / (@) [Du| dz. (464)
R~ Rn

We apply Holder inequality to the integral on the right-hand side of (462) to obtain

p—1 1

( ()| da:) ' S’y( ()| da;) ’ ( | Du(z)[” da:)p. (465)
]Rn Rn Rn
Now we observe that

p n np )
_q _ — — 466
(v )p_1 1 P (466)

In light of (466), (465) is equivalent to

([ o ar)" <o ([ oo ) o

which establishes the theorem in the case when u € C! (R").

Y

O

We call the number p* appearing in Theorem 77 the Sobolev conjugate of p. We note that

1 1 1
—=Z_, (468)
p* P n

THEOREM 78 (Morrey’s inequality). Suppose that n < p < oo, and that v =1 —n/p. Then
there exists a constant C' such that

Jull o ) Clullsogee (169)
for all uw € C* (R™).

PRrROOF. First, we will show that there exists a constant C' > 0 depending only on n such
that for all r > 0,

D
/ uly) — u(z)| dy < Cr™ / Duloll (470)
By (z) B.(@) 1T —y["
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To see this, we fix w such that |w|= 1. Then if 0 < s <7,

*d
/0 Eu(az + tw) dt'

lu(x + sw) —u(x)| =

_ }gslhmx—%tw)~UJd4 (471)

gn/ Du + tw)] dt.
0

It follows that

/ lu(x + sw) —u(x)| dS(x / / |Du(z + tw)| dS(x)dt
9B1(0) 9B1(0)

(472)
/ / | Du(z + tw) (x)dt
2B1(0)
We let y = x + tw (so that ¢t = |[tw|= |z — y|) in the preceding 1ntegral to obtain
/ lu(z + sw) — u(x)| dS(z) < / ]Du—(yn)_\l d
dB1(0) Bs () [z — | (473)

<[ bl
Bo(x) 1T — Y™™

Multiplying both sides of this equation by s"~! and integrating from 0 to r with respect to s
yields

[ ) - )] s <= _Duly)_y, (474)
OBr(x) B

n Jp. @ | —y["!

this is (470).

We now fix = € R" and observe that (470) implies

1
lu(z)| = B Bl(m)! u(zx)| dy
1 1
S TRl |Bl( )] Bl(a:)|U(:E) u(y)| dy + 75— Bi(2)] - )|U(y)| dy (475)
[ Du(y)| .
<o a2l g+ Cll

We now apply Holder’s inequality to obtain

p=1
D Lp d g
[ P ([ puwra) (| V) )
Bi(x) 1T — Y Bi(z) Bi() |z —y|" V%

Since p > n, (n —1)-% < n so

p—1

d P
</ J o dy) < 0. (477)
Bi@) |z —y|" D
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We combine (475), (476) and (477) to obtain
sup [u(x)| < Cllullwie@n). (478)

We let z,y € R", let r = |z — y|, and let W = B,.(z) N . Then

lu(z) — u(y) |_|W|/ lu(z |dZ+|W]/ lu(y) — u(2)| d. (479)

From (470), we have

u(z) — u(z)| d= < / u(2)| dz
IWI/ IB )|
p—1
Hr (480
< </ | Du(2)|P dz> / dy — dz (480)
() Bi(@) |z — 2|V

< Cr' % || Dul| 1o gy

Similarly,
1 _n
W/W lu(y) — u(2)| dz < Cr'~ 7 || Dul| o). (481)
Inserting (481) and (480) into (479) yields
W lu(z) — u(z)| dz < Or'"¥||Dul|po@n= Clz — y|'~# || Du| 1o @n). (482)
It follows that
u(z
sup M < C||Dul| o rny.- (483)
aty o=yl
The result follows from (483) together with (478). O

It follows immediately from Theorems 77 and 78 that when 1 < p < n, W? (R") is con-
tinuously embedded in LP" (R") and when p > n, W? (R") is continuously embedded in
C% (R*) with v =1 —n/p.

Using standard interpolation results for Lebesgue spaces (see, for instance, Proposition 6.10
in Chapter 6 of [8]), we can say a bit more. In fact, when 1 < p < n and p < ¢ < p*,
WP (R") is continuously embedded in L7 (R™).

From (468), one might expect that when n = p, W? (R") is embedded in L*> (R"). This
is not the case when n > 1. We will not use the fact there, but W'* (R") is continuously
embedded in the Banach space of functions of bounded mean oscillation (see, for instance,
[6] for a proof). We now summarize the preceding discussion and prove a result for the case

n=np.

THEOREM 79. If1 < p <mn and

1
i 484
n? (8)
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then WP (R™) is continuously embedded in LY (R™) for all q € [p,p*]. Moreover, W™ (R™) is
continuously embedded in L (R") for alln < q < oo. Ifp >n, then WP (R™) is continuously
embedded in the Hélder space C% (R”) with vy =1—n/p.

PROOF. It only remains to prove the statement regarding W' (R"). Arguing as in the
proof of Theorem 77, we see that
N

|

ou
el 8@

when u € C! (R"). We apply (485) to u(x)|u(z)|™ ! with m > 1 and proceed as in the proof
of Theorem 77 to obtain

Il

(485)

LY(R™)

m m—1
L%(Rn)ﬁ m||U||LM 1Dw]l .- (486)

n=1 (R")

Applying Young’s inequality yields

ol gy € (1l e Dz ) (a7

Now we let m = n to obtain

Jull e, . < Clallwogeo. (155)
It follows that W? (R™) is continuously embedded in L? (R") for all n < g < n?/(n—1). By
repeating this argument with m =n + 1, m = n + 2, etc., we obtain the desired result. [

Since C! (Q) is dense in W, (Q), we have the following analogous results for W, ” (£2).

THEOREM 80. Suppose that £ is an open set in R™. If 1 < p <n and

1 1 1
L2 (489)

prpn
then WyP (Q) is continuously embedded in L7 (Q) for all ¢ € [p,p*]. The space W™ (Q)
is continuously embedded in L7(Q) for alln < q < oo. Also, if p > n, then Wy (Q) is
continuously embedded in C°7 (Q) with v =1 — %.

If €2 is a bounded open set in R", then Holder’s inequality implies that L9 () is continuously
embedded in L? () provided g > p. Moreover, in this case C (Q) is continuously embedded
in LP () for all 1 < p < oco. So we have the following:

THEOREM 81. Suppose that 2 C R™ is bounded. If 1 < p <n and

1 1 1
Sz (490)

prp n
then W, ? (Q) is continuously embedded in L4 (Q) for all 1 < q < p*. The space W™ ()
is continuously embedded in L9 (Q) for all 1 < q < oo. Finally, if p > n, then W, (Q) is
continuously embedded in L1 () for all 1 < ¢ < co.

If  is a Lipschitz domain, then we may use the extension theorem together with Theorem 79
to establish the following.
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THEOREM 82. Suppose that 2 C R™ is a bounded Lipschitz domain. If 1 < p <mn,
1 1 1

== 491
p* p n ( )
and 1 < g < p*, then there is a constant C' such that
[l < Cllullwre) (492)
for all w € WP (Q). For all p < q < oo, there exists a constant C' such that
[ul| La) < Cl[ullwingy (493)

for allu € WY (Q). If p > n and v = 1 — n/p, then every u € WHP (Q) is equal almost
everywhere equal to an element of C%7 (Q), and there is a constant C" such that

Jull o) < € el (191)
for allu € WP (Q).
(495)

Proor. We prove only the first statement; the rest follow in a similar fashion. Since the
boundary of €2 is Lipschitz, there exists a simple (1,p) extension operator E : W (Q) —
WP (R"). Let C be a constant such that

1E [u] lwrp@n < Clluflwizq) (496)
for all w € W' (Q2) and let C’ be a constant such that
]| o ey < C7lullwr.o ey (497)
for all u € WP (R™). Then for all u € W? (Q), we have
[l @) < IE [u] [l ey < CNL B[] lwro ey < CCullwrz@), (498)

which shows that WP () is continuously embedded in LP" (Q2). By Hoélder’s inquality,
LP" () is continuously embedded in L7 (Q) for all 1 < ¢ < p*. The first conclusion of the
theorem is now established. U

It is a consequence of the following theorem that if Q is bounded then the W, ” (€2) norm is
equivalent to the norm ||u||= ||Dul|zr(). This will play an important role in Chapter 4.

THEOREM 83 (Poincare’s Inequality). Suppose that € is a bounded open subset in R™, and
that 1 < p < co. Then there is a constant C' such that

||u||LP(Q) <C ||Du||LP(Q) (499)
for all u € W27 (Q).

PROOF. Suppose first that 1 < p < n, and let

1 1 1

— I _ 500

pr o p (500)
Then WP (Q) is continuously embedded in LP" (£2). Since €2 is bounded, Holder’s inequality
implies that LP" () is continuously embedded in L? (Q2) for all 1 < ¢ < p*. In particular, for
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all 1 < g < p*, there exists C' > 0 such that
[ull Loy < Cll Dul| oo (501)

whenever u € VVO1 P (). Since p* > p, the theorem is proved in this case.

Suppose now that p > n. Since

1 1 n
p*:—/——: p/—)OO as p/—>n, (502)
p n n—p
we can choose 1 < p/ < n such that p* > p. It follows from the above discussion that there
exists a constant C; such that

[l 2o+ () < Cul[ Dul| 1o (503)

for all u € VVO1 P (Q). Since Q is bounded and p* > p > n > p/, Holder’s inequality implies
that there exist constants C5 and C'5 such that

[ull o) < Collul| Lo () < C1Co|| Dul| o () < C1C2C5]| Dl 1o (0. (504)
OJ

By iterating the preceding results, the following theorems can be easily obtained.

THEOREM 84. Suppose that 2 C R™ is Lipschitz domain, that k < %, and that

1 1 k
-—= - — - (505)
q p n
Then there exists a constant C' such that
|l Loy < Cllullwrr ) (506)

for all u € WkP (Q).

THEOREM 85. Suppose that 2 C R™ 1s a bounded Lipschitz domain, that k > %. Then every

u € WFP(Q) is almost everywhere equal to a function in ch 5] -1 (ﬁ), where 7y is any
positive real number less than 1 if n/p is an integer, and

= FJH—Q (507)
p p
otherwise. Moreover, there exists a constant C such that

(PP T (508)

for all u € WP (Q).

3.9. Compact Embeddings

In this section, we will establish that the embeddings discussed in the preceding section are,
in fact, compact. We say a Banach space X is compactly embedded in the Banach space Y
if there exists a compact injective map X — Y. Usually X is a subset of ¥ and the mapping
under consideration is the inclusion map.
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THEOREM 86. Suppose that Q is a bounded open set in R™. If 1 < p < n then Wy? (Q) is
compactly embedded in L () for all 1 < q < p*, where

L — (509)
p p n
If p > n, then Wy? (Q) is compactly embedded in C (Q). Moreover, Wy™ (Q) is compactly
embedded in L7 (Q) for all n < q < oo. In particular, Wy (Q) is compactly embedded in
LP(Q) for all 1 < p < 0.

PrROOF. When p > n, the theorem follows immediately from the the Arzela-Ascoli theo-
rem and the fact that VVO1 P (Q) is continuously embedded in C°7 (ﬁ) for some v > 0. When
p = n, the theorem reduces to the case p < n since Wy () is continuously embedded in
Wy () for all p < n (since Q is bounded) and p* — oo as p — n. So we need to prove the
theorem only in the case 1 < p < n.

We will first show that W,* (Q) is compactly embedded in L' (Q) by showing that if A is
a bounded set in W, ” (), then A is totally bounded in L' (©2). Recall that a set is totally
bounded if given € > 0 then exist a covering of A by a finite collection of open balls of radius
€.

We claim that it suffices to consider the case in which A C C! (Q2) since C! (Q2) is dense in
WyP (). To see this, we first let C’ be a constant such that

1Az < Cllf llwree) (510)
for all f € W' (Q). Note that Wy () is embedded in L' () since  is bounded. If A is a
bounded subset of W,? () and € > 0, then for each u € A, we choose v € C! (Q) such that
||lu— v||W01,p(Q)< sa7- The set A’ of functions v formed in this fashion is bounded in Wy ().

If it is totally bounded in L' (€2), then we may choose a finite collection By, ..., B,, of open
balls of radius § in L' (Q) with centers ¢y, ..., ¢, which cover A’. In this event, if u € A, v
is the corresponding element of A’, and ¢; is the center of a ball in L' () of radius § which
contains v, then

lu —cjll i) < [lu—v|lpy+llv — ¢l

€
< €.
So the open balls of radius € centered at the points ¢4, ..., ¢, cover A.

To reiterate, we assume without loss of generality that A C C! (Q) such that ||uHW01,p(Q)§ 1
for all w € A. For each h > 0, we define

Ap={np*xu:ue A}. (512)
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Then A, is bounded in C' (ﬁ) for

[+ u(z)] = A"

/y|<hn <%) u(z —y) dy'

/|<177(z)u(a7— hz) dz

(513)
<C / u(x —hz) dz
|z|<1
S CHuHLl(Q)-
We observe that
o T—y
Ditms o) =1 [ o () ut)
lz—y|<h h
= Din(z)u(z — hz) dz (514)
|z|<1
< sup|Dn(z)|[|ull (@)
e
foralli=1,...,n. Thus
| Dup(z)| < Cllullrrg) (515)
for all x € ), where u;, = np, * u. It follows that
d
\up(z) — up(z +6)| = / %uh(x +t0) dt'
0
! 516
< / Duh(x+t(5)-(5dt‘ (516)
0
< CPo|[|ullzr(g)-

In particular, A, is equicontinuous.

