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Abstract

We describe a method for the numerical evaluation of normalized versions of the associated Legendre
functions P−µν and Q−µν of degrees 0 ≤ ν ≤ 1, 000, 000 and orders −ν ≤ µ ≤ ν for arguments in the
interval (−1, 1). Our algorithm, which runs in time independent of ν and µ, is based on the fact
that while the associated Legendre functions themselves are extremely expensive to represent via
polynomial expansions, the logarithms of certain solutions of the differential equation defining them
are not. We exploit this by numerically precomputing the logarithms of carefully chosen solutions
of the associated Legendre differential equation and representing them via piecewise trivariate
Chebyshev expansions. These precomputed expansions, which allow for the rapid evaluation of
the associated Legendre functions over a large swath of parameter domain mentioned above, are
supplemented with asymptotic and series expansions in order to cover it entirely. The results of
numerical experiments demonstrating the efficacy of our approach are presented, and our code for
evaluating the associated Legendre functions is publicly available.

Keywords: associated Legendre functions, fast algorithms, butterfly algorithms, special
functions, nonoscillatory phase functions, asymptotic methods

1. Introduction

The associated Legendre functions arise in many contexts in applied mathematics and physics.
They are perhaps most commonly encountered in connection with spherical harmonics, which are
tensor products of associated Legendre functions and exponential functions. Among other things,
the spherical harmonics are used to efficiently represent smooth functions given on the surface of
the sphere, and in spectral methods for the solution of partial differential equations.

In this paper, we describe an algorithm for the numerical evaluation of versions of the associated
Legendre functions of the first and seconds kinds. Following standard convention, we will denote
by Pµν the associated Legendre function of the first kind of degree ν and order µ, and by Qµν the
associated Legendre function of the second kind of degree ν and order µ (see, for instance, Section
5.15 of [23] or Section 3.4 of [7] for definitions). Since the magnitudes of the associated Legendre
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functions are excessively large, even for parameters of relatively small magnitude, the normalized
associated Legendre functions defined via

P̄µν (x) =

d

ˆ

ν +
1

2

˙

Γ(ν − µ+ 1)

Γ(ν + µ+ 1)
Pµν (x) (1)

and

Q̄µν (x) =
2

π

d

ˆ

ν +
1

2

˙

Γ(ν − µ+ 1)

Γ(ν + µ+ 1)
Qµν (x) (2)

are often used in lieu of Pµν and Qµν . Our interest in associated Legendre functions stems principally
from their connection with spherical harmonics, and for many calculations involving the spherical
harmonics it is more convenient to work with the functions P̃µν and Q̃µν defined by the formulas

P̃µν (t) = P̄µν pcos(t)q
a

sin(t) (3)

and

Q̃µν (t) = Q̄µν pcos(t)q
a

sin(t) (4)

(the variable t corresponds to one of the coordinates in the standard parameterization of the unit
sphere S2). Our algorithm, which runs in time independent of the degree ν and order µ, allows for
the evaluation of P̃−µν and Q̃−µν when 0 ≤ ν ≤ 1, 000, 000, 0 ≤ µ ≤ ν and 0 < t ≤ π

2 (in particular,
both ν and µ can take on noninteger values). It is a consequence of standard connection formulas
(such as those appearing in Section 3.4 of [7]) that this suffices for the evaluation of P̄µν (x) and
Q̄µν (x) for any 0 ≤ ν ≤ 1, 000, 000, −ν ≤ µ ≤ ν and −1 < x < 1.

1.1. Overview of our algorithm

The functions P̃−µν and Q̃−µν satisfy the second order linear ordinary differential equation

y′′(t) +
`

λ2 − η2 csc2(t)
˘

y(t) = 0 for all 0 < t <
π

2
(5)

with λ = ν + 1
2 and η2 = µ2 − 1

4 . By a slight abuse of terminology, we will refer to (5) as the
associated Legendre differential equation. When 0 ≤ µ ≤ 1

2 , the coefficient of y in (5) is positive
on the interval

`

0, π2
˘

, whereas when µ > 1
2 it is negative on the interval
´

0, arcsin
´η

λ

¯¯

(6)

and positive on
´

arcsin
´η

λ

¯

,
π

2

¯

. (7)

It follows from these observations and well-known WKB estimates (see, for example, [9]) that when
µ > 1

2 , the solutions of (5) behave roughly like combinations of increasing or decreasing exponentials
on (6) and are oscillatory on (7), whereas when 0 ≤ µ ≤ 1

2 , they are oscillatory on all of
`

0, π2
˘

. We
will refer to the subset

O =

{
pν, µ, tq : ν ≥ 0, 0 ≤ µ ≤ min

{
ν,

1

2

}
and 0 < t ≤ π

2

}⋃
{

pν, µ, tq : ν >
1

2
,

1

2
< µ ≤ ν and arcsin

´η

λ

¯

≤ t ≤ π

2

} (8)
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of R3 as the oscillatory region, and to the subset

N =

{
pν, µ, tq : ν ≥ 0, µ >

1

2
and 0 < t < arcsin

´η

λ

¯

}
(9)

as the nonoscillatory region. When ν � µ > 1
2 , the solutions of (5) are highly oscillatory on (7),

and when ν ≥ µ� 1
2 , they behave roughly like combinations of rapidly decreasing and increasing

exponentials on (6). Consequently, they cannot be effectively represented via polynomial expansions
in the variables ν, µ and t on either of the sets O or N , at least for large values of the parameters.

Nonetheless, the logarithms of certain solutions of (5) can be represented efficiently via polynomial
expansions on the sets N and O. This observation is related to the well-known fact that the
associated Legendre differential equation admits a nonoscillatory phase function. Many special
functions of interest posses this property as well, at least in an asymptotic sense [21, 6]. However,
the sheer effectiveness with which nonoscillatory phase functions can represent solutions of the
general equation

y′′(t) + λ2q(t)y(t) = 0 for all a < t < b (10)

in which the coefficient q is smooth and positive appears to have been overlooked. Indeed, under
mild conditions on q, it is shown in [5] that there exist a positive real number σ, a nonoscillatory
function α and a basis of solutions {u, v} of (10) such that

u(t) =
cos pα(t)q
a

|α′(t)|
+O pexp(−σλ)q (11)

and

v(t) =
sin pα(t)q
a

|α′(t)|
+O pexp(−σλ)q . (12)

The constant σ is a measure of the extent to which q oscillates, with larger values of σ corresponding
to greater smoothness on the part of q. The function α is nonoscillatory in the sense that it can
be represented using various series expansions using a number of terms in which is independent of
λ. That is, O(exp(−σλ)) accuracy is obtained using an O(1)-term expansion. The results of [5]
are akin to standard results on WKB approximation in that they apply to the more general case
in which q varies with the parameter λ assuming only that q satisfies certain innocuous hypotheses
independent of λ. An effective numerical algorithm for the computation of nonoscillatory phase
functions for fairly general second order differential equations is described in [3], although we will
not need it here. We will instead use specialized formulas which apply only in the case of associated
Legendre functions. However, the existence of the algorithm of [3] and results of [5] mean that the
approach of this paper can be applied to a large class of special functions satisfying second order
differential equations.

The algorithm of this paper operates by numerically calculating the logarithms of certain solutions
of the associated Legendre differential equation. We represent them via trivariate Chebyshev ex-
pansions — or rather, truncated versions of these expansions which we call “compressed” trivariate
Chebyshev expansions — the coefficients of which are stored in a table on the disk. This table
is computed only once and is loaded into memory and used to evaluate the associated Legendre
functions rapidly. The table used in the experiments described in this paper is approximately 138
MB in size. We supplement these precomputed expansions with series and asymptotic expansions
in order to cover the entire parameter domain mentioned above. In addition to the values of the
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functions P̃−µν and Q̃−µν , our algorithm also produces the values of a nonoscillatory phase func-
tion for (5) and its derivative when (ν, µ, t) is in the oscillatory region O and the values of the
logarithms of P̃−µν and Q̃−µν when (ν, µ, t) is in the nonoscillatory region N . The phase function
is useful for, among other things, calculating the roots of the associated Legendre functions and
applying special function transforms involving the associated Legendre functions. Calculating the
values of the logarithms of (3) and (4) obviates many problems which arise from numerical overflow
and underflow.

1.2. Prior work

There are extensive literatures both on the representation of associated Legendre functions via
asymptotic expansions and on their numerical evaluation via the three-term recurrence relations
they satisfy. Nonetheless, both such approaches to the evaluation of associated Legendre functions
suffer from significant drawbacks which warrant the development of new approaches to the problem.

The most obvious disadvantage of the three-term recurrence relations is that a sequence of asso-
ciated Legendre functions of various orders and/or degrees must be evaluated in order to obtain
the value of the function of a specified degree and order. In [26], it was observed that butterfly
algorithms, which are schemes for the rapid application of certain classes of matrices (e.g., those
satisfying the complementary low-rank property), can be used for the rapid application of spherical
harmonic transforms. The algorithm of [26] uses the three-term recurrence relations to evaluate
the associated Legendre functions. However, the classical butterfly algorithm requires that every
element of a matrix being applied be evaluated, and the computations of [26] are arranged so that
the use of the three-term recurrence relations does not result in any inefficiency. In cases in which
an O(1) procedure is available for evaluating the entries of the matrix, more recent versions of
the butterfly algorithm, such as [18] and [17], can greatly accelerate computations through inter-
polation. The algorithm of this paper is intended, among other things, to be combined with the
schemes of [18] and [17] in order to rapidly apply spherical harmonic transforms of large orders.
The availability of an O(1) procedure is also essential for parallelizing the workloads of butterfly
algorithms, which is necessary in order to apply spherical harmonic transforms of large orders.
There is considerable interest in doing so; to give one example, transforms of order larger than 105

are often used in calculations simulating cosmic microwave background [8, 24].

There are further disadvantages of using the three-term recurrence relations to evaluate the as-
sociated Legendre functions numerically. Although [22] describes a recurrence-based method for
evaluating associated Legendre functions of noninteger degrees and integer orders, the author is
unaware of any similar approach for the evaluation of associated Legendre functions of noninteger
degree and noninteger orders and most schemes based on the recurrence relations are restricted to
integer orders and degrees. More seriously, the recurrence relations are numerically unstable, with
the consequence that most numerically viable implementations of them use some form of extended
precision arithmetic (examples include [11] and [22]). Usually, such algorithms proceeds by repre-
senting real numbers in the form x·Ry with R a chosen radix and x and y double precision numbers.
We note, though, that the algorithm of [26] avoids the use of extended precision arithmetic by only
evaluating the associated Legendre function at the nodes of certain Gauss-Jacobi quadrature rules
at which the recurrence relations appear to be stable.

