A Short Introduction to Operator Limits of Random Matrices

Diane Holcomb and Bélint Virdg

Abstract. These are notes to a four-lecture minicourse given at the 2017 PCMI
Summer Session on Random Matrices. We give a quick introduction to the theory
of large random matrices by taking limits that preserve their operator structure,
rather than just their eigenvalues. The operator structure takes the role of exact
formulas, and allows for results in the context of general (3-ensembles. Along the
way, we cover a non-computational proof of the Wiegner semicircle law, a quick
proofs for the Fiiredi-Komlés result on the top eigenvalue, as well as the BBP
phase transition.

1. The Gaussian Ensembles

1.1. The Gaussian Orthogonal and Unitary Ensembles. One of the earliest ap-
pearances of random matrices in mathematics was due to Eugene Wigner in the
1950’s. Let G be an n x n matrix with independent standard normal entries. Then
G+G"

o
This distribution on symmetric matrices is called the Gaussian Orthogonal En-

My, =

semble, because it is invariant under orthogonal conjugation. For any orthogonal
matrix OMpO~! has the same distribution as M. To check this, note that OG
has the same distribution as G be the rotation invariance of the Gaussian column
vectors, and the same is true for OGO ™! by the rotation invariance of the row vec-
tors. To finish note that orthogonal conjugation commutes with symmetrization.

If we instead start with a matrix with independent standard complex Gauss-
ian entries, we get the Gaussian Unitary ensemble. To see how the eigenvalues
behave, we recall the following classical theorem.

Theorem 1.1.1. Suppose My, has GOE or GUE distribution then My, has eigenvalue
density

n

1 _ B2
(1.1.2) f(Ap, ooy An) = 7 [Te ] [ni—n0°
k

=1 i<j

with 3 =1 for the GOE and 3 = 2 for the GUE.
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2 A Short Introduction to Operator Limits of Random Matrices

For convenience we will take A = Ay, = {A{}]* ; to denote the set of eigenvalues
of the GOE or GUE. This notation will be used later to denote the eigenvalues or
points in whatever random matrix model is being discussed at the time.

From this we can see that this is a model for n particles that would like to be
Gaussian, but the Vandermonde term pushes them apart. Note that Tr M2, /n? —
1 in probability (the sum of squares of Gaussians), so the empirical quadratic
mean of the eigenvalues is asymptotically y/n, rather than order 1. The interaction
term has a very strong effect.
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F1Gure 1.1.3. Rescaled eigenvalues of a 1000x1000 GOE matrix

1.2. Tridiagonalization and spectral measure. The spectral measure of a matrix
at a coordinate (which we will take to be the first one) is a measure supported on
the eigenvalues that reflects the local structure of the matrix there.

Definition 1.2.1. For a symmetric matrix A, its spectral measure (at the first coor-
dinate) o is the measure for which

Jxkdc A =AK.
From this definition, its unclear whether the spectral measure exists or is
unique. Nevertheless, that is the case for finite matrices.

Exercise 1.2.2. Check that if Aq, ..., A, are the eigenvalues of A then
oA =) 8 @i(l)?
i

where @ is the ith normalized eigenvector of A.

Now measures with finite support are determined by their moments, so in fact
the definition above works.

The spectral measure is a complete invariant for a certain set of symmetries.
For this, first recall something more familiar.

We say two symmetric matrices are equivalent if they have the same eigen-
values with multiplicity. This equivalence is well understood: two matrices are
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equivalent if and only if they are conjugates by an orthogonal matrix. In group
theory language, the equivalence classes are the orbits of the conjugation action
of the orthogonal group. There is a canonical representative in each class, a diago-
nal matrix with non-increasing diagonals, and the set of eigenvalues is a complete
invariant.

Can we have a similar characterization for matrices with the same spectral
measure? The answer is yes, for a generic class of matrices.

Definition 1.2.3. A vector v is cyclic for an n x n matrix A if v, Av, ..., A" lvisa
basis for the vector space R™.

Theorem 1.2.4. Let A and B be two matrices for which the first coordinate vector is
cyclic. Then oA = op ifan only if O~'AQ = B where O is orthogonal matrix fixing the
first coordinate vector.

Let’s find a nice set of class representatives.

Definition 1.2.5. A Jacobi matrix is a real symmetric tridiagonal matrix with pos-
itive off-diagonals.

Theorem 1.2.6. For all A there exists a unique Jacobi matrix ] such that oy = oa

Proof of Existence. We can conjugate a symmetric matrix to a Jacobi matrix by
hand. Write our matrix in a block form,

al|bt
A=
b| C

Now let O be an (n —1) x (n — 1) orthogonal matrix, and let
Q- 1|0
010

a | (Ob)t
Ob | ocot

Then Q is orthogonal and

QAQ' =

Now we can choose the orthogonal matrix O so that Ou is in the direction of the
first coordinate vector, namely Ou = |ule;.
An explicit option for O is the following Householder reflection:

Ov=v-2 (v, w) w  where w ="b—|ble;

(w,w)
Check that OOt =1, Ob = |ble;.
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Therefore
allb 0 ... 0

b
QAQ=| 0

0Cot
0

We now repeat the previous step, but this time choosing the first two rows and
columns to be 0 except having 1’s in the diagonal entries, and than again until
the matrix becomes tridiagonal. O

There is a lot of choices that can be made for the orthogonal matrices during
the tridiagonalization. However, these choices do not affect the final result. ] is
unique, as shown in the following exercise.

Exercise 1.2.7. Show that two Jacobi matrices with the same spectral measure
are equal. (Hint: express the moments ]1f1 of the spectral measure as sums over
products of matrix entries.)