It follows from the Arzeld-Ascoli theorem that Aj, is precompact in C (ﬁ) In particular, Ay,
is totally bounded in C' (ﬁ) Since C' (ﬁ) is continuously embedded in L' (2), it follows that
Ay, is totally bounded in L' (Q).

Now we observe that

o) = w@)| < [ 9t ) e )] o
= / n(z) /h % (u(z —tz)) dt‘ dz
<1 Oh (517)
< /z|§1 n(z) /0 Du(z —tz) - 2 dt' dz

S/Z|<1n(z) /Oh|Du(x—tz)| dt dz.
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and we integrate over x to obtain

/Q|U($) —np xu(zr)| de < /Q/|z§177(Z) /0h|Du(x—tz)| dt dz dx

h
<IDulv [ ) [ dra: (518)
0

|z|<1
< Ch.

(we note that u has compact support in €2, so that this procedure is sensible for sufficiently
small h). It follows from this estimate that A is totally bounded in L' () (since wuy is
uniformly close to u in the L' norm).

Now we suppose that ¢ < p* = 1/p — 1/n. We will use the fact that if 0 < p < ¢ <r < oo
and

A 1=A
=+ —= (519)
p

then

LA AN (520)
see, for instance, Chapter 6 of [8|). We apply this identity to obtain
(

el oy < el o lull 22, (521)
Now it follows from the embedding theorem that there is a constant C' such that

el a@ < Cllulz g lully s (522)

)

Since A is precompact in L' (2) and bounded in W, ” (2), it follows easily from this inequality
that it is precompact in L7 (2). O

By combining the previous theorem with the Sobolev extension theorem, we easily obtain
the following result.

THEOREM 87. Suppose that Q) is a bounded Lipschitz domain in R". If 1 < p < n then
WP (Q) is compactly embedded in L9 () for all 1 < q < p*, where

L — (523)
p p n
If p > n, then W' (Q) is compactly embedded in C (Q). Moreover, W' () is compactly
embedded in L (Q) for all n < q < oo. In particular, WP (Q) is compactly embedded in
LP () for all 1 < p < 0.

It is straightforward to extend these theorems to the spaces W*? (Q) by iterating them.
We observe, in particular, that H**1 (Q) is compactly embedded in H* () whenever € is a
Lipschitz domain and Hy™ () is compactly embedded in Hf (©2) when Q is a bounded open
set in R"™.
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EXERCISE 30. Suppose that 2 a bounded open set in R™, and that s >t > 0 are real numbers.
Show that HE (Q) is compactly embedded in HE (). (Hint: use the “Fourier” Sobolev norm
for fractional order spaces.)

3.10. Difference Quotients

In this section, we discuss a mechanism for establishing the weak differentiability of a function
and for estimating the L” norms of its derivatives. The results of this section will be used to
establish the regularity of weak solutions of elliptic boundary value problems in Chapter 5.

Suppose that €2 is a bounded open set in R”. We denote by e, the vector whose i component
is 1 and whose remaining components are 0. For each i = 1,...,n, we define the difference
quotient of u in the direction e; via the formula

_ u(x + he;) — u(x)

Au() - (524)
We denote by Au(x) the vector
Aju(z)
Au(z) = Ang(x) (525)
Alulz)
and define
[ a*ull, = (atu@l+ -+ 1ATu@) )" (526)
for 1 < p < o0 and
A" = [ATu(@) oot - + 1A} (@) oo- (527)

THEOREM 88. Suppose that ) is a bounded open set in R™, that p > 1 is a real number, and
that 1 <1i <mn is an integer. Suppose also that ) is an open set such that ¥ CC Q. Then

||A?U(9§')||LP(Q,) S ||Dzul|LP(Q) (528)
whenever 0 < |h|< dist(Q', 0Q).

PROOF. We first suppose that u € W*P(Q) N C*°(Q). Then

u(x + he;) — u(
h

for all x € V. If p = oo, then by taking absolute values on both sides of (529) we obtain

Ahu(z) =

1
z) = E/ Dy, ..t T+ 4T, .. 1y dE (529)
0

‘A?u(x)‘ < sup \Diu(zy, ... iy, @ + 6,201, .., Tp)| < sup |[Dju(x)], (530)
zeQ 0<t<dist(QV,00) z€Q
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from which we conclude that (528) holds when p = oo and u is infinitely differentiable.
Otherwise, we take the p* power of both sides of (529) to obtain

1| P
|A?u($)‘p =15 / Diu(wy, .. @i, T+, Tig, .-, T) dE
he | Jo
1 A » (531)
< — (/ |Diu(zy, . i1, T+ Tiga, -, )| dt)
he \ Jo
We see from Hélder’s inequality that
h
/ |Diu(q:1,...,xi,1, xi+t,xi+1,...,xn)| dt
0
. 1p (532)
Shl/q (/ |Diu(x1,...,xi_l,xi+t,mi+1,...,mn)|p dt) 3
0
where
1 1
-+-=1 (533)
P q
By inserting (532) into (531), we obtain
h
‘A?U(JU)VD < hp/qp/ |Diu(zy, ... T, @ 4+ Ty, - )P dE
o 0 (534)
:E/ \Diu(xl,...,xi_l,xi+t,x,;+1,...,xn)|p dt.
0
Note that p/q —p = —1 follows from (533). Since D;u is continuous, the integral mean value

theorem implies that for each x € ', there exists 0 < &, < h such that

1 [t
E/ |Dz‘U(I17~--,$z‘—1,$z‘+t,$i+1a~~,$n)|p dt = |Diu($1,~-->$i—1,1‘i+§x,$i+1a~-,xn)|p
0

(535)
We insert (535) into (534) and integrate over €' in order to obtain

/ ‘A?u($)|p d:z::/ |Diu(z + Ee;) " dx
Q/ Q/
< [ IDa@)l =
Q

from which we conclude that (528) holds for all 1 < p < oo as well as p = oo when u is in
C>(Q)NWkP(Q). That (528) holds for arbitrary u € W*?(Q) now follows from Theorem 57
— that is, the observation that C°°(Q) N W*P(Q) is dense in W*?(Q). O

(536)

Note that Au is an element of LP(€Y') when u € LP(Q) whenever 0 < |h|< dist(€,99Q); in
fact,

2
N < EHUHW’W(Q)- (537)

u(- + he;) — u(-)‘

Wk:p(Q)
Theorem 88 is useful because it gives us a bound on the LP(€Y') norm of A’u which is
independent of h. We now establish that the converse also holds; that is, if the LP norm
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of Ay is bounded independently of h, then the weak derivative D;u exists and satisfies the
same bound.

THEOREM 89. Suppose that €2 is a bounded open set in R™, that 1 < p < 0o is a real number,
that 1 < i < n is an integer, and that u € LP(Q). Suppose also that there exists a constant
C' > 0 such that whenever Q) is an open set with Q' CC Q and 0 < h < dist(€', 092),

h
HAz uHLp(Q/) S C (538)
Then the weak derivative D;u exists in €0 and

PrROOF. We let i be any integer 1 < i < n and choose a sequence €2y C €2y C --- of open
sets contained in €2 such that

Q= (540)
j=1

Since bounded sets in LP(2;) are weakly compact (see Theorem 34 in Section 2.5) and
| ALl oo < C (541)

for all sufficiently small h, there exists a sequence {hi(j)}52, converging to 0 and a function
vy € LP(§) such that ||vq||rro)< C, and

im [ AMOyu(2)() de — / o (@) (z) da (542)
j—=oo Jq, o

for all v € C2°(€y). We apply the same logic in order to conclude that there is a subsequence
{ha(7)} of {h1(j)} — that is, there exists a function i : Z* — Z* such that he(j) = hi(i(j))
for all j > 1 — and a function vy € L*(€) such that ||vs]|1r0,)< C and

lim Azm(j)u(x)@/)(x) de = / vo(2)(z) do (543)

j—o00 Qs Q0
for all ¢ € C°(£2). By the uniqueness of weak limits, vy(x) = vy (x) for almost all x € Q.
Consequently, we may replace v; and vy by a single function v € LP({)). Continuing in
this fashion, we obtain functions v € LP(2) and hy(j) such that ||[v||r)< C, hesa(jf) is a
subsequence of hx(j) and

im [ AMOyu(2)e(x) do = / o(2)(z) da (544)
I Jay, Q
for all ¢ € C'°(€;). We now define a sequence {s;} via the formula
s, = hi(k); (545)
that is, sy is the diagonalization of hx(j).

Now suppose that ¢ € C° (Q). Since s, — 0, there exists [ such that s, < dist(supp(¢), 9Q)
for all £ > [. Consequently,

/QAf’“u(x)@/J(x) dex = / A u(x)(x) do (546)

supp(¢)



3.10. DIFFERENCE QUOTIENTS 84

is well-defined for k£ > [ and

lim [ A*u(z)y(x) de = / v(z)(x) de. (547)
k—oo Jq Q
But for [ > k, we also have
lim [ Au(z)y(x) de= lim [ w(x)A;**Y(z) de = — / u(z)Dip(z) de. (548)

k—oo Jq k—oo Jq Q
From (547) and (548) we obtain

/Qu(a;)Dlzb(x) dx = — / v(x)Y(z) de. (549)

Q
Since 1) is an arbitrary element of C%°(), we conclude v is the i'" weak derivative of u. [

We close this section by characterizing the spaces I/VéCOO(Q) for arbitrary open sets in R™ and
Whee(Q) in the event that  is a bounded Lipschitz domain.

THEOREM 90. Suppose that Q is an open subset of R*. Then W™ (Q) = C%(Q).

loc

PROOF. We suppose first that v € C%}(Q), and that 1 <i < n is an integer. If ' CC ,
then for all 0 < h < dist(£Y, 0Q2)

| AMu| oo @ < O, (550)

where C' is the Lipschitz constant for uw in '. Since €’ is bounded, (550) implies that the
sequence {Alu} is bounded in L?*(€2). Consequently, there is a sequence h; — 0 and a

function v € L*(Q) such that A?ju — v weakly in L?(€Y'). In particular,

/, A?ju(x)gp(ar) de — [ v(z)p(z) dx (551)

Q/
for all p € C° (§2'). We observe that

// A?ju(:p)go(x) dr = — // u(a:)A;hjgo(x) do — — N u(z)D;p(x) du. (552)

We combine (551) and (552) in order to obtain
// u(z)Dyp(x) de = — // v(x)e(x) d, (553)

from which we conclude that D;u = v. From (55O)Qand (551) we see that

//U(:z:)cp(:v) dx lim // Alu(z)p(z) do

Jj—o0
for all p € L'(€Q'). We conclude that v € L>(€') (see, for instance, Theorem 6.13 in [8]).

<= Cllellie (554)

We now suppose that u € Wl’OO(Q), and that €)' is an open ball contained in 2. For each

loc

0 < h < dist(Q,09), we define u;, via the formula
up(x) = 1p * u(z), (555)

where 7, denotes the standard mollifier (as usual). Since u € LP(£)), the sequence uy,
converges to u for almost all z € €V in fact, in converges at every point = in the Lebesgue
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set L(f) of f. We apply Theorem 55 in order to see that
[Dun|[ oo @y = ([ D (nnxwy || oo @y 190 D] oo @) < [linl | D] oo )= (| Dt poe )< 00 (556)

for all 0 < h < dist(€Y,092). Note that in (556) we use Du to refer to the weak gradient of
u. Since uy, € C*(Y),

1
w(@) = u(s) = [ Dunly+t(e = y) dt - o~y (557)
0
for all z,y € . We conclude from (557) that
|un(x) — un(y)| < [ Dull Loz =y (558)

for all z,y € € and all sufficiently small h. By taking the limit as h — 0 in (558), we see
that

u(z) = u(y)| < [|Dul|Loe @) |z =y (559)
for all z, y in the Lebesgue set of f. It follows that u agrees almost everywhere with a function
u* which is Lipschitz continuous in €)'. Note that we define u* as follows. For each = ¢ L(f),

we choose a sequence {x,} in L(f) such that x,, — z. From (559), we conclude that {u(z,)}
is Cauchy and has a limit. We set u*(x) = lim,, u(z,). This uniquely defines a representation

of u in COH(Y). O
By combining Theorem 90 with Theorem 68, we obtain the following:

THEOREM 91. Suppose that Q C R"™ is a bounded Lipschitz domain. Then Wh>(Q) =
Cco (Q).



CHAPTER 4

Second Order Linear Elliptic Boundary Value Problems

In this chapter, we introduce variational formulations of certain second order linear elliptic
boundary value problems and discuss their solvability.

