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Introduction

Model Theory is the part of mathematics which shows how to apply logic to
the study of structures in pure mathematics. On the one hand it is the ultimate
abstraction; on the other, it has immediate applications to every-day mathematics.
The fundamental tenet of Model Theory is that mathematical truth, like all truth,
is relative. A statement may be true or false, depending on how and where it is
interpreted. This isn’t necessarily due to mathematics itself, but is a consequence
of the language that we use to express mathematical ideas.

What at first seems like a deficiency in our language, can actually be shaped into
a powerful tool for understanding mathematics. This book provides an introduction
to Model Theory which can be used as a text for a reading course or a summer
project at the senior undergraduate or graduate level. It is also a primer which will
give someone a self contained overview of the subject, before diving into one of the
more encyclopedic standard graduate texts.

Any reader who is familiar with the cardinality of a set and the algebraic
closure of a field can proceed without worry. Many readers will have some acquain-
tance with elementary logic, but this is not absolutely required, since all necessary
concepts from logic are reviewed in Chapter 0. Chapter 1 gives the motivating ex-
amples; it is short and we recommend that you peruse it first, before studying the
more technical aspects of Chapter 0. Chapters 2 and 3 are selections of some of the
most important techniques in Model Theory. The remaining chapters investigate
the relationship between Model Theory and the algebra of the real and complex
numbers. Thirty exercises develop familiarity with the definitions and consolidate
understanding of the main proof techniques.

Throughout the book we present applications which cannot easily be found
elsewhere in such detail. Some are chosen for their value in other areas of mathe-
matics: Ramsey’s Theorem, the Tarski-Seidenberg Theorem. Some are chosen for
their immediate appeal to every mathematician: existence of infinitesimals for cal-
culus, graph colouring on the plane. And some, like Hilbert’s Seventeenth Problem,
are chosen because of how amazing it is that logic can play an important role in
the solution of a problem from high school algebra. In each case, the derivation
is shorter than any which tries to avoid logic. More importantly, the methods of
Model Theory display clearly the structure of the main ideas of the proofs, showing
how theorems of logic combine with theorems from other areas of mathematics to
produce stunning results.

The theorems here are all are more than thirty years old and due in great part
to the cofounders of the subject, Abraham Robinson and Alfred Tarski. However,
we have not attempted to give a history. When we attach a name to a theorem, it
is simply because that is what mathematical logicians popularly call it.

The bibliography contains a number of texts that were helpful in the prepa-
ration of this manuscript. They could serve as avenues of further study and in
addition, they contain many other references and historical notes. The more recent
titles were added to show the reader where the subject is moving today. All are
worth a look.

This book began life as notes for William Weiss’s graduate course at the Uni-
versity of Toronto. The notes were revised and expanded by Cherie D’Mello and
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William Weiss, based upon suggestions from several graduate students. The elec-
tronic version of this book may be downloaded and further modified by anyone for
the purpose of learning, provided this paragraph is included in its entirety and so
long as no part of this book is sold for profit.
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CHAPTER 0

Models, Truth and Satisfaction

We will use the following symbols:

• logical symbols:
– the connectives ∧ ,∨ , ¬ ,→ ,↔ called “and”, “or”, “not”, “implies”

and “iff” respectively
– the quantifiers ∀ , ∃ called “for all” and “there exists”
– an infinite collection of variables indexed by the natural numbers N
v0 ,v1 , v2 , . . .

– the two parentheses ), (
– the symbol = which is the usual “equal sign”

• constant symbols : often denoted by the letter c with subscripts
• function symbols : often denoted by the letter F with subscripts; each

function symbol is an m-placed function symbol for some natural number
m ≥ 1

• relation symbols : often denoted by the letter R with subscripts; each
relational symbol is an n-placed relation symbol for some natural number
n ≥ 1.

We now define terms and formulas.

Definition 1. A term is defined as follows:

(1) a variable is a term
(2) a constant symbol is a term
(3) if F is an m-placed function symbol and t1, . . . , tm are terms, then

F (t1 . . . tm) is a term.
(4) a string of symbols is a term if and only if it can be shown to be a term

by a finite number of applications of (1), (2) and (3).

Remark. This is a recursive definition.

Definition 2. A formula is defined as follows :

(1) if t1 and t2 are terms, then (t1 = t2) is a formula.
(2) if R is an n-placed relation symbol and t1, . . . , tn are terms, then

(R(t1 . . . tn)) is a formula.
(3) if ϕ is a formula, then (¬ϕ) is a formula
(4) if ϕ and ψ are formulas then so are (ϕ∧ψ), (ϕ∨ψ), (ϕ→ ψ) and (ϕ↔ ψ)
(5) if vi is a variable and ϕ is a formula, then (∃vi)ϕ and (∀vi)ϕ are formulas
(6) a string of symbols is a formula if and only if it can be shown to be a

formula by a finite number of applications of (1), (2), (3), (4) and (5).

Remark. This is another recursive definition. ¬ϕ is called the negation of ϕ;
ϕ∧ψ is called the conjunction of ϕ and ψ; and ϕ∨ψ is called the disjunction of ϕ
and ψ.
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Definition 3. A subformula of a formula ϕ is defined as follows:

(1) ϕ is a subformula of ϕ
(2) if (¬ψ) is a subformula of ϕ then so is ψ
(3) if any one of (θ ∧ ψ), (θ ∨ ψ), (θ → ψ) or (θ ↔ ψ) is a subformula of ϕ,

then so are both θ and ψ
(4) if either (∃vi)ψ or (∀vi)ψ is a subformula of ϕ for some natural number i,

then ψ is also a subformula of ϕ
(5) A string of symbols is a subformula of ϕ, if and only if it can be shown to

be such by a finite number of applications of (1), (2), (3) and (4).

Definition 4. A variable vi is said to occur bound in a formula ϕ iff for some
subformula ψ of ϕ either (∃vi)ψ or (∀vi)ψ is a subformula of ϕ. In this case each
occurrence of vi in (∃vi)ψ or (∀vi)ψ is said to be a bound occurrence of vi. Other
occurrences of vi which do not occur bound in ϕ are said to be free.

Example 1.

F (v3) is a term, where F is a unary function symbol.

((∃v3)(v0 = v3) ∧ (∀v0)(v0 = v0))

is a formula. In this formula the variable v3 only occurs bound but the variable v0
occurs both bound and free.

Exercise 1. Using the previous definitions as a guide, define the substitution
of a term t for a variable vi in a formula ϕ. In particular, demonstrate how to
substitute the term for the variable v0 in the formula of the example above.

Definition 5. A language L is a set consisting of all the logical symbols with
perhaps some constant, function and/or relational symbols included. It is under-
stood that the formulas of L are made up from this set in the manner prescribed
above. Note that all the formulas of L are uniquely described by listing only the
constant, function and relation symbols of L.

We use t(v0, . . . , vk) to denote a term t all of whose variables occur among
v0, . . . , vk.

We use ϕ(v0, . . . , vk) to denote a formula ϕ all of whose free variables occur
among v0, . . . , vk.

Example 2. These would be formulas of any language :

• For any variable vi: (vi = vi)
• for any term t(v0, . . . , vk) and other terms t1 and t2:

((t1 = t2)→ (t(v0, . . . , vi−1, t1, vi+1, . . . , vk) = t(v0, . . . , vi−1, t2, vi+1, . . . , vk)))

• for any formula ϕ(v0, . . . , vk) and terms t1 and t2:

((t1 = t2)→ (ϕ(v0, . . . , vi−1, t1, vi+1, . . . , vk)↔ ϕ(v0, . . . , vi−1, t2, vi+1, . . . , vk)))

Note the simple way we denote the substitution of t1 for vi.

Definition 6. A model (or structure) A for a language L is an ordered pair
〈A, I〉 where A is a nonempty set and I is an interpretation function with domain
the set of all constant, function and relation symbols of L such that:

(1) if c is a constant symbol, then I(c) ∈ A; I(c) is called a constant
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(2) if F is an m-placed function symbol, then I(F ) is an m-placed function
on A

(3) if R is an n-placed relation symbol, then I(R) is an n-placed relation on
A.

A is called the universe of the model A. We generally denote models with
Gothic letters and their universes with the corresponding Latin letters in boldface.
One set may be involved as a universe with many different interpretation functions
of the language L. The model is both the universe and the interpretation function.

Remark. The importance of Model Theory lies in the observation that mathe-
matical objects can be cast as models for a language. For instance, the real numbers
with the usual ordering<<< and the usual arithmetic operations, addition +++ and mul-
tiplication ··· along with the special numbers 0 and 1 can be described as a model.
Let L contain one two-placed (i.e. binary) relation symbol R0, two two-placed
function symbols F1 and F2 and two constant symbols c0 and c1. We build a model
by letting the universe A be the set of real numbers. The interpretation function
I will map R0 to <<<, i.e. R0 will be interpreted as <<<. Similarly, I(F1) will be +++,
I(F2) will be ···, I(c0) will be 0 and I(c1) will be 1. So 〈A, I〉 is an example of a
model for the language described by {R0, F1, F2, c0, c1}.

We now wish to show how to use formulas to express mathematical statements
about elements of a model. We first need to see how to interpret a term in a model.

Definition 7. The value t[x0, . . . , xq] of a term t(v0, . . . , vq) at x0, . . . , xq in
the universe A of the model A is defined as follows:

(1) if t is vi then t[x0, · · · , xq] is xi,
(2) if t is the constant symbol c, then t[x0, . . . , xq] is I(c), the interpretation

of c in A,
(3) if t is F (t1 . . . tm) where F is an m-placed function symbol and t1, . . . , tm

are terms, then t[x0, . . . , xq] is G(t1[x0, . . . , xq], . . . , tm[x0, . . . , xq]) where
G is the m-placed function I(F ), the interpretation of F in A.

Definition 8. Suppose A is a model for a language L. The sequence
x0, . . . , xq of elements of A satisfies the formula ϕ(v0, . . . , vq) all of whose free and
bound variables are among v0, . . . , vq, in the model A, written A |= ϕ[x0, . . . , xq]
provided we have:

(1) if ϕ(v0, . . . , vq) is the formula (t1 = t2), then

A |= (t1 = t2)[x0, . . . , xq] means that t1[x0, . . . , xq] equals t2[x0, . . . , xq],

(2) if ϕ(v0, . . . , vq) is the formula (R(t1 . . . tn)) where R is an n-placed relation
symbol, then

A |= (R(t1 . . . tn))[x0, . . . , xq] means S(t1[x0, . . . , xq], . . . , tn[x0, . . . , xq])

where S is the n-placed relation I(R), the interpretation of R in A,
(3) if ϕ is (¬θ), then

A |= ϕ[x0, . . . , xq] means not A |= θ[x0, . . . , xq],

(4) if ϕ is (θ ∧ ψ), then

A |= ϕ[x0, . . . , xq] means both A |= θ[x0, . . . , xq] and A |= ψ[x0, . . . xq],
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(5) if ϕ is (θ ∨ ψ) then

A |= ϕ[x0, . . . , xq] means either A |= θ[x0, . . . , xq] or A |= ψ[x0, . . . , xq],

(6) if ϕ is (θ → ψ) then

A |= ϕ[x0, . . . , xq] means that A |= θ[x0, . . . , xq] implies A |= ψ[x0, . . . , xq],

(7) if ϕ is (θ ↔ ψ) then

A |= ϕ[x0, . . . , xq] means that A |= θ[x0, . . . , xq] iff A |= ψ[x0, . . . , xq],

(8) if ϕ is ∀viθ, then

A |= ϕ[x0, . . . , xq] means for every x ∈ A,A |= θ[x0, . . . , xi−1, x, xi+1, . . . , xq],

(9) if ϕ is ∃viθ, then

A |= ϕ[x0, . . . , xq] means for some x ∈ A,A |= θ[x0, . . . , xi−1, x, xi+1, . . . , xq].

Exercise 2. Each of the formulas of Example 2 is satisfied in any model A for
any language L by any (long enough) sequence x0, x1, . . . , xq of A. This is where
you test your solution to Exercise 1, especially with respect to the term and formula
from Example 1.

We now prove two lemmas which show that the preceding concepts are well-
defined. In the first one, we see that the value of a term only depends upon the
values of the variables which actually occur in the term. In this lemma the equal
sign = is used, not as a logical symbol in the formal sense, but in its usual sense to
denote equality of mathematical objects — in this case, the values of terms, which
are elements of the universe of a model.

Lemma 1. Let A be a model for L and let t(v0, . . . , vp) be a term of L. Let
x0, . . . , xq and y0, . . . , yr be sequences from A such that p ≤ q and p ≤ r, and let
xi = yi whenever vi actually occurs in t(v0, . . . , vp). Then

t[x0, . . . , xq] = t[y0, . . . , yr]

.

Proof. We use induction on the complexity of the term t.

(1) If t is vi then xi = yi and so we have

t[x0, . . . , xq] = xi = yi = t[y0, . . . , yr] since p ≤ q and p ≤ r.

(2) If t is the constant symbol c, then

t[x0, . . . , xq] = I(c) = t[y0, . . . , yr]

where I(c) is the interpretation of c in A.
(3) If t is F (t1 . . . tm) where F is an m-placed function symbol, t1, . . . , tm are

terms and I(F ) = G, then
t[x0, . . . , xq] = G(t1[x0, . . . , xq], . . . , tm[x0, . . . , xq]) and
t[y0, . . . , yr] = G(t1[y0, . . . , yr], . . . , tm[y0, . . . , yr]).
By the induction hypothesis we have that ti[x0, . . . , xq] = ti[y0, . . . , yr] for
1 ≤ i ≤ m since t1, . . . , tm have all their variables among {v0, . . . , vp}. So
we have t[x0, . . . , xq] = t[y0, . . . , yr].

�
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In the next lemma the equal sign = is used in both senses — as a formal
logical symbol in the formal language L and also to denote the usual equality
of mathematical objects. This is common practice where the context allows the
reader to distinguish the two usages of the same symbol. The lemma confirms that
satisfaction of a formula depends only upon the values of its free variables.

Lemma 2. Let A be a model for L and ϕ a formula of L, all of whose free and
bound variables occur among v0, . . . , vp. Let x0, . . . , xq and y0, . . . , yr (q, r ≥ p) be
two sequences such that xi and yi are equal for all i such that vi occurs free in ϕ.
Then

A |= ϕ[x0, . . . , xq] iff A |= ϕ[y0, . . . , yr]

Proof. Let A and L be as above. We prove the lemma by induction on the
complexity of ϕ.

(1) If ϕ(v0, . . . , vp) is the formula (t1 = t2), then we use Lemma 1 to get:

A |= (t1 = t2)[x0, . . . , xq] iff t1[x0, . . . , xq] = t2[x0, . . . , xq]

iff t1[y0, . . . , yr] = t2[y0, . . . , yr]

iff A |= (t1 = t2)[y0, . . . , yr].

(2) If ϕ(v0, . . . , vp) is the formula (R(t1 . . . tn)) where R is an n-placed relation
symbol with interpretation S, then again by Lemma 1, we get:

A |= (R(t1 . . . tn))[x0, . . . , xq] iff S(t1[x0, . . . , xq], . . . , tn[x0, . . . , xq])

iff S(t1[y0, . . . , yr], . . . , tn[y0, . . . , yr])

iff A |= R(t1 . . . tn)[y0, . . . , yr].

(3) If ϕ is (¬θ), the inductive hypothesis gives that the lemma is true for θ.
So,

A |= ϕ[x0, . . . , xq] iff not A |= θ[x0, . . . , xq]

iff not A |= θ[y0, . . . , yr]

iff A |= ϕ[y0, . . . , yr].

(4) If ϕ is (θ ∧ ψ), then using the inductive hypothesis on θ and ψ we get

A |= ϕ[x0, . . . , xq] iff both A |= θ[x0, . . . , xq] and A |= ψ[x0, . . . xq]

iff both A |= θ[y0, . . . , yr] and A |= ψ[y0, . . . yr]

iff A |= ϕ[y0, . . . , yr].

(5) If ϕ is (θ ∨ ψ) then

A |= ϕ[x0, . . . , xq] iff either A |= θ[x0, . . . , xq] or A |= ψ[x0, . . . , xq]

iff either A |= θ[y0, . . . , yr] or A |= ψ[y0, . . . , yr]

iff A |= ϕ[y0, . . . , yr].

(6) If ϕ is (θ → ψ) then

A |= ϕ[x0, . . . , xq] iff A |= θ[x0, . . . , xq] implies A |= ψ[x0, . . . , xq]

iff A |= θ[y0, . . . , yr] implies A |= ψ[y0, . . . , yr]

iff A |= ϕ[y0, . . . , yr].
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(7) If ϕ is (θ ↔ ψ) then

A |= ϕ[x0, . . . , xq] iff we have A |= θ[x0, . . . , xq] iff A |= ψ[x0, . . . , xq]

iff we have A |= θ[y0, . . . , yr] iff A |= ψ[y0, . . . , yr]

iff A |= ϕ[y0, . . . , yr].

(8) If ϕ is (∀vi)θ, then

A |= ϕ[x0, . . . , xq] iff for every z ∈ A,A |= θ[x0, . . . , xi−1, z, xi+1, . . . , xq]

iff for every z ∈ A,A |= θ[y0, . . . , yi−1, z, yi+1, . . . , yr]

iff A |= ϕ[y0, . . . , yr].

The inductive hypothesis uses the sequences x0, . . . , xi−1, z, xi+1, . . . , xq
and y0, . . . , yi−1, z, yi+1, . . . , yr with the formula θ.

(9) If ϕ is (∃vi)θ, then

A |= ϕ[x0, . . . , xq] iff for some z ∈ A,A |= θ[x0, . . . , xi−1, z, xi+1, . . . , xq]

iff for some z ∈ A,A |= θ[y0, . . . , yi−1, z, yi+1, . . . , yr]

iff A |= ϕ[y0, . . . , yr].

The inductive hypothesis uses the sequences x0, . . . , xi−1, z, xi+1, . . . , xq
and y0, . . . , yi−1, z, yi+1, . . . , yr with the formula θ.

�

Definition 9. A sentence is a formula with no free variables.

If ϕ is a sentence, we can write A |= ϕ without any mention of a sequence from
A since by the previous lemma, it doesn’t matter which sequence from A we use.
In this case we say:

• A satisfies ϕ
• or A is a model of ϕ
• or ϕ holds in A
• or ϕ is true in A

If ϕ is a sentence of L, we write |= ϕ to mean that A |= ϕ for every model A
for L. Intuitively then, |= ϕ means that ϕ is true under any relevant interpretation
(model for L). Alternatively, no relevant example (model for L) is a counterexample
to ϕ — so ϕ is true.

