(1) Cnsider the following linear ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Suppose its characteristic equation has a double root λ.
Show that $y=t e^{\lambda t}$ is a solution of the above equation.
(2) (a) Show that the general solution of the equation

$$
y^{\prime \prime}+\omega^{2} y=0
$$

can be written in the form $A \cos (\omega t-\delta)$ where A, δ are arbitrary real numbers.
Hint: Use the formula $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin (\alpha) \sin (\beta)$.
(b) Let $y=-\cos t+\sqrt{3} \sin t$ be a solution of $y^{\prime \prime}+y=0$.

Write y in the form $A \cos (t-\delta)$.
(3) Consider the following IVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+y=\cos (\omega t) \\
y(0)=0 \\
y^{\prime}(0)=1 / 2
\end{array}\right.
$$

a) Using the variation of parameter method find the solution of the above IVP if $\omega \neq \pm 1$.
b) Prove that for any real t

$$
\lim _{\omega \rightarrow 1} \frac{\cos \omega t-\cos t}{\omega-1}=-t \sin t
$$

c) Let $y_{\omega}(t)$ be the solution of the above IVP. Prove that

$$
\lim _{\omega \rightarrow 1} y_{\omega}(t)=y_{1}(t)
$$

for any real t.
You can use the fact proved in class that $y=\frac{t \sin t}{2}$ is a particular solution of the equation $y^{\prime \prime}+y=\cos t$.
Hint: Use parts a) and b).

