Solutions to Term Test 2 Practice Test 2

(1) (20 pts) Let F(x, y) be given by the formula

$$F(x,y) = \int_0^y e^x \cos(t^2 x) dt$$

- (a) Show that F is C^1 on \mathbb{R}^2 .
- (b) Let c = F(0, 2). Compute c and prove that near (0, 2) the level set $\{F(x, y) = c\}$ can be written as a graph of a differentiable function y = g(x) and find g'(0).

Solution

- (a) Since x cos(t²x) is C¹ on ℝ², by a Theorem from class ∂F/∂x(x, y) = ∫₀^y ∂/∂x(e^x cos(t²x))dt = ∫₀^y(e^x cos(t²x) e^x sin(t²x) · t²)dt is continuous on ℝ². By the Fundamental Theorem of Calculus, we have that ∂F/∂y(x, y) = e^x cos(y²x) is continuous on ℝⁿ. Therefore F is C¹ on ℝ².
 (b) c = F(0, 2) = ∫₀² e⁰ cos(t² · 0)dt = ∫₀² dt = 2.
- (b) $c = F(0, 2) = \int_0^\infty e^{-} \cos(t \cdot 0) dt = \int_0^\infty dt = 2.$ By part a) we compute $\frac{\partial F}{\partial x}(0, 2) = \int_0^2 e^0 \cos(0) - e^0 \sin(0) \cdot t^2 dt = 2$ and $\frac{\partial F}{\partial y}(0, 2) = e^0 \cos(2^2 \cdot 0) = 1 \neq 0.$ By the implicit function theorem this means that near (0, 2) the level set $\{F(x, y) = c\}$ can be written as a graph of a differentiable function y = g(x) and $g'(0) = -\frac{\frac{\partial F}{\partial x}(0, 2)}{\frac{\partial F}{\partial y}(0, 2)} = -\frac{2}{1} = -2.$
- (2) (10 pts) Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^n$ be C^1 such that $\det([df_p]]) \neq 0$ for any $p \in U$. Show that f(U) is open.

Solution

Let $p \in U$. By the inverse function theorem, there exists an open set $U_p \subset U$ containing p such that

 $f(U_p)$ is open and $f: U_p \to f(U_p)$ is 1-1 with a differentiable inverse. Therefore $f(U) = \bigcup_{p \in U} f(U_p)$ is open as a union of open sets.

(3) (10 pts) Let $Q \subset \mathbb{R}^n$ be a rectangle and let $f, g: Q \to \mathbb{R}$ be integrable. Prove that $f \cdot g$ is integrable over Q.

Solution

Since both f and g are integrable they are both bounded. this clearly implies that $f \cdot g$ is bounded. By the integrability criterion there exist sets $S_1, S_2 \subset Q$ of measure zero such that f is continuous on $Q \setminus S_1$ and g is continuous on $Q \setminus S_2$. Let $S = S_1 \cup S_2$. Then S has measure zero and both f and g are continuous on $Q \setminus S$. hence $f \cdot g$ is continuous on $Q \setminus S$. therefore $f \cdot g$ is integrable on Q.

- (4) (15 pts) Mark True or False. If true, give a proof.If false, give a counterexample.
 - (a) Let (X, d) be a metric space. If $f: X \to \mathbb{R}$ satisfies $|f(x) - f(y)| \le 10 \cdot d(x, y)$ for any $x, y \in X$ then f is uniformly continuous.

Answer: True. Let $\epsilon > 0$. Put $\delta = \epsilon/10$. Then if $x, y \in X$ satisfy $d(x, y) < \delta$ then $|f(x) - f(y)| \le 10d(x, y) < 10\delta = \epsilon$ which means that f is uniformly continuous by definition of uniform continuity.

- (b) Let A ⊂ ℝⁿ be a rectangle and S ⊂ A be a subset of measure 0 then S is rectifiable.
 Answer: False. For example, let S = Q ∩ [0, 1]. then S is countable and hence has measure zero but it's not rectifiable because bd(S) = [0, 1] which does not have measure zero.
- (c) Let $A \subset \mathbb{R}^n$ be a rectangle and $f: A \to \mathbb{R}$ be continuous except at finitely many points. Then f is integrable over A.

