1. Here is the graph of a function f:

![Graph of function f]

Find the following limits for this function:

(a) $\lim_{x \to 2^+} f(x)$
(b) $\lim_{x \to 2^-} f(x)$
(c) $\lim_{x \to 2} f(x)$
(d) $\lim_{x \to 0^+} f(f(x))$
(e) $\lim_{x \to 0^+} f(f(x))$
(f) $\lim_{x \to 2} f(f(2))$
(g) $\lim_{x \to 0} [f(x)]^2$
(h) $\lim_{x \to 0} f(2\cos x)$
(i) $\lim_{x \to 0} f(2\sec x)$

Solution:

(a) $\lim_{x \to 2^+} f(x) = 2$. This follows from an examination of the graph.

(b) $\lim_{x \to 2^-} f(x) = -2$. This follows from an examination of the graph.

(c) $\lim_{x \to 2} f(x)$ does not exist. This follows from the fact that the one-sided limits $\lim_{x \to 2^+} f(x)$ and $\lim_{x \to 2^-} f(x)$ do not agree, as established in (a) and (b).

To answer questions (d)-(f), let us look closely at the composition $y = f(f(x))$. For ease of notation, I am going to call $t = f(x)$ and $y = f(f(x)) = f(t)$.
First, notice that as \(x \to 0 \), we have that \(t = f(x) \to 2 \). But there is more: when \(x \) is close to 0, it does not matter whether \(x > 0 \) or \(x < 0 \); in both cases \(f(x) < 2 \). Hence we can write that

(d) \[
\lim_{x \to 0^+} f(f(x)) = \lim_{t \to 2^+} f(t) = -2.
\]

(e) \[
\lim_{x \to 0} f(f(x)) = \lim_{t \to 2^-} f(t) = -2.
\]

On the other hand, when \(x \) is close to \(-3\), then \(f(x) = 2 \) identically, and \(f(f(x)) = -1 \) identically. I'll repeat: when \(x \) is close to \(-3\), but not \(-3\), \(f(x) \) is already 2, and \(f(f(x)) \) is already \(-1\). Hence

(f) \[
\lim_{x \to -3} f(f(x)) = \lim_{x \to -3} f(2) = -1.
\]

Alternatively, in order to answer parts (d)-(f), we can first constructing the graph of \(y = f(f(x)) \). We sketch it below.

Then, the three questions can be answered by direct examination of the graph:

To answer part (g) we could sketch the graph of \(y = [f(x)]^2 \). Alternatively, we can notice that

\[
\lim_{x \to 2^+} [f(x)]^2 = (2)^2 = 4, \quad \lim_{x \to 2^-} [f(x)]^2 = (-2)^2 = 4.
\]

Since they are both equal, we obtain that:
(g) \(\lim_{x \to 2} [f(x)]^2 = 4. \)

To address parts (h) and (i), notice the following. As \(x \to 0 \), we have that \(\cos x \to 1^- \). In other words, when \(x \) is close to 0 (but not 0), \(\cos x < 1 \). Similarly, when \(x \to 0 \), \(\sec x > 1 \). This suggests that

(h) \(\lim_{x \to 0} f(2 \cos x) = \lim_{t \to 2^-} f(t) = -2. \)

(i) \(\lim_{x \to 0} f(2 \sec x) = \lim_{t \to 2^+} f(t) = 2. \)

2. In each one of the following cases, we want to find a pair of functions \(f \) and \(g \) with some properties. Decide for each case whether it is possible or not. If you answer YES, give us an example. if you answer NO, prove it.

(a) \(\lim_{x \to 0} f(x) \) does not exist, and \(\lim_{x \to 0} [f(x) + g(x)] = 42 \)

Solution: YES. Consider the functions \(f(x) = \frac{1}{x} \) and \(g(x) = -\frac{1}{x} + 42 \). It is true that \(\lim_{x \to 0} f(x) \) does not exist, while

\[
\lim_{x \to 0} \left(\frac{1}{x} + (-\frac{1}{x} + 42) \right) = \lim_{x \to 0} 42 = 42.
\]

(b) \(\lim_{x \to 0} f(x) = 0 \), and \(\lim_{x \to 0} [f(x)g(x)] = 42 \)