4.1. Variational Formulations

Suppose that L is a differential operator of the form

L[u] (z) = —a"”(x) D;Dju(z) + b'(x) Dyu(z) + c(z)u(z), (560)
and that u is a classical solution of the equation
Lu] (x) = f(z) (561)

in the domain 2 C R™ which vanishes on the boundary of €). By applying the divergence
theorem (i.e., integrating by parts) we see that

/QDju(:c)Di (a” (z)v(z)) +bi(z) D'u(x)v(z) + c(z)u(z)v(z) do = /Qf(:c)v(:c) dx  (562)

for all sufficiently smooth functions v. Note that we are assuming that « vanishes on 052, so
that no boundary terms emerge in (562). The central observation of the variational theory
of partial differential equations is that (562) is often sufficient to characterize the solution u
of the partial differential equation (561). More specifically, under mild assumptions on the
operator L, the forcing term f and the domain €, if (562) holds for all v in a suitable space of
test functions then u solves (561). The great advantage of the variational formulation (562)
over the equation (561) is that it requires less of u. In particular, (562) is sensible when u
has only one weak derivative whereas u must have two classical derivatives in order for (561)
to be meaningful.

A weakly differentiable function u which satisfies (562) is known as a weak solution of the
equation (561). A twice weakly differentiable function u such that (560) holds almost ev-
erywhere is called a strong solution of (561). If u is twice differentiable and satisfies (560)
everywhere, then it is a classical solution of (561). A common approach to the analysis of
a partial differential equation — one which we will take in this chapter and the next — is
to first establish the existence of weak solutions under minimal regularity assumptions and
then go on to prove that under slightly stronger conditions, weak solutions are in fact strong
or classical solutions.

In the interests of imposing the weakest possible regularity conditions on the operator L, we
will consider second order linear partial differential equations in divergence form. That is,

86
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partial differential operators of the form

L[u] (z) = =D; (a"(z) Dju(z) + b'(z)u(x)) + ¢'(z) Dyu(z) + d(z)u(z), (563)
where 2 is a bounded open set in R™. The operator L is no longer a mapping which takes
functions to functions; instead, it is a map from an appropriately chosen closed subspace V

of H'(€) into its dual space V*. In particular, it maps the function u to the mapping V' — R
defined via

v — /g)aij(:v)Diu(x)Djv(m) + b (z)u(x) Div(z) + ¢ (z) Diw(x)v(x) + d(x)u(z)v(z) dr. (564)

The choice of the subspace V' will depend on the boundary conditions being imposed on the
solution; however, we will always require that V' contain H}(Q). This ensures, among other
things, that if L[u] = f in the sense that

(L[u],v) =(fv) (565)
for all v € V, then (562) holds for all test functions v in C2°(£2) and it is reasonable to say
that L[u] = f “in the interior of Q.” We will suppose that the coefficients a, b’, ¢* and
d are bounded, measurable functions 2 — R. This last assumption is sufficient since the
expression (564) does not involve any derivatives of the coefficients a”’. Moreover, we will

assume that L is strongly elliptic; that is, we suppose that there exists a real number A > 0
such that

> algg > NP (566)
for all £ € R™.

Note that in (564) we have implicitly embedded the space V' in the dual space V*. In
particular, we have embedded V into V* through the composition map

Vot L2(Q) —2 (L2(Q) —— V¥, (567)
where ¢ is the inclusion map
LV = LA(Q), (568)

¢ is the isometric isomorphism which takes u € L?*(2) to the bounded linear functional

fu: L*(2) — R defined via
o) = [ wleyote) do. (569)

and T : (L?(Q))" — V* is the linear map defined by

T[¢] = ¢ly- (570)
Note that the map 7" is bounded (obviously), injective (because V' contains C2°(§2) and is

therefore dense in L?(£2)), and has dense range (since V' is reflexive). When u € L*(Q) and
v € V, the duality pairing between V and V* agrees with the L?(Q) norm:

(0 = (0 = [ ola)u(e) do (571)

Note also that this embedding of V' into V* is plainly not compatible with the usual identi-
fication of the Hilbert space V with its dual space.
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4.2. The Dirichlet Problem Sans Lower Order Terms

Suppose that 2 is a bounded open set in R", that L is a second order partial differential
operator of the form

L[u](x) = —D; (aij(x)Dju(x)) (572)

with a” are bounded measurable functions  — R (i.e. elements of L> (€2)), and that there
exists a real number A > 0 such that

a’(2)6&; > M ¢ (573)
for all z € Q and £ € R” (that is, we are assuming that L is strongly elliptic in ). The
operator L is a mapping from H}(Q) — H~'(Q); in particular, L [u] is the mapping which
takes v € H} () to

/Q a9 (2 Dju(x) Dov () d. (574)

A function u € H} (Q) is a weak solution of the Dirichlet boundary value problem

L[] () = f(z) in ©
{ u(z) =0 on 01, (575)
where f € H™1(Q), if
Llu] (v) = (f,v) (576)

for all v € H} (). In (576), (f,v) refers to the duality pairing of V* and V.

THEOREM 92. The mapping L defined via formula (572) is bounded and coercive.

PROOF. The a” are bounded, so there exists a real number 1 > 0 such that
| (z)] <7 (577)
forall i, =1,...,n and z € Q. Using (577) and Hélder’s inequality, we see that

(L[] v} = / o (2) Dju(x) Dv(z) de

<03 [ 1Dju@) Do) do

ij=1
n

578
< > IDyulls | Divlls (578)

ij=1
n
<n Y _ | Dullz [|Dv]
i =1
< n277||UHHg(Q) vl 2 ()

for all w and v in Hy (©). We conclude that L is bounded.

The strong ellipticity of L implies that
a¥ (z) Dju(x) Dyu(z) > X|Du(z)|? (579)
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for all uw € H} (Q). From (579) we conclude that
(Lu],u) = / a’(z)Dju(z) Diu(z) dx > )\/ |Du(x)|? dz = \||Dul|?. (580)
Q Q

According to Poincaré’s inequality, there exists a real number 5 > 0 such that
[ull2< B Dul| (581)
for all uw € H} (Q). By combining (580) and (581) we see that

(L{u],u) = / a”(z)Dju(x) Dyu(z) dx

Q
> )\/ \Du(z)|? da
Q
= M| Dul3 (582)

A A
> SlDul+

(A A
2 min 223 [l o)

for all w € Hj (), where C is an appropriately chosen constant. We conclude that L is
coercive. 0

In light of Theorem 92, we can apply the Lax-Milgram theorem (Theorem 27 in Section 2.4)
in order to conclude that (575) admits a unique weak solution u, and that there exists a
constant C' (depending on L and 2 but not f) such that

||u||H3(Q) <C ||fHH*1(Q) : (583)

Note that if ¢’ = @’ for alli,j = 1,...,n, then L defines an inner product on Hg(2) through
the formula

(u,v) = (L[u],v) (584)

and the Riesz representation theorem suffices to establish the existence of weak solutions of

(575).

We now reduce the inhomogeneous boundary value problem
L{u)(2) = f(z) in ©
u(z) =g on 00
to a homogeneous problem of the form (575). As before, we assume that f € H~'(Q) and,
in addition, we assume that g is the trace of a function ¢ in H' (Q). In order for the trace
operator to be defined, we will need to make some assumptions on the regularity of the

boundary of 2. We will assume that €2 is a bounded Lipschitz domain. We let w be a weak
solution of the boundary value problem

L] () = f(z) — L[¥] () = f(2) + Dy (a¥(2) Dyu(x)) in ©
w(z) =0 on S

(585)

(586)
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By f(z) + D; (a”(z)D;y(z)), we mean the bounded linear functional on Hy () defined via

v— (f,v) + /Qa"ijw(x)Div(x) dr. (587)

We observe that

< Clllla @ vllaye) (588)

/ a” Djip(z) Dy (x) da
Q

(the argument is identical to that used in the proof of Theorem 92 to show that B is bounded)
so that

I1f + Di (@ D) |-y < C (I f 12 @)+ 9] ) - (589)
From (586), we see that
| Ll ol @pte) do = (1.0 (590)

for all v € H} () , and that the trace of w+1 is g. In other words, w + 1 is a weak solution
of boundary value problem (585). Moreover, the Lax-Milgram theorem together with (589)
implies that

lwllm< C (1 f -1 +Y @) | (591)
from which we obtain the bound
Jw + ¥l )< C (Il @+ 0l @) (592)

for the solution w + v of (585). We summarize our conclusions in the following theorem.

THEOREM 93. Suppose that 2 is a bounded open set in R™ with Lipschitz boundary, that
T H' (Q) — L?(09) denotes the trace operator, and that L is a strongly elliptic operator
of the form

L[u] (z) = =D; (a” Dju) (593)

with a bounded, measurable functions. Then for each f € H ' (Q) and v € H'(Q) there is
a unique weak solution u of the Dirichlet problem

Llu](z) = f(z) in Q
{ u(z) =T [¢] () on 0.
Moreover, there is a constant C' > 0 depending on 2 and L such that
el oy < © (A1l HI e (595)

whenever u is the weak solution of (594).

(594)

Suppose that .7 [1&] = 7 [¢], that u is the solution of (594) constructed in the preceding

theorem, and that u is the solution of
{L[ﬂ] (z) = f(z) in Q

i) = 7 [ () on 99 (596)
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constructed in the same fashion. Then v — @ solves
Lu—u](x)=0 in Q
{ u(z) —a(z) =0 on 0N.
It obviously follows that u — u = 0; i.e., u = w. In particular, the solution of the boundary
value problem depends only on the trace of of .

(597)

Theorem 74 characterizes the traces of functions in H' (Q) when 2 is a Lipschitz domain. In
particular, it asserts that for every g € H/2(952), there exists a function ¢ € H' () whose
trace is ¢ and such that

[¥llm @< Cligllazon)- (598)
We obtain the following theorem by combining this observation with Theorem 93.
THEOREM 94. Suppose that Q2 is a Lipschitz domain in R™, and that L is a strongly elliptic
operator of the form

L[u] (z) = —D; (a” D;u) (599)
with a” bounded, measurable functions. Then for every f € H=1(Q) and every g € HY?(0%)
there exists a unique weak solution u of the Dirichlet boundary value problem

Llu](z) = f(z) in Q
{ u(z) = g(x) on OSL
Moreover, there exists a constant C' > 0 which depends on L and §2 such that
[ull @) < C ([ L@+l mr200) (601)

whenever u is a weak solution of the boundary value problem (600). In other words, the
operator L & 7 is an isomorphism

H'(Q) —» H Q) e HV?(09). (602)

(600)

4.3. The Dirichlet Problem for General Second Order Operators

In this section, we treat the Dirichlet boundary value problem
Llu)(z) = f(x) in ©
{ u(z) =0 on OS2

for a more general class of strongly elliptic second order operators. More specifically, we
suppose that L is of the form

L[u] (z) = —=D; (a"(z)Dju(z) + b'(z)u(x)) + ¢' () Dau(z) + d(z)u(z) (604)

with a¥, b, ¢ and d bounded measurable functions 2 — R, and that exists a real number
A > 0 such that

(603)

a"()8:&; = Mg|” (605)
for all £ € R™. In order to develop existence and uniqueness results for the boundary value

problem (603), we will need to use elementary results from the theory of Fredholm operators
in addition to the Lax-Milgram theorem.
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Since the coefficients of L are bounded, there exists a real number 1 > 0 such that
la”[| Loy < m (606)
foralli,j=1,... n,
16 oo @y e[| ey < 1 (607)
foralli=1,...,n, and ||d||p=@)< 1. We observe that

(L [u] ,v)]

< /Qaij(a:)Dju(x)Div(x) + b (2)u(x) Div(z) + ¢ (z) Dau(z)v(z) + d(z)u(z)v(z) do

n n n
< > nllDjullalDyvllat Y nllullz| Divlle+ Y nllDyulla|olla+nllullslolls

ij=1 i=1 i=1
< (0 +2n + Dnllull my oy 0]l 0,

from which we conclude that the operator L is bounded. We cannot apply the Lax-Milgram
theorem to L directly since it is no longer necessarily coercive. We will proceed by combining
the Lax-Milgram theorem with the Fredholm alternative. In particular, we show that the
operator L + o[ is invertible when o is a sufficiently large real number.

For each real number o > 0, we define a new linear partial differential operator L, via the
formula

L, [u] () = L|u] (z) + ol [u] (x), (608)

where I denotes the embedding of H} () into H~!(2). That is, I is the mapping which
takes u € H} () to the mapping ¢, € H~' () defined via the formula

oy (V) = /Qu(x)v(x) dx. (609)

THEOREM 95. The linear operator I : H} () — H~' () is compact.