The procedure presented above may have a familiar feeling. It turns out that
Gram-Schmidt is lurking in the background

Exercise 1.2.8. Suppose that the first coordinate vector e; is cyclic. Apply Gram-
Schmidt to the vectors (e, Aeq, ..., A" 1) to get a new orthonormal basis. Show
that A written in this basis will be a Jacobi matrix.

1.2.1. Tridiagonalization and the GOE. When we apply the tridiagonalization
procedure to the GOE we get a very clean result because of the invariance of the
distribution under independent orthogonal transformation.

Proposition 1.2.9 (Trotter [12]). Let A be GOEy. There exists a random orthogonal
matrix fixing the first coordinate vector e so that

[ ap b1 0 ce 0
b1 as
OAO'= | o

An-1 bn_1

0 b1 an

with a; ~ N(0,2) and by ~ xn_i and independent. In particular, OAQO? has the same
spectral measure as A.

Recall that for a vector v of independent N(0, 1) random variables of length k,
then xx 4 [IV]l. The density of a x random for k > 0 is given by
1 xk—1g—x?/2

f R
xi () 25711 (k/2)

7
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where I'(x) is the Gamma function.

Proof. The argument above can be applied to the random matrix. After the first
step, OCO" will be independent of a,b and have a GOE distribution. This is
because GOE is invariant by conjugation with a fixed O, and O is only a function
of b. So conditionally on a,b, both C and OC Ot have GOE distribution. O

Exercise 1.2.10. Let X be an n x m matrix with X;; ~ N(0,1) (not symmetric
nor Hermitian). The distribution of this matrix is invariant under left and right
multiplication by independent unitary matrices. Show that such a matrix X may
be lower bidiagonalized such that the distribution of the singular values is the
same for both matrices. Note that the singular values of a matrix are unchanged
by multiplication by a unitary matrix.

(1) Start by coming up with a matrix that right multiplied with A gives you
a matrix where the first row is 0 except the 11 entry.

(2) What can you say about the distribution of the rest of the matrix after this
transformation to the first row?

(3) Next apply a left multiplication. Continue using right and left multiplica-
tion to finish the bidiagonalization.

1.3. 3-ensembles. Let’s consider the spectral measure as a map | — oy from
Jacobi matrices of dimension n to probability measures on at most n points. We
have seen that this map is one-to-one. First we see that in fact spectral measures
in the image are supported on exactly n points.

Exercise 1.3.1. Show that a Jacobi matrix cannot have an eigenvector whose first
coordinate is zero. Conclude that all eigenspaces are 1-dimensional.

Second, we check that for the set of such probability measure measures, the
map ] — o7 is onto.

Exercise 1.3.2. For every probability measure on n points there exists a symmetric
matrix with that spectral measure. This implies that there exists a Jacobi matrix
with this spectral measure.

Since ] + o7 is a bijection, we could compute probability distributions by the
change-of-variable formula, as long as we know the Jacobian determinant.
Let

a b1 0 0
b1 az

A L

"B
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That is a tridiagonal matrix with aj,ap,..,an ~ N(0,2) on the diagonal and
by, ..., bn1 with by ~ Xg(n—k) and everything independent. Recall that if zy, z, ...
are independent standard normal random variables, then zZ + - - - + 23 ~ x}.

If 3 =1 then A, is similar to a GOE matrix (the joint density of the eigenvalues
is the same). If B = 2 then A, is similar to a GUE matrix.

Theorem 1.3.3 ([5]). If B > O then the joint density of the eigenvalue of Ay is given by

F o) = e FIEAL T A= nflP.
Znp 1<i<j<n

In the matrix A, the off-diagonal entries are b; > 0, and there are 2n —1
variable in the matrix.

It is hard to compute the Jacobian of the map (A, q) — (@, b) directly, because
the map is complicated. To work around this, we use moments, which have a
simple connection to both representations:

my = Jxkdc = Z?\]fq%

We look at maps from both sets to (my, .., myn_1). These are simple transfor-
mations. One can write down the appropriate matrices and then can find their
determinants. These computations can be found in [9], and yield the following.

Theorem 1.3.4 (Dumitriu, Edelman, Krishnapur, Rider, Virdg, [5,9]). Let V be a
potential (think convex) and @, are chosen from then density proportional to

exp (—TrV(] kuﬁ !

then the eigenvalues have distribution

f(AL, . An) exp( Zv )Hp\i—)\jm
i<j
and the ql are independent of the A with (q1,...,qn) = (91(1)%, ..., on(1)2) have
Dzrzchlet( S s 2) distribution.

Exercise 1.3.5. Show that when V(x) = x*, the sequence {(ai, bi),i > 1} with the
distribution from the theorem forms a time-inhomogeneous Markov Chain.

A result like this holds for general polynomial V, though one needs to take
bigger blocks of (ai, bi). This is exploited in [9] to get universality for the top
eigenvalue.

2. The Wigner semicircle law

2.1. Graph convergence. The proof of the Wigner semicircle law given here will
rest on a graph convergence argument. We begin by introducing the notions of
convergence needed for the proof. Examples will make the convergence easier to
understand.
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We will be considering rooted graphs (G, p) where the root p is just the a
marked vertex. The spectral measure of (G, p) is the spectral measure of the
adjacency matrix A of G at the coordinate corresponding to p (which we will
often just take to be the first entry).

Note that the kth moment of the spectral measure is just the number of paths
of length k starting and ending at the root. In particular, moments up to 2k of the
spectral measure are determined by the k-neighborhood of p in G.

Our definition of the spectral measure works even for infinite graphs, but it is
again not a priori clear that it exists or it is unique.

