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Abstract

We observe that solutions of a large class of highly oscillatory second order linear ordinary differen-
tial equations can be approximated using nonoscillatory phase functions. In addition, we describe
numerical experiments which illustrate several implications of this fact. For example, that many spe-
cial functions of great interest — such as the Bessel functions Jν and Yν — can be evaluated accurately
using a number of operations which is Op1q in the order ν. The present paper is devoted to the devel-
opment of an analytical apparatus. Numerical aspects of this work will be reported at a later date.
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1. Introduction

Given a differential equation

y2ptq ` λ2qptqyptq “ 0 for all 0 ď t ď 1, (1)

where λ is a real number and q : r0, 1s Ñ R is smooth and strictly positive, a sufficiently smooth
α : r0, 1s Ñ R is a phase function for (1) if the pair of functions u, v defined by the formulas

uptq “
cospαptqq

|α1ptq|1{2
(2)

and

vptq “
sinpαptqq

|α1ptq|1{2
(3)

form a basis in the space of solutions of (1). Phase functions have been extensively studied: they were
first introduced in [9], play a key role in the theory of global transformations of ordinary differential
equations [3, 10], and are an important element in the theory of special functions [16, 6, 11, 1].

Despite this long history, a useful property of phase functions appears to have been overlooked.
Specifically, that when the function q is nonoscillatory, solutions of the equation (1) can be accurately
represented using a nonoscillatory phase function.

This is somewhat surprising since α is a phase function for (1) if and only if it satisfies the third order
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nonlinear ordinary differential equation

`

α1ptq
˘2
“ λ2qptq ´

1

2

α3ptq

α1ptq
`

3

4

ˆ

α2ptq

α1ptq

˙2

for all 0 ď t ď 1. (4)

The equation (4) was introduced in [9], and and we will refer to it as Kummer’s equation. The form of
(4) and the appearance of λ in it suggests that its solutions will be oscillatory — and most of them are.
However, Bessel’s equation

y2ptq `

ˆ

1´
λ2 ´ 1{4

t2

˙

yptq “ 0 for all 0 ă t ă 8 (5)

furnishes a nontrivial example of an equation which admits a nonoscillatory phase function regardless
of the value of λ. If we define u, v by the formulas

uptq “

c

πt

2
Jλptq (6)

and

vptq “

c

πt

2
Yλptq, (7)

where Jλ and Yλ denote the Bessel functions of the first and second kinds of order λ, and let α be
defined by the relations (2),(3), then

α1ptq “
2

πt

1

J2
λptq ` Y

2
λ ptq

. (8)

It can be easily verified that (8) is a nonoscillatory. The existence of this nonoscillatory phase function
for Bessel’s equation is the basis of several methods for the evaluation of Bessel functions of large
orders and for the computation of their zeros [6, 8, 15].

The general situation is not quite so favorable: there need not exist a nonoscillatory function α such
that (2) and (3) are exact solutions of (1). However, assuming that q is nonoscillatory and λ is suf-
ficiently large, there exists a nonoscillatory function α such that (2), (3) approximate solutions of (1)
with spectral accuracy (i.e., the approximation errors decay exponentially with λ).

To see that this claim is plausible, we apply Newton’s method for the solution of nonlinear equations
to Kummer’s equation (4). In doing so, it will be convenient to move the setting of our analysis from
the interval r0, 1s to the real line so that we can use the Fourier transform to quantity the notion of
“nonoscillatory.” Suppose that the extension of q to the real line is smooth and strictly positive, and
such that logpqq is a smooth function with rapidly decaying Fourier transform. Letting

`

α1ptq
˘2
“ λ2 expprptqq (9)

in (4) yields the logarithm form of Kummer’s equation:

r2ptq ´
1

4

`

r1ptq
˘2
` 4λ2 pexpprptqq ´ qptqq “ 0 for all t P R. (10)

We use trnu to denote the sequence of Newton iterates for the equation (10) obtained from the initial
guess

r0ptq “ logpqptqq. (11)

The function r0 corresponds to the first order WKB approximations for (1). That is to say that if we
insert the associated phase function

α0ptq “ λ

ż t

0
exp

ˆ

1

2
r0puq

˙

du “ λ

ż t

0

a

qpuqdu (12)
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into (2),(3), then

uptq “ q´1{4ptq cos

ˆ

λ

ż t

0

a

qpuq du

˙

(13)

and

vptq “ q´1{4ptq sin

ˆ

λ

ż t

0

a

qpuq du

˙

. (14)

For each n ě 0, rn`1 is obtained from rn by solving the linearized equation

h2ptq ´
1

2
r1nptqh

1ptq ` 4λ2 exp prnptqqhptq “ fnptq for all t P R, (15)

where

fnptq “ ´r
2
nptq `

1

4

`

r1nptq
˘2
´ 4λ2 pexp prnptqq ´ qptqq , (16)

and letting

rn`1ptq “ rnptq ` hptq. (17)

By introducing the change of variables

xptq “

ż t

0
exp

ˆ

rnpuq

2

˙

du (18)

into (15), we transform it into the inhomogeneous Helmholtz equation

h2pxq ` 4λ2hpxq “ gnpxq for all x P R, (19)

where

gnpxq “ exp p´rnpxqq fnpxq. (20)

Suppose that pgn decays rapidly (when n “ 0, this is a consequence of our assumption that logpqq has a
rapidly decaying Fourier transform) and let h˚ be the solution of (19) whose Fourier transform is

xh˚pξq “
pgnpξq

4λ2 ´ ξ2
. (21)

Since xh˚pξq is singular when ξ “ ˘2λ, h˚ will necessarily have a component which oscillates at fre-
quency 2λ. However, according to (21), the L8 pRq norm of that component is

pgnp2λq

4λ
. (22)

In fact, by rearranging (21) as

xh˚pξq “
1

4λ

ˆ

pgnpξq

2λ´ ξ
`

pgnpξq

2λ` ξ

˙

(23)

and decomposing each of the terms on the right-hand side of (23) as

pgnpξq

2λ˘ ξ
“

1

4λ

˜

pgnpξq ´ pgnp¯2λq exp
`

´p2λ˘ ξq2
˘

2λ˘ ξ
` pgnp¯2λq

exp
`

´p2λ˘ ξq2
˘

2λ˘ ξ

¸

, (24)

we obtain

h˚pxq “ h0pxq ` h1pxq, (25)

where h0 is defined by the formula

xh0pξq “
1

4λ

˜

pgnpξq ´ pgnp´2λq exp
`

´p2λ` ξq2
˘

2λ` ξ
`

pgnpξq ´ pgnp2λq exp
`

´p2λ´ ξq2
˘

2λ´ ξ

¸

, (26)
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and h1 is defined by the formula

xh1pξq “
1

4λ

˜

pgnp´2λq
exp

`

´p2λ` ξq2
˘

2λ` ξ
` pgnp2λq

exp
`

´p2λ´ ξq2
˘

2λ´ ξ

¸

. (27)

Since the factor in the denominator in (26) has been canceled and both pgn and the Gaussian function are
smooth and rapidly decaying, xh0 is also smooth and rapidly decaying. Meanwhile, a straightforward
calculation shows that the Fourier transform of

1

2i
erf

´x

2

¯

expp2λixq (28)

is
exp

`

´p2λ´ ξq2
˘

2λ´ ξ
, (29)

so that (27) implies that

h1pxq “
1

4λ

ˆ

pgnp´2λq
1

2i
erf

´x

2

¯

expp2λixq ´ pgnp2λq
1

2i
erf

´x

2

¯

expp´2λixq

˙

. (30)

Since gn is real-valued, pgnp2λq “ pgnp´2λq. Inserting this into (30) yields

h1pxq “
pgp2λq

4λ
erf

´x

2

¯

sin p2λxq , (31)

which makes it clear that the L8 pRq norm of h1 is p4λq´1 pgnp2λq.

In (25), the solution of (19) is decomposed as the sum of a nonoscillatory function h0 and a highly
oscillatory function h1 of small magnitude. However, the solution of (15) is actually given by the
function

h˚pxptqq “ h0pxptqq ` h1pxptqq (32)

obtained by reversing the change of variables (18). But since xptq is nonoscillatory and the Fourier
transform of h0pxq decays rapidly, we expect that the composition h0pxptqq will also have a rapidly
decaying Fourier transform. The L8 pRq norm of h1pxptqq is, of course, the same as that of h1pxq. So
the solution of the linearized equation (15) can be written as the sum of a nonoscillatory function
h0pxptqq and a highly oscillatory function h1pxptqq of negligible magnitude.

If, in each iteration of the Newton procedure, we approximate the solution of (15) by constructing
h˚pxptqq and discarding the oscillatory term h1ptpxqq of small magnitude, then it is plausible that we
will arrive at an approximate solution rptq of the logarithm form of Kummer’s equation which is
nonoscillatory, assuming the Fourier transform of r0ptq “ logpqptqq decays rapidly enough and λ is
sufficiently large.

Most of the remainder of this paper is devoted to developing a rigorous argument to replace the
preceding heuristic discussion. In Section 2, we summarize a number of well-known mathematical
facts to be used throughout this article. In Section 3, we reformulate Kummer’s equation as a nonlinear
integral equation. Once that is accomplished, we are in a position to state the principal result of
the paper and discuss its implications; this is done in Section 4. The proof of this principal result is
contained in Sections 5, 6, 7 and 8.

