Term Test 3 Practice Test 2

(1) Give the following definitions
(a) a k-tensor on a vector space V.
(b) A C^{r}-manifold without a boundary in \mathbb{R}^{n}.
(2) Let $e_{1}, e_{2}, e_{3}, e_{4}$ be a basis of a 4 -dimensional space V.

Let $\omega=\operatorname{Alt}\left(e_{1}^{*} \otimes e_{2}^{*}+e_{3}^{*} \otimes e_{4}^{*}\right)$ and $\eta=2 e_{2}^{*}+e_{3}^{*}$.
Find $(\omega \wedge \eta)\left(e_{2}, e_{3}, e_{4}\right)$.
(3) Let v be an n-dimensional vector space. Let $k \geq 1$. Find all k-tensors T on V such that both T and $|T|$ are tensors.
(4) Let $M \subset \mathbb{R}^{3}$ be given by $\left\{x^{2}+y^{2}-z^{2}=0\right\} \cap\{x+2 y-z=1\}$.

Show that M is a manifold and compute its dimension.
(5) Let $U \subset \mathbb{R}^{2}$ be given by $\left\{0<x^{2}+4 y^{2}<1\right\}$ and $f(x, y)=\frac{1}{\sqrt{x^{2}+4 y^{2}}}$.

Determine if $\int_{U}^{e x t} f$ exists and if it does compute it.
(6) Let $v_{1}=(1,1,0), v_{2}=(-1,0,1), v_{3}=(1,1,1)$ and $w_{1}=(0,2,0), w_{2}=(1,1,0), w_{3}=$ $(-2,1,3)$ be two bases of \mathbb{R}^{3}. Do $\left(v_{1}, v_{2}, v_{3}\right)$ and $\left(w_{1}, w_{2}, w_{3}\right)$ have the same orientation?
(7) let $M \subset \mathbb{R}^{n}$ be a manifold with boundary and $N \subset \mathbb{R}^{m}$ be a manifold without boundary. Prove that $M \times N \subset \mathbb{R}^{n+m}$ is a manifold with boundary.

