Solutions to Term Test 3

(1) (13 pts) A k-tensor T on a vector space V is called *symmetric* if $T^{\sigma} = T$ for any $\sigma \in S_k$.

Prove that a 2-tensor T is symmetric if and only if Alt(T) = 0.

Solution

First note that $S_2 = \{e, (12)\}$ and $T^e = T$ for any tensor. For $\sigma_0 = (1,2)$ we have that $sign(\sigma_0) = -1$. Then $Alt(T) = \frac{1}{2}(T^e - T^{\sigma_0}) = \frac{1}{2}(T - T^{\sigma_0})$ so Alt(T) = 0 iff $T = T^{\sigma_0}$.

(2) (15 pts) Prove that $[0,1] \times [0,1] \subset \mathbb{R}^2$ is not a manifold with boundary.

Solution

Suppose $M = [0, 1] \times [0, 1]$ si a 2-manifold with boundary. Clearly, $(0, 1) \times (0, 1) \subset int M$ and $(0, 1) \times \{0, 1\} \cup \{0, 1\} \times (0, 1) \subset \partial M$. It's also easy to see that the vertices of $[0, 1]^2$ can not belong to int M so they must be in ∂M . Consider one of those vertices, say p = (0, 1). since $p \in \partial M$ there exists an open set $U \subset \mathbb{R}^2$ an open set $V \subset \mathbb{R}^2$ and a diffeomorphism $F \colon U \to V$ such that $F(U \cap M) = V \cap H^2$. Note that since boundary pf a manifold is well defined we must have that $F(\partial M) \subset \mathbb{R} \times \{0\}$. This means that F(0, t) = (x(t), 0) and $F(t, 0) = (0, \tilde{x}(t), 0$ for $t \geq 0$. this implies that $D_1F(0, 0) = (x'(0), 0)$ and $D_2(0, 0) = (\tilde{x}'(0), 0)$. Therefore DF_p is not invertible which contradicts the assumption that F is a diffeomorphism.

(3) (12 pts) Let $V = \mathbb{R}^3$. Let T be a 2-tensor on V given by $T(u,v) = \det \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ 1 & 2 & -3 \end{pmatrix}$ Let $\mathcal{A}^2(\mathbb{R}^3)$ be the space of alternat-

ing 2-tensors on \mathbb{R}^3 . Express T in the standard basis of $\mathcal{A}^2(\mathbb{R}^3)$.

Solution

The standard basis of $\mathcal{A}^{2}(\mathbb{R}^{3})$ is given by $e_{1}^{*} \wedge e_{2}^{*}, e_{1}^{*} \wedge e_{3}^{*}, e_{2}^{*} \wedge e_{3}^{*}$. Then $T = T_{12}e_{1}^{*} \wedge e_{2}^{*} + T_{13}e_{1}^{*} \wedge e_{3}^{*} + T_{23}e_{2}^{*} \wedge e_{3}^{*}$ where $T_{ij} = T(e_{i}, e_{j})$. Plugging in we get $T_{12} = T(e_1, e_2) = \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & -3 \end{pmatrix} = -3.$ Similarly, $T_{13} = T(e_1, e_3) = \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & -3 \end{pmatrix} = -2$ and $T_{23} = T(e_2, e_3) = \det \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & -3 \end{pmatrix} = 1$

Hence, $T = -3e_1^* \wedge e_2^* - 2e_1^* \wedge e_3^* + e_2^* \wedge e_3^*$. (4) (20 pts) Let $S = \{(x, y) \in \mathbb{R}^2 | \text{ such that } x^2 + \frac{y^2}{4} \leq 1, y \geq 0, -y/2 \leq x \leq y/2 \}$.

Compute $\int_S y$.

Hint: use the appropriate change of variables.

Solution

Since S is rectifiable and f(x, y) = y is continuous, $\int_S y$ exists and it is equal to $\int_U y = \int_U^{ext} y$ where $U = intS = \{(x, y) \in R^2 |$ such that $x^2 + \frac{y^2}{4} < 1, y > 0, -y/2 < x < y/2\}$. using the change of variables g(x, y) = (x, 2y) we see that

 $\int_{U}^{ext} y = \int_{V}^{ext} 4y \text{ where } V = \{(x, y) \in \mathbb{R}^2 | \text{ such that } x^2 + y^2 < 1, y > 0, -y < x < y\}.$ Making another change of variables $x = r \cos \theta, y = r \sin \theta$ we get

 $\int_{V}^{ext} 4y = \int_{W}^{ext} 4r^{2} \sin \theta \text{ where } W = \{(r, \theta) \in \mathbb{R}^{2} | \text{ such that } 0 < r < 1, \pi/4 < \theta < 3\pi/4 \}.$ By Fubini's theorem we get

