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Abstract

We use the well-known observation that the solutions of Jacobi’s differential equation can be
represented via non-oscillatory phase and amplitude functions to develop a fast algorithm for
computing multi-dimensional Jacobi polynomial transforms. More explicitly, it follows from this
observation that the matrix corresponding to the discrete Jacobi transform is the Hadamard
product of a numerically low-rank matrix and a multi-dimensional discrete Fourier transform
(DFT) matrix. The application of the Hadamard product can be carried out viaO(1) fast Fourier
transforms (FFTs), resulting in a nearly optimal algorithm to compute the multidimensional
Jacobi polynomial transform.

Keywords. Multi-dimensional Jacobi polynomial transform, nonuniform transforms, non-
oscillatory phase function, randomized low-rank approximation, fast Fourier transform.

1 Introduction

The one-dimensional forward discrete Jacobi transform consists of evaluating an expansion of the
form

f(x) =
n∑

ν=1

ανP
(a,b)
ν−1 (x), (1)

where P
(a,b)
ν denotes the order-ν Jacobi polynomial of the first kind corresponding to parameters

a and b, at a collection of points {xi}i=1,...,n ⊂ (−1, 1). The one-dimensional inverse discrete
Jacobi transform is the process of computing the coefficients {αν}i=1,...,n in an expansion of the
form (1) given its values at a collection of distinct points {xi}i=1,...,n ⊂ (−1, 1). For the sake of
brevity, we will generally drop the adjective “discrete” and simply use the terms “forward Jacobi
transform” and “inverse Jacobi transform” when referring to these operations. Often, the points
{xi}i=1,...,n ⊂ (−1, 1) are the nodes of the n-point Gauss-Jacobi quadrature rule
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∫ 1

−1
p(x)(1 + x)a(1 + x)bdx ≈

n∑

ν=1

p(xν)ων (2)

that is exact when p is a polynomial of degree less than or equal to 2n − 1. However, it is useful
to consider more general sets of points as well. In the case in which the points {xi}i=1,...,n ⊂ are
the nodes of the Gauss-Jacobi quadrature rule, we say the corresponding transform and inverse
transform are uniform; otherwise, we describe them as nonuniform. To form an orthonormal
matrix to represent the transform for numerical purpose, we will rescale the transform in (1) with
quadrature weights later.

Many methods for rapidly applying the Jacobi transform and various special cases of the Jacobi
transform have been developed. Examples include the algorithms of [1, 2, 3, 4] for applying the
Legendre transform, and those of [5] for forming and evaluating expansions for Jacobi polynomials
in general. See also, [6] and its references for extensive information on numerical algorithms for
forming and manipulating Chebyshev expansions. Almost all such algorithms can be placed into
one of two categories. Algorithms in the first category, such as [7, 8, 9, 10, 11], make use of the
structure of the connection matrices which take the coefficients in the expansion of a function in
terms of one set of Jacobi polynomials to the coefficients in the expansion of the same function with
respect to a different set of Jacobi polynomials. They typically operate by computing the Chebyshev
coefficients of an expansion and then applying a connection matrix or a series of connection matrices
to obtain the coefficients in the desired expansion. The computation of the Chebyshev expansion
can be carried out efficiently in O(n log n) operations via the nonuniform FFT (NUFFT) [12, 13]
and the application of each connection matrix can be performed in a number of operations which
grows linearly or quasi-linearly via the fast multipole method (FMM) [3, 14, 15, 5] or the fast
eigendecomposition of semiseparable matrices [16, 17, 5].

The second class of algorithms, of which [18] is a major example, make use of butterfly methods
and similar techniques for the application of oscillatory matrices. Most algorithms in this category,
including that of in [18], require precomputation with O(n2) running times. However, [19] describes
an algorithm based on this approach whose total running time is O(n log2(n)), when both param-
eters a and b are in the interval (−1/2, 1/2). It makes use of the observation that the solutions
of Jacobi’s differential equation can be accurately represented via non-oscillatory phase and am-
plitude functions to apply the Jacobi transform rapidly. That certain differential equations admit
non-oscillatory phase functions has long been known [20]; a general theorem was established in [21]
and a numerical method for the computation of non-oscillatory phase functions was given in [22].
In the case of Jacobi’s differential equation, there exists a smooth amplitude function M (a,b)(t, ν)
and a smooth phase function ψ(a,b)(t, ν) such that

P̃ (a,b)
ν (t) =M (a,b)(t, ν) cos(ψ(a,b)(t, ν)) (3)

and
Q̃(a,b)

ν (t) =M (a,b)(t, ν) sin(ψ(a,b)(t, ν)), (4)

where P̃
(a,b)
ν and Q̃

(a,b)
ν are referred as the modified Jacobi functions of the first and second kind,

respectively. They are defined in terms of the Jacobi functions of the first and second kinds P
(a,b)
ν

and Q
(a,b)
ν (see [20] for definitions) via the formulas

P̃ (a,b)
ν (t) = C(a,b)

ν P (a,b)
ν (cos(t)) sin

(
t

2

)a+ 1

2

cos

(
t

2

)b+ 1

2

(5)
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and

Q̃(a,b)
ν (t) = C(a,b)

ν Q(a,b)
ν (cos(t)) sin

(
t

2

)a+ 1

2

cos

(
t

2

)b+ 1

2

, (6)

where

C(a,b)
ν =

√
(2ν + a+ b+ 1)

Γ(1 + ν)Γ(1 + ν + a+ b)

Γ(1 + ν + a)Γ(1 + ν + b)
. (7)

The normalization constant is chosen to ensure the L2(0, π) norm of P̃
(a,b)
ν is 1 when ν is an integer.

Indeed, the set {P̃ (a,b)
j }∞j=0 is an orthonormal basis for L2(0, π). The change of variables x = cos(t)

makes the singularities in phase and amplitude functions for Jacobi’s differential equation more
tractable. Obviously, there is no substantial difference in treating expansions of the type (1) and
those of the form

f(t) =
n∑

ν=1

ανP̃
(a,b)
ν−1 (t) =

n∑

ν=1

ανM
(a,b)(t, ν) cos(ψ(a,b)(t, ν)), (8)

and we will consider the latter form here, more specially, the latter form with scaling by quadrature
weights. Moreover, we will denote by {tk}k=1,...,n and {wk}k=1...,n the nodes and weights of the
trigonometric Gauss-Jacobi quadrature rule

∫ π

0
f(cos(t)) cos2a+1

(
t

2

)
sin2b+1

(
t

2

)
dt ≈

n∑

k=1

f(cos(tk)) cos
2a+1

(
tk
2

)
sin2b+1

(
tk
2

)
wk (9)

obtained by applying the change of variables x = cos(t) to (2). Again, we refer to transforms
which use the set of points {tk}k=1,...,n as uniform and those which use some other set points as
nonuniform.

