
MAT 257Y Term Test 3 Practice Test 1
Solutions

(1) Let V = R4 and let e1, e2, e3, e4 be its standard basis.
Let A3(R4) be the space of alternating 3-tensors on
R4. Let T be a 2 tensor on V given by T (u, v) =
2u1v2 + 3u1v1 − 5u3v4. Let S be a 1-tensor on V
given by S(u) = 2u1 + u2 − 3u4. Express Alt(T ⊗ S)
in the standard basis of A3(R4).

Solution

The standard basis of A3(R4) is given by e∗1 ∧ e∗2 ∧
e∗3, e

∗
1 ∧ e∗2 ∧ e∗4, e∗1 ∧ e∗3 ∧ e∗4, e∗2 ∧ e∗3 ∧ e∗4.

We can rewrite T = 2e∗1 ⊗ e∗2 + 3e∗1 ⊗ e∗1 − 5e∗3 ⊗ e∗4
and S = 2e∗1 + e∗2 − 3e∗4

Note that Alt(e1⊗e1) = 0. Hence Alt(e1⊗e1⊗S) =
0 by a theorem from class. Thus we can simplify
Alt(T ⊗ S) = Alt((2e∗1 ⊗ e∗2 − 5e∗3 ⊗ e∗4)⊗ (2e∗1 + e∗2 −
3e∗4)) = 4Alt(e∗1 ⊗ e2 ⊗ e∗1) − 10Alt(e∗3 ⊗ e∗4 ⊗ e∗1) +
2Alt(e∗1 ⊗ e∗2 ⊗ e∗2) − 5Alt(e∗3 ⊗ e∗4 ⊗ e∗2) − 6Alt(e∗1 ⊗
e∗2 ⊗ e∗4) + 15Alt(e∗3 ⊗ e∗4 ⊗ e∗4).

Note that if ω, η, θ are 1-tensors then ω ∧ η ∧ θ =
3!

1!·1!·1!Alt(ω⊗η⊗θ). Hence Alt(ω⊗η⊗θ) = 1
6ω∧η∧θ.

Applying this to the above we get
Alt(T ⊗S) = 1

6 [4e∗1∧ e∗2∧ e∗1− 10e∗3∧ e∗4∧ e∗1 + 2e∗1∧
e∗2∧ e∗2−5e∗3∧ e∗4∧ e∗2−6e∗1∧ e∗2∧ e∗4 + 15e∗3∧ e∗4∧ e∗4] =
1
6 [0−10e∗1∧e∗3∧e∗4+0−5e∗2∧e∗3∧e∗4−6e∗1∧e∗2∧e∗4+0]

= 1
6 [−10e∗1 ∧ e∗3 ∧ e∗4 − 5e∗2 ∧ e∗3 ∧ e∗4 − 6e∗1 ∧ e∗2 ∧ e∗4]

(2) Let T be a k-tensor on Rn. Prove that T is C∞ as a
map Rnk → R.

Solution

Let e1, . . . , en be the standard basis of Rn. Let
v1, . . . , vk ∈ Rn. we can write them in coordinates
vi =

∑
j x

j
iej

1



2

Then T (v1, . . . , vk) = T (
∑

j1
xj11 ej1, . . . ,

∑
jk
xjkk ejk) =∑

j1,...,jk
xj11 · . . . · x

jk
k T (ej1, . . . , ejk). This is a polyno-

mial in xij’s and hence is C∞.

(3) Let M be a union of x and y axis in R2. Prove that
M is not a C1 manifold.

Solution

Suppose M is a C1 manifold. Then there exists an
open neighborhood U ⊂ R2 of the origin and a C1

map f : U → R such that c = f(0, 0) is a regular
value and M ∩ U = f−1(c). But then f(x, 0) = 0 on
U and hence ∂f

∂x(0, 0) = 0. Similarly, f(0, y) = 0 on

U and hence ∂f
∂y (0, 0) = 0. Hence df(0,0) = 0 which

means that c = f(0, 0) is not a regular value. This is
a contradiction and hence M is not a manifold.

(4) Prove that S2
+ = {(x, y, z) ∈ R3| such that x2 + y2 +

z2 = 1, z ≥ 0} is a manifold with boundary.

Solution

Consider the following parametrization f(θ, φ) =
(cosφ cos θ, cosφ sin θ, sinφ) where (θ, φ) ∈ Ua = {a <
θ < a + 2π, 0 ≤ φ < π/2} for a fixed a ∈ R. Note
that Ua ⊂ H2 is open in H2.

