MAT 137Y – Practice problems
Unit 2 : Limits and continuity

1. Below is the graph of the function f:

Compute the following limits

(a) $\lim_{x \to 2} f(x)$
(b) $\lim_{x \to 0} f(f(x))$
(c) $\lim_{x \to -3} f(f(x))$
(d) $\lim_{x \to 0} f(2 \sec x)$
(e) $\lim_{x \to 2} (f(x))^2$

2. Given a real number x, we defined the \textit{floor of} x, denoted by $\lfloor x \rfloor$, as the largest integer smaller than or equal to x. For example, $\lfloor \pi \rfloor = 3$, $\lfloor 7 \rfloor = 7$, and $\lfloor -0.5 \rfloor = -1$.

(a) Sketch the graph of this function. At which points is the function $f(x) = \lfloor x \rfloor$ continuous? Which discontinuities are removable and which ones are non-removable?

(b) Consider the function $h(x) = \lfloor \sin x \rfloor$. Show that h has exactly one removable and one non-removable discontinuity inside the interval $(0, 2\pi)$.

3. Below is the graph of the function g:
For clarification, when $-1 < x < 0$, $g(x)$ “oscillates” between 0 and 1; as x approaches 0 from the left, these oscillations become faster and faster. The behaviour is similar to that of the function $f(x) = \sin(\pi/2x)$, which you can see on Video 2.2.

Find the following limits:

(a) \(\lim_{x \to 0^+} g(x) \)
(b) \(\lim_{x \to 0^+} \lfloor g(x) \rfloor \)
(c) \(\lim_{x \to 0^+} g(\lfloor x \rfloor) \)
(d) \(\lim_{x \to 0^-} g(x) \)
(e) \(\lim_{x \to 0^-} \lfloor g(x) \rfloor \)
(f) \(\lim_{x \to 0^-} \lfloor g(\lfloor x \rfloor) \rfloor \)

4. Compute the following limits

(a) \(\lim_{x \to 1} \frac{x + 1}{x + 2} \)
(b) \(\lim_{x \to 2} \frac{x^2 + 3x - 10}{x^2 - 4} \)
(c) \(\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{x - 1} \)
(d) \(\lim_{x \to 0} \frac{\sin(3x)}{\sin(2x)} \)
(e) \(\lim_{x \to \infty} \frac{x^3 + 2x^2 + 1}{5x^3 + 6x - 1} \)
(f) \(\lim_{x \to -\infty} \frac{\sin^{10}(2\sin^{10}(3x))}{x^{100}} \)

5. Write the formal definition of the following concepts:

(a) \(\lim_{x \to a} f(x) = L \)
(b) \(\lim_{x \to a} f(x) \) exists
(c) \(\lim_{x \to a} f(x) \) does not exist
(d) \(\lim_{x \to a} f(x) = -\infty \)
(e) \(\lim_{x \to a}^+ f(x) = L \)
(f) \(\lim_{x \to a} f(x) = \infty \)
(g) \(\lim_{x \to a^-} f(x) = \infty \)
(h) \(\lim_{x \to a^-} f(x) = -\infty \)

6. Prove the following claims directly from the formal definitions.

(a) \(\lim_{x \to 2} (4x + 1) = 9 \)
(b) \(\lim_{x \to \infty} \frac{1}{x^2} = 0 \)
(c) \(\lim_{x \to 1} x^3 = 1 \)
(d) \(\lim_{x \to 1} \frac{1}{x^2 + 1} = \frac{1}{2} \)
(e) \(\lim_{x \to 0} \frac{x}{\lfloor x \rfloor} \) does not exist
(f) \(\lim_{x \to 1^+} \frac{1}{1 - x} = -\infty \)

7. Let \(a, L, M \in \mathbb{R} \). Let \(f \) be a function defined, at least, on an interval centered at \(a \), except maybe at \(a \). Prove that

\[
\text{IF } \lim_{x \to a} f(x) = L \text{ and } \lim_{x \to a} g(x) = M \quad \text{THEN } \lim_{x \to a} [f(x) - g(x)] = L - M.
\]

Write a proof directly from the formal definitions, without using any of the limit laws.