In [19], it was observed that the second summation in (8) could be interpreted as the application
of a structured matrix that is the real part of a Hadamard product of a NUFFT matrix and a
numerically low-rank matrix. This leads to a method for its computation which takes quasi-linear

time [13, 23, 24]. Expansions in terms of the functions of the second kind {Q̃(a,b)
j }∞j=0 can be handled

similarly. This non-oscillatory representation method will be described in more detail in Section
2.2.

In this paper, we generalize the one-dimensional Jacobi polynomial transform of [19] to the
multi-dimensional case. The transformation matrix in the multi-dimensional case is still the real
part of a Hadamard product of a multi-dimensional NUFFT matrix and a numerically low-rank
matrix in the form of tensor products. However, the numerical rank of the low-rank matrix might
increase quickly in the dimension following the algorithm in [19] and hence the multi-dimensional
NUFFT in [12, 13] might not be sufficiently efficient. To obtain a viable multi-dimensional Ja-
cobi polynomial transform, we reformulate the Hadamard product into a new one, which is the
Hadamard product of an over-sampled Fourier transform matrix and a numerically low-rank ma-
trix, and propose a fast randomized SVD to achieve near optimality in the low-rank approximation.
This leads to an efficient implementation of two-dimensional and three-dimensional Jacobi polyno-
mial transforms. Besides, as will be demonstrated numerically, the new method proposed in this
paper is more robust than the method in [19] and works for a and b in the regime (−1, 1), other
than the regime (−1

2 ,
1
2) in [19].

The remainder of the paper is organized as follows. In Section 2, we will first briefly introduce
the fast SVD via randomized sampling and the theory of non-oscillatory phase functions. In Section
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3, a variant of the fast one-dimensional Jacobi polynomial transform in [19] is given; it is followed
by a description of our fast multi-dimensional Jacobi polynomial transform. In Section 4, numerical
results which demonstrate the efficiency of our algorithm are described. Finally, we will conclude
our discussion in Section 5.

2 Preliminaries

In this section, we will revisit the linear scaling randomized SVD introduced in [25] and the non-
oscillatory phase and amplitude functions in [19] to make the presentation self-contained.

2.1 Approximate SVD via Randomized Sampling

For a numerically low-rank matrix Z ∈ C
N×N with an O(1) algorithm to evaluate an arbitrary

entry, [25] introduced an O(Nr2) algorithm to construct a rank-r approximate SVD, Z ≈ U0Σ0V
∗
0 ,

from O(r) randomly selected rows and columns of Z, where ∗ denotes the conjugate transpose, U0

and V0 ∈ C
N×r, Σ0 ∈ C

r×r is a diagonal matrix with approximate singular values in the diagonal
part in a descent order.

Here, we adopt the standard notation for a submatrix in MATLAB: given a row index set I
and a column index set J , ZI,J = Z(I, J) is the submatrix with entries from rows in I and columns
in J ; we also use “:” to denote the entire columns or rows of the matrix, i.e., ZI,: = Z(I, :) and
Z:,J = Z(:, J). With these handy notations, we briefly introduce the randomized SVD as follows.

Algorithm 2.1. Approximate SVD via randomized sampling

1. Let Πcol and Πrow denote the important columns and rows of Z that are used to form the
column and row bases. Initially Πcol = ∅ and Πrow = ∅.

2. Randomly sample rq rows and denote their indices by Srow. Let I = Srow ∪ Πrow. Here
q = O(1) is a multiplicative oversampling parameter. Perform a pivoted QR decomposition
of ZI,: to get

ZI,:P = QR, (10)

where P is the resulting permutation matrix and R = (rij) is an O(r) × n upper triangular
matrix. Define the important column index set Πcol to be the first r columns picked within
the pivoted QR decomposition.

3. Randomly sample rq columns and denote their indices by Scol. Let J = Scol ∪Πcol. Perform
a pivoted LQ decomposition of Z:,J to get

PZ:,J = LQ, (11)

where P is the resulting permutation matrix and L = (lij) is an m × O(r) lower triangular
matrix. Define the important row index set Πrow to be the first r rows picked within the
pivoted LQ decomposition.

4. Repeat steps 2 and 3 a few times to ensure Πcol and Πrow sufficiently sample the important
columns and rows of Z.

5. Apply the pivoted QR factorization to Z:.Πcol
and let Qcol be the matrix of the first r columns

of the Q matrix. Similarly, apply the pivoted QR factorization to Z∗
Πrow,: and let Qrow be the

matrix of the first r columns of the Q matrix.

4



6. We seek a middle matrix M such that Z ≈ QcolMQ∗
row. To solve this problem efficiently,

we approximately reduce it to a least-squares problem of a smaller size. Let Scol and Srow be
the index sets of a few extra randomly sampled columns and rows. Let J = Πcol ∪ Scol and
I = Πrow ∪ Srow. A simple least-squares solution to the problem

min
M

‖ ZI,J(Qcol)I,:M(Q∗
row):,J ‖, (12)

gives M = (Qcol)
†
I,:ZI,J(Q

∗
row)

†
:,J , where (·)† stands for the pseudo-inverse.

7. Compute an SVD M ≈ UMΣMV
∗
M . Then the low-rank approximation of Z ≈ U0S0V

∗
0 is

given by

U0 = QcolUM ; Σ0 = ΣM ;V0 = V ∗
MQ

∗
row. (13)

In our numerical implementation, iterating Steps 2 and 3 twice is empirically sufficient to
achieve accurate low-rank approximations via Algorithm 2.1. Similar arguments as in [26] for
a randomized CUR factorization can be applied to quantify the error and success probability
rigorously for Algorithm 2.1. But at this point, we only focus on the application of Algorithm 2.1
to the fast Jacobi polynomial transform without theoretical analysis.

