MAT 257Y Term Test 3 Practice Test 1 Solutions

(1) Let $V = \mathbb{R}^4$ and let e_1, e_2, e_3, e_4 be its standard basis. Let $\mathcal{A}^3(\mathbb{R}^4)$ be the space of alternating 3-tensors on \mathbb{R}^4 . Let T be a 2 tensor on V given by $T(u, v) = 2u_1v_2 + 3u_1v_1 - 5u_3v_4$. Let S be a 1-tensor on V given by $S(u) = 2u_1 + u_2 - 3u_4$. Express $Alt(T \otimes S)$ in the standard basis of $\mathcal{A}^3(\mathbb{R}^4)$.

Solution

The standard basis of $\mathcal{A}^3(\mathbb{R}^4)$ is given by $e_1^* \wedge e_2^* \wedge e_3^*$, $e_1^* \wedge e_2^* \wedge e_3^* \wedge e_3^* \wedge e_3^* \wedge e_3^* \wedge e_3^* \wedge e_4^*$.

We can rewrite $T = 2e_1^* \otimes e_2^* + 3e_1^* \otimes e_1^* - 5e_3^* \otimes e_4^*$ and $S = 2e_1^* + e_2^* - 3e_4^*$

Note that $Alt(e_1 \otimes e_1) = 0$. Hence $Alt(e_1 \otimes e_1 \otimes S) = 0$ by a theorem from class. Thus we can simplify $Alt(T \otimes S) = Alt((2e_1^* \otimes e_2^* - 5e_3^* \otimes e_4^*) \otimes (2e_1^* + e_2^* - 3e_4^*)) = 4Alt(e_1^* \otimes e_2 \otimes e_1^*) - 10Alt(e_3^* \otimes e_4^* \otimes e_1^*) + 2Alt(e_1^* \otimes e_2^* \otimes e_2^*) - 5Alt(e_3^* \otimes e_4^* \otimes e_2^*) - 6Alt(e_1^* \otimes e_2^* \otimes e_4^*) + 15Alt(e_3^* \otimes e_4^* \otimes e_4^*).$

Note that if ω, η, θ are 1-tensors then $\omega \wedge \eta \wedge \theta = \frac{3!}{1! \cdot 1! \cdot 1!} Alt(\omega \otimes \eta \otimes \theta)$. Hence $Alt(\omega \otimes \eta \otimes \theta) = \frac{1}{6} \omega \wedge \eta \wedge \theta$. Applying this to the above we get

 $Alt(T \otimes S) = \frac{1}{6} [4e_1^* \wedge e_2^* \wedge e_1^* - 10e_3^* \wedge e_4^* \wedge e_1^* + 2e_1^* \wedge e_2^* \wedge e_2^* - 5e_3^* \wedge e_4^* \wedge e_2^* - 6e_1^* \wedge e_2^* \wedge e_4^* + 15e_3^* \wedge e_4^* \wedge e_4^*] = \frac{1}{6} [0 - 10e_1^* \wedge e_3^* \wedge e_4^* + 0 - 5e_2^* \wedge e_3^* \wedge e_4^* - 6e_1^* \wedge e_2^* \wedge e_4^* + 0] = \frac{1}{6} [-10e_1^* \wedge e_3^* \wedge e_4^* - 5e_2^* \wedge e_3^* \wedge e_4^* - 6e_1^* \wedge e_2^* \wedge e_4^*]$ (2) Let T be a k-tensor on \mathbb{R}^n . Prove that T is C^∞ as a

(2) Let I be a k-tensor on \mathbb{R}^n . Prove that I is C^∞ as a map $\mathbb{R}^{nk} \to \mathbb{R}$.

Solution

Let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n . Let $v_1, \ldots, v_k \in \mathbb{R}^n$. we can write them in coordinates $v_i = \sum_j x_i^j e_j$

Then $T(v_1, \ldots, v_k) = T(\sum_{j_1} x_1^{j_1} e_{j_1}, \ldots, \sum_{j_k} x_k^{j_k} e_{j_k}) =$ $\sum_{j_1,\ldots,j_k} x_1^{j_1} \cdot \ldots \cdot x_k^{j_k} T(e_{j_1},\ldots,e_{j_k}).$ This is a polynomial in x_j^i 's and hence is C^{∞} .

(3) Let M be a union of x and y axis in \mathbb{R}^2 . Prove that M is not a C^1 manifold.

Solution

Suppose M is a C^1 manifold. Then there exists an open neighborhood $U \subset \mathbb{R}^2$ of the origin and a C^1 map $f: U \to \mathbb{R}$ such that c = f(0,0) is a regular value and $M \cap U = f^{-1}(c)$. But then f(x, 0) = 0 on U and hence $\frac{\partial f}{\partial x}(0,0) = 0$. Similarly, f(0,y) = 0 on U and hence $\frac{\partial f}{\partial y}(0,0) = 0$. Hence $df_{(0,0)} = 0$ which means that c = f(0, 0) is not a regular value. This is a contradiction and hence M is not a manifold.

(4) Prove that $S^2_+ = \{(x, y, z) \in \mathbb{R}^3 | \text{ such that } x^2 + y^2 + z^2 = 1, z \ge 0 \}$ is a manifold with boundary.

Solution

Consider the following parametrization $f(\theta, \phi) =$ $(\cos\phi\cos\theta,\cos\phi\sin\theta,\sin\phi)$ where $(\theta,\phi) \in U_a = \{a < \phi\}$ $\theta < a + 2\pi, 0 \leq \phi < \pi/2$ for a fixed $a \in \mathbb{R}$. Note that $U_a \subset H^2$ is open in H^2 .