Answer: False.

For example, let f(x) be given by

$$f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Then f is continuous everywhere except at 0 but is not bounded on [0,1] and hence is not integrable on [0, 1].

- (5) (15 pts) Let A be a rectangle and $f: A \to \mathbb{R}$ be integrable such that f vanishes except on a set $S \subset A$ of measure 0. Prove that $\int_A f = 0$.
 - *Hint:* Show that $\int_A f \ge 0$ and $\int_A f \le 0$.

Solution

Let P be any partition of A. Observe that for any rectangle $Q \in P$, Q is not entirely contained in S because Q does not have measure zero. therefore there exists $x \in Q \setminus S$. Then f(x) = 0. Therefore $m_Q(f) \leq 0$. Hence, $L(f, P) = \sum_{Q \in P} m_Q(f) \operatorname{vol} Q \leq 0$. Since this is tru for any P we have that $\underline{\int}_A f \leq =$ $\sup_{P} L(f, P) \leq 0$. Similarly, $\overline{\int_{\underline{A}}} f \geq 0$. Since f is integrable we have that $\int_A f = \overline{\int}_A f = \int_A f = 0.$ (6) (15 pts) Let $S = \{(x, y) \in \mathbb{R}^2 | \text{ such that } y^2 \le x \le 4\}.$

Let f(x, y) = y.

Prove that f is integrable over S and compute $\int_S f$.

Solution

First observe that bd(S) is the union of the interval $\{x = 4\} \times \{-2 \le y \le 2\}$ and the graph of $x = y^2$ for $-2 \leq y \leq 2$. Both of them have measure zero as graphs of integrable functions. Therefore, bd(S) has measure zero. Since f is continuous it's integrable over S. Hence, by Fubini's theorem and we have

$$\begin{split} \int_{S} f &= \int_{-2}^{2} (\int_{y^{2}}^{4} y dx) dy = \int_{-2}^{2} (4 - y^{2}) y dy = \int_{-2}^{2} 4y - y^{3} dy = \\ &= (2y^{2} - \frac{y^{4}}{4})|_{-2}^{2} = 0 \end{split}$$

(7) (15 pts) Let S be a compact rectifiable set. Let $S \subset \bigcup_{i=1}^{\infty} Q_i$ for a countable collection of rectangles Q_i . Prove that $\operatorname{vol}(S) \leq \sum_{i=1}^{\infty} \operatorname{vol}(Q_i)$.

Hint: Reduce the problem to the case of covering by open rectangles.

Solution

Fix $\delta > 0$. for each *i* let Q'_i be a rectangle containing Q_i such that $Q_i \subset int(Q'_i)$ and $\operatorname{vol} Q'_i < (1 + \delta)\operatorname{vol} Q_i$. Then we have that $S \subset \bigcup_{i=1}^{\infty} int(Q'_i)$. By compactness of *S* we can choose a finite subcover $S \subset \bigcup_{i=1}^k int(Q'_i)$. Taking characteristic functions this means $\chi_S \leq \sum_{i=1}^k \chi_{Q'_i}$. Since this sum is finite and all functions in it are integrable this means that

 $\operatorname{vol}(S) = \int \chi_S \leq \int \sum_{i=1}^k \chi_{Q'_i} = \sum_{i=1}^k \int \chi_{Q'_i} = \sum_{i=1}^k \operatorname{vol}(Q'_i) < (1+\delta) \sum_{i=1}^k \operatorname{vol}(Q_i) < (1+\delta) \sum_{i=1}^\infty \operatorname{vol}(Q_i).$

Since this is true for any $\delta > \overline{0}$ we conclude that $\operatorname{vol}(S) \leq \sum_{i=1}^{\infty} \operatorname{vol}(Q_i)$.