Term Test 3 Practice Test 1

(1) Let $V=\mathbb{R}^{4}$ and let $e_{1}, e_{2}, e_{3}, e_{4}$ be its standard basis. Let $\mathcal{A}^{3}\left(\mathbb{R}^{4}\right)$ be the space of alternating 3 -tensors on \mathbb{R}^{4}. Let T be a 2 tensor on V given by $T(u, v)=$ $2 u_{1} v_{2}+3 u_{1} v_{1}-5 u_{3} v_{4}$. Let S be a 1 -tensor on V given by $S(u)=2 u_{1}+u_{2}-3 u_{4}$. Express $\operatorname{Alt}(T \otimes S)$ in the standard basis of $\mathcal{A}^{3}\left(\mathbb{R}^{4}\right)$.
(2) Let T be a k-tensor on R^{n}. Prove that T is C^{∞} as a map $\mathbb{R}^{n k} \rightarrow \mathbb{R}$.
(3) Let M be a union of x and y axis in \mathbb{R}^{2}. Prove that M is not a C^{1} manifold.
(4) Prove that $S_{+}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid\right.$ such that $\left.x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$ is a manifold with boundary.
(5) Let $c:[0,1] \rightarrow\left(\mathbb{R}^{n}\right)^{n}$ be continuous. Suppose that $c^{1}(t), \ldots, c^{n}(t)$ is a basis of \mathbb{R}^{n} for any t.

Prove that $\left(c^{1}(0), \ldots, c^{n}(0)\right)$ and $\left(c^{1}(1), \ldots, c^{n}(1)\right)$ have the same orientation.
(6) Let C be the triangle in \mathbb{R}^{2} with vertices $(0,0),(1,2),(-1,3)$ Compute $\int_{C} x+y$.
(7) Let e_{1}, e_{2} be a basis of a vector space V of dimension 2 . Let $T \in \mathcal{L}^{2}(V)$ be given by $e_{1}^{*} \otimes e_{1}^{*}+e_{2}^{*} \otimes e_{2}^{*}$.

Prove that T can not be written as $S \otimes U$ with $S, U \in \mathcal{L}^{1}(V)$.
(8) Let $U \subset R^{n}$ be open. Let $f, g: U \rightarrow R$ be continuous and $|f| \leq g$. Suppose $\int_{U}^{e x t} g$ exists.
Prove that $\int_{U}^{e x t} f$ also exists.