In Section 9, we present the results of numerical experiments concerning the evaluation of special
functions. The details of our numerical algorithm will be reported at a later date.

We conclude with a few brief remarks in Section 10.
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2. Preliminaries

2.1. Schwartz functions and tempered distributions

We say that ϕ P C8 pRq is is a Schwartz function if ϕ and all of its derivatives decay faster than any
polynomial. That is, if

sup
tPR
|tiϕpjqptq| ă 8 (33)

for all pairs i, j of nonnegative integers. The set of all Schwartz functions is denoted by SpRq. It is
endowed with the topology generated by the family of seminorms

}ϕ}k “
k
ÿ

j“0

sup
tPR

ˇ

ˇ

ˇ
tkϕpjqpxq

ˇ

ˇ

ˇ
k “ 0, 1, 2, . . . , (34)

so that a sequence tϕnu of functions in SpRq converges to ϕ in SpRq if and only if

lim
nÑ8

}ϕn ´ ϕ}k “ 0 for all k “ 0, 1, 2, . . . . (35)

We denote the space of continuous linear functionals on SpRq, which are known as tempered distribu-
tions, by S1pRq.

2.2. Convention for the Fourier transform

We define the Fourier transform of a function f P L1 pRq via the formula

pfpξq “

ż 8

´8

expp´itξqfptq dt. (36)

so that
zf ˚ gpξq “ pfpξqpgpξq, (37)

yf ¨ gpξq “
1

2π

ż 8

´8

pfpξ ´ ηqpgpηq dη, (38)

and

fpxq “
1

2π

ż 8

´8

exppitξqfptq dt. (39)

2.3. Modified Bessel functions

The modified Bessel function Kνptq of the first kind of order ν is defined for t P R and ν P C by the
formula

Kνptq “

ż 8

0
exp p´t cosh ptqq coshpνtq dt. (40)

The following bound on the ratio of Kν`1 to Kν can be found in [14].

Theorem 1. Suppose that t ą 0 and ν ą 0 are real numbers. Then

Kν`1ptq

Kνptq
ă
ν `

?
ν2 ` t2

t
ď

2ν

t
` 1. (41)
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2.4. The binomial theorem

A proof of the following can be found in [13], as well as many other sources.

Theorem 2. Suppose that r is a real number, and that y is a real number such that |y| ă 1. Then

p1` yqr “
8
ÿ

k“0

Γpr ` 1q

Γpk ` 1qΓpr ´ k ` 1q
yk. (42)

2.5. Fréchet derivatives and the contraction mapping principle

Given Banach spaces X , Y and a mapping f : X Ñ Y between them, we say that f is Fréchet differ-
entiable at x P X if there exists a bounded linear operator X Ñ Y , denoted by f 1x, such that

lim
hÑ0

}fpx` hq ´ fpxq ´ f 1x rhs}

}h}
“ 0. (43)

Theorem 3. Suppose that X and Y are a Banach spaces and that f : X Ñ Y is Fréchet differentiable at every
point of X . Suppose also that D is a convex subset of X , and that there exists a real number M ą 0 such that

}f 1x} ďM (44)

for all x P D. Then

}fpxq ´ fpyq} ďM}x´ y} (45)

for all x and y in D.

Suppose that f : X Ñ X is a mapping of the Banach space X into itself. We say that f is contractive
on a subset D of X if there exists a real number 0 ă α ă 1 such that

}fpxq ´ fpyq} ď α}x´ y} (46)

for all x, y P D. Moreover, we say that txnu8n“0 is a sequence of fixed point iterates for f if xn`1 “ fpxnq
for all n ě 0.

Theorem 3 is often used to show that a mapping is contractive so that the following result can be
applied.

Theorem 4. (The Contraction Mapping Principle) Suppose that D is a closed subset of a Banach space X .
Suppose also that f : X Ñ X is contractive on D and fpDq Ă D. Then the equation

x “ fpxq (47)

has a unique solution σ˚ P D. Moreover, any sequence of fixed point iterates for the function f which contains
an element in D converges to σ˚.

A discussion of Fréchet derivatives and proofs of Theorems 3 and 4 can be found, for instance, in [18].

2.6. Schwarzian derivatives

The Schwarzian derivative of a smooth function f : RÑ R is

tf, tu “
f3ptq

f 1ptq
´

3

2

ˆ

f2ptq

f 1ptq

˙2

. (48)

If the function xptq is a diffeomorphism of the real line (that is, a smooth, invertible mapping RÑ R),
then the Schwarzian derivative of xptq can be related to the Schwarzian derivative of its inverse tpxq;
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in particular,

tx, tu “ ´

ˆ

dx

dt

˙2

tt, xu. (49)

The identity (49) can be found, for instance, in Section 1.13 of [11].

3. Integral equation formulation

In this section, we reformulate Kummer’s equation

`

α1ptq
˘2
“ λ2qptq ´

1

2

α3ptq

α1ptq
`

3

4

ˆ

α2ptq

α1ptq

˙2

(50)

as a nonlinear integral equation. As in the introduction, we assume that the function q has been
extended to the real line and we seek a function α which satisfies (50) on the real line.

By letting
`

α1ptq
˘2
“ λ2 expprptqq (51)

in (50), we obtain the equation

r2ptq ´
1

4

`

r1ptq
˘2
` 4λ2 pexpprptqq ´ qptqq “ 0 for all t P R. (52)

We next take r to be of the form

rptq “ logpqptqq ` δptq, (53)

which results in

δ2ptq ´
1

2

q1ptq

qptq
δ1ptq ´

1

4

`

δ1ptq
˘2
` 4λ2qptq pexppδptqq ´ 1q “ qptqpptq, for all t P R, (54)

where p is defined by the formula

pptq “
1

qptq

˜

5

4

ˆ

q1ptq

qptq

˙2

´
q2ptq

qptq

¸

. (55)

Note that the function p appears in the standard error analysis of WKB approximations (see, for in-
stance, [12]). Expanding the exponential in a power series and rearranging terms yields the equation

δ2ptq ´
1

2

q1ptq

qptq
δ1ptq ` 4λ2qptqδptq ´

1

4

`

δ1ptq
˘2
` 4λ2qptq

˜

pδptqq2

2
`
pδptqq3

3!
` ¨ ¨ ¨

¸

“ qptqpptq. (56)

Applying the change of variables

xptq “

ż t

0

a

qpuq du (57)

transforms (56) into

δ2pxq ` 4λ2δpxq ´
1

4

`

δ1pxq
˘2
` 4λ2

˜

pδpxqq2

2
`
pδpxqq3

3!
` ¨ ¨ ¨

¸

“ ppxq for all x P R. (58)

At first glance, the relationship between the function ppxq appearing in (58) and the coefficient qptq in
the ordinary differential equation (1) is complex. However, the function pptq defined via (55) is related
to the Schwarzian derivative (see Section 2.6) of the function xptq defined in (57) via the formula

pptq “ ´
2

qptq
tx, tu “ ´2

ˆ

dt

dx

˙2

tx, tu . (59)
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It follows from (59) and Formula (49) in Section 2.6 that

ppxq “ 2 tt, xu . (60)

That is to say: p, when viewed as a function of x, is simply twice the Schwarzian derivative of t with
respect to x.

It is also notable that the part of (58) which is linear in δ is a constant coefficient Helmholtz equation.
This suggests that we form an integral equation for (58) using a Green’s function for the Helmholtz
equation. To that end, we define the integral operator T for functions f P L1 pRq via the formula

T rf s pxq “
1

4λ

ż 8

´8

sin p2λ |x´ y|q fpyq dy (61)

The following theorem summarizes the relevant properties of the operator T .

Theorem 5. Suppose that λ ą 0 is a real number, and that the operator T is defined as in (61). Suppose also
that f P L1 pRq X C pRq. Then:

1. T rf s pxq is an element of C2 pRq;

2. T rf s pxq is a solution of the ordinary differential equation

y2pxq ` 4λ2ypxq “ fpxq for all x P R; and

3. the Fourier transform of T rf s pxq is the principal value of

pfpξq

4λ2 ´ ξ2
“

1

4λ

˜

pfpξq

2λ´ ξ
`

pfpξq

2λ` ξ

¸

.

Proof. We observe that

T rf s pxq “
1

4λ

ż x

´8

sin p2λ px´ yqq fpyq dy `
1

4λ

ż 8

x
sin p2λpy ´ xqq fpyq dy

“
1

4λ
sinp2λxq

ż x

´8

cosp2λyqfpyq dy ´
1

4λ
cosp2λxq

ż x

´8

sinp2λyqfpyq dy

`
1

4λ
cosp2λxq

ż 8

x
sinp2λyqfpyq dy ´

1

4λ
sinp2λxq

ż 8

x
cosp2λyqfpyq dy

(62)

for all x P R. We differentiate both sides of (62) with respect to x, apply the Lebesgue dominated con-
vergence theorem to each integral (this is permissible since the sine and cosine functions are bounded
and f P L1 pRq) and combine terms in order to conclude that T rf s is differentiable everywhere and

d

dx
T rf s pxq “ “

1

2

ż 8

´8

cos p2λ |x´ y|q signpx´ yqfpyq dy (63)

for all x P R. In the same fashion, we conclude that
ˆ

d

dx

˙2

T rf s pxq “ fpxq ´ λ

ż 8

´8

sin p2λ |x´ y|q fpyq dy (64)

for all x P R. Since f is continuous by assumption and the second term appearing on the right-hand
side in (64) is a continuous function of x by the Lebesgue dominated convergence theorem, we see
from (64) that T rf s is twice continuously differentiable. By combining (64) and (61), we conclude that
T rf s is a solution of the ordinary differential equation

y2pxq ` 4λ2ypxq “ fpxq for all x P R. (65)
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We now define the function g through the formula

pgpξq “
1

4λ

ˆ

1

2λ´ ξ
`

1

2λ` ξ

˙

. (66)

It is well known that the Fourier transform of the principal value of 1{x is the function

´iπ signpxq; (67)

see, for instance, [17] or [7]. It follows readily that the inverse Fourier transform of the principal value
of

1

2λ˘ ξ
(68)

is

˘
1

2i
exp p¯2λixq signpxq. (69)

From this and (66), we conclude that

gpxq “
1

4λ

ˆ

1

2i
exp p´2λixq signpxq ´

1

2i
exp p2λixq signpxq

˙

“
1

4λ
sin p2λ|x|q .

