Solutions to Term Test 2 Practice Test 2

(1) (20 pts) Let $F(x, y)$ be given by the formula

$$
F(x, y)=\int_{0}^{y} e^{x} \cos \left(t^{2} x\right) d t
$$

(a) Show that F is C^{1} on \mathbb{R}^{2}.
(b) Let $c=F(0,2)$. Compute c and prove that near $(0,2)$ the level set $\{F(x, y)=c\}$ can be written as a graph of a differentiable function $y=g(x)$ and find $g^{\prime}(0)$.

Solution

(a) Since $x \cos \left(t^{2} x\right)$ is C^{1} on \mathbb{R}^{2}, by a Theorem from class $\frac{\partial F}{\partial x}(x, y)=\int_{0}^{y} \frac{\partial}{\partial x}\left(e^{x} \cos \left(t^{2} x\right)\right) d t=\int_{0}^{y}\left(e^{x} \cos \left(t^{2} x\right)-\right.$ $\left.e^{x} \sin \left(t^{2} x\right) \cdot t^{2}\right) d t$ is continuous on \mathbb{R}^{2}.
By the Fundamental Theorem of Calculus, we have that $\frac{\partial F}{\partial y}(x, y)=e^{x} \cos \left(y^{2} x\right)$ is continuous on \mathbb{R}^{n}. Therefore F is C^{1} on \mathbb{R}^{2}.
(b) $c=F(0,2)=\int_{0}^{2} e^{0} \cos \left(t^{2} \cdot 0\right) d t=\int_{0}^{2} d t=2$.

By part a) we compute $\frac{\partial F}{\partial x}(0,2)=\int_{0}^{2} e^{0} \cos (0)-$ $e^{0} \sin (0) \cdot t^{2} d t=2$ and $\frac{\partial F}{\partial y}(0,2)=e^{0} \cos \left(2^{2} \cdot 0\right)=$ $1 \neq 0$. By the implicit function theorem this means that near $(0,2)$ the level set $\{F(x, y)=$ $c\}$ can be written as a graph of a differentiable function $y=g(x)$ and $g^{\prime}(0)=-\frac{\frac{\partial F}{\partial F}(0,2)}{\partial \partial_{y}}(0,2)=-\frac{2}{1}=$ -2 .
(2) (10 pts) Let $U \subset \mathbb{R}^{n}$ be open and $f: U \rightarrow \mathbb{R}^{n}$ be C^{1} such that $\left.\operatorname{det}\left(\left[d f_{p}\right]\right]\right) \neq 0$ for any $p \in U$. Show that $f(U)$ is open.

Solution

Let $p \in U$. By the inverse function theorem, there exists an open set $U_{p} \subset U$ containing p such that
$f\left(U_{p}\right)$ is open and $f: U_{p} \rightarrow f\left(U_{p}\right)$ is 1-1 with a differentiable inverse. Therefore $f(U)=\cup_{p \in U} f\left(U_{p}\right)$ is open as a union of open sets.
(3) (10 pts) Let $Q \subset \mathbb{R}^{n}$ be a rectangle and let $f, g: Q \rightarrow$ \mathbb{R} be integrable. Prove that $f \cdot g$ is integrable over Q.

Solution

Since both f and g are integrable they are both bounded. this clearly implies that $f \cdot g$ is bounded. By the integrability criterion there exist sets $S_{1}, S_{2} \subset$ Q of measure zero such that f is continuous on $Q \backslash S_{1}$ and g is continuous on $Q \backslash S_{2}$. Let $S=S_{1} \cup S_{2}$. Then S has measure zero and both f and g are continuous on $Q \backslash S$. hence $f \cdot g$ is continuous on $Q \backslash S$. therefore $f \cdot g$ is integrable on Q.
(4) (15 pts) Mark True or False. If true, give a proof. If false, give a counterexample.
(a) Let (X, d) be a metric space. If $f: X \rightarrow \mathbb{R}$ satisfies $|f(x)-f(y)| \leq 10 \cdot d(x, y)$ for any $x, y \in X$ then f is uniformly continuous.
Answer: True. Let $\epsilon>0$. Put $\delta=\epsilon / 10$. Then if $x, y \in X$ satisfy $d(x, y)<\delta$ then $\mid f(x)-$ $f(y) \mid \leq 10 d(x, y)<10 \delta=\epsilon$ which means that f is uniformly continuous by definition of uniform continuity.
(b) Let $A \subset \mathbb{R}^{n}$ be a rectangle and $S \subset A$ be a subset of measure 0 then S is rectifiable.
Answer: False. For example, let $S=Q \cap$ $[0,1]$. then S is countable and hence has measure zero but it's not rectifiable because $b d(S)=[0,1]$ which does not have measure zero.
(c) Let $A \subset \mathbb{R}^{n}$ be a rectangle and $f: A \rightarrow \mathbb{R}$ be continuous except at finitely many points. Then f is integrable over A.

