MAT 257Y Solutions to Practice Term Test 2

(1) Let $f: R^{n} \rightarrow R^{m}$ be C^{1} where $n>m$. Suppose [$d f\left(x_{0}\right)$] has rank m.
Show that there exists $\epsilon>0$ such that for any $y \in$ $B\left(f\left(x_{0}\right), \epsilon\right)$ there exists $x \in R^{n}$ such that $f(x)=y$.

Solution

By the Corollary to Implicit Function Theorem there exist an open set $U \subset R^{n}$, an open set $V \subset R^{n}$ containing x_{0} and a diffeomorphism $\phi: U \rightarrow V$ such that $f(\phi(x, y))=y$ for any $(x, y) \in U$. Here $x \in$ $R^{n-m}, y \in R^{m}$. Let $p=(a, b \in U$ be the preimage of x_{0}. i.e. $\phi(p)=x_{0}$. Since U is open there is an $\epsilon>0$ such that $B(p . \epsilon) \subset U$. Then for any $y \in B\left(f\left(x_{0}\right), \epsilon\right)$ there exists $u \in U$ such that $f(\phi(u))=y$.
(2) Let A be a rectangle in R^{n} and let $S \subset A$ be a set of measure zero which is rectifiable. Show that S has content zero.

Hint: Use that $\int_{A} \chi_{S}$ exists and must be equal to zero.

Solution

Let $f=\chi_{S}$. Then $\int_{A} f$ exists and since $f=0$ except on a set of measure 0 , we must have $\int_{A} f=0$ by a theorem from class. Let $\epsilon>0$. Since $0=\int_{A} f=$ $\inf _{P} U(f, P)$, there exists a partition P of A such that $U(f, P)<\epsilon$. We have $U(f, P)=\sum_{Q \in P} M_{f}(Q) \operatorname{vol} Q$. By construction, $M_{f}(Q)=0$ if $Q \cap S=\emptyset$ and $M_{f}(Q)=1$ if $Q \cap S \neq \emptyset$. Therefore

$$
\epsilon>U(f, P)=\sum_{Q \in P, Q \cap S \neq \emptyset} \operatorname{vol}(Q)
$$

Since this sum is finite and $\epsilon>0$ is arbitrary, this means that $\operatorname{content}(S)=0$.
(3) Let $f:[0,1] \times[0,1] \rightarrow R$ be continuous.

Show that

$$
\int_{0}^{1}\left(\int_{0}^{x} f(x, y) d y\right) d x=\int_{0}^{1}\left(\int_{y}^{1} f(x, y) d x\right) d y
$$

Let $g: Q \rightarrow R$ be defined by

$$
g(x, y)=\left\{\begin{array}{l}
f(x, y) \text { if } y \leq x \\
0 \text { if } y>x
\end{array}\right.
$$

Then g is clearly integrable on Q and by Fubini's theorem

$$
\int_{Q} g=\int_{0}^{1}\left(\int_{0}^{x} f(x, y) d y\right) d x
$$

and also

$$
\int_{Q} g=\int_{0}^{1}\left(\int_{y}^{1} f(x, y) d x\right) d y
$$

Hence

$$
\int_{0}^{1}\left(\int_{0}^{x} f(x, y) d y\right) d x=\int_{0}^{1}\left(\int_{y}^{1} f(x, y) d x\right) d y
$$

(4) Let $f: R^{2} \rightarrow R$ be C^{2}.

Prove that $F(x)=\int_{0}^{1} f(x, y) d y$ is C^{2} on R. Solution
since F is C^{1}, by a theorem from class we know that $F(x)$ is differentiable and $F^{\prime}(x)=\int_{0}^{1} \frac{\partial f(x, y)}{\partial x} d y$. Since $\frac{\partial f(x, y)}{\partial x}$ is continuous $F^{\prime}(x)$ is also continuous by another theorem from class. Furthermore, since f is C^{2} we have that $\frac{\partial f(x, y)}{\partial x}$ is C^{1}. Applying the same argument to $F^{\prime}(x)$ we see that $F^{\prime}(x)$ is C^{1}, i.e., F is C^{2}.
(5) Prove that the union of countably many sets of measure zero has measure 0 .

