(1) Suppose a 2×2 real matrix A has a complex eigenvalue $\lambda=\alpha+i \beta$. Let v be an eigenvector for λ. Write v as $v=u+i w$ where both u and w are real vectors.

Prove that u, w are linearly independent.
(2) Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a 2×2 real matrix with complex eigenvalues.
(a) Prove that $b c<0$.
(b) In terms of a, b, c, d determine if A produces clockwise or counterclockwise spirals when plotting solutions of $y^{\prime}=A y$.
(The answer will depend on the sign of a certain expression in $a, b, c, d)$.
(3) Consider the following linear system of ODEs

$$
\left\{\begin{array}{l}
x^{\prime}=2 x+y \\
y^{\prime}=-5 x-2 y
\end{array}\right.
$$

Find a second degree polynomial $P(x, y)$ such that any solution of the above system satisfies

$$
P(x, y)=\text { const } .
$$

Hint: Use an appropriate change of coordinates.

