(1) Find the general solution of the following system

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=5 y_{1}+3 y_{2}+t \\
y_{2}^{\prime}=-6 y_{1}-4 y_{2}
\end{array}\right.
$$

(2) Solve the following IVP

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=2 y_{1}-y_{2}+e^{2 t} \\
y_{2}^{\prime}=y_{1}+2 y_{2}-e^{2 t} \\
y_{1}(0)=0 \\
y_{2}(0)=1
\end{array}\right.
$$

(3) Prove the Uniqueness theorem for a non-autonomous system

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

where f is a C^{1} function in (t, y).
Hint: Reduce the problem to an autonomous system by introducing an extra variable.
(4) Let $y(t)$ be the solution of the following IVP:

$$
\left\{\begin{array}{l}
y^{\prime}=y \sin ^{2} y \\
y(0)=1
\end{array}\right.
$$

a) Prove that $y(t) \geq 0$ for $t>0$.

Hint: show that $y(t)$ is nondecreasing for $t>0$.
b) Prove that $y(t) \leq e^{t}$ for $t \geq 0$.

Hint: Show that $y(t)$ satisfies a differential inequality of the form $y^{\prime} \leq a y$ for some $a>0$ and use it to estimate $y(t)$ from above.

