- (1) Let $\phi: R \to GL(n, R)$ be a group homomorphism. Suppose ϕ is **continuous** as a map into the space of all $n \times n$ real matrices. Show that $\phi(t) = e^{tA}$ for some $n \times n$ matrix A. Hint:
 - (a) Using the theorem on differentiable dependence of solutions of ODEs on parameters show that the map $A \mapsto e^A$ is a local diffeomorphism near $A_0 = 0$.
 - (b) Use (a) to show that there is $\epsilon > 0$ such that for any matrix A sufficiently close to I there is a well-defined \sqrt{A} lying in $B(0, \epsilon)$.
 - (c) Show that one can similarly define $A^{p/q}$ for any integers p, q with |p| < |q| and any A close to I.
 - (d) Use (c) to show that $\phi(t) = e^{tA}$ for some matrix A and all rational t.