(1) Let A be the following matrix

$$
A=\left(\begin{array}{cccc}
1 & 2 & 0 & 0 \\
-2 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & -2 & 1
\end{array}\right)
$$

Find a basis of the solution space for the system $y^{\prime}=A y$ where y is a column vector.
(2) Show that e^{A} is orthogonal if A is real and skew-symmetric.
(3) Show that if $e^{t A} e^{t B}=e^{t B} e^{t A}$ for any real t then $A B=B A$.

Hint: Differentiate!

