Solutions to Term Test 3 Practice Test 2

(1) Give the following definitions
(a) a k-tensor on a vector space V.
(b) A C^{r}-manifold without a boundary in \mathbb{R}^{n}.

Solution

(a) A map $T: \underbrace{V \times V \ldots \times V}_{k \text { times }} \rightarrow \mathbb{R}$ is a k-tensor on V if it's linear in every variable.
(b) A set $M \subset \mathbb{R}^{n}$ is a k-dimensional C^{r}-manifold without a boundary if for every point $p \in M$ there exists a set $U \subset M$ which is open in M, an open subset $V \subset \mathbb{R}^{k}$ and a C^{r} map $f: V \rightarrow \mathbb{R}^{n}$ such that
(i) $f(V)=U$ and $f: V \rightarrow U$ is 1-1 and onto;
(ii) $\operatorname{rank}\left[d f_{x}\right]=k$ for any $x \in V$;
(iii) $f^{-1}: U \rightarrow V$ is continuous.
(2) Let $e_{1}, e_{2}, e_{3}, e_{4}$ be a basis of a 4 -dimensional space V.
Let $\omega=\operatorname{Alt}\left(e_{1}^{*} \otimes e_{2}^{*}+e_{3}^{*} \otimes e_{4}^{*}\right)$ and $\eta=2 e_{2}^{*}+e_{3}^{*}$.
Find $(\omega \wedge \eta)\left(e_{2}, e_{3}, e_{4}\right)$.

Solution

$$
\begin{aligned}
& \text { We have } \omega=\frac{1!1!}{2!}\left(e_{1}^{*} \wedge e_{2}^{*}+e_{3}^{*} \wedge e_{4}^{*}\right) \text {. Hence } \omega \wedge \eta= \\
& \frac{1}{2}\left(e_{1}^{*} \wedge e_{2}^{*}+e_{3}^{*} \wedge e_{4}^{*}\right) \wedge\left(2 e_{2}^{*}+e_{3}^{*}\right)=\frac{1}{2}\left(e_{1}^{*} \wedge \wedge e_{2}^{*} \wedge 2 e_{2}^{*}+e_{1}^{*} \wedge e_{2}^{*} \wedge\right. \\
& \left.e_{3}^{*}+e_{3}^{*} \wedge e_{4}^{*} \wedge 2 e_{2}^{*}+e_{3}^{*} \wedge e_{4}^{*} \wedge e_{3}^{*}\right)=\frac{1}{2} e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}+e_{3}^{*} \wedge e_{4}^{*} \wedge e_{2}^{*}= \\
& \frac{1}{2} e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}+e_{2}^{*} \wedge e_{3}^{*} \wedge e_{4}^{*} . \\
& \quad \text { Therefore } \omega \wedge \eta\left(e_{2}, e_{3}, e_{4}\right)=\frac{1}{2} e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}\left(e_{2}, e_{3}, e_{4}\right)+ \\
& e_{2}^{*} \wedge e_{3}^{*} \wedge e_{4}^{*}\left(e_{2}, e_{3}, e_{4}\right)=0+1=1 .
\end{aligned}
$$

(3) Let v be an n-dimensional vector space. Let $k \geq 1$. Find all k-tensors T on V such that both T and $|T|$ are tensors.

Solution

If both T and $|T|$ are tensors then we must have $|T|\left(-v_{1}, v_{2}, \ldots, v_{k}\right)=-|T|\left(v_{1}\right.$, ldots,$\left.v_{k}\right)$ for any v_{1}, ldots, v_{k}. But $|T| \geq 0$ so this can only happen if $T \equiv 0$.
(4) (15 pts) Let $M \subset \mathbb{R}^{3}$ be given by $\left\{x^{2}+y^{2}-z^{2}=\right.$ $0\} \cap\{x+2 y-z=1\}$.
Show that M is a manifold and compute its dimension.

Solution

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by $f(x, y, z)=\left(x^{2}+\right.$ $\left.y^{2}-z^{2}, x+2 y-z\right)$. Note that f is clearly C^{∞} and $M=f^{-1}\{(0,1)\}$.
We claim that $(0,1)$ is a regular value of f. To see this suppose $f(x, y, z)=(0,1)$. Then $\left[d f_{(x, y, z)}\right]=$ $\left(\begin{array}{ccc}2 x & 2 y & -2 z \\ 1 & 2 & -1\end{array}\right)$
The only way this matrix could have rank 1 if the first row is a multiple of the second one i.e. $x=$ $\lambda, y=2 \lambda, z=\lambda$. Then we must have $0=x^{2}+y^{2}-$ $z^{2}=\lambda^{2}+(2 \lambda)^{2}-(\lambda)^{2}=4(\lambda)^{2}$ and hence $\lambda=0$ and $x=y=z=0$. This contradicts $x+2 y-z=1$. Thus $\left[d f_{(x, y, z)}\right]$ has rank $=2$. Therefore $(0,1)$ is a regular value of f and hence, M is a C^{∞} manifold without boundary of dimension $3-2=1$.
(5) (15 pts) Let $U \subset \mathbb{R}^{2}$ be given by $\left\{0<x^{2}+4 y^{2}<1\right\}$ and $f(x, y)=\frac{1}{\sqrt{x^{2}+4 y^{2}}}$.

