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Abstract

We show that if an Alexandrov space X has an Alexandrov subspace Ω̄ of the
same dimension disjoint from the boundary of X, then the topological boundary of Ω̄
coincides with its Alexandrov boundary. Similarly, if a noncollapsed RCD(K,N) space
X has a noncollapsed RCD(K,N) subspace Ω̄ disjoint from boundary of X and with
mild boundary condition, then the topological boundary of Ω̄ coincides with its De
Philippis-Gigli boundary. We then discuss some consequences about convexity of such
type of equivalence.

1 Introduction
The intrinsic notion of boundary has been extensively studied for both noncollapsed
RCD(K,N) spaces (ncRCD(K,N) in short) and Alexandrov spaces. When we say Alexan-
drov spaces, we always mean complete, geodesic, finite dimensional Alexandrov space. For
an Alexandrov space (A, dA), Burago, Gromov and Perelman introduced the definition of
boundary in [BGP92], deonted by FA, see (2.7). From the uniqueness of tangent cones
along in interiors of geodesics proved by Petrunin in [Pet98], it can be deduced that the
interior of an Alexandrov space, i.e. A \ FA, is strongly convex, which means that any
geodesic joining points in the interior does not intersect FA. For a ncRCD(K,N) space
(X, d,HN ), there are 2 intrinsic definitions of boundary. One is defined by Kapovitch-
Mondino in [KM21], in the same spirit of defining the boundary for an Alexandrov space,
we denote this boundary also by FX, see (2.5). The other is defined by De Philippis-Gigli
in [DPG18], making use of the stratification of the singular set. We denote this boundary
by ∂X, see (2.4).

In parallel to the strong convexity of the interior of an Alxeandrov space, it is conjectured
by De Philippis and Gigli [DPG18, Remark 3.8] that the interior of X, i.e. X \ ∂X is
strongly convex. We will see that this conjecture follows from the conjecture that the two
notions of the boundary of ncRCD(K,N) spaces agree.

In this paper, we look at the boundary from an an extrinsic point of view, namely,
given K ∈ R and positive integer N we consider two sitiations

1. an N -dimensional Alexandrov space has an N -dimensional Alexandrov subspace;
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2. a ncRCD(K,N) space has a ncRCD(K,N) subspace with mild boundary control.

We prove that in the case of (1) the intrinsic boundary of an Alexandrov subspace
coincides with the topological boundary, and in the case of (2) the De Phlippis-Gigli
boundary coincides with the topological boundary. See the precise statement in Theorem
1.1 and Theorem 1.3 below. A direct consequence is that synthetic curvature bounds
on a subspace automatically imply regularity of its topological boundary, for example
topological structure and rectifiability, see [BNS22].

Theorem 1.1. Let (X, dX) be an N -dimensional Alexandrov space, N ∈ N, and Ω ⊆ X be
open, if (Ω̄, dΩ) is an Alexandrov space, Ω̄ ∩ FX = ∅, and Ω = Inttop(Ω̄), where Inttop(Ω̄)
is the topological interior, i.e. the largest open subset of of Ω̄, then

1. ∂topΩ̄ = FΩ̄;

2. any (minimizing) geodesic in (Ω̄, dΩ) joining two points in Ω is a local geodesic of
(X, dX);

3. any (minimizing) geodesic in (Ω̄, dΩ) is a quasi-geodesic in (X, dX).

Theorem 1.1 will follow from the invariance of domain theorem for Alexandrov spaces,
Theorem 3.1. The proof of Theorem 3.1 has been worked out on the mathoverflow website
quite a while ago by Belegradek, Petrunin and Ivanov but does not seem to exist in
literature. Since we have an application of this theorem we present the proof following
closely the existing one by Belegradek-Petrunin-Ivanov. It works in a more general purely
topological category of MCS spaces, see Theorem 3.2.
Remark 1.2. The assumption Ω = Inttop(Ω̄) is clearly necessary and cannot be removed.
For example, let X = Rn, Ω = Rn \ {0}, which is open and dense. We see that Ω̄ = X is
an Alexandrov space without Alexandrov boundary, but the topological boundary of is
{0} which is not empty. This shows that item 1 does not hold without the assumption
Ω = Inttop(Ω̄) even for smooth manifolds.

Next, the assumption that Ω̄∩FX = ∅ is also clearly necessary. For example let X be
the closed unit disk in R2 and Ω = X. Then ∂Ω̄ is empty while FΩ̄ = S1.

Also, a geodesic in (Ω̄, dΩ) joining two points on the boundary need not to be a local
geodesic in (X, dX), so the conclusion in item 3 of Theorem 1.1 that a geodesic in (Ω̄, dΩ)
is a quasi-geodesic in the ambient space is optimal.

For example, consider the space X := D2 × {0} tS1×{0} S1 × [0,∞) with length metric,
which is a cylinder glued along the boundary circle with a disk at the bottom, this is an
Alexandrov space of non-negative curvature. Then let Ω = S1 × (0,∞). Clearly Ω is open,
however, any geodesic on ∂topΩ = FΩ = S1×{0}, which is an arc, is never a local geodesic
w.r.t. the metric of X, since a segment in D2 connecting any 2 points on its boundary
circle is always shorter than the corresponding arcs. This example also shows that Ω̄ need
not to be locally convex. Compare this with Theorem 1.5.

For ncRCD(K,N) spaces, we are able to obtain a similar result to Theorem 1.1 under
an extra assumption of a local Lipschitz condition on the metric dΩ which serves as a weak
substitute for the regularity of the topological boundary.

Theorem 1.3. Let (X, dX ,HNX) be a ncRCD(K,N) space, Ω be an open subset of X such
that Ω = Inttop(Ω̄) and Ω̄ ∩ ∂X = ∅. Suppose that (Ω̄, dΩ,HNΩ̄ ) is also an RCD(K,N)
space and for every x ∈ ∂topΩ̄ there exist an neighborhood Ux of x and C(Ux) > 1 such
that dΩ ≤ C(Ux)dX when restricted to Ux ∩ Ω̄. Then ∂topΩ̄ = ∂Ω̄.
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Here, HNX (resp. HNΩ̄ )) is the Hausdorff measure induced by dX (resp. dΩ). Notice the
following relations between the two Hausdorff measures:
Remark 1.4. From our assumption and the definition of intrinsic length metric, it follows
that Ω̄ is embedded in X in a locally biLipschitz way, i.e. for any x ∈ ∂topΩ̄ and its
neighborhood Ux, dX ≤ dΩ ≤ CdX when restricted to U ∩ Ω̄, so the notions such as
Hausdorff dimension and measure zero sets for both Hausdorff measures are equivalent for
sets in Ω̄ since we can always find a countable covering by neighborhoods on which the 2
metrics are biLipschitz to each other.