Solution: YES. Consider the functions \(f(x) = x \) and \(g(x) = \frac{42}{x} \). It is true that \(\lim_{x \to 0} f(x) = 0 \), while

\[
\lim_{x \to 0} \left(\frac{42}{x} \right) = \lim_{x \to 0} 42 = 42.
\]

(c) \(\lim_{x \to 0} f(x) = 0 \), and \(\lim_{x \to 0} [f(x)g(x)] = \infty \)

Solution: YES. Consider the functions \(f(x) = x \) and \(g(x) = \frac{1}{x^2} \). It is true that \(\lim_{x \to 0} f(x) = 0 \), while

\[
\lim_{x \to 0} \left(x \cdot \frac{1}{x^3} \right) = \lim_{x \to 0} \frac{1}{x^2} = \infty.
\]
(d) \(\lim_{x \to 1} f(x) = 2 \), \(\lim_{u \to 2} g(u) = 3 \), and \(\lim_{x \to 1} g(f(x)) = 42 \).

Solution: YES. Consider the functions \(f(x) = 2 \) and
\[
g(x) = \begin{cases}
3 & \text{if } x \neq 2 \\
42 & \text{if } x = 2
\end{cases}
\]
We have that \(\lim_{x \to 1} f(x) = 2 \), \(\lim_{u \to 2} g(u) = 3 \), and
\[
\lim_{x \to 1} g(f(x)) = \lim_{x \to 1} g(2) = \lim_{x \to 1} 42 = 42.
\]

Remark. The following remark need not be included in a complete solution. Instead, it is intended to provide some context for the solution given above.

Informally speaking, we are told that as \(x \) approaches 1, \(f(x) \) approaches 2. Secondly, the condition \(\lim_{u \to 2} g(u) = 3 \) indicates that the output of \(g \) approaches 3 as its input approaches 2. Combining these two ideas, we might suspect that \(g(f(x)) \) approaches 3 as \(x \) approaches 1. We might therefore conjecture that \(\lim_{x \to 1} g(f(x)) = 3 \). Let us attempt to prove this, and then examine why our proof cannot be made to work.

We claim that \(\lim_{x \to 1} g(f(x)) = 3 \). Accordingly, let \(\varepsilon > 0 \) be given. Since \(\lim_{u \to 2} g(u) = 3 \), there exists \(\delta' > 0 \) such that
\[
0 < |u - 2| < \delta' \implies |g(u) - 3| < \varepsilon.
\]
Also, because \(\lim_{x \to 1} f(x) = 2 \), there exists \(\delta > 0 \) such that
\[
0 < |x - 1| < \delta \implies |f(x) - 2| < \delta'.
\]
We might try to combine (1) and (2) in the following way: If \(0 < |x - 1| < \delta \), then \(|f(x) - 2| < \delta' \) (by (2)), so that we can apply (1) with \(u = f(x) \) to get \(|g(f(x)) - 3| < \varepsilon \). In other words, \(0 < |x - 1| < \delta \implies |g(f(x)) - 3| < \varepsilon \). This would be incorrect. We need \(u \) to satisfy \(0 < |u - 2| < \delta' \) in order to apply (1). So, we would need to know that \(0 < |f(x) - 2| < \delta' \) in order to apply (1) with \(u = f(x) \). Unfortunately, we know only that \(|f(x) - 2| < \delta' \).

Having failed to write a correct proof, we might try to find examples of \(f \) and \(g \) satisfying the given conditions. To find these, we should look for examples of the sort that make our attempted proof incorrect. Note that \(f(x) = 2 \) satisfies \(|f(x) - 2| < \delta' \), but does not satisfy \(0 < |f(x) - 2| < \delta' \). It also satisfies \(\lim_{x \to 1} f(x) = 2 \), so we might try setting \(f(x) = 2 \). The conditions on \(g \)
then become \(\lim_{u \to 2} g(u) = 3 \) and \(\lim_{x \to 1} g(2) = 42 \). In other words, \(\lim_{u \to 2} g(u) = 3 \) and \(g(2) = 42 \). These conditions are satisfied by the choice of

\[
g(x) = \begin{cases}
3 & \text{if } x \neq 2 \\
42 & \text{if } x = 2
\end{cases}
\]

3. Prove that \(\lim_{x \to 1} \frac{1}{x} = 1 \). Do a direct proof from the \(\varepsilon-\delta \) definition of limit.

