## MAT 257Y

## Term Test 3 Practice Test 1

## Solutions

(1) Let $V=\mathbb{R}^{4}$ and let $e_{1}, e_{2}, e_{3}, e_{4}$ be its standard basis. Let $\mathcal{A}^{3}\left(\mathbb{R}^{4}\right)$ be the space of alternating 3 -tensors on $\mathbb{R}^{4}$. Let $T$ be a 2 tensor on $V$ given by $T(u, v)=$ $2 u_{1} v_{2}+3 u_{1} v_{1}-5 u_{3} v_{4}$. Let $S$ be a 1 -tensor on $V$ given by $S(u)=2 u_{1}+u_{2}-3 u_{4}$. Express $\operatorname{Alt}(T \otimes S)$ in the standard basis of $\mathcal{A}^{3}\left(\mathbb{R}^{4}\right)$.

## Solution

The standard basis of $\mathcal{A}^{3}\left(\mathbb{R}^{4}\right)$ is given by $e_{1}^{*} \wedge e_{2}^{*} \wedge$ $e_{3}^{*}, e_{1}^{*} \wedge e_{2}^{*} \wedge e_{4}^{*}, e_{1}^{*} \wedge e_{3}^{*} \wedge e_{4}^{*}, e_{2}^{*} \wedge e_{3}^{*} \wedge e_{4}^{*}$.
We can rewrite $T=2 e_{1}^{*} \otimes e_{2}^{*}+3 e_{1}^{*} \otimes e_{1}^{*}-5 e_{3}^{*} \otimes e_{4}^{*}$ and $S=2 e_{1}^{*}+e_{2}^{*}-3 e_{4}^{*}$

Note that $\operatorname{Alt}\left(e_{1} \otimes e_{1}\right)=0$. Hence $\operatorname{Alt}\left(e_{1} \otimes e_{1} \otimes S\right)=$ 0 by a theorem from class. Thus we can simplify $\operatorname{Alt}(T \otimes S)=\operatorname{Alt}\left(\left(2 e_{1}^{*} \otimes e_{2}^{*}-5 e_{3}^{*} \otimes e_{4}^{*}\right) \otimes\left(2 e_{1}^{*}+e_{2}^{*}-\right.\right.$ $\left.\left.3 e_{4}^{*}\right)\right)=4 \operatorname{Alt}\left(e_{1}^{*} \otimes e_{2} \otimes e_{1}^{*}\right)-10 \operatorname{Alt}\left(e_{3}^{*} \otimes e_{4}^{*} \otimes e_{1}^{*}\right)+$ $2 \operatorname{Alt}\left(e_{1}^{*} \otimes e_{2}^{*} \otimes e_{2}^{*}\right)-5 \operatorname{Alt}\left(e_{3}^{*} \otimes e_{4}^{*} \otimes e_{2}^{*}\right)-6 \operatorname{Alt}\left(e_{1}^{*} \otimes\right.$ $\left.e_{2}^{*} \otimes e_{4}^{*}\right)+15 \operatorname{Alt}\left(e_{3}^{*} \otimes e_{4}^{*} \otimes e_{4}^{*}\right)$.
Note that if $\omega, \eta, \theta$ are 1-tensors then $\omega \wedge \eta \wedge \theta=$ $\frac{3!}{1!\cdot 1!1!} \operatorname{Alt}(\omega \otimes \eta \otimes \theta)$. Hence $\operatorname{Alt}(\omega \otimes \eta \otimes \theta)=\frac{1}{6} \omega \wedge \eta \wedge \theta$. Applying this to the above we get

$$
\begin{aligned}
& A l t\left(T \otimes S S=\frac{1}{6}\left[4 e_{1}^{*} \wedge e_{2}^{*} \wedge e_{1}^{*}-10 e_{3}^{*} \wedge e_{4}^{*} \wedge e_{1}^{*}+2 e_{1}^{*} \wedge\right.\right. \\
& \left.e_{2}^{*} \wedge e_{2}^{*}-5 e_{3}^{*} \wedge e_{4}^{*} \wedge e_{2}^{*}-6 e_{1}^{*} \wedge e_{2}^{*} \wedge e_{4}^{*}+15 e_{3}^{*} \wedge e_{4}^{*} \wedge e_{4}^{*}\right]= \\
& \frac{1}{6}\left[0-10 e_{1}^{*} \wedge e_{3}^{*} \wedge e_{4}^{*}+0-5 e_{2}^{*} \wedge e_{3}^{*} \wedge e_{4}^{*}-6 e_{1}^{*} \wedge e_{2}^{*} \wedge e_{4}^{*}+0\right] \\
& =\frac{1}{6}\left[-10 e_{1}^{*} \wedge e_{3}^{*} \wedge e_{4}^{*}-5 e_{2}^{*} \wedge e_{3}^{*} \wedge e_{4}^{*}-6 e_{1}^{*} \wedge e_{2}^{*} \wedge e_{4}^{*}\right]
\end{aligned}
$$

(2) Let $T$ be a k-tensor on $\mathbb{R}^{n}$. Prove that $T$ is $C^{\infty}$ as a $\operatorname{map} \mathbb{R}^{n k} \rightarrow \mathbb{R}$.