There are 2 main technical difficulties in proving Theorem 1.3. The first being that in
general there is no topological information on any neighborhood of a singular point. An
important fact used to prove the invariance of domain theorem for Alexandrov spaces is
that every point has a neighborhood homeomorphic to a cone over its space of directions,
which is not available for ncRCD(K,N) spaces. In particular, as opposed to the situation in
Alexandrov spaces, for a given point in an ncRCD(K,N) space its tangent cone(s)in general
do not carry topological information of its neighborhood. For example, Colding-Naber
[CN13] constructed an example of a noncollapsed Ricci limit space with a singular point
at which there are two non-homeomorphic tangent cones. Another difficulty is that the
topological boundary may in principle vanish when taking tangent cones. Conjecturally
this cannot happen but this is unknown at the moment. A model case of this phenomenon
would be a cusp, for example X = R2, and Ω = {(x, y) ∈ R2 : y <

√
|x|}, where 0 ∈ ∂topΩ̄

but its tangent cone in Ω̄ and in X are both R2. We can quickly rule out this case since if
Ω̄ were a ncRCD(K,N) space, then 0 would have density 1 in Ω̄, which in turn implies the
neighborhood of 0 in Ω is a manifold, a contradiction. However, this argument does not
work if the point on the topological boundary is itself a singular point of the ambient space.
A unified way to overcome both difficulties is to find a regular point on the topological
boundary, if it is more than De Philippis-Gigli boundary. Indeed, we are able to do this
with the help of Deng’s Hölder continuity of tangent cones along the interior of a geodesic,
[Den20].

A motivation for studying the extrinsic notion of boundary is provided by the following
observation on manifolds. Han in [Han20] showed that for a weighted n-dimensional
manifold (M, g, e−f volg) with smooth boundary, the measure valued Ricci tensor

Ric(∇ϕ,∇ϕ) := ∆ |∇ϕ|
2

2 − (〈∇ϕ,∇∆ϕ〉+ |Hessϕ|2)e−f volg (1.1)

defined by Gigli [Gig18] can be expressed as

Ric = (Ric + Hessf )e−f volg +II∂Me−fHn−1|∂M , (1.2)

where ∆ is the measure valued Laplacian. If (M, g, e−f volg) satisfies CD(K,∞) condition,
then Ric ≥ Ke−f volg. Combined with Han’s expression, this lower bound in particular
implies that the second fundamental form is non-negative definite, which means the
boundary is convex and it is well known that this implies that geodesics joining interior
points do not intersect boundary. Han further interprets this convexity where a subset
and its topological boundary are considered, moreover, the boundary is not C2 so it is not
possible to define the second fundamental form on it. To proceed, we fix some notations.
For a length metric space (X, d), and an open connected subset Ω ⊆ X, denote by dΩ the
intrinsic length metric on Ω, it extends by continuity to Ω̄. Denote by ∂topΩ̄ the topological
boundary of Ω̄ in X. More precisely, Han proved
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Theorem 1.5 ([Han20]). Let (M, g) be a complete n-dimensional manifold, and Ω ⊆M
be open. Suppose that (Ω̄, dΩ,m) satisfies that supp(m) = Ω̄ and CD(K,∞) condition,
then m Ω� volg Ω, if furthermore Ω̄ has Lipschitz and Hn−1-a.e. C2 boundary, then
m(∂topΩ) = 0 and (Ω̄, dΩ) is locally convex, i.e., every (minimizing) geodesic in (Ω̄, dΩ) is
a local geodesic in (M, g).

In particular, every minimizing geodesic in (Ω̄, dΩ) joining 2 points in Ω does not
intersect ∂topΩ. We would like to generalize to non-smooth setting the above theorem of
Han, but in view of Remark 1.2, it is not true that the (synthetic) Ricci curvature lower
bound on a closed subset forces the set to be locally convex. The correct notion to consider
for metric spaces is the locally totally geodesic property.

Definition 1.6. Let (X, d) be a geodesic metric space. A connected open subset Ω is said
to be locally totally geodesic if every (minimizing) geodesic in (Ω̄, dΩ) joining two points in
Ω is a local geodesic in (X, d).

With this notion, we see from item 2 of Theorem 1.1 that we have shown that the
synthetic sectional curvature lower bound on the closure of an open subset forces this open
subset to be locally totally geodesic.

For ncRCD spaces, the natural approach to generalize the fact that Ricci curvature
lower bound on a subset forces locally totally geodesic property is to show the equivalence
between the intrinsic and topological boundary, since the convexity results for intrinsic
boundary will then apply to the topological boundary as well. For example, with extra
assumption that Kapovitch-Mondino boundary and De Philippis-Gigli boundary coincide,
we can derive that the interior of an ncRCD(K,N) subspace is locally totally geodesic by
combining Theorem 1.3 and Theorem 1.7. See also Corollary 5.5.

However, for ncRCD(K,N) spaces, the strong convexity of its (intrinsic) interior is not
presently known, to derive it we need an extra assumption that the Kapovitch-Mondino
boundary and the De Philippis-Gigli boundary are the same.

Theorem 1.7 (Corollary 5.4). Let (X, d,HN ) be a ncRCD(K,N) space. Assume ∂X =
FX, then Int(X) := X \ ∂X is strongly convex, i.e. any geodesic joining points in Int(X)
does not intersect ∂X.

Although the equivalence between the two boundary notions, hence the strong convexity
of the interior of ncRCD(K,N) space is unknown, we can still obtain an a.e. version
of convexity of the interior of a ncRCD(K,N) space. This in turn implies that for a
ncRCD(K,N) subset, intrinsic geodesics joining most interior points are away from its
topological boundary. The a.e. convexity of interior follows from the following more general
a.e. convexity of regular set at essential dimension which is a slight generalization of
pairwise a.e. convexity of Rn proved by Deng [Den20, Theorem 6.5].

Proposition 1.8. Let (X, d,m) be an RCD(K,N) space of essential dimension n. For
every x ∈ X, there exists a subset Rx ⊆ Rn so that m(X \ Rx) = 0 and for any y ∈ Rx
there is a minimizing geodesic joining x, y contained in Rn except possibly for x.

For the proof we need the technique of localization via transport rays of any 1-Lipschitz
function, developed by Cavalletti-Mondino [CM16] in non-smooth setting.

Finally, we conjecture that Theorem 1.5 holds in much larger generality including the
measure regularity part, see Conjecture 5.8.

The paper is organized as follows: In section 2, we recall concisely the structure results
for Alexandrov and RCD(K,N) spaces. In section 3 we prove invariance of domain theorem
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for Alexandrov spaces. Section 4 is devoted to the proof of main theorems Theorem 1.1
and Theorem 1.3. The last two sections, section 5 and 6 focus on applications of the main
theorems to subsets satisfying ncRCD(K,N) condition in various ambient spaces.
Acknowledgement. The second named author thanks Anton Petrunin for bringing
invariance of domain for Alexandrov spaces to his attention, Qin Deng for suggesting
Proposition 1.8, Igor Belegradek and Jikang Wang for several helpful discussions.

2 Preliminary

2.1 Stratified spaces

In this section we give a brief review of topological stratified spaces.

Definition 2.1. A metrizable space X is called an MCS-space (space with multiple conic
singularities) of dimension n if every point x ∈ X has a neighborhood pointed homeomorphic
to the open cone over a compact (n − 1)-dimensional MCS space. Here we assume the
empty set to be the unique (−1)-dimensional MCS-space.

Remark 2.2. A compact 0-dimensional MCS-space is a finite collection of points with
discrete topology. A 1-dimensional MCS-space is a locally finite graph.

