(1) Let M be the Heisenberg group, i.e the group of 3×3 matrices of the form

$$
\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)
$$

identified with \mathbb{R}^{3} via (x, y, z) coordinates.
Let X, Y, Z be the left invariant vector fields on M with $X(0)=$ $\frac{\partial}{\partial x}, Y(0)=\frac{\partial}{\partial y}, Z(0)=\frac{\partial}{\partial z}$.

Compute the Lie brackets $[X, Y],[X, Z],[Y, Z]$ in two different ways: as originally defined for general vector fields and using the formula $[X, Y]=a d_{X}(Y)$. Verify that the answers are the same.
(2) Prove that the Heisenberg group does not admit a biinvariant Riemannian metric.