## Solution

Let $e_{1}, \ldots, e_{n}$ be the standard basis of $\mathbb{R}^{n}$. Let $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$. we can write them in coordinates $v_{i}=\sum_{j} x_{i}^{j} e_{j}$

Then $T\left(v_{1}, \ldots, v_{k}\right)=T\left(\sum_{j_{1}} x_{1}^{j_{1}} e_{j_{1}}, \ldots, \sum_{j_{k}} x_{k}^{j_{k}} e_{j_{k}}\right)=$ $\sum_{j_{1}, \ldots, j_{k}} x_{1}^{j_{1}} \cdot \ldots \cdot x_{k}^{j_{k}} T\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)$. This is a polynomial in $x_{j}^{i}$ 's and hence is $C^{\infty}$.
(3) Let $M$ be a union of $x$ and $y$ axis in $\mathbb{R}^{2}$. Prove that $M$ is not a $C^{1}$ manifold.

## Solution

Suppose $M$ is a $C^{1}$ manifold. Then there exists an open neighborhood $U \subset \mathbb{R}^{2}$ of the origin and a $C^{1}$ map $f: U \rightarrow \mathbb{R}$ such that $c=f(0,0)$ is a regular value and $M \cap U=f^{-1}(c)$. But then $f(x, 0)=0$ on $U$ and hence $\frac{\partial f}{\partial x}(0,0)=0$. Similarly, $f(0, y)=0$ on $U$ and hence $\frac{\partial f}{\partial y}(0,0)=0$. Hence $d f_{(0,0)}=0$ which means that $c=f(0,0)$ is not a regular value. This is a contradiction and hence $M$ is not a manifold.
(4) Prove that $S_{+}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid\right.$ such that $x^{2}+y^{2}+$ $\left.z^{2}=1, z \geq 0\right\}$ is a manifold with boundary.

## Solution

Consider the following parametrization $f(\theta, \phi)=$ $(\cos \phi \cos \theta, \cos \phi \sin \theta, \sin \phi)$ where $(\theta, \phi) \in U_{a}=\{a<$ $\theta<a+2 \pi, 0 \leq \phi<\pi / 2\}$ for a fixed $a \in \mathbb{R}$. Note that $U_{a} \subset H^{2}$ is open in $H^{2}$.

Also, $\phi$ is $C^{\infty}$, 1-1 with continuous inverse, and $[d f]=\left[\frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi}\right]$ has rank $=2$ everywhere. Indeed, we compute
$\frac{\partial f}{\partial \theta}=(-\cos \phi \sin \theta, \cos \phi \cos \theta, 0)$ and
$\frac{\partial f}{\partial \phi}=(-\sin \phi \cos \theta,-\sin \phi \sin \theta, \cos \phi)$
We compute $\frac{\partial f}{\partial \theta} \times \frac{\partial f}{\partial \phi}=\left(\cos ^{2} \phi \cos \theta, \cos ^{2} \phi \sin \theta, \cos \phi \sin \phi\right)$
and hence $\left|\frac{\partial f}{\partial \theta} \times \frac{\partial f}{\partial \phi}\right|^{2}=\cos ^{4} \phi \cos ^{2} \theta+\cos ^{4} \phi \sin ^{2} \theta+$ $\cos ^{2} \phi \sin ^{2} \phi=\cos ^{4} \phi+\cos ^{2} \phi \sin ^{2} \phi=\cos ^{2} \phi \neq 0$ for $0 \leq \phi<\pi / 2$. This means that $\frac{\partial f}{\partial \theta}$ and $\frac{\partial f}{\partial \phi}$ are linearly independent and hence $[d f]$ has rank $=2$. Therefore $f$ satisfies the definition of a paramterization
in a definition of a manifold with boundary. By varying $a$ we can cover all of $S_{+}^{2}$ by images of such parametrizations with the exception of the north pole $p=(0,0,1)$. However, near this point $S_{+}^{2}$ is given by the graph of a $C^{\infty}$ function $z=\sqrt{1-x^{2}-y^{2}}$ and therefore it admits a parametrization near $p$ also.
(5) Let $c:[0,1] \rightarrow\left(\mathbb{R}^{n}\right)^{n}$ be continuous. Suppose that $c^{1}(t), \ldots, c^{n}(t)$ is a basis of $\mathbb{R}^{n}$ for any $t$.
Prove that $\left(c^{1}(0), \ldots, c^{n}(0)\right)$ and $\left(c^{1}(1), \ldots, c^{n}(1)\right)$ have the same orientation.