An open conical neighborhood of a point in an MCS-space is unique up to pointed
homeomorphism [Kwu64]. However given an open conical neighborhood U of x ∈ X
pointed homeomorphic to a cone over an (n− 1)-dimensional space Σx, the space Σx need
not be uniquely determined by U .

It easily follows from the definition that an MCS space has a natural topological
stratification constructed as follows.

We say that a point p ∈ X belongs to the l-dimensional stratum Xl if l is the maximal
number m such that the conical neighbourhood of p is pointed homeomorphic to Rm×K(S)
for some MCS-space S. It is clear that Xl is an l-dimensional topological manifold. It is
also immediate that for x ∈ Xl all points in the conical neighborhood of X belong to the
union of Xk with k ≥ l. Therefore the closure X̄l of the l-stratum is contained in the union
∪m≤lXm of the strata of dimension at most l.

The n stratum Xn is an n-dimensional manifold and by above it is open and dense in
X. We will also refer to Xn as the top stratum of X.

2.2 Structure theory for RCD(K, N) spaces
When writing RCD(K,N) space, we always assume that N ∈ [1,∞). We assume familiarity
with the structure theory of RCD(K,N) spaces and just collect a few facts to fix notations.

Definition 2.3. Given an RCD(K,N) space (X, d,m), let Rk be the set of points at which
the tangent cone is (Rk, | · |,Lk), for k ∈ [1, N ] ∩ N. R(X) := ∪kRk is called the regular
set of X.

If there is no confusion we also write R instead of R(X). It is shown in [MN19] that
m(X \ ∪kRk) = 0 and each Rk is Hk-rectifiable. Then it is shown in [BS20] that there is a
unique n ∈ [1, N ]∩N such that m(X \Rn) = 0. Such n is called the essential dimension of
(X, d,m) which is also denoted by essdim. It is equal to the maximal k such that Rk is
non empty, see for example [Kit19]. The singular set S is the complement of the regular
set, S := X \ ∪kRk. The singular set has measure zero.
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The notion of noncollapsed RCD(K,N) (ncRCD(K,N) in short) is proposed in [DPG18],
requiring that m = HN , which in turn implies N ∈ N and the essential dimension of
a ncRCD(K,N) space is exactly N , see [DPG18, Theorem 1.12]. When considering
ncRCD(K,N) spaces, finer structure results are available.

The density function

ΘN (x) := lim
r→0

HN (Br(x))
ωNrN

≤ 1 (2.1)

plays a crucial role in the study of regularity of ncRCD(K,N) spaces. The existence of
the limit and the upper bound 1 come from the Bishop-Gromov inequality. Note that the
density function characterizes the regular points in the following way [DPG18, Corollary
1.7]:

ΘN (x) = 1⇔ x ∈ RN = R. (2.2)
Thanks to the splitting theorem [Gig13] and the volume cone to metric cone property

[DPG16] in a ncRCD(K,N) space, the singular set S is stratified into

S0 ⊆ S1 ⊆ · · · ⊆ SN−1,

where for 0 ≤ k ≤ N−1, k ∈ N, Sk = {x ∈ S : no tangent cone at x is isometric to Rk+1×
C(Z) for any metric space Z}, where C(Z) is the metric measure cone over a metric space
Z. It is proved in [DPG18, Theorem 1.8] that

dimH(Sk) ≤ k. (2.3)

With the help of the metric Reifenberg theorem [CC97, Theorem A.1.1-A.1.3], it can be
derived that for points whose the density is close to 1 there is a neighborhood homeomorphic
to a smooth manifold. We have from [KM21, Theorem 1.7, Corollary 2.14] that

Theorem 2.4. Let (X, d,m) be a ncRCD(K,N) space, and α ∈ (0, 1). There exists
δ := δ(α,K,N) > 0 small enough so that if x ∈ X satisfies ΘN (x) > 1− δ, then there is a
neighborhood of x biHölder homeomorphic to a smooth manifold with Hölder exponent α.
Moreover the set {x ∈ X : ΘN (x) > 1− δ} is open and dense.

We call such points manifold points, and call the complement non-manifold points. It
then follows that the set of non-manifold points has Hausdorff codimension at least 1 since
it is contained in SN−1.

Finally let us recall here some facts about the boundary of a ncRCD space (X, d,HN ).
Based on the stratification of S, De Philippis and Gigli proposed the following definition
of the boundary of a ncRCD(K,N) space (X, d,HN ):

∂X := Sn−1 \ Sn−2. (2.4)

On the other hand, Kapovitch-Mondino ([KM21]) proposed another recursive definition of
the boundary analogous to that of Alexandrov spaces, for N ≥ 2:

FX := {x ∈ X : ∃Y ∈ Tan(X, d,m, x), Y = C(Z),FZ 6= ∅}. (2.5)

In this definition Z must be a non-collapsed RCD(N − 2, N − 1) space with suitable
metric and measure ([KM21, Lemma 4.1], after [Ket15]), so one can inductively reduce the
consideration to the case N = 1, in which case the classification is completed in [KL16].

The measure theoretical and topological structure of De Philippis-Gigli’s boundary is
subsequently studied in [BNS22] and [BPS21]. We will need the following relation from
combining [KM21, Lemma 4.6] and [BNS22, Theorem 6.6]:

SN−1 \ SN−2 ⊆ FX ⊆ ∂X. (2.6)
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An implication of the above relation is that not having boundary in both senses are the
same, and is equivalent to SN−1 \SN−2 = ∅. It is conjectured that FX = ∂X, and this is
verified for Alexandrov spaces and Ricci limit spaces with boundary, see [BNS22, Chapter
7].

2.3 Structure theory of Alexandrov Spaces

Observe that the structure theory of ncRCD(K,N) spaces holds for Alexandrov spaces
since N -dimensional Alexandrov spaces with lower curvature bound K are ncRCD(K,N)
spaces [Pet11], though some results can have different, usually easier, proofs. Instead of
attempting to give a thorough introduction, we collect here the following facts that are
necessary for this paper and are more refined than that of ncRCD(K,N) spaces. We refer
readers to [BGP92, BBI01, Pet07] for detailed structure theory of Alexandrov spaces.

Fix an N -dimensional Alexandrov space (X, d). We describe the tangent cones, bound-
ary and topological structure of X.

Tangent cones in an Alexandrov space are nicer than those in ncRCD spaces, for
example, the tangent cone at every point is unique. To better describe tangent cones, we
introduce the space of directions:

Definition 2.5. For any p ∈ X, we say that any 2 geodesics emanating from p have the
same direction if their angle at p is zero. This induces an equivalence relation on the
space of all geodesics emanating from p and the angle induces a metric on the space of
equivalent classes of such geodesics. The metric completion of it is the space of directions
at p, denoted by Σp(X).

Σp(X) is an (N − 1)-dimensional Alexandrov space of curvature lower bound 1 [BBI01,
Theorem 10.8.6]. The (metric) tangent cone at p is the metric cone over Σp(X), this
definition is consistent with the (blow-up) tangent cone TpX obtained by taking the pGH
limit of (X, r−1d, p) as r → 0. This observation along with Perelman’s stability theorem
[Per91] implies that p has a neighborhood homeomorphic to a cone over Σp(X), therefore
X is an n-dimensional MCS-space by induction. For an alternative proof of this result see
[Per93].