(70)

In particular, T rf s is the convolution of f with g. As a consequence,

{T rf spξq “ pgpξq pfpξq “
1

4λ

˜

pfpξq

2λ´ ξ
`

pfpξq

2λ` ξ

¸

, (71)

which is the third and final conclusion of the theorem.

In light of Theorem 5, it is clear that introducing the representation

δpxq “ T rσ s pxq (72)

into (58) yields the nonlinear integral equation

σpxq “ S rT rσ ss pxq ` ppxq for all x P R, (73)

where S is the operator defined for functions f P C1 pRq by the formula

S rf s pxq “
pf 1pxqq2

4
´ 4λ2

˜

pfpxqq2

2!
`
pfpxqq3

3!
`
pfpxqq4

4!
` ¨ ¨ ¨

¸

. (74)

The following theorem is immediately apparent from the procedure used to transform Kummer’s
equation (50) into the nonlinear integral equation (73).

Theorem 6. Suppose that λ ą 0 is a real number, that q : RÑ R is an infinitely differentiable, strictly positive
function, that xptq is defined by (57), and that ppxq is defined via (60). Suppose also that σ P L1 pRq XC pRq is
a solution of the integral equation (73), that δ is defined via the formula

δpxq “ T rσ s pxq “
1

4λ

ż 8

´8

sin p2λ |x´ y|qσpyq dy, (75)

and that the function α is defined by the formula

αptq “ λ

ż t

0

a

qpuq exp

ˆ

δpxpuqq

2

˙

du. (76)

Then:
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1. δpxq is a twice continuously differentiable solution of (58);

2. δpxptqq is a twice continuously differentiable solution of of (56);

3. αptq is three times continuously differentiable solution of (50); and

4. αptq is a phase function for the ordinary differential equation

y2ptq ` λ2qptqyptq “ 0 for all 0 ď t ď 1. (77)

In the event that f P L2 pRq, the integral
1

2λ

ż 8

´8

sin p2λ |x´ y|q fpyq dy (78)

defining T rf s need not be absolutely integrable. However, if the Fourier transform of f is compactly
supported on the interval p´2λ, 2λq then

pfpξq

4λ2 ´ ξ2
, (79)

which is formally the Fourier transform of T rf s, is a L1 pRq function. In this event, we define T rf s via
the inverse Fourier transform; that is,

T rf s pxq “
1

2π

ż 8

´8

exppixξq
pfpξq

4λ2 ´ ξ2
dξ. (80)

The absolute convergence of this integral is a consequence of the assumption that pf is compactly
supported in p´2λ, 2λq. Since T rf s and f are inverse Fourier transforms of compactly supported
functions, both are entire functions (in particular, they are both twice continuously differentiable).
Moreover, we observe that the Fourier transform of the function

T rf s2 pxq ` 4λ2T rf s pxq (81)

is

´ξ2zT rf s ` 4λ2zT rf s “ ´ξ2
pfpξq

4λ2 ´ ξ2
` 4λ2

pfpξq

4λ2 ´ ξ2
“ pfpξq, (82)

from which we conclude that

T rf s2 pxq ` 4λT rf s pxq “ fpxq (83)

almost everywhere. The continuity of f and T rf s now imply that (83) in fact holds everywhere; that
is, T rf s is a solution of the inhomogeneous Helmholtz equation

y2pxq ` 4λ2ypxq “ fpxq for all x P R. (84)

4. Overview and statement of the principal result

The nonlinear integral equation (73) is not solvable for arbitrary p. In this article, we will show that
when the function p is nonoscillatory, there exists a nonoscillatory function σ and a function ν of
magnitude which decays exponentially in λ such that

σpxq “ S rT rσ ss pxq ` ppxq ` νpxq. for all x P R (85)

The next theorem, which is the principal result of this article, makes these statements precise. Its proof
is given in Sections 5, 6, 7 and 8.
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Theorem 7. Suppose that q P C8 pRq is a strictly positive, that xptq is defined by the formula

xptq “

ż t

0

a

qpuq du, (86)

and that the function p defined via the formula

ppxq “ 2tt, xu (87)

is an element of SpRq. Suppose furthermore that there exist positive real numbers λ, Γ and a such that

λ ě max

#

2

a
, 2Γ,

c

2Γ

π

+

(88)

and

|pppξq| ď Γ exp p´a |ξ|q for all ξ P R. (89)

Then there exists a function σ P SpRq and an infinitely differentiable function ν such that σ is a solution of the
nonlinear integral equation

σpxq “ S rT rσss pxq ` ppxq ` νpxq, for all x P R, (90)

|pσpξq| ă 2Γ exp p´a|ξ|q for all |ξ| ď
?

2λ, (91)

pσpξq “ 0 for all |ξ| ą
?

2λ, (92)

and

}ν}8 ď
12Γ

a
exp p´aλq . (93)

Suppose that σ and ν are the functions obtained by invoking Theorem 7. We define the function δ by
the formula

δptq “ T rσs pxptqq, (94)

where xptq is as in (86), the function r by the formula

rptq “ logpqptqq ` δptq (95)

and the function α by the formula

αptq “ λ

ż t

0

a

qpuq exp

ˆ

rpuq

2

˙

du. (96)

The function α is not a phase function for the original differential equation (1). Suppose, however, that
q̃ is a solution of the ordinary differential equation

1

q̃ptq

˜

5

4

ˆ

q̃1ptq

q̃ptq

˙2

´
q̃2ptq

q̃ptq

¸

“ pptq ` νptq for all 0 ď t ď 1. (97)

Then the function α defined via (96) is a phase function for the modified second order linear ordinary
differential equation

y2ptq ` λ2q̃ptqyptq “ 0 for all 0 ď t ď 1. (98)

since σ is a solution of (90). Moreover, since the magnitude of ν is small, we expect the difference
between solutions of (98) and (1). In particular, the functions u, v defined via the formulas

uptq “
cospαptqq
a

α1ptq
(99)
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vptq “
sinpαptqq
a

α1ptq
, (100)

which are solutions of (98), will closely agree with solutions of (1). A more precise version of the
following statement to this effect could be formulated easily using standard results found in textbooks
on ordinary differential equations (for instance, [4]).

Theorem 8. Suppose that the hypotheses of Theorem 7 are satisfied. Suppose further that u and v are the
functions defined by the formulas (99) and (100). If λ is sufficiently large, then there exists a constant C which
depends on q but not λ, and a basis tũ, ṽu in the space of solutions of the second order differential (1) such that

|uptq ´ ũptq| ď C expp´aλq (101)

and

|vptq ´ ṽptq| ď C expp´aλq (102)

for all 0 ď t ď 1.

The proof of Theorem 7 is divided amongst Sections 5, 6, 7 and 8. The principal difficulty lies in con-
structing a function ν such that (85) admits a solution. We accomplish this by introducing a modified
integral equation

σbpxq “ S rTb rσb ss pxq ` ppxq, (103)

where Tb is a “band-limited” version of T . That is, Tb rf s is defined via the formula
{Tb rf spξq “{T rf spξqbpξq, (104)

where bpξq is a C8c pRq bump function. This modified integral equation is introduced in Section 5. In
Section 6, we show that under mild conditions on p and λ, (103) admits a solution σb. The argument
proceeds by applying the Fourier transform to (103) and using the contraction mapping principle to
show that the resulting equation admits a solution. In Section 7, we show that the Fourier transform of
the solution σb of (103) is exponentially decaying whenever pp is exponentially decaying. In Section 8
we use the solution σb of (103) in order to construct functions σ and ν which satisfy (85). Moreover,
we show that σ can be taken to be an element of the space SpRq of rapidly decaying Schwartz func-
tions (see Section 2.1), that the Fourier transform of σ decays exponentially with λ, that ν is infinitely
differentiable, and that the L8 pRq norm of ν has L8 pRq also decays exponentially with λ.

5. Band-limited integral equation

In this section, we introduce a “band-limited” version of the operator T and use it to form an alterna-
tive to the integral equation (73).

Let bpξq be any infinitely differentiable function such that

1. bpξq “ 1 for all |ξ| ď λ,

2. 0 ď bpξq ď 1 for all λ ď |ξ| ď
?

2λ, and

3. there exists an ε ą 0 such that bpξq “ 0 for all |ξ| ą
?

2λ´ ε.