Proor. We factor I as I = I,I;, where

I : Hy (Q) — L*(Q) (610)
is the inclusion map and

L:L*(Q) — H ' (Q) (611)
is the embedding of L?(Q) into H (). According to the Rellich-Kondrachov theorem, I
is compact. Consequently, the composition I5/; is as well. O

From (4.3), it is clear that L, is bounded. Moreover:

THEOREM 96. For all sufficiently large o, the operator L, defined in (608) is coercive.
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PROOF. We let u be an arbitrary element of Hj(f2). Using the assumption that L is
strongly elliptic, we obtain

)\/Q|Du(x)]2 dx < /gzaij(x)Dju(x)Diu(x) dx
= (L, [u],u) — /Q (V'(x) + ¢(2)) u(z) Diu(z) dz + d(z) (u(z))? dz (612)

- 0/ (u(x))? da.
Q
By letting
a = (2¢)"Y2u(z) (613)
and
b= (2¢)Y?D;u(x), (614)
where € is a positive real number which we will choose shortly, in Cauchy’s inequality
2ab < a® + b7, (615)
we obtain
w(w) Diu(z) < i(u(x)f + e (Dau(x))?. (616)

We insert (616) into (612) in order to conclude that

/|Du 2 o < (L, +2nz (46/ dx+e/Q(Diu(:c))2 da:)
—i—(n—a)/ (u(z))? de (617)

= (Ly[ul, >+(—+n—a>/|u dx+2776/Q!DUI2 dzx,

where 7 is as in (607). We rearrange (617) as

(A— 2776)/ |Du(x)[* dz + (0 — 2;7—? - 77) g lu(z)|® de < (Lg[u], u) (618)

and let € = n (618) in order to obtain
/ |Du(z)|* dx + (a — 8772714—J;4>\7)) / lu(z)|* doe < (Lo[u],u), (619)
from which conclude that L, is coercive when o is Suf?iciently large. ([l

We now choose ¢ > 0 so as to ensure that L, is coercive. Since L, is bounded and coercive,
the Lax-Milgram theorem implies that for each f € Hj () there is a unique element u of
H;j (Q) such that

(Lo[u],v) = (f,v) (620)
for all v € H}(Q), and that there exists a constant C' > 0 such that
lull< CIAI- (621)
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In other words, the operator L+o1 : H}(Q2) — H'(Q) is an isomorphism. It follows that the
operator L is a Fredholm operator of index 0 since it is the sum of the isomorphism (L + o)
and the compact operator —oI. We conclude from this observation and Theorem 25 that
the boundary value problem (603) is uniquely solvable for each right-hand side f if and only

if the homogeneous equation
Llu|l(z)=0 in Q
[u] (2) 622
u(z) =0 on O

admits only the trivial solution. In the following section, we will give conditions in the
operator L which ensure that this is the case. For now, we use the Fredholm theory to derive
solvability conditions for the problem (603) which involve the adjoint L* of L.
We recall that L* : H} () — H~' (Q) is defined via the relation

(L{ul,v) = (u, L*[v]) (623)

for all v € H} (), and that the closure of the image of T is the preannihilator of the kernel
of T* (see Section 2.3). From (623) it is easy to see that L* is given by

L* [v] (z) = =D; (¢/'(z) Djv(z) + c'v(z)) + V' (z) Div(z) + d(z)v(z). (624)

We let p = dim(ker(L)). Since L is Fredholm of index 0, the dimension of ker(L*) is also p,
and we let v},...,v; be a basis for ker(L*) C Hg (€2). That is, vf,..., v} is a basis in the
space of solutions of the homogeneous adjoint problem

L*[u](z) =0 in Q
{ u(z) =0 on Of.
Then f is in the image of L if and only if
f(v;)=0 forall j=1,... p (626)
In the case where f € L?(Q) and we identify it with the mapping which takes v € H} (Q2) to

/ f(z)v(z) dx, (627)
0

(625)

(626) is equivalent to

/ f(x)v)(xz) de =0 forall I=1,...,p. (628)
Q
In the event that (626) holds, the set of solutions of (603) is
{u+v:ve€ker(L)}, (629)
where u is any particular solution. Since L induces an isomoprhism
H; (Q) /ker(L) — im(L) ¢ H'(Q), (630)
there exists a constant C' > 0 such that
ull 3 ) prer() < Cllf 10 (631)

whenever u is a weak solution of (603).
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There is an alternative estimate for the Sobolev norms of the solutions of (603) which is
sometimes more useful. Suppose that u is a weak solution of (603) so that

/Q (a” (z)Dju(z)Dyv(z) 4 b (z)u(z) Div(z) + ¢ (z) Diu(z)v(z)+

(632)
d(z)u(z)o(r)) dr = (f,v)
for all v € H} (). By taking v = u and rearranging terms, we obtain
/Qaij(x)Dju(:c)Diu(:c) de = — /Q (V' (x) + ¢ (2))u(z) Diu(z) + d(z)u(z)u(z)) dz (633)

+(fiu).
Now using the boundedness of f, the strong ellipticity of L and Cauchy’s inequality, we see
that

M Dull720y< 2nlull 2@ [ Dull 2@+l ull7z o)+ Coll f L1 @1l #1), (634)
where C] is the operator norm of f. We now apply the inequality ab < 1/2(a? + b?) with
2

a= \—ﬂuuum(m and b= V|| Dul|z2(q) (635)
to obtain
2 2n? 2 A 2 2 (636
AM[Dull72(0)< T||U||L2(Q)+§||DUHL?(Q)"’UHUHL?(Q)"‘OI||f”H*1(Q)||U||H1(Q)' )
We rearrange (636) as
A 2 2 2 2 (637)
S IIDullza )= == llullze @) tllullzs @) +Crll fll-2@llullr o)
and use Poincaré’s inequality to conclude that there exists a constant C'y > 0 such that
s ey < Co (g0 Hl Aoyl (639)
whenever u is a weak solution of (603). We now apply the inequality ab < 1/2(a? 4 b*) with
1
@ = VG| flli-re) and b=l o (639)
to see that
2 2 Cy 2 1 2
[ullFr o)< Co Hu|’L2(Q)+7Hf”H*l(Q)—i_Q_C«QHuHHl(Q) : (640)
It follows that there exists C' > 0 such that
[l < C ([ullzz)+H flla-1() (641)

whenever u is a weak solution of (603). We summarize our conclusions as follows:

THEOREM 97. Suppose that Q is a bounded open set in R™, that the operator L : H}(Q)) —
H=YQ) defined via

L[u] (z) = —=D; (a"(z) Dju(z) + b'(z)u(x)) + ¢'(z) Dyu(z) + d(z)u(z) (642)

is strongly elliptic on Q with coefficients in L>(Q). Then the operator L* : H} () — H~1(Q)
defined via

L* [u] (z) = —D; (a’*(z) Dju(z) + ' (z)u) + b’ (z) Diu(z) + d(z)u(z) (643)
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is the adjoint of L. Moreover, if f € H1(Q) and v},... , U, 18 a basis in the space of weak
solutions of the problem

L*[v](z) =0 in Q
(644)
v(z) =0 on 09,
then the elliptic boundary value problem
Llu|l(z)=f in Q
[l () = 1 o)
u(z) =0 on 09,
has a weak solution if and only if
f)=0 forall I=1,...,p. (646)
Moreover, there exist constants C; > 0 and Cy > 0 such that
ull 2 ) prer() < Cr | f =10 (647)
and
i< Co (Il y + Nullzzce)) (643)

whenever u is a weak solution of (645).

We now suppose that €2 is a Lipschitz domain and consider the inhomogeneous problem

Llu](z)=f in Q
{ u(z) = g(x) on 09, (649)
where f € H~1(Q) and g € HY? (0). We reduce (649) to the homogenous problem
Llv](z)=f—L[e] in Q
{ v(z) =0 on 09 (650)

as before — that is, by letting .7 ~! denote a continuous right inverse of the trace operator and
setting o = 71 [g]. Note that, as before, there is no difficulty in defining f—L [¢] € H (Q)
even though ¢ is not necessarily in Hg (). From our previous discussion, we see that (650)
admits a solution if and only if

(f —L[p],v)=0 forall I=1,...,p. (651)

We note that (L [¢],v}) need not be equal to (¢, L* [vf]) when ¢ ¢ H} (). In fact, under
additional regularity conditions, (651) is equivalent to

(f,v]) = / a”’v; Dy (z)g(z) dS(z) forall 1=1,...,p. (652)
o)

where v; denotes the j component of the outward-pointing unit normal vector. To establish
this, we will need to use a regularity result we will prove in Chapter 5. It implies that the
weak solutions vf, ..., v, of the adjoint boundary value problem

{L*[v]zo in Q

v=0 on 0N (653)
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are elements of Hp (Q2) N Hy (Q2), provided that a¥/ and " are Lipschitz continuous. We will

assume also the the coefficients ¢" are Lipschitz continuous. Since L* [v]] = 0,

/Q (a’"(z)Djv; () Dyu(z) + ¢ (x)v] () Dyu(z) + (654)
b (x) Dy} (z)u(x) + d(x)u(x)vl*(x)) dr =0

for all u € C°(Q2). Since v} is in H}

loc

integrate by parts in (654) to see that

(2) and a¥, ¢ are Lipschitz continuous and we can

/Q (=D; (a’'(z)Djvf (z)) — D; (¢'(z)v) (z)) + b (z) Div; (z) + d(z)v) (z)) w(z) dz =0 (655)

for all u € C2° (2). We conclude that
—D; (' (z)Djv; (x)) — D; (' (z)v] (2)) + b'(x) Dyvy (x) + d(z)v; (z) = 0 (656)
for almost all = € Q. It follows from (656) that

/Q (=Di (a”'(x) Djvi (x)) — D; (' (@)v] () + b'(2) Dy} (z) + d(z)v} () () dz = 0. (657)

Now integrating by parts in (657) yields

| (@ @Dy @)Diple) + )i (@) Dsle) + 1) Do ()le) + e (@)o(a) o

_ /8 @Dy (a)o() dS(2),

(658)
where v; denotes the i"® component of the outward-pointing unit normal vector. Note that
we have made use of the fact that the trace of v] is 0, and that the trace of ¢ is g. It follows
from (658) that

(Llglvi) = /ﬂ (a” Djp(x) Divf () + bip(2) Divf (z) + ¢ Dip()v] (2) + dip(2)v] (2)) d

_ /8 @ (@)uDyvi ()g(a) dS(z).

(659)
That (651) is equivalent to (652) follows immediately from (659). We summarize our con-
clusions as follows:

THEOREM 98. Suppose that ) is a bounded Lipschitz domain in R™, that the operator L :
HY Q) — H Q) defined via

L{ul (&) = ~D; (a¥(@)Dyu + ¥ (w)u) + (@) Dau + d(w)u(z) (660)
is strongly elliptic on ), that a”, b* and ¢' are Lipschitz continuous, and that d € L®(1).

Suppose also that f € H™(Q), g € HY?(0Q) and v}, ..., v} is a basis in the space of weak
solutions of the boundary value problem

{L*[v](m):O in Q

v(x) =0 on OS. (661)
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Then the boundary value problem

Llu|(x)=f in Q
] (@) = 1 o
u(x) = g(xr) on 09,
has a solution if and only if
(f,v)) = / a”’v; Dy (z)g(x) dS(z), forall 1=1,...,p. (663)
o0
Moreover, there exist constants C; > 0 and Cy > 0 such that
[[wll 1.0 prer(y < C <||f||H*1(Q) + ||g||H1/2(8Q)> (664)
and
el @< Co (I lly-10y + Nl + gl rncomy (665)

whenever u is a weak solution of (662).

EXERCISE 31. Suppose that Q is the unit disk in R%2. Show that there exist A € R such that
the boundary value problem

Au(z) + XNu(z) =0 in Q
(@) + Xu(o) 660
u(z) =0 on 0N
admits nontrivial (classical) solutions u € C?(f2).
4.4. The Weak Maximum Principle

The weak maximum principle can be used to show that the boundary value problem
Lu]=0 in Q 667
u=0 on 0Of) (667)

has a unique solution under certain conditions on the operator L. In order to state it, a new
definition is required. Suppose that v € H*(€2). Then we say that u < 0 on 92 provided the
function

ut = max {u, 0} (668)

is an element of HJ (). Similarly, we say that u < r on Q provided (u —r) < 0 on 9 and
we define the supremem of u on 0f2 as follows

sup u(z) =inf{r e R:u <r on 00N}. (669)
€02

(670)

THEOREM 99. Suppose that Q is a bounded open set in R™, that the operator L : H'()) —
HYQ) defined via

L[u] = =D; (a”(z)Dju + b'(z)u) + ¢ (z)Diu + d(z)u (671)

is strongly elliptic on Q with coefficients in L°°(2). Suppose also that that uw € H'(Q) such
that L [u] <0 in the sense that

(L[u],v) <0 (672)
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for all v >0 in CH(Q), and that the coefficients d and ¢ are such that

/Qbi(x)Div(x) + d(z)v(x) de >0 (673)
for allv>0 in CHQ). Then
u(x) < sup ut(z) (674)

for almost all x € 2.