F1Gure 2.1.1. Rooted convergence: n-cycles to Z

Definition 2.1.2. Rooted convergence. A sequence of rooted graphs (G, p) con-
verges to a limit (G, p) if for any radius v, the ball of that radius in Gy about p
equals that in G for all large enough n.

Examples 2.1.3. We give two examples

(1) The n cycle with any vertex chosen as the root converges to Z.
(2) The k by k grid with vertices at the intersection. If we choose a vertex at
the center of the grid as the root, we get convergence to Z2.

For bounded degree graphs Gy, if (Gn, pn) converges to (G, p) is the sense of
rooted convergence, then by definitions, the moments of the spectral measures
on converge.

This implies two things. First, since the spectral measures of bounded (by b)
degree graphs are supported on [—b,b], o, have subsequential weak limits on
[, b]. But such measures are determined by their moments, so the limit of oy,
exists, and is the spectral measure of (G, o). Since any bounded degree rooted
infinite graph is a rooted limit of balls around the root, we get

Proposition 2.1.4. Bounded degree rooted infinite graphs have unique spectral measure.

Exercise 2.1.5. Consider paths of length n rooted at the left end point. This
sequence converges to Z . in the limit. What is the limit of the spectrum? It is the
Wigner semicircle law, since the moments are Dyck paths. But one can prove this
directly, since the paths on length n are easy to diagonalize. This is an example
where the spectral measure has a different limit than the eigenvalue distribution.

Exercise 2.1.6. Suppose you have the random d-regular graph on n vertices in the
configuration model (for a given degree sequence we choose a uniform at random
matching on the half edges attached to each vertex). In the limit this converges
to the d-regular infinite tree in the limit.
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Definition 2.1.7. Benjamini-Schramm convergence: We define this convergence
for unrooted graphs. Choose a vertex uniformly at random to be the root. If this
converges in distribution with respect to rooted convergence to a random rooted
graph, we say the graphs converge in the Benjamini-Schramm sense.

Benjamini-Schramm convergence is equivalent to convergence of local statis-
tics. This is the following statement. For every finite rooted graph (K, p) and
every 1, the proportion of vertices in G whose ball radius  is rooted-isomorphic
to (K, p) converges to the probability that the ball of radius r in the limit is rooted-
isomorphic to (K, p).

Benjamini-Schramm limits of finite graphs are unimodular. For the special case
of regular graphs, this means that if we pick a uniform random neighbor v of p
in G, then (G, p,v) has the same distribution as (G, v, p).

Exercise 2.1.8. Show that if G is a fixed connected finite regular graph with a ran-
dom vertex p, then (G, p) is unimodular if and only if p has uniform distribution.

In the general case the distributions have to first be biased by the degree of the
root.

The most intriguing open problem in this area is whether all infinite unimod-
ular random graphs are Benjamini-Schramm limits. Those that are are called
sofic.

Proposition 2.1.9. Suppose we have a finite graph G and we choose a vertex uniformly
at random. This defines a random graph and its associated random spectral measure o.
Then Eo =  is the eigenvalue distribution.

Proof. Recall that for the spectral measure of a matrix (and so a graph) we have

n
0(G,0) =) _ O @il(p)
i=1
Since @; is of length one, we have
> eilp)P=1
PEV(G)
hence

1
Bog,p = D 0G, = Ha:
peEV(G)

Example 2.1.10. The following are examples of Banjamini-Schramm convergence:
(1) A cycle graph converges to the graph of Z.
(2) A path of length n converges to the graph of Z.
(3) Large box of Z% converges to the full Z¢ lattice.
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Notice that for the last two examples the probability of being in a neighborhood
of the edge goes to 0 and so the limiting graph doesn’t see the edge effects.

Exercise 2.1.11. We say a sequence of d-regular graphs G,, with n vertices is of
essentially large girth if for every k the number of k-cycles in G, is o(n). Show
that Gy, is essentially large girth if and only if it Benjamini-Schramm converges
to the d-regular tree.

Exercise 2.1.12. Show that for d > 3 the d-regular tree is not the Benjamini-
Schramm limit of finite trees. (Hint: consider the expected degree).

How does this help? We have that o0, — 04 in distribution. By bounded
convergence, the eigenvalue distributions will converge as well:

Un = Eon — B0

One can consider a more general setting of weighted graphs. This corresponds
to general symmetric matrices A. In this case we require that the neighborhoods
stabilize and the weights also converge. Everything above goes through.

Example 2.1.13 (The spectral measure of Z). We use Benjamini-Schramm conver-
gence of the cycle graph to Z. We begin by computing the spectral measure of
the n-cycle G,. We get that A =T + T* where

0 1
0 1

1 0

The eigenvalues of T are the nth roots of unity n;. We can think of this as A =
T+ T—1, so the eigenvalues of A are n; —I—n;l = 29n;. Geometrically, these are
projections of the 2nj;, that is points uniformly spaced on the circle of radius 2, to
the real line.

In the limit measure converges to the projection of the uniform measure on

that circle, also called the arcsine distribution
1

Oy = mlxe[_zlﬂ dx.
Exercise 2.1.14. Let B, be the unweighted finite binary tree with n levels. Sup-
pose a vertex is chosen uniformly at random from the set of vertices. Give the
distribution of the limiting graph.

The proof of the Wigner semicircle law is now just an exercise. We will give
the solution as well.
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Exercise 2.1.15. Let A be a rescaled n x n Dumitriu-Edelman tridiagonal matrix

b1 a
a; by a
1 . .
A:ﬁ a - , Qi ~Xp(n-i) bi~N(0,1)

bno1 an—1

an—1 bn

all independent, and suppose that A is the adjacency matrix of a weighted graph.