8. Let \(a \in \mathbb{R} \). Let \(f \) be a function defined at least on an interval centered at \(a \), except possibly at \(a \). Prove that

\[
\text{IF } \lim_{x \to a} f(x) = \infty \quad \text{THEN } \lim_{x \to a} \frac{1}{f(x)} = 0.
\]
Write a proof directly from the formal definitions, without using any of the limit laws.

9. Construct a function \(f \) with domain \(\mathbb{R} \) such that \(\lim_{x \to 0} f(x) = 0 \) but \(\lim_{x \to 0} f(f(x)) \neq 0 \).

10. Prove Theorem 3 on Video 2.16. More specifically:

Let \(a, L \in \mathbb{R} \). Let \(f \) be a function defined, at least, on an interval centered at \(a \), except maybe at \(a \). Let \(g \) be a function defined at least on an interval centered at \(L \). Prove that

\[
\text{IF } \lim_{x \to a} f(x) = L \text{ and } g \text{ is continuous at } L \quad \text{THEN } \lim_{x \to a} g(f(x)) = g(L).
\]

Write a proof directly from the formal definitions, without using any of the limit laws.

11. Use the Intermediate Value Theorem to prove that the equation

\[
\sin x = 2 \cos^2 x + 0.5
\]

has at least one solution.

12. Use the Squeeze Theorem to explain why \(\lim_{x \to 0} x \cos \frac{1}{x} \) exists, even though \(\lim_{x \to 0} \cos \frac{1}{x} \) does not exist. Explain why the same argument does not work for \(\lim_{x \to 0} xe^{1/x^2} \).
Bonus question:
Do you really understand the definition of limit?

13. Let \(f \) be a function. Let \(a, L \in \mathbb{R} \). Assume that \(f \) is defined on some open interval around \(a \), except maybe at \(a \). Below is a list of nine statements.

a. \(\forall \varepsilon > 0, \exists \delta > 0 \text{ such that } 0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon \).

b. \(\forall \varepsilon > 0, \exists \delta > 0 \text{ such that } |x - a| < \delta \implies |f(x) - L| < \varepsilon \).

c. \(\forall \varepsilon > 0, \exists \delta > 0 \text{ such that } 0 < |x - a| < \delta \implies 0 < |f(x) - L| < \varepsilon \).

d. \(\forall \varepsilon \geq 0, \exists \delta > 0 \text{ such that } 0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon \).

e. \(\forall \varepsilon > 0, \exists \delta \geq 0 \text{ such that } 0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon \).

f. \(\forall \varepsilon > 0, \exists \delta > 0 \text{ such that } 0 < |x - a| < \delta \implies |f(x) - L| \leq \varepsilon \).

g. \(\forall \delta > 0, \exists \varepsilon > 0 \text{ such that } 0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon \).

h. \(\forall \delta > 0, \exists \varepsilon > 0 \text{ such that } 0 < |x - a| < \varepsilon \implies |f(x) - L| < \delta \).

i. \(\exists \delta > 0 \text{ such that } \forall \varepsilon > 0, 0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon \).

Match each of the statements above to one of the following (there may be repeats):

A. Every function satisfies this statement.

B. There isn’t any function which satisfies this statement.

C. This statement is (equivalent to) the definition of \(\lim_{x \to a} f(x) = L \).

D. This statement is (equivalent to) the definition of “\(f \) is continuous at \(a \)”.

E. This statement means that \(\lim_{x \to a} f(x) = L \) and that, in addition, \(f \) does not take the value \(L \) anywhere on some interval centered at \(a \), except maybe at \(a \).

F. This statement is equivalent to saying that \(f \) must be constantly equal to \(L \) on an interval centered at \(a \), except maybe at \(a \).

G. This statement means that \(f \) is bounded on every interval centered at \(a \).
Some answers and hints

1. (a) DNE (b) -2 (c) -1 (d) 2 (e) 4

2. (a) \(f \) is discontinuous at \(a \) when \(a \in \mathbb{Z} \). \(f \) is continuous everywhere else. All the discontinuities are non-removable.