PROOF. We observe that if u € H'(Q) and v € H}(Q), then uv € W, (Q) and
D (uwv) = vDu + uDwv. (675)
We now manipulate (672) in order to see that
/ a” (z)Dju(z)Div(z) + b'(x)u(z) Div(x) + ¢ (x)v(z) Diu(x) dx
“ (676)
< - /Q d(x)u(z)v(x)dx

for all v € H}(Q) such that v > 0. By subtracting

/Qb’(a:)Dl(uv)(x) dr = /le(x)v(:p)DZu(:p) + b (z)u(z) Div(z) do (677)

from both sides of (676) and invoking (673) we conclude that

/ a” (z)Dju(z)Div(z) + (¢'(z) — b'(2))v(z) Diu(z) dx
@ (678)
< - /Q (d(z)u(z)v(z) + b’ (z)Di(w)(z)) dz <0

for all v in HJ () such that uv > 0. Since the coefficients of L are bounded, it follows from
(678) that there exists C' > 0 such that

/aij(a:)Dju(x)Div(x) dx SC’/ v(z)|Du(x)| dx (679)
Q 0
for all v > 0 in H}(Q2) such that uv > 0.

Now we suppose that » > 0 is such that

sup u(z) <1 < ||ul|zee (), (680)
€02

and we set v = max{u —r,0}. Then v € H}(Q) and uv > 0 since v(z) = 0 for any u(x) < 0.
Moreover, v is weakly differentiable and

) Du(z) u(z)>r
Du(z) = {0 u(z) <r. (681)

We let I" denote the support of Dv and note that ||v||2ry must be positive since, otherwise,
u < r almost everywhere, which contradicts (680).
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From (679) we conclude that

/aij(x)Dju(x)Div(x) dx SC’/ v(z)|Du(x)| dx (682)
Q Q

for some constant C' which does not depend on r. Since Dv(z) = Du(x) for any z in I', (682)
implies that

/Qaij(x)Djv(x)Div(:v) dx SC/Fv(x)|Dv(x)| dx. (683)

From (683) and the strong ellipiticty of L, we see that there exists C’ > 0 which does not
depend on r and such that

1Dv][7 ()< C'/Fv(l‘)\Dv(l‘)! dz < C'ol| L2y [ Dvll 20 (684)

If || Dv||r2(q)> 0, then we divide both sides of (684) by || Dv||12(q) to obtain
Dol < Cllelloqey (685)

If [[Dv||r2()= 0, then (685) automatically holds. In the case when n > 3, the Sobolev
conjugate p* of 2 satisfies

1 1 1 n-2

== _ 686
p* 2 n 2n (686)
We apply the Sobolev imbedding theorem to conclude that
0]l p2n/n-2 () < [ D0l 20 < C'J0]| 22 ry. (687)
Now we observe that
2 -2
A g | (688)
n n
and invoke Hoélder’s inequality with p = n/2 and ¢ = n/(n — 2) in order to obtain
n=2 n—2
/v(m)2 dzx < </|v|% da:) IT[2/m< (/|u|f—"z dm) D2/ (689)
r r Q
so that
9]l 2y < [[0]] p2nsn oy [T ™ (690)
We combine (690) and (687) to obtain
[oll 2y < U1 0]l 2o @< T C ol 2qry. (691)
From this and the fact that ||v||.2r)7# 0, we see that
IT|> (C))™ (692)

In particular, since the support of Duv is contained in the set {z : u(z) > r} and Du = Dv
there, it must be the case that the set {z : u(z) > r} contains a subset of measure greater
than or equal to (C")™" on which Du # 0.

For all m > 0, we let

Q, - {x €Q:ulz) > HuHoo—%} (Msupp(Du) (693)
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and we set

= U (694)
m>0

Since u obtains its essential supremum on ', and is therefore constant on that set, Du =0
almost everywhere on €. In particular, Q' must be of measure 0. But the 2, are a sequence
of decreasing sets of finite measure, so

V| = lim |Q,| > (C")™". (695)
m—00
We conclude that u < supgy,, u™ from this contradiction

We leave the modifications necessary to establish the result in the event that n =1 or n = 2
to the reader. O

The following follows easily from Theorem 99.

THEOREM 100. Suppose that Q is a bounded open set in R™, that the operator L : H(2) —
H=YQ) defined via
L[u] = —=D; (a”(z)Dju + b'(z)u) + ¢'(z)Diu + d(z)u (696)

is strongly elliptic on Q0 with coefficients in L>(Q)). Suppose also that that u € H'(Q) such
that L [u] > 0 in the sense that

(L[u},v) >0 (697)
for allv >0 in CHQ), and that the coefficients d and ¢' are such that
/ b(2) Div() + d(x)o(z) dz > 0 (698)
for allv >0 in CHQ). Then '
u(z) > xle%fﬂ u (z) (699)

for almost all x € 2.

The following theorem is an immediate consequence of Theorems 99 and 100.

THEOREM 101. Suppose that €2 is a bounded open set in R™, that
Lu] = —D; (aij(x)Dju(x) + b’(:c)u(x)) + ¢ (x) Dyu(x) + d(x)u(x) (700)

is a strongly elliptic operator HJ(Q) — H1(Q) with essentially bounded coefficients, and
that

/Qbi(a:)Difu(x) +d(z)v(x) de >0 (701)

for all v € H}(QY) such that v > 0. Then the boundary value problem
Lu](x)=0 in Q
{ u(z) =0 on 00

admits only the trivial solution uw = 0. This is the case, in particular, if b = 0 for all i and
d> 0.

(702)
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We are now prepared to state our main result regarding strongly elliptic second order oper-
ators which satisfy the hypotheses of the weak maximal theorem.

THEOREM 102. Suppose that €2 is a Lipschitz domain in R", that
L[u] (z) = —=D; (a"(z) Dju(z) + b'(z)u(x)) + ¢'(z) Dyu(z) + d(z)u(z) (703)
is strongly elliptic on Q0 with coefficients in L>°(2). Suppose also that

/ b'(z)Dyv(x) + d(z)v(z) dr >0 (704)
Q
for all v € H}(Q) such that v > 0. This is the case, in particular, if L is of the form

L[u] (z) = —=D; (a”(z)Dju(x)) + ¢'(z)Dyu(z) + d(z)u(z) (705)
with d(z) > 0 for almost all x in Q. Then for each f € HY(Q) and g € HY?(09) the

boundary value problem

{L [u] (z) = f(z) in Q (706)
u(z) =g on 00
admits a unique weak solution u. Moreover, there exists a constant C' > 0 such that
[ull @) < C ([ L@+ gl mr2on) - (707)
whenever u is the weak solution of (706) In other words the operator
L® T :HYQ) - HYQ) & HY?*(0Q) (708)

s an isomorphism.

PROOF. The trace operator .7 : H' () — HY?(09) has a continuous right inverse,
which we denote by 7! (this choice is not unique). We let C; > 0 be such that,

17 ] @< Cullhllmzgon) (709)
for all h € H'Y? (09Q).

We will now analyze the boundary value problem

L{w](z) = f(x) in Q
w(z) =0 on 09,

According to Theorem 96, there exists ¢ > 0 such that K = L+ oI : H} (Q) — H ' (Q) is
coercive and hence invertible. It follows that L = K — oI is Fredholm of index 0 since o[ is
compact by Theorem 95. Theorem 101 implies that the dimension of the kernel of L is 0; it
follows that the dimension of the cokernel of Im(L) is 0. In particular, the exists a unique
solution w of (710) for any given f. Consequently, we can view the operator L as defining
a continuous bijective mapping H} () — H~'(Q2). By the bounded inverse theorem, this
bijection has a continuous inverse. That is, there exists a constant Cy such that

w2y < Ca H}FHHI(Q) (711)

(710)

whenever w is the solution of (710).
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We now let g € H'/2(09) and f € H~' (Q) be given. We let ¢ = 7' [g] so that

Il @< Cillgllanzqon, (712)
and we let f = f — L [¢]. Obviously,
1711, < 171 @M< 1 L@t CullL ooy (713)

Now we let w be the solution of (710). Then w + ¢ solves (706) and
w4+ @l @) < Hw“Hl(Q) + HSOHH—l(Q)
< Cy Hf

sy T C 9200

(714)
< G (Il +CallLIl gl o0 ) + Colglrvagony
< C (Il +gl, o )

where C' = Cy + C (Cy||L||+1). We observe that this constant C' does not depend on f or
g. Among other things, the bound (714) implies that the solution of (706) is unique. O

4.5. The Neumann Problem

We now develop a weak formulation of the Neumann boundary value problem for an operator
of the form

L[u] (z) = —=D; (a”(z) Dju(z) + b'(z)) + ¢’ (x) Dyu(x) + d(z)u(x). (715)
We assume, as usual, that L is strongly elliptic, and that the coefficients of L are bounded
measurable functions. In this section, we view L as a mapping H' (Q) — (H* (22))". More-

over, we will assume that {2 is a bounded, connected Lipschitz domain. Among other things,
this implies that H' (Q2) is compactly contained in L? (Q).

We take f in to be an element of (H' ()" and g € (H'Y?(92))". We say that u € H'(Q)
is a weak solution of the Neumann problem for L provided

/Q (a” Dju(z)Div(z) + b (z)u(z)Dyv(z) + ¢ (z) Dyu(z)v(z) + d(z)u(z)v(z)) dx

= (f,v) + {9, 7 (v))

for allv € H'(Q). Given f and g, we let F, denote that bounded linear functional H' () —
R defined via

(716)

<Ff797v> = <f7'U> +<gv‘?(v)> (717)
Then (716) is equivalent to requiring that L[u] = F,. In the (fairly typical) case that
feL*(Q)and g € L*(09), (716) becomes

/Q (a” Dju(z)D;v(z) + b'(x)u(z) Div(x) + ¢ (z) Diu(z)v(z) + d(z)u(z)v(z)) dx (718)

_ /Q f(@)o(z) do+ /8 9@)7 ] (@) dSa).
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To understand the nature of the boundary conditions imposed by (716), we will momentarily
assume that v € H?(Q) which satisfies (718), and that the coefficients %, b are Lipschitz
continuous. Then we can integrate by parts in (718) to see that

/Q (=D; (a” Dju(z) + bi(z)u(z)) v(z) + ¢'(z) Dyu(z)v(z) + d(z)u(z)v(z)) dx (719)

+ /89 (a’v;Dju(z) + Vvu(z)) v(z) dS(z) = /Qf(x)v(x) dx +/a g(x)v(x) dS(x)

Q

for all v € C* (Q). If v € C2° (Q), then the boundary terms in (719) vanish, leaving us with

/Q (=Di (a" Dyu(x) + bu(x)) v(z) + ' (2) Dyu(r)v(z) + d(z)u(z)v(z) ) dv (720)

:/Qf(a:)v(a:) dx.

We conclude that
—Dy(a" Dju(z) + b'vu(z)) + ¢ (z) Diu(x) + d(x)u(x) = f(z) (721)
almost everywhere in 2. By combining (721) and (719), we see that (718) implies that

/ (a"viDju(z) + Vvu(z)) v(z) dS(z) :/ g(x)v(x) dS(z) (722)
o9 o9
for all v € C* (ﬁ) Clearly, (722) implies that

a” (z)v; Dju(z) + b'(x)vu(z) = g(x) (723)

for almost all x € 99Q. In light of (721) and (723), it is reasonable to call (716) a weak
formulation of the boundary value problem

L] (@) = f(x) in Q

{az‘jy,-Dju(:r) + b'vau(z) = g(z) on 09, (724)

We can now proceed just as we did in the case of the Dirichlet problem. The proof that L is
Fredholm of index 0 is essentially identical. The adjoint L* : H! (Q) — (H' (Q))" is given by

L* [u] (#) = —D; (a’*(x) Dyu(z) + ¢ (z)u(z)) + b'(x) Dyu(x) + d(z)u(x). (725)
If we let vy, ..., v5 denote a basis for ker (L*), then (724) is solvable if and only if
Frg(vf)=0 forall [ =1,...,p. (726)
We note that (726) imposes conditions on both f and g and it is equivalent to
(f,v)y+ (9, 7 [vj]) =0 forall I=1,...,p. (727)
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If vy, ..., v, is a basis for ker(L) and u is any weak solution of (724), then the set of solutions
of (724) consists of any function of the form

u+t Y au. (728)
=1

Moreover, since L : H' (Q) /ker (L) — (L) is a continous bijection, the bounded inverse
theorem implies that there exists a constant C' > 0 such that

lull @) ey < CllEg gl a1 2y (729)
whever u is a weak solution of (724). Moreover, just as in the case of the Dirichlet problem,
we can obtain an alternative bound of the form

ull @) < C (| Fpgll ) +lull 2e)) (730)

on weak solutions of (724).

In the particular case of operators of the form

L[u] (z) = —=D; (a” Dju(z)), (731)
the solvability condition is quite simple. In this case, the adjoint of L is
L*[u] (z) = —D; (¢’ Dju(z)) , (732)

We claim the the kernel of both L and L* consists of the constant functions on 2. To see
this we observe that if L [u] (z) = 0, then

0= (L[u] ,u) = / 4 Dyu(a) Dau(x) dx > A9 [ Dl (733)
Q

which implies that Du = 0. The same argument applies to L*. If f € L? () and g € L* (092),
then (726) is equivalent to

/ f(@) do + / g(z) = 0. (734)

Q o9

Moreover, if u is a particular solution of (724), then every solution of (724) is of the form
u(z) +C (735)

with C' a constant.