Also, ϕ is C^{∞} , 1-1 with continuous inverse, and $[df] = \begin{bmatrix} \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi} \end{bmatrix}$ has rank=2 everywhere. Indeed, we compute

 $\frac{\partial f}{\partial \theta} = (-\cos\phi\sin\theta, \cos\phi\cos\theta, 0) \text{ and } \\ \frac{\partial f}{\partial \phi} = (-\sin\phi\cos\theta, -\sin\phi\sin\theta, \cos\phi)$

We compute $\frac{\partial f}{\partial \theta} \times \frac{\partial f}{\partial \phi} = (\cos^2 \phi \cos \theta, \cos^2 \phi \sin \theta, \cos \phi \sin \phi)$ and hence $\left|\frac{\partial f}{\partial \theta} \times \frac{\partial f}{\partial \phi}\right|^2 = \cos^4 \phi \cos^2 \theta + \cos^4 \phi \sin^2 \theta +$ $\cos^2 \phi \sin^2 \phi = \cos^4 \phi + \cos^2 \phi \sin^2 \phi = \cos^2 \phi \neq 0$ for $0 \leq \phi < \pi/2$. This means that $\frac{\partial f}{\partial \theta}$ and $\frac{\partial f}{\partial \phi}$ are linearly independent and hence [df] has rank=2. Therefore f satisfies the definition of a paramterization

in a definition of a manifold with boundary. By varying a we can cover all of S^2_+ by images of such parametrizations with the exception of the north pole p = (0, 0, 1). However, near this point S^2_+ is given by the graph of a C^{∞} function $z = \sqrt{1 - x^2 - y^2}$ and therefore it admits a parametrization near p also.

(5) Let $c: [0,1] \to (\mathbb{R}^n)^n$ be continuous. Suppose that $c^1(t), \ldots, c^n(t)$ is a basis of \mathbb{R}^n for any t.

Prove that $(c^1(0), \ldots, c^n(0))$ and $(c^1(1), \ldots, c^n(1))$ have the same orientation.

Solution

Let $f(t) = \det[c^1(t), \ldots, c^n(t)]$. Then f(t) is continuous and never zero. therefore f(t) > 0 for all t or f(t) < 0 for all t by the intermediate value theorem. In either case f(1)/f(0) > 0. Let A be the transition matrix from $(c^1(0), \ldots, c^n(0))$ to $(c^1(1), \ldots, c^n(1))$. then $A = [c^1(0), \ldots, c^n(0)]^{-1}[c^1(1), \ldots, c^n(1)]$. hence $\det(A) = f(1)/f(0) > 0$ which means that $(c^1(0), \ldots, c^n(0))$ and $(c^1(1), \ldots, c^n(1))$ have the same orientation.

(6) Let C be the triangle in \mathbb{R}^2 with vertices (0,0), (1,2), (-1,3)Compute $\int_C x + y$.

Solution

Let's make a change of variable

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} u \\ v \end{bmatrix}$$

or x = u - v, y = 2u + 3v. We have that det $\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = 5$. Therefore, $\int_C x + y = \int_U 5((u - v) + (2u + 3v))$ where $U = \{(u, v) | u > 0, v > 0, u + v < 1\}$. Therefore using Fubini's theorem we compute

$$\int_{U} 5((u-v) + (2u+3v)) = \int_{0}^{1} \int_{0}^{1-u} 5(3u+2v) dv du =$$

$$= 5 \int_{0}^{1} (3uv+v^{2})|_{0}^{1-u} du = 5 \int_{0}^{1} 3u(1-u) + (1-u)^{2} du =$$

$$= 5 \int_{0}^{1} -2u^{2} + u + 1 du = 5(-2/3u^{3} + u^{2}/2 + u)|_{0}^{1} = 25/6$$
(7) Let e_{1}, e_{2} be a basis of a vector space V of dimension
2. Let $T \in \mathcal{L}^{2}(V)$ be given by $e_{1}^{*} \otimes e_{1}^{*} + e_{2}^{*} \otimes e_{2}^{*}$.
Prove that T can not be written as $S \otimes U$ with
 $S, U \in \mathcal{L}^{1}(V)$.

Solution

Suppose $e_1^* \otimes e_1^* + e_2^* \otimes e_2^* = S \otimes U$ for some $S = ae_1^* + be_2^*$, $U = ce_1^* + de_2^*$. Then $S \otimes U = (ae_1^* + be_2^*) \otimes (ce_1^* + de_2^*) = ace_1^* \otimes e_1^* + bce_2^* \otimes e_1^* + ade_2^* \otimes e_1^* + bde_2^* \otimes e_2^* = e_1^* \otimes e_1^* + e_2^* \otimes e_2^*$. This means that ac = 1, bc = 0, ad = 0, bd = 1. It's easy to see that this system has no solutions. for example, $abcd = (bc)(ad) = 0 \cdot 0 = 0$ and on the other hand, $abcd = (ac)(bd) = 1 \cdot 1 = 1$. This is a contradiction.

(8) Let $U \subset \mathbb{R}^n$ be open. Let $f, g: U \to \mathbb{R}$ be continuous and $|f| \leq g$. Suppose $\int_U^{ext} g$ exists. Prove that $\int_U^{ext} f$ also exists.

Solution

Let ϕ_i be a partition of unity on U. Then by definition of extended integral, $\sum_{i=1}^{\infty} \int_U |g| \phi_i < \infty$

Therefore

 $\sum_{i=1}^{\infty} \int_{U} |f| \phi_i \leq \sum_{i=1}^{\infty} \int_{U} |g| \phi_i < \infty$ and hence $\int_{U}^{ext} f$ exists by the definition.