Lemma 3. Let ϕ(v0, . . . , vq) be a formula of the language L. There is another
formula ϕ′(v0, . . . , vq) of L such that

(1) ϕ′ has exactly the same free and bound occurrences of variables as ϕ.
(2) ϕ′ can possibly contain ¬, ∧ and ∃ but no other connective or quantifier.
(3) |= (∀v0) . . . (∀vq)(ϕ↔ ϕ′)

Exercise 3. Prove the above lemma by induction on the complexity of ϕ. As
a reward, note that this lemma can be used to shorten future proofs by induction
on complexity of formulas.

Definition 10. A formula ϕ is said to be in prenex normal form whenever

(1) there are no quantifiers occurring in ϕ, or
(2) ϕ is (∃vi)ψ where ψ is in prenex normal form and vi does not occur bound

in ψ, or
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(3) ϕ is (∀vi)ψ where ψ is in prenex normal form and vi does not occur bound
in ψ.

Remark. If ϕ is in prenex normal form, then no variable occurring in ϕ occurs
both free and bound and no bound variable occurring in ϕ is bound by more
than one quantifier. In the written order, all of the quantifiers precede all of the
connectives.

Lemma 4. Let ϕ(v0, . . . , vp) be any formula of a language L. There is a formula
ϕ∗ of L which has the following properties:

(1) ϕ∗ is in prenex normal form
(2) ϕ and ϕ∗ have the same free occurrences of variables, and
(3) |= (∀v0) . . . (∀vp)(ϕ↔ ϕ∗)

Exercise 4. Prove this lemma by induction on the complexity of ϕ.

There is a notion of rank on prenex formulas — the number of alternations of
quantifiers. The usual formulas of elementary mathematics have prenex rank 0, i.e.
no alternations of quantifiers. For example:

(∀x)(∀y)(2xy ≤ x2 + y2).

However, the ε− δ definition of a limit of a function has prenex rank 2 and is much
more difficult for students to comprehend at first sight:

(∀ε)(∃δ)(∀x)((0 < ε ∧ 0 < |x− a| < δ)→ |F (x)− L| < ε).

A formula of prenex rank 4 would make any mathematician look twice.



CHAPTER 1

Notation and Examples

Although the formal notation for formulas is precise, it can become cumbersome
and difficult to read. Confident that the reader would be able, if necessary, to put
formulas into their formal form, we will relax our formal behaviour. In particular,
we will write formulas any way we want using appropriate symbols for variables,
constant symbols, function and relation symbols. We will omit parentheses or add
them for clarity. We will use binary function and relation symbols between the
arguments rather than in front as is the usual case for “plus”, “times” and “less
than”.

Whenever a language L has only finitely many relation, function and constant
symbols we often write, for example:

L = {<,R0,+, F1, c0, c1}
omitting explicit mention of the logical symbols (including the infinitely many vari-
ables) which are always in L. Correspondingly we may denote a model A for L
as:

A = 〈A,<<<,S0,+++,G1,a0,a1〉
where the interpretations of the symbols in the language L are given by I(<) = <<<,
I(R0) = S0, I(+) = +++ , I(F1) = G1, I(c0) = a0 and I(c1) = a1.

Example 3. R = 〈R,<<<,+++, ·,0,1〉 and Q = 〈Q,<<<,+++, ·,0,1〉, where R is the
reals and Q the rationals, are models for the language L = {<,+, ·, 0, 1}. Here < is
a binary relation symbol, + and · are binary function symbols, 0 and 1 are constant
symbols whereas <<<, +++, ·, 0, 1 are the well known relations, arithmetic functions
and constants.

Similarly, C = 〈C,+++, ·,0,1〉, where C is the complex numbers, is a model for
the language L = {+, ·, 0, 1}. Note the exceptions to the boldface convention for
these popular sets.

Example 4. Here L = {<,+, ·, 0, 1}, where < is a binary relation symbol, +
and · are binary function symbols and 0 and 1 are constant symbols. The following
formulas are sentences.

(1) (∀x)¬(x < x)
(2) (∀x)(∀y)¬(x < y ∧ y < x)
(3) (∀x)(∀y)(∀z)(x < y ∧ y < z → x < z)
(4) (∀x)(∀y)(x < y ∨ y < x ∨ x = y)
(5) (∀x)(∀y)(x < y → (∃z)(x < z ∧ z < y))
(6) (∀x)(∃y)(x < y)
(7) (∀x)(∃y)(y < x)
(8) (∀x)(∀y)(∀z)(x+ (y + z) = (x+ y) + z)
(9) (∀x)(x+ 0 = x)

11



1. NOTATION AND EXAMPLES 12

(10) (∀x)(∃y)(x+ y = 0)
(11) (∀x)(∀y)(x+ y = y + x)
(12) (∀x)(∀y)(∀z)(x · (y · z) = (x · y) · z)
(13) (∀x)(x · 1 = x)
(14) (∀x)(x = 0 ∨ (∃y)(y · x = 1))
(15) (∀x)(∀y)(x · y = y · x)
(16) (∀x)(∀y)(∀z)(x · (y + z) = (x · y) + (y · z))
(17) 0 6= 1
(18) (∀x)(∀y)(∀z)(x < y → x+ z < y + z)
(19) (∀x)(∀y)(∀z)(x < y ∧ 0 < z → x · z < y · z)
(20) for each n ≥ 1 we have the formula

(∀x0)(∀x1) · · · (∀xn)(∃y)(xn · yn + xn−1 · yn−1 + · · ·+ x1 · y + x0 = 0 ∨ xn = 0)

where, as usual, yk abbreviates

k︷ ︸︸ ︷
y · y · · · · · y

The latter formulas express that each polynomial of degree n has a root. The
following formulas express the intermediate value property for polynomials of degree
n: if the polynomial changes sign from w to z, then it is zero at some y between w
and z.

(21) for each n ≥ 1 we have

(∀x0) . . . (∀xn)(∀w)(∀z)[(xn · wn + xn−1 · wn−1 + · · ·+ x1 · w + x0)·
(xn · zn + xn−1 · zn−1 + · · ·+ x1 · z + x0) < 0

→ (∃y)(((w < y ∧ y < z) ∨ (z < y ∧ y < w))

∧ (xn · yn + xn−1 · yn−1 + · · ·+ x1 · y + x0 = 0))]

The most fundamental concept is that of a sentence σ being true when inter-
preted in a model A. We write this as A |= σ, and we extend this concept in the
following definitions.

Definition 11. If Σ is a set of sentences, A is said to be a model of Σ, written
A |= Σ, whenever A |= σ for each σ ∈ Σ. Σ is said to be satisfiable iff there is some
A such that A |= Σ.

Definition 12. A theory T is a set of sentences. If T is a theory and σ is a
sentence, we write T |= σ whenever we have that for all A if A |= T then A |= σ.
We say that σ is a consequence of T . A theory is said to be closed whenever it
contains all of its consequences.

Definition 13. If A is a model for the language L, the theory of A, denoted
by ThA, is defined to be the set of all sentences of L which are true in A,

{σ of L : A |= σ}.
This is one way that a theory can arise. Another way is through axioms.

Definition 14. Σ ⊆ T is said to be a set of axioms for T whenever Σ |= σ for
every σ in T ; in this case we write Σ |= T .

Remark. We will generally assume our theories are closed and we will often
describe theories by specifying a set of axioms Σ. The theory will then be all
consequences σ of Σ.
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Example 5. We will consider the following theories and their axioms.

(1) The theory of Linear Orderings (LOR) is a theory in the language {<}
which has as axioms sentences 1-4 from Example 4.

(2) The theory of Dense Linear Orders (DLO) is a theory in the language {<}
which has as axioms all the axioms of LOR, and sentences 5, 6 and 7 of
Example 4.

(3) The theory of Fields (FLD) is a theory in the language {0, 1,+, ·} which
has as axioms sentences 8-17 from Example 4.

(4) The theory of Ordered Fields (ORF) is a theory in the language given
by {<, 0, 1,+, ·} which has as axioms all the axioms of FLD, LOR and
sentences 18 and 19 from Example 4.

(5) The theory of Algebraically Closed Fields (ACF) is a theory in the lan-
guage {0, 1,+, ·} which has as axioms all the axioms of FLD and all sen-
tences from 20 of Example 4, i.e. infinitely many sentences, one for each
n ≥ 1.

(6) The theory of Real Closed Ordered Fields (RCF) is a theory in the lan-
guage {<, 0, 1,+, ·} which has as axioms all the axioms of ORF, and all
sentences from 21 of Example 4, i.e. infinitely many sentences, one for
each n ≥ 1.

Exercise 5. Show that :

(1) Q |= DLO
(2) R |= RCF using the Intermediate Value theorem
(3) C |= ACF using the Fundamental Theorem of Algebra

where Q, R and C are as in Example 3.

Remark. The theory of Real Closed Ordered Fields is sometimes axiomatised
differently. All the axioms of ORF are retained, but the sentences from 21 of
Example 4, which amount to an Intermediate Value Property, are replaced by the
sentences from 20 for odd n and the sentence

(∀x)(0 < x→ (∃y)y2 = x)

which states that every positive element has a square root. A significant amount of
algebra would then be used to verify the Intermediate Value Property from these
axioms.



CHAPTER 2

Compactness and Elementary Submodels

Theorem 1. The Compactness Theorem (Malcev)
A set of sentences is satisfiable iff every finite subset is satisfiable.

Proof. There are several proofs. We only point out here that it is an easy
consequence of the following theorem which appears in all elementary logic texts:

Proposition. The Completeness Theorem (Gödel, Malcev)
A set of sentences is consistent if and only if it is satisfiable.

Although we do not here formally define “consistent”, it does mean what you
think it does. In particular, a set of sentences is consistent if and only if each finite
subset is consistent.

�

Remark. The Compactness Theorem is the only one for which we do not give
a complete proof. For the reader who has not previously seen the Completeness
Theorem, there are other proofs of the Compactness Theorem which may be more
easily absorbed: set theoretic (using ultraproducts), topological (using compact
spaces, hence the name) or Boolean algebraic. However these topics are too far
afield to enter into the proofs here. We will use the Compactness Theorem as a
starting point — in fact, all that follows can be seen as its corollaries.

Exercise 6. Suppose T is a theory for the language L and σ is a sentence of L
such that T |= σ. Prove that there is some finite T ′ ⊆ T such that T ′ |= σ. Recall
that T |= σ iff T ∪ {¬σ} is not satisfiable.

Definition 15. If L, and L′ are two languages such that L ⊆ L′ we say that
L′ is an expansion of L and L is a reduction of L′. Of course when we say that
L ⊆ L′ we also mean that the constant, function and relation symbols of L remain
(respectively) constant, function and relation symbols of the same type in L′.

Definition 16. Given a model A for the language L, we can expand it to a
model A′ of L′, where L′ is an expansion of L, by giving appropriate interpretations
to the symbols in L′ \ L. We say that A′ is an expansion of A to L′ and that A is
a reduct of A′ to L. We also use the notation A′|L for the reduct of A′ to L.

Theorem 2. If a theory T has arbitrarily large finite models, then it has an
infinite model.

Proof. Consider new constant symbols ci for i ∈ N, the usual natural num-
bers, and expand from L, the language of T , to L′ = L ∪ {ci : i ∈ N}.

Let

Σ = T ∪ {¬ci = cj : i 6= j, i, j ∈ N}.

14
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We first show that every finite subset of Σ has a model by interpreting the
finitely many relevant constant symbols as different elements in an expansion of
some finite model of T . Then we use compactness to get a model A′ of Σ.

The model that we require is for the language L, so we take A to be the reduct
of A′ to L.

�

Definition 17. Two models A and A′ for L are said to be isomorphic whenever
there is a bijection f : A→ A′ such that

(1) for each n-placed relation symbol R of L and corresponding interpretations
S of A and S′ of A′ we have

S(x1, . . . , xn) iff S′(f(x1), . . . , f(xn)) for all x1, . . . , xn in A

(2) for each n-placed function symbol F of L and corresponding interpreta-
tions G of A and G′ of A′ we have

f(G(x1, . . . , xn)) = G′(f(x1), . . . , f(xn)) for all x1, . . . , xn in A

(3) for each constant symbol c of L and corresponding constant elements a of
A and a′ of A′ we have f(a) = a′.

We write A ∼= A′. This is an equivalence relation.

Example 6. Number theory is Th〈N,+++, ···,<<<,000,111〉, the set of all sentences of
L = {+, ·, <, 0, 1} which are true in 〈N,+++, ···,<<<,000,111〉, the standard model which we
all learned in school. Any model not isomorphic to the standard model of number
theory is said to be a non-standard model of number theory.

Theorem 3. (T. Skolem)
There exist non-standard models of number theory.

Proof. Add a new constant symbol c to L. Consider

Th〈N,+, ·, <, 0, 1〉 ∪ {
n︷ ︸︸ ︷

1 + 1 + · · ·+ 1 < c : n ∈ N}
and use the Compactness Theorem. The interpretation of the constant symbol c
will not be a natural number. �

Definition 18. Two models A and A′ for L are said to be elementarily equiv-
alent whenever we have that for each sentence σ of L

A |= σ iff A′ |= σ

We write A ≡ A′. This is another equivalence relation.

Exercise 7. Suppose f : A → A′ is an isomorphism and ϕ is a formula such
that A |= ϕ[a0, . . . , ak] for some a0, . . . , ak from A; prove A′ |= ϕ[f(a0), . . . , f(ak)].

Use this to show that A ∼= A′ implies A ≡ A′.

Definition 19. A model A′ is called a submodel of A, and we write A′ ⊆ A
whenever φ 6= A′ ⊆ A and

(1) each n-placed relation S′ of A′ is the restriction to A′ of the corresponding
relation S of A, i. e. S′ = S ∩ (A′)n

(2) each m-placed function G′ of A′ is the restriction to A′ of the correspond-
ing function G of A, i. e. G′ = G�(A′)m
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(3) each constant of A′ is the corresponding constant of A.

Definition 20. Let A and B be two models for L. We say A is an elementary
submodel of B and B is an elementary extension of A and we write A ≺ B whenever

(1) A ⊆ B and
(2) for all formulas ϕ(v0, . . . , vk) of L and all a0, . . . , ak ∈ A

A |= ϕ[a0, . . . , ak] iff B |= ϕ[a0, . . . , ak].

Exercise 8. Prove that:

• if A ⊆ B and B ⊆ C then A ⊆ C,
• if A ≺ B and B ≺ C then A ≺ C,
• if A ≺ B then A ⊆ B and A ≡ B.

Example 7. Let N be the usual natural numbers with <<< as the usual ordering.
Let B = 〈N,<<<〉 and A = 〈N \ {0},<<<〉 be models for the language with one binary
relation symbol <. Then A ⊆ B and A ≡ B; in fact A ∼= B. But we do not have
A ≺ B; 1 satisfies the formula describing the least element of the ordering in A
but not so in B. So we see that being an elementary submodel is a very strong
condition indeed. Nevertheless, later in the chapter we will obtain many examples
of elementary submodels.

Definition 21. A chain of models for a language L is an increasing sequence
of models

A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ · · · n ∈ N.
The union of the chain is defined to be the model A = ∪{An : n ∈ N} where

the universe of A is A = ∪{An : n ∈ N} and:

(1) each relation S on A is the union of the corresponding relations Sn of An;
S = ∪{Sn : n ∈ N}, i.e. the relation extending each Sn

(2) each function G on A is the union of the corresponding functions Gn of
An; G = ∪{Gn : n ∈ N}, i.e. the function extending each Gn

(3) all the models An and A have the same constant elements.

Note that each An ⊆ A.

Remark. To be sure, what is defined here is a chain of models indexed by the
natural numbers N. More generally, a chain of models could be indexed by any
ordinal. However we will not need the concept of an ordinal at this point.

Example 8. For each n ∈ N, let

An = {−n,−n+ 1,−n+ 2, . . . , 0, 1, 2, 3, . . . } ⊆ Z.
Let An = 〈An,≤〉. Each An ≡ A0, but we don’t have A0 ≡ ∪{An : n ∈ N}.

Definition 22. An elementary chain is a chain of models {An : n ∈ N} such
that for each m < n we have Am ≺ An.

Theorem 4. (Tarski’s Elementary Chain Theorem)
Let {An : n ∈ N} be an elementary chain. For all n ∈ N we have

An ≺ ∪{An : n ∈ N}.

Proof. Denote the union of the chain by A. We have Ak ⊆ A for each k ∈ N.
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Claim. If t is a term of the language L and a0, . . . , ap are in Ak, then the
value of the term t[a0, . . . , ap] in A is equal to the value in Ak.

Proof of Claim. We prove this by induction on the complexity of the term.

(1) If t is the variable vi then both values are just ai.
(2) If t is the constant symbol c then the values are equal because c has the

same interpretation in A and in Ak.
(3) If t is F (t1 . . . tm) where F is a function symbol and t1, . . . , tm are terms

such that each value ti[a0, . . . , ap] is the same in both A and Ak, then the
value

F (t1 . . . tm)[a0, . . . , ap]

in A is

G(t1[a0, . . . , ap], . . . , tm[a0, . . . , ap])

where G is the interpretation of F in A and the value of

F (t1 . . . tm)[a0, . . . , ap]

in Ak is

Gk(t1[a0, . . . , ap], . . . , tm[a0, . . . , ap])

where Gk is the interpretation of F in Ak. But Gk is the restriction of G
to Ak so these values are equal.

In order to show that each Ak ≺ A it will suffice to prove the following statement
for each formula ϕ(v0, . . . , vp) of L.

“ For all k ∈ N and all a0, . . . , ap in Ak:

A |= ϕ[a0, . . . , ap] iff Ak |= ϕ[a0, . . . , ap].”

Claim. The statement is true whenever ϕ is t1 = t2 where t1 and t2 are terms.

Proof of Claim. Fix k ∈ N and a0, . . . , ap in Ak.

A |= (t1 = t2)[a0, . . . , ap] iff t1[a0, . . . , ap] = t2[a0, . . . , ap] in A

iff t1[a0, . . . , ap] = t2[a0, . . . , ap] in Ak

iff Ak |= (t1 = t2)[a0, . . . , ap].

Claim. The statement is true whenever ϕ is R(t1 . . . tn) where R is a relation
symbol and t1, . . . , tn are terms.

Proof of Claim. Fix k ∈ N and a0, . . . , ap in Ak. Let S be the interpretation
of R in A and Sk be the interpretation in Ak; Sk is the restriction of S to Ak.