4.6. Mixed boundary conditions

Once again, we let €2 be a bounded, connected Lipschitz domain in R", and let L be a strongly
elliptic operator of the form

L[u] (z) = —=D; (a” Dju(z) + b'(z)u(z)) + ¢'(z)Dyu(z) + d(z)u(z) (736)

whose coefficients are L (£2) functions. In the preceding section, we saw that the space of
test functions V' in the weak formulation

(Lu],v) = (f,v) forall veV (737)

has a strong effect on the boundary conditions of the boundary value problem corresponding
to it. In particular, choosing V' = H; () lead to Dirichlet boundary conditions, while
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V = H' (92) gave us the Neumann problem. In this section, we show that modifying the space
of testing functons can give rise to a mixed Dircihlet/Neumann boundary value problem.

Suppose that 02 is decomposed as
oNN=TpuUly (738)

with I'p and Iy Lipschitz curves such that there exist bounded extension operators H /2 (T'p) —
H'Y2(09Q) and HY? (T'y) — H'Y? (0€). We wish to devise a weak formulation for the bound-
ary value problem

on T'p (739)

Here, f € (H'(Q))", gp € H'?*(Tp), and gy € (H'/? (FN))*. We say that u is a weak
solution of (739) provided 7 [u] (z) = gp(z) for almost all z € T'p, and

(Llul,v) = (f,0) + (gn, 7 [v]) (740)

for all v in the space
Hp () ={veH (Q): T [v](z) =0 for almost all z €Tp}. (741)

We first reduce (736) to the homogeneous boundary value problem
L[w](z) = f(z) in Q
w(x) =0 on I'p (742)
a”v; Djw(x) + b (z)vw(z) = gy(r) on Ty.
To be entirely clear, we say that w € H}, () is a weak solution of (742) provided

(L{u],v) = {f,0) + (gn, T [v]) (743)
for all v in the space H}, (). If o is an element of H! () such that
7 (¢) = Elgp], (744)
where E : H'?(I'p) — H'/?(09) is an extension operator, and
f(z) = f(z) = L¢] (2), (745)

then is easy to verify that w+ ¢ is a weak solution of (736) if and only if w is a weak solution
of (742).

It is easy to establish that the operator L is Fredholm of index 0, and the adjoint of L is the
operator L* : H}, (Q) — (H} ()" defined via

L* [u] (z) = =Di (¢’ (x) Dju() + ¢ (x)u(x)) + b'(z) Dyu(r) + d(z)u(z).  (746)

It follows that if 7, ..., v5 is a basis in the kernel of L*, then (742) is solvable if and only if

<f7Uz> (LIl o) +{gn, T [of]) = 0 forall 1=1,....p. (747)
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The functions v7, ..., v, are weak solutions of the boundary value problem
L*[w](z) =0 in Q
w(x) =0 on I'p (748)

a’'v;Djw(x) + ¢ (z)vw(z) =0 on Ty.

As in the case of the Dirichlet problem, we can derive a more satisfying solvability criterion
under slightly stronger regularity assumptions. We suppose that a”/, b® and ¢* are Lipschitz
continuous. Then, it follows from regularity results of Chapter 5 that the functions v, ..., v
are elements of H? (2). Integrating by parts, we find that for each p = 1,...,1,

—D; (o (@) Dyi () — D; ()i (2)) + b (@) Divi (2) + d(a)oi (2) =0 (749)
almost everywhere in . Multiplying both sides of (749) by ¢, integrating over 2, and
integrating by parts gives

(Llg], o) = / o’ (x)viDjvj (x)gp(w) dS(z). (750)

I'p
By combining (750) and (747), we see that (736) is solvable if and only if

(fsvr) + (v, 7 (v D)p,, = /1“ @' (z)v;D;vf (z)gp(x) dS(z) =0 forall =1,...,p. (751)

*
p

It is also straightfoward to show that there exists C' > 0 such that

llin o< € (Il e+ s+ Ngpllmewm Higwll gy ) (752)

whenever u is a weak solution of (736).

4.7. The Robin problem

One of the nice features of the Fredholm theory is that the addition of a compact operator
to L will result in yet another Fredholm operator of index 0. In this section, we exploit this
fact to develop a weak formulation of the Robin boundary value problem

Lu](z) = f(z) forall in Q 753
a’(z)v; Dju(z)+b' (2)v;(z)u(z) + B(x)u(z) = g(r) on Q. (753)
Here, we will assume that €2 is a bounded, connected Lipschitz domain, and that L is a
strongly elliptic operator of the form
L[u] (z) = —=D; (a"(z) Dju(z) + b'(z)u(x)) + ¢'(z) Dyu(z) + d(z)u(z) (754)
with L () coefficients. We take f € H™'(Q), B € L®(9Q) and g € (HY?(02))". We
define the operator K : H' (Q) — (H' (Q))" via

(K [u],v) = /Q B(x)T [u] (2)7 [v] (x) dS(z). (755)



4.7. THE ROBIN PROBLEM 108
Again, we view L as the operator H' (Q) — (H~'(Q))" defined via
(L|u],v) = / (a” (z)Dju(z) Dyu(z) + b (z)u(z)Dv(z) 4 ¢'(z) Dyu(z)v(z)+
) d(x)u(z)v(x)) dz.
We say that v € H' () is a weak solution of (753) if

(Lu]+ K [ul) = (f,v) + (9, 7 [v]) (757)

for all v € H' (Q). The operator K is compact since K is bounded HY/?*<(Q) — (H'(Q))"
for any € > 0 and H' (2) is compactly embedded in H'/2+¢(Q). That is, K can be factored
as an operator

(756)

H'(Q) — HY* < (Q) — (H' (Q))". (758)

The operator L is Fredholm of index 0 and K is compact, so L + K is Fredholm of index 0.
If we let F, denote the element of (H' (2))" defined via

(Frg,v) = (f,v) + (9, T [v]), (759)

then (753) admits weak solution if and only if
Frg(v))=0 foral [=1,...,m, (760)
where v, ..., v} is a basis for ker(L* + K*). Moreover, if u is a weak solution of (753), then

el oy ez +10= € (I ey + 19l a0y ) - (761)



CHAPTER 5

Regularity of Solutions of Elliptic Boundary Value Problems

In the preceding chapter, we studied the existence of weak solutions of elliptic boundary
value problems under fairly mild hypotheses. We now study these problems under stronger
regularity assumptions. Although we focus on the Dirichlet problem, similar results can be
obtained for other boundary value problems.

5.1. Interior Regularity of Solutions of the Dirichlet Problem

Suppose that 2 is a Lipschitz domain in R", and that
L[u](x) = —D; (aij(a:)Dju(x) + b’(x)u(x)) + ¢ (x) Dyu(x) + d(x)u(x) (762)

is a strongly elliptic partial differential operator with bounded coefficients. In the previous
chapter, we showed that the operator

Lo H (Q) - H'(Q) o HY00) (763)

associated with the Dirichlet boundary value problem

{L[u] (2) = f(z) in O
u(z) = g(x) on 0N

is a Fredholm operator of index 0 and gave sufficient (but not necessary) conditions under
which it is an isomorphism. We will now show that when f is in L? (2) and the coefficients
of L are Lipschitz continuous, the solutions of (764) are also more regular on the interior of

Q.

(764)

THEOREM 103. Suppose that €2 is a bounded open set in R™, that
L[u](x) = —D; (aij(x)Dju(x) + b’(:v)u(x)) + ¢ (x) Dyu(x) + d(x)u(x) (765)

is strongly elliptic in Q, that a¥,b" € C*' (), and that ¢',d € L™ (Q). Suppose also that
f e L*(Q), and that u € HY(Q) is a weak solution of the problem L[u] (z) = f(x) — that is,

/ a”(x) Dyu(x) Div(z) + b'(x)u(z) Div(x) + ¢ (z)v(z) Diu(z) + d(z)u(z)v(z) do
Q (766)
:/Qv(x)f(x) dx

for allv e H(Q). Then u € H} (Q) and u satisfies the equation

—a"”(2) DiDju(a) + (= Dja’ () + () = b'(2)) Diu(x) + (d(x) — Dib'(x)) u(x) = f(x) (767)
109
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for almost all x € ). Moreover, for each open set Q) CC §Q, there exists a real number C > 0
such that

Jull 2 < C (|ull 2y + 1| f1l 2)) - (768)

PROOF. We define the function g € L?*(f2) via the formula

g(z) = f(z) + (¥'(z) — ¢'(2)) Diu(z) + (Db’ (z) — d(@))u(=) (769)
so that
/Qa“(x)Dju(x)Div(x) dr = /Qg(x)v(x) dx (770)

for all v € H}(2). We now assume that v is compactly supported in H} (€2). Then we may
replace v with A, "v in (770) to obtain

/QAZ (aij(:v)Dju(x)) Dy(x) do = — /Q aij(:c)Dju(x)Di (A;hv(x)) dx

= —/g(a:)A,;hv(x) dx.
Q
Note that difference quotients commute with differential operators. We observe that

Al (a7 Dju) (z) = a’(x + heg) Dju(x +hh€k) — a”(z) Dju(z) -

= a"(z + hey) Al Dju(z) + (Ara”(z)) Dyju(z).
Inserting (772) into (771) yields
/Q (a”(z + her) DjAu(z) + (Afa(z)) Dju(z)) Dw(z) do = —/Qg(w)Al;hv(x) dx. (773)
We let

(771)

EAZan(x)g Dju(x)

Ara?(x)) Dyu(x
o | (e Dyt -
(Ala™ (z)) Dju(z)
and rearrange (773) as
/ a' (x + hex) D;Afu(z) Dyv(z) dov = — / g Dv(z) + g(2)A;"v(z) da. (775)
Q Q
We apply Holder’s inequality to obtain
/ a'(w + hey) DyAju(w) Div(x) da < (|[glly + lg]l2) | Dvll2
0 (776)

< C (Jlull @+ fllz2)) |Dvll2-

We note that the preceding argument applies when v € H} (€2) which is not compactly
supported in 2 as long as the difference quotients Al'v and those in (774) are defined. We
will make use of this fact in the following section.
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Now we suppose that ' CC Q and let n € C2°(2) such that n(z) = 1 for all z € ' and
0 <n < 1. Moreover, we define v via the formula

v(z) = n*(2) Aju(z). (777)
The strong ellipticy of L implies that

)\/9772(:10) ‘DAZu(yc)‘2 dx < /an(x)aij(x—i— hey) DiAju(x) D Aju(x) dx. (778)
We observe that
Dyv(x) = 2n(x) Din(z) Alu(z) + n*(2) AL Du(z) (779)
so that
Dyv(x) = 2n(x) Din(x) Aju(x) = 0 () AL Dyu(x). (780)

By inserting (780) into (778) we obtain

/\/QUQ(m) |A2Du (z))* dx < /fan(x)aij(z + hey) DiAru(z) DjAMu(x) dv

= / a” (z + hey,) (Dyv(z) — 2n(z) Din(z) Aju(z)) D;Afu(z) da. o
From the inequality (776? we see that
/Qaij(x + hex) Dyv(x) D Afu(x) do < C(|Jul| i)+ £l 2() | Dol (782)
Since 0 < n <1,
IDulls = [20DgAl -+ AL Dl )

< 2||AfuDn||a+|[nD ARl

Moreover, since the a* are bounded and 0 < n < 1, there exists C’ such that
/ a’(x + hey,) (Qn(a:)Din(m)AZu(x)) DjAZu(a:) drz < C'||nD A2 || AruDn)|. (784)
0
We combine (784), (783) and (781) to see that

2 1/
A/Q??Q(fff)}AZDU(ﬁ)I dr < C"(||ull o)+ fllz2) ([ARuDnllo+InD ATl 2)

(785)
+ C"[[nDARulla]| AguDn]2
for some constant C” > 0. We apply Young’s inequality —
1
ab < =a% + €b? (786)
€
— repeatedly to obtain
1 1
AALDU < € (Huley + el ALDIE + Hulli o + DAl
(787)

1 1
+ M 72 + el AxuDnll3 + [ fll72(0) + ellnDAu;

1
+ DAL + S IALDAR)
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which we rearrange as
2 2
AALDuE < € (21l + 21y + (204 1 ) IAbuDgl} + 3lmALDulR ) . (759

This implies

2 2
(=300 InALDulE < € (Zlulfe + 21 oy + (204 1 ) NabuDlR) . (780

By choosing € sufficiently small and noting that there exists a constant C” such that
|ALuDRIB< € ul g, we obtain

InALDul < " (lulf@ + 1/ 13x)) (790)

for some suitably chosen constant C””. Since n = 1 on §', we can apply Theorem 89 to see
that u € H? ().

By letting v = (%u in the identity (770), where ( is a cutoff function which is 1 on a set €
such that Q' CC Q" CC (2, we obtain

)\Q/QCQ(xHDu dx</§ a3 (2 D u(x) Dyu(x dx—/( Vu(z) dz.  (791)

Using Young’s inequality and the technique we used above, we can easily show that (791)
implies that there exists C"” such that

Jull )< C™ (1 |22+ llull 2 () - (792)

Since u is in H* ('), we can integrate by parts in (766) with v chosen to be smooth with
compact support in €2 in order to see that (767) must be satisfied for almost all x € €.
Since ' CC 2 is arbitrary, it follows that this identity holds for almost all z € Q. O

Note that we assumed v € H' (Q) in Theorem 103, so that if the coefficients of L are Lipschitz
and u solves (764) with f € L? (), then no additional regularity condition on g is needed to
ensure that v € HZ _(9).

