(1) Let $M^n \subset \mathbb{R}^N$ be a smooth manifold with the induced metric Riemannian metric g. Let $\bar{\nabla}$ be the Levi-Civita connection on \mathbb{R}^N . Let X, Y be smooth tangent vector fields on M and let \bar{X}, \bar{Y} be their smooth extensions to an open neighbourhood U of M. We defined $\nabla_X Y$ by the formula

$$\nabla_X Y = (\bar{\nabla}_{\bar{X}} \bar{Y})^t$$

It was shown in class that this defines a well-defined connections on M which is Riemannian with respect to g.

Prove that ∇ defined this way is torsion free and conclude that it coincides with the Levi-Civita connection with respect to g.

- (2) Give a careful the proof of the following result from class Let $\phi: (M^n, g_1) \to (N^n, g_2)$ be an isometry. Given a connection ∇ on M define the pushforward connection $\phi_{\star}(\nabla)$ on B by the formula $\phi_{\star}(\nabla)_{\phi_{\star}X}\phi_{\star}Y = \phi_{\star}(\nabla_X Y)$
 - (a) Prove that push forward of the Levi-Civita connection on M is the Levi-Civita connection on N.
 - (b) Prove that if $\gamma(t)$ is a geodesic in M then $\phi(\gamma(t))$ is a geodesic in N.