(1) Draw the graph with adjacency matrix A. (There can be loops)

(2) Suppose a root for your graph is chosen uniformly at random, what is the
limiting distribution of your graph?

(3) What is the limiting spectral measure of the graph rooted at the vertex
corresponding to the first row and column?

(4) What is the limiting spectral measure of the unweighted graph?

2.2. Wigner semicircle law. Note that a Jacobi matrix can be thought of the ad-
jacency matrix of a weighted path with loops.

Exercise 2.2.1. Check that x, — /1 %) N(0,1/2).
o

Proof 1. [15]

Take the previous graph, divide all the labels by y/n and then take a Benjamini-
Schramm limit.

What is the limit? Z, but then we need labels. The labels in a randomly rooted
neighborhood will now be the square root of a single uniform random variable
in [0,1]. Call this U. Then the edge weights are VU. Recall that p,, — Eo. In the
case where U was fixed we would just get a scaled arcsine measure.

Choose a point uniformly on the circle of radius v/U and project it down to the
real line. But this point is in fact a uniform random point in the disk. This gives
us the semicircle law.

1
Hse =5V 4—x21y e[ pz dx.
O

Proof 2. We take the rooted limit where we choose the root to be the matrix J/y/n
corresponding to the first coordinate vector.

In the limit this graph converges to Z . Therefore o — 07z, = psc. This
convergence is weak convergence in probability.

So going back to the full matrix model of GOE, we see that the spectral measure
at an arbitrary root converges weakly in probability to psc. But then this must
hold also if we average the spectral measures over the choice of root (but not the
randomness in the matrix).

Thus we get i, — Hsc in probability. O
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Dilemma: The limit of the spectral measure should have nothing to do with
the limit of the eigenvalue distribution in the general case. This tells you that the
Jacobi matrices that we get in the case of the GOE are very special.

3. The top eigenvalue and the Baik-Ben Arous-Pechet transition

3.1. The top eigenvalue. The eigenvalue distribution of the GOE converges after
scaling by /n to the Wigner semicircle law. From this, it follows that the top
eigenvalue, A (n) satisfies for every ¢ > 0

PAM(M)/vVn>2—¢) =1

the 2 here is the top of the support of the semicircle law. However, the upper
bound does not follow and needs more work. This is the content of the following
theorem.

Theorem 3.1.1 (Fiiredi-Koml6s).
M(n)
vn
This holds for more general Wigner matrices; we have a simple proof for the
GOE case.

— 2 in probability.

Lemma 3.1.2. If ] is a Jacobi matrix (a’s diagonal, b’s off-diagonal) then
A1(]) < max(aj +b; +bi_1)

Here we take the convention by = by, :1 0.

Proof. Observe that ] may be written as

] = —AAT + diag(a; +bi +bi_1)

where
0 Vb
—/b1 Vb2

—Vb2 Vb3

and AA' is nonnegative definite. So for the top eigenvalues we have
M(J) < =M (AAT) + A (diag(ai + by +bi—1)) < max(a; +bi +bi1).
1

We used subadditivity of A;, which follows from the Rayleigh quotient represen-
tation. O

If we apply this to our setting we get that
(3.1.3) M(GOE) < max(Ni, Xn—i +Xn—i+1) <2vn+cy/logn
1

the right inequality is an exercise (using the Gaussian tails in x) and holds with
probability tending to 1 if c is large enough. This completes the proof of Theorem
3.1.1
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This shows that the top eigenvalue cannot go further than an extra logn out-
side of the spectrum. Indeed we have that

AM(GOE) =2y +TWyn /6 4 o(n=1/)
so the bound above is not optimal.

3.2. Baik-Ben Arous-Pechet transition. The approach we take here is a version
of a section in Bloemendal’s PhD thesis [2].

Historically one of the areas that random matrices have been used is to study
correlations. To see whether correlations are significant, one compares to a case
in which random data comes with no correlations at all.

Wishart in the 20s considered matrices Xy, x m with independent normal entries
and studied the eigenvalues of XX*. The rank-1 perturbations below model the
case one there is one significant trend in the data, but the rest is just noise. We
consider the case n = m. A classical result is the following.

Theorem 3.2.1 (BBP transition).
1
N (x diag(1+ a2,1,1,...,1)xt) = o(a)?

where

2 a<l1
¢(a) = 1
a+= a>1

a

Heuristically, correlation in the populations appears in the asymptotics in the
top eigenvalue of the data only if it is sufficiently large, a > 1. Otherwise, it gets
washed out by the fake correlations coming from noise. . We will prove the GOE
analogue of this theorem, and leave the Wishart case as an exercise.

One can also study the fluctuations of the eigenvalues. In the case a < 1 we
get Tracy-Widom. When a > 1 we get Gaussian fluctuations. Very close to the
point a =1 we get a deformed Tracy-Widom, see [1], [3].

The GOE analogue answers the following question. Suppose that we add a
common nontrivial mean to the entries of a GOE matrix. When does this influ-
ence the top eigenvalue on the semicircle scaling?

Theorem 3.2.2 (Top eigenvalue of GOE with nontrivial mean).

1 a
—M(GOE, + ﬁllt) — ¢(a)

e

where 1 is the all-1 vector, and 11% is the all-1 matrix.

It may be surprising how little change in the mean in fact changes the top
eigenvalue!

We will not use the following theorem, but will include it only to show where
the function ¢ comes from. It will also motivate the proof for the GOE case.
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For an infinite graph, we can define A; by Rayleigh quotients using the adja-

cency matrix A
(v, Av)

v VI3

Clearly, A; is at most the maximal degree in G. This can be used to prove the

AM(G) =

a < 1 case of the following exercise.