The boundary FX is defined for N ≥ 2 as

FX = {p ∈ X : Σp(X) has boundary}. (2.7)

When N = 1 Alexandrov spaces are manifolds, the boundary is just boundary of a manifold,
see [BGP92, 7.19]. This gives the inspiration to the Kapovitch-Mondino boundary (2.5). It
is clear that when (X, d,HN ) is viewed as a ncRCD(K,N) space, this boundary is exactly
the Kapovitch-Mondino boundary, which justifies the use of notation.

Similar to the ncRCD case, the set of manifold points of X is open and dense, the non
manifold points of X is of Hausdorff dimension and topological dimension at most n− 1 if
X has boundary and codimension at most n− 2 if X does not have boundary. This follows
by combining (2.3), (2.6) and Theorem 2.4.

We will also need the notion and properties of quasigeodesics on Alexandrov spaces
[PP96]. Recall that a unit speed curve γ in an Alexandrov space is called a quasigeodesic if
restrictions of distance functions to γ have the same concavity properties as their restrictions
to geodesics. For example, for non-negatively curved Alexandrov space X this means that
for any p ∈ X the function t 7→ d(γ(t), p)2 is 2-concave. Every geodesic is obviously a
quasigeodesic but the converse need not be true. For example if X is the unit disk in R2

then the boundary circle is a quasigeodesic in X. Petrunin and Perelman showed [PP96]
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that for every point p in an Alexandrov space there are infinite quasigeodesic starting in
every direction at p.

3 Invariance of Domain for Alexandrov spaces
As stated in the introduction, the invariance of domain for Alexandrov spaces has long been
known by experts, we present here a precise statement and its proof due to Belegradek-
Ivanov-Pertunin on mathoverflow [BIP10].

Theorem 3.1. Let (X, dX), (Y, dY ) be Alexandrov spaces of same dimension, f : X → Y
be a injective continuous map. For any open subset U ⊆ X, if U ∩ FX = ∅ then
f(U) ∩ FY = ∅, and f(U) is open in Y .

This theorem follows from the following purely topological Invariance of Domain
Theorem for MCS spaces.

Theorem 3.2. Let X,Y be n dimensional MCS spaces such that Xn−1 = Yn−1 = ∅ and
for all points in Y their open conical neighborhoods have connected n-strata.

Let f : X → Y be continuous and injective.
Then f(X) is open in Y and open conical neighborhoods of all points in X have

connected top strata.

We need the following lemma regarding the Z2-cohomology for MCS spaces originated
from Grove-Petersen [GP93], initially stated for compact Alexandrov spaces without
boundary. Note that finite dimensional MCS spaces are locally compact, and locally
contractible, since every point has a neighborhood homeomorphic to a cone, so Alexander-
Spanier cohomology, singular cohomology and Cech cohomology all coincides. It is not
necessary to specify which cohomology to use. In what follows all cohomology is taken
with Z2 coefficients.

We will make use of the following duality which holds for Alexander-Spanier cohomology
with compact support [Mas78, Chapter 1]. Given a locally compact and Hausdorff space
Y and a closed subset A ⊆ Y it holds that Hn

c (Y,A) ∼= Hn
c (Y \A).

Lemma 3.3. Let X be an n-dimensional compact MCS space where Xn has k connected
components and Xn−1 = ∅, then Hn(X) ∼= Zk2.

Proof. The proof is the same as in [GP93].
Since Xn = X \ S is an n-manifold with k connected components we have that

Hn
c (X\S) ∼= Zk2. On the other hand by Alexander-Spanier duality we have thatHn

c (X\S) ∼=
Hn
c (X,S) ∼= Hn(X,S) where the last isomorphism holds since X is compact. Now the

result immediately follows from the long exact sequence of the pair (X,S) using the fact
that S is the union of strata of dimension ≤ 2 and hence Hn−1(S) ∼= Hn(S) = 0.

Note that in the above proof we get that Hn
c (X \ S) ∼= Hn(X,S) ∼= Hn(X). Compare

this to the proof of the following Lemma

Lemma 3.4. Let (X, dX) be a compact n-dimensional MCS space with connected Xn and
Xn−1 = ∅, take x ∈ Xn. Then we have

1. Hn(X \ {x}) = 0;
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2. the inclusion i : (X,∅)→ (X,X \ {x}) induces an isomorphism on cohomology, that
is

i∗ : Hn(X,X \ {x})→ Hn(X) (3.1)

is an isomorphism.

Proof of Lemma 3.4. We first show item 2. Let U ⊆ X \ S = Xn be connected and open.
Since X \ S is a manifold and U is connected, we have that the inclusion U ↪→ X \ S
induces an isomorphism between compactly supported cohomology Hn

c (U) and Hn
c (X \ S).

Also, since X is compact we have that Hn
c (X,X \ U) ∼= Hn(X,X \ U) and similarly

Hn
c (X,S) ∼= Hn(X,S).
With this at disposal, consider the inclusion of pairs (X,S) ↪→ (X,X \ U), we have

Hn
c (U) Hn

c (X \ S)

Hn(X,X \ U) Hn(X,S),

∼=

∼= ∼=

where the vertical arrows are Alexander-Spanier duality combined with the above
isomorphisms Hn

c (X,X \ U) ∼= Hn(X,X \ U) and Hn
c (X,S) ∼= Hn(X,S).

This gives an isomorphism between Hn(X,X \ U) and Hn(X,S) hence between
Hn(X,X \ U) and Hn(X) by inclusion. Note that X \ {x} deformation retract to
X \ U for some open conical open neighborhood U ⊆ X \ S of x, which implies that
i∗ : Hn(X,X \ {x})→ Hn(X) is an isomorphism.

Next we show item 1. To compute Hn(X \ {x}), look at the long exact sequence for
the pair (X,X \ {x}):

· · · → Hn(X,X \ {x})
∼=−→ Hn(X)→ Hn(X \ {x}) 0−→ Hn+1(X,X \ {x})→ · · · , (3.2)

Hn(X \ {x}) = 0 follows directly.

Now we can prove the invariance of domain for MCS spaces. The strategy is to localize
X,Y to suspensions over lower dimensional strata , so that the proof reduces to the case
of compact MCS spaces with connected top stratum and empty codimension 1 stratum,
where the above lemmas apply.

Proof of Theorem 3.2. Let us first prove the theorem under the extra assumption that for
all points in X the top strata of their conical neighborhoods are connected.

We break the proof into steps.
Step 1: Localize to suspensions, which are MCS spaces satisfying assumption in

Lemma 3.3 and Lemma 3.4.
Let x ∈ U and y := f(x) ∈ f(U). Both x, y have a neighborhood homeomorphic

to cones over some (n − 1)-dimensional MCS spaces Σx, Σy, respectively. Take cone
neighborhoods of x, Bx b B′x b U , then there exists a cone neighborhood of y, say
By ⊆ f(U) such that By ∩ f(B′x \ Bx) = ∅. Let C := U \ Bx and D := Y \ By. Note
that both U/C and Y/D are homeomorphic to a suspension over Σx, Σy respectively. The
quotient map induces a new map f̃ : U/C → Y/D between compact n-dimensional MCS
spaces with connected top stratum and empty codimension 1 stratum. Observe that f̃
remains injective on f−1(By) = f−1(Y \D).