Note that our goal in the Jacobi polynomial transform is to construct a low-rank approximation
of the low-rank matrix, i.e., Z ≈ UV ∗ with U and V ∈ C

N×r, up to a fixed relative error ε, rather
than a fixed rank. Algorithm 2.1 can also be embedded into an iterative process that gradually
increases the rank parameter r to achieve the desired accuracy. We denote the rank parameter as
rǫ when it is large enough to obtain the accuracy ǫ.

When Z origins from the discretization of a smooth function Z(x, y) at the grid points {xi}1≤i≤N

and {yi}1≤i≤N , i.e., Zij = Z(xi, yj), another standard method for constructing a low-rank factor-
ization of Z ≈ UV ∗ is Lagrange interpolation at Chebyshev grids in x or y. For example, let
Cµ := {µi}1≤i≤r denote the set of r Chebyshev grids in the domain of x, U ∈ R

N×r be the ma-
trix consisting of the i-th Lagrange polynomial in x corresponding to µi as its i-th column, and
V ∈ C

N×r be the matrix such that Vij is equal to Z̄(µj, yi), where ·̄ denotes the conjugate opera-
tor, then Z ≈ UV ∗ by the Lagrange interpolation. Usually, an oversampling parameter q is used
via setting r = qrǫ. Then a rank-rǫ truncated SVD of U ≈ U0Σ0V

∗
0 gives a compressed rank-rǫ

approximation of Z ≈ U0 (V V0Σ0)
∗, where U0 ∈ C

N×rǫ and V V0Σ0 ∈ C
N×rǫ .

The fast nonuniform FFT in [13] and the one-dimensional Jacobi polynomial transform in [19]
adopted low-rank approximation via Lagrange interpolation to deal with the low-rank term in their
Hadamard products of low-rank and (nonuniform) FFT matrices without an extra truncated SVD.
In this paper, we propose to use the randomized SVD via random sampling to obtain nearly optimal
rank in the low-rank approximation.

2.2 Non-oscillatory phase and amplitude functions

Given a pair of parameters a and b in
(
−1

2 ,
1
2

)
, and a maximum degree of interest Nmax > 27, we

revisit the fast algorithms in [19] for constructing non-oscillatory phase and amplitude functions
ψ(a,b)(t, ν) and M (a,b)(t, ν) such that

P̃ (a,b)
ν (t) =M (a,b)(t, ν) cos

(
ψ(a,b)(t, ν)

)
(14)

and
Q̃(a,b)

ν (t) =M (a,b)(t, ν) sin
(
ψ(a,b)(t, ν)

)
(15)
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for t ∈ [ 1
Nmax

, π − 1
Nmax

] and ν ∈ (27, Nmax]. The polynomials with t and ν out of these ranges can
be evaluated by the well-known three-term recurrence relations or various asymptotic expansions;
the lower bound of 27 was chosen to obtain optimal numerical performance.

Next, we present a few facts regarding the phase and amplitude functions related to Jacobi’s

differential equations. It is well known that the functions P̃
(a,b)
ν and Q̃

(a,b)
ν satisfy the second order

differential equation
y′′(t) + q(a,b)ν (t)y(t) = 0, (16)

where

(17)q(α,β)ν (t) =

(
ν +

α+ β + 1

2

)2

+
1
4 − α2

4 sin
(
t
2

)2 +
1
4 − β2

4 cos
(
t
2

)2 .

We refer to Equation (16) as Jacobi differential equation. Following the derivation in [19], we

can show that the pair {P̃ (a,b)
ν , Q̃

(a,b)
ν } of real-valued, linearly independent solutions of (16) satisfies

P̃ (a,b)
ν (t) =

√
W

cos
(
ψ(a,b)(t, ν)

)
√∣∣∂tψ(a,b)(t, ν)

∣∣
, (18)

and

Q̃(a,b)
ν (t) =

√
W

sin
(
ψ(a,b)(t, ν)

)
√∣∣∂tψ(a,b)(t, ν)

∣∣
, (19)

where W is the necessarily positive constant Wronskian of the pair {P̃ (a,b)
ν , Q̃

(a,b)
ν }, and ψ(a,b)(t, ν)

is the non-oscillatory phase function of the pair {P̃ (a,b)
ν , Q̃

(a,b)
ν } satisfying

ψ(a,b)(t, ν) = C +

∫ t

σ1

W

(P̃
(a,b)
ν (s))2 + (Q̃

(a,b)
ν (s))2

ds (20)

with C an appropriately chosen constant related to σ1. Note that ∂tψ
(a,b)(t, ν) > 0 since W > 0.

Hence, the non-oscillatory amplitude function of {P̃ (a,b)
ν , Q̃

(a,b)
ν } can be defined as

M (a,b)(t, ν) =

√
W∣∣∂tψ(a,b)(t, ν)

∣∣ =
√

W

∂tψ(a,b)(t, ν)
. (21)

Through straightforward computation, it can be verified that the squareN (a,b)(t, ν) =
(
M (a,b)(t, ν)

)2

of the amplitude function satisfies the third order linear ordinary differential equation (ODE)

∂tttN
(a,b)(t, ν) + 4q(a,b)ν (t)∂tN

(a,b)(t, ν) + 2(q(a,b)ν (t))′N (a,b)(t, ν) = 0 for all σ1 < t < σ2. (22)

Obviously, (
M (a,b)(t, ν)

)2
=

(
P (a,b)
ν (t)

)2
+

(
Q(a,b)

ν (t)
)2
. (23)

Hence, we can specify the values of
(
M (a,b)(t, ν)

)2
and its first two derivatives in t at a point on

the interval [ 1
Nmax

, π − 1
Nmax

] for any ν using various asymptotic expansion for P
(a,b)
γ and Q

(a,b)
γ .

Afterwards, we uniquely determine M (a,b)(t, ν) via solving the ODE (22) using a variant of the
integral equation method of [12] (or any standard method for stiff problems).

