(1) Consider the IVP

$$
\left\{\begin{array}{l}
y^{\prime}=y^{2}+1 \\
y(0)=0
\end{array}\right.
$$

Find the biggest interval $(-a, a)$ for which the solution is guaranteed to exist by the existence theorem.
(2) Show that the solution of the IVP

$$
\left\{\begin{array}{l}
y^{\prime}=\sin (y)+1 \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

exists for all real t.
Hint: Show that the existence interval guaranteed by the existence theorem is the same for all initial conditions t_{0}, y_{0}.
(3) Let $t \rightarrow A(t)$ be a C^{1} matrix valued function on R.

Show that $f(t)=e^{A(t)}$ is continuous in t.
Hint: Use continuous dependance of solutions of IVPs on parameters.