We note too that in the event that w is the unique weak solution of the boundary value
problem

Llu|=f inQ

{ [u] = f (793)

u =g on 0f),

then we can bound the term ||u||z2(q) on the right-hand side of (768) via a multiple of || f|| 2

and [|g| j1/2(90) (since we already have a bound on ||u||z1(q) in terms of these two norms in

that case).
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5.2. Global Regularity of Solutions of the Dirichlet Problem

We now establish that the solutions of the homogeneous boundary value problem
Llul]=f inQ
u=0 on 08

are elements of H? () — as opposed to merely being elements of H{_
regularity assumptions on L and €.

(794)

(Q2) — under certain

THEOREM 104. Suppose that Q C R" is a C%' domain, that
L[u](x) = —D; (aij(x)Dju(x) -+ b’(x)u(x)) + ¢(2) Dyu(x) + d(x)u(x) (795)

is strongly elliptic in Q, that a”,b" € C'(Q), and that ¢!,d € L> (). Suppose also that
f e L*(Q), and that u € H'(Q) is a weak solution of the problem

Lul=f inQ
{ u=0 on 08 (796)
that is, u € Hy () and
/ a”(z)Dju(z)Div(z) + b'(x)u(zr) Div(x) + ¢ (z)v(z) Diu(x) + d(z)u(x)v(r) dx
“ (797)

:/v(:c)f(:c) dx

Q

for allv € H}(Q). Then u € H*(Q), u satisfies the equation
—a"(z)D;Dju(z) + (—D;a’ (x) + ' (x) — V' (x)) Du(z) + (d(x) — Dib*(x)) u(z) = f(z) (798)

for almost all x € Q2, and there exists a real number C' > 0 such that

ull 2 < C ([|ull 2y + 1 f 1 2) (799)

PROOF. Since € is a C*! domain, for each point x on the boundary of €, there is a ball
B containing z, an open neighborhood N of 0 in R™ and a bijective C*'! mapping v : N — B
such that (N NRY) = BNQ and ¢ (N NORY) = 00N B. This mapping takes the equation
under consideration to one of the same form, and the resulting solution of the transformed
can be transformed back to a solution of the original problem. Consequently, we need only
consider the case of a domain €2 which is a bounded open set in the upper half space R} with
boundary OR" = {(x1,...,2,-1,0) : x1,..., 2,1 € R}.

If we let n be an element of C'2° (N), then for sufficiently small h and &k =1,...,n —1,

v=n’Alu € Hj (NNR?}) (800)
since u is supported on N NR’} and its trace is 0 on NNOR! by assumption. Moreover, nArf
is well-defined whenever f € NNR} and £ = 1,...,n — 1. There were the requirements

for applying the argument of the preceding section, By applying it to v, we see that D, D;u
exists and that there is a constant C’ such that

| DeDjull 2y < C" (lull 2+ f1 2(0)) (801)
forallj=1,...,nand k=1,...,n—1.
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We cannot use the same method to prove a bound on D, D,u. However, we can use the
assumption that L is strongly elliptic to estimate D, D,u. In particular, by letting & =
(0,0,...,0,1) in the inequality

aV&g; > AP, (802)
we see that a™"(z) > A for all € Q. From this and the fact that
—a”(2) DiDju(x) + (= Dja’ (x) + () = b'(2)) Dyu(w) + (d(x) — Dib'(x)) u(z) = f(x), (803)

which is a consequence of Theorem 103, we see that

Dy Dyulx (Z > a(z)D;Dju(z) + Y Y Dja’ (x) Diu() (804)

i=1 j=1 i=1 j=1

n

—Z ) — b'(z)) Dyu(x) ( +ZDbl> f())

The desired estimate on D, D, u follows easily. O

If g € H*?(09), then there exists ¢ € H? () such that .7 [¢] = g and the H? () norm
of ¢ is a multiple of the H?/? (9Q) norm of g. If u is a weak solution of the homogeneous
boundary value problem

{L[U]Zf—L[SO] in 02 (805)
u=0 on 01,
then v = u + ¢ is a weak solution of
Lvl]=f inQ
{ v =g on 0. (806)
From Theorem 104, we see that
ull 2 < C (ull 2@+ fll2)) < C (v = @llz@+ 1 fllz2@) (807)
< C (Ivlle2@+ el @+ fllzze) -
From this and the fact that u = v — ¢ we easily obtain
[vllz2(0) < C" (0l 2@+l 2@+ fllz2e) (808)

< C" (Ilollz2@+gll w200y f I z2@) -

If v is the unique solution of (806) then we have the estimate

[oll2) < C" (91l zar200)+ 11 f | 22@) - (809)

since the H! (2) norm of v is bounded in terms of norms of f and g already appearing.

THEOREM 105. Suppose that 2 is a C*' domain in R", that
L[u] (z) = —=D; (a”(z)Dju(x)) + ¢'(z) Dyu(z) + d(z)u(z) (810)

is a strongly elliptic partial differential operator on ), that a¥ € C%! (ﬁ) and that ¢ and d
are elements of L™ (2). Suppose also that d(x) > 0 for almost all x € Q. Then for every
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f € L?(Q) and g € H?(09), the boundary value problem
{ u(z) = g(x) on 0N.

admits a unique solution v € H*(Q). Moreover, there is a constant C' not depending on f
or g such that

(811)

lull 2@y < C (1 lm2@)+ 9l s200)) (812)

whenever u solves (811). In other words, the operator L & 7 is an isomorphism H? () —
L2 (Q) @ H¥? (09Q).

It is an obvious consequence of this theorem that the general elliptic operator
L[u] (z) = =D; (¢ (z)Dju(z) + b'(z)u(z)) + ¢’ (z) Diu(z) + d(z)u(z) (813)

is a Fredholm operator of index 0 which maps H?(Q) into L?(Q) @& H?/?(01), assuming
that the appropriate regularity conditions on € and the coefficients of L are met (since the
principal part of L is an isomorphism and the residual operator is compact).

5.3. Higher Order Local and Global Regularity for the Dirichlet Problem

Suppose that
L[u] (z) = —D; (¢ (z)Dju(z) + b'(z)u(z)) + ¢’ (z) Diu(z) + d(z)u(z) (814)

is a strongly elliptic operator on a domain € such that a” and b® are Lipschitz continuous
and ', d are essentially bounded. Then, if u satisfies

Lu](z) = f(z) in Q (815)
with f € L*(Q), we have u € H2 (Q). If k > 1, f € H*(Q) , a¥,b' € C* (Q) and

¢',d € C*1 (Q), then we can apply a differential operator D* of order less than or equal to
k to both sides of (815) to obtain

DL u] (z) = D*f(x) in Q. (816)
A somewhat tedius calculation shows that we can rearrange the equation (816) as
L[D%] (z) = f(z) inQ, (817)

with f € L? (Q). Note that applying the differential operator D* to L [u] in (816) involves
differentiating the coefficients of L. We can now apply Theorem 103 to see that D%u &
HZ_(Q) for any |a|< k. In particular, u € H*™ (Q).

loc loc

Assuming, in addition, that  is a C**! domain, we can “straigten the boundary of Q" and
apply a similar argument to conclude that solutions of the boundary value problem

Llu](z) = f(z) in Q
{ u(z) = g(x) on O
are elements of H*2(Q) when f € H*(Q) and g € H*"2 (99). In the event that (818)

admits unique solutions, we can rephrase this in the usual way: L @& .7 is an isomorphism
H*2(Q) — H* (Q) @ H*3/2(09).

(818)
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One further remark is in order. From the Sobolev embedding theorem, we know that if
f € H*(Q) for all nonnegative integers k, then f € C* (Q). It follows that when 2 is a C*°
domain, f € C*(Q2) and g € C* (912), then the solutions of
Llu] (z) = f(z) in Q
{ u(x) = g(x) on 0N
are also elements of C* (€2). Other, similar, results can obtained by combining the basic
facts of elliptic regularity with Sobolev embedding theorems.

(819)

5.4. A Regularity Result for Convex Domains

When € is Lipschitz (which is the typical case in applications, particularly numerical analy-
sis), our definition of the space H* (0f2) is only valid when v < 1 since local parameterizations
of the boundary only admit one derivative. Nonethessless, we have characterized the trace
of H%(Q) as the space V32 (9Q) (see Theorem 76), and it is reasonable to ask whether or
not solutions of the boundary value problem

{L[U](w)Zf(l’) in
u(z) = g(xz) on 00

are elements of H? (Q2) when f € L?(2) and g € V3/2(99Q).

(820)

In general, this is not the case. To see this, we suppose that  is a bouned domain in R?
with a single corner point of angle w at the origin, and that in a neighborhood of the origin,
the boundary of €2 coincides with the curve I' parameterized via

z(r) = rcos(w)
y(r) = rsin(w).

It is easy to verify that when k7 /w is not an integer, the function
. k
ug(r,0) = r's sin (—W€> (822)
w

is harmonic and that its restriction to I' is 0. But when w > 7, the second derivative of uy
with respect to r is not square integrable. It follows that there exists a solution of (820) with
f =0 and g smooth which is not an element of H? ().

(821)

When (Q is convex, however, solutions of (820) are necessarily elements of H? () under mild
conditions on L. We now briefly outline the proof of this result.

A proof of the following theorem can be found in Chapter 3 of [10]. It can be viewed as a
consequence of the fact that the trace of the second fundamental form

v
B =——" 823
€= 51 (323)
for the boundary of a convex domain is nonpositive.
THEOREM 106. Suppose that Q is a convex, bounded C? domain in R™, and that

L[u] (z) = —D; (aij(x)Dju(a:)) (824)
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18 a strongly elliptic operator whose coefficients are Lipschitz. Then there exists a constant
C depending only on the diameter of ) and the Lipschitz norms of the coefficients of L such
that

[ull 2y < CIL [u] |20 (825)
whenever u € H? (Q) N Hy ().

In order to establish the existence of solutions of the homogeneous problem

{L [ () = f(z) in©
u(z) =0 on 0N

for Q2 convex and with L satisfying the hypotheses of the preceding theorem, we first construct
a sequence of convex open sets {€,,} such that Q,, C Q and dist(952,,,0Q2) — 0 as m — oo.
Next, we solve the obvious Dirichlet boundary value problem on each of the domains. We can
extend each of the resulting functions to R™ since the Sobolev extension theorem applies to
Lipschitz domains. We view the resulting functions as a sequence {u,,} of functions defined
on €. Theorem 106 implies that this sequence is uniformly bounded in H? (), so that the
Banach-Alaoglu theorem implies that there is a weakly convergence subsequence of {u,,}.
The weak limit is a solution of the boundary value problem (826). The key to this approach
is the uniform bound provided by Theorem 106.

(826)

The usual procedures can be applied in order to study linear elliptic operators with lower
order terms and the inhomogeneous boundary value problem.



CHAPTER 6

Elementary Results from the Calculus of Variations

Solving certain partial differential equation can be shown to be equivalent to minimizing
an “energy” functional given on a Banach space. The study of such problems is called the
calculus of variations, and we will now give a treatment of certain elementary techiniques in

the field.

6.1. Fréchet Derivatives

We say that a mapping T : X — Y between Banach spaces is Fréchet differentiable at the
point x € X provided there exists a linear mapping L : X — Y such that

p T+ B = Tla] = L[] _
h—0 |12l

0. (827)

It is easy to verify that Fréchet derivatives are unique, and we call the linear mapping L the
Fréchet derivative of T" at the point z. We say that T is Fréchet differentiable on an open set
U in X if it is Fréchet differentiable at every point of U. When this is the case, we denote
the mapping U — Z(X,Y’) which takes = to the Fréchet derivative of T" at x by T". We will
depart from our usual practice and use the notation 7). to denote the image of x under 77,
which is the Fréchet derivative of T" at the point x. In other words, 7). [h] = L [h], where L
is as in (827).

EXERCISE 32. Suppose that Q) is a bounded, open set in R™. Show that the map T : C' (ﬁ) —
C (Q) defined via T [f] (x) = (f(x))? is Fréchet differentiable at every point of C (ﬁ), and
that

T% [g] (x) = 2f(x)g(x). (828)

EXERCISE 33. Suppose that ) is a bounded, open set in R™. Show that the map T : C' (ﬁ) —
C (Q) defined via T [ f] (z) = exp(f(x)) is Fréchet differentiable at every point of C (1) and

compute its Fréchet derivative.

Fréchet derivatives generalize the Jacobian or “total” derivative of vector calculus, and can
be used in much the same way. For instance, the iteration

tna = = (15,)7 [T 2], (829)
generalizes Newton’s method for the solution of T' [z] = 0. The Newton-Kantorovich Theorem
gives conditions under which (829) converges (see, for instance, [2]).