It is often suggested that existing asymptotic expansions suffice for the numerical evaluation of
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the associated Legendre functions. While many highly effective approximations are available, it
appears to be quite difficult to produce a numerical algorithm which is efficient and accurate over
the entire range of the variables ν, µ and t considered here. The trigonometric expansions

(13)
P̃−µν (t) =

d

2
(
ν + 1

2

)
Γ(ν + µ+ 1)Γ(ν − µ+ 1)

π sin(t)

1

Γ
(
ν + 3

2

) ×
∞∑
k=0

(
(−1)k

(
µ+ 1

2

)
k

(
−µ+ 1

2

)
k

(2 sin(t))k Γ(k + 1)
(
ν + 3

2

)
k

sin

((
ν + k +

1

2

)
t+

π

2
(k − µ) +

π

4

))

and

(14)
Q̃−µν (t) =

d

2
(
ν + 1

2

)
Γ(ν + µ+ 1)Γ(ν − µ+ 1)

π sin(t)

1

Γ
(
ν + 3

2

) ×
∞∑
k=0

(
(−1)k

(
µ+ 1

2

)
k

(
−µ+ 1

2

)
k

(2 sin(t))k Γ(k + 1)
(
ν + 3

2

)
k

cos

((
ν + k +

1

2

)
t+

π

2
(k − µ) +

π

4

))
,

which can be found in Section 3.5 of [7], illustrate some of difficulties that arise. In (13) and (14),
pxqk is the Pochhammer symbol defined via

pxqk =
Γ(x+ k)

Γ(x)
. (15)

These expansions converge when π
6 < t < 5π

6 , andthey can be used as asymptotic approximations
when t is outside of that interval. However, they require on the order of |µ| terms in order to
achieve a fixed accuracy. Even more seriously, when |µ| is not small relative to ν, the terms in
(13) and (14) are of large magnitude and alternate signs, with the consequence that the numerical
evaluation of (13) and (14) generally results in catastrophic cancellation errors.

Liouville-Green methods can be used to obtain asymptotic expansions of the associated Legendre
functions which are uniform in the argument t and apply in the event that 0 ≤ µ ≤ ν. In [2], the
new dependent variable ζ defined via the implicit relations∫ ζ

γ2

a

ξ2 − γ2
2ξ

dξ = −
∫ x

?
1−γ2

a

1− γ2 − τ2
1− τ2

dτ if x <
a

1− γ2 (16)

and ∫ ζ

γ2

a

ξ2 − γ2
2ξ

dξ = −
∫ x

?
1−γ2

a

τ2 − 1 + γ2

1− τ2
dτ if x >

a

1− γ2, (17)

where λ = ν + 1
2 and γ = µ

λ , is introduced to obtain the uniform asymptotic expansions

P̄−µν (x) ∼
ˆ

ζ − γ2

1− γ2 − x2

˙

1
4

˜

?
λJµ

´

λ
a

ζ
¯

∞∑
k=0

Fk(ζ)

λ2s
+

ˆ

ζ

λ

˙
1
2

J ′µ

´

λ
a

ζ
¯

∞∑
k=0

F̃k(ζ)

λ2s

¸

(18)

as ν →∞ and

Q̄−µν (x) ∼ −
ˆ

ζ − γ2

1− γ2 − x2

˙

1
4

˜

?
λYµ

´

λ
a

ζ
¯

∞∑
k=0

Fk(ζ)

λ2s
+

ˆ

ζ

λ

˙
1
2

Y ′µ

´

λ
a

ζ
¯

∞∑
k=0

F̃k(ζ)

λ2s

¸

(19)

5



as ν →∞. The coefficients are given by F0(ζ) = 1, as well as by the formulas

F̃k(ζ) =
ˇ

ˇζ − α2
ˇ

ˇ

− 1
2

∫ ζ

α2

ˇ

ˇξ − α2
ˇ

ˇ

− 1
2
`

ξF ′′k (ξ) + F ′k(ξ)− ψ(ξ)Fk(ξ)
˘

dξ (20)

and

Fk+1(ζ) = −ζF̃ ′k(ζ) +

∫ ζ

α2

ψ(ξ)F̃ ′k(ξ) dξ + ζF̃ ′k(α
2), (21)

where

ψ(ζ) =
1

16

`

ζ − α2
˘−2

˜

ζ + 4α2 +
1− x2

ζ

ˆ

ζ − α2

1− α2 − x2

˙3
``

1− 4α2
˘

x2 + (α4 − 1)
˘

¸

. (22)

Note that the variable x in (22) depends on ζ through either (16) or (17); if this is neglected and x is
treated as a constant in (20) and (21), then these integrals diverge. While (18) and (19) are powerful
expansions in the sense that they converge rapidly for a large range of parameters and arguments,
it is not clear how to accurately and efficiently compute the variable ζ defined via the relations
(16) and (17) given x. Nor is it obvious how to evaluate the coefficients in these expansions. Only
the first few are known analytically, and the numerical calculation of the remaining coefficients is
complicated by the delicate cancellations of singularities which occur in these formulas. Alternate
Liouville-Green expansions for (3) and (4) are given in Chapter 12 of [23]. However, the coefficients
in these expansions appear to be no easier to compute than those in (18) and (19), and they have
the unfortunate property that are only applicable when µ is small relative to ν.

Asymptotic expansions are a promising approach to the numerical evaluation of associated Legendre
functions, but there are substantial difficulties which must be addressed in order to construct a
viable numerical method using them.

1.3. Outline of this paper

The remainder of this paper is structured as follows. In Section 2, we review certain mathematical
facts and numerical procedures which are used in the rest of this article. In Section 3, we describe a
numerical method for the solution of the differential equation (5) which runs in time independent of
the parameters ν and µ. The construction of a precomputed table of expansions of the associated
Legendre functions which makes use of the algorithm of Section 3 is discussed in Section 4. In
Section 5, we detail our algorithm for the numerical calculation of the associated Legendre functions.
Section 6 describes the results of numerical experiments carried out to verify the efficacy of our
algorithm. We close with a few brief comments in Section 7.

2. Mathematical and numerical preliminaries

2.1. The condition number of the evaluation of a function

The condition number of the evaluation of a differentiable function f : R → R at the point x is
commonly defined to be

κf (x) =

ˇ

ˇ

ˇ

ˇ

xf ′(x)

f(x)

ˇ

ˇ

ˇ

ˇ

(23)
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(see, for instance, Section 1.6 of [14]). This quantity measures the ratio of the magnitude of the
relative change in f(x) induced by a small change in the argument x to the magnitude of the
relative change in x in the sense that

ˇ

ˇ

ˇ

ˇ

f(x+ δ)− f(x)

f(x)

ˇ

ˇ

ˇ

ˇ

≈ κf (x)

ˇ

ˇ

ˇ

ˇ

δ

x

ˇ

ˇ

ˇ

ˇ

(24)

for small δ. Since almost all quantities which arise in the course of numerical calculations are
subject to perturbations with relative magnitudes on the order of machine epsilon, we consider

κf (x)ε0, (25)

where ε0 denotes machine epsilon, to be a rough estimate of the relative accuracy one should expect
when evaluating f(x) numerically (in fact, it tends to be a slightly pessimistic estimate). In the
rest of this paper, we take ε0 to be

ε0 = 2−52 ≈ 2.22044604925031× 10−16. (26)

It is immediately clear from (23) that when f ′(x0)x0 6= 0 and f(x0) = 0, κf (x) diverges to ∞ as
x → x0. One consequence of this is that there is often a significant loss of relative accuracy when
a function is evaluated near one of its roots. For the most part, we avoid this issue by representing
the solutions of the associated Legendre differential equation via functions which are bounded away
from 0.

2.2. Trivariate Chebyshev expansions

For each nonnegative integer n, the Chebyshev polynomial of degree n is defined for −1 < x < 1
via the formula

Tn(x) = cos pn arccos(x)q . (27)

The trivariate Chebyshev series of a continuous function f : [−1, 1]3 → R is
∞∑′

i=0

∞∑′

j=0

∞∑′

k=0

ai,j,kTi(x)Tj(y)Tk(z), (28)

where the coefficients are defined via the formula

ai,j,k =
8

π3

∫ 1

−1

∫ 1

−1

∫ 1

−1
f(x, y, z)Ti(x)Tj(y)Tk(z)

dx
?

1− x2
dy

a

1− y2
dz

?
1− z2

(29)

and the dashes next to the summation symbols indicate that the first term in each sum is halved.
The well-known relationship between Chebyshev and Fourier series (see, for instance, [20]), together
with the results of [10] on the pointwise almost everywhere convergence of multiple Fourier series
immediately imply that

lim
N→∞

N∑′

i=0

N∑′

j=0

N∑′

k=0

ai,j,kTi(x)Tj(y)Tk(z) = f(x, y, z) (30)

for almost all (x, y, z) ∈ [−1, 1]3. As in the case of univariate Chebyshev series, under mild smooth-
ness conditions on f , the convergence of (28) is uniform. See, for instance, Theorem 5.9 in [20].

If f(x, y, z) is analytic on the set{
px, y, zq ∈ C3 :

ˇ

ˇ

ˇ
x+

a

x2 − 1
ˇ

ˇ

ˇ
< r1,

ˇ

ˇ

ˇ
y +

a

y2 − 1
ˇ

ˇ

ˇ
< r2,

ˇ

ˇ

ˇ
z +

a

z2 − 1
ˇ

ˇ

ˇ
< r3

}
, (31)
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where r1, r2, r3 > 1, then |ai,j,k| = O
´

r−i1 r−j2 r−k3

¯

(this is according to Theorem 11 in Chapter V

of [1]), with the consequence that the limit in (30) converges rapidly to f when f is analytic in a
large neighborhood containing [−1, 1]3.

For each nonnegative integer n, we refer to the collection of points

ρj,n = − cos

ˆ

πj

n

˙

, j = 0, 1, . . . , n, (32)

as the (n+ 1)-point Chebyshev grid on the interval [−1, 1], and we call individual elements of this
set Chebyshev nodes or points. One discrete version of the well-known orthogonality relation∫ 1

−1

Ti(x)Tj(x)
?

1− x2
dx =


0 if i 6= j
π
2 if i = j > 0

π if i = j = 0.

(33)

is

(34)

n∑′′

l =0

Ti(ρl,n)Tj(ρl,n) =


0 if 0 ≤ i, j ≤ n and i 6= j
n
2 if 0 < i = j < n

n if i = j = 0 or i = j = n.

Here, the double dash next to the summation sign indicates that the first and last term in the series
are halved. Formula (34) can be found in a slightly different form in Chapter 4 of [20].

