MAT 257Y \quad Solutions to Term Test 2

(1) (15 pts) let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by $f_{1}(x, y, z)=$ $x y+z, f_{2}(x, y, z)=e^{x z}+y^{2}$.

Show that the level set $\left\{f_{1}=1, f_{2}=2\right\}$ can be solved near $(1,1,0)$ as $y=y(x), z=z(x)$ and compute $\frac{\partial y}{\partial x}(1)$ and $\frac{\partial z}{\partial x}(1)$.

Solution

We compute

$$
\left[d f_{(x, y, z)}\right]=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial z}
\end{array}\right)=\left(\begin{array}{ccc}
y & x & 1 \\
z e^{x z} & 2 y & x e^{x z}
\end{array}\right)
$$

Hence,

$$
d f_{(1,1,0)}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1
\end{array}\right)
$$

In particular,

$$
\frac{\partial f}{\partial(y z)}(1,1,0)=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)
$$

Since this matrix is invertible, by implicit function theorem, near $(1,1,0)$ the level set $\left\{f_{1}=1, f_{2}=2\right\}$ can be written as a graph of a differentiable function $y=y(x), z=z(x)$. Also, by implicit function theorem

$$
\begin{gathered}
\binom{y^{\prime}(1)}{z^{\prime}(1)}=-\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial y}(1,1,0) & \frac{\partial f_{1}}{\partial z}(1,1,0) \\
\frac{\partial f_{2}}{\partial y}(1,1,0) & \frac{\partial f_{2}}{\partial z}(1,1,0)
\end{array}\right)^{-1} \cdot\binom{\frac{\partial f_{1}}{\partial x}(1,1,0)}{\frac{\partial f_{2}}{\partial x}(1,1,0)}= \\
=-\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)^{-1} \cdot\binom{1}{0}=\left(\begin{array}{cc}
1 & -1 \\
-2 & 1
\end{array}\right) \cdot\binom{1}{0}=\binom{1}{-2}
\end{gathered}
$$

(2) (18 pts) Mark True or False. If true, give a proof. If false, give a counterexample.

Let A be a rectangle in \mathbb{R}^{n}.
(a) Let $S \subset A$. If $b d(S)$ is rectifiable then S is rectifiable.
(b) If $S \subset A$ is rectifiable then $A \backslash S$ is also rectifiable.
(c) If $S \subset A$ has measure zero then $b d(S)$ has measure zero.

Solution

(a) False. For example let $S=\mathbb{Q} \cap[0,1]$. Then S is not rectifiable but $b d(S)=[0,1]$ is rectifiable.
(b) True. We have that $\chi_{A \backslash S}=1-\chi_{S}$ is integrable as a difference of integrable functions. Therefore, $A \backslash S$ is rectifiable.
(c) False. For example let $S=\mathbb{Q} \cap[0,1]$. Then S has measure zero but $b d(S)=[0,1]$ does not.
(3) (15 pts) Let $f: Q \rightarrow \mathbb{R}$ be continuous where Q is a rectangle in \mathbb{R}^{n}. The graph of f is the set $\Gamma_{f}=$ $\left\{(x, y) \in \mathbb{R}^{n+1} \mid\right.$ such that $\left.x \in Q, y=f(x)\right\}$.

Show that Γ_{f} has measure zero.

Solution

Since f is continuous on Q it is bouneded on Q since Q is compact. Hence f is integrable on Q. Let $\varepsilon>0$. Then there exists a partition P of Q such that $U(f, P)-L(f, P)<\varepsilon$. This gives $U(f, P)-$ $L(f, P)=\sum_{A \in P}\left(M_{A}(f)-m_{A}(f)\right) \operatorname{vol} A<\varepsilon$. This in turn gives that Γ_{f} is covered by the rectangles $A \times\left[m_{A}(f), M_{A}(f)\right]$ where $A \in P$ with total volume $<\varepsilon$. As $\varepsilon>0$ is arbitrary this means that Γ_{f} has measure zero.
(4) (10 pts) Let $\phi_{1}, \ldots \phi_{k}, \ldots$.. be a partition of unity on an open set $U \subset \mathbb{R}^{n}$. Let $Q \subset U$ be a rectangle contained in U.

Prove that all but finitely many ϕ_{i} vanish on Q.

Solution

Let $x \in Q$. By definition of partition of unity there exists $\varepsilon_{x}>0$ such that ϕ_{i} vanishes on $B_{\varepsilon_{x}}(x)$ for all $i \geq N(x)$ for some finite $N(x)$. Since Q is compact
we can choose a finite cover $\left\{B_{\varepsilon_{j}}\left(x_{j}\right)\right\}_{j=1, \ldots, k}$ of Q such that for every $j=1, \ldots, k$ we have that ϕ_{i} vanishes on $B_{\varepsilon_{i}}\left(x_{i}\right)$ for $i \geq N_{j}$. Let $N=\max _{j=1}^{k} N_{j}$. Then for any $i \geq N$ we have that ϕ_{i} vanishes on Q.
(5) (15 pts) Let $A \subset \mathbb{R}^{n}$ be a rectangle and let $f: A \rightarrow \mathbb{R}$ be integrable such that $f \geq 0$ on A and $\int_{A} f=0$.
Prove that $f=0$ almost everywhere on A.
Hint: Show that f must vanish at all its points of continuity.