(b) \(g \) has a removable discontinuity at \(\frac{\pi}{2} \) and a non-removable discontinuity at \(\pi \).

3. (a) 2 (b) 1 (c) 1.5 (d) DNE (e) DNE (f) 0 (g) 0.5

4. (a) \(\frac{2}{3} \) (d) \(\frac{3}{2} \) (g) 4

(b) \(\frac{7}{4} \) (e) \(\frac{1}{5} \) (h) DNE

(c) \(\frac{1}{4} \) (f) \(\infty \) (i) \(2^{100} \cdot 3^{100} \)

5. There are various equivalent ways to write each definition. The parts in blue (and only the parts in blue) are often omitted and are considered implicit.

(a) \(\forall \varepsilon > 0, \exists \delta > 0 \text{ such that } (\forall x \in \mathbb{R},) \quad 0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon \)

(b) \(\exists L \in \mathbb{R} \text{ such that } \forall \varepsilon > 0, \exists \delta > 0 \text{ such that } (\forall x \in \mathbb{R},) \quad 0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon \)

(c) \(\exists \varepsilon > 0 \text{ such that } \forall \delta > 0, \exists x \in \mathbb{R} \text{ such that } \quad |0 < |x - a| < \delta \text{ and } |f(x) - L| \geq \varepsilon \)

(d) \(\forall L \in \mathbb{R}, \exists \varepsilon > 0 \text{ such that } \forall \delta > 0, \exists x \in \mathbb{R} \text{ such that } \quad |0 < |x - a| < \delta \text{ and } |f(x) - L| \geq \varepsilon \)

(e) \(\forall \varepsilon > 0, \exists \varepsilon > 0 \text{ such that } (\forall x \in \mathbb{R},) \quad a < x < a + \delta \implies |f(x) - L| < \varepsilon \)

(f) \(\forall M \in \mathbb{R}, \exists \delta > 0 \text{ such that } (\forall x \in \mathbb{R},) \quad 0 < |x - a| < \delta \implies f(x) > M \)

(g) \(\forall M \in \mathbb{R}, \exists \delta > 0 \text{ such that } (\forall x \in \mathbb{R},) \quad a - \delta < x < a \implies f(x) < M \)

(h) \(\forall \varepsilon > 0, \exists K \in \mathbb{R} \text{ such that } (\forall x \in \mathbb{R},) \quad x > K \implies |f(x) - L| < \varepsilon \)

(i) \(\forall M \in \mathbb{R}, \exists K \in \mathbb{R} \text{ such that } (\forall x \in \mathbb{R},) \quad x < K \implies f(x) > M \)

6. (a) This is similar to the proof in Video 2.7.

(b) WTS: \(\forall \varepsilon > 0, \exists K \in \mathbb{R} \text{ such that } \forall x \in \mathbb{R}, \quad x > K \implies \left| \frac{1}{x^2} - 0 \right| < \varepsilon \)

- Fix \(\varepsilon > 0 \)

- Take \(K = \frac{1}{\sqrt{\varepsilon}} \).

- Fix \(x \in \mathbb{R} \). Assume \(x > K \). I need to verify that \(\frac{1}{x^2} < \varepsilon \).

\[
\frac{1}{x^2} < \frac{1}{K^2} = \varepsilon.
\]

(c) This is similar to the proof in Video 2.8

(d) WTS: \(\forall \varepsilon > 0, \exists \delta > 0 \text{ such that } \forall x \in \mathbb{R}, \quad 0 < |x - 1| < \delta \implies \left| \frac{1}{x^2 + 1} - \frac{1}{2} \right| < \varepsilon \)

- Fix \(\varepsilon > 0 \)
• Take $\delta = \min\{1, 2\varepsilon/3\}$. Thus $\delta \leq 1$ and $\delta \leq 2\varepsilon/3$.

• Fix $x \in \mathbb{R}$. Assume $0 < |x - 1| < \delta$. I need to verify that $\left| \frac{1}{x^2 + 1} - \frac{1}{2} \right| < \varepsilon$.

