(1) Let ϕ_t be the integral flow of the differential equation y' = f(y)where $f: \mathbb{R}^n \to \mathbb{R}^n$ is \mathbb{C}^∞ .

Prove that $\phi_{t+s} = \phi_t \circ \phi_s$. You can assume that the solution of

$$\begin{cases} y' = f(y) \\ y(0) = y_0 \end{cases}$$

exists for all t for any initial condition y_0 .

Hint: Use the uniqueness theorem together with fact that if y(t) solves y' = f(y) then so does y(t + c) for any constant c. (You'll have to explain why that's true).

(2) Recall that GL(n, R) is the set of all invertible real $n \times n$ matrices. It is a group with respect to matrix multiplication.

Show that for any real $n \times n$ matrix A the map $t \mapsto e^{tA}$ gives a group homomorphism from (R, +) to GL(n, R).

(3) Let $\phi: R \to GL(n, R)$ be a group homomorphism. Suppose ϕ is differentiable as a map into the space of all $n \times n$ real matrices. Show that $\phi(t) = e^{tA}$ for some $n \times n$ matrix A.

Hint: Put $A = \phi'(0)$ and verify that $y = \phi(t)$ satisfies y' = Ay.