Solutions to Term Test 3

(1) (13 pts) A k-tensor T on a vector space V is called symmetric if $T^{\sigma}=T$ for any $\sigma \in S_{k}$.

Prove that a 2-tensor T is symmetric if and only if $\operatorname{Alt}(T)=0$.

Solution

First note that $S_{2}=\{e,(12)\}$ and $T^{e}=T$ for any tensor. For $\sigma_{0}=(1,2)$ we have that $\operatorname{sign}\left(\sigma_{0}\right)=-1$. Then $\operatorname{Alt}(T)=$ $\frac{1}{2}\left(T^{e}-T^{\sigma_{0}}\right)=\frac{1}{2}\left(T-T^{\sigma_{0}}\right)$ so $\operatorname{Alt}(T)=0$ iff $T=T^{\sigma_{0}}$.
(2) (15 pts) Prove that $[0,1] \times[0,1] \subset \mathbb{R}^{2}$ is not a manifold with boundary.

Solution

Suppose $M=[0,1] \times[0,1]$ si a 2-manifold with boundary. Clearly, $(0,1) \times(0,1) \subset \operatorname{int} M$ and $(0,1) \times\{0,1\} \cup\{0,1\} \times(0,1) \subset \partial M$. It's also easy to see that the vertices of $[0,1]^{2}$ can not belong to int M so they must be in ∂M. Consider one of those vertices, say $p=(0,1)$. since $p \in \partial M$ there exists an open set $U \subset \mathbb{R}^{2}$ an open set $V \subset \mathbb{R}^{2}$ and a diffeomorphism $F: U \rightarrow V$ such that $F(U \cap M)=V \cap H^{2}$. Note that since boundary pf a manifold is well defined we must have that $F(\partial M) \subset \mathbb{R} \times\{0\}$. This means that $F(0, t)=(x(t), 0)$ and $F(t, 0)=(0, \tilde{x}(t), 0$ for $t \geq 0$. this implies that $D_{1} F(0,0)=\left(x^{\prime}(0), 0\right)$ and $D_{2}(0,0)=\left(\tilde{x}^{\prime}(0), 0\right)$. Therefore $D F_{p}$ is not invertible which contradicts the assumption that F is a diffeomorphism.
(3) (12 pts) Let $V=\mathbb{R}^{3}$. Let T be a 2-tensor on V given by $T(u, v)=\operatorname{det}\left(\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ 1 & 2 & -3\end{array}\right)$ Let $\mathcal{A}^{2}\left(\mathbb{R}^{3}\right)$ be the space of alternating 2 -tensors on \mathbb{R}^{3}. Express T in the standard basis of $\mathcal{A}^{2}\left(\mathbb{R}^{3}\right)$.

Solution

The standard basis of $\mathcal{A}^{2}\left(\mathbb{R}^{3}\right)$ is given by $e_{1}^{*} \wedge e_{2}^{*}, e_{1}^{*} \wedge e_{3}^{*}, e_{2}^{*} \wedge e_{3}^{*}$. Then $T=T_{12} e_{1}^{*} \wedge e_{2}^{*}+T_{13} e_{1}^{*} \wedge e_{3}^{*}+T_{23} e_{2}^{*} \wedge e_{3}^{*}$ where $T_{i j}=T\left(e_{i}, e_{j}\right)$.

Plugging in we get $T_{12}=T\left(e_{1}, e_{2}\right)=\operatorname{det}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & -3\end{array}\right)=-3$.
Similarly, $T_{13}=T\left(e_{1}, e_{3}\right)=\operatorname{det}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & -3\end{array}\right)=-2$ and $T_{23}=$ $T\left(e_{2}, e_{3}\right)=\operatorname{det}\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & -3\end{array}\right)=1$

Hence, $T=-3 e_{1}^{*} \wedge e_{2}^{*}-2 e_{1}^{*} \wedge e_{3}^{*}+e_{2}^{*} \wedge e_{3}^{*}$.
(4) (20 pts) Let $S=\left\{(x, y) \in R^{2} \mid\right.$ such that $x^{2}+\frac{y^{2}}{4} \leq 1, y \geq$ $0,-y / 2 \leq x \leq y / 2\}$.
Compute $\int_{S} y$.
Hint: use the appropriate change of variables.

Solution

Since S is rectifiable and $f(x, y)=y$ is continuous, $\int_{S} y$ exists and it is equal to $\int_{U} y=\int_{U}^{e x t} y$ where $U=\operatorname{int} S=\left\{(x, y) \in R^{2} \mid\right.$ such that $\left.x^{2}+\frac{y^{2}}{4}<1, y>0,-y / 2<x<y / 2\right\}$. using the change of variables $g(x, y)=(x, 2 y)$ we see that
$\int_{U}^{e x t} y=\int_{V}^{e x t} 4 y$ where $V=\left\{(x, y) \in R^{2} \mid\right.$ such that $x^{2}+y^{2}<$ $1, y>0,-y<x<y\}$. Making another change of variables $x=r \cos \theta, y=r \sin \theta$ we get
$\int_{V}^{e x t} 4 y=\int_{W}^{e x t} 4 r^{2} \sin \theta$ where $W=\left\{(r, \theta) \in R^{2} \mid\right.$ such that $0<r<1, \pi / 4<\theta<3 \pi / 4\}$. By Fubini's theorem we get

$$
\int_{W}^{e x t} 4 r^{2} \sin \theta=\int_{W} 4 r^{2} \sin \theta=\int_{0}^{1}\left(\int_{\pi / 4}^{3 \pi / 4} 4 r^{2} \sin \theta d \theta\right) d r=\frac{4 \sqrt{2}}{3}
$$