It follows easily from (33) and (34) that any trivariate polynomial f of degree less than or equal to
n can be represented in the form

f(x, y, z) =

n∑′′

i=0

n∑′′

j=0

n∑′′

k=0

bi,j,kTi(x)Tj(y)Tk(z), (35)

where

bi,j,k =
8

n3

n∑′′

r=0

n∑′′

s=0

n∑′′

t=0

Ti pρr,nqTj pρs,nqTk pρt,nq f pρr,n, ρs,n, ρt,nq . (36)

If f is not a polynomial or is a polynomial of degree greater than n, then the representation (35) is
no longer exact. However, in this event, there is a well-known relationship between the coefficients
defined via (36) and those given by (28). In particular,

bi,j,k = aijk +

∞∑
l1=1

∞∑
l2=1

∞∑
l3=1

pai+2l1n,j+2l2n,k+2l3n + a−i+2l1n,−j+2l2n,−k+2l3nq (37)

for all 0 ≤ i, j, k ≤ n (the one-dimensional version of this result can be found, for instance, in [20]).
Using (37) it is easy to show that there exists a constant C such that

(38)
sup

x ∈[−1,1]

∣∣∣∣∣∣f(x, y, z)−
n∑′′

i=0

n∑′′

j=0

n∑′′

k=0

bi,j,kTi(x)Tj(y)Tk(z)

∣∣∣∣∣∣
≤ C sup

x∈[−1,1]

∣∣∣∣∣∣f(x, y, z)−
n∑′′

i=0

n∑′′

j=0

n∑′′

k=0

ai,j,kTi(x)Tj(y)Tk(z)

∣∣∣∣∣∣ .
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It follows, of course, that the sum (36) converges rapidly to f when f is analytic in a large neighbor-
hood of [−1, 1]3. By a slight abuse of terminology, we will refer to (35) as the nth order Chebyshev
expansion for the function f .

2.3. Compressed trivariate Chebyshev expansions

It often happens that many of the coefficients in the trivariate Chebyshev expansion (35) of a
function f : [−1, 1]3 → R are of negligible magnitude. In order to reduce the cost of storing such
expansions as well as the cost of evaluating them, we use the following construction to reduce the
number of coefficients which need to be considered.

Suppose that ε > 0, and that
n∑′′

i=0

n∑′′

j=0

n∑′′

k=0

bi,j,kTi(x)Tj(y)Tk(z) (39)

is the nth order Chebyshev expansion for f : [−1, 1]3 → R. We let M denote the least nonnegative
integer which is less than or equal to n and such that

|bi,j,k| < ε for all i = M + 1, . . . , n, j = 0, . . . , n and k = 0, . . . , n, (40)

assuming such an integer exists. If not, then we take M = n. For each i = 0, . . . ,M , we let mi be
the least nonnegative integer less than or equal to n such that

|bi,j,k| < ε for all j = mi + 1, . . . , n, and k = 0, . . . , n (41)

if such an integer exists, and we let mi = n otherwise. Finally, for each pair (i, j) such that
0 ≤ i ≤M and 0 ≤ j ≤ mi, we let ni,j be the least nonnegative integer such that

|bi,j,k| < ε for all k = 0, . . . , ni,j . (42)

We refer to the series
M∑
i=0

mi∑
j=0

ni,j∑
k=0

rbi,j,kTi(x)Tj(y)Tk(z), (43)

where rbi,j,k is defined via

(44)
rbi,j,k = bi,j,k

(
1− 1

2
δ(i− n)

)(
1− 1

2
δ(i− 0)

)(
1− 1

2
δ(j − 0)

)(
1− 1

2
δ(j − n)

)
(

1− 1

2
δ(k − 0)

)(
1− 1

2
δ(k − n)

)
,

as the ε-compressed nth order Chebyshev expansion of f . Here, δ(x) denotes the function which is
equal to 1 when x = 0 and is 0 for all other values of x. The factors in (44) involing δ are necessary
because the first and last terms in (39) are scaled by 1

2 .

Obviously, the results discussed in this and the preceding section can be modified in a straightfor-
ward fashion so as to apply to functions given on an arbitrary rectangular prism [a, b]× [c, d]× [e, f ].
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2.4. Series expansions of the associated Legendre functions and connection formulas

When ν ≥ 0, −ν ≤ µ ≤ ν and −1 ≤ x < 1, the associated Legendre function of the first kind of
degree ν and order −µ is given by

P−µν (x) =

ˆ

1− x
1 + x

˙µ/2 ∞∑
n=0

(−1)n
Γ(ν + n+ 1)

Γ(ν − n+ 1)

`

1
2 −

x
2

˘n

Γ(n+ 1)Γ(n+ µ+ 1)
. (45)

Here, we have adopted the convention that

1

Γ(k)
= 0 (46)

whenever k is an integer which is less than or equal to 0. The trigonometric form

P−µν (cos(t)) =

ˆ

tan

ˆ

t

2

˙˙µ ∞∑
n=0

p−1q
n Γ(ν + n+ 1)

Γ(ν − n+ 1)

`

sin
`

t
2

˘˘2n

Γ(n+ 1)Γ(n+ µ+ 1)
(47)

of (45) is obtained by letting x = cos(t) and making use of elementary identities. When the
parameters ν and µ are of small magnitude, the coefficients in (47) decay rapidly as n increases,
with the consequence that only a small number of terms of (47) are required to accurately evaluate
P−µν . Likewise, even when the parameters are of large magnitude the coefficients in this expansion
decay rapidly with n if t is sufficiently small, so that (47) is efficient in this regime as well. For
extremely large values of ν, we found numerical roundoff error to be a problem in the evaluation
of (47). For this reason, we only use this series expansion in the event that ν is less than 10, 000.

One futher potential difficulty with the use of (47) as a numerical tool is that underflow can occur
when the parameters are large and t is small. To obviate such problems, we use a truncation of the
formula

(48)
log
(
P̃−µν (t)

)
= log

(
Γ(ν − µ+ 1)

Γ(ν + µ+ 1)

)
+ log

(
ν +

1

2

)
+

1

2
log (sin(t)) + µ log

(
tan

(
t

2

))
− log

(
1

Γ (µ+ 1)

)
+log

( ∞∑
n=0

(−1)n
Γ(ν + n+ 1)

Γ(ν − n+ 1)

Γ(µ+ 1)

Γ(µ+ n+ 1)

(
sin
(
t
2

))2n
Γ(n+ 1)

)
,

which is easily obtained from (3) and (47), to evaluate the logarithm of the associated Legendre
function of the first kind in this regime. We note that P̃−µν (t) is necessarily positive when t is
sufficiently small, so that this logarithm is sensible. When µ is equal to a negative integer, say
−m, the first m terms of the sum in (47) are 0 and we use a version of (48) which is modified
accordingly.

Remark 1. The naive evaluation of the first term in (48) can lead to numerical cancellation when
ν is large and µ is small relative to ν. In this event, we use the first sixteen terms of the asymptotic
approximation

log

(
Γ(x− y)

Γ(x+ y)

)
∼ −2y log (x) + log

(
1− y

x
−
y
(
2y2 − 3y + 1

)
6x2

+
y2
(
2y2 − 3y + 1

)
6x3

+
y
(
20y5 − 96y4 + 155y3 − 90y2 + 5y + 6

)
360x4

+ · · ·

)
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in order to evaluate it.

For ν ≥ 0, −1 ≤ x < 1 and −ν ≤ µ ≤ ν not an integer, the associated Legendre function of the
second kind of degree ν and order −µ is given by

Q−µν (x) =
π

2

ˆ

Γ(ν − µ+ 1)

Γ(ν + µ+ 1)
sec(µπ)Pµν (x)− cot(µπ)P−µν (x)

˙

. (49)

The normalized versions of the associated Legendre functions satisfy the somewhat simpler relation

Q̃−µν (t) = sec(µπ)P̃µν (t)− cot(µπ)P̃−µν (t), (50)

which is an immediate consequence of (49), (3) and (4). Similarly to the case of (47), the use of (50)
can lead to numerical overflow when t is small. Accordingly, we generally compute the logarithm
of Q̃−µν via the less delicate formula

(51)log
(
Q̃−µν (t)

)
= log

(
P̃−µν (t)

)
+ log

(
sec(µπ)− cot(µπ) sign

(
P̃µν (t)

)
exp

(
log
(∣∣∣P̃µν (t)

∣∣∣)− log
(
P̃−µν (t)

)))
in this regime. We note that for sufficiently small t, the function Q̃−µν (t) is positive.

When µ is an integer, (50) and (51) lose their meanings. Various series expansions for Q−mν (x) with
m a positive integer can be obtained (see, for instance, Section 3.6 of [7]), but they are somewhat
cumbersome and do not address a second problem with the use of (50) as a numerical method for
the evaluation of Q−µν . Namely, that when µ is close to, but does not coincide with, an integer, the
evaluation (50) results in severe loss of precision due to numerical cancellation. However, since Q̃−µν
is an analytic function of the parameter µ, it can be efficiently interpolated in the µ variable. For
instance, when µ is close to, or coincides with, an integer m, the value of Q̃−µν (t) can be calculated
by first evaluating

Q̃ξ1ν (t), . . . , Q̃ξ2n+1
ν (t) (52)

with ξ1, . . . , ξ2n the nodes of the (2n)-point Chebyshev grid on the interval [m − ε], [m + ε], and
then using Chebyshev interpolation to calculate Q̃−µν (t). Here, ε is an appropriate chosen positive
real number and n is a positive integer. An even number of nodes is chosen in order to ensure that
none coincide with the integer m. In the code used in this paper, we apply this procedure when
µ is within a distance of 0.001 of an integer, and we take n = 6 and ε = 0.1. Of course, the same
approach can be used to evaluate log(Q̃−µν (t)).

