
Solutions to Term Test 3

(1) (13 pts) A k-tensor T on a vector space V is called symmetric if
T σ = T for any σ ∈ Sk.

Prove that a 2-tensor T is symmetric if and only if Alt(T ) = 0.

Solution

First note that S2 = {e, (12)} and T e = T for any tensor.
For σ0 = (1, 2) we have that sign(σ0) = −1. Then Alt(T ) =
1
2(T e − T σ0) = 1

2(T − T σ0) so Alt(T ) = 0 iff T = T σ0.
(2) (15 pts) Prove that [0, 1] × [0, 1] ⊂ R2 is not a manifold with

boundary.

Solution

SupposeM = [0, 1]×[0, 1] si a 2-manifold with boundary. Clearly,
(0, 1)× (0, 1) ⊂ intM and (0, 1)× {0, 1} ∪ {0, 1} × (0, 1) ⊂ ∂M .
It’s also easy to see that the vertices of [0, 1]2 can not belong to
intM so they must be in ∂M . Consider one of those vertices,
say p = (0, 1). since p ∈ ∂M there exists an open set U ⊂ R2

an open set V ⊂ R2 and a diffeomorphism F : U → V such
that F (U ∩M) = V ∩H2. Note that since boundary pf a mani-
fold is well defined we must have that F (∂M) ⊂ R× {0}. This
means that F (0, t) = (x(t), 0) and F (t, 0) = (0, x̃(t), 0 for t ≥ 0.
this implies that D1F (0, 0) = (x′(0), 0) and D2(0, 0) = (x̃′(0), 0).
Therefore DFp is not invertible which contradicts the assumption
that F is a diffeomorphism.

(3) (12 pts) Let V = R3. Let T be a 2-tensor on V given by

T (u, v) = det

u1 u2 u3
v1 v2 v3
1 2 −3

 LetA2(R3) be the space of alternat-

ing 2-tensors on R3. Express T in the standard basis of A2(R3).

Solution

The standard basis of A2(R3) is given by e∗1∧e∗2, e∗1∧e∗3, e∗2∧e∗3.
Then T = T12e

∗
1∧e∗2+T13e

∗
1∧e∗3+T23e

∗
2∧e∗3 where Tij = T (ei, ej).
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Plugging in we get T12 = T (e1, e2) = det

1 0 0
0 1 0
1 2 −3

 = −3.

Similarly, T13 = T (e1, e3) = det

1 0 0
0 0 1
1 2 −3

 = −2 and T23 =

T (e2, e3) = det

0 1 0
0 0 1
1 2 −3

 = 1

Hence, T = −3e∗1 ∧ e∗2 − 2e∗1 ∧ e∗3 + e∗2 ∧ e∗3.
(4) (20 pts) Let S = {(x, y) ∈ R2| such that x2 + y2

4 ≤ 1, y ≥
0,−y/2 ≤ x ≤ y/2}.

Compute
∫
S y.

Hint: use the appropriate change of variables.

Solution

Since S is rectifiable and f(x, y) = y is continuous,
∫
S y exists

and it is equal to
∫
U y =

∫ ext
U y where U = intS = {(x, y) ∈ R2|

such that x2 + y2

4 < 1, y > 0,−y/2 < x < y/2}. using the change
of variables g(x, y) = (x, 2y) we see that∫ ext

U y =
∫ ext
V 4y where V = {(x, y) ∈ R2| such that x2 + y2 <

1, y > 0,−y < x < y}. Making another change of variables
x = r cos θ, y = r sin θ we get∫ ext

V 4y =
∫ ext
W 4r2 sin θ where W = {(r, θ) ∈ R2| such that

0 < r < 1, π/4 < θ < 3π/4}. By Fubini’s theorem we get∫ ext
W 4r2 sin θ =

∫
W 4r2 sin θ =

∫ 1

0 (
∫ 3π/4

π/4 4r2 sin θdθ)dr = 4
√
2

3

(5) (15 pts) Let M ⊂ Rn be a k-dimensional Cr manifold with
boundary and let N ⊂ Rm be an l-dimensional Cr manifold
with boundary where r ≥ 1. A map f : M → N is called a Cr

diffeomorphism if f is Cr as a map from M to Rm, f is a bijec-
tion from M to N and the inverse map f−1 : N →M is also Cr

as a map from N to Rn.
Prove that if f : M → N is a Cr diffeomorphism then k = l.
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Hint: Look at the maps in local coordinates on M and N .

Solution

Let p ∈M, q = f(p) ∈ N . Let φ : V →M and ψ : W → N be
local charts on M and N respectively where V ⊂ Hk,W ⊂ Hl

are open, p = φ(a) and q = ψ(b). Then ψ−1 and φ−1 are smooth
wehere defined. Therefore h = ψ−1 ◦ f ◦ φ : V ′ → W ′ is smooth
where V ′ ⊂ V and W ′ ⊂ W are open. Similarly g = φ−1 ◦ f−1 ◦
ψ : W ′ → V ′ is also smooth. Note that g = h−1. By the chain
rule that means that dha◦dgb = id and dgb◦dha = id. Therefore,
dha : Rk → Rl is an isomorphism and hence k = l.

(6) (25 pts) True or False. If True give a proof, if False give
a counterexample.
(a) Let M ⊂ Rn be a manifold without boundary. Let U ⊂ Rn

be open. Then U ∩M is also a manifold without boundary.
(b) Let U ⊂ Rn be a bounded open set, f : U → R be continuous

and bounded. Suppose
∫ ext
U f exists. Then

∫
U f exists.

(c) If M ⊂ Rn is a manifold with boundary then ∂M = bd(M).
(d) Let e1, . . . , en be a basis of a vector space V and let σ ∈ Sn

be an even permutation, i.e. sign(σ) = +1. Then e1, . . . , en
and eσ(1), eσ(2), . . . , eσ(n) have the same orientation.

Solution

(a) Let M ⊂ Rn be a manifold without boundary. Let U ⊂ Rn

be open. Then U ∩M is also a manifold without boundary.
True. Let f : V → M be a local parameterization coming
from the definition of a manifold where V ⊂ Rk is open.
Then f : V ∩ f−1(U)→M ∩ U is a parameterization for an
open subset of M ∩ U .

(b) Let U ⊂ Rn be a bounded open set, f : U → R be continuous

and bounded. Suppose
∫ ext
U f exists. Then

∫
U f exists.

False. Let U be a bounded open set which is not rectifiable.
and f(x) ≡ 1. Then

∫ ext
U f exists but

∫
U f does not.

(c) If M ⊂ Rn is a manifold with boundary then ∂M = bd(M).
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False. Let M = [0, 1]× {0} ⊂ R2. Then ∂M = {0, 1} × {0}
but bd(M) = M .

(d) Let e1, . . . , en be a basis of a vector space V and let σ ∈ Sn
be an even permutation, i.e. sign(σ) = +1. Then e1, . . . , en
and eσ(1), eσ(2), . . . , eσ(n) have the same orientation.
True. The transition matrix from e1, . . . , en to eσ(1), eσ(2), . . . , eσ(n)
is given by Pσ. Be definition of the sign we have detPσ =
sign(σ) = 1. Hence detPσ > 0 which means that e1, . . . , en
and eσ(1), eσ(2), . . . , eσ(n) have the same orientation.