A |= R(t1 . . . tn)[a0, . . . , ap] iff S(t1[a0, . . . , ap], . . . , tn[a0, . . . , ap])

iff Sk(t1[a0, . . . , ap], . . . , tn[a0, . . . , ap])

iff Ak |= R(t1 . . . tn)[a0, . . . , ap]

Claim. If the statement is true when ϕ is θ, then the statement is true when
ϕ is ¬θ.
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Proof of Claim. Fix k ∈ N and a0, . . . , ap in Ak.

A |= (¬θ)[a0, . . . , ap] iff not A |= θ[a0, . . . , ap]

iff not Ak |= θ[a0, . . . , ap]

iff Ak |= (¬θ)[a0, . . . , ap].

Claim. If the statement is true when ϕ is θ1 and when ϕ is θ2 then the state-
ment is true when ϕ is θ1 ∧ θ2.

Proof of Claim. Fix k ∈ N and a0, . . . , ap in Ak.

A |= (θ1 ∧ θ2)[a0, . . . , ap] iff A |= θ1[a0, . . . , ap] and A |= θ2[a0, . . . , ap]

iff Ak |= θ1[a0, . . . , ap] and Ak |= θ2[a0, . . . , ap]

iff Ak |= (θ1 ∧ θ2)[a0, . . . , ap].

Claim. If the statement is true when ϕ is θ then the statement is true when ϕ
is ∃viθ.

Proof of Claim. Fix k ∈ N and a0, . . . , ap in Ak. Note that
A = ∪{Aj : j ∈ N}.

A |= ∃viθ[a0, . . . , ap] iff A |= ∃viθ[a0, . . . , aq]

where q is the maximum of i and p (by Lemma 2),

iff A |= θ[a0, . . . , ai−1, a, ai+1, . . . , aq] for some a ∈ A,

iff A |= θ[a0, . . . , ai−1, a, ai+1, . . . , aq]

for some a ∈ Al for some l ≥ k

iff Al |= θ[a0, . . . , ai−1, a, ai+1, . . . , aq]

since the statement is true for θ,

iff Al |= ∃viθ[a0, . . . , aq]
iff Ak |= ∃viθ[a0, . . . , aq] since Ak ≺ Al

iff Ak |= ∃viθ[a0, . . . , ap] (by Lemma 2).

By induction on the complexity of ϕ, we have proven the statement for all
formulas ϕ which do not contain the connectives ∨, → and ↔ or the quantifier ∀.
To verify the statement for all ϕ we use Lemma 3. Let ϕ be any formula of L. By
Lemma 3 there is a formula ψ which does not use ∨, →, ↔ nor ∀ such that

|= (∀v0) . . . (∀vp)(ϕ↔ ψ).

Now fix k ∈ N and a0, . . . , ap in Ak. We have

A |= (ϕ↔ ψ)[a0, . . . , ap] and Ak |= (ϕ↔ ψ)[a0, . . . , ap].

A |= ϕ[a0, . . . , ap] iff A |= ψ[a0, . . . , ap]

iff Ak |= ψ[a0, . . . , ap]

iff Ak |= ϕ[a0, . . . , ap]

which completes the proof of the theorem.
�
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Lemma 5. (The Tarski-Vaught Condition)
Let A and B be models for L with A ⊆ B. The following are equivalent:

(1) A ≺ B
(2) for any formula ψ(v0, . . . , vq) and any i ≤ q and any a0, . . . , aq from A:

if there is some b ∈ B such that

B |= ψ[a0, . . . , ai−1, b, ai+1, . . . , aq]

then we have some a ∈ A such that

B |= ψ[a0, . . . , ai−1, a, ai+1, . . . , aq].

Proof. Only the implication (2) ⇒ (1) requires a lot of proof. We will prove
that for each formula ϕ(v0, . . . , vp) and all a0, . . . , ap from A we will have:

A |= ϕ[a0, . . . , ap] iff B |= ϕ[a0, . . . , ap]

by induction on the complexity of ϕ using only the negation symbol ¬, the connec-
tive ∧ and the quantifier ∃ (recall Lemma 3).

(1) The cases of formulas of the form t1 = t2 and R(t1 . . . tn) come immedi-
ately from the fact that A ⊆ B.

(2) For negation: suppose ϕ is ¬ψ and we have it for ψ, then

A |= ϕ[a0, . . . , ap] iff not A |= ψ[a0, . . . , ap]

iff not B |= ψ[a0, . . . , ap] iff B |= ϕ[a0, . . . , ap].

(3) The ∧ case proceeds similarly.
(4) For the ∃ case we consider ϕ as ∃viψ. If A |= ∃viψ[a0, . . . , ap], then the

inductive hypothesis for ψ and the fact that A ⊆ B ensure that
B |= ∃viψ[a0, . . . , ap]. It remains to show that if B |= ϕ[a0, . . . , ap] then
A |= ϕ[a0, . . . , ap].

Assume B |= ∃viψ[a0, . . . , ap]. By Lemma 2, B |= ∃viψ[a0, . . . , aq]
where q is the maximum of i and p. By the definition of satisfaction,
there is some b ∈ B such that

B |= ψ[a0, . . . , ai−1, b, ai+1, . . . , aq].

By (2), there is some a ∈ A such that

B |= ψ[a0, . . . , ai−1, a, ai+1, . . . , aq].

By the inductive hypothesis on ψ, for that same a ∈ A,

A |= ψ[a0, . . . , ai−1, a, ai+1, . . . , aq].

By the definition of satisfaction,

A |= ∃viψ[a0, . . . , aq].

Finally, by Lemma 2, A |= φ[a0, . . . , ap].

�

Recall that |B| is used to represent the cardinality, or size, of the set B. Note
that since any language L contains infinitely many variables, |L| is always infinite,
but may be countable or uncountable depending on the number of other symbols.
We often denote an arbitrary infinite cardinal by the lower case Greek letter κ.
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Theorem 5. (Löwenheim-Skolem Theorem)
Let B be a model for L and let κ be any cardinal such that |L| ≤ κ < |B|. Then B
has an elementary submodel A of cardinality κ.

Furthermore if X ⊆ B and |X| ≤ κ, then we can also have X ⊆ A.

Proof. Without loss of generosity assume |X| = κ. We recursively define sets
Xn for n ∈ N such that X = X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · and such that for each
formula ϕ(v0, . . . , vp) of L and each i ≤ p and each a0, . . . , ap from Xn such that

B |= ∃viϕ[a0, . . . , ap]

we have x ∈ Xn+1 such that

B |= ϕ[a0, . . . , ai−1, x, ai+1, . . . , ap].

Since |L| ≤ κ and each formula of L is a finite string of symbols from L, there are
at most κ many formulas of L. So there are at most κ elements of B that need
to be added to each Xn and so, without loss of generosity each |Xn| = κ. Let
A = ∪{Xn : n ∈ N}; then |A| = κ. Since A is closed under functions from B and
contains all constants from B, A gives rise to a submodel A ⊆ B.

The Tarski-Vaught Condition is used to show that A ≺ B. �

An interesting consequence of this theorem is that the ordered field of real
numbers R has a countable elementary submodel containing π and e.

Definition 23. A theory T for a language L is said to be complete whenever
for each sentence σ of L either T |= σ or T |= ¬σ.

Lemma 6. A theory T for L is complete iff any two models of T are elemen-
tarily equivalent.

Proof. (⇒) easy. (⇐) easy. �

Definition 24. A theory T is said to be categorical in cardinality κ whenever
any two models of T of cardinality κ are isomorphic. We also say that T is κ-
categorical.

The most interesting cardinalities in the context of categorical theories are ℵ0,
the cardinality of countably infinite sets, and ℵ1, the first uncountable cardinal.

Exercise 9. Show that DLO is ℵ0-categorical. There are two well-known
proofs. One uses a back-and-forth construction of an isomorphism. The other
constructs, by recursion, an isomorphism from the set of dyadic rational numbers
between 0 and 1:

{ n
2m

: m is a positive integer and n is an integer 0 < n < 2m},

onto a countable dense linear order without endpoints.
Now use the following theorem to show that DLO is complete.

Theorem 6. (The  Loś-Vaught Test)
Suppose that a theory T has only infinite models for a language L and that T is
κ-categorical for some cardinal κ ≥ |L|. Then T is complete.
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Proof. We will show that any two models of T are elementarily equivalent.
Let A of cardinality λ1, and B of cardinality λ2, be two models of T .

If λ1 > κ use the Löwenheim-Skolem Theorem to get A′ such that |A′| = κ
and A′ ≺ A.

If λ1 < κ use the Compactness Theorem on the set of sentences

ThA ∪ {cα 6= cβ : α 6= β}

where {cα : α ∈ κ} is a set of new constant symbols of size κ, to obtain a model C
for this expanded language such that |C| ≥ κ. The reduct C′ to the language L has
the property that C′ |= ThA and hence A ≡ C′. Now use the Löwenheim-Skolem
Theorem to get A′ such that |A′| = κ and A′ ≺ C′.

Either way, we can get A′ such that |A′| = κ and A′ ≡ A. Similarly, we can
get B′ such that |B′| = κ and B′ ≡ B. Since T is κ -categorical, A′ ∼= B′. Hence
A ≡ B. �

Recall that the characteristic of a field is the prime number p such that

p︷ ︸︸ ︷
1 + 1 + · · ·+ 1 = 0

provided that such a p exists, and, if no such p exists the field has characteristic 0.
All of our best-loved fields: Q, R and C have characteristic 0. On the other hand,
fields of characteristic p include the finite field of size p (the prime Galois field).

Theorem 7. The theory of algebraically closed fields of characteristic 0 is
complete.

Proof. We use the  Loś-Vaught Test and the following Lemma. �

Lemma 7. Any two algebraically closed fields of characteristic 0 and cardinality
ℵ1 are isomorphic.

Proof. Let A be such a field containing the rationals Q = 〈Q,+++, ···,0,1〉 as a
prime subfield. In a manner completely analogous to finding a basis for a vector
space, we can find a transcendence basis for A, that is, an indexed subset
{aα : α ∈ I} ⊆ A such that A is the algebraic closure of the subfield A′ generated
by {aα : α ∈ I} but no aβ is in the algebraic closure of the subfield generated by
the rest: {aα : α ∈ I and α 6= β}.

Since the subfield generated by a countable subset would be countable and the
algebraic closure of a countable subfield would also be countable, we must have
that the transcendence base is uncountable. Since |A| = ℵ1, the least uncountable
cardinal, we must have in fact that |I| = ℵ1.

Now let B be any other algebraically closed field of characteristic 0 and size
ℵ1. As above, obtain a transcendence basis {bβ : β ∈ J} with |J | = ℵ1 and its
generated subfield B′. Since |I| = |J |, there is a bijection g : I → J which we can
use to build an isomorphism from A to B.

Since B has characteristic 0, a standard theorem of algebra gives that the
rationals are isomorphically embedded into B. Let this embedding be:

f : Q ↪→ B.

We extend f as follows: for each α ∈ I, let f(aα) = bg(α), which maps the tran-
scendence basis of A into the transcendence basis of B.
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We now extend f to map A′ onto B′ as follows: Each element of A′ is given by

p(aα1
, . . . , aαm

)

q(aα1 , . . . , aαm)
,

where p and q are polynomials with rational coefficients and the a’s come, of course,
from the transcendence basis.

Let f map such an element to

p̄(bg(α1), . . . , bg(αm))

q̄(bg(α1), . . . , bg(αm))

where p̄ and q̄ are polynomials whose coefficients are the images under f of the
rational coefficients of p and q.

The final extension of f to all of A and B comes from the uniqueness of algebraic
closures.

�

Remark. Lemma 7 is also true when 0 is replaced by any fixed characteristic
and ℵ1 by any uncountable cardinal.

Theorem 8. Let H be a set of sentences in the language of field theory which
are true in algebraically closed fields of arbitrarily high characteristic. Then H holds
in some algebraically closed field of characteristic 0.

Proof. A field is a model in the language {+, ·, 0, 1} of the axioms of field
theory. Let ACF be the set of axioms for the theory of algebraically closed fields;
see Example 5. For each n ≥ 2, let τn denote the sentence

¬(

n︷ ︸︸ ︷
1 + 1 + · · ·+ 1) = 0

Let Σ = ACF ∪H ∪ {τn : n ≥ 2}
Let Σ′ be any finite subset of Σ and let m be the largest natural number such

that τm ∈ Σ′ or let m = 1 by default.
Let A be an algebraically closed field of characteristic p > m such that A |= H;

then in fact A |= Σ′.
So by compactness there is B such that B |= Σ. B is the required field.

�

Corollary 1. Let C denote, as usual, the complex numbers. Every one-to-one
polynomial map f : Cm → Cm is onto.

Proof. A polynomial map is a function of the form

f(x1, . . . , xm) = 〈p1(x1, . . . , xm), . . . , pm(x1, . . . , xm)〉

where each pi is a polynomial in the variables x1, . . . , xm.
We call max { degree of pi : i ≤ m} the degree of f .
Let L be the language of field theory and let θm,n be the sentence of L which

expresses that “each polynomial map of m variables of degree < n which is one-to-
one is also onto”.

We wish to show that there are algebraically closed fields of arbitrarily high
characteristic which satisfy H = {θm,n : m,n ∈ N}. We will then apply Theorem
8, Theorem 7, Lemma 6 and Exercise 5 and be finished.
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Let p be any prime and let Fp be the prime Galois field of size p. The algebraic

closure F̃p is the countable union of a chain of finite fields

Fp = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ Ak ⊆ Ak+1 ⊆ · · ·
obtained by recursively adding roots of polynomials.

We finish the proof by showing that each 〈F̃p,+++, ·,0,1〉 satisfies H.

Given any polynomial map f : (F̃p
m

) → (F̃p
m

) which is one-to-one, we show

that f is also onto. Given any elements b1, . . . , bm ∈ F̃p, there is some Ak containing
b1, . . . , bm as well as all the coefficients of f.

Since f is one-to-one, f �Amk : Amk → Amk is a one-to-one polynomial map.
Hence, since Amk is finite, f �Amk is onto and so there are a1, . . . , am ∈ Ak such

that f(a1, . . . , am) = 〈b1, . . . , bm〉. Therefore f is onto.
Thus, for each prime number p and each m,n ∈ N, θm,n holds in a field of

characteristic p, i.e. 〈F̃p,+++, ···,000,111〉 satisfies H.
�

The above corollary is the famous Ax-Grothendieck Theorem. It is a significant
problem to replace “one-to-one” with “locally one-to-one”.



CHAPTER 3

Diagrams and Embeddings

Let A = 〈A, I〉 be a model for a language L. Expand L to the language
LA = L ∪ {ca : a ∈ A} by adding new constant symbols to L. We can expand A
to a model AA = 〈A, I ′〉 for LA by choosing I ′ extending I such that I ′(ca) = a
for each a ∈ A.

More generally, if f : X → A, we can expand L to LX = L ∪ {cx : x ∈ X}
and expand A = 〈A, I〉 to 〈A, I ′〉 where I ′ extends I with each I ′(cx) = f(x). We
denote the resulting model as 〈A, f(x)〉x∈X or AX = 〈A, x〉x∈X if f is the identity
function.

Definition 25. Let A be a model for L.

(1) The elementary diagram of A is Th(AA), the set of all sentences of LA

which hold in AA.
(2) The diagram of A, denoted by 4A, is the set of all those sentences in

Th(AA) without quantifiers.

Remark. There is a notion of atomic formula, which is a formula of the form
(t1 = t2) or (R(t1 . . . tn)) where t1, . . . , tn are terms. Sometimes 4A is defined to
be the set of all atomic formulas and negations of atomic formulas which occur in
Th(AA). However this is not substantially different from Definition 25, since the
reader can quickly show that for any model B, B |= 4A in one sense iff B |= 4A

in the other sense.

Exercise 10. Let A and B be models for L with X ⊆ A ⊆ B. Prove:

(i) A ⊆ B iff AX ⊆ BX iff BA |= 4A.
(ii) A ≺ B iff AX ≺ BX iff BA |= Th(AA).

Hint: A |= ϕ[a1, . . . , ap] iff AA |= ϕ∗ where ϕ∗ is the sentence of LA formed by
replacing each free occurrence of vi with cai .

Definition 26. A is said to be isomorphically embedded into B whenever

(1) there is a model C such that A ∼= C and C ⊆ B

or

(2) there is a model D such that A ⊆ D and D ∼= B.

Exercise 11. Prove that, in fact, (1) and (2) are equivalent conditions.

Definition 27. A is said to be elementarily embedded into B whenever

(1) there is a model C such that A ∼= C and C ≺ B

or

(2) there is a model D such that A ≺ D and D ∼= B.

Exercise 12. Again, prove that, in fact, (1) and (2) are equivalent.

24
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The next result is extremely useful; the first part is called the Diagram Lemma
and the second part is called the Elementary Diagram Lemma.

Theorem 9. Let A and B be models for L.

(1) A is isomorphically embedded into B if and only if B can be expanded to
a model of 4A.

(2) A is elementarily embedded into B if and only if B can be expanded to a
model of Th(AA).

Proof. We sketch the proof of (1).
(⇒) If f is the isomorphism as in 1 of Definition 26 above, then

〈B, f(a)〉a∈A |= 4A.

(⇐) If 〈B, ba〉a∈A |= 4A, then C = {ba : a ∈ A} generates C ⊆ B with C ∼= A.
�

Exercise 13. Give a complete proof of (2).

Exercise 14. Show that if A is a model for the language L and C is a model
for the language LA such that C |= 4A then there is a model B such that A ⊆ B
and BA

∼= C.

Exercise 15. The Löwenheim-Skolem Theorem is sometimes called the Down-
ward Löwenheim-Skolem Theorem. It’s partner is the Upward Löwenheim-Skolem
Theorem: if A is an infinite model for L and κ is any cardinal such that |L| ≤ κ
and |A| < κ, then A has an elementary extension of cardinality κ. Prove it.

We now apply these notions to graph theory and to calculus. The natural
language for graph theory has one binary relation symbol which we call E (to
suggest the word “edge”). Graph Theory has the following two axioms:

• (∀x)(∀y)E(x, y)↔ E(y, x)
• (∀x)¬E(x, x).

A graph is, of course, a model of graph theory.

Corollary 2. Every planar graph can be four coloured.

Proof. We will have to use the famous result of Appel and Haken that every
finite planar graph can be four coloured. Model Theory will take us from the
finite to the infinite. We recall that a planar graph is one that can be embedded,
or drawn, in the usual Euclidean plane and to be four coloured means that each
vertex of the graph can be assigned one of four colours in such a way that no edge
has the same colour for both endpoints.