We define Tb rf s for functions f P L1 pRq via the formula

{Tb rf spξq “ pfpξq
bpξq

4λ2 ´ ξ2
(105)

12



We will refer to Tb as the band-limited version of the operator T and and we call the nonlinear integral
equation

σbpxq “ S rTb rσb ss pxq ` ppxq for all x P R (106)

obtained by replacing T with Tb in (73) the “band-limited” version of (73).

Since Tb is a Fourier multiplier, it is convenient to analyze (106) in the Fourier domain rather than the
space domain. We now introduce notation which will allow us to write down the equation obtained
by applying the Fourier transform to both sides of (106).

We let Wb and ĂWb be the linear operators defined for f P L1 pRq via the formulas

Wb rf s pξq “ fpξq
bpξq

4λ2 ´ ξ2
(107)

and

ĂWb rf s pξq “ fpξq
bpξqiξ

4λ2 ´ ξ2
, (108)

where bpξq is the function used to define the operator Tb.

For functions f P L1 pRq, it is standard to denote the Fourier transform of the function exppfpxqq by
exp˚ rf s; that is,

exp˚ rf s pξq “ 2πδpξq ` fpξq `
f ˚ fpξq

2!p2πq
`
f ˚ f ˚ fpξq

3!p2πq2
` ¨ ¨ ¨ . (109)

In (109), δ defers to the delta distribution and f ˚ f ˚ ¨ ¨ ¨ ˚ f denotes repeated convolution of the
function f with itself. The Fourier transform of exppfpxqq never appears in this paper; however, we
will encounter the Fourier transforms of the functions

exppfpxqq ´ 1 (110)

and

exppfpxqq ´ fpxq ´ 1. (111)

So, in analogy with the definition (109), we define exp˚1 rf s for f P L1 pRq by the formula

exp˚1 rf s pξq “ fpξq `
f ˚ fpξq

2!p2πq
`
f ˚ f ˚ fpξq

3!p2πq2
` ¨ ¨ ¨ , (112)

and we define exp˚2 rf s for f P L1 pRq via the formula

exp˚2 rf s pξq “
f ˚ fpξq

2!p2πq
`
f ˚ f ˚ fpξq

3!p2πq2
` ¨ ¨ ¨ . (113)

That is, exp˚1 rf s is obtained by truncating the leading term of exp˚ rf s and exp˚2 rf s is obtained by
truncated the first two leading terms of exp˚ rf s.

Finally, we define functions ψpξq and vpξq using the formulas

ψpξq “ pσbpξq (114)

and

vpξq “ pppξq. (115)

Applying the Fourier transform to both sides of (106) results in the nonlinear equation

ψpξq “ R rψs pξq, (116)

13



where R rf s is defined for f P L1 pRq by the formula

R rf s pξq “
1

8π
ĂWb rf s ˚ĂWb rf s pξq ´ 4λ2 exp˚2 rWb rf s s pξq ` vpξq. (117)

6. Existence of solutions of the band-limited equation.

In this section, we give conditions under which the sequence tψnu8n“0 of fixed point iterates for (116)
obtained by using the function v defined by (115) as an initial approximation converges. More explic-
itly, ψ0 is defined by the formula

ψ0pξq “ vpξq, (118)

and for each integer n ě 0, ψn`1 is obtained from ψn via

ψn`1pξq “ R rψns pξq. (119)

Theorem 9. Suppose that λ ą 0 is a real number, and that v P L1 pRq such that

}v}1 ď
π

2
λ2. (120)

Then the sequence tψnu8n“0 defined by (118) and (119) converges in L1 pRq norm to a function ψ which satisfies
the equation (116) for almost all ξ P R. If v is a continuous function, then ψ is also continuous. If, in addition
to being an element of L1 pRq such that (120) holds, v is an element of L8 pRq and

}v}8 ď
π

2
λ2, (121)

then the sequence ψn also converges to ψ in L8 pRq norm (i.e., uniformly).

Proof. We observe that the Fréchet derivative (see Section 2.5) of R at f is the linear operator R1f :

L1 pRq Ñ L1 pRq given by the formula

R1f rhs pξq “
ĂWb rf s ˚ĂWb rhs pξq

4π
´

2λ2

π
exp˚1 rWb rf ss ˚Wb rhs pξq. (122)

From formulas (107) and (108) and the definition of bpξqwe see that

}Wb rf s}1 ď
}f}1
2λ2

, (123)

and
›

›

›

ĂWb rf s
›

›

›

1
ď
}f}1
?

2λ
(124)

for all f P L1 pRq. From (122), (123) and (124) we conclude that
›

›R1f rhs
›

›

1
ď

1

4π

›

›

›

ĂWb rf s
›

›

›

1

›

›

›

ĂWb rhs
›

›

›

1
`

2λ2

π
}Wb rf s}1 exp

ˆ

}Wb rf s}1
2π

˙

}Wb rhs}1

ď
}f}1}h}1

8πλ2
`

2λ2

π

}f}1
2λ2

}h}1
2λ2

exp

ˆ

}f}1
4πλ2

˙

ď

ˆ

}f}1
8πλ2

`
}f}1
2πλ2

exp

ˆ

}f}1
4πλ2

˙˙

}h}1

(125)
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for all f and h in L1 pRq. Similarly, by combining (117), (123) and (124) we conclude that

}R rf s}1 ď
1

8π

›

›

›

ĂWb rf s
›

›

›

2

1
`
λ2

π
}Wb rf s}

2
1 exp

ˆ

}Wb rf s}1
2π

˙

` }v}1

ď
}f}21

16πλ2
`
}f}21
4πλ2

exp

ˆ

}f}1
4πλ2

˙

` }v}1

(126)

whenever f P L1 pRq. We now let r “ πλ2 and denote by B the closed ball of radius r centered at 0 in
L1 pRq. Suppose that f P L1 pRq such that

}f}1 ď r “ πλ2, (127)

and that

}v}1 ď
r

2
“
πλ2

2
. (128)

We insert (127) and (128) into (126) in order to obtain

}R rf s}1 ď
r2

16πλ2
`

r2

4πλ2
exp

ˆ

}f}1
4πλ2

˙

`
r

2

“

ˆ

r

16πλ2
`

r

4πλ2
exp

ˆ

}f}1
4πλ2

˙

`
1

2

˙

r

“

ˆ

1

16
`

1

4
exp

ˆ

1

4

˙

`
1

2

˙

r

ď
9

10
r,

(129)

from which we conclude that R maps B into itself. Next, we insert (127) into (125) in order to obtain
›

›R1f rhs
›

›

1
ď

ˆ

1

8
`

1

2
exp

ˆ

1

4

˙˙

}h}1 ď
8

10
}h}1, (130)

which shows that R is a contraction on B. We now invoke the contraction mapping theorem (The-
orem 4 in Section 2.5) in order to conclude that any sequence of fixed point iterates for (116), which
originates inB will converge inL1 pRq to a solution of (116). Since tψnu is such a sequence, it converges
in L1 pRq to a function ψ such that

R rψs pxq “ ψpxq for almost all x P R. (131)

If f P L1 pRq, then

|exp˚2 rf s pηq ´ exp˚2 rf s pξq| ď 4λ2
ˆ

}f}1
2!p2πq

`
}f}21

3!p2πq2
` ¨ ¨ ¨

˙
ż 8

´8

|fpη ´ yq ´ fpξ ´ yq| dy

ď 4λ2 exp p}f}8q

ż 8

´8

|fpη ´ yq ´ fpξ ´ yq| dy.

(132)

The dominated convergence theorem implies that
ż 8

´8

|fpη ´ yq ´ fpξ ´ yq| dy Ñ 0 as |η ´ ξ| Ñ 0. (133)

From (132) and (133), we see that exp˚2 rf s is continuous whenever f P L1 pRq. A nearly identical
argument shows that f ˚ f is continuous whenever f P L1 pRq. We conclude from these observations
and the definition of the operator R that R rf s is continuous when v is continuous and f P L1 pRq. In
particular, ψ “ R rψs is continuous.

Now suppose that in addition to being an element of L1 pRq such that }v}1 ď r{2, v is an element of
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L8 pRq such that (121) holds; that is,

}v}8 ď
πλ2

2
“
r

2
(134)

We observe that formulas (107) and (108) and the definition of bpξq imply that

}Wb rf s}8 ď
}f}8
2λ2

(135)

and
›

›

›

ĂWb rf s
›

›

›

8
ď
}f}8
?

2λ
(136)

for all f P L8 pRq. If }f}8 ď r and }f}1 ď r, then using the definitions of R, (123), (124) (135), and
(136) we obtain

}R rf s}8 ď
1

8π

›

›

›

ĂWb rf s
›

›

›

8

›

›

›

ĂWb rf s
›

›

›

1
`
λ2

π
}Wb rf s}8 }Wb rf s}1 exp

ˆ

}Wb rf s}1
2π

˙

` }v}8

ď
r2

16πλ2
`

r2

4πλ2
exp

ˆ

}f}1
4πλ2

˙

`
r

2

ď
9

10
r.

(137)

Similarly, if }f}8 ď r and }f}1 ď r, then from the definitions of R1, (123), (124) (135), and (136) we
conclude that

›

›R1f rhs
›

›

8
ď

1

4π

›

›

›

ĂWb rf s
›

›

›

1

›

›

›

ĂWb rhs
›

›

›

8
`

2λ2

π
}Wb rf s}1 exp

ˆ

}Wb rf s}1
2π

˙

}Wb rhs}8

ď

ˆ

}f}1
8πλ2

`
}f}1
2πλ2

exp

ˆ

}f}1
4πλ2

˙˙

}h}8

ď

ˆ

1

8
`

1

2
exp

ˆ

1

4

˙˙

}h}1 ď
8

10
}h}8

(138)

We conclude from (137) that

}ψn}8 ď r (139)

for all positive integers n. From this observation and (138), we conclude that the sequence tψnu is
Cauchy in L8 pRq norm. It follows that ψn converges to ψ in L8 pRq as well as in L1 pRq.