Indeed, many other connection formulas for the associated Legendre functions can be handled in a
similar fashion, such as the identity

Q̃−µν (t) = sec(µπ)Q̃µν (t) + tan(µπ)P̃−µν (t), (53)

which follows easily from a formula found in in Section 3.4 of [7]. On the other hand, the connection
formulas

P̃−µν (π − t) = cos(π(ν − µ))P̃−µν (t)− sin(π(ν − µ))Q̃−µν (t) (54)

and

Q̃−µν (π − t) = − cos(π(ν − µ))Q̃−µν (t)− sin(π(ν − µ))P̃−µν (t), (55)

which also appear (in a slightly different form) in Section 3.4 of [7], are immune from such problems.
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2.5. Macdonald’s asymptotic expansions

In [19], an asymptotic formula for P−µν (cos(t)) which is accurate when ν is large, 0 ≤ µ ≤ ν and t
is small is derived by replacing the ratio of Gamma functions

Γ(ν + n+ 1)

Γ(ν − n+ 1)
(56)

appearing in (47) with a finite truncation of the series expansion

Γ(ν + n+ 1)

Γ(ν − n+ 1)
= λ2n −G1λ

2n−2 +G2λ
2n−4 −G3λ

2n−6 + · · · , (57)

where λ = ν+ 1
2 . The coefficients in this expansion can be easily derived starting from the formula

Γ
`

x+ n+ 1
2

˘

Γ
`

x− n+ 1
2

˘ =

`

4x2 − 12
˘ `

4x2 − 32
˘

· · ·
`

4x2 − (2n− 1)2
˘

4n
, (58)

which can be found (for instance) in Section 8.339 of [12]. The first few are

G1 =
1

3

Γ(n+ 1)

Γ(n− 2)
+

Γ(n+ 1)

Γ(n− 1)
+

1

4

Γ(n+ 1)

Γ(n)
,

G2 =
1

18

Γ(n+ 1)

Γ(n− 5)
+

11

15

Γ(n+ 1)

Γ(n− 4)
+

31

12

Γ(n+ 1)

Γ(n− 3)
+

29

12

Γ(n+ 1)

Γ(n− 2)
+

9

32

Γ(n+ 1)

Γ(n− 1)
,

and

G3 =
Γ(n+ 1)

162Γ(n− 8)
+

17Γ(n+ 1)

90Γ(n− 7)
+

4943Γ(n+ 1)

2520Γ(n− 6)
+

1513Γ(n+ 1)

180Γ(n− 5)

+
1381Γ(n+ 1)

96Γ(n− 4)
+

751Γ(n+ 1)

96Γ(n− 3)
+

75Γ(n+ 1)

128Γ(n− 2)
.

The first three terms in the asymptotic expansion of P−µν obtained in this fashion are

(59)P−µν (cos(t)) ≈
(
λ cos

(
t

2

))−µ
·
(
Jµ(η) + sin2

(
t

2

)
H1 + sin4

(
t

2

)
H2 + sin6

(
t

2

)
H3

)
,

where η = (2ν + 1) sin( t2), Jγ denotes the Bessel function of the first kind of order γ,

H1 =
η

6
Jµ+3(η)− Jµ+2(η) +

1

2η
Jµ+1(η),

H2 =
η2

72
Jµ+6(η)− 11η

30
Jµ+5(η) +

31

12
Jµ+4(η)− 29

6η
Jµ+3(η) +

9

8η2
Jµ+2(η),

and

H3 =
75

16η3
Jµ+2(η)− 751

24η2
Jµ+3(η) +

1381

48η
Jµ+4(η)− 1513

180
Jµ+5(η)

+
4943η

5040
Jµ+6(η)− 17η2

360
Jµ+7(η) +

η3

1296
Jµ+8(η).
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The first few terms of the analogous expansion of the associated Legendre function of the second
kind, which is applicable when 0 ≤ µ ≤ ν, are

(60)Qµν (cos(t)) ≈ −π
2

(
λ cos

(
t

2

))µ
·
(
Y−µ(η) + sin2

(
t

2

)
N1 + sin4

(
t

2

)
N2 + sin6

(
t

2

)
N3

)
,

where Yγ denotes the Bessel function of the second kind of order γ,

N1 =
η

6
Y−µ+3(η)− Y−µ+2(η) +

1

2η
Y−µ+1(η),

N2 =
η2

72
Y−µ+6(η)− 11η

30
Y−µ+5(η) +

31

12
Y−µ+4(η)− 29

6η
Y−µ+3(η) +

9

8η2
Y−µ+2(η),

and

N3 =
75

16η3
Y−µ+2(η)− 751

24η2
Y−µ+3(η) +

1381

48η
Y−µ+4(η)− 1513

180
Y−µ+5(η)

+
4943η

5040
Y−µ+6(η)− 17η2

360
Y−µ+7(η) +

η3

1296
Y−µ+8(η).

To reduce the potential for numerical underflow in the evaluation of (59), we evaluate log(P̃−µν (t))
using the following formula instead:

(61)log
(
P̃−µν (t)

)
≈ log

(
Γ(ν − µ+ 1)

Γ(ν + µ+ 1)

)
+ log

(
ν +

1

2

)
+

1

2
log (sin(t))− µ log

(
λ cos

(
t

2

))
+ log (Jµ(η)) + log

(
1 + sin2

(
t

2

)
H̃1 + sin4

(
t

2

)
H̃2 + sin6

(
t

2

)
H̃3

)
,

where

H̃1 =
η

6
exp (log (Jµ+3(η))− log (Jµ(η)))− exp (log (Jµ+2(η))− log (Jµ(η)))

+
1

2η
exp (log (Jµ+1(η))− log (Jµ(η))) ,

H̃2 =
η2

72
exp (log (Jµ+6(η))− log (Jµ(η)))− 11η

30
exp (log (Jµ+5(η))− log (Jµ(η)))

+
31

12
exp (log (Jµ+4(η))− log (Jµ(η)))− 29

6η
exp (log (Jµ+3(η))− log (Jµ(η)))

+
9

8η2
exp (log (Jµ+2(η))− log (Jµ(η))) ,
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and

H̃3 =
75

16η3
exp (log (Jµ+2(η))− log (Jµ(η)))− 751

24η2
exp (log (Jµ+3(η))− log (Jµ(η)))

+
1381

48η
exp (log (Jµ+4(η))− log (Jµ(η)))− 1513

180
exp (log (Jµ+5(η))− log (Jµ(η)))

+
4943η

5040
exp (log (Jµ+6(η))− log (Jµ(η)))

− 17η2

360
exp (log (Jµ+7(η))− log (Jµ(η))) +

η3

1296
exp (log (Jµ+8(η))− log (Jµ(η))) .

As discussed in Remark 1, some care must be taken in evaluating the first term in (61). We use
an analogous form of (60) in order to evaluate log(Q̃µν (t)). The logarithms of the Bessel functions
appearing in these formulas are calculated via the algorithm of [4].

We are unaware of a simple analog of (60) for the function Q̃−µν . When we say that we evalu-
ate log(Q̃−µν (t)) via Macdonald’s expansions, we mean that we combine the above formulas for
log(P̃−µν (t)) and log(Q̃µν (t)) with the connection formula (53) in order to calculate log(Q̃−µν (t)).

2.6. Riccati’s equation, Kummer’s equation and phase functions

In this section, we suppose that q is a smooth, real-valued function defined on an open interval
I ⊂ R. In the event that q is strictly negative on I, two linearly independent solutions of the second
order differential equation

y′′(t) + q(t)y(t) = 0 for all t ∈ I (62)

both of which are positive on I can be found. This follows easily from standard proofs of Picard’s
theorem on the existence and uniqueness of solutions of ordinary differential equations (see, for
instance, Section 2.3 of [15]). Any positive solution y of (62) can be represented in the form
y = exp(r(t)) with r real-valued, and a straightforward computation shows that r must satisfy

r′′(t) + (r′(t))2 + q(t) = 0 for all t ∈ I. (63)

Equation (63) is known as Riccati’s equation; a detailed discussion of it can be found in [15], among
many other sources.

When q is positive on I, the solutions of (62) oscillate and their logarithms are complex-valued. In
this case it is convenient to represent them via a phase function. We say that a smooth function
α defined on I is a phase function for the second order differential equation (62) provided α′ does
not vanish on I and the pair

u(t) =
cos pα(t)q
a

|α′(t)|
(64)

and

v(t) =
sin pα(t)q
a

|α′(t)|
(65)

form a basis in the space of solutions of (62). Of course, from (64) and (65), it is immediate that
α is simply the imaginary part of the logarithm of the solution u(t) + iv(t). We do not use a phase
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function to represent solutions of (62) in intervals on which q is negative since in that event the
phase function cannot be efficiently represented via polynomial expansions (see Figure 1).

Proofs of the following elementary results regarding phase functions can be found in [13] and [4].

Theorem 1. Suppose that I is an open interval in R, and that q is a smooth, real-valued function
defined on I. Suppose also that α is a smooth, real-valued function defined on I whose first derivative
does not vanish there. Then α is a phase function for the second order differential equation (62) if
and only if its derivative α′ satisfies the second order nonlinear differential equation

q(t)− (α′(t))2 − 1

2

ˆ

α′′′(t)

α′(t)

˙

+
3

4

ˆ

α′′(t)

α′(t)

˙2

= 0 for all t ∈ I. (66)

Theorem 2. Suppose that u, v is a pair of smooth, real-valued solutions of (62) whose (necessarily
constant) Wronskian W is nonzero. Then there is a phase function α for (62) such that

u(t) =
?
W

cos(α(t))
a

|α′(t)|
(67)

and

v(t) =
?
W

sin(α(t))
a

|α′(t)|
. (68)

Moreover, the derivative of α is given by

α′(t) =
W

(u(t))2 + (v(t))2
for all t ∈ I, (69)

and α is unique up to addition by an integer multiple of 2π. That is, α̃ is a phase function for (62)
such that (67) and (68) hold if and only there exists an integer L such that

α̃(t) = α(t) + 2πL for all t ∈ I. (70)

We will refer to (66) as Kummer’s equation, after E. E. Kummer who studied it in [16].

2.7. A nonoscillatory phase function for the associated Legendre differential equation

From Theorem 2, we see that there is a phase function αν,µ for (5) such that

P̃−µν (t) =

d

2
`

ν + 1
2

˘

π

cos(αν,µ(t))
b

α′ν,µ(t)
(71)

and

Q̃−µν (t) =

d

2
`

ν + 1
2

˘

π

sin(αν,µ(t))
b

α′ν,µ(t)
, (72)

and whose derivative is given by

α′ν,µ(t) =
2

π

ˆ

ν +
1

2

˙

1
´

P̃−µν (t)
¯2

+
´

Q̃−µν (t)
¯2 . (73)
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We have made use of the fact (which can be found in a slightly different form in Section 3.4 of [7])
that the Wronskian of the pair P̃−µν , Q̃−µν is 2

π

`

ν + 1
2

˘

. It has long been known that the function
(73) is nonoscillatory. Indeed, it is immediate from (18) and (19) that

α′ν,µ(arccos(x)) ∼ 2

π

a

1− x2
ˆ

ζ − γ2

1− γ2 − x2

˙− 1
2 1
`

Jµ
`

λ
?
ζ
˘˘2

+
`

Yµ
`

λ
?
ζ
˘˘2 as ν →∞, (74)

where ζ is the variable defined implicitly by (16) and (17), λ = ν + 1
2 and γ = µ

λ . A cursory
inspection of Nicholson’s integral formula

J2
µ(z) + Y 2

µ (z) =
8

π2

∫ ∞
0

K0(2z sinh(t)) cosh(2µt) dt, (75)

a derivation of which can be found in Section 13.73 of [27], reveals that the function pJµ(x)q
2 +

pYµ(x)q
2 is nonoscillatory. We note that the nonoscillatory phase function for the associated Legen-

dre differential equation is unique up to a constant. That is, all phase functions for the associated
Legendre differential equation which are are not equal to αν,µ + C for some constant C oscillate.
Figure 1 compares α′ν,µ with the derivatives of oscillatory phase functions for (5).