Let A be an infinite planar graph. Introduce four new unary relation symbols:
R,G,B, Y (for red, green, blue and yellow). We wish to prove that there is some
expansion A′ of A such that A′ |= σ where σ is the sentence in the expanded
language:

(∀x)[R(x) ∨G(x) ∨B(x) ∨ Y (x)]

∧ (∀x)[R(x)→ ¬(G(x) ∨B(x) ∨ Y (x))] ∧ . . .
∧ (∀x)(∀y)¬(R(x) ∧R(y) ∧ E(x, y)) ∧ · · ·

which will ensure that the interpretations of R,G,B and Y will four colour the
graph.
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Let Σ = 4A ∪ {σ}. Any finite subset of Σ has a model, based upon the
appropriate finite subset of A. By the compactness theorem, we get B |= Σ. Since
B |= σ, the interpretations of R,G,B and Y four colour it. By the diagram lemma
A is isomorphically embedded in the reduct of B, and this isomorphism delivers
the four-colouring of A.

�

A graph with the property that every pair of vertices is connected with an edge
is called complete. At the other extreme, a graph with no edges is called discrete.
A very important theorem in finite combinatorics says that most graphs contain an
example of one or the other as a subgraph. A subgraph of a graph is, of course, a
submodel of a model of graph theory.

Corollary 3. (Ramsey’s Theorem)
For each n ∈ N there is an r ∈ N such that if G is any graph with r vertices, then
either G contains a complete subgraph with n vertices or a discrete subgraph with
n vertices.

Proof. We follow F. Ramsey who began by proving an infinite version of the
theorem (also called Ramsey’s Theorem).

Claim. Each infinite graph G contains either an infinite complete subgraph or
an infinite discrete subgraph.

Proof of Claim. By force of logical necessity, there are two possiblities:

(1) there is an infinite X ⊆ G such that for all x ∈ X there is a finite Fx ⊆ X
such that E(x, y) for all y ∈ X \ Fx,

(2) for all infinite X ⊆ G there is a x ∈ X and an infinite Y ⊆ X such that
¬E(x, y) for all y ∈ Y .

If (1) occurs, we recursively pick x1 ∈ X, x2 ∈ X\Fx1
, x3 ∈ X\(Fx1

∪Fx2
), etc,

to obtain an infinite complete subgraph. If (2) occurs we pick x0 ∈ G and Y0 ⊆ G
with the property and then recursively choose x1 ∈ Y0 and Y1 ⊆ Y0 , x2 ∈ Y1 and
Y2 ⊆ Y1 and so on, to obtain an infinite discrete subgraph.

We now use Model Theory to go from the infinite to the finite. Let σ be
the sentence, of the language of graph theory, asserting that there is no complete
subgraph of size n.

(∀x1 . . . ∀xn)[¬E(x1, x2) ∨ ¬E(x1, x3) ∨ · · · ∨ ¬E(xn−1, xn)].

Let τ be the sentence asserting that there is no discrete subgraph of size n.

(∀x1 . . . ∀xn)[E(x1, x2) ∨ E(x1, x3) ∨ · · · ∨ E(xn−1, xn)].

Let T be the set consisting of σ, τ and the axioms of graph theory.
If there is no r as Ramsey’s Theorem states, then T has arbitrarily large finite

models. By Theorem 2, T has an infinite model, contradicting the claim.
�

Ramsey’s Theorem says that for each n there is some r. The proof does not,
however, let us know exactly which r corresponds to any given n. There has been
considerable efforts made to find a more constructive proof. In particular we would
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like to know, for each n, the smallest value of r which would satisfy Ramsey’s
Theorem, called the Ramsey Number of n.

The Ramsey number of 3 is 6; the Ramsey number of 4 is 18; the Ramsey
number of 5 is . . . unknown; but it’s somewhere between 40 and 50. Even less is
known about the Ramsey numbers for higher values of n. Determining the Ramsey
numbers may be the most mysterious problem in all of mathematics.

The following theorem of A. Robinson finally solved the centuries old problem
of infinitesimals in the foundations of calculus.

Theorem 10. (The Leibniz Principle)
There is an ordered field ∗R called the hyperreals, containing the reals R and a
number larger than any real number such that any statement about the reals which
holds in R also holds in ∗R.

Proof. Let R be 〈R,+++, ···,<<<,000,111〉. We will make the statement of the theorem
precise by proving that there is some model H, in the same language L as R and
with the universe called ∗R , such that R ≺ H and there is b ∈ ∗R such that a < b
for each a ∈ R.

For each real number a, we introduce a new constant symbol ca. In addition,
another new constant symbol d is introduced. Let Σ be the set of sentences in the
expanded language given by:

ThRR ∪ {ca < d : a is a real}
We can obtain a model C |= Σ by the compactness theorem. Let C′ be the reduct
of C to L. By the elementary diagram lemma R is elementarily embedded in C′,
and so there is a model H for L such that C′ ∼= H and R ≺ H. Take b to be the
interpretation of d in H.

�

Remark. The element b ∈ ∗R gives rise to an infinitesimal 1/b ∈ ∗R. An
element x ∈ ∗R is said to be infinitesimal whenever −1/n < x < 1/n for each
n ∈ N. 0 is infinitesimal. Two elements x, y ∈ R are said to be infinitely close,
written x ≈ y whenever x−y is infinitesimal, so that x is infinitesimal iff x ≈ 0. An
element x ∈ ∗R is said to be finite whenever −r < x < r for some positive r ∈ R.
Else it is infinite.

Each finite x ∈ ∗R is infinitely close to some real number, called the standard
part of x, written st(x).

This idea is extremely useful in understanding calculus. To differentiate f , for
each Mx ∈ ∗R generate My = f(x + Mx) − f(x). Then f ′(x) = st

(My
Mx

)
whenever

this exists and is the same for each infinitesimal Mx 6= 0.
This legitimises the intuition of the founders of the differential calculus and al-

lows us to use that intuition to move from the (finitely) small to the infinitely small.
Proofs of the usual theorems of calculus are now much easier. More importantly,
refinements of these ideas, now called non-standard analysis, form a powerful tool
for applying calculus, just as its founders envisaged.

The following theorem is considered one of the most fundamental results of
mathematical logic. We give a detailed proof.

Theorem 11. (Robinson Consistency Theorem)
Let L1 and L2 be two languages with L = L1∩L2. Suppose T1 and T2 are satisfiable
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theories in L1 and L2 respectively. Then T1∪T2 is satisfiable iff there is no sentence
σ of L such that T1 |= σ and T2 |= ¬σ.

Proof. The direction ⇒ is easy and motivates the whole theorem.
We begin the proof in the ⇐ direction. Our goal is to show that T1 ∪ T2 is

satisfiable. The following claim is a first step.

Claim. T1 ∪ { sentences σ of L : T2 |= σ} is satisfiable.

Proof of Claim. Using the compactness theorem and considering conjunc-
tions, it suffices to show that if T1 |= σ1 and T2 |= σ2 with σ2 a sentence of L, then
{σ1, σ2} is satisfiable. But this is true, since otherwise we would have σ1 |= ¬σ2 and
hence T1 |= ¬σ2 and so ¬σ2 would be a sentence of L contradicting our hypothesis.
This proves the claim.

The basic idea of the proof from now on is as follows. In order to construct a
model of T1 ∪ T2 we construct models A |= T1 and B |= T2 and an isomorphism
f : A|L → B|L between the reducts of A and B to the language L, witnessing
that A|L ∼= B|L. We then use f to carry over interpretations of symbols in L1 \ L
from A to B , giving an expansion B∗ of B to the language L1 ∪ L2. Then, since
B∗|L1

∼= A and B∗|L2 = B we get B∗ |= T1 ∪ T2.

The remainder of the proof will be devoted to constructing such an A, B and
f . A and B will be constructed as unions of elementary chains of An’s and Bn’s
while f will be the union of fn : An ↪→ Bn. We begin with n = 0, the first link in
the elementary chain.

Claim. There are models A0 |= T1 and B0 |= T2 with an elementary embedding
f0 : A0|L ↪→ B0|L.

Proof of Claim. Using the previous claim, let

A0 |= T1 ∪ { sentences σ of L : T2 |= σ}
We first wish to show that Th(A0|L)A0

∪T2 is satisfiable. Using the compactness
theorem, it suffices to prove that if σ ∈ Th(A0|L)A0

then T2 ∪ {σ} is satisfiable.
For such a σ let ca0 , . . . , can be all the constant symbols from LA0

\L which appear
in σ. Let ϕ be the formula of L obtained by replacing each constant symbol cai by
a new variable ui. We have

A0|L |= ϕ[a0, . . . , an]

and so A0|L |= ∃u0 . . . ∃unϕ
By the definition of A0, it cannot happen that T2 |= ¬∃u0 . . . ∃unϕ and so

there is some model D for L2 such that D |= T2 and D |= ∃u0 . . . ∃unϕ. So there
are elements d0, . . . , dn of D such that D |= ϕ[do, . . . , dn]. Expand D to a model
D∗ for L2 ∪ LA0 , making sure to interpret each cai as di. Then D∗ |= σ, and so
D∗ |= T2 ∪ {σ}.

Let B∗0 |= Th(A0|L)A0
∪T2. Let B0 be the reduct of B∗0 to L2; clearly B0 |= T2.

Since B0|L can be expanded to a model of Th(A0|L)A0
, the Elementary Diagram

Lemma gives an elementary embedding

f0 : A0|L ↪→ B0|L
and finishes the proof of the claim.



3. DIAGRAMS AND EMBEDDINGS 29

The other links in the elementary chain are provided by the following result.

Claim. For each n ≥ 0 there are models An+1 |= T1 and Bn+1 |= T2 with an
elementary embedding

fn+1 : An+1|L ↪→ Bn+1|L
such that

An ≺ An+1, Bn ≺ Bn+1, fn+1 extends fn and Bn ⊆ range of fn+1.

A0 ≺ A1 ≺ · · · ≺ An ≺ An+1 ≺ · · ·
↓f0 ↓f1 ↓fn ↓fn+1

B0 ≺ B1 ≺ · · · ≺ Bn ≺ Bn+1 ≺ · · ·

The proof of this claim will be discussed shortly. Assuming the claim, let
A =

⋃
n∈N An, B =

⋃
n∈N Bn and f =

⋃
n∈N fn. The Elementary Chain Theorem

gives that A |= T1 and B |= T2. The proof of the theorem is concluded by simply
verifying that f : A|L → B|L is an isomorphism.

The proof of the claim is long and quite technical; it would not be inappropriate
to omit it on a first reading. The proof, of course, must proceed by induction on
n. The case of a general n is no different from the case n = 0 which we state and
prove in some detail.

Claim. There are models A1 |= T1 and B1 |= T2 with an elementary embedding
f1 : A1|L ↪→ B1|L such that A0 ≺ A1, B0 ≺ B1, f1 extends f0 and
B0 ⊆ range of f1.

A0 ≺ A1

↓f0 ↓f1
B0 ≺ B1

Proof of Claim. Let A+
0 be the expansion of A0 to the language L+

1 = L1 ∪
{ca : a ∈ A0} formed by interpreting each ca as a ∈ A0; A+

0 is just another notation
for (A0)A0

. The elementary diagram of A+
0 is Th

(
A+

0

)
A+

0
. Let B∗0 be the expansion

of B0|L to the language

L∗ = L ∪ {ca : a ∈ A0} ∪ {cb : b ∈ B0}

formed by interpreting each ca as f0(a) ∈ B0 and each cb as b ∈ B0.

We wish to prove that Th
(
A+

0

)
A+

0
∪ ThB∗0 is satisfiable. By the compactness

theorem it suffices to prove that Th
(
A+

0

)
A+

0
∪{σ} is satisfiable for each σ in ThB∗0.

For such a sentence σ, let ca0 , . . . , cam , cb0 , . . . , cbn be all those constant symbols
occuring in σ but not in L. Let ϕ(u0, . . . , um, w0, . . . , wm) be the formula of L
obtained from σ by replacing each constant symbol cai by a new variable ui and
each constant symbol cbi by a new variable wi. We have B∗0 |= σ so

B0|L |= ϕ[f0(a0), . . . , f0(am), b0, . . . , bn]

So B0|L |= ∃w0 . . . ∃wnϕ[f0(a0), . . . , f0(am)]

Since f0 is an elementary embedding we have :

A0|L |= ∃w0 . . . ∃wnϕ[a0, . . . , am]
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Let ϕ̂(w0, . . . , wn) be the formula of L+
1 obtained by replacing occurrences of

ui in ϕ(u0, . . . , um, w0, . . . , wn) by cai ; then A+
0 |= ∃w0 . . . ∃wnϕ̂. So, of course,(

A+
0

)
A+

0
|= ∃w0 . . . ∃wnϕ̂

and this means that there are d0, . . . , dn in A+
0 = A0 such that

(A+
0 )A+

0
|= ϕ̂[d0, . . . , dn].

We can now expand
(
A+

0

)
A+

0
to a model D by interpreting each cbi as di to obtain

D |= σ and so Th
(
A+

0

)
A+

0
∪ {σ} is satisfiable.

Let E |= Th
(
A+

0

)
A+

0
∪ ThB∗0. By the elementary diagram lemma A+

0 is ele-

mentarily embedded into E|L+
1 . So there is a model A+

1 for L+
1 with A+

0 ≺ A+
1 and

an isomorphism g : A+
1 → E|L+

1 . Using g we expand A+
1 to a model A′1 isomorphic

to E. Let A∗1 denote A′1|L∗; we have A∗1 |= ThB∗0.

We now wish to prove that Th (A∗1)A∗1
∪Th

(
B+

0

)
B+

0
is satisfiable, where B+

0 is

the common expansion of B0 and B∗0 to the language

L+
2 = L2 ∪ {ca : a ∈ A0} ∪ {cb : b ∈ B0}.

By the compactness theorem, it suffices to show that

Th
(
B+

0

)
B+

0
∪ {σ}

is satisfiable for each σ in Th (A∗1)A∗1
. Let cx0

, . . . , cxn
be all those constant symbols

which occur in σ but are not in L∗. Let ψ(u0, . . . , un) be the formula of L∗ obtained
from σ by replacing each cxi

with a new variable ui. Since (A∗1)A∗1
|= σ we have

A∗1 |= ψ[x0, . . . , xn],

and so

A∗1 |= ∃u0 . . . ∃unψ.
Also A∗1 |= ThB∗0 and ThB∗0 is a complete theory in the language L∗; hence
∃u0 . . . ∃unψ is in ThB∗0. Thus

B∗0 |= ∃u0 . . . ∃unψ
and so (

B+
0

)
B+

0
|= ∃u0 . . . ∃unψ

and therefore there are b0, . . . , bn in B+
0 = B0 such that(

B+
0

)
B+

0
|= ψ[b0, . . . , bn].

We can now expand
(
B+

0

)
B+

0
to a model F by interpreting each cxi

as bi; then

F |= σ and Th
(
B+

0

)
B+

0
∪ {σ} is satisfiable.

Let G |= Th (A∗1)A∗1
∪ Th

(
B+

0

)
B+

0
. By the elementary diagram lemma B+

0 is

elementarily embedded into G|L+
2 . So there is a model B+

1 for L+
2 with B+

0 ≺ B+
1

and an isomorphism h : B+
1 → G|L+

2 . Using h we expand B+
1 to a model B′1

isomorphic to G. Let B∗1 denote B′1|L∗. Again by the elementary diagram lemma
A∗1 is elementarily embedded into B∗1. Let this be denoted by

f1 : A∗1 ↪→ B∗1.
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Let a ∈ A0; we will show that f0(a) = f1(a). By definition we have
B∗0 |= (v0 = ca)[f0(a)] and so B+

0 |= (v0 = ca)[f0(a)]. Since B+
0 ≺ B+

1 ,
B+

1 |= (v0 = ca)[f0(a)] and so B∗1 |= (v0 = ca)[f0(a)]. Now A+
0 |= (ca = v1)[a]

and A+
0 ≺ A+

1 so A+
1 |= (ca = v1)[a] so A∗1 |= (ca = v1)[a]. Since f1 is elementary,

B∗1 |= (ca = v1)[f1(a)] so B∗1 |= (v0 = v1)[f0(a), f1(a)] and so f0(a) = f1(a).
Thus f1 extends f0.
Let b ∈ B0; we will prove that b = f1(a) for some a ∈ A1. By definition we

have: B∗0 |= (v0 = cb)[b] so B+
0 |= (v0 = cb)[b]. Since B+

0 ≺ B+
1 ,B

+
1 |= (v0 = cb)[b]

so B∗1 |= (v0 = cb)[b]. On the other hand, since (∃v1)(v1 = cb) is always satisfied,
we have: A∗1 |= (∃v1)(v1 = cb) so there is a ∈ A1 such that A∗1 |= (v1 = cb)[a]. Since
f1 is elementary, B∗1 |= (v1 = cb)[f1(a)] so B∗1 |= (v0 = v1)[b, f1(a)] so b = f1(a).

Thus B0 ⊆ range of f1.
We now let A1 be A+

1 |L1 and let B1 be B+
1 |L2. We get A0 ≺ A1 and B0 ≺ B1

and f1 : A1|L → B1|L remains an elementary embedding.
This completes the proof of the claim and the theorem.

�

Exercise 16. The Robinson Consistency Theorem was originally stated as:

Let T1 and T2 be satisfiable theories in languages L1 and L2 re-
spectively and let T ⊆ T1∩T2 be a complete theory in the language
L1 ∩ L2. Then T1 ∪ T2 is satisfiable in the language L1 ∪ L2.

Show that this is essentially equivalent to our version in Theorem 11 by first
proving that this statement follows from Theorem 11 and then also proving that
this statement implies Theorem 11. Of course, for this latter argument you are
looking for a proof much shorter than our proof of Theorem 11; however it will help
to use the first claim of our proof in your own proof.

Theorem 12. (Craig Interpolation Theorem)
Let ϕ and ψ be sentences such that ϕ |= ψ. Then there exists a sentence θ, called
the interpolant, such that ϕ |= θ and θ |= ψ and every relation, function or constant
symbol occuring in θ also occurs in both ϕ and ψ.

Exercise 17. Show that the Craig Interpolation Theorem follows quickly from
the Robinson Consistency Theorem. Also, use the Compactness Theorem to show
that Theorem 11 follows quickly from Theorem 12.



CHAPTER 4

Model Completeness

The quantifier ∀ is said to be the universal quantifier and the quantifier ∃ to
be the existential quantifier.

A formula ϕ is said to be quantifier free whenever no quantifiers occur in ϕ.
A formula ϕ is said to be universal whenever it is of the form ∀x0 . . . ∀xkθ

where θ is quantifier free.
A formula ϕ is said to be existential whenever it is of the form ∃x0 . . . ∃xkθ

where θ is quantifier free.
A formula ϕ is said to be universal-existensial whenever it is of the form

∀x0 . . . ∀xk∃y0 . . . ∃ykθ where θ is quantifier free.
We extend these notions to theories T whenever each axiom σ of T has the

property.