If ψ is a solution of (116) then the function σb defined by the formula

σbpxq “
1

2π

ż 8

´8

exppixξqψpξq dξ (140)

is clearly a solution of the band-limited integral equation (106). We note that because ψ P L1 pRq, the
integral in (140) is well-defined and σb is an element of the space C0 pRq of continuous functions which
vanish at infinity. We record this observation as follows:

Theorem 10. Suppose that λ ą 0 is a real number. Suppose also that p P L1 pRq such that pp P L1 pRq and

}pp}1 ă
π

2
λ2. (141)

Then there exists a function σb P C0 pRq which is a solution of the integral equation (106).

Remark 1. Since σb is not necessarily in L1 pRq, the integral
ż 8

´8

expp´ixξqσbpxq dx (142)
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need not exist. Nor is the existence of the improper integral

lim
RÑ8

ż R

´R
expp´ixξqσbpxq dx (143)

guaranteed. However, when viewed as a tempered distribution, the Fourier transform of σb exists and is ψ; that
is to say,

ż 8

´8

ψpxqfpxq dx “

ż 8

´8

σbpxq pfpxq dx (144)

for all functions f P SpRq. In the next section we will prove that under additional assumptions on v, ψ lies
in L2 pRq. This implies that σb P L2 pRq and by so doing ensures the convergence of the improper Riemann
integral (143).

7. Fourier estimate

In this section, we derive a pointwise estimate on the solution ψ of Equation (116) under additional
assumptions on the function v.

Lemma 1. Suppose that a and C are real numbers such that

0 ď C ă a. (145)

Suppose also that f P L1 pRq, and that

|fpξq| ď C expp´a|ξ|q for all ξ P R. (146)

Then

|exp˚2 rf s pξq| ď
C2

2π
expp´a|ξ|q

1` a|ξ|

a
exp

ˆ

C

2πa

˙

exp

ˆ

C

2π
|ξ|

˙

for all ξ P R, (147)

where exp˚2 is the operator defined in (113).

Proof. Let

gpξq “ C expp´a|ξ|q (148)

and for each integer m ą 0, denote by gm the m-fold convolution product of the function g. That is to
say that g1 is defined via the formula

g1pξq “ gpξq (149)

and for each integer m ą 0, gm`1 is defined in terms of gm by the formula

gm`1pξq “ gm ˚ gpξq. (150)

We observe that for each integer m ą 0 and all ξ P R,

gmpξq “ 2
?
aC

ˆ

C|ξ|

2π

˙m´1{2 Km´1{2pa|ξ|q

Γpmq
, (151)

where Kν denotes the modified Bessel function of the second kind of order ν (see Section 2.3). By
repeatedly applying Theorem 1 of Section 2.3, we conclude that for all integers m ą 0 and all real t,

Km´1{2ptq ď K1{2ptq
m´1
ź

j“1

˜

2
`

j ´ 1
2

˘

t
` 1

¸

“ K1{2ptq

ˆ

2

t

˙m´1 Γ
`

1`t
2 `m´ 1

˘

Γ
`

1`t
2

˘ .

(152)
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We insert the identity

K1{2ptq “

c

π

2t
expp´tq (153)

into (151) in order to conclude that for all integers m ą 0 and all real numbers t ą 0,

Km´1{2ptq ď

?
π

2

ˆ

t

2

˙1{2´m

expp´tq
Γ
`

1`t
2 `m´ 1

˘

Γ
`

1`t
2

˘ . (154)

By combining (154) and (151) we conclude that

gmpξq ď C expp´a|ξ|q

ˆ

C

πa

˙m´1 Γ
´

1`a|ξ|
2 `m´ 1

¯

ΓpmqΓ
´

1`a|ξ|
2

¯ (155)

for all integers m ą 0 and all ξ ‰ 0. Moreover, the limit as ξ Ñ 0 of each side of (155) is finite and the
two limits are equal, so (155) in fact holds for all ξ P R. We sum (155) over m “ 2, 3, . . . in order to
conclude that

exp˚2 rgs pξq ď C expp´a|ξ|q
8
ÿ

m“2

ˆ

C

πa

˙m´1 Γ
´

1`a|ξ|
2 `m´ 1

¯

Γpm` 1qΓpmqΓ
´

1`a|ξ|
2

¯

“ C expp´a|ξ|q
8
ÿ

m“1

ˆ

C

πa

˙m Γ
´

1`a|ξ|
2 `m

¯

Γpm` 2qΓpm` 1qΓ
´

1`a|ξ|
2

¯

(156)

for all ξ P R. Now we observe that
1

Γpm` 2q
ď

ˆ

1

2

˙m

for all m “ 0, 1, 2, . . . . (157)

Inserting (157) into (156) yields

exp˚2 rgs pξq ď C expp´a|ξ|q
8
ÿ

m“1

ˆ

C

2πa

˙m Γ
´

1`a|ξ|
2 `m

¯

Γpm` 1qΓ
´

1`a|ξ|
2

¯ (158)

for all ξ P R. Now we apply the binomial theorem (Theorem 2 of Section 2.4), which is justified since
C ă a ă 2πa, to conclude that

exp˚2 rgs pξq ď C expp´a|ξ|q

¨

˝

ˆ

1´
C

2πa

˙´
1`a|ξ|

2

´ 1

˛

‚

“ C expp´a|ξ|q

˜

exp

˜

1` a|ξ|

2
log

˜

1

1´ C
2πa

¸¸

´ 1

¸

(159)

for all ξ P R. We observe that

exppxq ´ 1 ď x exppxq for all x ě 0, (160)

and

1 ď log

ˆ

1

1´ x

˙

ď 2x for all 0 ď x ď
1

2π
. (161)
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By combining (160) and (161) with (159) we conclude that

exp˚2 rgs pξq ď C expp´a|ξ|q
1` a|ξ|

2
log

˜

1

1´ C
2πa

¸

exp

˜

1` a|ξ|

2
log

˜

1

1´ C
2πa

¸¸

ď
C2

2π
expp´a|ξ|q

1` a|ξ|

a
exp

ˆ

C

2πa

˙

exp

ˆ

C

2π
|ξ|

˙

(162)

for all ξ P R. Note that in (162), we used the assumption that C ă a in order to apply the inequality
(161). Owing to (146),

|exp˚2 rf s pξq| ď exp˚2 rgs pξq for all ξ P R. (163)

By combining this observation with (162), we obtain (147), which completes the proof.

Remark 2. Kummer’s confluent hypergeometric function Mpa, b, zq is defined by the series

Mpa, b, zq “ 1`
az

b
`
paq2z

2

pbq22!
`
paq3z

3

pbq33!
` ¨ ¨ ¨ , (164)

where paqn is the Pochhammer symbol

paqn “
Γpa` nq

Γpaq
“ apa` 1qpa` 2q . . . pa` n´ 1q. (165)

By comparing the definition of Mpa, b, zq with (156), we conclude that

|exp˚2 rf s pξq| ď C expp´a|ξ|q

ˆ

M

ˆ

1` a|ξ|

2
, 2,

C

πa

˙

´ 1

˙

for all ξ P R (166)

provided

|fpξq| ď C expp´a|ξ|q for all ξ P R. (167)

The weaker bound (147) is sufficient for our immediate purposes, but formula (166) might serve as a basis for
improved estimates on solutions of Kummer’s equation.

The following lemma is a special case of Formula (151).

Lemma 2. Suppose that C ě 0 and a ą 0 are real numbers, and that f P L1 pRq such that

|fpξq| ď C exp p´a|ξ|q for all ξ P R. (168)

Then

|f ˚ fpξq| ď C2 expp´a|ξ|q

ˆ

1` a|ξ|

a

˙

for all ξ P R. (169)

We will also make use of the following elementary observation.

Lemma 3. Suppose that a ą 0 is a real number. Then

expp´a|ξ|q|ξ| ď
1

a expp1q
for all ξ P R. (170)

We combine Lemmas 1 and 2 with (123) and (124) in order to obtain the following key estimate.

Theorem 11. Suppose that Γ ą 0, λ ą 0, a ą 0 and C ě 0 are real numbers such that

0 ď C ă 2aλ2. (171)

Suppose also that f P L1 pRq such that

|fpξq| ď C expp´a|ξ|q for all |ξ| ď
?

2λ, (172)
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and that v P L1 pRq such that

|vpξq| ď Γ expp´a|ξ|q for all ξ P R. (173)

Suppose further that R is the operator defined via (117). Then

|R rf s pξq| ď expp´a|ξ|q

ˆ

C2

λ2

ˆ

1` a|ξ|

a

˙ˆ

1

16π
`

1

2π
exp

ˆ

C

4πλ2a

˙

exp

ˆ

C

4πλ2
|ξ|

˙˙

` Γ

˙

(174)

for all ξ P R.