(5) (15 pts) Let $M \subset \mathbb{R}^{n}$ be a k-dimensional C^{r} manifold with boundary and let $N \subset \mathbb{R}^{m}$ be an l-dimensional C^{r} manifold with boundary where $r \geq 1$. A map $f: M \rightarrow N$ is called a C^{r} diffeomorphism if f is C^{r} as a map from M to \mathbb{R}^{m}, f is a bijection from M to N and the inverse map $f^{-1}: N \rightarrow M$ is also C^{r} as a map from N to \mathbb{R}^{n}.
Prove that if $f: M \rightarrow N$ is a C^{r} diffeomorphism then $k=l$.

Hint: Look at the maps in local coordinates on M and N.

Solution

Let $p \in M, q=f(p) \in N$. Let $\phi: V \rightarrow M$ and $\psi: W \rightarrow N$ be local charts on M and N respectively where $V \subset \mathbb{H}^{k}, W \subset \mathbb{H}^{l}$ are open, $p=\phi(a)$ and $q=\psi(b)$. Then ψ^{-1} and ϕ^{-1} are smooth wehere defined. Therefore $h=\psi^{-1} \circ f \circ \phi: V^{\prime} \rightarrow W^{\prime}$ is smooth where $V^{\prime} \subset V$ and $W^{\prime} \subset W$ are open. Similarly $g=\phi^{-1} \circ f^{-1} \circ$ $\psi: W^{\prime} \rightarrow V^{\prime}$ is also smooth. Note that $g=h^{-1}$. By the chain rule that means that $d h_{a} \circ d g_{b}=i d$ and $d g_{b} \circ d h_{a}=i d$. Therefore, $d h_{a}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{l}$ is an isomorphism and hence $k=l$.
(6) (25 pts) True or False. If True give a proof, if False give a counterexample.
(a) Let $M \subset \mathbb{R}^{n}$ be a manifold without boundary. Let $U \subset \mathbb{R}^{n}$ be open. Then $U \cap M$ is also a manifold without boundary.
(b) Let $U \subset \mathbb{R}^{n}$ be a bounded open set, $f: U \rightarrow \mathbb{R}$ be continuous and bounded. Suppose $\int_{U}^{e x t} f$ exists. Then $\int_{U} f$ exists.
(c) If $M \subset \mathbb{R}^{n}$ is a manifold with boundary then $\partial M=b d(M)$.
(d) Let e_{1}, \ldots, e_{n} be a basis of a vector space V and let $\sigma \in S_{n}$ be an even permutation, i.e. $\operatorname{sign}(\sigma)=+1$. Then e_{1}, \ldots, e_{n} and $e_{\sigma(1)}, e_{\sigma(2)}, \ldots, e_{\sigma(n)}$ have the same orientation.

Solution

(a) Let $M \subset \mathbb{R}^{n}$ be a manifold without boundary. Let $U \subset \mathbb{R}^{n}$ be open. Then $U \cap M$ is also a manifold without boundary. True. Let $f: V \rightarrow M$ be a local parameterization coming from the definition of a manifold where $V \subset \mathbb{R}^{k}$ is open. Then $f: V \cap f^{-1}(U) \rightarrow M \cap U$ is a parameterization for an open subset of $M \cap U$.
(b) Let $U \subset \mathbb{R}^{n}$ be a bounded open set, $f: U \rightarrow \mathbb{R}$ be continuous and bounded. Suppose $\int_{U}^{e x t} f$ exists. Then $\int_{U} f$ exists.
False. Let U be a bounded open set which is not rectifiable. and $f(x) \equiv 1$. Then $\int_{U}^{e x t} f$ exists but $\int_{U} f$ does not.
(c) If $M \subset \mathbb{R}^{n}$ is a manifold with boundary then $\partial M=b d(M)$.

False. Let $M=[0,1] \times\{0\} \subset \mathbb{R}^{2}$. Then $\partial M=\{0,1\} \times\{0\}$ but $b d(M)=M$.
(d) Let e_{1}, \ldots, e_{n} be a basis of a vector space V and let $\sigma \in S_{n}$ be an even permutation, i.e. $\operatorname{sign}(\sigma)=+1$. Then e_{1}, \ldots, e_{n} and $e_{\sigma(1)}, e_{\sigma(2)}, \ldots, e_{\sigma(n)}$ have the same orientation.
True. The transition matrix from e_{1}, \ldots, e_{n} to $e_{\sigma(1)}, e_{\sigma(2)}, \ldots, e_{\sigma(n)}$ is given by P_{σ}. Be definition of the sign we have $\operatorname{det} P_{\sigma}=$ $\operatorname{sign}(\sigma)=1$. Hence $\operatorname{det} P_{\sigma}>0$ which means that e_{1}, \ldots, e_{n} and $e_{\sigma(1)}, e_{\sigma(2)}, \ldots, e_{\sigma(n)}$ have the same orientation.

