MAT 257Y Solutions to Practice Term Test 2

(1) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be \mathbb{C}^1 where n > m. Suppose $[df(x_0)]$ has rank m.

Show that there exists $\epsilon > 0$ such that for any $y \in B(f(x_0), \epsilon)$ there exists $x \in \mathbb{R}^n$ such that f(x) = y.

Solution

By the Corollary to Implicit Function Theorem there exist an open set $U \subset \mathbb{R}^n$, an open set $V \subset \mathbb{R}^n$ containing x_0 and a diffeomorphism $\phi: U \to V$ such that $f(\phi(x, y)) = y$ for any $(x, y) \in U$. Here $x \in \mathbb{R}^{n-m}, y \in \mathbb{R}^m$. Let $p = (a, b \in U$ be the preimage of x_0 . i.e. $\phi(p) = x_0$. Since U is open there is an $\epsilon > 0$ such that $B(p.\epsilon) \subset U$. Then for any $y \in B(f(x_0), \epsilon)$ there exists $u \in U$ such that $f(\phi(u)) = y$.

(2) Let A be a rectangle in \mathbb{R}^n and let $S \subset A$ be a set of measure zero which is rectifiable. Show that S has content zero.

Hint: Use that $\int_A \chi_S$ exists and must be equal to zero.

Solution

Let $f = \chi_S$. Then $\int_A f$ exists and since f = 0 except on a set of measure 0, we must have $\int_A f = 0$ by a theorem from class. Let $\epsilon > 0$. Since $0 = \int_A f =$ $\inf_P U(f, P)$, there exists a partition P of A such that $U(f, P) < \epsilon$. We have $U(f, P) = \sum_{Q \in P} M_f(Q)$ volQ. By construction, $M_f(Q) = 0$ if $Q \cap S = \emptyset$ and $M_f(Q) = 1$ if $Q \cap S \neq \emptyset$. Therefore

$$\epsilon > U(f, P) = \sum_{Q \in P, Q \cap S \neq \emptyset} \operatorname{vol}(Q)$$

Since this sum is finite and $\epsilon > 0$ is arbitrary, this means that content(S) = 0.

(3) Let $f: [0,1] \times [0,1] \to R$ be continuous.

Show that

$$\int_0^1 (\int_0^x f(x,y) dy) dx = \int_0^1 (\int_y^1 f(x,y) dx) dy$$

Solution

Let $g: Q \to R$ be defined by

$$g(x,y) = \begin{cases} f(x,y) \text{ if } y \leq x \\ 0 \text{ if } y > x \end{cases}$$

Then g is clearly integrable on Q and by Fubini's theorem

$$\int_Q g = \int_0^1 (\int_0^x f(x, y) dy) dx$$

and also

$$\int_Q g = \int_0^1 (\int_y^1 f(x, y) dx) dy$$

Hence

$$\int_{0}^{1} (\int_{0}^{x} f(x, y) dy) dx = \int_{0}^{1} (\int_{y}^{1} f(x, y) dx) dy$$

(4) Let
$$f: R^2 \to R$$
 be C^2 .
Prove that $F(x) = \int_0^1 f(x, y) dy$ is C^2 on R .
Solution

since F is C^1 , by a theorem from class we know that F(x) is differentiable and $F'(x) = \int_0^1 \frac{\partial f(x,y)}{\partial x} dy$. Since $\frac{\partial f(x,y)}{\partial x}$ is continuous F'(x) is also continuous by another theorem from class. Furthermore, since f is C^2 we have that $\frac{\partial f(x,y)}{\partial x}$ is C^1 . Applying the same argument to F'(x) we see that F'(x) is C^1 , i.e., F is C^2 . (5) Prove that the union of countably many sets of measure zero has measure 0.

Solution

Let S_1, S_2, \ldots be a sequence of sets of measure zero. Let $S = \bigcup_i S_i$. Let $\epsilon > 0$. Then we can cover S_i by a countable collection of of rectangles C_i such that $\sum_{Q \in C_i} \operatorname{vol} Q < \frac{\epsilon}{2^i}$. Let $\mathcal{C} = \bigcup_i C_i$. Then \mathcal{C} is countable, it covers S, and $\sum_{Q \in \mathcal{C}} \operatorname{vol} Q < \epsilon/2 + \epsilon/4 + \ldots + \epsilon/2^i + \ldots = \epsilon$. Hence S has measure zero.

(6) let $S = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1, y \ge |x|\}.$ Compute $\int_S y.$

Solution

Note that the set $\{y = |x|\}$ intersects the set $\{x^2 + y^2 = 1\}$ when $x^2 + x^2 = 1, 2x^2 = 1, x = \pm \frac{1}{\sqrt{2}}$ We compute the integral using Fubini's Theorem

$$\int_{S} f = \int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} (\int_{|x|}^{\sqrt{1-x^{2}}} y dy) dx = \int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} (y^{2}/2|_{|x|}^{\sqrt{1-x^{2}}}) dx$$

$$= \int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} (1/2 - x^2) dx = (x/2 - x^3/3) \Big|_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} = 2(\frac{1}{\sqrt{2}} - \frac{1}{3\sqrt{8}})$$

(7) Let $A \subset \mathbb{R}^n, B \subset \mathbb{R}^m$ be rectangles. let $f: A \times B \to \mathbb{R}$ be integrable.

Prove that there is a set $S \subset A$ of measure 0 such that for any $x \in A \setminus S$ the integral $\int_B f(x, y) dy$ exists.

Solution

Let $\mathcal{L}(x) = \int_{B} f(x, y) dy$ and $\mathcal{U}(x) = \overline{\int}_{B} f(x, y) dy$. By Fubini's theorem $\int_{A \times B} f = \int_{A} \mathcal{L}(x) dx = \int_{A} \mathcal{U}(x) dx$. Therefore $0 = \int_{A} \mathcal{U}(x) - \mathcal{L}(x) dx$. Since $U(x) - \mathcal{L}(x) \geq 0$ for any x there exists a set $S \subset A$ of measure 0 such that for any $x \in A \setminus S$ we have $\mathcal{U}(x) - \mathcal{L}(x) = 0$, i.e $\int_B f(x, y) dy$ exists for any $x \in A \setminus S$.

(8) Let
$$f: [-1,1] \times [-1,1] \to R$$
 be a continuous func-
tion. Suppose $f(-x,y) = -f(x,y)$ for any x, y .
Prove that $\int_{[-1,1]\times[-1,1]} f = 0$.
Hint: use Fubini's theorem.

Solution

First observe that if a continuous function $g: [-1,1] \rightarrow R$ satisfies g(-x) = -g(x) then $\int_{-1}^{1} g(x) dx = 0$. Indeed. We change variable x = -u and get $\int_{-1}^{1} g(x) dx = \int_{1}^{-1} g(-u) d(-u) = \int_{-1}^{1} g(-u) du = \int_{-1}^{1} -g(u) du = -\int_{0}^{1} g(u) du$. Therefore, $2\int_{-1}^{1} g(x) dx = 0, \int_{-1}^{1} g(x) dx = 0$ Using the above and Fubini's Theorem we get

$$\int_{[-1,1]\times[-1,1]} f = \int_{-1}^{1} (\int_{-1}^{1} f(x,y)dx)dy = \int_{-1}^{1} 0dy = 0$$