It suffices to show that f̃ is surjective onto By identified with its image in Y/D. By
continuity, it suffices to show every point in Yn ∩By is in the image of f̃ .

Step 2: We show that f̃∗ : Hn(Y/D)→ Hn(U/C) is an isomorphism.
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First, we claim that there exists a point x′ ∈ Xn such that y′ := f(x) ∈ Yn. To see this,
let x ∈ U ∩Xn, and take a compact neighborhood B, it is of topological dimension n, since
f is injective and continuous, it is a homeomorphism between B and f(B), so f(B) also
has topological dimension n, which means f(B) can not be entirely in ∪n−2

k=0Yk, which is of
topological dimension at most n− 2. Now that we have x′ ∈ Xn and y′ ∈ Yn , we claim
that f̃∗ : Hn(Y/D, Y/(D \ {y′}))→ Hn(U/C,U/(C \ {x′})) is an isomorphism.

To this end, take an excision around the manifold neighborhood of x′, y′ respectively.
The desired claim reduces to showing that f∗ : Hn(Bn, Bn\{x′})→ Hn(f(Bn), f(Bn)\{y′})
is an isomorphism for injective and continuous f such that f(x′) = y′, where Bn is a ball
in Rn. The invariance of domain for Rn has been used to show that f(Bn) is open so
that an excision can be applied on Y/D. The invariance of domain for Rn also shows
f : (Bn, Bn \ {x′})→ (f(Bn), f(Bn) \ {y′}) is a homeomorphism, the claim follows.

Now consider the induced map f∗ between long exact sequences of the pairs (Y/D, Y/(D\
{y′})) and (U/C,U/(C \{x′})), taking also into account item 2 of Lemma 3.4, by 5-Lemma
it follows that f̃∗ : Hn(Y/D)→ Hn(U/C) is an isomorphism.

Step 3: Arguing by contradiction, we assume that f̃ is not surjective onto (Yn ∩By)
identified with its image in Y/D, we show that f̃∗ : Hn(Y/D)→ Hn(X/C) is a zero map.
However, f̃∗ cannot be both zero map and isomorphism (from Step 2), because by Lemma
3.3, Hn(Y/D) = Hn(U/C) = Z2, a contradiction.

For this purpose, suppose that a point z ∈ Yn ∩ By is missed by f̃ , then f̃ can be
factored through

f̃ : U/C → Y/(D \ {z})→ Y/D. (3.3)

Since Hn(Y/(D \ {z})) = 0 due to item 1 of lemma 3.4, f̃∗ : Hn(Y/D)→ Hn(X/C) is a
zero map.

This concludes the proof of the theorem under the extra assumption that for all points
in X the top strata of their conical neighborhoods are connected.

To complete the proof in the general case we will need the following general lemma.

Lemma 3.5. Let Z be a connected n-dimensional MCS space space that that it’s top
stratum Zn is not connected. Then there exists a point z ∈ Z such that the top stratum of
its conical neighborhood Uz is not connected.

Proof of Lemma 3.5. let p, q be points lying in different connected components of Zn.
Since Z is connected there is a path γ : [0, 1] → Z such that γ(0) = p, γ(1) = q. By
compactness of [0, 1] there exists finitely many connected components U1, . . . Uk of Zn
whose closures intersect γ. Since the top stratum is dense in Z we have that γ is contained
in Ū1 ∪ Ū2 ∪ . . . ∪ Ūk, therefore [0, 1] = γ−1(Ū1) ∪ γ−1(Ū2) ∪ . . . ∪ γ−1(Ūk). As all these
sets are closed and [0, 1] is connected this covering can not be disjoint and hence there is
t0 ∈ [0, 1] which belongs to at least two γ−1(Ūj). Then z = γ(t0) satisfies the conclusion of
the Lemma.

We now continue with the proof of Theorem 3.2.
Recall that we have proved the theorem under the assumption that all conical neigh-

borhood of points in X have connected top strata.
Now suppose there are some points in X such that the top strata of their conical

neighborhoods are not connected. Let l be the largest number that Xl contains such a
point x. Take such x ∈ Xl.
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Then its conical neighborhood Ux has the form Rl × C(Σ) where Σ is (n − l − 1)-
dimensional MCS space. Note that points in Ux outside of Rl × {∗} (here ∗ is the cone
point in C(Σ)) lie in the union of strata of dimension > l.

We claim that Σ has more than one connected components. Indeed, if not then its top
stratum is not connected while Σ itself is connected. Then by Lemma 3.5 applied to Σ
there exists a point σ ∈ Σ such that the top stratum of its conical neighborhood in Σ is not
connected. But then the corresponding point in Ux will lie in Xm for m > l and also have
the property that its conical neighborhood has more than one top stratum components.
This contradicts the maximality of l in the choice of x.

Let Σ′ be one component of Σ. Then the subset W ′ = Rl × C(Σ′) ⊆ Ux is an n-
dimensional MCS space with empty (n − 1)-stratum and such that the top stratum of
all conical neighborhoods in W ′ are connected. Then we have an injective embedding
f : W ′ → Y and by the proof above the image f(W ′) is an open neighborhood of f(x).
But the same argument applies to any other component Σ′′ of Σ and gives another subset
W ′′ ⊆ Ux which contains x and such that f(W ′′) is also an open neighborhood of f(x).
This contradicts injectivity of f near x. Therefore under the assumption of the theorem
conical neighborhoods of points in X must necessarily have connected top strata.

Remark 3.6. The connectedness assumption of top strata of conical neighborhoods in Y is
essential. For example, take Y = Rn

∨
Rn to be the wedge sum of two copies of Rn glued

at 0, X = Rn and f : X ↪→ Y be inclusion of the first copy of Rn. This map is clearly 1-1
but the image is not open since it does not contain any neighborhood of 0 in Y .
Remark 3.7. The conclusion that conical neighborhoods of points in X must be connected
can be viewed as a non-embeddability result. In other words the following holds. Suppose
Y satisfies the assumption of the theorem and X is an n-dimensional MCS space with
empty (n− 1)-stratum and such that there is a point in X such that the top stratum of its
conical neighborhood is not connected. Then there is no 1-1 continuous map f : X → Y .

Proof of Theorem 3.1. As pointed out in section 2.3, every Alexandrov space is an MCS
space with connected top stratum. The assumption U ∩ FX = ∅ implies that U has
empty codimension 1 stratum. Next, for every p ∈ Y its conical neighborhood Wp is
homeomorphic to TpY which is a nonnegatively curved Alexandrov space.