It follows from (73) that there exists a constant C such that

αν,µ(t) = C +

∫ t

π
2

α′ν,µ(s) ds. (76)
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Figure 1: Top left: a plot of the function α′ν,µ defined via (73) when ν = 100 and µ = 30. Top right: a plot of
α′ν,µ when ν = 100 and µ = 0. Bottom left: a plot of the derivative of a typical oscillatory phase function for (5)
when ν = 100 and µ = 30. Bottom right: a plot of the derivative of a typical oscillatory phase function for (5) when
ν = 100 and µ = 0.
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In fact, using the formulas

P̃−µν

´π

2

¯

=
2−µ
?
π

d

ˆ

ν +
1

2

˙

Γ(ν + µ+ 1)

Γ(ν − µ+ 1)

cos
`

1
2π(ν − µ)

˘

Γ
`

1
2(−µ+ ν + 1)

˘

Γ
`

1
2(µ+ ν + 2)

˘ (77)

and

Q̃−µν

´π

2

¯

= −2−µ
?
π

d

ˆ

ν +
1

2

˙

Γ(ν + µ+ 1)

Γ(ν − µ+ 1)

sin
`

1
2π(ν − µ)

˘

Γ
`

1
2(−µ+ ν + 1)

˘

Γ
`

1
2(µ+ ν + 2)

˘ , (78)

which appear in a slightly different form in Section 3.4 of [7], we see that (71) and (72) hold so long
as the constant C in (76) is taken to be

C =
π

2
pν − µq + 2πL (79)

with L an integer. In the remainder of this paper, we let αν,µ denote the phase function defined
via the formula

αν,µ(t) = 2π +
π

2
pν − µq +

∫ t

π
2

α′ν,µ(s) ds. (80)

We set L = 1 in order to ensure that αν,µ is bounded away from 0 on the interval
`

0, π2
˘

. In this way,
we avoid certain difficulties which arise because the condition number of evaluation of a function
is generally infinite near one of its roots (as per the discussion in Section 2.1). By inserting (77)
and (78) into (73), we see that

α′ν,µ

´π

2

¯

=
2Γ

`

1
2 pν − µ+ 2q

˘

Γ
`

1
2 pν + µ+ 2q

˘

Γ
`

1
2 pν − µ+ 1q

˘

Γ
`

1
2 pν + µ+ 1q

˘ . (81)

Expressions for the values of the derivatives of the functions P̃−µν and Q̃−µν at the point π
2 can be

easily derived from formulas appearing in Section 3.4 of [7]. A tedious computation which makes
use of them in addition to (77) and (78) shows that

α′′ν,µ

´π

2

¯

= 0. (82)

2.8. An adaptive discretization procedure

We now briefly describe a fairly standard procedure for adaptively discretizing a smooth function
f : [a, b]→ R. It takes as input a desired precision ε > 0, a positive integer n and a subroutine for
evaluating f . The goal of this procedure is to construct a partition

a = γ0 < γ1 < · · · < γm = b (83)

of [a, b] such that the nth order Chebyshev expansion of f on each of the subintervals [γj , γj+1] of
[a, b] approximates f with accuracy ε. That is, for each j = 0, . . . ,m− 1 we aim to achieve

sup
x∈[γj ,γj+1]

ˇ

ˇ

ˇ

ˇ

ˇ

f(x)−
n∑′′

i=0

bi,jTi

ˆ

2

γj+1 − γj
x+

γj+1 + γj
γj − γj+1

˙

ˇ

ˇ

ˇ

ˇ

ˇ

< ε, (84)
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where b0,j , b1,j . . . , bn,j are the coefficients in the nth order Chebyshev expansion of f on the interval
rγj , γj+1s. These coefficients are defined by the formula

bi,j =
2

n

n∑′′

l=0

Ti pρl,nq f

ˆ

γj − γj+1

2
cos

ˆ

πl

n

˙

+
γj+1 + γj

2

˙

. (85)

During the procedure, two lists of subintervals are maintained: a list of subintervals which are to
be processed and a list of output subintervals. Initially, the list of subintervals to be processed
consists of [a, b] and the list of output subintervals is empty. The procedure terminates when the
list of subintervals to be processed is empty or when the number of subintervals in this list exceeds
a present limit (we usually take this limit to be 300). In the latter case, the procedure is deemed
to have failed. As long as the list of subintervals to process is nonempty and its length does not
exceed the preset maximum, the algorithm proceeds by removing a subinterval rη1, η2s from that
list and performing the following operations:

1. Compute the coefficients b0, . . . , bn in the nth order Chebyshev expansion of the restriction of
f to the interval rη1, η2s.

2. Compute the quantity

∆ =
max

{ˇ
ˇ

ˇ
bn

2
+1

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
bn

2
+2

ˇ

ˇ

ˇ
, . . . , |bn|

}
max {|b0| , |b1| , . . . , |bn|}

. (86)

3. If ∆ < ε then the subinterval rη1, η2s is added to the list of output subintervals.

4. If ∆ ≥ ε, then the subintervals
„

η1,
η1 + η2

2



and

„

η1 + η2
2

, η2



(87)

are added to the list of subintervals to be processed.

This algorithm is heuristic in the sense that there is no guarantee that (84) will be achieved, but
similar adaptive discretization procedures are widely used with great success.

There is one common circumstance which leads to the failure of this procedure. The quantity ∆
is an attempt to estimate the relative accuracy with which the Chebyshev expansion of f on the
interval rη1, η2s approximates f . In cases in which the condition number of the evaluation of f
is larger than ε on some part of [a, b], the procedure will generally fail or an excessive number of
subintervals will be generated. Particular care needs to be taken when f has a zero in [a, b]. In most
cases, for x near a zero of f , the condition number of evaluation of f(x) (as defined in Section 2.1)
is large. In this article, we avoid such difficulties by only applying this procedure to functions which
are bounded away from 0.

3. A method for the rapid numerical solution of the associated Legendre differential
equation

In this section, we describe an algorithm for the numerical solution of the associated Legendre
differential equation which runs in time independent of ν and µ. It is a crucial component of the
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scheme of the following section for the construction of a table which allows for the rapid numerical
evaluation of the associated Legendre functions.

The algorithm makes use of a solver for nonlinear second order ordinary differential equations of
the form

y′′(t) = f(t, y(t), y′(t)) for all a < t < b (88)

which is described in detail in Section 4 of [4]. That solver is designed to be extremely robust, but
not necessarily highly efficient. It takes as input a subroutine for evaluating the function f and its
derivatives with respect to t, y and y′, a positive integer k, a precision ε > 0 for the calculations, and
either initial or terminal conditions for the desired solution y. It returns a collection of subintervals

rγ1, γ2s , . . . , rγm−1, γms (89)

and the values of the functions y, y′ and y′′ at the (k + 1)-point Chebyshev grid on each of the
subintervals (89). In particular, the functions y, y′ and y′′ are represented via piecewise kth order
Chebyshev expansions. Given this data, the value of any one of these functions at any point on the
interval (a, b) can be computed using Chebyshev interpolation (see, for instance, [25] for a thorough
discussion of such techniques). The collection of subintervals is determined adaptively in the course
of solving (88) using an approach which attempts to achieve relative accuracy in the expansions of y,
y′ and y′′ on the order of the specified precision ε. The algorithm is heuristic and offers no accuracy
guarantees, but similar approaches are commonly used with great success. There is one situation in
which this solver is likely to fail. When the condition number of evaluation of the solution of (89)
is large, it is not possible to represent it with high relative accuracy using Chebyshev expansions.
In this event, the solver tends to produce an excessive number of subintervals or fail altogether.
Since the condition number of evaluation of a function is generally large near one of its roots, we
only apply this solver in cases in which the solution is bounded away from 0.

Our algorithm for the numerical solution of (5) takes as input real numbers ν and µ such that
0 ≤ µ ≤ ν, a desired precision ε > 0, and a positive integer k specifying the order of the Chebyshev
expansions to use. It proceeds in three stages.

Stage one: computation of the nonoscillatory phase function αν,µ

In this stage, we calculate the values of the nonoscillatory phase function (80) on the interval
´

t∗ν,µ,
π

2

¯

, (90)

where

t∗ν,µ = arcsin

¨

˝

b

µ2 − 1
4

ν + 1
2

˛

‚ (91)

is the turning point of (5) if µ ≥ 1 and

t∗ν,µ =
1

ν
3
2

(92)

if 0 ≤ µ < 1. The rationale for using (92) as the left endpoint for the interval on which the phase
function is calculated when 0 < µ < 1 is to avoid a discontinuity in tν,µ when µ crosses the threshold
µ = 1

2 .
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We first construct α′ν,µ by solving a terminal value problem for Kummer’s equation (66) using the
solver of Section 4 of [4]. The values of α′ν,µ and α′′ν,µ at the point π

2 are obtained using (81) and
(82). The required precision for these computations is taken to be ε. Next, αν,µ is constructed
through Formula (80). Since αν,µ is represented via its values at the (k+1)-point Chebyshev nodes
on a collection of intervals, it is easy to evaluate the required integral via spectral integration.

Upon the completion of this stage, the values of αν,µ and its first two derivatives are known at the
nodes of the (k+ 1)-point Chebyshev points on each interval in a collection of subintervals of (90).
Using standard Chebyshev interpolation methods, the values of these functions can be calculated
in a stable fashion anywhere on the interval (90).

Stage two: computation of log(Q̃−µν (t)) + ν

In the event that µ ≥ 1, we calculate the function log(Q̃−µν (t)) + ν on the interval
ˆ

t∗ν,µ
100

, t∗ν,µ

˙

(93)

by solving a terminal boundary value problem for Riccati’s equation (63) using the solver described
in Section 4 of [4]. In fact, we solve the terminal boundary value problem on the slightly larger
interval

ˆ

t∗ν,µ
100

, t0

˙

, (94)

where t0 is the solution of the nonlinear equation

αν,µ pt0q =
π

4
+ 2π. (95)

The functions αν,µ and its derivative having been calculated in the preceding stage, there is no
difficulty in using Newton’s method to solve (95). From (72) and (95), we see that

Q̃−µν pt0q =

d

`

ν + 1
2

˘

πα′ν,µ(t)
(96)

and

dQ̃−µν
dt

pt0q =

d

ν + 1
2

π

˜

a

α′ pt0q− α′′ pt0q

2 pα′ pt0qq
3
2

¸

. (97)

The rationale for introducing t0 is to ensure that the terminal value of Q̃−µν and its derivative used in
the solution of Riccati’s equation are computed accurately. The condition number of evaluation of
the function Q̃−µν is large when the parameters ν and µ are of large magnitude, with the consequence
that its numerical evaluation will generally result in a loss of precision in this event. In the case
of (72), the evaluation of a trigonometric functions at a large argument is the specific mechanism
by which this loss of precision takes place. By evaluating Q̃−µν at a point t0 at which the value of
the phase function is known, however, we avoid this loss of precision entirely. This can be seen
from (96) and (97). They involve only the evaluation of α′ν,µ and α′′ν,µ, the condition number of
evaluation of which is small independent of ν and µ.