Remark. Note that each quantifier free formula ϕ is trivially equialent to the
existential formula ∃viϕ where vi does not occur in ϕ.

Exercise 18. Let A and B be models for L with A ⊆ B. Verify the following
three statements:

(i) A ≺ B iff BA |= Th(AA) iff AA |= Th(BA).
(ii) A ⊆ B iff BA |= σ for each existential σ of Th(AA).

(iii) A ⊆ B iff AA |= σ for each universal σ of Th(BA).

Definition 28. A model A of a theory T is said to be existentially closed if
whenever A ⊆ B and B |= T , we have AA |= σ for each existential sentence σ of
Th(BA).

Remark. If A is existentially closed and A′ ∼= A then A′ is also existentially
closed.

Definition 29. A theory T is said to be model complete whenever T ∪ 4A

is complete in the language LA for each model A of T .

Theorem 13. ( A. Robinson )
Let T be a theory in the language L. The following are equivalent:

(1) T is model complete,
(2) T is existentially complete, i.e. each model of T is existentially closed.
(3) for each formula ϕ(v0, . . . , vp) of L there is some universal formula

ψ(v0, . . . , vp) such that T |= (∀v0 . . . ∀vp)(ϕ↔ ψ)
(4) for all models A and B of T , A ⊆ B implies A ≺ B.

Remark. Equivalently, in part (3) of this theorem the phrase “universal for-
mula” could be replaced by “existential formula”. We chose the version which
makes the proof smoother.

32
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Proof. (1) ⇒ (2):
Let A |= T and B |= T with A ⊆ B. Clearly AA |= 4A and by Exercise 10 we
BA |= 4A. Now by (1), T ∪4A is complete and both AA and BA are models of this
theory so they are elementarily equivalent. For any sentence σ of LA (existential
or otherwise), if BA |= σ then AA |= σ and (2) follows.

(2) ⇒ (3):
Lemma 4 shows that it suffices to prove it for formulas ϕ in prenex normal form.
We do this by induction on the prenex rank of ϕ which is the number of alternations
of quantifiers in ϕ. The first step is prenex rank 0. Where only universal quantifiers
are present the result is trivial. The existential formula case is non-trivial; it is the
following claim:

Claim. For each existential formula ϕ(v0, . . . , vp) of L there is a universal
formula ψ(v0, . . . , vp) such that

T |= (∀v0) . . . (∀vp)(ϕ↔ ψ)

Proof of Claim. Add new constant symbols c0, . . . , cp to L to form

L∗ = L ∪ {c0, . . . , cp}

and to form a sentence ϕ∗ of L∗ obtained by replacing each free occurrence of vi in
ϕ with the corresponding ci; ϕ

∗ is an existential sentence. It suffices to prove that
there is a universal sentence γ of L∗ such that T |= ϕ∗ ↔ γ.

Let Γ = {universal sentences γ of L∗ such that T |= ϕ∗ → γ}

We hope to prove that there is some γ ∈ Γ such that T |= γ → ϕ∗. Note, however,
that any finite conjunction γ1 ∧ γ2 ∧ · · · ∧ γn of sentences from Γ is equivalent to
a sentence γ in Γ which is simply obtained from γ1 ∧ γ2 ∧ · · · ∧ γn by moving all
the quantifiers to the front. Thus it suffices to prove that there are finitely many
sentences γ1, γ2, . . . , γn from Γ such that

T |= γ1 ∧ γ2 ∧ · · · ∧ γn → ϕ∗.

If no such finite set of sentences existed, then each

T ∪ {γ1, γ2, . . . , γn} ∪ {¬ϕ∗}

would be satisfiable. By the compactness theorem, T ∪ Γ ∪ {¬ϕ∗} would be satis-
fiable. Therefore it just suffices to prove that T ∪ Γ |= ϕ∗.

In order to prove that T ∪Γ |= ϕ∗, let A be any model of T ∪Γ for the language
L∗. Let

Σ = T ∪ {ϕ∗} ∪ 4A.

be a set of sentences for the language L∗A; we wish to show that Σ is satisfiable.
By the compactness theorem it suffices to consider T ∪ {ϕ∗, τ} where τ is a

conjunction of finitely many sentences of, and hence in fact a single sentence of,
4A. Let θ be the formula obtained from τ by exchanging each constant symbol
from L∗A \ L∗ occurring in τ for a new variable ua. So

A |= ∃ua0 . . . ∃uamθ(ua0 , . . . , uam).
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But then A is not a model of the universal sentence ∀ua0 . . . ∀uam¬θ(ua0 , . . . , uam).
Recalling that A |= Γ, we are forced to conclude that this universal sentence is not
in Γ and so not a consequence of T ∪ {ϕ∗}. Therefore

T ∪ {ϕ∗} ∪ {∃ua0 . . . ∃uamθ(ua0 , . . . , uam)}

must be satisfiable, and any model of this can be expanded to a model of T ∪{ϕ∗, τ}
and so Σ is satisfiable.

Let C |= Σ. By the Exercise 14, there is a model B for L∗ such that A ⊆ B
and BA

∼= C ; in particular: BA |= Σ.
Since A ⊆ B the interpretation of each of c0, . . . , cp in B is the same as the

interpretation in A; let’s denote these by a0, . . . , ap. Let σ denote this sentence:

(∃v0 . . . ∃vp)(ϕ ∧ v0 = ca0 ∧ v1 = ca1 ∧ · · · ∧ vp = cap)

which is equivalent to an existential sentence of LA. Since (B|L)A |= σ we can
apply (2) to A|L and B|L to get that (A|L)A |= σ. By our choice of a0, . . . , ap we
get that A |= ϕ∗.

This means T ∪ Γ |= ϕ∗ and finishes the proof of the claim.

We will now do the general cases for the proof of the induction on prenex rank.
There are two cases, corresponding to the two methods available for increasing the
number of alternations of quantifiers:

(a) the addition of universal quantifiers
(b) the addition of existential quantifiers.

For the case (a), suppose ϕ(v0, . . . , vp) is ∀w0 . . . ∀wmχ(v0, . . . , vp, w0, . . . , wm)
and χ has prenex rank lower than ϕ so that we have by the inductive hypothesis
that there is a quantifier free formula θ(v0, . . . , vp, w0, . . . , wm, x0, . . . , xn) with new
variables x0, . . . , xn such that

T |= (∀v0 . . . ∀vp∀w0 . . . ∀wm)(χ↔ ∀x0 . . . ∀xnθ)

Therefore, case (a) is concluded by noticing that this gives us

T |= (∀v0 . . . ∀vp)(∀w0 . . . ∀wmχ↔ ∀w0 . . . ∀wm∀x0 . . . ∀xnθ).

Exercise 19. Check this step using the definition of satisfaction.

For case (b), suppose ϕ(v0, . . . , vp) is ∃w0 . . . ∃wnχ(v0, . . . , vp, w0, . . . , wm) and
χ has prenex rank less than ϕ. Here we will use the inductive hypothesis on ¬χ
which of course also has prenex rank less than ϕ. We obtain a quantifier free formula
θ(v0, . . . , vp, w0, . . . , wm, x0, . . . , xn) with new variables x0, . . . , xn such that

T |= (∀v0 . . . ∀vp∀w0 . . . ∀wm)(¬χ↔ ∀x0 . . . ∀xnθ)

So T |= (∀v0 . . . ∀vp)(∀w0 . . . ∀wm¬χ↔ ∀w0 . . . ∀wm∀x0 . . . ∀xnθ)
And T |= (∀v0 . . . ∀vp)(∃w0 . . . ∃wmχ↔ ∃w0 . . . ∃wm∃x0 . . . ∃xn¬θ)

Now ∃w0 . . . ∃wm∃x0 . . . ∃xn¬θ is an existential formula, so by the claim there is a
universal formula ψ such that

T |= (∀v0 . . . ∀vp)(∃w0 . . . ∃wm∃x0 . . . ∃xn¬θ ↔ ψ).

Hence T |= (∀v0 . . . ∀vp)(∃w0 . . . ∃wnχ↔ ψ)

which is the final result that we needed.
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(3) ⇒ (4)
Let A |= T and B |= T with A ⊆ B. Let ϕ be a formula of L and let a0, . . . , ap be
in A such that B |= ϕ[a0, . . . , ap]. Obtain a universal formula ψ such that

T |= (∀v0 . . . ∀vp)(ϕ↔ ψ).

Hence B |= ψ[a0, . . . , ap]. Since A ⊆ B by an argument similar to Exercise 18 we
have A |= ψ[a0, . . . , ap]. So A |= ϕ[a0, . . . , ap]. Therefore A ≺ B.

(4) ⇒ (1)
Let A |= T . We will show that T ∪4A is complete by showing that

T ∪4A |= Th(AA).

Let C |= T ∪4A. By Exercise 14 there is a model B such that A ⊆ B and BA
∼= C.

By (4) we have that A ≺ B. By Exercise 10 we get that BA |= Th(AA). Thus
C |= Th(AA). �

Example 9. We will see later that the theory ACF is model complete. But
ACF is not complete because the characteristic of the algebraically closed field can
vary among models of ACF and the assertion that “I have characteristic p” can
easily be expressed as a sentence of the language of ACF.

Exercise 20. Suppose that T is a model complete theory in L and that either

(1) any two models of T are isomorphically embedded into a third or
(2) there is a model of T which is isomorphically embedded in any other.

Then prove that T is complete.

Example 10. Let N be the natural numbers and < the usual ordering. Let
B = 〈N, <〉 and A = 〈N\{0}, <〉 be models for the language with one binary relation
symbol <. ThA is, of course, complete, but it is not model complete because it is
not existentially complete. In fact the model A is not existentially closed because
B |= ThA and A ⊆ B and BA |= (∃v0)(v0 < c1) where c1 is the constant symbol
with interpretation 1. But AA does not satisfy this existential sentence.

Theorem 14. (Lindström’s Test)
Let T be a theory in a countable language L such that

(1) all models of T are infinite,
(2) the union of any chain of models of T is a model of T , and
(3) T is κ-categorical for some infinite cardinal κ.

Then T is model complete.

Proof. W.L.O.G. we assume that T is satisfiable. We use conditions (1) and
(2) to prove the following:

Claim. T has existentially closed models of each infinite size κ.

Proof of Claim. By the Löwenheim-Skolem Theorems we get A0 |= T with
|A0| = κ. We recursively construct a chain of models of T of size κ

A0 ⊆ A1 ⊆ . . . ⊆ An ⊆ An+1 ⊆ · · ·
with the property that

if B |= T and An+1 ⊆ B and σ is an existential sentence of Th(BAn
), then

(An+1)An
|= σ.
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Suppose An is already constructed; we will construct An+1. Let Σn be a max-
imally large set of existential sentences of LAn such that for each finite Σ′ ⊆ Σn
there is a model C for LAn such that

C |= Σ′ ∪ T ∪4An

By compactness T ∪ Σn ∪ 4An
has a model D and without loss of generosity

An ⊆ D. By the Downward Löwenheim-Skolem Theorem we get E such that
An ⊆ E, |E| = κ and E ≺ D.

Let An+1 = E|L; we will show that An+1 has the required properties. Since
E ≡ D, E |= T ∪4An

and so An ⊆ An+1 (See Exercise 18).
Let B |= T with An+1 ⊆ B and σ be an existential sentence of Th(BAn

); we
will show that (An+1)An |= σ. Since Σn consists of existential sentences and D ≡
E ≡ (An+1)An ⊆ BAn we have (see Exercise 18) that BAn |= Σn. The maximal
property of Σn then forces σ to be in Σn because if σ /∈ Σn then there must be some
finite Σ′ ⊆ Σn for which there is no C such that C |= Σ′ ∪{σ}∪ T ∪4An

; but BAn

is such a C! Now since σ ∈ Σn and E ≡ D |= Σn we must have E = (An+1)An
|= σ.

Now let A be the union of the chain. By hypothesis A |= T . It is easy to check
that |A| = κ. To check that A is existentially closed, let B |= T with A ⊆ B and
let σ be an existential sentence of Th(BA). Since σ can involve only finitely many
constant symbols, σ is a sentence of LAn

for some n ∈ N. Thus An+1 ⊆ A ⊆ B
gives that (An+1)An

|= σ. Since σ is existential (see Exercise 18 again) we get that
AA |= σ. This completes the proof of the claim.

We now claim that T is model complete using Theorem 13 by showing that
every model A of T is existentially closed. There are three cases to consider:

(1) |A| = κ
(2) |A| > κ
(3) |A| < κ

where T is κ-categorical.

Case (1). Let A∗ be an existentially closed model of T of size κ. Then there
is an isomorphism f : A→ A∗. Hence A is existentially closed.

Case (2). Let σ be an existential sentence of LA and B |= T such that A ⊆ B
and BA |= σ. Let X = {a ∈ A : ca occurs in σ}. By the Downward Löwenheim-
Skolem Theorem we can find A′ such that A′ ≺ A, X ⊆ A′ and |A′| = κ. Now by
Case (1) A′ is existentially closed and we have A′ ⊆ B and σ in LA′ so A′A′ |= σ.
But since σ ∈ Th(A′A′) and A′ ≺ A we have AA |= σ.

Case (3). Let σ and B be as in case (2). By the Upward Löwenheim-Skolem
Theorem we can find A′ such that A ≺ A′ and |A′| = κ. By case (1) A′ is existen-
tially closed.

Claim. There is a model B′ such that A′ ⊆ B′ and BA ≡ B′A.

Assuming this claim, we have B′ |= T and B′A |= σ and by the fact that A′ is
existentially closed we have A′A′ |= σ. Since A ≺ A′ we have AA |= σ.

The following lemma implies the claim and completes the proof of the theorem.
�

Lemma 8. Let A, B and A′ be models for L such that A ⊆ B and A ≺ A′.
Then there is a model B′ for L such that A′ ⊆ B′ and BA ≡ B′A.
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Proof. Let A, B, A′ and L be as above.
Let τ be a sentence from 4A′ . Let {dj : 0 ≤ j ≤ m} be the constant symbols

from LA′ \ LA appearing in τ . Obtain a quantifier free formula ϕ(u0, . . . , um)
of LA by exchanging each dj in τ with a new variable ui. Since A′A′ |= τ we
have A′A |= ∃u0 . . . ∃umϕ. Since A ≺ A′, Exercise 10 gives us AA ≺ A′A and so
AA |= ∃u0 . . . ∃umϕ.

Also by Exercise 10 we have AA ⊆ BA, so BA |= ∃u0 . . . ∃umϕ. Hence for
some b0, . . . , bm in B, BA |= ϕ[b0, . . . , bm]. Expand BA to be a model B∗A for the
language LA ∪ {dj : 0 ≤ j ≤ m} by interpreting each dj as bj . Then B∗A |= τ and
so Th(BA) ∪ {τ} is satisfiable.

This shows that Th(BA) ∪ Σ is satisfiable for each finite subset Σ ⊆ 4A′ . By
the Compactness Theorem there is a model C |= Th(BA)∪4A′ . Using the Diagram
Lemma for the language LA we obtain a model B′ for L such that A′A ⊆ B′A and
B′A
∼= C|LA. Hence B′A |= Th(BA) and so B′A ≡ BA.

�

Exercise 21. Suppose A ≺ A′ are models for L. Prove that for each sentence
σ of LA, if 4A′ |= σ then 4A |= σ.

Exercise 22. Prove that if T has a universal-existential set of axioms, then
the union of a chain of models of T is also a model of T .

Remark. The converse of this last exercise is also true; it is usually called the
Chang -  Loś - Suszko Theorem.

Theorem 15. The following theories are model complete:

(1) dense linear orders without endpoints. (DLO)
(2) algebraically closed fields. (ACF)

Proof. (DLO): This theory has a universal existential set of axioms so that it
is closed under unions of chains. It is ℵ0-categorical (by Exercise 9) so Lindström’s
test applies.

(ACF): We first prove that for any fixed characteristic p, the theory of alge-
braically closed fields of characteristic p is model complete. The proof is similar to
that for DLO, with ℵ1-categoricity (Lemma 7 ).

Let A ⊆ B be algebraically closed fields. They must have the same character-
istic p. Therefore A ≺ B.

�

Corollary 4. Any true statement about the rationals involving only the usual
ordering is also true about the reals.

Proof. Let A = 〈Q,<1<1<1〉 and B = 〈R,<2<2<2〉 where <1<1<1 and <2<2<2 are the usual
orderings. The precise version of this corollary is: A ≺ B. This follows from
Theorem 13 and Theorem 15 and the easy facts that A |= DLO, B |= DLO and
A ⊆ B. The reader will appreciate the power of these theorems by trying to prove
A ≺ B directly, without using them. �

The model completeness of ACF can be used to prove Hilbert’s Nullstellensatz.
The result below is the heart of the matter.

Corollary 5. Let Σ be a finite system of polynomial equations and inequations
in several variables with coefficients in the field A. If Σ has a solution in some field
extending A then Σ has a solution in the algebraic closure of A.



4. MODEL COMPLETENESS 38

Proof. Let σ be the existential sentence of the language LA which asserts
the fact that there is a solution of Σ. Suppose Σ has a solution in a field B with
A ⊆ B. Then BA |= σ. So B′A |= σ where B′ is the algebraic closure of B. Let A′

be the algebraic closure of A. Since A ⊆ B, we have A′ ⊆ B′.
By Theorem 15, ACF is model complete, so A′ ≺ B′. Hence A′A ≡ B′A and

A′A |= σ. �

The usual form of the (weak) Nullstellensatz can now be obtained from the
algebraic fact that the ideal I of the polynomial ring A[x1, . . . , xn] generated by
Σ is proper exactly when I has a solution in the field A[x1, . . . , xn]/I ′ for some
maximal ideal I ′ containing I.

Remark. We cannot apply Lindström’s Test to the theory of real closed or-
dered fields (RCF) because RCF is not categorical in any infinite cardinal. This
is because, as demonstrated in Theorem 10, RCF neither implies nor denies the
existence of infinitesimals. Nevertheless, as we shall later prove, RCF is indeed
model complete.

Exercise 23. Use Exercise 20 and the fact that RCF is model complete to
show that RCF is complete. Step 0: the integers, step 1: the rationals, step 2: the
real algebraic numbers, step 3: . . .



CHAPTER 5

The Seventeenth Problem

We will give a complete proof later that RCF, the theory of real closed ordered
fields, is model complete. However, by assuming this result now, we can give a
solution to the seventeenth problem of the list of twenty-three problems of David
Hilbert’s famous address to the 1900 International Congress of Mathematicians in
Paris.