 $\int_{W}^{ext} 4r^{2} \sin \theta = \int_{W} 4r^{2} \sin \theta = \int_{0}^{1} (\int_{\pi/4}^{3\pi/4} 4r^{2} \sin \theta d\theta) dr = \frac{4\sqrt{2}}{3}$

(5) (15 pts) Let $M \subset \mathbb{R}^n$ be a k-dimensional C^r manifold with boundary and let $N \subset \mathbb{R}^m$ be an *l*-dimensional C^r manifold with boundary where $r \geq 1$. A map $f: M \to N$ is called a C^r diffeomorphism if f is C^r as a map from M to \mathbb{R}^m , f is a bijection from M to N and the inverse map $f^{-1}: N \to M$ is also C^r as a map from N to \mathbb{R}^n .

Prove that if $f: M \to N$ is a C^r diffeomorphism then k = l.

Hint: Look at the maps in local coordinates on M and N.

Solution

Let $p \in M, q = f(p) \in N$. Let $\phi: V \to M$ and $\psi: W \to N$ be local charts on M and N respectively where $V \subset \mathbb{H}^k, W \subset \mathbb{H}^l$ are open, $p = \phi(a)$ and $q = \psi(b)$. Then ψ^{-1} and ϕ^{-1} are smooth where defined. Therefore $h = \psi^{-1} \circ f \circ \phi \colon V' \to W'$ is smooth where $V' \subset V$ and $W' \subset W$ are open. Similarly $g = \phi^{-1} \circ f^{-1} \circ$ $\psi \colon W' \to V'$ is also smooth. Note that $g = h^{-1}$. By the chain rule that means that $dh_a \circ dg_b = id$ and $dg_b \circ dh_a = id$. Therefore, $dh_a: \mathbb{R}^k \to \mathbb{R}^l$ is an isomorphism and hence k = l.

- (6) (25 pts) True or False. If True give a proof, if False give a counterexample.
 - (a) Let $M \subset \mathbb{R}^n$ be a manifold without boundary. Let $U \subset \mathbb{R}^n$ be open. Then $U \cap M$ is also a manifold without boundary.
 - (b) Let $U \subset \mathbb{R}^n$ be a bounded open set, $f: U \to \mathbb{R}$ be continuous and bounded. Suppose $\int_{U}^{ext} f$ exists. Then $\int_{U} f$ exists.
 - (c) If $M \subset \mathbb{R}^n$ is a manifold with boundary then $\partial M = bd(M)$.
 - (d) Let e_1, \ldots, e_n be a basis of a vector space V and let $\sigma \in S_n$ be an even permutation, i.e. $sign(\sigma) = +1$. Then e_1, \ldots, e_n and $e_{\sigma(1)}, e_{\sigma(2)}, \ldots, e_{\sigma(n)}$ have the same orientation.

Solution

- (a) Let $M \subset \mathbb{R}^n$ be a manifold without boundary. Let $U \subset \mathbb{R}^n$ be open. Then $U \cap M$ is also a manifold without boundary. **True.** Let $f: V \to M$ be a local parameterization coming from the definition of a manifold where $V \subset \mathbb{R}^k$ is open. Then $f: V \cap f^{-1}(U) \to M \cap U$ is a parameterization for an open subset of $M \cap U$.
- (b) Let $U \subset \mathbb{R}^n$ be a bounded open set, $f: U \to \mathbb{R}$ be continuous and bounded. Suppose $\int_U^{ext} f$ exists. Then $\int_U f$ exists. **False.** Let U be a bounded open set which is not rectifiable. and $f(x) \equiv 1$. Then $\int_{U}^{ext} f$ exists but $\int_{U} f$ does not. (c) If $M \subset \mathbb{R}^{n}$ is a manifold with boundary then $\partial M = bd(M)$.

False. Let $M = [0, 1] \times \{0\} \subset \mathbb{R}^2$. Then $\partial M = \{0, 1\} \times \{0\}$ but bd(M) = M.

(d) Let e_1, \ldots, e_n be a basis of a vector space V and let $\sigma \in S_n$ be an even permutation, i.e. $sign(\sigma) = +1$. Then e_1, \ldots, e_n and $e_{\sigma(1)}, e_{\sigma(2)}, \ldots, e_{\sigma(n)}$ have the same orientation. **True.** The transition matrix from e_1, \ldots, e_n to $e_{\sigma(1)}, e_{\sigma(2)}, \ldots, e_{\sigma(n)}$ is given by P_{σ} . Be definition of the sign we have det $P_{\sigma} = sign(\sigma) = 1$. Hence det $P_{\sigma} > 0$ which means that e_1, \ldots, e_n and $e_{\sigma(1)}, e_{\sigma(2)}, \ldots, e_{\sigma(n)}$ have the same orientation.