We construct log(Q̃−µν (t)) + ν in lieu of log(Q̃−µν (t)) because the former is bounded away from 0 on
the interval (93) while the latter is not. We note that the addition of this constant has no impact
on the accuracy with which values of Q−µν are computed. It is strictly a mechanism for avoiding
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numerical difficulties in our solver for ordinary differential equations and in the construction of our
precomputed expansions. Upon the completion of this stage, the values of log(Q̃−µν (t)) + ν at the
nodes of the (k+ 1)-point Chebyshev points on each of a collection of subintervals which cover (90)
are known. Using standard Chebyshev interpolation methods, the values of this function can be
calculated in a stable fashion anywhere on the interval (93).

Stage three: computation of log(P̃−µν (t))− ν

Assuming that µ ≥ 1, we now compute log(P̃−µν (t)) − ν on the interval (93). Proceeding here as
we did in the calculation of log(Q̃−µν (t)) + ν would be problematic. Unlike log(Q̃−µν (t)) + ν, which
increases rapidly as t goes to 0 from the right, log(P̃−µν (t))−ν decreases rapidly as t goes to 0 from
the right. Consequently, it is recessive when solving Riccati’s equation in the backward direction
and attempts to approximate it numerically by solving a terminal value problem for Riccati’s
equation lead to excessively large errors.

Instead, we solve an initial value problem for Riccati’s equation on the interval (93) in order to
calculate log(P̃−µν (t)) − ν. This is numerically viable since it is a dominant solution of Riccati’s
equation when solving in the forward direction. When ν ≤ 10, 000, we use a truncation of the series
expansion (48) in order to generate the necessary initial values. For ν > 10, 000, we calculate initial
values via (61) instead since (48) can lead to numerical roundoff errors when ν is large.

As in the case of the function of the second kind, the reason for computing log(P̃−µν (t))− ν in lieu
of log(P̃−µν (t)) is that the former is bounded away from 0 on the interval (93) while the latter is not.
Upon the completion of this stage, the values of log(P̃−µν (t))− ν at the nodes of the (k + 1)-point
Chebyshev points on each interval in a collection of subintervals of (90) are known. Using standard
Chebyshev interpolation methods, the values of this function can be calculated in a stable fashion
anywhere on the interval (93).

4. The numerical construction of the precomputed table

In this section, we describe the procedure used to construct the precomputed table which allows for
the rapid numerical evaluation of the associated Legendre functions P̃−µν and Q̃−µν for a large range
of ν, µ and t. This table stores the coefficients in the compressed piecewise trivariate Chebyshev
expansions of eights pair of functions.

A first pair of functions A1, B1 allows for the evaluation of the phase function αν,µ and its derivative
on the subset

O1 =
{

(ν, µ, t) : 10 ≤ ν ≤ 1, 000, 000, 1 ≤ µ ≤ ν and t∗ν,µ ≤ t ≤
π

2

}
(98)

of the oscillatory region O. Here, t∗ν,µ is as in (91) and (92). A second pair A2, B2 allows for the
evaluation of the phase function αν,µ and its derivative on the subset

O2 =
{

(ν, µ, t) : 10 ≤ ν ≤ 1, 000, 000, 0 ≤ µ < 1 and t∗ν,µ ≤ t ≤
π

2

}
(99)

of the oscillatory region O. The functions A3 and B3 allow for the evaluation of αν,µ and α′ν,µ on

O3 =
{

(ν, µ, t) : 2 ≤ ν ≤ 10, 1 ≤ µ ≤ ν and t∗ν,µ ≤ t ≤
π

2

}
, (100)
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and a fourth pair A4, B4 allows for the evaluation of the phase function αν,µ and its derivative on

O4 =
{

(ν, µ, t) : 2 ≤ ν ≤ 10, 0 ≤ µ < 1 and t∗ν,µ ≤ t ≤
π

2

}
. (101)

We divided the range of the parameter ν because it is more efficient to represent αν,µ via polynomial
expansions in 1

ν when ν is large, and via expansions in ν when ν is small.

A fifth set of functions C1 and D1 allows for the evaluation of the functions

log
´

P̃−µν (t)
¯

− ν and log
´

Q̃−µν (t)
¯

+ ν (102)

on the subset

N1 =
{

(ν, µ, t) : 10 ≤ ν ≤ 1, 000, 000, 1 < µ ≤ ν and 0 ≤ t < t∗ν,µ
}

(103)

of the nonoscillatory region N . A sixth pair of functions C2 and D2 allows for the evaluation of
the functions (102) on

N2 =
{

(ν, µ, t) : 10 ≤ ν ≤ 1, 000, 000, 0 ≤ µ < 1 and 0 ≤ t < t∗ν,µ
}
. (104)

The seventh pair of functions C3, D3 allows for the evaluation of (102) on

N3 =
{

(ν, µ, t) : 2 ≤ ν ≤ 10, 1 ≤ µ ≤ ν and 0 ≤ t < t∗ν,µ
}
. (105)

The eighth and final pair of functions C4, D4 allows for the evaluation of the functions (102) on

N4 =
{

(ν, µ, t) : 2 ≤ ν ≤ 10, 0 ≤ µ < 1 and 0 ≤ t < t∗ν,µ
}
. (106)

We construct expansions of the functions (102) rather than expansions of log(P̃−µν (t)) and log(Q̃−µν (t))
because the former are bounded away from 0 on the sets in which we consider them while the latter
are not. This ensures that their condition number of evaluation is not large because of the presence
of roots.

These computations were conducted in IEEE quadruple precision arithmetic in order to ensure high
accuracy. The resulting table, which consists of the coefficients in the expansions of the functions
A1, . . . , A4, B1, . . . , B4, C1, . . . , C4, D1, . . . , D4 is roughly 138 MB in size. The precomputed table
allows for the evaluation of αν,µ, α′ν,µ, log(P̃−µν (t)) − ν and log(Q̃−µν (t)) + ν with roughly double
precision accuracy (see the experiments of Section 6). The code was written in Fortran with
OpenMP extensions and compiled with version 4.8.4 of the GNU Fortran compiler. It was executed
on a computer equipped with 28 Intel Xeon E5-2697 processor cores running at 2.6 GHz. The
construction of the table took approximately 24 hours on this machine.

Here, we describe only the construction of the functions A1, B1, C1 and D1. The construction of
the others is extremely similar. The procedure proceeded in four stages as follows:

Stage one: construction of the phase functions and logarithms

We began this stage of the procedure by constructing a partition

ξ1 < ξ2 < . . . < ξ11 (107)

which divides the interval
„

1

1, 000, 000
,

1

10



(108)

over which 1
ν is allowed to vary into 10 subintervals. The precise locations of the nodes ξj are not

22



critically important; reasonable choices were arrived at quickly through trial and error. Next, we
constructed a partition

0 = τ1 < τ2 < . . . < τ18 = 1 (109)

which divides the interval [0, 1] into 17 subintervals. Again, the precise distribution of the nodes τj
is not critical and reasonable choices were arrived at quickly through trial and error.

For each i = 1, . . . , 10 and j = 1, . . . , 17, we processed the tensor product of intervals rξi, ξi+1s ×
rτj , τj+1s as follows. We let x1, . . . , x31 be the nodes of the 31-point Chebyshev grid on the interval
rξi, ξi+1s and y1, . . . , y31 the nodes of the 31-point Chebyshev grid on the interval rτj , τj+1s. For
each pair xk, yl, the algorithm of Section 3 was used to calculate αν,µ, α′ν,µ, log(P̃−µν (t)) − ν, and

log(Q̃−µν (t)) + ν with ν and µ taken to be

ν =
1

xk
and µ = 1 + (ν − 1)yl. (110)

The precision for the computations was ε = 10−17. The functions αν,µ and α′ν,µ were represented as
30th order piecewise Chebyshev expansions on some adaptively determined collection of subintervals
of

“

t∗ν,µ,
π
2

‰

, while the functions log(P̃−µν (t)) − ν and log(Q̃−µν (t)) + ν were represented as 30th
order piecewise Chebyshev expansions on some adaptively determined collection of subintervals of
“

0, t∗ν,µ
‰

. Using this data, the nonoscillatory phase function and its derivative can be evaluated for
any triple (ν, µ, t) in the region O1 via Chebyshev interpolation. Likewise, the logarithms of the
associated Legendre functions can be evaluated at any point in N1.

In this stage of the procedure, the differential equation (5) was solved via the algorithm of Sec-
tion 3 for 163, 370 different pairs of the parameters (ν, µ), many of which were large in magnitude.
Obviously, this was only possible because our solver runs in time independent of ν and µ.

Stage two: formation of unified discretizations

For each pair of points ξ and τ such that ξ is one of the Chebyshev nodes in one of the subintervals
defined by the partition (107) and τ is one of the Chebyshev nodes in one of the subintervals defined
by the partition (109), we used the procedure of Section 2.8 to adaptively form discretization of
the functions

fξ,τ (u) = α′ν,µ(t(u)) (111)

and

gξ,τ (u) = αν,µ(t(u)), (112)

where

ν =
1

ξ
, µ = 1 + (ν − 1)τ and t(u) = t∗ν,µ +

´π

2
− t∗ν,µ

¯

u. (113)

The functions αν,µ and α′ν,µ are evaluated via Chebyshev interpolation using the data constructed
in the first stage of these calculations. We requested ε = 10−17 accuracy and took the parameter
n to be 30. For each ξ and τ considered, this results in a collection of subintervals of [0, 1] on
which fξ,τ is represented with relative accuracy roughly ε via a 30th order Chebyshev expansion
and another collection of subintervals of [0, 1] on which gξ,τ is represented with relative accuracy
roughly ε via a 30th order Chebyshev expansion. We then formed a unified discretization

ra0, a1s , ra1, a2s , ra2, a3s , . . . , ra20, a21s (114)
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of [0, 1] by merging these discretizations; that is, by ensuring that each subinterval in the discretiza-
tion of one of the functions fξ,τ or gξ,τ is the union of some set of subintervals of (114).