6



To obtain the values of ψ(a,b)(t, ν), we first calculate the values of

d

dt
ψ(a,b)(t, ν) (24)

via (21). Next, we obtain the values of the function ψ̃ defined via

ψ̃(t) =

∫ t

α1

d

ds
ψ(a,b)(s, ν) ds (25)

at any point in [ 1
Nmax

, π− 1
Nmax

] via spectral integration. There is an unknown constant connecting

ψ̃ with ψ(a,b)(t, ν); that is,
ψ(a,b)(t, ν) = ψ̃(t) + C. (26)

To evaluate C, we first use a combination of asymptotic and series expansions to calculate P̃
(a,b)
ν

at the point α1. Since ψ̃(α1) = 0, it follows that

P̃ (a,b)
γ (α1) =M (a,b)(α1, γ) cos(C), (27)

and C can be calculated in the obvious fashion.
The above discussion has introduced an algorithm to evaluate ψ(a,b)(t, ν) and M (a,b)(t, ν) in the

whole domain (t, ν) ∈ [ 1
Nmax

, π − 1
Nmax

] × (27, Nmax]. To achieve a fast algorithm, we note that it

is enough to conduct calculation on selected important grid points of [ 1
Nmax

, π − 1
Nmax

]× (27, Nmax]

through the above calculation, since we can evaluate ψ(a,b)(t, ν) and M (a,b)(t, ν) via interpolation
with their values on the important grid points.

It is well known that a polynomial p(t) (here p(t) is either P̃
(a,b)
ν (t) or Q̃

(a,b)
ν (t)) can be evaluated

in a numerically stable fashion using the barcyentric Chebyshev interpolation formula [27]

p(t) =

k∑

j=1

wj

t− xj
p(xj)

/ k∑

j=1

wj

t− xj
, (28)

where x1, . . . , xk are the nodes of the k-point Chebyshev grid on a sufficiently small interval (σ1, σ2)
(such that p(t) is a polynomial of degree at most k − 1) and

wj =

{
(−1)j , 1 < j < k;

(−1)j 1
2 , otherwise.

(29)

Hence, it is sufficient to evaluate ψ(a,b)(t, ν) andM (a,b)(t, ν), which lead to P̃
(a,b)
ν (t) and Q̃

(a,b)
ν (t), at

a tensor product of Chebyshev grid points in t and ν, and calculate them at an arbitrary location
(t, ν) via a bivariate piecewise barcyentric Chebyshev interpolation.

More explicitly, letmν be the least integer such that 3mν ≥ Nmax, and letmt be equal to twice the
least integer l such that π

2 2
−l+1 ≤ 1

Nmax
. Next, we define βj = max

{
3j+2, Nmax

}
for j = 1, . . . ,mν ,

αi =
π
22

i−mt/2 for i = 1, . . . ,mt/2, and αi = π − π
22

mt/2+1−i for i = mt/2 + 1, . . . ,mt. Now we let

τ1, . . . , τMt (30)

denote the 16-point piecewise Chebyshev gird on the intervals

(α1, α2) , (α2, α3) , . . . , (αmt−1, αmt) (31)

7



with Mt = 15(mt − 1) + 1 points in total; let

γ1, . . . , γMν (32)

denote the nodes of the 24-point piecewise Chebyshev grid on the intervals

(β1, β2) , (β2, β3) , . . . , (βmν−1, βmν ) (33)

with Mt = 23(mν − 1) + 1 points in total. The piecewise Chebyshev grids (30) and (32) form a
tensor product

{(τi, γj) : i = 1, . . . ,Mt, j = 1, . . . ,Mν} . (34)

Then ψ(a,b)(t, ν) and M (a,b)(t, ν) can be obtained via barcyentric Chebyshev interpolations in t and
ν via their values at the tensor product restricted to the piece (αi, αi+1) × (βj , βj+1) that (t, ν)
belongs to for some i and j.

Here we summarize the operation complexity of the whole algorithm above. A detailed discus-
sion can be found in [19]. ODE solvers are applied for O (log (Nmax)) values of ν, and the solution of
the solver is evaluated at O (log (Nmax)) values of t, making the total running time of the procedure
just described O

(
log2 (Nmax)

)
.

Once the values of ψ
(a,b)
ν and M

(a,b)
ν are ready at the tensor product of the piecewise Chebyshev

grids (30) and (32), they can be evaluated for any t and ν via repeated application of the barycentric
Chebyshev interpolation formula in the same number of operations which is independent of ν and
t.

3 Fast Jacobi polynomial transforms

Without loss of generality, we assume that ψ(a,b)(t, ν), M (a,b)(t, ν), P
(a,b)
ν , and Q

(a,b)
ν can be evalu-

ated in O(1) operations for any t ∈ (0, π) and ν ∈ [0, Nmax]. A fast algorithm for rapidly computing
Gauss-Jacobi quadrature nodes and weights in the Jacobi polynomial transform in (8) has also
been introduced in [19]. We refer the reader to [19] for details and assume that quadrature nodes
and weights are available in this section.

3.1 One-dimensional transform and its inverse

Here we propose a new variant of the one-dimensional Jacobi polynomial transform for P̃
(a,b)
j (t) in

[19]. The new algorithm simplifies the discussion of the fast algorithm. The transform for Q̃
(a,b)
j (t)

is similar. For our purpose, we consider the nth order uniform forward Jacobi polynomial transform
with a scaling, that is, calculate the vector of values




f(t1)
√
w1

f(t2)
√
w2

...
f(tn)

√
wn


 (35)

given the vector 


α1

α2
...
αn


 (36)
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of the coefficients in the expansion

f(t) =
n−1∑

j=0

αjP̃
(a,b)
j (t); (37)

here, t1, . . . , tn, w1 . . . , wn are the nodes and weights of the n-point trigonometric Gauss-Jacobi
quadrature rule corresponding to the parameters a and b. The “nonuniform” forward Jacobi trans-
form does not require trigonometric Gauss-Jacobi quadrature nodes and weights.

In the uniform transform, the properties of the trigonometric Gauss-Jacobi quadrature rule and

the weighting by square roots in (35) ensure that the n× n matrix WJ (a,b)
n taking (36) to (35) is

orthogonal, where W is the n× n matrix

W =




√
w1 0 0 0
0

√
w2 0 0

0 0
. . . 0

0 0 0
√
wn


 , (38)

and J (a,b)
n is the n×n matrix representing the sum in (37). Hence, the inverse transform is a simple

matvec by the transpose ofWJ (a,b)
n . In the nonuniform case, J (a,b)

n is usually a very ill-conditioned
matrix and the inverse transform requires solving a challenging system of linear equations, which
will be discussed in a separate paper in the future.