Answer: False.

For example, let $f(x)$ be given by

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{x} \text { if } x \neq 0 \\
0 \text { if } x=0
\end{array}\right.
$$

Then f is continuous everywhere except at 0 but is not bounded on $[0,1]$ and hence is not integrable on $[0,1]$.
(5) (15 pts) Let A be a rectangle and $f: A \rightarrow \mathbb{R}$ be integrable such that f vanishes except on a set $S \subset A$ of measure 0 . Prove that $\int_{A} f=0$.

Hint: Show that $\int_{A} f \geq 0$ and $\int_{A} f \leq 0$.

Solution

Let P be any partition of A. Observe that for any rectangle $Q \in P, Q$ is not entirely contained in S because Q does not have measure zero. therefore there exists $x \in Q \backslash S$. Then $f(x)=0$. Therefore $m_{Q}(f) \leq 0$. Hence, $L(f, P)=\sum_{Q \in P} m_{Q}(f) \operatorname{vol} Q \leq$ 0 . Sinc ethis is tru for any P we have that $\int_{A} f \leq=$ $\sup _{P} L(f, P) \leq 0$. Similarly, $\bar{\int}_{A} f \geq 0$. Since f is integrable we have that $\int_{A} f=\bar{\int}_{A} f=\underline{\int}_{A} f=0$.
(6) (15 pts) Let $S=\left\{(x, y) \in \mathbb{R}^{2} \mid\right.$ such that $\left.y^{2} \leq x \leq 4\right\}$. Let $f(x, y)=y$.
Prove that f is integrable over S and compute $\int_{S} f$.

Solution

First observe that $b d(S)$ is the union of the interval $\{x=4\} \times\{-2 \leq y \leq 2\}$ and the graph of $x=y^{2}$ for $-2 \leq y \leq 2$. Both of them have measure zero as graphs of integrable functions. Therefore, $b d(S)$ has measure zero. Since f is continuous it's integrable
over S. Hence, by Fubini's theorem and we have

$$
\begin{gathered}
\int_{S} f=\int_{-2}^{2}\left(\int_{y^{2}}^{4} y d x\right) d y=\int_{-2}^{2}\left(4-y^{2}\right) y d y=\int_{-2}^{2} 4 y-y^{3} d y= \\
=\left.\left(2 y^{2}-\frac{y^{4}}{4}\right)\right|_{-2} ^{2}=0
\end{gathered}
$$

(7) (15 pts) Let S be a compact rectifiable set. Let $S \subset$ $\cup_{i=1}^{\infty} Q_{i}$ for a countable collection of rectangles Q_{i}. Prove that $\operatorname{vol}(S) \leq \sum_{i=1}^{\infty} \operatorname{vol}\left(Q_{i}\right)$.

Hint: Reduce the problem to the case of covering by open rectangles.

Solution

Fix $\delta>0$. for each i let Q_{i}^{\prime} be a rectangle containing Q_{i} such that $Q_{i} \subset \operatorname{int}\left(Q_{i}^{\prime}\right)$ and $\operatorname{vol} Q_{i}^{\prime}<(1+$ $\delta) \operatorname{vol} Q_{i}$. Then we have that $S \subset \cup_{i=1}^{\infty} \operatorname{int}\left(Q_{i}^{\prime}\right)$. By compactness of S we can choose a finite subcover $S \subset \cup_{i=1}^{k} \operatorname{int}\left(Q_{i}^{\prime}\right)$. Taking characteristic functions this means $\chi_{S} \leq \sum_{i=1}^{k} \chi_{Q_{i}^{\prime}}$. Since this sum is finite and all functions in it are integrable this means that

$$
\begin{aligned}
& \quad \operatorname{vol}(S)=\int \chi_{S} \leq \int \sum_{i=1}^{k} \chi_{Q_{i}^{\prime}}=\sum_{i=1}^{k} \int \chi_{Q_{i}^{\prime}}=\sum_{i=1}^{k} \operatorname{vol}\left(Q_{i}^{\prime}\right)< \\
& <(1+\delta) \sum_{i=1}^{k} \operatorname{vol}\left(Q_{i}\right)<(1+\delta) \sum_{i=1}^{\infty} \operatorname{vol}\left(Q_{i}\right) .
\end{aligned}
$$

Since this is true for any $\delta>0$ we conclude that $\operatorname{vol}(S) \leq \sum_{i=1}^{\infty} \operatorname{vol}\left(Q_{i}\right)$.