Corollary 6. (E. Artin)
Let q(x1, . . . , xn) be a rational function with real coefficients, which is positive def-
inite. i.e.

q(a1, . . . , an) ≥ 0 for all a1, . . . , an ∈ R
Then there are finitely many rational functions with real coefficients

f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) such that

q(x1, . . . , xn) =

m∑
j=1

(fj(x1, . . . , xn))2

We give a proof of this theorem after a sequence of lemmas. The first lemma
just uses calculus to prove the special case of the theorem in which q is a polynomial
in only one variable. This result probably motivated the original question.

Lemma 9. A positive definite real polynomial is the sum of squares of real
polynomials.

Proof. We prove this by induction on the degree of the polynomial. Let
p(x) ∈ R[x] with degree deg(p) ≥ 2 and p(x) ≥ 0 for all real x. Let p(a) =
min{p(x) : x ∈ R}, so

p(x) = (x− a)q(x) + p(a) and p′(a) = 0

for some polynomial q. But

p′(a) = [(x− a)q′(x) + q(x)]
∣∣
x=a

= q(a)

so q(a) = 0 and q(x) = r(x)(x− a) for some polynomial r(x). So

p(x) = p(a) + (x− a)2r(x).

For all real x we have

(x− a)2r(x) = p(x)− p(a) ≥ 0.

Since r is continuous, r(x) ≥ 0 for all real x, and deg(r) = deg(p) − 2. So, by

induction r(x) =
∑n
i=1 (ri(x))

2
where each ri(x) ∈ R[x].

So p(x) = p(a) +

n∑
i=1

(x− a)2 (ri(x))
2
.

39
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i.e. p(x) =
[√

p(a)
]2

+

n∑
i=1

[(x− a)ri(x)]
2
.

�

The following lemma shows why we deal with sums of rational functions rather
than sums of polynomials.

Lemma 10. x4y2 + x2y4 − x2y2 + 1 is positive definite, but not the sum of
squares of polynomials.

Proof. Let the polynomial be p(x, y). A little calculus shows that the mini-
mum value of p is 26

27 and confirms that p is positive definite.
Suppose

p(x, y) =

l∑
i=1

(qi(x, y))
2

where qi(x, y) are polynomials, each of which is the sum of terms of the form axmyn.
First consider powers of x and the largest exponent m which can occur in any of
the qi. Since no term of p contains x6 or higher powers of x, we see that we must
have m ≤ 2. Considering powers of y similarly gives that each n ≤ 2. So each
qi(x, y) is of the form:

aix
2y2 + bix

2y + cixy
2 + dix

2 + eiy
2 + fixy + gix+ hiy + ki

for some coefficients ai, bi, ci, di, ei, fi, gi, hi and ki. Comparing coefficients of x4y4

in p and the sum of the q2i gives

0 =

l∑
i=1

a2i

so each ai = 0. Comparing the coefficients of x4 and y4 gives that each di = 0 = ei.
Now comparing the coefficients of x2 and y2 gives that each gi = 0 = hi. Now
comparing the coefficients of x2y2 gives

−1 =

l∑
i=1

f2i

which is impossible.
�

The next lemma is easy but useful.

Lemma 11. The reciprocal of a sum of squares is a sum of squares.

Proof. For example

1

A2 +B2
=

A2 +B2

(A2 +B2)2
=

[
A

A2 +B2

]2
+

[
B

A2 +B2

]2
�

The following lemma is an algebraic result of E. Artin and O. Schreier, who
invented the theory of real closed fields.



5. THE SEVENTEENTH PROBLEM 41

Lemma 12. Let A = 〈A,+++, ···,<<<A,000,111〉 be an ordered field such that each positive
element of A is the sum of squares of elements of A. Let B be a field containing
the reduct of A to {+, ·, 0, 1} as a subfield and such that zero is not the sum of
non-zero squares in B.

Let b ∈ B \A be such that b is not the sum of squares of elements of B. Then
there is an ordering <<<B on B with b <<<B 0 such that A is an ordered subfield of
〈B,+++, ···,<<<B,000,111〉 .

Proof. It suffices to find a set P ⊆ B of “positive elements” of B such that

(1) −b ∈ P
(2) 0 /∈ P
(3) c2 ∈ P for each c ∈ B \ {0}
(4) P is closed under + and ·
(5) for any c ∈ B \ {0} either c ∈ P or −c ∈ P .

Once P has been obtained, we define <<<B as follows:

c1 <<<B c2 iff c2 − c1 ∈ P.
For each a ∈ A, if 0 <<<A a then a is a sum of squares and so by (3) and (4) a ∈ P .
Thus <<<B extends <<<A.

So that all that remains to do is to construct such a P . The first approximation
to P is P0.

Let P0 =


l∑
i=1

c2i −
m∑
j=1

d2jb : l,m ∈ N, ci ∈ B, dj ∈ B not all zero


We claim that (1), (2), (3) and (4) hold for P0. (1) and (3) are obvious. In

order to verify (2), note that if
∑m
j=1 d

2
jb =

∑l
i=1 c

2
i , then by the previous lemma

about reciprocals of sums of squares, b would be a sum of squares. Now (4) holds
by definition of P0, noting that c2i (−d2jb) = −(cidj)

2b and

(−d2jb)(−d2kb) = (djdkb)
2.

We now construct larger and larger versions of P0 to take care of requirement
(5). We do this in the following way. Suppose P0 ⊆ P1, P1 satisfies (1), (2), (3)
and (4), and c /∈ P1 ∪ {0}. We define P2 to be:

{p(−c) : p is a polynomial with coefficients in P1}.
It is easy to see that −c ∈ P2, P1 ⊆ P2 and that (1), (3) and (4) hold for P2.

To show that (2) holds for P2 we suppose that p(−c) = 0 and bring forth a
contradiction. Considering even and odd exponents we obtain:

p(x) = q(x2) + xr(x2)

for some polynomials q and r with coefficients in P1 and so

0 = p(−c) = q(c2)− cr(c2).

By (3) and (4) both q(c2) and r(c2) are in P1; in particular r(c2) 6= 0. But then

c = q(c2) · r(c2) ·
(

1

r(c2)

)2

and since each of the factors on the right hand side is in P1 we get a contradiction.
�

Now we need:
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Lemma 13. Every ordered field can be embedded as a submodel of a real closed
ordered field.

Proof. It suffices to prove that for every ordered field A there is an ordered
field B such that A ⊆ B and for each natural number n ≥ 1, B |= σn where σn is
the sentence in the language of field theory which formally states:

If p is a polynomial of degree at most n and w < y such that
p(w) < 0 < p(y) then there is an x such that w < x < y and
p(x) = 0.

Consider the statement called IH(n):

For any ordered field E there is an ordered field F such that E ⊆ F
and F |= σn.

IH(1) is true since any ordered field E |= σ1. We will prove below that for each
n, IH(n) implies IH(n+ 1).

Given our model A |= ORF, we will then be able to construct a chain of models:

A ⊆ B1 ⊆ B2 ⊆ . . . ⊆ Bn ⊆ Bn+1 ⊆ · · ·

such that each Bn |= ORF ∪ {σn}. Let B be the union of the chain. Since the
theory ORF is preserved under unions of chains (see Exercise 22), B |= ORF.
Furthermore, the nature of the sentences σn allows us to conclude that for each n,
B |= σn and so B |= RCF. All that remains is to prove that for each n, IH(n)
implies IH(n+ 1). We first make a claim:

Claim. If E |= ORF∪{σn} and p is a polynomial of degree at most n+ 1 with
coefficients from E and a < d are in E such that p(a) < 0 < p(d) then there is a
model F such that E ⊆ F, F |= ORF and there is b ∈ F such that a < b < d and
p(b) = 0.

Let us first see how this claim helps us to prove that IH(n) implies IH(n+1).
Let E |= ORF ; we will use the claim to build a model F such that E ⊆ F and
F |= σn+1.

We first construct a chain of models of ORF

E = E0 ⊆ E1 ⊆ . . . ⊆ Em ⊆ Em+1 ⊆ · · ·

such that for each m and each polynomial p of degree at most n+1 with coefficients
from Em and each pair of a, d of elements of Em such that p(a) < 0 < p(d) there
is a b ∈ Em+1 such that a < b < d and p(b) = 0.

Suppose Em has been constructed; we construct Em+1 as follows: let Σm be
the set of all existential sentences of LEm

of the form

(∃x)(ca < x ∧ x < cd ∧ p(x) = 0)

where p is a polynomial of degree at most n + 1 and such that ca, cd and the
coefficients of the polynomial p are constant symbols from LEm

and

(Em)Em
|= p(ca) < 0 ∧ 0 < p(cd)

We claim that

ORF ∪4Em
∪ Σm

is satisfiable.



5. THE SEVENTEENTH PROBLEM 43

Using the Compactness Theorem, it suffices to find, for each finite subset
{τ1, . . . , τk} of Σm, a model C such that Em ⊆ C and

C |= ORF ∪ {τ1, . . . , τk}.

By IH(n), obtain a model F1 such that Em ⊆ F1 and F1 |= ORF ∪ {σn}. By the
claim, obtain a model F2 such that F1 ⊆ F2 and F2 |= ORF∪{τ1}. Again by IH(n),
obtain F3 such that F2 ⊆ F3 and F3 |= ORF∪{σn}. Again by the claim, obtain F4

such that F3 ⊆ F4 and F4 |= ORF∪ {τ2}. Continue in this manner, getting models
of ORF

Em ⊆ F1 ⊆ . . . ⊆ F2k

with each F2j |= τj . Since each τj is existential, we get that F2k is a model of each
τj (see Exercise 18).

Let D |= ORF ∪4Em
∪ Σm

and then use the Diagram Lemma to get Em+1 such that Em ⊆ Em+1, Em+1 |= ORF
and Em+1 |= Σm, thus satisfying the required property concerning polynomials from
Em.

Let F be the union of the chain. Since ORF is a universal-existential theory,
F |= ORF (see Exercise 22) and F |= σn+1 by construction. So IH(n+ 1) is proved.

We now finish the entire proof by proving the claim.

Proof of Claim. Suppose that p(x) = q(x) · s(x) with the degree of q at
most n. Since E |= σn we are guaranteed c ∈ E with a < c < d and q(c) = 0. Hence
p(c) = 0 and we can let F = E.

So we can assume that p is irreducible over E. Introduce a new element b to E
where the place of b in the ordering is given by:

b < x iff p(y) > 0 for all y with x ≤ y ≤ d.

Note that b < d since p(d) > 0.
The fact that p is irreducible over E means that we can extend 〈E,+++, ···,000,111〉

by quotients of polynomials in b of degree ≤ n in the usual way to form a field
〈F,+++, ···,000,111〉 in which p(b) = 0. We leave the details to the reader, but point out
that the construction cannot force q(b) = 0 for any polynomial q(x) with coefficients
from E of degree ≤ n. This is because we could take such a q(x) of lowest degree
and divide p(x) by it to get

p(x) = q(x) · s(x) + r(x)

where degree of r is less than the degree of q. This means that r(x) = 0 constantly
and so p could have been factored over E.

Now we must expand 〈F,+++, ···,000,111〉 to an ordered field F while preserving the
order of E. We are aided in this by the fact that if q is a polynomial of degree at
most n with coefficients from E then there are a1 and a2 in E such that a1 < b < a2
and q doesn’t change sign between a1 and a2; this comes from the fact that E |= σn.

�

Proof of the Corollary. Using Lemma 11 we see that it suffices to prove
the corollary for a polynomial p(x1, . . . , xn) such that p(a1, . . . , an) ≥ 0 for all
a1, . . . , an ∈ R.



5. THE SEVENTEENTH PROBLEM 44

Let B = 〈R(x1, . . . , xn),+++, ·,0,1〉 be the field of “rational functions”. Note
that B contains the reduct of R to {+, ·, 0, 1} as a subfield, where R is defined as
in Example 3 as the usual real numbers.

By Lemma 12, if p is not the sum of squares in B, then we can find an ordering
<B on B, extending the ordering on the reals, such that the expansion B′ of B is
an ordered field and p(x1, . . . , xn) <B 0.

We now use Lemma 13 to embed B′ as a submodel of a real closed field M,
B′ ⊆M.

Let ϕ(v1, . . . , vn) be the quantifier free formula which we informally write as
p(v1, . . . , vn) < 0 where ϕ involves constant symbols cri for the real coefficients ri
of p. Let ψ be the formula of the language of field theory, obtained from ϕ by
substituting a new variable ui for each cri . We have

B′ |= ∃v1 . . . ∃vnψ[r1, . . . , rk]

and so M |= ∃v1 . . . ∃vnψ[r1, . . . , rk]

Since RCF is model complete and R ⊆ B′ ⊆M, Theorem 13 gives R ≺M and
so

R |= ∃v1 . . . ∃vnψ[r1, . . . , rk]

i.e. there exist a1, . . . , an in R such that p(a1, . . . , an) < 0.
�

Hilbert also asked:

If the coefficients of a positive definite rational function are rational
numbers (i.e. it is an element of Q(x1, . . . , xn)) is it in fact the sum
of squares of elements of Q(x1, . . . , xn)?

The answer is “yes” and the proof is very similar. Let Q = 〈Q,+++.···,<<<,000,111〉 be
the ordered field of rationals as in Example 3. Lemma 12 holds for A = Q and
B = 〈Q(x1, . . . , xn),+++, ···,000,111〉; by Lemma 11 every positive rational number is the
sum of squares since every positive integer is the sum of squares n = 1 + 1 + · · ·+ 1.

Exercise 24. Finish the answer to Hilbert’s question by making any appro-
priate changes to the proof of the corollary. Hint: create a real closed ordered field
into which B′Q and RQ are each isomorphically embedded. Exercise 16 and Exercise
23 may be useful. You may want to verify that if F1, F2 and G are ordered fields
with Q a submodel of the first two and isomorphic embeddings Φ1 : F1 ↪→ G and
Φ2 : F2 ↪→ G then Φ1(q) = Φ2(q) for all q in Q.



CHAPTER 6

Submodel Completeness

Definition 30. A theory T is said to admit elimination of quantifiers in L
whenever for each formula ϕ(v0, . . . , vp) of L there is a quantifier free formula
ψ(v0, . . . , vp) such that:

T |= (∀v0 . . . ∀vp)(ϕ(v0, . . . , vp)↔ ψ(v0, . . . , vp))

Remark. There is a fine point with regard to the above definition. If ϕ is
actually a sentence of L there are no free variables v0, . . . , vp. So T |= ϕ ↔ ψ
for some quantifier free formula with no free variables. But if L has no constant
symbols, there are no quantifier free formulas with no free variables. For this
reason we assume that L has at least one constant symbol, or we restrict to those
formulas ϕ with at least one free variable. This will become relevant in the proof
of Theorem 16 for (2) ⇒ (3).

Definition 31. A theory T is said to be submodel complete whenever T ∪4A

is complete in LA for each submodel A of a model of T .

Exercise 25. Use Theorem 13 and the following theorem to find four proofs
that every submodel complete theory is model complete.

Theorem 16. Let T be a theory of a language L. The following are equivalent:

(1) T is submodel complete
(2) If B and C are models of T and A is a submodel of both B and C, then

every existential sentence which holds in BA also holds in CA.
(3) T admits elimination of quantifiers
(4) whenever A ⊆ B, A ⊆ C, B |= T and C |= T there is a model D such that

A ⊆ D and both BA and CA are elementarily embedded in DA.

Proof. (1) ⇒ (2)
Let B |= T and C |= T with A ⊆ B and A ⊆ C. Then BA |= T ∪ 4A and
CA |= T ∪4A. So (1) and Lemma 6 give BA ≡ CA. Thus (2) is in fact proved for
all sentences, not just existential ones.

(2) ⇒ (3)
We will proceed as we did in the proof of Theorem 13. Lemma 4 shows that it
suffices to prove (3) for formulas in prenex normal form. We do this by induction
on the prenex rank of ϕ using the following claim.

Claim. For each existential formula ϕ(v0, . . . , vp) of L there is a quantifier free
formula ψ(v0, . . . , vp) such that

T |= (∀v0 . . . ∀vp)(ϕ↔ ψ)

Proof of Claim. Add new constant symbols c0, . . . , cp to L to form

L∗ = L ∪ {c0, . . . , cp}

45
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and to form the existential sentence ϕ∗ of L∗ obtained by replacing each free oc-
currence of vi in ϕ with the corresponding ci. It suffices to prove that there is a
quantifier free sentence γ of L∗ such that

T |= ϕ∗ ↔ γ.

Let

Γ = { quantifier free sentences γ of L∗ : T |= ϕ∗ → γ}.
It suffices to find some γ in Γ such that T |= γ → ϕ∗. Since a finite conjunction of
sentences of Γ is also in Γ, it suffices to find γ1, . . . , γn in Γ such that

T |= γ1 ∧ · · · ∧ γn → ϕ∗.

If no such finite subset {γ1, . . . , γn} of Γ does exist, then each

T ∪ {γ1, . . . , γn} ∪ {¬ϕ∗}

would be satisfiable. So by compactness it suffices to prove that T ∪ Γ |= ϕ∗.
Let C |= T ∪ Γ with intent to prove that C |= ϕ∗.
Let A be the smallest submodel of C in the sense of the language L∗. That is,

every element of A is the interpretation of a constant symbol from L∗ or built from
these using the functions of C. Let

∆ = {δ : δ is quantifier free sentence of L∗ and A |= δ}.

We wish to show that T ∪ {ϕ∗} ∪ ∆ is satisfiable. By compactness, it suffices
to consider only T ∪ {ϕ∗, τ} where τ is a single sentence in ∆. If this set is not
satisfiable then T |= ϕ∗ → ¬τ so that by definition of Γ we have ¬τ ∈ Γ and hence
C |= ¬τ . But this is impossible since A ⊆ C means that C |= ∆.

Let B′ |= T ∪ {ϕ∗} ∪ ∆. The interpretations of the constant symbols in L∗
generate a submodel of A′ ⊆ B′ isomorphic to A. So by Exercise 11, there is a
model B for L∗ such that B ∼= B′ and A ⊆ B.

Since A ⊆ B and A ⊆ C the interpretation of each of c0, . . . , cp in A is the same
as the interpretation in B or in C; let’s denote these by a0, . . . , ap. Let σ denote
the sentence

(∃v0 . . . ∃vp)(ϕ ∧ v0 = ca0 ∧ v1 = ca1 ∧ · · · ∧ vp = cap)

which is equivalent to an existential sentence of LA.
In order to invoke (2) we use the restrictions of A, B and C to the language

L. We have B|L |= T , C|L |= T , A|L ⊆ B|L and A|L ⊆ C|L. Since B′ |= ϕ∗ we
have that (B|L)A |= σ. So by (2), (C|L)A |= σ and finally this gives C |= ϕ∗ which
completes the proof of the claim.