Since the top stratum of TpY is connected the same is true for Wp.
It suffices to show that f(U) ∩ FY = ∅, everything else follows from Theorem 3.2.
Assume FY 6= ∅. Take the metric double Ỹ of Y , Ỹ an n-dimensional Alexandrov

space without boundary, and f : X → Y extends to an injective and continuous map
into Ỹ by post composing with the inclusion map Y ↪→ Ỹ . We still denote it by f .
Applying Theorem 3.2 to f : X → Ỹ , we see that f(U) must be open in Ỹ . If there exists
z ∈ f(U)∩FY , then there exists an open neighborhood V of z in f(U)∩ Ỹ . By definition
of metric double V must intersect both copies of Y in Ỹ , this is a contradiction to the
definition of f , from which it follows that f(U) can not intersect FY .

4 Equivalence of intrinsic and extrinsic boundary

4.1 Alexandrov case

Proof of Theorem 1.1. We first show that ∂topΩ̄ = FΩ̄. Since tangent cones at points in
Ω have no boundary, we see that FΩ̄ ⊆ ∂topΩ. Now take p ∈ ∂topΩ̄, if to the contrary
p /∈ FΩ̄, then there is an open set U ⊆ Ω̄ containing p such that U ∩ FΩ̄ = ∅, since FΩ̄
is closed. The Invariance of Domain Theorem 3.1 applied to inclusion i : Ω̄ ↪→ X yields
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that i(U) = U is also an open subset of X, so p ∈ U ⊆ Inttop(Ω̄) = Ω, a contradiction to
p ∈ ∂topΩ̄.

Now that ∂topΩ̄ = FΩ̄, it follows immediately that Ω coincides with Ω̄ \ FΩ̄, which
is the interior in the sense of Alexandrov spaces. So strong convexity of the interior of
an Alexandrov space yields that γ does not intersect FΩ hence ∂topΩ. The proof of 2 is
completed by noticing that any dΩ geodesic connecting points in Inttop(Ω̄) = Ω and entirely
contained in Ω is a local geodesic of (X, dX).

For the proof of item 3, let p, q ∈ ∂Inttop(Ω̄), d = dΩ(p, q), and γ : [0, d]→ Ω̄ be a unit
speed geodesic with respect to dΩ joining p, q such that γ(0) = p, γ(1) = q. For any small
enough ε ∈ (0, d/3), take p′ = γ(ε) and q′ = γ(d − ε). We can find points in {p′n} and
{q′n} in Ω so that p′n → p′ and q′n → q′. The geodesic γn of (Ω̄, dΩ) joining pn and qn must
converge to γ|[ε,1−ε] otherwise there would have been branching geodesics between p, q. On
the other hand γn is a local geodesic of (X, dX) and hence is a quasigeodesic in X. Since
limits of quasigeodesics are quasigeodesics it follows that γ|[ε,1−ε] is a quasi-geodesic in X.
Letting ε→ 0 we conclude that γ is a quasi-geodesic in X as well.

4.2 ncRCD case

The purpose of this section is to prove Theorem 1.3. We need the following pairwise almost
convexity proved by Deng in [Den20, Theorem 6.5].

Proposition 4.1. Let (X, d,m) be an RCD(K,N) space with essdim = n. For m×m-a.e.
every (x, y) ∈ Rn ×Rn, there exists a geodesic joining x, y, and entirely contained in Rn.

Proof of Theorem 1.3. We assume that Ω̄ 6= X, otherwise it either contradicts the as-
sumption Ω̄ ∩ ∂X = ∅ or makes the statement trivial. We break the proof into several
steps.

Step 1: we show ∂Ω̄ ⊆ ∂topΩ̄.
Observe that dΩ and dX coincide on sufficiently small open subsets of Ω, hence tangent

cones taken at the same point by the same rescaling sequence w.r.t. both metrics are
isometric for points in Ω, in particular tangent cones at points in Ω have no boundary.
Which means that SN−1(Ω̄)\SN−2(Ω̄) ⊆ ∂topΩ̄. Since ∂topΩ̄ is closed, we have ∂Ω̄ ⊆ ∂topΩ̄.

Step 2: Suppose ∂topΩ̄ ⊆ ∂Ω̄ is not true, we find a point q ∈ ∂topΩ̄ \ ∂Ω̄ so that
q ∈ R(X).

First, there exists p ∈ ∂topΩ̄ \ ∂Ω̄. Since ∂topΩ̄ and ∂Ω̄ are both closed, there exists
ε > 0 such that B2ε(p) ∩ ∂Ω̄ = ∅. Now consider any two points in Bε/2(p). By triangle
inequality, any geodesic joining such two points lies in Bε(p) hence does not intersect ∂Ω̄,
moreover, note that HNX(Bε/2(p) ∩ Ω) > 0, HNX(Bε/2(p) ∩ (X \ Ω̄)) > 0 (recall we assumed
Ω̄ 6= X), by Deng’s pairwise almost convexity of the regular set, Proposition 4.1, there
exist x ∈ Bε/2(p) ∩ Ω ∩R(X) and y ∈ Bε/2(p) ∩ (X \ Ω̄) ∩R(X) such that some geodesic,
denote it by γxy, joining x, y is entirely contained in R(X), meanwhile, γxy must intersect
∂topΩ̄, and the point of intersection, denoted by q, is the desired point.

Step 3: We show that for the point q we found in step 2, there exists a neighborhood U
so that ∂topΩ̄∩U has Hausdorff codimension at least 2 (recall Remark 1.4), and there exists
δ := δ(K,N) > 0 depending only on K,N such that ΘΩ̄(x) ≤ 1− δ for any x ∈ ∂topΩ̄ ∩ U .

Since q ∈ R(X) ∩ (∂topΩ̄ \ ∂Ω̄), there exists an open neighborhood U such that U is
homeomorphic to a manifold and U ∩ ∂Ω̄ = ∅. We claim that ∂topΩ̄ ∩ U ⊆ SN−2(Ω̄). It
suffices to show ∂topΩ̄ ∩ U ⊆ S(Ω̄) since U is disjoint from ∂Ω̄.

Let δ := δ(K,N) > 0 be as in Theorem 2.4, if there exists x ∈ ∂topΩ̄ ∩ U with
ΘΩ̄(x) > 1 − δ then there exists V ⊆ U ∩ Ω̄ containing x, open relative to Ω̄, and
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homeomorphic to a manifold. Now the invariance of domain for manifolds applied to
the inclusion V ↪→ U yields that V is open in X, hence V ⊆ Ω. This contradicts that
x ∈ ∂topΩ̄. Therefore for any x ∈ ∂topΩ̄ ∩ U it holds that ΘΩ̄(x) ≤ 1 − δ which by the
choice of δ implies that ∂topΩ̄∩U ⊆ SN−2(Ω̄). Since Hausdorff codimension of SN−2(Ω̄) is
at least 2, the proof of this step is completed.

Step 4: We show that when we blow up the inclusion map i0 : Ω̄ ↪→ X at q, the
induced map i1 : TqΩ̄→ TqX ∼= RN is not surjective near 0, in fact, 0 is on the topological
boundary of i1(TqΩ̄).

