(1) Let $\left(M^{n}, g\right)$ be a Riemannian manifold and let $f: M \rightarrow \mathbb{R}$ be a smooth function. Define the gradient vector field ∇f on M as follows.

For any point $p \in M$ define $\nabla_{p} f \in T_{p} M$ by the formula $\left\langle\nabla_{p} f, v\right\rangle=$ $d f_{p}(v)$ for any $v \in T_{p} M$.

Let $x=\left(x_{1}, \ldots x_{n}\right)$ be some local coordinates on M.
(a) Find the formula for ∇f in coordinates x. In other words, write $\nabla f=\sum_{i=1}^{n} \alpha_{i}(x) \frac{\partial}{\partial x_{i}}$ and find the formulas for $\alpha_{i}(x)$.
(b) Prove that $\left\langle\nabla x_{i}, \nabla x_{j}\right\rangle=g^{i j}(x)$ where $g_{i j}(x)$ is the metric tensor in coordinates x.
(2) Let $\left(M^{n}, g\right)$ be a Riemannian manifold and let $\lambda>0$ be any positive real number. Let $p \in M$ be any point and let $\sigma \subset T_{p} M$ be a 2 plane. Let $K^{g}(\sigma)$ be the sectional curvature of σ with respect to g. Consider the Riemannian metric λg.

Prove that $K^{\lambda g}(\sigma)=\frac{K^{g}(\sigma)}{\lambda}$
(3) Let M be the Heisenberg group, i.e the group of 3×3 matrices of the form

$$
\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)
$$

identified with \mathbb{R}^{3} via (x, y, z) coordinates.
Let g be the left invariant metric on M which coincides with the canonical metric on \mathbb{R}^{3} at $(0,0,0)$. Let σ be the two-plane spanned by $\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \in T_{0} \mathbb{R}^{3}$. Compute the sectional curvature $K(\sigma)$ of σ.