Proof. We define the operator R1 via the formula

R1 rf s pξq “
1

8π
ĂWb rf s ˚ĂWb rf s pξq (175)

and R2 by the formula

R2 rf s pξq “ ´4λ2 exp˚2 rWb rf ss pξq, (176)

where Wb and ĂWb are defined as in Section 5. Then

R rf s pξq “ R1 rf s pξq `R2 rf s pξq ` vpξq (177)

for all ξ P R. We observe that
ˇ

ˇ

ˇ

ĂWb rf s pξq
ˇ

ˇ

ˇ
ď

C
?

2λ
expp´a|ξ|q for all ξ P R. (178)

By combining Lemma 2 with (178) we obtain

|R1 rf s pξq| ď
C2

16πλ2
expp´a|ξ|q

ˆ

1` a|ξ|

a

˙

for all ξ P R. (179)

Now we observe that

|Wb rf s pξq| ď
C

2λ2
expp´a|ξ|q for all ξ P R. (180)

Combining Lemma 1 with (180) yields

|R2 rf s pξq| ď
C2

2πλ2
expp´a|ξ|q

ˆ

1` a|ξ|

a

˙

exp

ˆ

C

4πλ2a

˙

exp

ˆ

C

4πλ2
|ξ|

˙

(181)

for all ξ P R. Note that (171) ensures that the hypothesis (145) in Lemma 1 is satisfied. We combine
(179) with (181) and (173) in order to obtain (174), and by so doing we complete the proof.

Remark 3. Note that Theorem 11 only requires that fpξq satisfy a bound on the interval r´
?

2λ,
?

2λs and not
on the entire real line.

In the next theorem, we use Theorem 11 to bound the solution of (116) under an assumption on the
decay of v.

Theorem 12. Suppose that λ ą 0, a ą 0 and Γ ě 0 are real numbers such that

λ ě 2 max

"

Γ,
1

a

*

. (182)

Suppose also that v P L1 pRq such that

|vpξq| ď Γ expp´a|ξ|q for all ξ P R. (183)

Then there exists a solution ψ of (116) such that

|ψpξq| ă 2Γ exp p´a|ξ|q for almost all |ξ| ď
?

2λ (184)
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and

|ψpξq| ă 2Γ exp

ˆ

´

ˆ

a´
1

λ

˙

|ξ|

˙

for all ξ P R. (185)

Proof. From (182) and (183) we obtain

}v}1 ď Γ

ż

expp´a |ξ|q dξ “
Γ

a
ă
λ2

4
. (186)

It follows from Theorem 9 and (186) that a solution ψpξq of (116) is obtained as the limit of the sequence
of fixed point iterates tψnpξqu defined by the formula

ψ0pξq “ vpξq (187)

and the recurrence

ψn`1pξq “ R rψn s pξq. (188)

We now derive pointwise estimates on the iterates ψnpξq in order to establish (185).

We let tβku8k“0 be the sequence of real numbers be generated by the recurrence relation

βk`1 “
β2k
2λ
` Γ (189)

with the initial value

β0 “ Γ. (190)

From (182) we see that if βk ă 2Γ then

βk`1 “
β2k
2λ
` Γ ď

4Γ2

2λ
` Γ ď 2Γ. (191)

It follows by induction that βk ď 2Γ for all k ě 0. The sequence βk is monotonically increasing, so it
in fact converges to a limit β ă 2Γ.

Now suppose that n ě 0 is an integer, and that

|ψnpξq| ď βn expp´a|ξ|q for all |ξ| ď
?

2λ. (192)

When n “ 0, this is simply the assumption (183). The function ψn`1pξq is obtained from ψnpξq via the
formula

ψn`1pξq “ R rψ s pξq. (193)

We combine Theorem 11 with (193) and (192) to conclude that

|ψn`1pξq| ď expp´a|ξ|q

ˆ

β2n
λ2

ˆ

1` a|ξ|

a

˙ˆ

1

16π
`

1

2π
exp

ˆ

βn
4πλ2a

˙

exp

ˆ

βn
4πλ2

|ξ|

˙˙

` Γ

˙

(194)

for all ξ P R. The hypothesis (171) of Theorem 11 is satisfied since

βn ď 2Γ ď 2λ2a (195)

for all integers n ě 0. We restrict ξ to the interval r´
?

2λ,
?

2λs in (194) and use the fact that
1

aλ
ă

1

2
(196)

which is a consequence of (182), in order to conclude that

|ψn`1pξq| ď expp´a|ξ|q

ˆ

β2n
λ2

ˆ

1` a
?

2λ

a

˙ˆ

1

16π
`

1

2π
exp

ˆ

βn
4πλ2a

˙

exp

ˆ

βn
4πλ2

?
2λ

˙˙

` Γ

˙

ď expp´a|ξ|q

ˆ

β2n
λ

ˆ

1

2
`
?

2

˙ˆ

1

16π
`

1

2π
exp

ˆ

βn
8πλ

˙

exp

ˆ

βn

2
?

2πλ

˙˙

` Γ

˙
(197)
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for all |ξ| ď
?

2λ. Now we combine (197) with the inequality
βn
λ
ď

2Γ

λ
ď 1 (198)

and the observation that̂
1

2
`
?

2

˙ˆ

1

16π
`

1

2π
exp

ˆ

1

8π

˙

exp

ˆ

1

2
?

2π

˙˙

ă
1

2
(199)

in order to conclude that

|ψn`1pξq| ă

ˆ

β2n
2λ
` Γ

˙

expp´a|ξ|q

“ βn`1 expp´a|ξ|q

(200)

for all |ξ| ď
?

2λ. We conclude by induction that (192) holds for all integers n ě 0.

The sequence tψnpξqu converges to ψpξq in L1 pRq norm and so a subsequence of ψnpξq converges to
ψpξq pointwise almost everywhere. Since (192) holds for all integers n ě 0 and βn`1 ă 2Γ for all
nonnegative integers n, we conclude that

|ψpξq| ă 2Γ expp´a|ξ|q (201)

for almost all |ξ| ď
?

2λ.

We now apply Theorem 11 to the function ψpξq (which is justified since 2Γ ă 2λ2a) to conclude that

|ψpξq| ď expp´a|ξ|q

ˆ

4Γ2

λ2

ˆ

1` a|ξ|

a

˙ˆ

1

16π
`

1

2π
exp

ˆ

2Γ

4πλ2a

˙

exp

ˆ

2Γ

4πλ2
|ξ|

˙˙

` Γ

˙

(202)

for all ξ P R. Note the distinction between (192) and (202) is that the former only holds for almost all ξ
in the interval r´

?
2λ,
?

2λs, while the later holds for all ξ on the real line. It follows from (182) that
1

λa
ă

1

2
and

Γ

λ
ă

1

2
(203)

We insert these bounds into (202) in order to conclude that

|ψpξq| ď Γ expp´a|ξ|q

ˆˆ

1`
2|ξ|

λ

˙ˆ

1

16π
`

1

2π
exp

ˆ

1

8π

˙

exp

ˆ

1

4πλ
|ξ|

˙˙

` 1

˙

(204)

for all ξ P R. We conclude from Lemma 3 that

exp

ˆ

´
1

2λ
|ξ|

˙ˆ

1`
2|ξ|

λ

˙

ď 1` 4 expp´1q for all ξ P R. (205)

Moreover, we observe that

exp

ˆ

´
1

2λ
|ξ|

˙ˆ

1

16π
`

1

2π
exp

ˆ

1

8π

˙

exp

ˆ

1

4πλ
|ξ|

˙˙

ď

ˆ

1

16π
`

1

2π
exp

ˆ

1

8π

˙˙

(206)

for all ξ P R. We conclude from (205), (206) and the fact that

exp p´η |ξ|q ď 1 for all η, ξ P R (207)

that

exp

ˆ

´
1

2λ
|ξ|

˙ˆˆ

1`
4|ξ|

λ

˙ˆ

1

16π
`

1

2π
exp

ˆ

1

8π

˙

exp

ˆ

1

4πλ
|ξ|

˙˙

` 1

˙

ď p1` 4 exp p´1qq

ˆ

1

16π
`

1

2π
exp

ˆ

1

8π

˙˙

` 1

ă 2

(208)
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for all ξ P R. By inserting (208) into (202), we conclude that

|ψpξq| ă 2Γ exp

ˆ

´

ˆ

a´
1

λ

˙

|ξ|

˙

for all ξ P R, (209)

which is (185).

Suppose that ψ P L1 pRq is a solution of (116). Then the function σb defined by the formula

σbpxq “
1

2π

ż 8

´8

exppixξqψpξq dξ (210)

is a solution of the integral equation (106). However, the Fourier transform of (210) might only be
defined in the sense of tempered distributions and not as a Lebesgue or improper Riemann integral.
If, however, we assume the function p appearing in (116) is an element of L1 pRq and impose the
hypotheses of Theorem 12 on the Fourier transform of p, then the Fourier transform of pσb decays faster
than any polynomial. From this, we conclude that σb P L2 pRq and that σb is infinitely differentiable. In
this event, there is no difficulty in defining the Fourier transform of σb. Moreover, since pp is continuous
in this case, Theorem 9 ensures that pσb is also continuous.

We record these observations in the following theorem.

Theorem 13. Suppose that there exist real numbers λ ą 0, Γ ą 0 and a ą 0 such that

λ ą 2 max

"

Γ,
1

a

*

. (211)

Suppose also that p is an element of L1 pRq such that

|pppξq| ď Γ exp p´a|ξ|q for all ξ P R. (212)

Then there exists a solution σb P L2 pRq X C8 pRq of the integral equation (106) such that pσb is a continuous
function,

| pσbpξq| ă 2Γ exp p´a|ξ|q for all |ξ| ď
?