Denote by BX
r (resp. BΩ̄

r ) the ball of radius r in metric dX (resp. dΩ). We claim that
HNX(BΩ̄

r (x)) = HNΩ̄ (BΩ̄
r (x)) for x ∈ U ∩ Ω̄ and r > 0 small enough so that BΩ̄

r (x) ⊆ U .
Observe that the two distances dX and dΩ coincide with each other for small enough open
subsets in Ω, so HNX and HNΩ̄ gives the same mass to open subsets of Ω. Now observe that
BΩ̄
r (x) = (BΩ̄

r (x) ∩ Ω) ∪ (BΩ̄
r (x) ∩ ∂topΩ̄), where the former is open in Ω, the latter has

codimension at least 2 proved in step 3 hence measure zero, which completes the proof of
the claim. Recall from step 2 and step 3 we know that ΘX(p) = 1 and ΘΩ̄(p) ≤ 1− δ, it
follows

lim
r→0

HNX(BΩ̄
r (p))

HNX(BX
r (p))

= lim
r→0

HNΩ̄ (BΩ̄
r (p))

HNX(BX
r (p))

= ΘΩ̄(p)
ΘX(p) ≤ 1− δ. (4.1)

If i1(TqΩ̄) contains BRN

ε (0) for some ε > 0, then the local coincidence of the metrics when
away from boundary implies BRN

ε/2 (0) = B
TqΩ̄
ε/2 (0), which in turn implies HNRN (BTqΩ̄

ε/2 (0)) =
HNRN (BRN

ε/2 (0)), this contradicts (4.1).
Step 5: We derive a contradiction by iteratively blowing up at a topological boundary

point.
If N = 1, then the statement is clear thanks to the classification theorem [KL16]. It

suffices to consider the case N ≥ 2. In this case the topological boundary of TqΩ̄ is more
than a single point, to show this, it is enough to notice that i1 is bi-Lipschitz (recall remark
1.4), so it is an homeomorphism onto its image.

Now we summarize the properties needed for the blow-up procedure. In the setting of
this theorem, let i0 : Ω̄ ↪→ X be the inclusion map, q ∈ ∂topΩ̄ and i1 : TqΩ̄→ TqX be the
blow-up of i0 at q. In order for the cone tip of TqΩ̄ to be on ∂topi1(TqΩ̄), it is sufficient to
have:

1. q ∈ R(X) and ΘΩ̄(q) ≤ 1− δ;

2. HNΩ̄ (BΩ̄
r (q)) = HNX(BΩ̄

r (q)) for sufficiently small r > 0;

3. q /∈ FΩ̄.

After the blow-up procedure in step 4, the ambient space TqX ∼= RN has no singular
points, moreover, q /∈ ∂Ω̄ implies q /∈ FΩ̄, which means iterated tangent cones at q w.r.t.
(Ω̄, dΩ) have no boundary, so every point on ∂topi1(TqΩ̄) (not empty by step 4) still satisfies
the conditions listed above, so we can continue blowing up at any point on ∂topi1(TqΩ̄) other
than the cone tip, each time keeping the the base point a point on the topological boundary.
In finitely many blow-up procedures, we end up with a bi-Lipschitz map iN : RN → RN
such that iN (0) = 0, iN not surjective, and 0 is on the topological boundary of iN (RN ),
this is impossible by invariance of domain.
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5 Applications
In this section we derive from the boundary equivalence in various ambient spaces the
locally totally geodesic property, i.e., a subset satisfying ncRCD(K,N) condition forces
the geodesics in intrinsic metric joining interior points to be disjoint from boundary.

We first introduce a technical result which is a direct consequence of Hölder continuity
along interior of tangent cones pointed out in [CN12, Corollary 1.5], it is available for
ncRCD(K,N) spaces thanks to Deng’s generalization of this statement [Den20].

Proposition 5.1. Let (X, d,m) be an RCD(K,N) space, and γ be a geodesic in X. The
set of points in γ with unique tangent cone is relatively closed in the interior of γ. In
particular, for each integer 1 ≤ k ≤ N , γ ∩Rk is closed relative to the interior of γ. If in
addition γ ∩Rk is dense in the interior of γ, then it is all of the interior.

We start with the following simplest setting, where the ambient space is a smooth
manifold but there are no assumption on the regularity of topological boundary.

Theorem 5.2. Let (M, g) be an n-dimensional smooth manifold, and Ω ⊆ M be open,
connected and such that Int(Ω̄) = Ω. If (Ω̄, dΩ, volg Ω̄) is a ncRCD(K,n) space, then

1. ∂topΩ̄ = ∂Ω̄.

2. any minimizing geodesic in (Ω̄, dΩ) joining two points in Ω does not intersect ∂Ω
hence a local geodesic in (M, g), i.e., Ω is locally totally geodesic;

3. any minimizing geodesic in (Ω̄, dΩ) joining two points on ∂topΩ̄ is either entirely
contained in ∂topΩ̄, or its interior is entirely in Ω. In the latter case the minimizing
geodesic is also a local geodesic in (M, g).

Proof. We first show that if p ∈ ∂topΩ̄, then any tangent cone taken w.r.t. (Ω̄, dΩ, volg Ω̄)
at p cannot be Rn. This is contained in step 3 of the proof of Theorem 1.3. If there is
a tangent cone w.r.t. (Ω̄, dΩ, volg Ω̄) at p is Rn, then there is a neighborhood V of p
open in Ω̄ homeomorphic to Rn, while there is also a neighborhood U of p open in M
homeomorphic to Rn. Then the invariance of domain applied to the inclusion U ∩ V ↪→ U
show that U ∩ V is open in M and U ∩ V ⊆ Ω, a contradiction to p ∈ ∂topΩ̄. It follows
directly that ∂topΩ̄ = ∂Ω̄.

Consider now a minimizing geodesic γ : [0, 1]→ Ω̄ in (Ω̄, dΩ). Then γ((0, 1)) ∩ ∂topΩ̄
is relatively closed in γ((0, 1)). By Proposition 5.1, γ((0, 1)) \ ∂topΩ̄ is also relatively
closed, this is the set of points in γ((0, 1)) having tangent cone Rn. It follows from the
connectedness of γ((0, 1)) that either γ((0, 1)) \ ∂topΩ̄ or γ((0, 1)) ∩ ∂topΩ̄ is empty.

Remark 5.3. Note that Theorem 5.2 implies that Ω̄ is locally convex in M and is hence
locally Alexandrov (globally Alexandrov if it is compact).

We now move to the case where the ambient space is a ncRCD(K,N) space. With the
extra assumption ∂X = FX and the stability of absence of boundary [BNS22, Theorem
1.6] of an RCD(K,N) space, the exact same idea can be used to prove that Int(X) is
strongly geodesically convex.

Corollary 5.4. Let (X, d,HN ) be a ncRCD(K,N) space. Assume ∂X = FX, then
Int(X) := X \ ∂X is strongly convex, i.e. any geodesic joining points in Int(X) does not
intersect ∂X.
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Proof. For a constant speed geodesic γ : [0, 1] → X joining two points in Int(X), if
γ ∩ ∂X 6= ∅, then there exists a t0 ∈ (0, 1) such that t0 = sup{t : γ([0, t)) ∩ ∂X} = ∅ and
γ(t0) ∈ ∂X, since ∂X is closed. Note that γ(t0) is an interior point of γ and for every
t ∈ (0, t0), any tangent cone at γ(t) does not have boundary, now the he stability of absence
of boundary [BNS22, Theorem 1.6] under pmGH convergence and hölder continuity of
tangent cones along the interior of a geodesic yield that any tangent cone at γ(t0) has no
boundary, this contradicts γ(t0) ∈ ∂X = FX.