Solution: When proving \(\lim_{x \to a} f(x) = L \), it is often useful to first find a relationship between \(|x - a| \) and \(|f(x) - L| \). Let us do this in the context of the given problem. If \(0 < |x - 1| < \delta \), then

\[
\left| \frac{1}{x} - 1 \right| = \left| \frac{1-x}{x} \right| = \frac{|x-1|}{|x|} < \frac{1}{\delta}.
\]

In other words,

\[
0 < |x - 1| < \delta \implies \left| \frac{1}{x} - 1 \right| < \frac{1}{\delta}.
\]

In light of (3), we must estimate \(\frac{1}{|x|} \). To do this, suppose that \(0 < |x - 1| < \frac{1}{2} \). One then checks that that \(x \in (\frac{1}{2}, 1) \) or \(x \in (1, \frac{3}{2}) \). In either case, \(|x| > \frac{1}{2} \), allowing us to conclude that \(\frac{1}{|x|} < 2 \). The following implication summarizes our findings.

\[
0 < |x - 1| < \frac{1}{2} \implies \frac{1}{|x|} < 2.
\]

Let us use (3) and (4) to find the desired relationship between \(|x - 1| \) and \(|\frac{1}{x} - 1| \). Indeed, if \(0 < |x - 1| < \delta \) and \(0 < |x - 1| < \frac{1}{2} \), then

\[
\left| \frac{1}{x} - 1 \right| = \left| \frac{1-x}{x} \right| = \frac{|x-1|}{|x|} < \frac{1}{\delta} < 2 \delta.
\]

In other words,

\[
\left(0 < |x - 1| < \delta \text{ and } 0 < |x - 1| < \frac{1}{2} \right) \implies \left| \frac{1}{x} - 1 \right| < 2 \delta.
\]

Equivalently, we have

\[
0 < |x - 1| < \min\{\delta, \frac{1}{2}\} \implies \left| \frac{1}{x} - 1 \right| < 2 \delta.
\]
Now, let $\varepsilon > 0$ be given. Note that (5) with $\delta = \frac{\varepsilon}{2}$ reads as

$$0 < |x - 1| < \min\{\frac{\varepsilon}{2}, \frac{1}{2}\} \implies \left| \frac{1}{x} - 1 \right| < 2 \left(\frac{\varepsilon}{2} \right) = \varepsilon.$$

(6)

By (6), $\delta = \min\{\frac{\varepsilon}{2}, \frac{1}{2}\}$ works for the given ε. The proof is therefore complete.

4. Prove the following theorem:

Theorem. Let $a \in \mathbb{R}$. Let f be a function defined, at least, on an interval centered at a, except possibly at a. Let $L \in \mathbb{R}$.

IF \(\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L \)

THEN \(\lim_{x \to a} f(x) = L \).

Solution: We offer two proofs of the theorem. While Proof #1 is the longer of the two, it reveals much more of the underlying intuition. In contrast, Proof #2 is more of a direct $\varepsilon - \delta$ proof.

Proof #1: Assume that $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$.

We will benefit from a closer examination of the condition $0 < |x - a| < \delta$. Note that

$$0 < |x - a| < \delta \iff x \neq a \text{ and } |x - a| < \delta$$

$$\iff x \neq a \text{ and } -\delta < x - a < \delta$$

$$\iff x \neq a \text{ and } a - \delta < x < a + \delta$$

More concisely,

$$0 < |x - a| < \delta \iff (a - \delta < x < a \text{ or } a < x < a + \delta).$$

(7)

Using (7), we replace $0 < |x - a| < \delta$ to obtain the following equivalent definition of $\lim_{x \to a} f(x) = L$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \text{ such that } (a - \delta < x < a \text{ or } a < x < a + \delta) \implies |f(x) - L| < \varepsilon.$$

(8)

The statement $(a - \delta < x < a \text{ or } a < x < a + \delta) \implies |f(x) - L| < \varepsilon$ means that if x satisfies one of $a - \delta < x < a$, $a < x < a + \delta$, then $|f(x) - L| < \varepsilon$. In
other words: if \(a - \delta < x < a \), then \(|f(x) - L| < \varepsilon\) AND if \(a < x < a + \delta \), then \(|f(x) - L| < \varepsilon\). More concisely, we have \(a - \delta < x < a \implies |f(x) - L| < \varepsilon\) AND \(a < x < a + \delta \implies |f(x) - L| < \varepsilon\). Our definition (8) of \(\lim_{x \to a} f(x) = L \) then becomes:

\[
\forall \varepsilon > 0 \exists \delta > 0 \text{ such that } \quad a - \delta < x < a \implies |f(x) - L| < \varepsilon, \quad \text{and} \quad a < x < a + \delta \implies |f(x) - L| < \varepsilon.
\]