Determine if $\int_{U}^{e x t} f$ exists and if it does compute it.

Solution

Let $U_{n}=\left\{\frac{1}{n^{2}}<x^{2}+4 y^{2}<1\right\}$ where $n>1$ be an open exhaustion of U. Then U_{n} is rectifiable and f is continuous and bounded on U_{n}. Therefore, $\int_{U_{n}} f$ exists for any $n>1$ and hence $\int_{U_{n}}^{e x t} f$ exists and $\int_{U_{n}}^{e x t} f=\int_{U_{n}} f$. Let $V_{n}=U_{n} \backslash\{(x, 0) \mid x>0\}$. Then V_{n}
is also open and rectifiable and hence $\int_{V_{n}} f$ also exists. Since $f \cdot \chi_{U_{n}}=f \cdot \chi_{V_{n}}$ except on a set of measure zero this means that $\int_{V_{n}} f=\int_{U_{n}} f$.

To compute $\int_{V_{n}} f$ we use the change of variables $(x, y)=g(r, \theta)$ given by $x=r \cos \theta, y=\frac{1}{2} r \sin \theta$ where $1 / n<r<1,0<\theta<2 \pi$. Then $\operatorname{det}[d g]=\frac{r}{2}$ and $\int_{V_{n}} f=\int_{0}^{2 \pi} \int_{1 / n}^{1} \frac{r}{2 r}=\pi(1-1 / n)$. We see that $\lim _{n \rightarrow \infty} \int_{U_{n}}^{e x t} f=\lim _{n \rightarrow \infty} \pi(1-1 / n)=\pi$. Since $f>0$ on U this means that $\int_{U}^{e x t} f$ exists and $\int_{U}^{e x t} f=\pi$.
(6) (10 pts) Let $v_{1}=(1,1,0), v_{2}=(-1,0,1), v_{3}=(1,1,1)$ and $w_{1}=(0,2,0), w_{2}=(1,1,0), w_{3}=(-2,1,3)$ be two bases of \mathbb{R}^{3}. Do $\left(v_{1}, v_{2}, v_{3}\right)$ and $\left(w_{1}, w_{2}, w_{3}\right)$ have the same orientation?

Solution

Consider the standard basis $e_{1}=(1,0,0), e_{2}=$ $(0,1,0), e_{3}=(0,0,1)$. The transition matrix from $\left(e_{1}, e_{2}, e_{3}\right)$ to $\left(v_{1}, v_{2}, v_{3}\right)$ has columns v_{1}, v_{2}, v_{3}, i.e. it's given by $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$. We compute $\operatorname{det} A=1$. Hence, $\left(e_{1}, e_{2}, e_{3}\right)$ and $\left(v_{1}, v_{2}, v_{3}\right)$ have the same orientation.

Similarly, we compute that the transition matrix from $\left(e_{1}, e_{2}, e_{3}\right)$ to $\left(u_{1}, u_{2}, u_{3}\right)$ is $B=\left(\begin{array}{ccc}0 & 1 & -2 \\ 2 & 1 & 1 \\ 0 & 0 & 3\end{array}\right)$
and $\operatorname{det} B=-6$. Hence, $\left(e_{1}, e_{2}, e_{3}\right)$ and $\left(u_{1}, u_{2}, u_{3}\right)$ have opposite orientations. Therefore, $\left(v_{1}, v_{2}, v_{3}\right)$ and (w_{1}, w_{2}, w_{3}) have opposite orientations.
(7) Let $M \subset \mathbb{R}^{n}$ be a manifold with boundary and $N \subset$ \mathbb{R}^{m} be a manifold without boundary. Prove that $M \times$ $N \subset \mathbb{R}^{n+m}$ is a manifold with boundary.

Solution

Let M be k-dimensional and N be l-dimensional.
First observe the following:
Observation. If $f: X_{1} \rightarrow Y_{1}, g: X_{2} \rightarrow Y_{2}$ are continuous then $f \times g: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$ is also continuous. here by $f \times g$ we mean the map $f \times$ $g\left(x_{1}, x_{2}\right)=f\left(x_{1}\right), g\left(x_{2}\right)$

Let N be k-dimensional and M be l-dimensional. Let $p \in N, q \in M$. Let $f: V_{1} \rightarrow N$ and $g: V_{2} \rightarrow M$ be parameterizations coming from the definition of a manifold (with boundary). Here $V_{1} \subset \mathbb{R}^{k}$ is open and $V_{2} \subset \mathbb{H}^{l}$ is open and $p \in f\left(V_{1}\right)$ and $q \in g\left(V_{2}\right)$. Then the map $F=f \times g: V_{1} \times V_{2} \rightarrow N \times M \subset \mathbb{R}^{n+m}$ satisfies the definition of a manifold with boundary.

Indeed, $V_{1} \times V_{2}$ is open in $\mathbb{R}^{k} \times \mathbb{H}^{l}=\mathbb{H}^{k+l}$, the map F is obviously, smooth, 1-1 and onto $f\left(V_{1}\right) \times g\left(V_{2}\right)$. the inverse map is continuous by the Observation above.
Lastly, $d F$ clearly has maximal rank everywhere since both $d f$ and $d g$ do.