Solution

Let $D \subset A$ be the set of points of continuity of f. Since f is integrable, $A \backslash D$ has measure zero. Therefore, it is sufficient to show that f vanishes on D. Let $p \in D$. Suppose $f(p)=\varepsilon>0$. Since f is continuous at p, there exists $\delta>0$ such that $|f(x)-f(p)|<\varepsilon / 2$ on $B_{\delta}(p)$. Therefore $f(x)>\varepsilon-\varepsilon / 2=\varepsilon / 2$ on $B_{\delta}(p)$. Choose a rectangle Q contained in $B_{\delta}(p)$. Then

$$
\int_{A} f \geq \int_{Q} f \geq \int_{Q} \varepsilon / 2=\operatorname{vol}(Q) \cdot \frac{\varepsilon}{2}>0
$$

This is a contradiction and hence $f(p)=0$.
(6) (12 pts) Let $S \subset \mathbb{R}^{n}$ be rectifiable and $f: S \rightarrow \mathbb{R}$ be continuous and bounded.

Prove that $\int_{S} f$ exists.

Solution

Since S is rectifiable we have that $b d(S)$ has measure zero. We know that $\mathbb{R}^{n} \backslash b d(S)=\operatorname{int}(S) \cup \operatorname{ext}(S)$. Consider the function f_{S}. Then $f_{S}(x)=0$ for any $x \in \operatorname{ext}(S)$ and since $\operatorname{ext}(S)$ is open this means that f_{S} is continuous on $\operatorname{ext}(S)$. Also, $f_{S}(x)=f(x)$ for any $x \in \operatorname{int}(S)$ and since f is continuous on \mathbb{R}^{n} and $\operatorname{int}(S)$ is open this means that f_{S} is continuous on $\operatorname{int}(S)$. Putting the above together we see that f_{S} is continuous on $\mathbb{R}^{n} \backslash b d(S)=\operatorname{int}(S) \cup \operatorname{ext}(S)$. Let
A be any rectangle containing S. It exists since S is bounded. By above, f_{S} is continuous on $A \cap$ $(\operatorname{int}(S) \cup \operatorname{ext}(S))=A \backslash b d(S)$. Since f (and hence f_{S} is bounded and $A \cap b d(S) \subset b d S$ has measure zero, f_{S} is integrable over A.
(7) (15 pts) Let $f(x, y)=\int_{0}^{x^{2}+y} \sqrt{e^{t}+x^{2} y^{4}} d t$.

Find the formulas for $\frac{\partial}{\partial x} f(x, y)$ and $\frac{\partial}{\partial y} f(x, y)$.
You do not need to evaluate the integrals involved in the formulas.

Solution

Let $F(x, y, a)=\int_{0}^{a} \sqrt{e^{t}+x^{2} y^{4}} d t$. Then $f(x, y)=$ $F\left(x, y, x^{2}+y\right)$. By the theorem proved in class, F is C^{1} on \mathbb{R}^{3} because $\sqrt{e^{t}+x^{2} y^{4}}$ is C^{1}. Hence f is also C^{1} and by the chain rule

$$
\begin{gathered}
\frac{\partial}{\partial x} f(x, y)=\frac{\partial}{\partial x} F\left(x, y, x^{2}+y\right)+\frac{\partial}{\partial a} F\left(x, y, x^{2}+y\right) 2 x= \\
\quad=\int_{0}^{x^{2}+y} \frac{\partial}{\partial x}\left(\sqrt{e^{t}+x^{2} y^{4}}\right) d t+\left(\sqrt{e^{x^{2}+y}+x^{2} y^{4}}\right) 2 x \\
\quad=\int_{0}^{x^{2}+y} \frac{2 x y^{4}}{2 \sqrt{e^{t}+x^{2} y^{4}}} d t+\left(\sqrt{e^{x^{2}+y}+x^{2} y^{4}}\right) 2 x
\end{gathered}
$$

Similarly,

$$
\begin{gathered}
\frac{\partial}{\partial y} f(x, y)=\frac{\partial}{\partial y} F\left(x, y, x^{2}+y\right)+\frac{\partial}{\partial a} F\left(x, y, x^{2}+y\right) \cdot 1= \\
=\int_{0}^{x^{2}+y} \frac{\partial}{\partial y}\left(\sqrt{e^{t}+x^{2} y^{4}}\right) d t+\left(\sqrt{e^{x^{2}+y}+x^{2} y^{4}}\right) \\
=\int_{0}^{x^{2}+y} \frac{4 x^{2} y^{3}}{2 \sqrt{e^{t}+x^{2} y^{4}}} d t+\left(\sqrt{e^{x^{2}+y}+x^{2} y^{4}}\right)
\end{gathered}
$$