It follows from (14) that the (j, k)-th entry of J (a,b)
n is

(
J (a,b)
n

)

jk
=

{
M (a,b)(tj , k − 1) cos

(
ψ(a,b)(tj, k − 1)

)
, if k − 1 > 27,

P̃
(a,b)
k−1 (tj), otherwise,

(39)

since the part consisting of low-degree polynomials is computed via three-term recurrence relations

or various asymptotic expansions. Let V(a,b)
n ∈ R

n×28 be the submatrix of J (a,b)
n corresponding to

the part of polynomials with degree less than 28, and G(a,b)
n ∈ R

n×n−28 be the rest of J (a,b)
n , then

J (a,b)
n =

[
V(a,b)
n ,G(a,b)

n

]
.

Note that G(a,b)
n is the real part of a discrete Fourier integral transform that can be evaluated with

a quasi-linear complexity by the algorithm of [23] for applying Fourier integral transforms and a
special case of that in [24] for general oscillatory integral transforms. Motivated by this observation,

the algorithm in [19] constructs a low-rank matrix A(a,b)
n ∈ C

n×(n−28) whose (j, k)-th entry is

M (a,b)(tj , k + 27) exp
(
i

(
ψ(a,b)(tj, k + 27)− (k + 27)tj

))
. (40)

Denote the n× (n− 28) nonuniform FFT matrix, whose (j, k)-th entry is

exp (i(k + 27)tj) , (41)

as Nn. Then

J (a,b)
n =

[
V(a,b)
n ,ℜ(A(a,b)

n ⊗Nn)
]
, (42)

where “⊗” denotes the Hadamard product. It can be immediately seen from (42) that J (a,b)
n can

be applied through a small number of NUFFTs [12, 13] and a simple direct summation for V(a,b)
n

in a quasi-linear scaling of n.
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More specifically, let a low-rank approximation of A(a,b)
n be

A(a,b)
n ≈

r∑

j=1

ujv
T
j , (43)

where uj and vj are column vectors for each j. Then the transform from (36) to (35) can be
approximated by the following sum,

WJ (a,b)
n α ≈WV(a,b)

n αV +Wℜ(
r∑

j=1

Duj
NnDvjαG), (44)

where αV is the subvector of α with the first 28 entries, αG is the subvector of α with the rest
entries, Du denotes a diagonal matrix with a column vector u on its diagonal. The formula (44)
can be carried out by r NUFFTs in O(rn log n) arithmetic operations.

In practice, inspired by the NUFFT in [13], we can replace the Hadamard product of a low-rank
matrix and a NUFFT matrix in (42) with a Hadamard product of a low-rank matrix and a DFT
matrix, the matvec of which can be carried out more efficiently with a few numbers of FFTs.

Consider another matrix B(a,b)
n ∈ C

n×(n−28) whose (j, k)-th entry is defined via

M (a,b) (tj, k + 27) exp

(
i(ψ(a,b)(tj , k + 27) − 2π

[tjn/2π]

n
(k + 27))

)
, (45)

where [x] denotes the integer nearest to x. Then we have

J (a,b)
n =

[
V(a,b)
n ,ℜ(B(a,b)

n ⊗Fn)
]
, (46)

where Fn is an n× (n− 28) matrix whose (j, k)-th entry is

exp

(
i(2π

[tjn/2π]

n
(k + 27))

)
. (47)

It’s obvious that Fn in (46) is a row permutation of an inverse DFT matrix. Note that the difference

between the phase functions of A(a,b)
n and B(a,b)

n is less than π. Hence, B(a,b)
n is also a low-rank matrix

and we can apply the randomized SVD in Algorithm 2.1 to construct a low-rank approximation of

B(a,b)
n in O(r2n) operations.

Suppose we have constructed an approximate rank-r SVD of B(a,b)
n up to a desired accuracy

using Algorithm 2.1; that is, suppose that we have computed the factorization

B(a,b)
n ≈ USV, (48)

where U ∈ C
n×r, V ∈ C

r×(n−28), and S ∈ R
r×r is a positive definite diagonal matrix. By rearrang-

ing the factors above, we have

B(a,b)
n ≈ (US

1

2 )(S
1

2V ) = u1v
T
1 + · · ·+ urv

T
r , (49)

where ui and v
T
i denote the ith column vector of US

1

2 and the ith row vector of S
1

2V , respectively,
and T denotes the matrix transpose. Once (49) is ready, we have

WJ (a,b)
n α ≈WV(a,b)

n αV +Wℜ(((
r∑

j=1

ujv
T
j )⊗Fn)αG) =WV(a,b)

n αV +Wℜ(
r∑

j=1

Duj
FnDvjαG), (50)
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where Du denotes a diagonal matrix with u on its diagonal. Formula (50) indicates that the Jacobi
polynomial transform can be evaluated efficiently via r inverse FFTs, which requires O(rn log n)
arithmetic operations and O(rn) memory.

Compared to (44) used in the original fast Jacobi transform in [19], the number of inverse FFTs
in (50) has been optimized. Thus Formula (50) would take fewer operations to compute a multi-
dimensional transform. Note that, compared to the original method in [19], though our new method
using (50) would cost more time to construct a low-rank approximation, the optimized rank of the
low-rank approximation would accelerate the application of the multi-dimensional Jacobi transform.
In addition, as we mentioned previously, the new method works in a larger range of a and b. In
Section 4, we will provide numerical comparisons to demonstrate the superior of the new method
over the method in [19].

The fast inverse Jacobi transform in the uniform case can be carried out in a similar manner,

since WJ (a,b)
n is an orthonormal matrix. In fact, the inverse transform can be computed via

αV =
(
V(a,b)
n

)T
W TWf,

and

αG ≈ ℜ(((
r∑

j=1

ujv
T
j )⊗Fn)

TW TWf) = ℜ(
r∑

j=1

DvjFT
nDuj

W TWf), (51)

where FT
n is a permutation of the DFT matrix. Therefore, the inverse Jacobi polynomial transform

can also be computed via r FFTs.
It is worth emphasizing that the fast algorithm introduced in this section also works for non-

uniform Jacobi polynomial transforms since the low-rankness of B(a,b)
n is independent of the samples

in t and the quadrature weights in the uniform Jacobi polynomial transform. There will be numer-
ical examples later to verify this. The inverse transform in the non-uniform case requires solving a
highly ill-conditioned linear system, which will be reported in a separate paper in the future.

3.2 Two-dimensional transform and its inverse

In this section, we extend our algorithm to the two-dimensional case, using the new method devel-

oped in the last section. We only focus on the transform for P̃
(a,b)
ν (t); the one for Q̃

(a,b)
k−1 (t) is similar.