118
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6.2. Nonlinear Functionals

Here, we will mostly be concerned with real-valued nonlinear functionals acting on Banach
spaces; that is, mappings of the form 7' : X — R. It is easy to verify that many of the ele-
mentary result of calculus generalize to this setting, including those regarding local extrema.
We say that a functional T': X — R has a critical point at x if T" is Fréchet differentiable in
an open set containing x and 7, = 0.

THEOREM 107. If the functional T : X — R is Fréchet differentiable on an open set U and
T has a local minimum at the point x € U, then T). = 0. That is, a local minumum of T is
a critical point.

PROOF. Let y € X and define f : R — R via f(t) = T [z + ty]. It is easy to verify that
f is differentiable, and that f'(t) = T,.,, [y]. If T has a local minimum at z, then f has a
local minimum at 0, so that 0 = f/(0) = 77 [y]. Since this is true for all y € X, we have
T =0, as desired. O

We say that a linear function 7" : X — R is convex if

T[1—t)x+ty] < (1 —T[z]+T [y] (830)
for all z, y in X and 0 <t < 1. It is strictly convex provided
T[1-t)z+ty] < (1—=t)T[x] +tT[y] (831)

forall z, y in X and 0 < ¢ < 1. Any norm ||| on X is a convex linear functional. A functional
T : X — R is weakly lower semicontinuous if whenever {z;} is a sequence which converges
weakly to z,
T[z] < 111?1 inf I [zg] . (832)
—00

We omit a proof of the following theorem, which can be found in many references.

THEOREM 108. If T : X — R is a continuous, convex functional on the Banach space X,
then T 1s weakly lower semicontinuous.

One important consequence of Theorem 108 is that any norm given on a Banach space X
is weakly lower semicontinuous. This follows because norms are convex and continuous. We
leave it to the reader to verify that if ||-|| is a norm for X, then f(z) = ||z||* is also weakly
lower semicontinuous.

We say that a functional 7' : X — R is coercive provided whenever {z,} is a sequence such
that ||z;|| — oo, T'[z;] — oo. The following theorem regarding coercive functionals is of
fundamental importance.

THEOREM 109. Suppose that X is a reflexive Banach space, and that T : X — R is contin-
uous, coercive and weakly lower semicontinuous. Then T has a global minimum.

PROOF. Let
m = inf T'[x], (833)

reX
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and let {z;} be a sequence such that T'[x)] converges monotonically from above to m. Since
T [z1] does not converge to oo, the coercivity of T implies that {z;} is bounded (note that
this is the case even if T' [x}] converges to —oo, although we will shortly show that m # —o0).
Since X is reflexive, the Banach-Alaoglu theorem (which holds that bounded sets in reflexive
Banach spaces are weakly relatively compact) implies that there is a subsequence of {xy}
which converges weakly to some z € X. Without loss of generality, we may assume that
xr — x. Now, by the weak lower semicontinuity of 7', we obtain

T[x] < li}gn inf I [z4] = m, (834)
—00

from which we conclude that x is a global minimizer of T. Note that since T is a mapping
into R and not the extended reals, it cannot be the case that m = —oc. O

It is, of course, a corollary of Theorem 109 that a continuous, convex, coercive linear function
as a global minimum. Strict convexity can often be used to obtain the uniqueness results, as
in the following theorems.

THEOREM 110. If T : X — R 1is strictly convex, then T' has at most one global minimum in
X.

PROOF. Suppose that x; and x5 are distinct global minima of 7. Then, by strict con-
vexity, we have

. 1+ T2 1 1 .
< — —_ g
;g}f(T [z] < T[ 5 ] < 2T [21] + 2T[x2] ;g)f(T [z], (835)
which is a contradiction. O

THEOREM 111. Suppose that T : X — R is strictly convex and Fréchet differentiable on X.
Then T has at most one critical point in X.

Proor. If f : R — R is differentiable and strictly convex, then f’ must be strictly
increasing. Since f’(z) = 0 if x is a critical point, it follows that there can be at most one
critical point.

To prove the general case, suppose that u is a critical point of T', fix v € X, and define
f:R —= R via

f@) =T [u+tv]. (836)
Then f is differentiable and

f'(t) = Ty [0] - (837)

It is easy to verify that f’ is strictly convex and f/(0) = T [v] = 0 (since u is a critical point).
Then f'(t) # 0 for all ¢ neq0, from which we conclude that

Topeo [V] # (838)
for all £ # 0. Since this holds for all v, we conclude that w is the only critical point of T. [

THEOREM 112. Suppose that T : X — R s a linear functional on the Banach space X, and
that T is Fréchet differentiable on X. Suppose also that

(T, = T}) [u—v] >0 (839)
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for all w, v in X. Then T is convex. If strict inequality holds in (839) when u # v, then T
18 strictly convex.

Proor. We fix u and v, and define f : R — R via

f&)=T[u+tlv—u)l. (840)
Then f is differentiable and
f(t) = 1/H-t(v—u) [v—u] (841)
If s <t then
ft) = f'(s) = (T1/H-t(v—u) - T1/H-8(v—u)) [v—u]
= (Tt~ o) [ 4 10 =) = (b 50— w)]  (842)
> 0.

We conclude that f is nondecreasing, which implies that it is convex (f”(x) > 0). In partic-
ular,

f#) = f1t+0(1 =) < tf(1) + (1 =1¢)f(0), (843)
which is equivalent to
Tlto+ (1 —t)u] <tl|v]+ (1 —t)1[u]. (844)

If the inequality is strict, then f is strictly increasing, and we get strict inequality in (844). O

EXERCISE 34. Is the functional T : R — R defined via T [z] = exp(z) coercive?

6.3. Application to a Linear Elliptic Partial Differential Equation

We will suppose that 2 is an open, bounded set in R", that ¢ € L (Q2) such that ¢(z) > 0
almost everywhere in €, and that h € L? (Q2). It is easy to verify that the Fréchet derivative
of the linear functional I : H} (Q) — R defined via

I[u] = %/Q|Du(x)]2 dx+%/9q(x) (u(z))? dx—/ﬂh(a:)u(x) dx (845)

I [v] = /QDu(m) - Du(x) dx + /Qq(x)u(x)v(x) dx — / h(z)v(x) dz. (846)

Q
If u € H} () is a critical point for I, then

I =0; (847)
that is,

/QDu(:c) - Dv(x) dm+/9q(x)u(a:)v(:c) dx —/Qh(:v)v(:v) dr =0 forall ve H)(Q). (848)
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In other words, u is a critical point for I if and only if u is a weak solution of the boundary
value problem

—Au(z) + q(z)u(z) = h(x) in Q

(@) + a(w)ulz) = hla) i

u(z) =0 on Of.

We will now show that [ is strictly convex and coercive. It then follows that I has a global

minimum u, which must be its unique critical point. In particular, u is the unique weak

solution of (849). We first show that I is coercive. Since q(z)(u(z))? is nonnegative, we have

[ 2 3IDulag0)~ | baula) da

] (850)
> 5HDUH%Q(Q)_HhHLQ(Q)||UHL2(Q)
Now we apply Poincaré’s inequality to see that
I[u] > Cllullfs )=l 2@ llull o) (851)

for some C' > 0. It follows that I'[ug] — 0o if [lug|/gy)— co. The strict convexity of I
follows from Theorem 111 since for u # v,

(I, — L) [u—v] = / (Du(x) - Do(x)) - (Du(x) — Do(x)) dz + / 4(x)(u(z) — v(x))” da

Q

> QD(u —v)(z) - D(u—v)(z) dx > 0.

(852)
6.4. Application to a Semilinear Elliptic Partial Differential Equation
We will now apply the machinary of this chapter to the boundary value problem
—Au(a) + qla)ue) = h(x) + f(u) in Q .
u(z) =0 on OS2

under the assumptions that  is an open, bounded set in R", that ¢ € L (£2) such that
q(x) > 0 almost everywhere in €2, that h € L? (), and that f : R — R is continuous and
bounded.

We first define the function F' : R — R via the formula
t
F(t) = / f(s) ds. (854)
0

Then it is easy to see that u € H} () is a critical point of

Il = 5 [ Duta)-Dutw) da+ [ afw)(u(@)? do= [ baute) do= [ Fluta)) da. (59

Q Q
if and only if u is a weak solution of (853). From Poincaré’s inequality, we know that the
norm ||ul. defined via

HUHEZ/QDu(x)'Du(x) dl”r/sz(élC)(u(ﬂf))2 da (856)
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is equivalent to the HJ (€2) norm (note that there is nothing to preclude ¢ from being equal
to 0 everywhere in €2). We will show that [ is coercive and weakly lower semicontinuous with
respect to ||-||«. It will then follow that I has a global minimum w which is a weak solution
of (853).

First, we address the coercivity of I. Since f is bounded, there exists M > 0 such that
|f(t)] < M for all t. It follows that

IHMSKﬂ$%SMM. (857)

From this and the facts that H] () is continuously embedded in L' (€2) and the ||*||. norm
is equivalent to the H} (Q) norm, we see that

/Q Fu(z)) do

for all uw € H} (Q). Using this, we have

uﬂzﬁw%lﬁmw@m—/FMMMx

Q

<M [ o) do = M lullp) < Cllullgey < Ol (58)

1
> Sllulli=Cllull 2@y =Clull
(859)

1
> S llulli=ClIDull 2oy =Clull.

1
> S lullz=Cllull..

In the second to last line, we used Poincaré’s inequality. Inequality (859) shows that I is
coercive.

Now we will show that I is weakly lower semicontinuous. Suppose that {u;} is a sequence
in Hj (©) which converges weakly to u. The image of a weakly convergent sequence under
compact mappings is strongly convergent and the embedding of H} () into L? () is com-
pact. It follows that some subsequence of u; converges to u in L? (2). So, without loss of
generality, we can assume that {uy} converges to u weakly in H} (), strongly in L? (Q2), and
pointwise almost everywhere.

Since {uy} converges pointwise almost everywhere to u, which is in square integrable, there
exists a function g € L? () such that |ugx(z)| < g(x) for almost all x € Q. We observe that

Flug(x)) < Mlug(z)|< Mg(x) (860)

and note that since L? () is continously embedded in L' (€2), we can apply the dominated
convergence theorem to obtain

lim /Q Flug(z)) dz = /Q Flu(z)). (861)
Obviously,

h,?l/ﬂh(x)uk(x) dr = /Qh(:c)u(a:) de. (862)
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Since norms and their squares are weakly lower semicontinuous, we have

]| 2 Tim inf | (863)
Now combining (861), (862) and (863) gives
1
Il = Sl [ Fu(w) do - [ u(@hie) do
2 Q Q
1
= —Hu”i—liminf/ F(ug(x)) doe — liminf/ uk(z)h(z) do
2 k—oo  Jq k—oo  Jq (864)
1
< liminf—||uk||£—liminf/ F(ug(z)) doe — liminf/ ug(x)h(z) dx
k—oo 2 k—oo  [q k—oo [

= liminf I [u],
k—o0

which establishes the weak lower semicontinuity of I. We conclude that I has a global
minimum .

6.5. A Less Restrictive Condition on the Nonlinear Term

We will now consider the boundary value problem
—Au(x) + q(x)u(x) = h(z) + f(u) in Q
{ u(z) =0 on 02
under somewhat less restrictive conditions on the function f. More specifically, we assume
that € is an open, bounded set in R™, that ¢ € L™ (2) such that ¢(x) > 0 almost everywhere

in Q, and that h € L*(2). We will also suppose that f : R — R is a continuous function
such that

(865)

[f()] < M+ blt]. (866)

Here, we will assume that b < A;, where A; is the smallest eigenvalue of the operator —A +g.

The variational characterization of A\ is
(A +q) [u], w) 2 _ Jo Du(z) - Du(z) dx + [ q(x)(u(x))? dx
A= in = inf

ue HY(2)\{0} (u, ) 120 ueHY(\{0} Jo(u(@))? dx

(867)
As before, we define the function F': R — R via the formula
F(t) = d
0= [ fs) s (368)
and I : H} () — R via
Iu] = %/ﬂDu(m)Du(:p) dav—i—%/ﬂq(gv)(u(x))2 dx—/gh(x)u(x) dx—/QF(u(m)) dz, (869)

and we let ||-||. denote the norm defined via (856). From (868), we see that

b
PO < M+ I (870)



6.5. A LESS RESTRICTIVE CONDITION ON THE NONLINEAR TERM 125

The weakly lower semincontinuity of I follows as before, so in order to establish the existence
of a global minumum of I, we need only prove that I is coercive. To that end, we observe
that Formula (867) implies that

1
[l < IIUII2 (871)

for all uw € H} (Q). We combine (870) and (871) to obtain

/( d:B<M/|u )| do+ - /\u )2

(872)
b 2
< Cllul+ - ul
It follows that
1
TTu) = gl / h(x)u(x) dr — / Flu(z)) de
0 (9]
b
> Nl =Clullzz~Cllul.~ 5o -l
(873)

1 b
> (3 31 ) IulE=ClDul 20—l

1 b
> (= — — 2_ .
> (3 3 ) lul=Cllul.

Since 3 — % > 0, (873) implies that I is coercive.
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