Solution

Let S_{1}, S_{2}, \ldots be a sequence of sets of measure zero. Let $S=\cup_{i} S_{i}$. Let $\epsilon>0$. Then we can cover S_{i} by a countable collection of of rectangles \mathcal{C}_{i} such that $\sum_{Q \in \mathcal{C}_{i}} \operatorname{vol} Q<\frac{\epsilon}{2^{2}}$. Let $\mathcal{C}=\cup_{i} \mathcal{C}_{i}$. Then \mathcal{C} is countable, it covers S, and $\sum_{Q \in \mathcal{C}} \operatorname{vol} Q<\epsilon / 2+\epsilon / 4+\ldots+\epsilon / 2^{i}+$ $\ldots=\epsilon$. Hence S has measure zero.
(6) let $S=\left\{(x, y) \in R^{2}\left|\quad x^{2}+y^{2} \leq 1, y \geq|x|\right\}\right.$.

$$
\text { Compute } \int_{S} y
$$

Solution

Note that the set $\{y=|x|\}$ intersects the set $\left\{x^{2}+\right.$ $\left.y^{2}=1\right\}$ when $x^{2}+x^{2}=1,2 x^{2}=1, x= \pm \frac{1}{\sqrt{2}}$
We compute the integral using Fubini's Theorem

$$
\begin{aligned}
& \int_{S} f=\int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}}\left(\int_{|x|}^{\sqrt{1-x^{2}}} y d y\right) d x=\int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}}\left(y^{2} /\left.2\right|_{|x|} ^{\sqrt{1-x^{2}}}\right) d x \\
= & \int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}}\left(1 / 2-x^{2}\right) d x=\left.\left(x / 2-x^{3} / 3\right)\right|_{-\frac{1}{\sqrt{2}}} ^{\frac{1}{\sqrt{2}}}=2\left(\frac{1}{\sqrt{2}}-\frac{1}{3 \sqrt{8}}\right)
\end{aligned}
$$

(7) Let $A \subset R^{n}, B \subset R^{m}$ be rectangles. let $f: A \times B \rightarrow$ R be integrable.
Prove that there is a set $S \subset A$ of measure 0 such that for any $x \in A \backslash S$ the integral $\int_{B} f(x, y) d y$ exists.

Solution

Let $\mathcal{L}(x)=\underline{\int}_{B} f(x, y) d y$ and $\mathcal{U}(x)=\bar{\int}_{B} f(x, y) d y$. By Fubini's theorem $\int_{A \times B} f=\int_{A} \mathcal{L}(x) d x=\int_{A} \mathcal{U}(x) d x$. Therefore $0=\int_{A} \mathcal{U}(x)-\mathcal{L}(x) d x$. Since $U(x)-\mathcal{L}(x) \geq$ 0 for any x there exists a set $S \subset A$ of measure 0 such
that for any $x \in A \backslash S$ we have $\mathcal{U}(x)-\mathcal{L}(x)=0$, i.e $\int_{B} f(x, y) d y$ exists for any $x \in A \backslash S$.
(8) Let $f:[-1,1] \times[-1,1] \rightarrow R$ be a continuous function. Suppose $f(-x, y)=-f(x, y)$ for any x, y.
Prove that $\int_{[-1,1] \times[-1,1]} f=0$.
Hint: use Fubini's theorem.

Solution

First observe that if a continuous function $g:[-1,1] \rightarrow$ R satisfies $g(-x)=-g(x)$ then $\int_{-1}^{1} g(x) d x=0$.
Indeed. We change variable $x=-u$ and get
$\int_{-1}^{1} g(x) d x=\int_{1}^{-1} g(-u) d(-u)=\int_{-1}^{1} g(-u) d u=$ $\int_{-1}^{1}-g(u) d u=-\int_{0}^{1} g(u) d u$. Therefore,
$2 \int_{-1}^{1} g(x) d x=0, \int_{-1}^{1} g(x) d x=0$
Using the above and Fubini's Theorem we get

$$
\int_{[-1,1] \times[-1,1]} f=\int_{-1}^{1}\left(\int_{-1}^{1} f(x, y) d x\right) d y=\int_{-1}^{1} 0 d y=0
$$