2λ, (213)

and

| pσbpξq| ă 2Γ exp

ˆ

´

ˆ

a´
1

λ

˙

|ξ|

˙

for all ξ P R. (214)

8. Solution of the perturbed integral equation

We would like to insert the solution σb of (106) into the original equation (73) in order to construct a
function ν of small magnitude such that

σbpxq “ S rT rσbss pxq ` ppxq ` νpxq. (215)

However, there is no guarantee that the integral
1

2λ

ż 8

´8

sin p2λ |x´ y|qσpyq dy (216)

defining the function T rσbs exists, nor are we assured that the expression
pσpξq

4λ2 ´ ξ2
, (217)

which is formally the Fourier transform of T rσs, defines a tempered distribution.
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To remedy this problem, we define a “band-limited” version σ of σb by the formula

pσpξq “ pσbpξqbpξq, (218)

where bpξq is the function used to define the operator Tb. We observe that there is no difficulty in
defining T rσs— it is the inverse Fourier transform of the function

pσbpξqbpξq

4λ2 ´ ξ2
, (219)

which is in L1 pRq since pσb and
bpξq

4λ2 ´ ξ2
(220)

are both square integrable. Moreover, Tb rσb s “ T rσ s, so that

σbpxq “ S rT rσ ss pxq ` ppxq for all x P R. (221)

Rearranging (221), we obtain

σpxq “ S rT rσ ss pxq ` ppxq ` νpxq for all x P R, (222)

where ν is defined the formula

νpxq “ σpxq ´ σbpxq. (223)

Using (214) and (223), we conclude that under the hypotheses of Theorem 13,

}ν}8 ď }pσ ´ pσb}1

ă 2Γ

ż

|ξ|ěλ
exp

ˆ

´

ˆ

a´
1

λ

˙

|ξ|

˙

dξ

ď
4Γ

a´ 1
λ

exp

ˆ

´

ˆ

a´
1

λ

˙

λ

˙

ď
4Γ expp1q

a
exp p´aλq

ď
12Γ

a
exp p´aλq

(224)

By combining Theorem 13 with (224) we obtain the following.

Theorem 14. Suppose that q P C8 pRq is a strictly positive, and that xptq is defined by the formula

xptq “

ż t

0

a

qpuq du. (225)

Suppose also that ppxq is defined via the formula

ppxq “ 2tt, xu; (226)

that is, ppxq is twice the Schwarzian derivative of the variable t with respect to the variable x defined via (225).
Suppose furthermore that there exist positive real numbers λ, Γ and a such that

λ ě max

#

2

a
, 2Γ,

c

2Γ

π

+

(227)

and

|pppξq| ď Γ exp p´a |ξ|q for all ξ P R. (228)

Then there exist functions ν and σ in L2 pRq X C8 pRq such that pσ and pν are elements of L2 pRq X C pRq, σ is
a solution of the nonlinear integral equation

σpxq “ S rT rσss pxq ` ppxq ` νpxq, (229)
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|pσpξq| ă 2Γ exp p´a|ξ|q for all |ξ| ď
?

2λ, (230)

pσpξq “ 0 for all |ξ| ą
?

2λ, (231)

and

}ν}8 ď
12Γ

a
exp p´aλq . (232)

We now establish the principal result of this paper, Theorem 7, by approximating pσ with a sequence
of Cc pRq functions.

Proof of Theorem 7. First, we note that the hypotheses of Theorem 7 and those of Theorem 14 are
identical and we denote by σ̃ and ν̃ the functions obtained by invoking Theorem 14. As a compactly
supported function in L2 pRq, pσ̃ is in fact in L1 pRq. Consequently, there exists a sequence

pψ1pξq, pψ2pξq, pψ3pξq, . . . (233)

of C8c pRq functions such that
›

›

›

xψn ´ pσ̃
›

›

›

1
Ñ 0 as nÑ8. (234)

Since pσ̃ is also a compactly supported, continuous function, we can also ensure that
›

›

›

xψn ´ pσ̃
›

›

›

8
Ñ 0 as nÑ8. (235)

Moreover, since the support of pσ̃ is properly contained in
`

´
?

2λ,
?

2λ
˘

(see the definition bpξq) we
can assume that the support of each of the functions pψn is contained in the interval p´

?
2λ,
?

2λq. The
functions pψn can be obtained, for instance, in the following fashion. We let

gpξq “

#

exp
´

´ 1
1´x2

¯

for all |ξ| ă 1

0 otherwise
, (236)

and we define gt for each t ą 0 by the formula

gtpξq “
1

t
g

ˆ

ξ

t

˙

. (237)

Then

gt ˚ pσ̃ Ñ pσ̃ as tÑ 0 (238)

in L1 pRq and L8 pRq. By choosing a sufficiently large positive integer k and letting

ψn “ g 1
k`n

˚ pσ̃, (239)

we obtain a sequence of functions with support contained in p´
?

2λ,
?

2λq which converges to pσ in
L1 pRq and L8 pRq.

For each positive integer n, we denote by ψn the inverse Fourier transform of pψn. Since the xψn are
compactly supported, infinitely differentiable functions (and therefore elements of the Schwartz space
SpRq), the functions ψn are elements of SpRq. We observe that (234) implies that

}ψn ´ σ̃}8 Ñ 0 as nÑ8. (240)

Moreover, since
1

4λ2 ´ ξ2
(241)
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is bounded for all ξ P p´
?

2λ,
?

2λq, it follows from and (234) that
›

›

›

›

›

xψnpξq ´ pσ̃pξq

4λ2 ´ ξ2

›

›

›

›

›

1

Ñ 0 as nÑ8 (242)

and
›

›

›

›

›

iξxψnpξq ´ iξpσ̃pξq

4λ2 ´ ξ2

›

›

›

›

›

1

Ñ 0 as nÑ8. (243)

From (242) and (243) and (61) we conclude that

}T rψns ´ T rσ̃s}8 Ñ 0 as nÑ8 (244)

and
›

›T rψns
1
´ T rσ̃s1

›

›

8
Ñ 0 as nÑ8, (245)

where T rf s1 denotes the derivative of the function T rf s pxq with respect to x. From (242), (243) and
the definition (74) of the operator S we conclude that

}S rT rψnss ´ S rT rσ̃ss}8 Ñ 0 as nÑ8. (246)

We rearrange (229) as

ψn “ S rT rψnss ` p` ν̃ ` pS rT rσ̃ss ´ S rT rψnssq ` pψn ´ σ̃q (247)

and define τn for n “ 1, 2, . . . via the formula

τn “ ν̃ ` pS rT rσ̃ss ´ S rT rψnssq ` pψn ´ σ̃q . (248)

From (240), (246), and (232) we conclude that

}τn}8 ď
12Γ

a
exp p´aλq (249)

for all sufficiently large positive integers n. Moreover, it follows from (235) and (230) that

|ψnpξq| ď 2Γ exp p´a|ξ|q for all |ξ| ď
?

2λ (250)

whenever n is sufficiently large. By letting σ “ ψn and ν “ τn for some positive integer n which is
sufficiently large for both (249) and (250) to hold, we obtain the conclusions of Theorem 7.

9. Numerical experiments

In this section, we describe numerical experiments which, inter alia, illustrate one of the important
consequences of the existence of nonoscillatory phase functions. Namely, that a large class of special
functions can be evaluated to high accuracy using a number of operations which does not grow with
order.

Although the proof of Theorem 7 suggests a numerical procedure for the construction of nonoscilla-
tory phase functions, we utilize a different procedure here. It has the advantage that the coefficient
q in the ordinary differential equation (1) need not be extended outside of the interval on which the
nonoscillatory phase function is constructed. A paper describing this work is in preparation.

The code we used for these calculations was written in Fortran and compiled with the Intel Fortran
Compiler version 12.1.3. All calculations were carried out in double precision arithmetic on a desktop
computer equipped with an Intel Xeon X5690 CPU running at 3.47 GHz.
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9.1. A nonoscillatory solution of the logarithm form of Kummer’s equation.

In this experiment, we illustrate Theorem 7 in Section 4. We first construct a nonoscillatory solution r
of the logarithm form of Kummer’s equation

r2ptq ´
1

4

`

r1ptq
˘2
` 4λ2 pexpprptqq ´ qptqq “ 0 (251)

on the interval r´1, 1s, where λ = 1,000 and q is the function r´1, 1s Ñ R defined by the formula

qptq “

ˆ

3`
1

1` 10t2
` t3 cosp5tq

˙

. (252)

Then we compute the 500 leading Chebyshev coefficients of q and r.

We display the results of this experiment in Figures 1 and 2. Figure 1 contains plots of the functions
q and r, while Figure 2 contains a plot of the base-10 logarithms of the absolute values of the leading
Chebyshev coefficients of q and r.

We observe that, consistent with Theorem 7, the Chebyshev coefficients of both r and q decay expo-
nentially, although those of r decay at a slightly slower rate.

9.2. Evaluation of Legendre polynomials.

In this experiment, we compare the cost of evaluating Legendre polynomials of large order using the
standard recurrence relation with the cost of doing so with a nonoscillatory phase function.