We will adopt the MATLAB notation A(:) as a vector resulting from reshaping the matrix A into

a vector. We also use similar notations as in Section 3.1, e.g., J (a,b)
n,· , V(a,b)

n,· , G(a,b)
n,· , B(a,b)

n,· , Fn,·, and
W· denote corresponding matrices analogous to their counterparts in Section 3.1, respectively, with
“·” specifying a variable x or y in the spatial domain. In the rest of this section, we always assume
a low-rank approximation

B(a,b)
n,· =

r
·∑

i=1

u·,iv
T
·,i (52)

has been obtained by Algorithm 2.1 up to a desired accuracy for “·” as x or y.
Given locations {xi}i=1,···,n ⊂ (0, π) and {yi}i=1,···,n ⊂ (0, π), with no substantial difference, the

forward and inverse two-dimensional Jacobi polynomial transforms arise in the following Jacobi
expansion

f(xi, yj) =

n∑

k=1

n∑

ℓ=1

α(k, ℓ)P̃
(a,b)
k−1 (xi)P̃

(a,b)
ℓ−1 (yj), for i, j = 1, · · · , n, (53)

where α denotes an expansion coefficients matrix. The forward and inverse transform can be defined
analogously as in the one-dimensional case. When both {xi}i=1,···,n and {yi}i=1,···,n are exactly the
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nodes of the trigonometric Gauss-Jacobi quadrature rule, the corresponding transform is referred
as the uniform transform. With additional weight matricesWx andWy, the forward transformation

matrix (WxJ (a,b)
n,x )⊙ (WyJ (a,b)

n,y ) taking α(:) to (Wx⊙Wy)f(:) is orthogonal, where ”⊙” denotes the
Kronecker product. When {xi}i=1,···,n, {yi}i=1,···,n, and weights are not given by the trigonometric
Gauss-Jacobi quadrature rule, we refer the corresponding transform as a non-uniform transform.

With the low-rank approximations in (52) available, we have

[
(WxJ (a,b)

n,x )⊙ (WyJ (a,b)
n,y )

]
α(:)

≈ (Wx ⊙Wy)([V(a,b)
n,x 0]⊙ [V(a,b)

n,y 0])α(:)

+

ry∑

i=1

ℜ((Wx ⊙Wy)([V(a,b)
n,x 0]⊙Duy,i

)(In ⊙Fn,y)(In ⊙Dvy,i)α(:))

+

rx∑

i=1

ℜ((Wx ⊙Wy)(Dux,i
⊙ [V(a,b)

n,y 0])(Fn,x ⊙ In)(Dvx,i ⊙ In)α(:))

+
rx∑

i=1

ry∑

j=1

ℜ((Wx ⊙Wy)(Dux,i
⊙Duy,j

)(Fn,x ⊙Fn,y)(Dvx,i ⊙Dvy,j )α(:)),

(54)

where 0 is an n× (n− 28) zero matrix. In our numerical implement, since 0 does not contribute to
the numerical result, there are just O(n) entries of α(:) needed to be applied in the first three terms
above. Formula (54) indicates that 2D uniform Jacobi polynomial transforms can be evaluated via
O((rx + ry)n) 1D inverse FFTs and O(rxry) 2D inverse FFTs, which results in O(rxryn

2 log(n))
arithmetic operations and O(rxryn

2) memories. We would like to emphasize that this algorithm
also works for 2D non-uniform forward transform since it is actually a tensor form of the one-
dimensional transform. There will be numerical examples later to verify this.

The fast 2D inverse Jacobi transform in the uniform case can be carried out in a similar manner,

since both WxJ (a,b)
n,x and WyJ (a,b)

n,y are orthonormal matrices. In fact, the 2D inverse transform can
be computed via

α(:) =
[
(J (a,b)

n,x )T ⊙ (J (a,b)
n,y )T

]
f̃(:)

≈ ([V(a,b)
n,x 0]T ⊙ [V(a,b)

n,y 0]T )f̃(:)

+

ry∑

i=1

ℜ((In ⊙Dvy,i)(In ⊙FT
n,y)([V(a,b)

n,x 0]T ⊙Duy,i
)f̃(:))

+

rx∑

i=1

ℜ((Dvx,i ⊙ In)(FT
n,x ⊙ In)(Dux,i

⊙ [V(a,b)
n,y 0]T )f̃(:))

+

rx∑

i=1

ry∑

j=1

ℜ((Dvx,i ⊙Dvy,j )(FT
n,x ⊙FT

n,y)(Dux,i
⊙Duy,j

)f̃(:)),

(55)

where f̃(:) := (Wx ⊙Wy)(Wx ⊙Wy)f(:). In our numerical implement, since 0 does not contribute
to the numerical result, we just need to compute O(n) entries of α(:) for the first three terms above.
Therefore, 2D inverse Jacobi polynomial transforms can also be evaluated via O((rx + ry)n) 1D
FFTs and O(rxry) 2D FFTs.
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3.3 Three-dimensional transform and its inverse

In this section, we continue to extend our algorithm for 3D Jacobi polynomial transform and its

inverse. Analogously, we just discuss the transform for P̃
(a,b)
ν (t) and the transform for Q̃

(a,b)
k−1 (t) is

similar. The notations in Section 3.2 will be inherited here.
Given locations {xi}i=1,···,n, {yi}i=1,···,n, and {zi}i=1,···,n in (0, π), with no substantial difference,

the forward and inverse three-dimensional Jacobi polynomial transforms arise in the following
Jacobi expansion

f(xi, yj, zk) =

n∑

h=1

n∑

ℓ=1

n∑

m=1

α(k, ℓ,m)P̃
(a,b)
h−1 (xi)P̃

(a,b)
ℓ−1 (yj)P̃

(a,b)
m−1(zk), for i, j, k = 1, · · · , n, (56)

where α denotes a three-dimensional tensor containing expansion coefficients. The forward and
inverse transforms can be defined analogously to the three-dimensional case. When {xi}i=1,···,n,
{yi}i=1,···,n, and {zi}i=1,···,n are all exactly the nodes of the trigonometric Gauss-Jacobi quadrature
rule, the corresponding transform is referred as the uniform transform. Otherwise, we refer the
corresponding transform as a non-uniform transform.