Exercise 3.2.3 (BBP for Z™).
AM(Z™T + loop of weight a on 0) = @(a)

Hint. To prove the lower bound, use specific test functions. When a > 1, note
that there is an eigenvector (1, a ! a2 ..) with eigenvalue a + % When a <1
use the indicator of a large interval. The upper bound for a > 1 is more difficult;
use rooted convergence and interlacing. O

We will need the following result.

Exercise 3.2.4. Let A be a symmetric matrix, let v be a vector of {>-norm at least
1, and let x € R so that ||[Av —xv|| < &. Then there is an eigenvalue A of A with
A — x| < e. Hint: consider the inverse of A — Ix.

Proof of GOE case. The first observation is that because the GOE is an invariant
ensemble, we can replace 11' by vt for any vector v having the same length as
the vector 1. We can replace the perturbation with y/nae;e}. Such perturbations
commute with tridiagonalization.

Therefore we can consider Jacobi matrices of the form

ayn+Ni xn_1
I((l) =—= Xn—1 N» Xn—2

Case 1: a < 1. Since the perturbation is positive, we only need an upper bound.
We use the maximum bound from before. For i = 1, the first entry, there was
space of size y/n below 2y/n. For i = 1 the max bound still holds.

Case2: a>1

Now fix k and letv = (1,1/a,1/d?,...,1/a¥,0,...,0). We get that the error from
the noise will be of order 1/4/n so that

H](a)—v(cH—l) <ca
v a

with probability tending to 1.
By Exercise 3.2.4, J(a) has an eigenvalue A* that is ca*-close to a +1/a.

We now need to check that this eigenvalue will actually be the maximum.

Lemma 3.2.5. Consider adding a positive rank 1 perturbation to a symmetric matrix.
Then the eigenvalues of the two matrices will interlace and the shift under perturbation
will be to the right.
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By interlacing,
M(J(@) <AM(J)=2+0(1) < a+1/a—ca

if we chose k large enough. Thus the eigenvalue A* we identified must be A;. O

4. The Stochastic Airy Operator

4.1. Global and local scaling. In the Wigner semicircle law the rescaled eigen-
values {A;/y/n}]* ; accumulate on a compact interval and so in the limit become
indistinguishable from each other. If we are instead interested in the local inter-
actions between eigenvalues, we need to be able to see the behavior of individual
points in the limit.

An -2 0 2
N —.WWM.”—
O(n2/3) om1
—2ym 0 2m
An — 00000 0-00 00000 000000 00000 0000 000000 0 00—
O(n19) Oo(n~1/2)

FIGURE 4.1.1. Spectrum of a GOE on the semicircle and original scales

Figure 4.1 shows the spectrum of a GOE on two different scales along with the
order of magnitude of the spacing. Notice that at this point if we took n — oo
for either An/v/1 or Ay all of the points would become indistinguishable even
at the edge. To see where the spacing comes from consider the Wigner semicircle
law. When n is large we get that for a < b € [-2y/n,2\/n]

b/vm b/vn g
#A, N[a,b] mnj dcsc(x):nJ'
a/vn
So we expect that for a € (—2,2) the process V4 — a?(An, — ay/n) should have
average spacing 27t

Exercise 4.1.2. Check that the typical spacing at the edge 2\/n of A, is of order
n-1/e.

See Figure 4.1 for scales. The limiting spectral measure (in this case the semi-
circle) can be taken as a guide for the correct scale at which to see local interaction
but is not guaranteed to give the right answer.

We will further discuss what happens at the edge of the spectrum shortly, but
we will state the convergence statement in the bulk now.

Theorem 4.1.3 ([13],[14]). Let Ay, have [3-Hermite distribution and a € (—2,2) then
V4 —a?y/n(An —ay/n) = Sineg
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where Sineg is a point process that may be characterized as the eigenvalues of a certain
random Dirac operatot.

Remark 4.1.4. These theorems were originally proved for 3 =1 and 2 and stated
using the integrable structure of the GOE and GUE. The GUE eigenvalue form a
determinantal point process, and the GOE eigenvalues form a Pfaffian point pro-
cess with kernels constructed from Hermite polynomials. The limiting processes
may be identified to looking at the limit of the kernel in the appropriate scale. A
version for unitary matrices is proved in [8].

—2.m 0 ayn 2m

4 edee

\/ﬁpsc (a)(An— a\/ﬁ)

FiGURE 4.1.5. The scale of local interactions

4.2. The heuristic convergence argument at the edge. The goal here is to un-
derstand the limiting top eigenvalue of the Hermite 3 ensembles in terms of a
random operator. To do this we look at the geometric structure of the tridiagonal
matrix.

Simulations show that the eigenvectors corresponding to the top eigenvalues
of the matrix tend to be supported in the first o(n) coordinates. This suggests
that the top corner of the matrix determines the behavior of the top eigenvalue.

Now consider the matrix

Let m < n and let Let f : RT — R and v¢ = (f(0), f(1/m), f(2/m), ..., f(n/m))t.
Then B = mZ(A —2I) acts as a discrete second derivative on f, in the sense that
Bv¢ = vgr as m,n — oo.