We now do the general cases for the proof of the induction on prenex rank.
There are two cases, corresponding to the two methods available for increasing the
number of alternations of quantifiers:

(a) the addition of universal quantifiers
(b) the addition of existential quantifiers.

For case (a), suppose ϕ(v0, . . . , vp) is ∀w0 . . . ∀wmχ(v0, . . . , vp, w0, . . . , wm) and
χ has prenex rank lower than ϕ. Then ¬χ also has prenex rank lower than ϕ



6. SUBMODEL COMPLETENESS 47

and we can use the inductive hypothesis on ¬χ to obtain a quantifier free formula
θ1(v0, . . . , vp, w0, . . . , wm) such that

T |= (∀v0 . . . ∀vp)(∀w0 . . . ∀wm)(¬χ↔ θ1)

So T |= (∀v0 . . . ∀vp)(∃w0 . . . ∃wm¬χ↔ ∃w0 . . . ∃wmθ1)

By the claim there is a quantifier free formula θ2(v0, . . . , vp) such that

T |= (∀v0 . . . ∀vp)(∃w0 . . . ∃wmθ1 ↔ θ2)

So T |= (∀v0 . . . ∀vp)(∃w0 . . . ∃wm¬χ↔ θ2)

So T |= (∀v0 . . . ∀vp)(∀w0 . . . ∀wmχ↔ ¬θ2)

and so ¬θ2 is the quantifier free formula equivalent to ϕ.
For case (b), suppose ϕ(v0, . . . , vp) is ∃w0 . . . ∃wmχ(v0, . . . , vp, w0, . . . , wm) and

χ has prenex rank lower than ϕ. We use the inductive hypothesis on χ to obtain a
quantifier free formula θ1(v0, . . . , vp, , w0, . . . , wm) such that

T |= (∀v0 . . . ∀vp)(∀w0 . . . ∀wm)(χ↔ θ1)

So T |= (∀v0 . . . ∀vp)(∃w0 . . . ∃wmχ↔ ∃w0 . . . ∃wmθ1)

By the claim there is a quantifier free formula θ2(v0, . . . , vp) such that

T |= (∀v0 . . . ∀vp)(∃w0 . . . ∃wmθ1 ↔ θ2)

So T |= (∀v0 . . . ∀vp)(∃w0 . . . ∃wmχ↔ θ2)

and so θ2 is the quantifier free formula equivalent to ϕ. This completes the proof.
(3) ⇒ (4)
Let A ⊆ B, A ⊆ C, B |= T and C |= T . Using the Diagram Lemmas it will

suffice to show that Th(BB)∪ Th(CC) is satisfiable. Without loss of generosity, we
can ensure that LB ∩ LC = LA.

By the Robinson Consistency Theorem, it suffices to show that there is no
sentence σ of LA such that both:

Th(BB) |= σ and Th(CC) |= ¬σ
Suppose σ is such a sentence and let {ca0 , . . . , cap} be the set of constant sym-

bols from LA \ L appearing in σ.
Let ϕ(u0, . . . , up) be obtained from σ by exchanging each cai for a new variable

ui. Let ψ(u0, . . . , up) be the quantifier free formula from (3):

T |= (∀u0, . . . ,∀up)(ϕ↔ ψ)

Let ψ∗ be the result of substituting cai for each ui in ψ. ψ∗ is also quantifier
free.

Since BB |= σ, B |= ϕ[a0, . . . , ap]. Since B |= T , B |= ψ[a0, . . . , ap] and so
BA |= ψ∗. Since ψ∗ is quantifier free and AA ⊆ BA we have AA |= ψ∗; since
AA ⊆ CA we then get that CA |= ψ∗. Hence C |= ψ[a0, . . . , ap] and then since
C |= T we then get that C |= ϕ[a0, . . . , ap]. But then this means that CA |= σ and
so CC |= σ so σ is in Th(CC) and we are done.

(4) ⇒ (1)
Let B |= T and A ⊆ B; we show that T ∪ 4A is complete. Since BA |= T ∪ 4A,
we see that it suffices by Lemma 6 to show that BA ≡ C′ for each C′ |= T ∪4A.

For each such C′, by Exercise 14, there is a model C for L such that A ⊆ C and
CA
∼= C′. Then C |= T so by (4) there is a D with A ⊆ D such that both BA and

CA are elementarily embedded into DA.
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In particular BA ≡ DA ≡ CA so we are done.
�

Example 11. (Chang and Keisler)
Let T be the theory in the language L = {U, V,W,R, S} where U , V and W are
unary relation symbols and R and S are binary relation symbols having axioms
which state that there are infinitely many things, that U ∪ V ∪W is everything,
that U , V and W are pairwise disjoint, that R is a one-to-one function from U onto
V and that S is a one-to-one function from U ∪ V onto W .

Exercise 26. Show that T above is complete and model complete but not
submodel complete.

Hints: For completeness, use the  Loś-Vaught test and for model completeness
use Lindström’s test. For submodel completeness use (2) of the theorem with
B |= T and A ⊆ B where a ∈ A = {b ∈ B : B |= W (v0)[b]} along with the
sentence

(∃v0)(U(v0) ∧ S(v0, ca)).

We will prove in the next chapter that each of the following theories admits
elimination of quantifiers:

(1) dense linear orders with no end points (DLO)
(2) algebraically closed fields (ACF)
(3) real closed ordered fields (RCF)

C. H. Langford proved elimination of quantifiers for DLO in 1924. The cases of
ACF and RCF were more difficult and were done by A. Tarski. Thus, by Exercise 25,
we will have model completeness of RCF which was promised at the beginning of
Chapter 5.

Exercise 27. Let T be a theory in the language L which is submodel complete.
Expand L to L+ by only adding new constant symbols. Show that T admits
elimination of quantifiers in L+. Use this and the fact that DLO admits elimination
of quantifiers in its own language to show that in the language L = {<, c1, c2} where
c1 and c2 are constant symbols, DLO is submodel complete but not complete.

Exercise 28. Suppose A is the reduct of a real closed ordered field to the
language of field theory. Show that A[

√
−1] is algebraically closed. You may use

the Fundamental Theorem of Algebra.
Hint: Show that any polynomial with coefficients from A has a quadratic factor.

Corollary 7. (The Tarski-Seidenberg Theorem)
The projection of a semi-algebraic set in Rn to Rm for m < n is also semi-

algebraic. The semi-algebraic sets of Rn are defined to be all those subsets of Rn
which can be obtained by repeatedly taking finite unions and intersections of sets of
these two forms

{〈x1, . . . , xn〉 ∈ Rn : p(x1, . . . , xn) = 0}
{〈x1, . . . , xn〉 ∈ Rn : q(x1, . . . , xn) < 0}

where p and q are polynomials with real coefficients.

Proof. We first need a simple result which we state as an exercise.
Let R = 〈R,+++, ···,<<<,0,1〉 be the usual model of the reals. Let T be RCF

considered as a theory in the language LR.
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Exercise 29. A set X ⊆ Rn is semi-algebraic iff there is a quantifier free
formula ϕ(v1, . . . , vn) of LR such that

X = {〈x1, . . . , xn〉 : RR |= ϕ[x1, . . . , xn]}.

Now, in order to prove the corollary, let X ⊆ Rn be semi-algebraic and let ϕ
be its associated quantifier free formula. The projection Y of X into Rm is

{〈x1, . . . , xm〉 : for some xm+1, . . . , xn 〈x1, . . . , xm, xm+1, . . . , xn〉 ∈ X}
So Y = {〈x1, . . . , xm〉 : RR |= ∃vm+1 . . . ∃vnϕ[x1, . . . , xm]}

From the assumption that RCF is submodel complete and Exercise 27 we have
that T admits elimination of quantifiers. So there is a quantifier free formula θ of
LR such that

T |= (∀v1 . . . ∀vm)(∃vm+1 . . . ∃vnϕ↔ θ)

Hence for all x1, . . . , xm

RR |= ∃vm+1 . . . ∃vnϕ[x1, . . . , xm] iff RR |= θ[x1, . . . , xm]

So Y = {〈x1, . . . , xm〉 : RR |= θ[x1, . . . , xm]}
and by the exercise, Y is semi-algebraic.

�

As an application of quantifier elimination of ACF we have the following result
of A. Tarski.

Corollary 8. The truth value of any algebraic statement about the complex
numbers can be determined algebraically in a finite number of steps.

Proof. Let C be the complex numbers in the language of field theory L; let
σ be a sentence of LC. Then let A be the finite subset {a0, . . . , ap} ⊆ C consisting
of those elements of C (other than 0 or 1) which are mentioned in σ. Let ϕ be the
formula of L formed by exchanging each cai for a new variable wi. Then

ACF |= ∀w0 . . . ∀wp(ϕ↔ ψ)

for some quantifier free ψ. Hence C |= σ iff C |= ϕ[a0, . . . , ap] iff C |= ψ[a0, . . . , ap]
but checking this last statement amounts to evaluating finitely many polynomials
in a0, . . . , ap. �

Tarski’s original proof actually gave an explicit method for finding the quantifier
free formulas and this led, via the argument above, to an effective decision procedure
for determining the truth of elementary algebraic statements about the complex
numbers.



CHAPTER 7

Model Completions

Closely related to the notions of model completeness and submodel complete-
ness is the idea of a model completion.

Definition 32. Let T ⊆ T ∗ be two theories in a language L. T ∗ is said to be
a model completion of T whenever T ∗ ∪ 4A is satisfiable and complete in LA for
each model A of T .

Lemma 14. Let T be a theory in a language L.

(1) If T ∗ is a model completion of T , then for each A |= T there is a B |= T ∗
such that A ⊆ B.

(2) If T ∗ is a model completion of T , then T ∗ is model complete.
(3) If T is model complete, then it is a model completion of itself.
(4) If T ∗1 and T ∗2 are both model completions of T , then T ∗1 |= T ∗2 and T ∗2 |=
T ∗1 .

Proof. (1) Easy. (2) Easier. (3) Easiest. (4) This needs a proof.
Let A |= T ∗2 . It will suffice to prove that A |= T ∗1 .
Let A0 = A. since A0 |= T and T ∗1 is a model completion of T we obtain, from

(1), a model A1 |= T ∗1 such that A0 ⊆ A1. Similarly, since A1 |= T and T ∗2 is a
model completion of T we obtain A2 |= T ∗2 such that A1 ⊆ A2.

Continuing in this manner we obtain a chain:

A0 ⊆ A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ An+1 ⊆ · · ·

Let B be the union of the chain, ∪{An : n ∈ N}. For each n ∈ N we have A2n |= T ∗2 .
By part (2) of this lemma and by part (4) of Theorem 13 we get that for each n,
A2n ≺ A2n+2. By the Elementary Chain Theorem A0 ≺ B. Similarly A1 ≺ B. So
A0 ≡ A1 and hence A |= T ∗1 .

�

Remark. Part (4) of the above lemma shows that model completions are es-
sentially unique. That is, if model completions T ∗1 and T ∗2 of T are closed theories
in the sense of Definition 12 then T ∗1 = T ∗2 . Since there is no loss in assuming
that model completions are closed theories, we speak of the model completion of a
theory T .

Theorem 17. Suppose T ⊆ T ∗ are theories for a language L. T ∗ is the model
completion of T iff the following two conditions are satisfied.

(1) For each A |= T there is a B |= T ∗ with A ⊆ B.
(2) For each A |= T , B |= T ∗ and C |= T ∗ such that A ⊆ B and A ⊆ C we

have a model D such that BA is isomorphically embedded into DA and
C ≺ D.

50
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Proof. First, assume that T ∗ is the model completion of T . Condition (1) is
part (1) of the previous lemma.

Now, let A, B and C be as in Condition (2). By Exercise 10, BA |= T ∗ ∪4A

and CA |= T ∗∪4A. Without loss of generosity, we may assume that LB∩LC = LA.
By assumption T ∗ ∪ 4A is a complete theory in LA. Therefore BA ≡ CA.

By the Robinson Consistency Theorem, the set of sentences ThBB ∪ ThCC is
satisfiable. Let

E |= ThBB ∪ ThCC

The Elementary Diagram Lemma now gives us a model D such that CA ≺ DA and
DA
∼= E|LA. By the Diagram lemma BA is isomorphically embedded into E|LA

and hence also into DA.

Now assume that conditions (1) and (2) hold.
We first show that T ∗ is model complete using Theorem 13; we show that T ∗

is existentially complete. Let A |= T ∗; we show that A is existentially closed. Let
B |= T ∗ such that A ⊆ B and let σ be an existential sentence of LA with BA |= σ;
our aim is to prove that AA |= σ.

We invoke condition (2) with C = A to get a model D such that A ≺ D and
BA is isomorphically embedded into DA. Referring to Exercise 11 we get a model
E for LA with BA ⊆ E and DA

∼= E. Since σ is existential, By Exercise 18 we have
that E |= σ; and by Exercise 7, DA |= σ. Now A ≺ D implies that AA ≡ DA so
AA |= σ and T ∗ is model complete.

We now show that T ∗ is the model completion of T . Let A |= T ; condition
(1) gives that T ∗ ∪ 4A is satisfiable. We show that T ∗ ∪ 4A is complete in LA

by showing that for each B |= T ∗ and C |= T ∗ with A ⊆ B and A ⊆ C we have
BA ≡ CA.

Letting B and C be as above, we invoke condition (2) to obtain a model D
such that BA is isomorphically embedded into DA and C ≺ D. C ≺ D gives that
D |= T ∗. The isomorphic embedding gives us a model E such that B ⊆ E and
DA
∼= EA. So E |= T ∗ . Using the model completeness of T ∗ and Theorem 13 we

can infer that B ≺ E. We have:

BA ≡ EA ≡ DA ≡ CA

and we are done. �

Let’s compare the definitions of model completion and submodel complete. Let
T ∗ be the model completion of T . Then T ∗ will be submodel complete provided
that every submodel of a model of T ∗ is a model of T . Since T ⊆ T ∗, it would be
enough to show that every submodel of a model of T is again a model of T . And
this is indeed the case whenever T is a universal theory, that is, whenever T has
a set of axioms consisting of universal sentences. Unfortunately, this is not always
the case.

Our aim is to show that DLO, ACF and RCF are submodel complete by showing
that these theories are the model completions of LOR, FLD and ORF respectively.
See Example 5 to recall the axioms for these theories. Well, LOR is a universal
theory but FLD and ORF are not. The culprits are the axioms asserting the
existence of inverses:

∀x∃y(x+ y = 0) and ∀x((x 6= 0)→ ∃y(y · x = 1))
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.
In fact, a submodel A of a field B is only a commutative semi-ring, not neces-

sarily a subfield. Nevertheless, A generates a subfield of B in a unique way. This
motivates the following definition.

Definition 33. A theory T is said to be almost universal whenever A ⊆ B,
B |= T and A ⊆ C, C |= T imply there are models D and E such that D |= T ,
A ⊆ D ⊆ B and E |= T , A ⊆ E ⊆ C and DA

∼= EA.

Example 12. LOR is almost universal since any universal theory T is almost
universal — just let D = E = A and note A |= T .

Example 13. FLD is almost universal — just let D and E be the subfields of
B and C, respectively, generated by A. The isomorphism DA

∼= EA is the natural
one obtained from the identity map on A.

Example 14. ORF is almost universal — again just let D and E be the ordered
subfields of B and C, respectively, generated by A. The extension of the identity
map on A to the isomorphism DA

∼= EA is aided by the fact that the order
placement of the inverse of an element a is completely determined by the order
placement of a.

Theorem 18. Let T and T ∗ be theories of the language L such that T is almost
universal and T ∗ is the model completion of T . Then T ∗ is submodel complete.

Proof. We show that condition (2) of Theorem 16 is satisfied. Let B and C
be models of T ∗ with A a submodel of both B and C; we will show that BA ≡ CA.

Now T ⊆ T ∗ so B |= T and C |= T . Since T is almost universal there are
models D and E of T such that A ⊆ D ⊆ B, A ⊆ E ⊆ C and DA

∼= EA. So
BD |= T ∗ ∪4D and CE |= T ∗ ∪4E.

Now BD is a model for the language LD whereas CE is a model for LE. We
wish to obtain a model C′ for LD which “looks exactly like” CE. We just let C′

be C and in fact let C′|LA = CE|LA. The interpretation of a constant symbol
cd ∈ LD \ LA is the interpretation of ce ∈ LE \ LA in CE where the isomorphism
DA
∼= EA takes d to e.
Now D |= T and since T ∗ is the model completion of T , T ∗ ∪4D is complete.

The isomorphism DA
∼= EA ensures that C′ |= T ∗ ∪ 4D. So BD ≡ C′. Hence

BD|LA ≡ C′|LA; that is, BA ≡ CA.
�

The way to show that DLO, ACF and RCF admit elimination of quantifiers
is now clear: first use Theorem 16 and Theorem 18. They reduce our task to
showing that DLO, ACF and RCF are the model completions of LOR, FLD and
ORF respectively. To do this we use Theorem 17; we will show that each pair
of theories satisfies both conditions (1) and (2) of Theorem 17. We begin with
condition (1): if A |= T then there is a B |= T ∗ such that A ⊆ B.

The case T = LOR and T ∗ = DLO is easy; every linear order can be enlarged to
a dense linear order without endpoints by judiciously placing copies of the rationals
into the linear order.

The case T = FLD and T ∗ = ACF is just the well known fact that every field
has an algebraic closure.

The case T = ORF and T ∗ = RCF is just Lemma 13.
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So all that remains of the quest to prove elimination of quantifiers for DLO,
ACF and RCF is to verify condition (2) of Theorem 17 in each of these cases. At
this point the reader may already be able to verify this condition for one or more
of the pairs T = LOR and T ∗ = DLO, T = FLD and T ∗ = ACF, or T = ORF
and T ∗ = RCF. However the remainder of this chapter is devoted to a uniform
method.

Definition 34. Let L be a language and Σ(v0) a set of formulas of L in the
free variable v0. A model A for L is said to realise Σ(v0) whenever there is some
a ∈ A such that A |= ϕ[a] for each ϕ(v0) in Σ(v0).

Definition 35. The set of formulas Σ(v0) in the free variable v0, is said to be
a type of the model A whenever

(1) every finite subset of Σ(v0) is realised by A
(2) Σ(v0) is maximal with respect to (1).

