(1) Let M^{n} be a smooth manifold and let ∇ be a connection on M. Let R be the curvature of ∇, i.e.

$$
\mathbb{R}(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

Prove that R is a tensor.
(2) Let ∇ be a connection on \mathbb{R}^{3} given by the formula

$$
\nabla_{X} Y=\nabla_{X}^{c a n} Y+X \times Y
$$

where \times is the cross product on \mathbb{R}^{3}.
(a) Find the curvature and the torsion of ∇.
(b) Let $\gamma(t)=(0,0, t)$ and $v=(1,0,0)$. Let $X(t)$ be the parallel vector field along γ with $X(0)=v$.
Find the explicit formula for $X(t)$.