Corollary 5.5. In the setting of Theorem 1.3, with the extra assumption that FX = ∂X,
any (minimizing) geodesic in (Ω̄, dΩ) joining two points in Ω is a local geodesic in (X, dX),
hence Ω is locally totally geodesic.

If we consider only a noncollapsed Ricci limit space with boundary (X, d,m), i.e. the
pmGH limit of n-dimensional manifolds with convex boundary and uniform Ricci curvature
lower bound in the interior and uniform volume lower bound of ball of radius 1 centered
at points chosen in the pmGH convergence, then FX = ∂X is already verified [BNS22,
Theorem 7.8], naturally we have:

Corollary 5.6. Let (X, d,m) be a noncollapsed Ricci limit space with boundary, then its
interior X \ ∂X is strongly convex.

Due to the lack of a notion of intrinsic boundary for collapsed spaces we have been
discussing noncollapsed spaces only. Without stratification of singular set, De Philippis-
Gigli definition’s cannot be applied, and Kapovitch-Mondino’s definition also fails to provide
the correct definition of boundary, as the metric horn example by Cheeger-Colding [CC97,
Example 8.77] shows a collapsed Ricci limit space can have an interior cusp at which the
tangent cone is a half line. Nevertheless we conjecture that Han’s Theorem 1.5 holds in
much larger generality, that is, a subspace in a ncRCD(K,N) ambient space along with
some reference measure satisfying RCD(K,∞) condition should still enjoy the property
that geodesics in the intrinsic metric joining points in the interior remains away from
boundary, and the reference measure gives measure 0 to the topological boundary. This
would provide a partial converse ( different from local-to-global theorem) to the well-known
global-to-local theorem for RCD(K,∞) spaces from [AGS14, Theorem 6.18]:

Theorem 5.7. Let Y be a weakly geodesically convex closed subset of an RCD(K,∞)
space (X, d,m) such that m(Y ) > 0 and m(∂topY ) = 0. Then (Y, dY ,m Y ) is also an
RCD(K,∞) space.

More precisely, we conjecture that

Conjecture 5.8. Let Ω be an open subset in a ncRCD(K,N) space (X, dX ,HN ), where
N is a positive integer, so that for some Radon measure µ with suppµ = Ω̄, (Ω̄, dΩ, µ) is
an RCD(K,∞) space. Assume that ∂topΩ is HN−1-rectifiable, then µ Ω� HN Ω and
µ(∂topΩ) = 0 and every geodesic joining two points in Ω w.r.t. dΩ does not intersect ∂topΩ̄
hence a local geodesic w.r.t. dX , in particular, Ω is locally totally geodesic.

6 Almost convexity

6.1 1-D localization

We minimally collect the elements of the localization technique introduced in [Cav14] and
[CM16], we remark that this technique is available for a much general class of metric
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measure spaces, the so called essentially non-branching MCP(K,N) spaces, which contains
essentially non-branching CD(K,N) spaces, hence RCD(K,N) spaces ([RS13]).

Let (X, d,m) be an RCD(K,N) space, u be a 1-Lipschitz function. Define the transport
set induced by u as:

Γ(u) := {(x, y) ∈ X ×X : u(x)− u(y) = d(x, y)},

and its transpose as Γ−1(u) := {(x, y) ∈ X × X : (y, x) ∈ Γ(u)}. The union Ru :=
Γ−1(u) ∪ Γ(u) defines a relation on X. By excluding negligible isolated and branching
points, one can find a transport set Tu such that m(X \ Tu) = 0 and Ru restricted to Tu
is an equivalence relation. So there is a partition of Tu := ∪α∈QXα, where Q is a set of
indices, denote by Q : Tu → Q the quotient map. In [Cav14, Proposition 5.2], it is shown
that there exists a measurable selection s : Tu → Tu such that if xRuy then s(x) = s(y),
so we can identify Q as s(Tu) ⊆ X. Equip Q with the σ-algebra induced by Q and the
measure q := Q](m Tu), we can hence view q as a Borel measure on X. Furthermore,
each Xα is shown ([CM16, Lemma 3.1]) be to isometric to an interval Iα, the distance
preserving map γα : Iα → Xα extend to an geodesic still denoted by γα : Īα → X. Putting
several results together, we have ([KM21, Theorem A.5]):

Theorem 6.1. Let (X, d,m) be an RCD(K,N) space. u be a 1-Lipschitz function. Then
m admits a disintegration:

m =
∫
Q
mαq(dα),

where mα is a non-negative Radon measure on X, such that

1. For any m-measurable set B, the map α 7→ mα(B) is q-measurable.

2. for q-a.e. α ∈ Q, mα is concentrated on Xα = Q−1(α). This property is called strong
consistency of the disintegration.

3. for any m-measurable set B and q-measurable set C, it holds

m(B ∩Q−1(C)) =
∫
C
mα(B)q(dα).

4. for q-a.e. α ∈ Q, mα = hαH1 Xα � H1 Xα, where hα is a log concave density,
and (X̄α, d,mα) is an RCD(K,N) space.

6.2 Proof of Proposition 1.8 and Consequences

Proof of Proposition 1.8. Take x ∈ X, disintegrate m w.r.t dx := d(x, ·). Item 3 in Theorem
6.1 yields that

0 = m(X \ Rn) =
∫
Q
mα(X \ Rn)q(dα). (6.1)

Then for q-a.e. α ∈ Q, mα(X \ Rn) = 0, we set Q̃ := {α ∈ Q : mα(X \ Rn) = 0}, then
Rx := (∪

α∈Q̃Xα) ∩ Rn is the desired set. Indeed, for any y ∈ Rx, there is a geodesic
(segment) γ contained in Xα joining x, y, for some α ∈ Q̃, with mα(γ \ Rn) = 0. the log-
concavity of hα implies that hα isH1 a.e. positive on Xα, so we get thatH1 Xα(γ\Rn) = 0,
which in turn implies that regular points of essential dimension is dense in the interior of
γ. Now apply Proposition 5.1, we see that the interior of γ is entirely in Rn and the end
point y is also in Rn.
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Since Rn ⊆ Int(X) Proposition 1.8 immediately implies almost convexity of Int(X) =
X \ ∂X.

Corollary 6.2. Let (X, d,HN ) be a ncRCD(K,N) space. For every x ∈ Int(X),there exists
a subset Rx ⊆ Int(X) so that m(X \ Rx) = 0 and for any y ∈ Rx there is a minimizing
geodesic joining x, y and entirely contained in Int(X).

We then naturally obtain the following corollary.

Corollary 6.3. In the setting of Theorem 1.3, for every point x ∈ Ω, there exists a set
Rx ⊆ Ω such that HN (Ω̄ \ Rx) = 0 and for every y ∈ Rx, there is a minimizing geodesic
in (Ω̄, dΩ) joining x, y lies entirely in Ω, hence a local geodesic in (X, dX), i.e., Ω is almost
locally totally geodesic.
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