A unified discretization

rb0, b1s , rb1, b2s , rb2, b3s , . . . , rb17, b18s (115)

for the functions

f̃ξ,τ (u) = log
´

P̃−µν (t)
¯

− ν (116)

and

g̃ξ,τ (u) = log
´

Q̃−µν (t)
¯

+ ν (117)

with ν, µ and t related to ξ, τ and u via (113) was formed in the same fashion.

Stage three: Construction of the functions A1 and B1

The function A1 is defined via the formula

A1(ξ, τ, u) =
1

ν
αν,µ(t), (118)

where

ν =
1

ξ
, µ = 1 + (ν − 1)τ and t = t∗ν,µ +

´π

2
− t∗ν,µ

¯

u. (119)

Likewise, B1 is defined via

B1(ξ, τ, u) =
1

ν
α′ν,µ(t), (120)

with ν, µ and t given by (119). In this way, we ensure that A1 and B1 are defined on the rectangular
prism

„

1

1, 000, 000
,

1

10



× r0, 1s× r0, 1s , (121)

and hence suitable for representation via a collection of piecewise trivariate Chebyshev expansions.

For each i = 1, . . . , 10, j = 1, . . . , 17 and k = 1, . . . , 21, we formed the 30th order compressed
trivariate Chebyshev expansions (as defined in Section 2.3) for the functions A1 and B1 on the
rectangular prism

rξi, ξi+1s× rτj , τj+1s× rak, ak+1s . (122)

There are 3, 570 such rectangular prisms. Since an uncompressed 30th order trivariate Chebyshev
expansion has 29, 791 coefficients, a total of 212, 707, 740 coefficients would be required to store the
uncompressed Chebyshev expansions of the functions A1 and B1. If each coefficient were stored
as an IEEE double precision number, roughly 1.5 GB of memory would be required to store these
expansions. Fortunately, the compressed 30th order Chebyshev expansions were far more efficient.
The compressed Chebyshev expansions for A1 and B1 had only 7, 839, 620 coefficients.

Stage four: construction of the functions C1 and D1
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The function C1 is defined via

C1(ξ, τ, u) = log
´

P̃−µν (t)
¯

− ν, (123)

where

ν =
1

ξ
, µ = 1 + (ν − 1)τ and t =

t∗ν,µ
100

+

ˆ

t∗ν,µ −
t∗ν,µ
100

˙

u. (124)

Finally, D1 is defined via

D1(ξ, τ, u) = log
´

Q̃−µν (t)
¯

+ ν, (125)

with ν, µ and t as in (124). Obviously, C1 and D1 are also given on the rectangular prism (121).

For each i = 1, . . . , 10, j = 1, . . . , 17 and k = 1, . . . , 17, we formed the 30th order compressed
trivariate Chebyshev expansions (as defined in Section 2.3) for the functions C1 and D1 on the
rectangular prism

rξi, ξi+1s× rτj , τj+1s× rbk, bk+1s . (126)

There are 2, 890 such rectangular prisms and a total of 172, 191, 980 coefficients would be required
to store the uncompressed Chebyshev expansions of the functions C1 and D1. If each coefficient
were stored as an IEEE double precision number, roughly 1.3 GB of memory would be required to
store these expansions. The compressed 30th order Chebyshev expansions were far more efficient.
They required only 4, 441, 063 coefficients to store C1 and D1.

5. An algorithm for the rapid numerical evaluation of the associated Legendre func-
tions

In this section, we describe the operation of our code for evaluating the associated Legendre func-
tions P̃−µν (t) and Q̃−µν (t) when

0 ≤ ν ≤ 1, 000, 000, 0 ≤ µ ≤ ν and 0 < t ≤ π

2
. (127)

The code was written in Fortran and its interface to the user consists of two subroutines, one called
alegendre eval_init and the other alegendre eval. The alegendre eval init routine reads
the precomputed table constructed via the procedure of Section 4 from the disk into memory. The
precomputed table used in the experiments described in this paper is approximately 138 megabytes
in size. Once the precomputed table has been loaded, the alegendre eval can be called. It takes
as input a triple (ν, µ, t) satisfying the conditions (127). When (ν, µ, t) is in the oscillatory region O,
it returns the values of αν,µ(t) and α′ν,µ(t) as well as those of P̃−µν (t) and Q̃−µν (t). When (ν, µ, t) is

in the nonoscillatory region N , it returns the values of log(P̃−µν (t)) and log(Q̃−µν (t)) as well as those
of P̃−µν (t) and Q̃−µν (t). Of course, when t is close to 0, the latter values might not be representable
via the IEEE double format arithmetic. In this event, 0 is returned for P̃−µν (t) and ∞ for Q̃−µν (t).

The alegendre eval code is available from the GitHub repository at address

http://github.com/JamesCBremerJr/ALegendreEval.

It uses several different methods to evaluate the associated Legendre functions and the associated
auxiliary functions, depending on the values of ν, µ and t. The following description of the operation
of the alegendre_eval code is organized by listing each such method.
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Method one: series expansions for P̃−µν (t) and Q̃−µν (t)

This method is used when ν < 2 and (ν, µ, t) is in the oscillatory region O. It consists of evaluating
P̃−µν (t) via a truncation of the series expansion (47) and evaluating Q̃−µν (t) via formula (50). As
discussed in Section 2.4, when µ is close to or coincides with an integer, Chebyshev interpolation
in the variable µ is used to avoid roundoff error in the evaluation of (50). The value of α′ν,µ(t) is
calculated via (73) and αν,µ is computed using the formula

αν,µ = Arg
´

P̃−µν (t) + iQ̃−µν (t)
¯

+ 2π, (128)

where Arg(z) denotes the principal value of the argument of the complex number z. The limitation
on the range of parameters for which this method is used ensures that the principal branch of the
argument function is the correct one.

Method two: series expansions for log(P̃−µν (t)) and log(Q̃−µν (t)) This method is used when ν < 10
and t is in the nonoscillatory regime, and when 10 ≤ ν < 10, 000 and

0 < t <
t∗ν,µ
100

. (129)

It consists of evaluating log(P̃−µν (t)) via a truncation of (48) and log(Q̃−µν (t)) via (51). When µ
coincides with or is close to an integer, Chebyshev interpolation in the parameter µ is used in the
evaluation of (51). The values of P̃−µν (t) and Q̃−µν (t) are computed from their logarithms in the
obvious fashion.

Method three: Macdonald’s asymptotic expansions for log(P̃−µν (t)) and log(Q̃−µν (t))

This method is used when ν ≥ 10, 000 and

0 < t <
t∗ν,µ
100

. (130)

It consists of evaluating log(P̃−µν (t)) and log(Q̃−µν ) via Macdonald’s asymptotic expansions (see
Section 2.5). The values of P̃−µν (t) and Q̃−µν (t) are computed from their logarithms in the obvious
fashion.

Method four: precomputed expansions

In all other cases, the precomputed expansions of the functions A1, . . . , A4, B1, . . . , B4, C1, . . . , C4,
whose construction is described in Section 4, are used to evaluate P̃−µν (t), Q̃−µν (t) and the appro-
priate auxiliary functions. Here, we describe the use of the functions A1 and B1 to evaluate αν,µ
and α′ν,µ in the event that (ν, µ, t) is in the set O1. The other cases are extremely similar.

First, we let ξ = 1
ν , τ = µ−1

ν−1 and

u =
t− t∗ν,µ
π
2 − t∗ν,µ

. (131)

That is, we compute the values of ξ, τ and u defined by the mapping (119) given ν, µ and t. Next,
we find the smallest positive integer i such that ξi ≤ ξ ≤ ξi+1, where ξ1, . . . , ξ11 are the nodes of the
partition (107), the smallest positive integer j such that τj ≤ τ ≤ τi+1, where τ1, . . . , τ17 are the
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nodes of the partition (109), and the smallest positive integer k such that ak ≤ u ≤ ak+1, where
a1, a2, . . . , a21 are the nodes of the partition (114).

Having discovered that (ξ, τ, u) is in the set rξi, ξi+1s × rτj , ξj+1s × rak, ak+1s, we evaluate the
compressed trivariate Chebyshev expansions representing A1 and C1 on this rectangular prism. We
scale the results by ν to obtain the values of αν,µ and α′ν,µ. The values of P̃−µν and Q̃−µν are then
calculated via (71) and (72).

6. Numerical experiments

In this section, we present the results of numerical experiments which were conducted to assess
the performance of the alegendre_eval routine. The task of constructing reference values with
which to compare our results was quite challenging. All existing packages of which the author is
aware were prohibitively slow when evaluating associated Legendre functions with large noninteger
parameters, and existing asymptotic expansions are either not viable (e.g., the Liouville-Green
expansions (18) and (19) whose coefficients cannot be readily computed) or only applicable in the
case of an extremely limited range of parameters (e.g., the trigonometric expansions (13) and (14)
which are catastrophically unstable even for relatively small values of µ). As a result, we were
quite limited in the extent to which we could verify our approach in the case of large noninteger
parameters.

In the case of integer values of the parameters, the well-known three-term recurrence relations
can be used to evaluate the associated Legendre function accurately, provided extended precision
arithmetic is used to perform the computations. In our reference calculations, we represented real
numbers in the form x exp(y) with x and y quadruple precision (Fortran REAL*16) numbers. This
enabled us to test our code quite thoroughly in the case of integer parameters. We note that the
time required to evaluate the associated Legendre functions using the recurrence relations grows
with the magnitudes of the parameters, making such an approach uncompetitive with the algorithm
of this paper in many cases.

These experiments were carried out on a laptop computer equipped with an Intel Core i7-5600U
processor running at 2.6 GHz and 16 GB of memory. Our code was compiled with the GNU Fortran
compiler version 5.2.1 using the “-Ofast” compiler optimization flag.

6.1. The accuracy with which α′ν,µ is evaluated for small noninteger values of ν

In these experiments, we measured the accuracy with which alegendre_eval calculates α′ν,µ in the
oscillatory region. Reference values were calculated using version 11 of Wolfram’s Mathematica
package. The cost of the reference calculations was prohibitively expensive for large ν, with the
consequence that we only considered values of ν between 0 and 1, 000.

In each experiment, we choose 10 pairs (ν, µ) by first picking a random value of ν in a given range,
and then choosing a random value of µ in the interval (0, ν). For each pair chosen in this fashion,
we evaluated α′ν,µ at 100 equispaced points either in interval

´

t∗ν,µ,
π

2

¯

(132)
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or in the interval
ˆ

1

1000
,
π

2

˙

, (133)

depending on whether µ > 1
2 or not. Table 1 reports the results. There, each row corresponds

to one experiment and gives the largest relative error observed in α′ν,µ as well as the average time
taken by the alegendre_eval routine.