Also, φ is C∞, 1-1 with continuous inverse, and
[df ] = [∂f∂θ ,

∂f
∂φ ] has rank=2 everywhere. Indeed, we

compute
∂f
∂θ = (− cosφ sin θ, cosφ cos θ, 0) and
∂f
∂φ = (− sinφ cos θ,− sinφ sin θ, cosφ)

We compute ∂f
∂θ×

∂f
∂φ = (cos2 φ cos θ, cos2 φ sin θ, cosφ sinφ)

and hence |∂f∂θ ×
∂f
∂φ |

2 = cos4 φ cos2 θ + cos4 φ sin2 θ +

cos2 φ sin2 φ = cos4 φ + cos2 φ sin2 φ = cos2 φ 6= 0 for
0 ≤ φ < π/2. This means that ∂f

∂θ and ∂f
∂φ are lin-

early independent and hence [df ] has rank=2. There-
fore f satisfies the definition of a paramterization



3

in a definition of a manifold with boundary. By
varying a we can cover all of S2

+ by images of such
parametrizations with the exception of the north pole
p = (0, 0, 1). However, near this point S2

+ is given by

the graph of a C∞ function z =
√

1− x2 − y2 and
therefore it admits a parametrization near p also.

(5) Let c : [0, 1] → (Rn)n be continuous. Suppose that
c1(t), . . . , cn(t) is a basis of Rn for any t.

Prove that (c1(0), . . . , cn(0)) and (c1(1), . . . , cn(1))
have the same orientation.

Solution

Let f(t) = det[c1(t), . . . , cn(t)]. Then f(t) is con-
tinuous and never zero. therefore f(t) > 0 for all t or
f(t) < 0 for all t by the intermediate value theorem.
In either case f(1)/f(0) > 0. Let A be the transition
matrix from (c1(0), . . . , cn(0)) to (c1(1), . . . , cn(1)).
then A = [c1(0), . . . , cn(0)]−1[c1(1), . . . , cn(1)]. hence
det(A) = f(1)/f(0) > 0 which means that (c1(0), . . . , cn(0))
and (c1(1), . . . , cn(1)) have the same orientation.

(6) Let C be the triangle in R2 with vertices (0, 0), (1, 2), (−1, 3)
Compute

∫
C x+ y.

Solution

Let’s make a change of variable[
x
y

]
=

[
1 −1
2 3

]
·
[
u
v

]
or x = u− v, y = 2u+ 3v.

We have that det

[
1 −1
2 3

]
= 5. Therefore,∫

C x + y =
∫
U 5((u − v) + (2u + 3v)) where U =

{(u, v)|u > 0, v > 0, u + v < 1}. Therefore using
Fubini’s theorem we compute
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∫
U

5((u− v) + (2u+ 3v)) =

∫ 1

0

∫ 1−u

0

5(3u+ 2v)dvdu =

= 5

∫ 1

0

(3uv + v2)|1−u0 du = 5

∫ 1

0

3u(1− u) + (1− u)2du =

= 5

∫ 1

0

−2u2 + u+ 1du = 5(−2/3u3 + u2/2 + u)|10 = 25/6

(7) Let e1, e2 be a basis of a vector space V of dimension
2. Let T ∈ L2(V ) be given by e∗1 ⊗ e∗1 + e∗2 ⊗ e∗2.

Prove that T can not be written as S ⊗ U with
S, U ∈ L1(V ).
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Solution

Suppose e∗1 ⊗ e∗1 + e∗2 ⊗ e∗2 = S ⊗ U for some S =
ae∗1 + be∗2, U = ce∗1 +de∗2. Then S⊗U = (ae∗1 + be∗2)⊗
(ce∗1+de

∗
2) = ace∗1⊗e∗1+bce∗2⊗e∗1+ade∗2⊗e∗1+bde∗2⊗e∗2 =

e∗1⊗e∗1+e∗2⊗e∗2. This means that ac = 1, bc = 0, ad =
0, bd = 1. It’s easy to see that this system has no
solutions. for example, abcd = (bc)(ad) = 0 · 0 = 0
and on the other hand, abcd = (ac)(bd) = 1 · 1 = 1.
This is a contradiction.

(8) Let U ⊂ Rn be open. Let f, g : U → R be continuous

and |f | ≤ g. Suppose
∫ ext
U g exists.

Prove that
∫ ext
U f also exists.

Solution

Let φi be a partition of unity on U . Then by defi-
nition of extended integral,

∑∞
i=1

∫
U |g|φi <∞

Therefore∑∞
i=1

∫
U |f |φi ≤

∑∞
i=1

∫
U |g|φi <∞ and hence

∫ ext
U f

exists by the definition.