Remark. Every set of formulas Σ(v0) having property (1) of the definition of
type can be enlarged to also have property (2).

Lemma 15. Suppose A is a model for a language L. Let X ⊆ A and let Σ(v0)
be a type of AX in the language LX . Then there is a B such that A ≺ B and BX

realises Σ(v0).

Proof. Let T = ThAA ∪ Σ(c) where c is a new constant symbol and Σ(c) =
{ϕ(c) : ϕ ∈ Σ(v0)} and of course ϕ(c) is ϕ(v0) with c replacing v0.

By the definition of type, for each finite T ′ ⊆ T , there is an expansion A′ of
A such that A′ |= T ′. The Compactness Theorem and the Elementary Diagram
Lemma will complete the proof.

�

Lemma 16. Suppose A is a model for a language L. There is a model B for L
such that A ≺ B and BA realises each type of AA in the language LA.

Proof. Let {Σα(v0) : α ∈ I} enumerate all types of AA in the language LA.
For each α ∈ I introduce a new constant symbol cα and let

Σα(cα) = {ϕ(cα) : ϕ ∈ Σα(v0)}.

Let Σ = ∪{Σα(cα) : α ∈ I}. Let Σ′ ⊆ Σ be any finite subset.

Claim. Σ′ ∪ ThAA is satisfiable for the language LA ∪ {cα : α ∈ I}.

Proof of Claim. Let Σα1(v0), . . . ,Σαn(v0) be finitely many types such that

Σ′ ⊆ Σα1
(c0) ∪ Σα2

(c1) ∪ · · · ∪ Σαn
(cαn

).

By Lemma 15 there is a model A1 such that A ≺ A1 and (A1)A realises Σα1
(v0).

Using Lemma 15 repeatedly, we can obtain

A ≺ A1 ≺ A2 ≺ · · · ≺ An

such that each (Aj)A realises Σαj (v0).
Now A ≺ An so (An)A |= ThAA. It is easy to check that since each Aj ≺ An,

An realises each Σαj
(v0) and furthermore so does (An)A. So we can expand (An)A

to the language LA ∪ {cα1
, . . . , cαn

} to satisfy Σ′ ∪ ThAA.
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By the claim and the Compactness Theorem, there is a model C |= Σ∪ThAA.
By the Elementary Diagram Lemma, A is elementarily embedded into C|L, the
restriction of C to the language L. Therefore there is a model B for L such that
A ≺ B and BA

∼= C|LA. It is now straightforward to check that BA realises each
type Σα(v0).

�

Definition 36. A model A for L is said to be κ-saturated whenever we have
that for each X ⊆ A with |X| < κ, AX realises each type of AX .

Recall that for any set X we denote by |X| the cardinality of X. The notation
κ+ is used for the cardinal number just larger than the cardinal κ. So a model A
will be κ+-saturated whenever we have that for each X ⊆ A with |X| ≤ κ, AX
realises each type of AX . In particular, if B is any set, A will be |B|+-saturated
whenever we have that for each X ⊆ A with |X| ≤ |B|, AX realises each type of
AX .

Remark. A model A is said to be saturated whenever it is |A|-saturated,
where |A| is the size of the universe of A. For example, 〈Q,<<<〉 is saturated; to
prove this let X be a finite subset of Q and let Σ(v0) be a type of 〈Q,<<<〉X . By
Lemma 15 and the Downward Löwenheim-Skolem Theorem get a countable B such
that 〈Q,<<<〉X ≺ BX and B realises Σ(v0). Use the hint for Exercise 9 to show that
〈Q,<<<〉X ∼= BX and then note that this means that Σ(v0) is realised in 〈Q,<<<〉X .

Lemma 17. (R. Vaught)
Suppose C is an infinite model for L and B is an infinite set. There is a |B|+-
saturated model D such that C ≺ D.

Proof. We build an elementary chain

C = C0 ≺ C1 ≺ C2 ≺ · · · ≺ Cn ≺ · · · n ∈ N

such that for each n ∈ N (Cn+1)Cn
realises each type of (Cn)Cn

. This comes
immediately by repeatedly applying Lemma 16. Let D be the union of the chain;
the Elementary Chain Theorem assures us that C ≺ D and indeed each Cn ≺ D.
This means that for each n ∈ N, each type of DCn is realised in DCn .

Let X ⊆ D with |X| ≤ |B| and let Σ(v0) be a type of DX . If X ⊆ Cn for some
n, Σ(v0) can be enlarged to a type of DCn

which is realised in DCn
. Since Σ(v0)

involves only constant symbols associated with X, we have that DX realises Σ(v0).
We have almost proved that D is |B|+-saturated, but not quite, because there

is no guarantee that if

X ⊆ D = ∪{Cn : n ∈ N} and |X| ≤ |B|

then X ⊆ Cn for some n. There is no problem when X is finite. The problem with
infinite X is that the elementary chain may not be long enough to catch X.

The solution is to upgrade the notion of an elementary chain to include chains
which are indexed by any well ordered sets, not just the natural numbers. We sketch
the appropriate generalisation of the above argument from the case of 〈N,<<<〉 to the
case of an arbitrary well ordered set 〈I,<〉 with least element 0.

We construct an elementary chain of models

C = C0 ≺ · · · ≺ Cβ ≺ . . . β ∈ I
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recursively as follows. At stage β, suppose we have already constructed Cα for each
α ∈ I with α < β. The union of the chain up to β

E = ∪{Cα : α ∈ I and α < β}

falls under the scope of an upgraded Elementary Chain Theorem (which is proved
exactly as Theorem 4) and so Cα ≺ E for each α ∈ I with α < β. We now use
Lemma 16 to get Cβ such that E ≺ Cβ and (Cβ)E realises each type of EE.

As before, let D = ∪{Cα : α ∈ I} be the union of the entire chain and by the
upgraded Elementary Chain Theorem C ≺ D. Also as before, DX realises each
type of DX for each X ⊆ D such that X ⊆ Cα for some α ∈ I.

We can now complete the proof of the lemma by choosing our well ordered set
〈I,<〉 long enough so that if

X ⊆ D = ∪{Cα : α ∈ I} and |X| ≤ |B|

then there is some α ∈ I such that X ⊆ Cα. Such a well ordered set is well known
to exist — for example, any ordinal with cofinality > |B|.

�

Definition 37. We say that B is a simple extension of A whenever

(1) A ⊆ B and
(2) there is some b ∈ B such that no smaller submodel of B contains A∪{b}.

Theorem 19. (Blum’s Test)
Suppose T ⊆ T ∗ are theories of a language L. Suppose further that:

(1) T is an almost universal theory,
(2) for each A |= T there is a B |= T ∗ with A ⊆ B, and
(3) for each A |= T and each simple extension B of A which is a submodel

of a model of T , and for each C |= T ∗ with A ⊆ C such that C is |B|+-
saturated, there is an isomorphic embedding f : B→ C such that f �A is
the identity on A.

Then:

(4) T ∗ is the model completion of T ,
(5) T ∗ is submodel complete, and
(6) T ∗ admits elimination of quantifiers.

Proof. With Theorems 16, 17 and 18, statements (4), (5) and (6) all follow
from (1), (2) and condition (2) of Theorem 17.

We will therefore only need to prove that for each A |= T , B |= T ∗ and C |= T ∗
such that A ⊆ B and A ⊆ C we have a model D such that BA is isomorphically
embedded into DA and C ≺ D,

Let A, B and C be as above. Using Lemma 17 we obtain a |B|+-saturated
model D such that C ≺ D. We wish to prove that BA is isomorphically embedded
into DA.

Since A ⊆ D, the following collection E of functions is nonempty:

{e : for some A ⊆ E ⊆ B e : EA ↪→ DA is an isomorphic embedding}

and so has a maximal member f in the sense that no other e ∈ E extends f . From
f : FA ↪→ DA and Exercise 11 we get G with F ⊆ G and an isomorphism g : G→ D
extending f .
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Claim. F |= T

Proof of Claim. We have both F ⊆ B and F ⊆ G. By condition (1), there
are models H and J of T with F ⊆ H ⊆ B and F ⊆ J ⊆ G such that HF

∼= JF. This
gives an isomorphic embedding h : H ↪→ G such that h�F is the identity on F.

The composition g ◦ h : H ↪→ D is an isomorphic embedding with the property
that for all x ∈ F:

(g ◦ h)(x) = g(x) = f(x).

By the maximality of f , f = g ◦ h. Hence F = H and F |= T , finishing the proof of
the claim.

Claim. F = B

Proof of Claim. If not, pick b ∈ B \ F and form the simple extension F′ of
F by b. Since G ∼= D, G is also |B|+− saturated so that we can apply condition (3)
to F, F′ and G. We obtain an isomorphic embedding f ′ : F′ ↪→ G such that f ′ �F
is the identity on F. But now g ◦ f ′ contradicts the maximality of f and completes
the proof of the claim.

Therefore f isomorphically embeds BA into DA.
�

The following lemma completes the proofs that each of the theories DLO, ACF
and RCF admits elimination of quantifiers.

Lemma 18. Each of the following three pairs of theories T and T ∗ satisfy
condition (3) of Blum’s Test.

(1) T = LOR, theory of linear orderings. T ∗ = DLO, theory of dense linear
orderings without endpoints.

(2) T = FLD, theory of fields. T ∗ = ACF, theory of algebraically closed fields.
(3) T = ORF, theory of ordered fields. T ∗ = RCF, theory of real closed

ordered fields.

Proof of (1). Let A and B be linear orders, with B = A ∪ {b} and A ⊆ B.
Let C be a |B|+-saturated dense linear order without endpoints with A ⊆ C.

We wish to find an isomorphic embedding f : B→ C which is the identity on A.
Consider a type of CA containing the following formulas:

ca < v0 for each a ∈ A such that a < b

v0 < ca for each a ∈ A such that b < a

Since C is a dense linear order without endpoints each finite subset of the type can
be realised in CA.

Saturation now gives some t ∈ C realising this type. We set f(b) = t and we
are finished.

Proof of (2). Let A be a field and B a simple extension of A witnessed by b
such that B is a submodel of a field (a commutative semi-ring).

Let C be a |B|+-saturated algebraically closed field such that A ⊆ C. We wish
to find an isomorphic embedding f : B→ C which is the identity on A.

There are two cases:

(I) b is algebraic over A,
(II) b is transcendental over A.
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Case(I). Let p be a polynomial with coefficients from A such that p(b) = 0
but b is not the root of any such polynomial of lower degree. Since C is algebraically
closed there is a t ∈ C such that p(t) = 0. We extend the identity map f on A
to make f(b) = t. We extend f to the rest of B by letting f(r(b)) = r(t) for any
polynomial r with coefficients from A. It is straightforward to show that f is still
a well-defined isomorphic embedding.

Case (II). Let us consider a type of CA containing the following set of formu-
las:

{¬(p(v0) = 0) : p is a polynomial with coefficients in {ca : a ∈ A}}
Since C is algebraically closed, it is infinite and hence each finite subset is

realised in CA. Saturation will now give some t ∈ C such that t realises the type.
We set f(b) = t. Since t is transcendental over A, the extension of f to all of

B comes easily from the fact that every element of B \A is the value at b of some
polynomial function with coefficients from A.

�

Proof of (3). Let A be an ordered field and B be a simple extension of A wit-
nessed by b such that B is a submodel of an ordered field (an ordered commutative
semi-ring).

Let C be a |B|+-saturated real closed field such that A ⊆ C. We wish to find
an isomorphic embedding f : B→ C which is the identity on A.

There are two cases:

(I) b is algebraic over A.
(II) b is transcendental over A.

Case (I). Since b is algebraic over A we have a polynomial p with coefficients
in A such that p(b) = 0. All other elements of the universe of the simple extension
B are of the form q(b) where q is a polynomial with coefficients in A. Before
beginning the main part of the proof we need some algebraic facts.

Claim. Let D be a real closed ordered field and q(x) be a polynomial over D
of degree n. Then for any e ∈ D we have:

q(x) =

n∑
m=0

q(m)(e)

m!
(x− e)m

where q(m) stands for the polynomial which is the m-th derivative of q.

Proof of Claim. This is Taylor’s Theorem from Calculus; unfortunately we
cannot use Calculus to prove it because we are in D, not necessarily the reals R.
However the reader can check that the Binomial Theorem gives the identity for the
special cases of q(x) = xn and that these special cases readily give the full result.

Claim. Let D be a real closed ordered field and q(x) a polynomial over D with
e ∈ D and q(e) = 0. If there is an a < e such that q(x) > 0 for all a < x < e then
q′(e) ≤ 0. If there is an a > e such that q(x) > 0 for all e < x < a then q′(e) ≥ 0.
Here q′ is the first derivative of q.
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Proof of Claim. From the previous claim we get

q(x)− q(e)
x− e

= q′(e) + (x− e)

(
n∑

m=2

q(m)(e)

m!
(x− e)m−2

)
for any x 6= e in D. By choosing x close enough to e we can ensure that the entire
right hand side has the same sign as q′(e). A proof by contradiction now follows
readily.

Claim. Let D be a real closed ordered field and q(x) be a polynomial over D with
e ∈ D and q(e) = 0. If w and z are in D such that w < e < z and q(w) · q(z) > 0
then there is a d in D such that w < d < z and q′(d) = 0.

Proof of Claim. Without loss of generosity q(w) > 0 and q(z) > 0. Since q
has only finitely many roots, we can pick d1 to be the least x such that w < x ≤ e
and q(x) = 0. Since q(x) 6= 0 for all w < x < d1, the Intermediate Value Property
of Real Closed Ordered Fields shows that q cannot change sign here and so q(x) > 0
for all w < x < d1. By the previous claim, q′(d1) ≤ 0. A similar argument with
z shows that there is a d2 such that e ≤ d2 < z and q′(d2) ≥ 0. If d1 = e = d2
take d = e. If d1 < d2 the Intermediate Value Property gives a d with the required
properties.

Claim. Let D be a real closed ordered field with an ordered field E ⊆ D. Let
f : E → C be an isomorphic embedding into a real closed ordered field. Let q be a
polynomial with coefficients in E such that {x ∈ D : q′(x) = 0} ⊆ E. Let d ∈ D \E
be such that q(d) = 0 but d is not a root of a polynomial with coefficients from E
which has lower degree. Then f can be extended over the subfield of D generated
by E ∪ {d}.

Proof of Claim. Since the finitely many roots of q′ from D actually lie in
E, we can get e1 and e2 in E such that e1 < d < e2 and q′(x) 6= 0 for all x in D
such that e1 < x < e2. Furthermore for all x in E we have q(x) 6= 0. We can now
apply the previous claim to get that q(w) · q(z) < 0 for all w and z in E such that
e1 < w < d < z < e2.

We now move to the real closed ordered field C and the isomorphic embedding
f . For each w and z in E such that e1 < w < d < z < e2 we have f(w) < f(z)
and q(f(w)) · q(f(z)) < 0. By the Intermediate Value property of C we get, for
each such w and z, a y ∈ C such that f(w) < y < f(z) and q(y) = 0. Since q has
only finitely many roots there is some t ∈ C such that q(t) = 0, f(w) < t for all
e1 < w < d and t < f(z) for all d < z < e2.

We now extend f by letting f(d) = t and f(r(d)) = r(t) for any polynomial
r with coefficients from E. It is straightforward to check that the extension is a
well-defined isomorphic embedding of the simple extension of E by d into C. We
use the fact that ORF is almost universal to extend the isomorphic embedding to
all of the subfield of D generated by E ∪ {d}, since we can rephrase the definition
of almost universal as follows:

Whenever C |= T , D |= T , E′ ⊆ D and f : E′ ↪→ C is an isomorphic
embedding there is a model E′′ |= T such that E′ ⊆ E′′ ⊆ D and
f extends over E′′.
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It is now time for the main part of the proof of this case. Using Lemma 13,
let D be a real closed ordered field with B ⊆ D. We have a polynomial p with
coefficients from A such that p(b) = 0. By induction on the degree of p, we can show
that there is a sequence of elements d0, . . . , dm = b of elements of D, a sequence of
subfields of D:

A = E0 ⊆ E1 ⊆ . . . ⊆ Em+1

with each dj ∈ Ej+1 \Ej and corresponding isomorphic embeddings

fj : Ej → C

coming from the previous claim and having the property that f0 is the identity and
fj+1 extends fj . In this way we extend the identity map f0 : A0 ↪→ C until we
reach fm+1 : Em+1 ↪→ C. We then note that since b ∈ Em+1 we have B ⊆ Em+1

and we are finished.

Case (II). Let us consider a type of CA containing the following formulas:

ca < v0 for all a ∈ A with a < b

v0 < ca for all a ∈ A with b < a

¬(p(v0) = 0) for all polynomials p with coefficients in {ca : a ∈ A}
Since each interval of C is infinite, each finite subset of this type is realised by

CA. Saturation now gives t ∈ C which realises this type. We put f(b) = t.
We can now extend f on the rest of B \A, since each such element is the value

at b of a polynomial function with coefficients from A.

�
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elementarily embedded model, 24

elementarily equivalent models, 15

Elementary Chain Theorem, 16

elementary diagram, 24

elementary extension, 16

elementary submodel, 16

elimination of quantifiers, 45

existentially closed, 32

expansion

language, 14

model, 14

fields

axioms,theory of, 13

FLD, 13

almost universal, 52

formula, 4

free variable, 5

isomorphic models, 15

isomorphically embedded model, 24

language, 5

Leibniz Principle, 27

Lindström’s Test, 35

linear orders

axioms,theory of, 13

LOR, 13

almost universal, 52

 Loś-Vaught Test, 20

Lowenheim-Skolem Theorem, 20

model, 5

satisfies, 6

model complete theory, 32

model completion, 50

submodel complete, 52

Number Theory, 15

number theory

non-standard models, 15

ordered field, 42

ordered fields

axioms,theory of, 13

ORF, 13

almost universal, 52
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prenex normal form, 9

rational numbers, 11

RCF, 13
submodel complete, 51

real closed ordered field, 42
real closed ordered fields

axioms, theory, 13

axioms,theory of, 13
Intermediate Value Property, 13

real numbers, 11

realize, 53
reduction

language, 14

model, A′|L′, 14
Robinson Consistency Theorem, 27

satisfaction
A |= Σ, 12

saturated

κ-saturated model, 54
sentence, 9

simple extension, 55

subformula, 5
submodel, 15

submodel complete, 45

submodel complete theory, 45

T. Skolem, 15

Tarski’s Elementary Chain Theorem, 16
Tarski-Vaught Condition, 19

term, 4

theory, 12
almost universal, 52

model completion, 50

theory of A, 12
type, 53

Upward Löwenheim-Skolem Theorem, 25

variable, 4