## Solution

Let $f(t)=\operatorname{det}\left[c^{1}(t), \ldots, c^{n}(t)\right]$. Then $f(t)$ is continuous and never zero. therefore $f(t)>0$ for all $t$ or $f(t)<0$ for all $t$ by the intermediate value theorem. In either case $f(1) / f(0)>0$. Let $A$ be the transition matrix from $\left(c^{1}(0), \ldots, c^{n}(0)\right)$ to $\left(c^{1}(1), \ldots, c^{n}(1)\right)$. then $A=\left[c^{1}(0), \ldots, c^{n}(0)\right]^{-1}\left[c^{1}(1), \ldots, c^{n}(1)\right]$. hence $\operatorname{det}(A)=f(1) / f(0)>0$ which means that $\left(c^{1}(0), \ldots, c^{n}(0)\right)$ and $\left(c^{1}(1), \ldots, c^{n}(1)\right)$ have the same orientation.
(6) Let $C$ be the triangle in $\mathbb{R}^{2}$ with vertices $(0,0),(1,2),(-1,3)$ Compute $\int_{C} x+y$.

## Solution

Let's make a change of variable

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

or $x=u-v, y=2 u+3 v$.
We have that $\operatorname{det}\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]=5$. Therefore,
$\int_{C} x+y=\int_{U} 5((u-v)+(2 u+3 v))$ where $U=$
$\{(u, v) \mid u>0, v>0, u+v<1\}$. Therefore using
Fubini's theorem we compute

$$
\begin{aligned}
& \int_{U} 5((u-v)+(2 u+3 v))=\int_{0}^{1} \int_{0}^{1-u} 5(3 u+2 v) d v d u= \\
= & \left.5 \int_{0}^{1}\left(3 u v+v^{2}\right)\right|_{0} ^{1-u} d u=5 \int_{0}^{1} 3 u(1-u)+(1-u)^{2} d u= \\
= & 5 \int_{0}^{1}-2 u^{2}+u+1 d u=\left.5\left(-2 / 3 u^{3}+u^{2} / 2+u\right)\right|_{0} ^{1}=25 / 6
\end{aligned}
$$

(7) Let $e_{1}, e_{2}$ be a basis of a vector space $V$ of dimension
2. Let $T \in \mathcal{L}^{2}(V)$ be given by $e_{1}^{*} \otimes e_{1}^{*}+e_{2}^{*} \otimes e_{2}^{*}$.

Prove that $T$ can not be written as $S \otimes U$ with $S, U \in \mathcal{L}^{1}(V)$.

## Solution

Suppose $e_{1}^{*} \otimes e_{1}^{*}+e_{2}^{*} \otimes e_{2}^{*}=S \otimes U$ for some $S=$ $a e_{1}^{*}+b e_{2}^{*}, U=c e_{1}^{*}+d e_{2}^{*}$. Then $S \otimes U=\left(a e_{1}^{*}+b e_{2}^{*}\right) \otimes$ $\left(c e_{1}^{*}+d e_{2}^{*}\right)=a c e_{1}^{*} \otimes e_{1}^{*}+b c e_{2}^{*} \otimes e_{1}^{*}+a d e_{2}^{*} \otimes e_{1}^{*}+b d e_{2}^{*} \otimes e_{2}^{*}=$ $e_{1}^{*} \otimes e_{1}^{*}+e_{2}^{*} \otimes e_{2}^{*}$. This means that $a c=1, b c=0, a d=$ $0, b d=1$. It's easy to see that this system has no solutions. for example, $a b c d=(b c)(a d)=0 \cdot 0=0$ and on the other hand, $a b c d=(a c)(b d)=1 \cdot 1=1$. This is a contradiction.
(8) Let $U \subset R^{n}$ be open. Let $f, g: U \rightarrow R$ be continuous and $|f| \leq g$. Suppose $\int_{U}^{e x t} g$ exists.
Prove that $\int_{U}^{e x t} f$ also exists.

## Solution

Let $\phi_{i}$ be a partition of unity on $U$. Then by definition of extended integral, $\sum_{i=1}^{\infty} \int_{U}|g| \phi_{i}<\infty$

Therefore
$\sum_{i=1}^{\infty} \int_{U}|f| \phi_{i} \leq \sum_{i=1}^{\infty} \int_{U}|g| \phi_{i}<\infty$ and hence $\int_{U}^{e x t} f$ exists by the definition.