In the uniform transform, in order to take advantage of orthogonality, we consider the the tensor

product (WxJ (a,b)
n,x ) ⊙ (WyJ (a,b)

n,y ) ⊙ (WyJ (a,b)
n,z ) that takes α(:) to (Wx ⊙Wy ⊙Wz)f(:). Once the

related low-rank approximations,

B(a,b)
n,· =

r
·∑

i=1

u·,iv
T
·,i, (57)

have been obtained, we have

(Wx ⊙Wy ⊙Wz)f(:) = (Wx ⊙Wy ⊙Wz)(J (a,b)
n,x ⊙ J (a,b)

n,y ⊙ J (a,b)
n,z )α(:), (58)

where

(J (a,b)
n,x ⊙ J (a,b)

n,y ⊙ J (a,b)
n,z )α(:)

≈ ([V(a,b)
n,x 0]⊙ [V(a,b)

n,y 0]⊙ [V(a,b)
n,z 0])α(:)

+

rz∑

i=1

ℜ(([V(a,b)
n,x 0]⊙ [V(a,b)

n,y 0]⊙Duz,i
)(In ⊙ In ⊙Fn,z)(In ⊙ In ⊙Dvz,i)α(:))

+

ry∑

i=1

ℜ(([V(a,b)
n,x 0]⊙Duy,i

⊙ [V(a,b)
n,y 0])(In ⊙Fn,y ⊙ In)(In ⊙Dvy,i ⊙ In)α(:))

+

ry∑

j=1

rz∑

k=1

ℜ(([V(a,b)
n,x 0]⊙Duy,j

⊙Duz,k
)(In ⊙Fn,y ⊙Fn,z)(In ⊙Dvy,j ⊙Dvz,k))α(:)

+

rx∑

i=1

ℜ((Dux,i
⊙ [V(a,b)

n,y 0]⊙ [V(a,b)
n,z 0])(Fn,x ⊙ In ⊙ In)(Dvx,i ⊙ In ⊙ In)α(:))

+

rx∑

j=1

rz∑

k=1

ℜ((Dux,j
⊙ [V(a,b)

n,y 0]⊙Duz,k
)(Fn,x ⊙ In ⊙Fn,z)(Dvx,j ⊙ In ⊙Dvz,k))α(:)

+

rx∑

j=1

ry∑

k=1

ℜ((Dux,j
⊙Duy,k

⊙ [V(a,b)
n,z 0])(Fn,x ⊙Fn,y ⊙ In)(Dvx,j ⊙Dvy,k ⊙ In))α(:)

+

rx∑

i=1

ry∑

j=1

rz∑

k=1

ℜ((Dux,i
⊙Duy,j

⊙Duz,k
)(Fn,x ⊙Fn,y ⊙Fn,z)(Dvx,i ⊙Dvy,j ⊙Dvz,k)α(:)).

(59)
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In numerical implement, since 0 does not contribute to numerical result, there are just O(n2)
entries of α(:) needed to be applied in the first seven terms above. Formula (59) indicates that 3D
uniform Jacobi polynomial transform can be evaluated via O((rx + ry + rz)n

2) inverse FFTs,
O((rxry + rxrz + ryrz)n) 2D inverse FFTs and O(rxryrz) inverse 3D FFTs, which results in
O(rxryrzn

3 log(n)) arithmetic operations and O(rxryrzn
3) memories. Again, we would like to

emphasize that this algorithm also works for 3D non-uniform forward transform. There will be
numerical examples later to verify this.

The fast 3D inverse (uniform) Jacobi transform in the uniform case can be carried out in a

similar manner, since WxJ (a,b)
n,x , WyJ (a,b)

n,y and WzJ (a,b)
n,z are all orthonormal matrices. In fact, the

3D inverse transform can be computed via

(J (a,b)
n,x ⊙ J (a,b)

n,y ⊙ J (a,b)
n,z )T f̃(:)

≈ ([V(a,b)
n,x 0]T ⊙ [V(a,b)

n,y 0]T ⊙ [V(a,b)
n,z 0]T )f̃(:)

+

rz∑

i=1

ℜ((In ⊙ In ⊙Dvz,i)(In ⊙ In ⊙FT
n,z)([V(a,b)

n,x 0]T ⊙ [V(a,b)
n,y 0]T ⊙Duz,i

)f̃(:))

+

ry∑

i=1

ℜ((In ⊙Dvy,i ⊙ In)(In ⊙FT
n,y ⊙ In)([V(a,b)

n,x 0]T ⊙Duy,i
⊙ [V(a,b)

n,y 0]T )f̃(:))

+

ry∑

j=1

rz∑

k=1

ℜ((In ⊙Dvy,j ⊙Dvz,k)(In ⊙FT
n,y ⊙FT

n,z)([V(a,b)
n,x 0]T ⊙Duy,j

⊙Duz,k
)f̃(:))

+

rx∑

i=1

ℜ((Dvx,i ⊙ In ⊙ In)(FT
n,x ⊙ In ⊙ In)(Dux,i

⊙ [V(a,b)
n,y 0]T ⊙ [V(a,b)

n,z 0]T )f̃(:))

+

rx∑

j=1

rz∑

k=1

ℜ((Dvx,j ⊙ In ⊙Dvz,k)(FT
n,x ⊙ In ⊙FT

n,z)(Dux,j
⊙ [V(a,b)

n,y 0]T ⊙Duz,k
)f̃(:))

+

rx∑

j=1

ry∑

k=1

ℜ((Dvx,j ⊙Dvy,k ⊙ In)(FT
n,x ⊙FT

n,y ⊙ In)(Dux,j
⊙Duy,k

⊙ [V(a,b)
n,z 0]T )f̃(:))

+

rx∑

i=1

ry∑

j=1

rz∑

k=1

ℜ((Dvx,i ⊙Dvy,j ⊙Dvz,k)(FT
n,x ⊙FT

n,y ⊙FT
n,z)(Dux,i

⊙Duy,j
⊙Duz,k

)f̃(:)).

(60)

where f̃(:) = (Wx ⊙Wy ⊙Wz)
2f(:).

In our numerical implement, since 0 does not contribute to the summation above, we just
need to compute O(n2) entries of α(:) for the first seven terms above. Therefore, 3D inverse Jacobi
polynomial transform can also be evaluated via O((rx+ry+rz)n

2) 1D FFTs, O((rxry+rxrz+ryrz)n)
2D FFTs, and O(rxryrz) 3D FFTs.