Returning to the 3-Hermite case, by Exercise 2.2.1, for k < n we have

Xk ~ /B 4+ N(0,1/2) ~ /By — %) L N(0,1/2)

Now we consider the matrix

(4.2.1) mY(2y/nl—J) ~
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o 1 i
2 -1
1 0
-1 2 -1 ) ) 3
m
mY,/n 1o Tam
3 0
Nq Nl
Ni Nz Np
_A'_miv
VB N, Nj

and assume that we have m = n® for some «. What choice of « should we make?
For the first term we want

2 -1
-1 2 -1
mYy/n
-1 0

to behave like a second derivative. This means that mY,/n = m? which gives
20 = oy +1/2. We do a similar analysis on the second term. We want this
term to behave like multiplication by t. For this we want m—l = % which gives
ay —1/2 = —«. Solving this system we get « = 1/3 and y = 1/2. For the
noise term, multiplication by it should yield a distribution (in the Schwarz sense),
which means that its integral over intervals should be of order 1. In other words,
the average of m noise terms times m?Y should be of order 1. This gives y =1/2,
consistent with the previous computations.

This means that we need to look at the section of the matrix that is m = n!/3
and we rescale by n!/¢. That is we look at the matrix

n/62yn—Jn)

acting on functions with mesh size n=1/3.

Exercise 4.2.2. Show that in this scaling, the second matrix in the expansion above
has the same limit as the diagonal matrix with 0,2,4,5,6,.... on the diagonal
(scaled the same way).

Conclusion. This matrix acting on functions with this mesh size behaves like a
differential operator. That is
2
1 2
Hn:nﬁ%&Vﬂ—LJz—ﬁx+x+v@

here b/ is white noise. This operator will be called the Stochastic Airy operator
(SAOg). We also set the boundary condition to be Dirichlet. This conclusion can

bl = SAOg
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be made precise. The heuristics are due to Edelman and Sutton [6], and the proof
to Rider, Ramirez and Virag [11].

There are two problems at this point that must be overcome in order to make

this convergence rigorous. The first is that we need to actually be able to make

sense of that limiting operator. The second is that the matrix even embedded an

operator on step functions acts on a different space that the SAOg so we need to

make sense of what the convergence statement should actually be. The following

are the main ideas behind the operator convergence.

Remarks on operator convergence

1)

)

)

(4)

Embed R™ into [%(R) via

ey — \/Hl[ % , % )
This gives an embedding of the matrix ] acting on a subspace of L2(R™).
It is not clear what functions the Stochastic Airy Operator acts on at this
point. Certainly nice functions multiplied by the derivative of Brownian
motion will not be functions, but distributions. The only way we get
nice functions as results if this is cancelled out by the second derivative.
Nevertheless, the domain of SAOg can be defined.

In any case, these operators act on two completely different sets of
functions. The matrix acts on piecewise constant functions, while SAO@
acts on some exotic functions.

The nice thing is that if there are no zero eigenvalues, both H;;! and J~!
can be defined in their own domains, and the resulting operators have
compact extensions to the entire L2.

The sense of convergence we have is

IHR! = Ag 252 — 0.

This is called norm resolvent convergence, and it implies convergence of
eigenvalues and eigenvectors if the limit has discrete simple spectrum.
The simplest way to deal with the limiting operator and the issues of
white noise is to think of it as a bilinear form. This is the approach we
follow in the next section. The kth eigenvalue can be identified using the
Courant-Fisher characterization.

Exercise 4.2.3. We will consider cases where a matrix A, xn can be embedded as

an operator acting on the space of step function with mesh size 1/my,. In particu-

lar we can encode these step functions in to vectors vy = [f( L), (2, ()]t
Let A be the matrix

mn mn Mn
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For which k,, we get knAvs — v¢/?

Exercise 4.2.4. Let A be the diagonal matrix with diagonal entries (1,4...,n?). Find
a kn such that k, Avs converges to something nontrivial in the limit. What is ky,
and what does the limit converge to?

Exercise 4.2.5. Let | be a Jacobi matrix (tridiagonal with positive off-diagonal
entries) and v be an eigenvector with eigenvalue A. The number of times that
v changes sign is equal to the number of eigenvalues above A. More generally
the equation Jv = Av determines a recurrence for the entries of v. If we run
this recurrence for an arbitrary A (not necessarily an eigenvalue) and count the
number of times that v changes sign this still gives the number of eigenvalues
greater than A.
(1) Based on this gives a description of the number of eigenvalues in the
interval [a, b].
(2) Suppose that vt = (vy,...,vn) solves the recurrence defined by Jv = Av.
What is the recurrence for t = vi1/vx? What are the boundary condi-
tions for r that would make v an eigenvector?

4.3. The bilinear form SAOg. Recall the Airy operator
A=-0%+x

acting on f € L2(R*) with boundary condition f(0) = 0. The equation Af = 0
has two solutions Ai(x) and Bi(x), called Airy functions. Note that the solution
of (A —A)f =0 is just a shift of these functions by A.

Since only Ai? is integrable, the eigenfunctions of A are the shifts of Ai with the
eigenvalues the amount of the shift. We know that the kth zero of the Ai function
isatz = — (%Wk)z/3 +0(1), therefore to satisfy the boundary conditions the shift
must place a 0 at 0, so the kth eigenvalue is given by

3 2/3
(4.3.1) Ak = —z = <27rk) +0o(1)

The asymptotics are classical.
For the Airy operator A and a.e. differentiable, continuous functions f with
f(0) = 0 we can define

(4.3.2) |[f]]2 := (Af, f) = J ” 2(x)x + f'(x)? dx.
Let L* be the space of functions with ||f0||* < oo0.
Exercise 4.3.3. Show that there is ¢ > 0 so that
1fll2 < e[[f]].
for every f € L*. In particular, L* C L2.
Recall the Rayleigh quotient characterization of the eigenvalues A; of A.