By assumption, $0 \leq 1 - \delta < x < 1 + \delta \leq 2$. Thus $|1 + x| < 3$.

In addition $\frac{1}{x^2 + 1} \leq 1$.

\[
\left| \frac{1}{x^2 + 1} - \frac{1}{2} \right| = \frac{|x + 1||x - 1|}{2(x^2 + 1)} < \frac{3\delta}{2 \cdot 1} \leq \varepsilon.
\]

(e) This is somewhat similar to the proof in Video 2.9.

(f) WTS $\forall M \in \mathbb{R}, \exists \delta > 0$ such that $\forall x \in \mathbb{R}, \ 1 < x < 1 + \delta \implies \frac{1}{1 - x} < M$

• Fix $M \in \mathbb{R}$

• Next we need to choose δ. It is probably easiest to break this into two cases.
 - If $M > 0$, take $\delta = 1$ for example.
 - If $M \leq 0$ take $\delta = \frac{1}{|M|}$

• Fix $x \in \mathbb{R}$. Assume $1 < x < 1 + \delta$. I need to verify that $\frac{1}{1 - x} < M$.

...

(Pay careful attention to the signs. Sometimes you will be working with negative numbers.)

7. This proof is very similar to the one in Video 2.11.

8. WTS $\forall \varepsilon > 0, \exists \delta > 0$ such that $\forall x \in \mathbb{R}, \ 0 < |x - a| < \delta \implies \left| \frac{1}{f(x)} \right| < \varepsilon$

• Fix an arbitrary $\varepsilon > 0$.

• Using $\frac{1}{\varepsilon}$ as the bound in the definition of $\lim_{x \to a} f(x) = \infty$, we can conclude that

 $\exists \delta > 0$ such that $\forall x \in \mathbb{R}, \ 0 < |x - a| < \delta \implies f(x) > \frac{1}{\varepsilon}$

 This is the value of δ I take.

• Let $x \in \mathbb{R}$. Assume $0 < |x - a| < \delta$. I need to verify that $\left| \frac{1}{f(x)} \right| < \varepsilon$.

 This follows immediately from knowing that $f(x) > \frac{1}{\varepsilon} > 0$.

9. This is definitely possible. You will need a function that is not continuous at 0, although being discontinuous at 0 is not enough.

10. I want to prove that

 $\forall \varepsilon > 0, \exists \delta > 0$ such that $\forall x \in \mathbb{R}, \ 0 < |x - a| < \delta \implies |g(f(x)) - g(L)| < \varepsilon$.

• Fix an arbitrary $\varepsilon > 0$.
• First I use this value of ε in the definition of “g is continuous at L” to conclude that

$$\exists \delta_0 > 0 \text{ such that } \forall y \in \mathbb{R}, \ |y - L| < \delta_0 \implies |g(y) - g(L)| < \varepsilon.$$

Second I use this value of δ_0 “as the epsilon” in the definition of “$\lim_{x \to a} f(x) = L$” to conclude that

$$\exists \delta > 0 \text{ such that } \forall x \in \mathbb{R}, \ 0 < |x - a| < \delta \implies |f(x) - L| < \delta_0.$$

This is the value of δ I take.
• Fix $x \in \mathbb{R}$. Assume $0 < |x - a| < \delta$. I need to verify that $|g(f(x)) - g(L)| < \varepsilon$.
 - Since $0 < |x - a| < \delta$, we conclude that $|f(x) - L| < \delta_0$.
 - Since $|f(x) - L| < \delta_0$, we conclude that $|g(f(x)) - g(L)| < \varepsilon$.

11. Consider the function f defined by $f(x) = \sin x - 2 \cos^2 x$. f has domain \mathbb{R} and is continuous everywhere.

$$f(0) = -2 < 0.5, \quad f(\pi/2) = 1 > 0.5.$$

Therefore, by the Intermediate Value Theorem, $\exists x \in (0, \pi/2)$ such that $f(x) = 0.5$.

12. This is similar to the argument in Video 2.12.

13. A. e
 B. d
 C. a, f, h
 D. b
 E. c
 F. i
 G. g