Let’s try to prove \(\lim_{x \to a} f(x) = L \) using the definition (9). Accordingly, let \(\varepsilon > 0 \) be given. According to (9), we must find \(\delta > 0 \) such that

(i) \(a - \delta < x < a \implies |f(x) - L| < \varepsilon, \) and

(ii) \(a < x < a + \delta \implies |f(x) - L| < \varepsilon. \)

Since \(\lim_{x \to a^-} f(x) = L \), we can find \(\delta_1 > 0 \) such that \(a - \delta_1 < x < a \implies |f(x) - L| < \varepsilon. \)

If we choose \(\delta \) so that \(\delta \leq \delta_1 \), then \(a - \delta_1 \leq a - \delta \). So, \(a - \delta < x < a \implies a - \delta_1 < x < a \implies |f(x) - L| < \varepsilon. \) Hence, if \(\delta \) is chosen so that \(\delta \leq \delta_1 \), then \(a - \delta < x < a \implies |f(x) - L| < \varepsilon. \) In other words, if \(\delta \leq \delta_1 \), then (i) is satisfied.

Since \(\lim_{x \to a^+} f(x) = L \), we can find \(\delta_2 > 0 \) such that \(a < x < a + \delta_2 \implies |f(x) - L| < \varepsilon. \)

If we choose \(\delta \) so that \(\delta \leq \delta_2 \), then \(a + \delta \leq a + \delta_2 \). So, \(a < x < a + \delta \implies a < x < a + \delta_2 \implies |f(x) - L| < \varepsilon. \) Hence, if \(\delta \) is chosen so that \(\delta \leq \delta_2 \), then \(a < x < a + \delta_2 \implies |f(x) - L| < \varepsilon. \) In other words, if \(\delta \leq \delta_2 \), then (ii) is satisfied.

In light of our findings above, if \(\delta \leq \delta_1 \) and \(\delta \leq \delta_2 \), then (i) and (ii) are satisfied. In particular, \(\delta := \min\{\delta_1, \delta_2\} \) satisfies (i) and (ii). We have therefore shown \(\lim_{x \to a} f(x) = L \) using the equivalent definition (9).

Proof #2: Assume that \(\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L. \) Using the \(\varepsilon - \delta \) definition of the limit, we must verify that \(\lim_{x \to a} f(x) = L. \)

Let \(\varepsilon > 0 \) be given. Our objective is to find some \(\delta > 0 \) such that

\[
0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon.
\]

Since \(\lim_{x \to a^-} f(x) = L \), there exists \(\delta_1 > 0 \) such that

\[
a - \delta_1 < x < a \implies |f(x) - L| < \varepsilon. \tag{10}
\]
Similarly, the condition \(\lim_{x \to a^+} f(x) = L \) implies that there exists \(\delta_2 > 0 \) such that

\[
a < x < a + \delta_2 \implies |f(x) - L| < \varepsilon.
\]

(11)

Now, set \(\delta := \min\{\delta_1, \delta_2\} \). We claim that \(0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon \). To this end, assume that \(0 < |x - a| < \delta \). Using (7), we see that \(a - \delta < x < a \) or \(a < x < a + \delta \). Let us consider these two cases separately.

Case #1: \(a - \delta < x < a \): Since \(\delta \leq \delta_1 \), it follows that \(a - \delta_1 \leq a - \delta \). Hence, it is true that \(a - \delta_1 < x < a \). Using (10), we conclude that \(|f(x) - L| < \varepsilon \).

Case #2: \(a < x < a + \delta \): Since \(\delta \leq \delta_2 \), it follows that \(a + \delta \leq a + \delta_2 \). Hence, it is true that \(a < x < a + \delta_2 \). Using (11), we conclude that \(|f(x) - L| < \varepsilon \).

In light of the above, it follows that \(|f(x) - L| < \varepsilon \). Hence, we have shown that

\[
0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon.
\]

This completes the proof.