A= inf  (Aff).
felLx,||f]2=1
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More generally, the Courant-Fisher characterization is

Ak = sup  (Af,f),

inf
BCL*,dimB=k fEB,||f|2=1
where the infimum is over subspaces B.
For two operators we say A < B if any f € L*

(f, Af) < (f, Bf).
Exercise 4.3.4. If A < B, then A (A) < Ak(B).

Our next goal is to define the bilinear form associated with the Stochastic Airy
operator on functions in L*. Clearly, the only missing part is to define

JOO 2(x)b’(x) dx.
0

At this point you could say that this is defined in terms of stochastic integration,
but the standard L2 theory is not strong enough — we need it to be defined in the
almost sure sense for all functions in L*. We could define it in the following way:

o0 (o9}

(f,b/f)" = J 2(x)b’(x)dx = —J 2f/(x)f(x)b(x)dx
0 0

This is now a perfectly fine integral, but it may not converge. The main idea will

be to write b as its average together with an extra term.

x+1 B B
b(x) :J b(s)ds +b(x) = b(x) + b(x)

X
In this decomposition we get that b is differentiable and b is small. The averaging
term decouples quickly (at time intervals of length 1), so this term is analogous
to a sequence of i.i.d. random variables. We define the inner product in terms of
this decomposition as follows.

(f,b'f) := (f,b'f) —2(f’, bf)
It follows from Lemma 4.3.7 below that the integrals on the right hand side are
well defined.
Exercise 4.3.5. There exists a random constant C so that we have the following
inequality of functions:
(4.3.6) 6’|, 6] < Cy/log(2 +x)

Now we return to the Stochastic Airy operator, the following lemma with give
us that the operator is bounded from below.

Lemma 4.3.7. For every ¢ > 0 there exists random C so that in the positive definite
order,
+b’ <eA+CI,

and therefore
—CI+(1—-¢)A <SAOg < (1+¢)A+CL
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The upper bound here implies that the bilinear form is defined for all functions
fel”.

Proof. For f € L, by our definition,
(f,b'f) = (f,b'f) — 2(f’, bf)
using integration by parts in the second term. Now using bounds of the form
—2yz < y?/e + z%e we get the upper bound
(f,(B" +B2/e)f) + |||
By Exercise 4.3.5 there exists a random constant C so that
b +b%/e < ex+C.
We get the desired bound for +b’, and the same arguments works for —b’. [

Corollary 4.3.8. The eigenvalues of SAOg satisfy

AR 2m\ %3
m — (3> a.s.

Proof. It suffices to show that a.s. for every rational ¢ > 0 there exists C¢ > 0 so
that
(1— &)k —Ce <AP < (14 €A +Ce

where the Ay are the Airy eigenvalues (4.3.1). But this follows from the operator
inequality of Lemma 4.3.7 and Exercise 4.3.4. O

If you look at the empirical distribution of the eigenvalues as k — oo then the
“density” behaves like v/A. More precisely, the number of eigenvalues less than A
is of order A>/2. This is the Airy-f3 version of the Wigner semicircle law. Only the
edge of the semicircle appears here.

4.4. Convergence to the Stochastic Airy Operator. The goal of this section is
to give a rigorous convergence argument for the extreme eigenvalues to those
of the limiting operator. To avoid technicalities in the exposition, we will use
a simplified model, which has the features of the tridiagonal beta ensembles.
Consider the n x n matrix

2 -1
-1 2 -1
(441) H,=n?3 L, + nY3diag(1,2,3,...)

+ diag(Ny,1,Np2,...)

Here for each n the N,, ; are independent centered normal random variables with
variance %n_l/ 3. Thisis a simplified version of (4.2.1).



Diane Holcomb and Bélint Virag 21

We couple the randomness by setting
Nni =b(in 1) —b((i—1)n"1/3)

for a fixed Brownian motion b which, here for notational simplicity, has variance
4/. From now on we fix b and our arguments will be deterministic, so we drop
the a.s. notation.

We now embed the domains R™ of H,, into L?(R*) by the map

ey — Tll/él il iy,
W1/3' 7173

and denote the R™ the isometric image of R™ in this embedding. Let —An, xn
and by, be the images of the three matrix terms on the right of (4.4.1) under this
map, respectively. For f € R™, let

I35 = (f, (~An +xn)f)
and recall the L, norm ||f||, from (4.3.2).

We will need some standard analysis Lemmas.

Exercise 4.4.2. Let f € L, of compact support. Let f,, be its orthogonal projection
to R™. Then f,, — fin L2, and (fn,, Hnfn) — (f, Hf).

Let A x, Ak denote the kth lowest eigenvalue of Hy and the Stochastic Airy
Operator H = SAOp = —9% + x + b/, respectively.

Proposition 4.4.3. limsup A, 1 < Aj.

Proof. For ¢ > 0 let f be of compact support and norm 1 so that (f, Hf) < A; +¢.
Let fn, be the projection of f to R™. Then by Exercise 4.4.2 we have
<fn/ ann>

[[Fnll?
since ¢ is arbitrary, the claim follows. O

Ang < = (f,Hf) <M +¢

For the upper bound, we need a tightness argument for eigenvectors and eigen-
values.

Exercise 4.4.4. Show that for every ¢ > 0 there is a random constant C so that
+bn < e(—An +xn) +CI
in the positive definite order for all n. Hint: use a version of the argument in
Lemma 4.3.7.
Note that this exercise implies
Hp > (1—¢€)(—=An +xn)—CI
and since —Ay, + xn, is positive definite, it follows that A,, ; > —C, which is a

Fiiredi-Komlés type bound, but now of the right order! (Compare to 3.1.3).
Finally another piece of necessary analysis given as an exercise.
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Exercise 4.4.5. Let f, € R™ with ||f|l«n < c for all n. Then f,, has a subsequen-
tial limit f in L% so that along that subsequence
liminf(fn, Hnfn) > (f, Hf).
A solution to this analysis problem can be found in [11].
Proposition 4.4.6. liminfA,, ; > A;.

