Term Test 3 Practice Test 2

- (1) Give the following definitions
 - (a) a k-tensor on a vector space V.
 - (b) A C^r -manifold without a boundary in \mathbb{R}^n .
- (2) Let e_1, e_2, e_3, e_4 be a basis of a 4-dimensional space V. Let $\omega = Alt(e_1^* \otimes e_2^* + e_3^* \otimes e_4^*)$ and $\eta = 2e_2^* + e_3^*$. Find $(\omega \wedge \eta)(e_2, e_3, e_4)$.
- (3) Let v be an n-dimensional vector space. Let $k \ge 1$. Find all k-tensors T on V such that both T and |T| are tensors.
- (4) Let $M \subset \mathbb{R}^3$ be given by $\{x^2 + y^2 z^2 = 0\} \cap \{x + 2y z = 1\}$. Show that M is a manifold and compute its dimension.
- (5) Let $U \subset \mathbb{R}^2$ be given by $\{0 < x^2 + 4y^2 < 1\}$ and $f(x, y) = \frac{1}{\sqrt{x^2 + 4y^2}}$.

Determine if $\int_{U}^{ext} f$ exists and if it does compute it.

- (6) Let $v_1 = (1, 1, 0)$, $v_2 = (-1, 0, 1)$, $v_3 = (1, 1, 1)$ and $w_1 = (0, 2, 0)$, $w_2 = (1, 1, 0)$, $w_3 = (-2, 1, 3)$ be two bases of \mathbb{R}^3 . Do (v_1, v_2, v_3) and (w_1, w_2, w_3) have the same orientation?
- (7) let $M \subset \mathbb{R}^n$ be a manifold with boundary and $N \subset \mathbb{R}^m$ be a manifold without boundary. Prove that $M \times N \subset \mathbb{R}^{n+m}$ is a manifold with boundary.