Range of ν Maximum relative Average evaluation
error in α′ν,µ time (in seconds)

0 - 1 2.26×10−14 2.88×10−06

1 - 5 2.62×10−15 1.90×10−06

5 - 10 2.38×10−15 1.62×10−06

10 - 50 4.15×10−15 3.21×10−06

50 - 100 8.53×10−15 2.29×10−06

100 - 500 1.88×10−14 2.35×10−06

500 - 1,000 3.49×10−14 1.44×10−06

Table 1: The results of the experiments of Section 6.1 in which the accuracy with which alegendre_eval calculates
α′ν,µ for small values of ν is tested via comparison with Wolfram’s Mathematica package.

6.2. The accuracy with which the logarithms are evaluated in the case of small noninteger values
of ν

In these experiments, we measured the accuracy with which alegendre_eval calculates the func-
tions

log
´

P̃−µν (t)
¯

− ν and log
´

Q̃−µν (t)
¯

+ ν (134)

in the nonoscillatory region. High accuracy reference values for these experiments were calcu-
lated using version 11 of Wolfram’s Mathematica package. Again the high cost of the reference
calculations led us to only consider values of ν between 0 and 1, 000.

In each experiment, we choose 10 pairs (ν, µ) by first picking a random value of ν in a given range,
and then choosing a random value of µ in the interval

`

1
2 , ν

˘

. For each pair chosen in this fashion,
we evaluated the functions (134) at 100 equispaced points in the interval

`

0, t∗ν,µ
˘

. (135)

Table 2 reports the results. There, each row corresponds to one experiment and gives the largest
relative error observed in each of the functions (134), as well as the average time taken by the
alegendre_eval routine.

6.3. The accuracy with which α′ν,µ is evaluated in the case of large ν and small µ

In these experiments, we measured the accuracy with which alegendre_eval calculates α′ν,µ in
the oscillatory region by comparison with values obtained using the trigonometric expansions (13)
and (14). Since these expansions are numerically unstable, and catastrophically so when µ is large,
we considered only pairs of the parameters (ν, µ) with µ small in magnitude. Even so, 1, 000 digit
arithmetic was required in order to obtain accurate reference values for these experiments.
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Range of ν Maximum relative Maximum relative Average evaluation
error in error in time (in seconds)

log(P̃−µν (t))− ν log(Q̃−µν (t)) + ν

0.5 - 1 3.36×10−16 2.58×10−15 1.32×10−06

1 - 5 3.21×10−16 9.28×10−16 1.37×10−06

5 - 10 8.85×10−16 9.14×10−15 1.69×10−06

10 - 50 4.39×10−15 4.43×10−15 3.36×10−06

50 - 100 2.58×10−15 3.49×10−15 1.61×10−06

100 - 500 4.21×10−15 4.47×10−15 2.89×10−06

500 - 1,000 2.54×10−15 3.24×10−15 1.59×10−06

Table 2: The results of the experiments of Section 6.2 in which the accuracy with which alegendre_eval calculates
α′ν,µ for small values of ν is tested via comparison with Wolfram’s Mathematica package.

In each experiment, we choose 10 pairs (ν, µ) by first picking a random value of ν in a given range,
and then choosing a random value of µ in the interval

`

1
2 ,

ν
100

˘

. For each pair, the function α′ν,µ
was evaluated at 100 equispaced points in the interval

´

max
´

t∗ν,µ
π

6

¯

,
π

2

¯

. (136)

We note that the trigonometric expansions used here only converge in the interval
`

π
6 ,

5π
6

˘

, hence
the choice of the interval (136).

Range of ν Maximum relative Average evaluation
error in α′ν,µ time (in seconds)

1,000 - 5,000 1.95×10−15 1.41×10−06

5,000 - 10,000 1.45×10−15 1.01×10−06

10,000 - 50,000 1.06×10−15 1.06×10−06

50,000 - 100,000 9.70×10−16 7.69×10−07

100,000 - 500,000 8.66×10−16 7.71×10−07

500,000 - 1,000,000 9.73×10−16 5.63×10−07

1,000,000 - 5,000,000 7.30×10−16 5.33×10−07

5,000,000 - 10,000,000 8.05×10−16 4.86×10−07

Table 3: The results of the experiments of Section 6.3 in which the accuracy with which alegendre_eval calculates
α′ν,µ for large ν and small µ is tested via comparison with the trigonometric expansions (13) and (14).

6.4. The accuracy with which α′ν,µ is evaluated in the case of integer parameters

In these experiments, the accuracy with which α′ν,µ is evaluated in the oscillatory regime was mea-
sured by comparison with reference values calculated using the well-known three-term recurrence
relations satisfied by the associated Legendre functions. The reference calculations were conducted
in extended precision arithmetic in order to ensure accuracy.

The experiments of this section proceeded just as those described in Section 6.1, except only integer
values of the parameters were considered. Table 4 displays the results.
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Range of ν Maximum relative Average evaluation
error in α′ν,µ time (in seconds)

10 - 50 2.35×10−14 2.90×10−06

50 - 100 4.71×10−15 1.84×10−06

100 - 500 4.96×10−15 3.17×10−06

500 - 1,000 2.86×10−14 2.13×10−06

1,000 - 5,000 8.62×10−15 1.36×10−06

5,000 - 10,000 5.94×10−15 1.00×10−06

10,000 - 50,000 2.74×10−14 1.22×10−06

50,000 - 100,000 7.36×10−14 9.47×10−07

100,000 - 500,000 1.86×10−14 1.01×10−06

500,000 - 1,000,000 3.09×10−14 8.16×10−07

Table 4: The results of the experiments of Section 6.4 in which the accuracy with which alegendre_eval calculates
α′ν,µ for integers values of the parameters is tested.

6.5. The accuracy with which the logarithms are evaluated in the case of integer parameters

In these experiments, we measured the accuracy with which alegendre_eval calculates the func-
tions (134) in the nonoscillatory regime. Reference values were calculated using the well-known
three-term recurrence relations satisfied by the associated Legendre functions. The reference cal-
culations were conducted in extended precision arithmetic in order to ensure accuracy.

These experiments proceeded just as those described in Section 6.2, except only integer values of
the parameters were considered. Table 5 displays the results.

Range of ν Maximum relative Maximum relative Average evaluation
error in error in time (in seconds)

log(P̃−µν (t))− ν log(Q̃−µν (t)) + ν

10 - 50 4.21×10−15 4.65×10−15 3.62×10−06

50 - 100 3.42×10−15 3.32×10−15 2.96×10−06

100 - 500 3.07×10−15 4.07×10−15 2.79×10−06

500 - 1,000 2.95×10−15 3.01×10−15 1.71×10−06

1,000 - 5,000 2.63×10−15 4.14×10−15 1.51×10−06

5,000 - 10,000 1.98×10−15 1.83×10−15 1.03×10−06

10,000 - 50,000 1.98×10−15 2.68×10−15 1.68×10−06

50,000 - 100,000 1.63×10−15 2.07×10−15 1.26×10−06

100,000 - 500,000 1.73×10−15 1.63×10−15 1.51×10−06

500,000 - 1,000,000 1.67×10−15 2.23×10−15 1.13×10−06

Table 5: The results of the experiments of Section 6.5 in which the accuracy with which alegendre_eval calculates
the functions log(P̃−µν (t)) − ν and log(Q̃−µν (t)) − ν for integers values of the parameters is tested.

6.6. The accuracy with which the associated Legendre functions are evaluated in the case of integer
parameters

In these experiments, we measured the accuracy with which alegendre_eval calculates the func-
tions P̃−µν and Q̃−µν in the case of integer values of the parameters. Reference values were calculated

30



using the three-term recurrence relations. As usual, extended precision arithmetic was used during
the reference calculations in order to ensure their accuracy.

In each experiment, 10 pairs of the parameters (ν, µ) were constructed by first choosing an integer
value of ν in a given range at random and then choosing an integer value of µ in the range (0, ν) at
random. For each such pair, we evaluated the function P̃−µν (t) + iQ̃−µν (t) at 100 equispaced points
either in interval

´

t∗ν,µ,
π

2

¯

(137)

or in the interval
ˆ

1

1000
,
π

2

˙

, (138)

depending on whether µ > 1
2 or not. Table 6 reports the results. Each row corresponds to

one experiment and reports the largest relative error which was observed as well as the average
evaluation time. We note that we considered the function P̃−µν (t) + iQ̃−µν (t) because, unlike P̃−µν (t)
and Q̃−µν (t), its absolute value is nonoscillatory and does not have roots on the interval (0, π).

Range of ν Maximum relative Average evaluation
error in time (in seconds)

P̃−µν (t) + iQ̃−µν (t)

10 - 50 2.62×10−13 3.75×10−06

50 - 100 4.20×10−13 2.05×10−06

100 - 500 1.20×10−12 2.29×10−06

500 - 1,000 1.72×10−12 1.60×10−06

1,000 - 5,000 8.57×10−12 2.53×10−06

5,000 - 10,000 1.38×10−11 1.42×10−06

10,000 - 50,000 8.51×10−11 1.21×10−06

50,000 - 100,000 9.07×10−11 9.11×10−07

100,000 - 500,000 9.83×10−10 1.06×10−06

500,000 - 1,000,000 8.25×10−10 8.20×10−07

Table 6: The results of the experiments of Section 6.6 in which the accuracy with which alegendre_eval evaluates
the function P̃−µν (t) + iQ̃−µν (t) for integers values of the parameters is tested.

From Table 6, we see that the relative errors in the calculated values of the associated Legendre
functions increase as a function of the parameter ν. This is expected, and consistent with the
condition number of the evaluation of the function P̃−µν (t) + iQ̃−µν (t).

7. Conclusions

Nonoscillatory phase functions provide powerful theoretical tools for analyzing the solutions of
second order differential equations as well as a framework for the design of simple and efficient nu-
merical algorithms. Here, we have designed a scheme for the numerical evaluation of the associated
Legendre functions on the cut using this framework. Our approach is simple-minded and highly
effective. Moreover, by making use of the algorithms of [3] and [5], it can be applied in the case
of many other special functions satisfying second order differential equations, such as the prolate
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spheroidal wave functions and the generalized Laguerre functions. The author will report on the
use of the techniques of this paper to evaluate other special functions of interest at a later date.

In the nonoscillatory region, our algorithm calculates the logarithms of the associated Legendre
functions as well as their values. This is useful in cases in which the magnitudes of those functions
are too large or too small to be encoded using the IEEE double precision format. In the oscillatory
region, in addition to the values of the associated Legendre functions, our algorithm also returns
the values of a nonoscillatory phase function for the associated Legendre differential equation and
its derivative. This is extremely helpful when computing the zeros of special functions, and when
applying special function transforms via the butterfly algorithm. The author will report on the use
nonoscillatory phase functions to rapidly compute the roots of the associated Legendre functions
and to rapidly apply the spherical harmonic transform at a later date.
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