Proof. By Exercise 4.4.4, in the positive definite order,
Hpn < (1+¢)(—An +xn) +CI

but since A, + x is nonnegative definite, A1, < C.
Now let (fn,An 1) be the eigenvector, lowest eigenvalue pair for Hn, so that
|Ifn|| = 1. Then by Exercise 4.4.4

(I—=¢&)[[fnllsn < (fn, Hnfn) + C=Aq 1+ C < 2C,

Now consider a subsequence along which A, ; converges to its lim inf. By Exer-
cise 4.4.5 we can find a further subsequence of f, so that f,, — fin 12, and

liminfA, 1 = iminf(fn,, Hnfn) > (f, Hf) > Aq,
as required. O

Exercise 4.4.7. Modify the proofs above using the Courant-Fisher characterization
to show that for every k, we have A x — Ag.

4.5. Tails of the Tracy Widomg distribution.

Definition 4.5.1. We define the Tracy-Widom-{ distribution
TWg =N (Ag)
In the case = 1,2 this is consistent with the classical definition.

As for the tails, they are asymmetric. Our methods can be used to show that
as a — oo the right tail satisfies
2+0(1)

3
and we will prove that the left tail satisfies the following.

P(TWg > a) = exp(— Ba3/2)

Theorem 4.5.2 ([11]).
1
P(TWg < —a) = exp(fﬁ%z()a?’) as a— oo.
Proof of the upper bound. Suppose we have A; > a, this implies that for all f € L*
we get the bound

(f, Apf) > alfll3.

Therefore we are interested in the probability

2
P (193 + IVRrIB + = [ Po'ax > allp)
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The first two terms are deterministic, and for f fixed the third term is a Paley-

Wiener integral. In particular, it has centered normal distribution with variance

4 g - A
3 fa = S

This leads us to computing
2 2 2 2
P (1 + IVxFI3 + NIfI3 > al13)

where N is a normal random variable with variance 4/f3. Using the standard tail
bound for a normal random variable we get
(4.5.3)

P (IIF/IB + VI3 + NIFIE > allfl3) < 2exp (

8]/I3

We want to optimize over possible choices of f. It turns out the optimal f will

_Blaflf3—I1"IB -~ ||f¢>?%)2>

have small derivative, so we will drop the derivative term and then optimize the
remaining terms. That is we wish to maximize.

(allfl3 = 1T vX[13)°
115
With some work we can show that the optimal function will be approximately

f(x) = y/(a—x)*. This needs to be modified a bit in order to keep the derivative
small, so we cut this function off and replace is with a linear piece

fix) =+ (a—x)T Ala—x)" Axva

We can check that

a? a3 a?
allfli~=  Ifl~0ta) VxR~ lIflls~ 5
Using these values in equation (4.5.3) give us the correct upper bound. O

Proof of the lower bound. We begin by introducing the Riccati transform: Suppose
we have an operator
L=—0xx+ V(x)

then the eigenvalue equation is
Af = (=0xx + V(x))f

We can pick a A and attempt to solve this equation. The left boundary condition
is given, so one can check if the solution satisfies f € L*, in which case we get
an eigenfunction. Most of the time this won’t be true, but we can still gain in-
formation by studying these solutions. To study this problem we first make the
transformation

f/

P=7 which gives p'=VX)—A—p?, p(0) = oo.

The following is standard part of the theory for Schrdinger operators of the form
SAQOg, although some technical work is needed because the potential is irregular.
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Proposition 4.5.4. Choose A, we will have A < Ay if an only if the solution to the Ricatti
equation does not blow up.

The slope field looks as follows. When V(x) = x and A = 0 there is a right
facing parabola p? = x where the upper branch is attracting and the lower branch
is repelling. The drift will be negative outside the parabola and positive inside.
Shifting the initial condition to the left is equivalent to shifting the A to the right,
so this picture may be used to consider the problem for all A.

Now replace b’. The solution of the Ricatti equation is now a diffusion. In this
case there is some positive chance of the diffusion moving against the drift, in-
cluding crossing the parabola. If we use P_j , to denote the probability measure
associated with starting our diffusion with initial condition p(—A) =y, then we
get

P(A1 > a) = P_q,4+00 (p does not blow up)

Because diffusion solution paths do not cross, we can bound this below by start-
ing our particle at 1.

P_q, 40 (p does not blow up) > P_ ; (p does not blow up)

We now bound this below by requiring that our diffusion stays in p(x) € [0,2] on
the interval x € [—a,0) and then choosing convergence to the upper edge of the
parabola after 0. This gives

P_ 4.1 (p does not blow up)
> P_g1 (p stays in [0,2] for x < 0) - Pg o (p does not blow up).

The second probability is a constant not depending on a.We focus on the first
event.

A Girsanov change of measure can be used to determine the probability. This
change of measure moves us to working on the space where p is replaces by a
standard Brownian motion (started at 1). The Radon-Nikodym derivative of this
change of measure may be computed explicitly. We compute

P_q1 (p staysin [0,2] for x < 0) =E_41 [1(px € [0,2],x € (—a,0))]

0 0
e [P x—vhav— P [ x—v2)2dx | 1(by € 10,2],x € (—a,0))
APl 8]

Notice that

BJO (x —b%)db ~ O(a) and BJO (X—bz)zdxz—ﬁag’

4) 4 ’ 8 ) q 247

which gives us the desired lower bound. O
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