4 Numerical results

This section presents several numerical examples to demonstrate the effectiveness of the algorithms
proposed above. Section 4.1 provides a comparison of the original method in [19] named as method
CHEB using (44) in Section 3.1, and our new method named as RS using (50) in Section 3.1
to demonstrate the superiority of our new method. In Section 4.2, we apply our new method to
three examples corresponding to 1D, 2D, and 3D Jacobi polynomial transforms with parameters
a = b = 0.25, respectively. All implementations are in MATLABR© on a server computer with 28
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Figure 1: Numerical results for the comparison of the CHEB and RS method for 3D forward
uniform transform. Top: the factorization and application time from left to right, respectively.
Bottom left and right: the numerical ranks of the low-rank matrices provided by CHEB and RS,
and the relative errors of the fast matvec compared to the exact summation.
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Figure 2: Numerical accuracy of the CHEB and RS algorithms for 1D forward uniform transform
when a and b are assigned as 0.6, 0.7, 0.8, and 0.9, respectively.
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Figure 3: Numerical results for the 2D uniform forward transform (the first row), the 2D uniform
inverse transform (the second row), and the 2D nonuniform forward transform. The running time
in second, the numerical rank of the low-rank matrix in (52), and the relative error of the fast
algorithm compared to the exact summation are visualized from left to right columns.

processors and 2.6 GHz CPU. We have made our code, including that for all of the experiments
described here, available on GitLab at the following address:

https://gitlab.com/FastOrthPolynomial/Jacobi.git

In our numerical results, N denotes the number of grid points per dimension; “fac” and “app”
stand for the factorization time for setting up the algorithm and the application time for applying
the algorithm, respectively; “relerr” means the relative error of the fast matvec. The rank parameter
r and the accuracy parameter ǫ in all low-rank factorization algorithms are set to ⌈2 log2(N)⌉ and
1e− 8, respectively, where ⌈·⌉ is the ceiling function. To make fair comparisons, the oversampling
parameter q in Algorithm 2.1 for the RS method is set such that q × r is approximately equal to
the number of piecewise Chebyshev grids in (30) used in the CHEB method. We perform the same
experiment 10 times and summarize the average statistics in the following figures.
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Figure 4: Numerical results for the 3D uniform forward transform (the first row), the 3D uniform
inverse transform (the second row), and the 3D nonuniform forward transform. The running time
in second, the numerical rank of the low-rank matrix in (57), and the relative error of the fast
algorithm compared to the exact summation are visualized from left to right columns.

4.1 Comparison of CHEB and RS methods

4.1.1 Comparisons in the three-dimensional case for a and b in (−1
2 ,

1
2)

First, we provide performance comparisons of the CHEB algorithm and the RS algorithm in the
three-dimensional case with a = b = 0.25 to demonstrate that the RS is more efficient than the
CHEB algorithm. In the one and two-dimensional cases, RS is also faster than CHEB but the
speed-up is less obvious.

As we can see from the results summarized in Figure 1, the RS method provides a more compact
matrix compression while keeping the compression accuracy competitive to that of the CHEB
algorithm. The more compact compression results in faster set-up and application time for the
Jacobi transform for all problem sizes.
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4.1.2 Comparisons in the one-dimensional case for a and b in (−1, 1) \ (−1
2 ,

1
2 )

Second, we provide comparisons of the CHEB and RS algorithms when a and b are assigned as 0.6,
0.7, 0.8, and 0.9 in the range (−1, 1) \ (−1

2 ,
1
2), which is the range of a and b that has not been

explored in [19]. Since the case when a and b are negative is similar to the case when a and b are
positive, we only show the results for positive a and b. The numerical results are summarized in
Figure 2 and they show that both CHEB and RS achieve desired accuracy when a and b are not
close to 1; RS works but CHEB fails when a and b are close to 1. Hence, the newly proposed RS
algorithm works in a larger range of a and b than the CHEB method in [19].

4.2 Performance of fast multi-dimensional transforms

Finally, we will present examples for two and three-dimensional Jacobi polynomial transforms using
the RS algorithm. In either the two or three-dimensional case, there are numerical results for one
uniform forward transform, one uniform inverse transform, and one nonuniform forward transform.
a and b are all set to 0.25 in these examples.

Figure 3 and 4 summarize the numerical results in 2D and 3D, respectively. In cases, no matter
forward or inverse transform, uniform or nonuniform transform, 2D or 3D, the factorization and
application time of our algorithm scale like O(Nd logN) or O(Nd log2N), where d is the dimension.
The numerical rank gradually increases like O(logN) as the problem size increases. The relative
error of the fast algorithm is in line with the desired accuracy in the low-rank factorization.

5 Conclusion

This paper proposed a fast algorithm for multi-dimensional Jacobi polynomial transforms based
on the observation that the solution of Jacobi’s differential equation can be represented via non-
oscillatory phase and amplitude functions. In particular, the transformation matrix corresponding
to the discrete transform is a Hadamard product of a numerically low-rank matrix and a multi-
dimensional discrete Fourier transform matrix. After constructing a low-rank approximation to the
numerical low-rank matrix, the application of the Hadamard product can be carried out via O(1)
fast Fourier transforms, resulting in a nearly optimal algorithm to compute the multi-dimensional
Jacobi polynomial transform.

We proposed to apply the randomized SVD to construct low-rank factorizations, resulting in
a faster Jacobi transform in high-dimensional spaces. Moreover, numerical experiments show that
the new fast transform works for a larger class of Jacobi polynomials with parameter a and b in
the interval (−1, 1) than the one-dimensional algorithm in [19].

For other values of a and b outside (−1, 1), the Jacobi transformation matrix is no longer purely
oscillatory and hence the proposed method is not applicable. We will tackle this issue in the future
via hierarchically dividing the transformation matrix into sub-matrices that are either purely non-
oscillatory, which can be handled by fast low-rank factorization, or purely oscillatory, which can be
applied via the fast algorithm in this paper.

The fast inverse in the nonuniform case is still an open problem. It involves a highly ill-
conditioned linear system of equations. We are working on an efficient preconditioner for this
linear system and will summarize our work in a separate paper.

Acknowledgments. H. Yang thanks the support of the start-up grant by the Department of
Mathematics at the National University of Singapore.
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