MAT 257Y

(1) (20 pts) Let F(x, y) be given by the formula

$$F(x,y) = \int_0^y e^x \cos(t^2 x) dt$$

- (a) Show that F is C^1 on \mathbb{R}^2 .
- (b) Let c = F(0, 2). Compute c and prove that near (0, 2) the level set $\{F(x, y) = c\}$ can be written as a graph of a differentiable function y = g(x) and find g'(0).
- (2) (10 pts) Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^n$ be C^1 such that $\det([df_p]]) \neq 0$ for any $p \in U$. Show that f(U) is open.
- (3) (10 pts) Let $Q \subset \mathbb{R}^n$ be a rectangle and let $f, g: Q \to \mathbb{R}$ be integrable. Prove that $f \cdot g$ is integrable over Q.
- (4) (15 pts) Mark True or False. If true, give a proof. If false, give a counterexample.
 - (a) Let (X, d) be a metric space. If $f: X \to \mathbb{R}$ satisfies $|f(x) f(y)| \le 10 \cdot d(x, y)$ for any $x, y \in X$ then f is uniformly continuous.
 - (b) Let $A \subset \mathbb{R}^n$ be a rectangle and $S \subset A$ be a subset of measure 0 then S is rectifiable.
 - (c) Let $A \subset \mathbb{R}^n$ be a rectangle and $f: A \to \mathbb{R}$ be continuous except at finitely many points. Then f is integrable over A.
- (5) (15 pts) Let A be a rectangle and $f: A \to \mathbb{R}$ be integrable such that f vanishes except on a set $S \subset A$ of measure 0. Prove that $\int_A f = 0$.

Hint: Show that $\overline{\int}_A f \ge 0$ and $\underline{\int}_A f \le 0$.

- (6) (15 pts) Let $S = \{(x, y) \in \mathbb{R}^2 | \text{ such that } y^2 \le x \le 4\}$. Let f(x, y) = y. Prove that f is integrable over S and compute $\int_S f$.
- (7) (15 pts) Let S be a compact rectifiable set. Let $S \subset \bigcup_{i=1}^{\infty} Q_i$ for a countable collection of rectangles Q_i . Prove that $\operatorname{vol}(S) \leq \sum_{i=1}^{\infty} \operatorname{vol}(Q_i)$.

Hint: Reduce the problem to the case of covering by open rectangles.