For any integer n ě 0, the Legendre polynomial Pnpxq of order n is a solution of the second order
differential equation

p1´ t2qy2ptq ´ 2ty1ptq ` npn` 1qyptq “ 0. (253)

Equation (253) can be put into the standard form

ψ2ptq `

ˆ

1` n´ nt2 ´ n2pt2 ´ 1q

p1´ t2q2

˙

ψptq “ 0 (254)

by introducing the transformation

ψptq “
a

1´ t2 yptq. (255)

Legendre polynomials satisfy the well-known three term recurrence relation

pn` 1qPn`1ptq “ p2n` 1qtPnptq ´ nPn´1ptq. (256)

See, for instance, [11] for a discussion of the these and other properties of Legendre polynomials.

For each of 9 values of n, we proceed as follows. We sample 1000 random points

t1, t2, . . . , t1000 (257)

from the uniform distribution on the interval p´1, 1q. Then we evaluate the Legendre polynomial of
order n using the recurrence relation (256) at each of the points t1, t2, . . . , t1000. Next, we construct
a nonoscillatory phase function for the ordinary differential equation (254) and use it evaluate the
Legendre polynomial of order n at each of the points t1, t2, . . . , t1000. Finally, for each integer j “
1, . . . , 1000, we compute the error in the approximation of Pnptjq obtained from the nonoscillatory
phase function by comparing it to the value obtained using the recurrence relation (we regard the
recurrence relation as giving the more accurate approximation).

The results of this experiment are shown in Table 1. There, each row correponds to value of n. That
value is listed n, as is the time required to compute each phase function for that value of n, the aver-
age time required to evaluate the Legendre polynomial of order n using the recurrence relation, the
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average cost of evaluating the Legendre polynomial of order nwith the nonoscillatory phase function,
and the largest of the absolute errors in the approximations of the quantities

Pnpt1q, Pnpt2q, . . . , Pnpt1000q

obtained via the phase function method.

This experiment reveals that, as expected, the cost of evaluating Pnptq using the recurrence relation
(256) grows as Opnq while the cost of doing so with nonoscillatory phase function is independet of
order.

However, it also exposes a limitation of phase functions. The values of Pnptq are obtained in part by
evaluating sine and cosine of a phase function whose magnitude is on the order of n. This imposes
limitations on the accuracy of the method due to the well-known difficulties in evaluating periodic
functions of large arguments.

Figure 3 contains a plot of the nonoscillatory phase function for the equation (254) when n “1,000,000.

9.3. Evaluation of Bessel functions.

In this experiment, we compare the cost of evaluating Bessel functions of integer order via the standard
recurrence relation with that of doing so using a nonoscillatory phase function.

We will denote by Jν the Bessel function of the first kind of order ν. It is a solution of the second order
differential equation

t2y2ptq ` ty1ptq ` pt2 ´ ν2qyptq “ 0, (258)

which can be brought into the standard form

ψ2ptq `

ˆ

1´
λ2 ´ 1{4

t2

˙

ψptq “ 0 (259)

via the transformation

ψptq “
?
t yptq. (260)

An inspection of (259) reveals that Jν is nonoscillatory on the interval
ˆ

0,
1

2

a

4ν2 ´ 1

˙

(261)

and oscillatory on the interval
ˆ

1

2

a

4ν2 ´ 1,8

˙

. (262)

The Bessel functions satisfy the three-term recurrence relation

Jν`1ptq “
2ν

t
Jνptq ´ Jν´1ptq. (263)

The recurrence (263) is numerically unstable in the forward direction; however, when evaluated in the
direction of decreasing index, it yields a stable mechanism for evaluating Bessel functions of integer
order (see, for instance, Chapter 3 of [11]).

For each of 9 values of n, we proceed as follows. First, we sample 1000 random points

t1, t2, . . . , t1000 (264)

from the uniform distribution on the interval r2n, 3ns. We then use the recurrence relation (263) to eval-
uate the Bessel function Jn of order n at the points t1, t2, . . . , t1000. Next, we construct a nonoscillatory
phase function for the equation (260) on the interval r2n, 3ns and use it to evaluate Jn at the points
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t1, t2, . . . , t1000. Finally, for each integer j “ 1, . . . , 1000, we compute the error in the approximation
of Jnptjq obtained from the nonoscillatory phase function by comparing it to the value obtained us-
ing the recurrence relation (once again we regard the recurrence relation as giving the more accurate
approximation).

The results of this experiment are displayed in Table 2. There, each row corresponds to one value of
n. In addition to that value of n, it lists the time required to compute the phase function at order n,
the average cost of evaluating Jn using the recurrence relation, the average cost of evaluating it with
the nonoscillatory phase function, and the largest of the absolute errors in the approximations of the
quantities

Jnpt1q, Jnpt2q, . . . , Jnpt1000q

obtained via the phase function method.

We observe that while the cost of evaluating Jn using the recurrence relation (263) grows as Opnq, the
time taken by the nonoscillatory phase function approach scales as Op1q. We also note that, as in the
case of Legendre polynomials, there is some loss of accuracy with the phase function method due to
the difficulties of evaluating trigonometric functions of large arguments.

10. Conclusions

We have shown that the solutions of a large class of second order differential equations can be accu-
rately represented using nonoscillatory phase functions.

We have also presented the results of numerical experiments which demonstrate one of the applica-
tions of nonoscillatory phase functions: the evaluation of special functions at a cost which is indepen-
dent of order. An efficient algorithm for the evaluation of highly oscillatory special functions will be
reported at a later date. Other applications of this work include the computation of the zeros of special
functions and the fast application of special function transforms. These topics will also be addressed
by the authors at a later date.
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Figure 1: The function q defined by formula (252) in Section 9.1 (solid line) and the corresponding solution r of the logarithm
form of Kummer’s equation (52) when λ “ 1,000 (dotted line).
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Figure 2: The base-10 logarithms of the leading Chebyshev coefficients of the function q defined by formula (252) in Sec-
tion 9.1 (solid line) and of the associated nonoscillatory solution r of equation the logarithm form of Kummer’s equation
(52) when λ = 1,000 (dotted line).
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n
Phase function Avg. phase function Avg. recurrence Largest

construction time evaluation time evaluation time absolute error

101 1.55ˆ10´1 secs 1.29ˆ10´6 secs 5.82ˆ10´8 secs 5.16ˆ10´14

102 1.76ˆ10´1 secs 1.29ˆ10´6 secs 9.73ˆ10´7 secs 1.59ˆ10´13

103 1.57ˆ10´1 secs 1.29ˆ10´6 secs 1.03ˆ10´5 secs 6.13ˆ10´13

104 1.55ˆ10´1 secs 1.29ˆ10´6 secs 1.04ˆ10´4 secs 1.20ˆ10´12

105 1.56ˆ10´1 secs 1.31ˆ10´6 secs 1.04ˆ10´3 secs 9.79ˆ10´12

106 1.58ˆ10´1 secs 1.40ˆ10´6 secs 9.81ˆ10´3 secs 2.40ˆ10´11

107 1.65ˆ10´1 secs 1.40ˆ10´6 secs 9.69ˆ10´2 secs 8.59ˆ10´11

108 1.87ˆ10´1 secs 1.42ˆ10´6 secs 9.68ˆ10´1 secs 1.71ˆ10´10

109 2.05ˆ10´1 secs 1.34ˆ10´6 secs 9.68ˆ10´0 secs 6.11ˆ10´10

Table 1: The evaluation of Legendre polynomials. A comparison of the time required to evaluate the Legendre polynomial
of order n using the standard recurrence relation and the time necessary to evaluate it using a nonoscillatory phase function.
The recurrence relation approach scales as Opnqwhile the phase function approach scales as Op1q.
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Figure 3: A phase function for Legendre’s differential equation. A plot of the nonoscillatory phase function associated
with Legendre’s equation (253) at order n “ 1,000,000. It is sufficient to construct the phase function on the interval r0, 1q
due to the symmetry properties of Legendre’s differential equation.
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n
Phase function Avg. phase function Avg. recurrence Largest

construction time evaluation time evaluation time absolute error

101 5.23ˆ10´1 secs 1.30ˆ10´6 secs 1.99ˆ10´6 secs 2.81ˆ10´14

102 5.39ˆ10´1 secs 1.31ˆ10´6 secs 7.29ˆ10´6 secs 7.85ˆ10´14

103 5.36ˆ10´1 secs 1.37ˆ10´6 secs 4.87ˆ10´5 secs 2.40ˆ10´13

104 5.52ˆ10´1 secs 1.33ˆ10´6 secs 4.35ˆ10´4 secs 1.01ˆ10´12

105 5.46ˆ10´1 secs 1.49ˆ10´6 secs 4.11ˆ10´3 secs 3.18ˆ10´12

106 5.81ˆ10´1 secs 1.44ˆ10´6 secs 4.24ˆ10´2 secs 8.57ˆ10´12

107 6.41ˆ10´1 secs 1.45ˆ10´6 secs 4.36ˆ10´1 secs 5.98ˆ10´11

108 7.00ˆ10´1 secs 1.35ˆ10´6 secs 4.39ˆ10`0 secs 1.14ˆ10´10

109 1.26ˆ10`0 secs 1.41ˆ10´6 secs 4.42ˆ10`1 secs 2.43ˆ10´10

Table 2: The evaluation of Bessel functions. A comparison of the time required to evaluate the Bessel function Jn using
the standard recurrence relation with that required to evaluate it using a nonoscillatory phase function. All of the points at
which Jn was evaluated were in the interval r2n, 3ns. The recurrence relation approach scales as Opnq in the order n while
the time required by the phase function method is Op1q.
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